Sample records for atomic strings model

  1. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4; Zhong, Cheng

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cumore » and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.« less

  2. Geometric phase for a static two-level atom in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Cai, Huabing; Ren, Zhongzhou

    2018-05-01

    We investigate the geometric phase of a static two-level atom immersed in a bath of fluctuating vacuum electromagnetic field in the background of a cosmic string. Our results indicate that due to the existence of the string, the geometric phase depends crucially on the position and the polarizability of the atom relative to the string. This can be ascribed to the fact that the presence of the string profoundly modify the distribution of electric field in Minkowski spacetime. So in principle, we can detect the cosmic string by experiments involving geometric phase.

  3. Guitar Strings as Standing Waves: A Demonstration

    NASA Astrophysics Data System (ADS)

    Davis, Michael

    2007-08-01

    An undergraduate student's first exposure to modern atomic theory tends to start with Bohr's model of the atom. This familiar introduction to atomic structure also marks a general chemistry student's first foray into waves. Many popular chemistry textbooks illustrate the concept of a standing wave in the development of the modern quantum model by using the phrase “as seen on a guitar string”. In these illustrations, the wave itself is often small and difficult to discern. The same phenomenon, however, can be easily and audibly observed. This demonstration uses an acoustic guitar to produce three unique harmonic vibrations, each of which is representative of a standing wave and illustrates the concept of quantization. Manipulation of the guitar string to produce a standing wave is pervasive in popular music and is audibly recognizable. Lightly placing a finger on the 12th, 7th, or 5th fret and strumming any one or all six strings can produce an audible example of a standing wave on a guitar. This corresponds to a standing wave with 1, 2, or 3 nodes, respectively. Attempting to induce a node at other points on a guitar string does not generate a standing wave, due to destructive interference, thus no audible tone is produced.

  4. Interaction with a field: a simple integrable model with backreaction

    NASA Astrophysics Data System (ADS)

    Mouchet, Amaury

    2008-09-01

    The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.

  5. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

  6. String-like cooperative motion in homogeneous melting

    PubMed Central

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.

    2013-01-01

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of “superheated” Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of “homogeneous” melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional “static” defect melting models. PMID:23556789

  7. String-like cooperative motion in homogeneous melting.

    PubMed

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static" defect melting models.

  8. Beads + String = Atoms You Can See.

    ERIC Educational Resources Information Center

    Hermann, Christine K. F.

    1998-01-01

    Presents hands-on activities that give students a head start in learning the vocabulary and basic theory involved in understanding atomic structure. Uses beads to represent protons, neutrons, and electrons and string to represent orbitals. (DDR)

  9. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    NASA Astrophysics Data System (ADS)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  10. Modeling Regular Replacement for String Constraint Solving

    NASA Technical Reports Server (NTRS)

    Fu, Xiang; Li, Chung-Chih

    2010-01-01

    Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications

  11. String-like collective atomic motion in the melting and freezing of nanoparticles.

    PubMed

    Zhang, Hao; Kalvapalle, Pranav; Douglas, Jack F

    2011-12-08

    The melting of a solid represents a transition between a solid state in which atoms are localized about fixed average crystal lattice positions to a fluid state that is characterized by relative atomic disorder and particle mobility so that the atoms wander around the material as a whole, impelled by the random thermal impulses of surrounding atoms. Despite the fundamental nature and practical importance of this particle delocalization transition, there is still no fundamental theory of melting and instead one often relies on the semi-phenomenological Lindemann-Gilvarry criterion to estimate roughly the melting point as an instability of the crystal lattice. Even the earliest simulations of melting in hexagonally packed hard discs by Alder and Wainwright indicated the active role of nonlocal collective atomic motions in the melting process, and here we utilize molecular dynamics (MD) simulation to determine whether the collective particle motion observed in melting has a similar geometrical form as those in recent studies of nanoparticle (NP) interfacial dynamics and the molecular dynamics of metastable glass-forming liquids. We indeed find string-like collective atomic motion in NP melting that is remarkably similar in form to the collective interfacial motions in NPs at equilibrium and to the collective motions found in the molecular dynamics of glass-forming liquids. We also find that the spatial localization and extent of string-like motion in the course of NP melting and freezing evolves with time in distinct ways. Specifically, the collective atomic motion propagates from the NP surface and from within the NP in melting and freezing, respectively, and the average string length varies smoothly with time during melting. In contrast, the string-like cooperative motion peaks in an intermediate stage of the freezing process, reflecting a general asymmetry in the dynamics of NP superheating and supercooling. © 2011 American Chemical Society

  12. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    PubMed

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  13. The Strings of Eta Carina: The HST/STIS Spectra and [Ca II

    NASA Technical Reports Server (NTRS)

    Melendez, M. B.; Gull, T. R.; Bautista, M. A.; Badnell, N. R.

    2006-01-01

    Long linear, filamentary ejecta, are found to move at very high velocity external to the Homunculus, the circumstellar hourglass-shaped ejecta surrounding Eta Carinae. The origin of the strings is a puzzle. As an example, the Weigelt Blobs have N at 10X solar and C, O at 0.01X solar abundance, along with He/H significantly enhanced. This abundance pattern is evidence for extreme CNO-processing. Similarly, the Strontium Filament has Ti/Ni at 100X solar, presumably due to the lack of oxygen to form Ti-oxide precipitates onto dust grains. We have obtained 2-D spectra with the HST/STIS of the Strontium Filament and a portion of a string. These deep spectral exposures, at moderate dispersion, span much of the near red spectral region from 5000 to 9000A. We have identified twelve emission lines in these spectra with proper velocities and spatial structure of this string and obtained line ratios for [Ca II] (7293/7325A) and [Fe Ill (7157/8619A) which are useful for determining physical conditions in this nebulosity. In an attempt to use the [Ca II] ratio to determine the physical parameters, and ultimately the abundances in the strings, we have constructed a statistical equilibrium model for Ca II , including radiative and collisional rates. These results incorporate our newly calculated atomic data for levels n = 3,4,5 and 6 configurations of Ca II. The aim is to compute the [Ca II] line ratios and use them as a diagnostic of the physical parameters. Using the [Fe II] ratio we find that for Te=10,000 K, the electron density is Ne approx.10(exp 6)/cu cm. We plan to use the [Ca II] ratio to confirm this result. Then, we will extend the use of this multilevel model Ca II atom to study the physical conditions of the Strontium filament where eight lines of Ca II, both allowed and forbidden, had been identified. With the physical conditions determined, we will be able to derive reliable estimates for the gas phase abundances in the strings.

  14. Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites

    PubMed Central

    Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2016-01-01

    Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701

  15. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems.

    PubMed

    Branduardi, Davide; Faraldo-Gómez, José D

    2013-09-10

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β -D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string.

  16. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems

    PubMed Central

    Branduardi, Davide; Faraldo-Gómez, José D.

    2014-01-01

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string. PMID:24729762

  17. Atomic structure and dynamics properties of Cu50Zr50 films

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Qu, Bingyan; Li, Dongdong; Zhou, Rulong; Zhang, Bo

    2018-01-01

    In this paper, the structural and dynamic properties of Cu50Zr50 films are investigated by molecular dynamics simulations. Our results show that the dynamics of the surface atoms are much faster than those of the bulk. Especially, the diffusion coefficient of the surface atoms is about forty times larger than that of the bulk at 600 K, which qualitatively agrees with the experimental results. Meanwhile, we find that the population of the icosahedral (-like) clusters in the surface region is obviously higher than that of the bulk, which prevents the surface from crystallization. A new method to determine the string-like collective atomic motion is introduced in the paper, and it suggests a possible connection between the glass formation ability and collective atomic motion. By using the method, the effects of surface on collective motion are illustrated. Our results show that the string-like collective atomic motion of surface atoms is weakened while that of the interior atoms is strengthened. The studies clearly explain the effects of surface on the structural and dynamic properties of Cu50Zr50 films from the atomic scale.

  18. Experimental observation of Bethe strings

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  19. The Birth of String Theory

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo

    2012-04-01

    Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.

  20. Multiflavor string-net models

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  1. Cosmic superstrings: Observable remnants of brane inflation

    NASA Astrophysics Data System (ADS)

    Wyman, Mark Charles

    Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).

  2. Light Z' in heterotic string standardlike models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.

    2014-05-01

    The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.

  3. Control of the conformations of ion Coulomb crystals in a Penning trap

    PubMed Central

    Mavadia, Sandeep; Goodwin, Joseph F.; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R.; Segal, Daniel M.; Thompson, Richard C.

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  4. First-principles simulations on suspended coinage-metal nanotubes composed of different atomic species.

    PubMed

    Fa, Wei; Zhou, Jian; Dong, Jinming

    2013-04-07

    Substitutional doping of gold and copper atoms in a (4, 4) silver single-wall nanotube has been investigated using first-principles simulations. It is found that the Au- and Cu-substitutional doping of the tip-suspended (4, 4) Ag tube can maintain the hollow tubular structure at different alloy compositions due to the existence of a local minimum in the string tension variation with their unit cell lengths. The bonding energy differences between the mono-elements and hetero-elements and string tension may play important roles in suppressing the "self-purification" effects so that the nanoalloy tubes can be formed. Analysis of the band structure suggests that the number of conduction channels of the Ag-Au alloy tubes may lie between the pure (4, 4) Ag and Au tubes.

  5. Identification of market trends with string and D2-brane maps

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Pinčák, Richard

    2017-08-01

    The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.

  6. p-adic string theories provide lattice Discretization to the ordinary string worldsheet.

    PubMed

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  7. p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  8. Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH.

    PubMed

    Okuda, Masahiko; Higo, Junichi; Komatsu, Tadashi; Konuma, Tsuyoshi; Sugase, Kenji; Nishimura, Yoshifumi

    2016-09-06

    General transcription factor II E (TFIIE) contains an acid-rich region (residues 378-393) in its α-subunit, comprising 13 acidic and two hydrophobic (Phe387 and Val390) residues. Upon binding to the p62 subunit of TFIIH, the acidic region adopts an extended string-like structure on the basic groove of the pleckstrin homology domain (PHD) of p62, and inserts Phe387 and Val390 into two shallow pockets in the groove. Here, we have examined the dynamics of this interaction by NMR and molecular dynamics (MD) simulations. Although alanine substitution of Phe387 and/or Val390 greatly reduced binding to PHD, the binding mode of the mutants was similar to that of the wild-type, as judged by the chemical-shift changes of the PHD. NMR relaxation dispersion profiles of the interaction exhibited large amplitudes for residues in the C-terminal half-string in the acidic region (Phe387, Glu388, Val390, Ala391, and Asp392), indicating a two-site binding mode: one corresponding to the final complex structure, and one to an off-pathway minor complex. To probe the off-pathway complex structure, an atomically detailed free-energy landscape of the binding mode was computed by all-atom multicanonical MD. The most thermodynamically stable cluster corresponded to the final complex structure. One of the next stable clusters was the off-pathway structure cluster, showing the reversed orientation of the C-terminal half-string on the PHD groove, as compared with the final structure. MD calculations elucidated that the C-terminal half-acidic-string forms encounter complexes mainly around the positive groove region with nearly two different orientations of the string, parallel and antiparallel to the final structure. Interestingly, the most encountered complexes exhibit a parallel-like orientation, suggesting that the string has a tendency to bind around the groove in the proper orientation with the aid of Phe387 and/or Val390 to proceed smoothly to the final complex structure. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  10. The ACES mission: scientific objectives and present status

    NASA Astrophysics Data System (ADS)

    Cacciapuoti, L.; Dimarcq, N.; Salomon, C.

    2017-11-01

    "Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.

  11. String Fragmentation Model in Space Radiation Problems

    NASA Technical Reports Server (NTRS)

    Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.

    2002-01-01

    String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.

  12. Computer Center: BASIC String Models of Genetic Information Transfer.

    ERIC Educational Resources Information Center

    Spain, James D., Ed.

    1984-01-01

    Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)

  13. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  14. Compression of strings with approximate repeats.

    PubMed

    Allison, L; Edgoose, T; Dix, T I

    1998-01-01

    We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.

  15. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Xu, Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  16. Adversarial Threshold Neural Computer for Molecular de Novo Design.

    PubMed

    Putin, Evgeny; Asadulaev, Arip; Vanhaelen, Quentin; Ivanenkov, Yan; Aladinskaya, Anastasia V; Aliper, Alex; Zhavoronkov, Alex

    2018-03-30

    In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp 3 -rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds.

  17. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.

  18. Modeling and simulation performance of sucker rod beam pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less

  19. Effects of overlapping strings in pp collisions

    DOE PAGES

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  20. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  1. Progress report for a research program in theoretical high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Fried, H.M.; Jevicki, A.

    This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less

  2. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles

    PubMed Central

    Haddadian, Esmael J.; Zhang, Hao; Freed, Karl F.; Douglas, Jack F.

    2017-01-01

    Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to ‘surface-melted’ inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a ‘glassy’ state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations (‘colored’ or ‘pink’ noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains. PMID:28176808

  3. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddadian, Esmael J.; Zhang, Hao; Freed, Karl F.; Douglas, Jack F.

    2017-02-01

    Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to ‘surface-melted’ inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a ‘glassy’ state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations (‘colored’ or ‘pink’ noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains.

  4. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  5. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  6. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  7. Tensionless Strings and Supersymmetric Sigma Models: Aspects of the Target Space Geometry

    NASA Astrophysics Data System (ADS)

    Bredthauer, Andreas

    2007-01-01

    In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kaehler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.

  8. High energy physics, past, present and future

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  9. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  11. String theory--the physics of string-bending and other electric guitar techniques.

    PubMed

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.

  12. String Theory - The Physics of String-Bending and Other Electric Guitar Techniques

    PubMed Central

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880

  13. Characterization of binary string statistics for syntactic landmine detection

    NASA Astrophysics Data System (ADS)

    Nasif, Ahmed O.; Mark, Brian L.; Hintz, Kenneth J.

    2011-06-01

    Syntactic landmine detection has been proposed to detect and classify non-metallic landmines using ground penetrating radar (GPR). In this approach, the GPR return is processed to extract characteristic binary strings for landmine and clutter discrimination. In our previous work, we discussed the preprocessing methodology by which the amplitude information of the GPR A-scan signal can be effectively converted into binary strings, which identify the impedance discontinuities in the signal. In this work, we study the statistical properties of the binary string space. In particular, we develop a Markov chain model to characterize the observed bit sequence of the binary strings. The state is defined as the number of consecutive zeros between two ones in the binarized A-scans. Since the strings are highly sparse (the number of zeros is much greater than the number of ones), defining the state this way leads to fewer number of states compared to the case where each bit is defined as a state. The number of total states is further reduced by quantizing the number of consecutive zeros. In order to identify the correct order of the Markov model, the mean square difference (MSD) between the transition matrices of mine strings and non-mine strings is calculated up to order four using training data. The results show that order one or two maximizes this MSD. The specification of the transition probabilities of the chain can be used to compute the likelihood of any given string. Such a model can be used to identify characteristic landmine strings during the training phase. These developments on modeling and characterizing the string statistics can potentially be part of a real-time landmine detection algorithm that identifies landmine and clutter in an adaptive fashion.

  14. Free energy of conformational transition paths in biomolecules: The string method and its application to myosin VI

    PubMed Central

    Ovchinnikov, Victor; Karplus, Martin; Vanden-Eijnden, Eric

    2011-01-01

    A set of techniques developed under the umbrella of the string method is used in combination with all-atom molecular dynamics simulations to analyze the conformation change between the prepowerstroke (PPS) and rigor (R) structures of the converter domain of myosin VI. The challenges specific to the application of these techniques to such a large and complex biomolecule are addressed in detail. These challenges include (i) identifying a proper set of collective variables to apply the string method, (ii) finding a suitable initial string, (iii) obtaining converged profiles of the free energy along the transition path, (iv) validating and interpreting the free energy profiles, and (v) computing the mean first passage time of the transition. A detailed description of the PPS↔R transition in the converter domain of myosin VI is obtained, including the transition path, the free energy along the path, and the rates of interconversion. The methodology developed here is expected to be useful more generally in studies of conformational transitions in complex biomolecules. PMID:21361558

  15. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    PubMed

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  16. Pitch glide effect induced by a nonlinear string-barrier interaction

    NASA Astrophysics Data System (ADS)

    Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa

    2015-10-01

    Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.

  17. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  18. Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.; Ninomiya, M.

    2018-02-01

    We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.

  19. The bispectrum of cosmic string temperature fluctuations including recombination effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-10-01

    We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to themore » Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.« less

  20. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  1. CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less

  2. Windings of twisted strings

    NASA Astrophysics Data System (ADS)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  3. Stochastic gravitational wave background from light cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less

  4. CMB ISW-lensing bispectrum from cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less

  5. CMB ISW-lensing bispectrum from cosmic strings

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  6. Probing Electrochemical Adsorbate Structure and Reactions with In-Situ Atomic-Resolution Scanning Microscopy: Some Progress and Prospects

    DTIC Science & Technology

    1992-10-01

    organized into hexagonal patterns, but unlike the monoatomic iodine adlayers noted above the close-packed atomic strings tend to lie along the gold ...adsorbate systems. Illustrative results of the former type are presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The...presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The virtues of acquiring "composite-domain" STM images, where

  7. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  8. Constant size descriptors for accurate machine learning models of molecular properties

    NASA Astrophysics Data System (ADS)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  9. A study of small impact parameter ion channeling effects in thin crystals

    NASA Astrophysics Data System (ADS)

    Motapothula, Mallikarjuna Rao; Breese, Mark B. H.

    2018-03-01

    We have recorded channeling patterns produced by 1-2 MeV protons aligned with ⟨1 1 1⟩ axes in 55 nm thick silicon crystals which exhibit characteristic angular structure for deflection angles up to and beyond the axial critical angle, ψ a . Such large angular deflections are produced by ions incident on atomic strings with small impact parameters, resulting in trajectories which pass through several radial rings of atomic strings before exiting the thin crystal. Each ring may focus, steer or scatter the channeled ions in the transverse direction and the resulting characteristic angular structure beyond 0.6 ψ a at different depths can be related to peaks and troughs in the nuclear encounter probability. Such "radial focusing" underlies other axial channeling phenomena in thin crystals including planar channeling of small impact parameter trajectories, peaks around the azimuthal distribution at small tilts and large shoulders in the nuclear encounter probability at tilts beyond ψ a .

  10. Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday

    NASA Astrophysics Data System (ADS)

    Kaku, M.; Jevicki, A.; Kikkawa, K.

    1991-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics

  11. Modeling the influence of string collective phenomena on the long range rapidity correlations between the transverse momentum and the multiplicities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, E.; Vechernin, V.

    2016-01-22

    The long-range rapidity correlations between the multiplicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are analyzed in the framework of the simple string inspired model with two types of sources. The sources of the first type correspond to the initial strings formed in a hadronic collision. The sources of the second type imitate the appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings. The model enabled to describe effectively the influence of the string fusion effects on the strength both the n-n and the pT-n correlations. It wasmore » found that in the region, where the process of string fusion comes into play, the calculation results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the growth of the mean number of initial strings, i.e. with the increase of the collision centrality. It was shown also that the increase of the event-by-event fluctuation in the number of primary strings leads to the change of the pT-n correlation sign from negative to positive. One can try to search these signatures of string collective phenomena in interactions of various nuclei at different energies varying the class of collision centrality and its width.« less

  12. A cosmic book. [of physics of early universe

    NASA Technical Reports Server (NTRS)

    Peebles, P. J. E.; Silk, Joseph

    1988-01-01

    A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.

  13. The string prediction models as invariants of time series in the forex market

    NASA Astrophysics Data System (ADS)

    Pincak, R.

    2013-12-01

    In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.

  14. String model for the dynamics of glass-forming liquids

    PubMed Central

    Pazmiño Betancourt, Beatriz A.; Douglas, Jack F.; Starr, Francis W.

    2014-01-01

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann “entropy crisis.” PMID:24880303

  15. String model for the dynamics of glass-forming liquids.

    PubMed

    Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W

    2014-05-28

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."

  16. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  17. Confusing the heterotic string

    NASA Astrophysics Data System (ADS)

    Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.

    1986-10-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.

  18. Fast spinning strings on η deformed AdS 5 × S 5

    NASA Astrophysics Data System (ADS)

    Banerjee, Aritra; Bhattacharyya, Arpan; Roychowdhury, Dibakar

    2018-02-01

    In this paper, considering the correspondence between spin chains and string sigma models, we explore the rotating string solutions over η deformed AdS 5 × S 5 in the so-called fast spinning limit. In our analysis, we focus only on the bosonic part of the full superstring action and compute the relevant limits on both ( R × S 3) η and ( R × S 5) η models. The resulting system reveals that in the fast spinning limit, the sigma model on η deformed S 5 could be approximately thought of as the continuum limit of anisotropic SU(3) Heisenberg spin chain model. We compute the energy for a certain class of spinning strings in deformed S 5 and we show that this energy can be mapped to that of a similar spinning string in the purely imaginary β deformed background.

  19. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  20. CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    NASA Astrophysics Data System (ADS)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2007-03-01

    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ required to normalize to the WMAP 3-year data at multipole ℓ=10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×10-6, where we have quoted statistical and systematic errors separately, and G is Newton’s constant. This is a factor 2 3 higher than values in current circulation.

  1. Charge-Dependent Atomic-Scale Structures of High-Index and (110) Gold Electrode Surfaces as Revealed by Scanning Tunneling Microscopy

    DTIC Science & Technology

    1994-02-01

    known gold atomic diameter of 2.89 A. Within a given domain, featuring adjacent terrace strings separated by monoatomic steps, the measured unit-cell...to utilize high-index gold faces in exploring the influence of monoatomic steps and related structural features on surface electrochemical phenomena...110) Gold Electrode Surfaces D1 T IC as Revealed by Scanning Tunneling Microscopy FLECTE MAR 10 19941 by E Xiaoping Gao, Gregory J. Edens, Antoinette

  2. Characterization of a Dynamic String Method for the Construction of Transition Pathways in Molecular Reactions

    PubMed Central

    Johnson, Margaret E.; Hummer, Gerhard

    2012-01-01

    We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575

  3. AceDRG: a stereochemical description generator for ligands

    PubMed Central

    Emsley, Paul; Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas

    2017-01-01

    The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the ‘ideal’ bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files. PMID:28177307

  4. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  5. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  6. Book Review

    NASA Astrophysics Data System (ADS)

    Rickles, Dean

    Although ostensibly a festschrift for Gabriele Veneziano, this book also marks an important step in the historical study of string theory, featuring several excellent chapters on the earliest period of string theory, as it emerged from the study of strong interaction physics and dual resonance models. Veneziano is often crowned 'the father of string theory' since it was he who discovered the amplitude that led to the dual resonance models that then led to string theory in something like the form we know it today (though not immediately into a quantum theory of gravity). However, as the historical articles in this book make plain, Veneziano was but a small (albeit vital) component in the creation of string theory.

  7. String unification scale and the hyper-charge Kac-Moody level in the non-supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Hagiwara, Kaoru

    1998-02-01

    The string theory predicts the unification of the gauge couplings and gravity. The minimal supersymmetric Standard Model, however, gives the unification scale ~2x1016 GeV which is significantly smaller than the string scale ~5x1017 GeV of the weak coupling heterotic string theory. We study the unification scale of the non-supersymmetric minimal Standard Model quantitatively at the two-loop level. We find that the unification scale should be at most ~4x1016 GeV and the desired Kac-Moody level of the hyper-charge coupling should be 1.33<~kY<~1.35.

  8. Transplanckian censorship and global cosmic strings

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  9. Matrix theory interpretation of discrete light cone quantization string worldsheets

    PubMed

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  10. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.

    PubMed

    Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  12. Discrete symmetries in the heterotic-string landscape

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.

    2015-07-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.

  13. Higher winding strings and confined monopoles in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auzzi, R.; Bolognesi, S.; Shifman, M.

    2010-04-15

    We consider composite string solutions in N=2 SQCD with the gauge group U(N), the Fayet-Iliopoulos term {xi}{ne}0 and N (s)quark flavors. These bulk theories support non-Abelian strings and confined monopoles identified with kinks in the two-dimensional world-sheet theory. Similar and more complicated kinks (corresponding to composite confined monopoles) must exist in the world-sheet theories on composite strings. In a bid to detect them we analyze the Hanany-Tong (HT) model, focusing on a particular example of N=2. Unequal quark mass terms in the bulk theory result in the twisted masses in the N=(2,2) HT model. For spatially coinciding 2-strings, we findmore » three distinct minima of potential energy, corresponding to three different 2-strings. Then we find BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be called elementary. They emanate one unit of the magnetic flux and have the same mass as the conventional 't Hooft-Polyakov monopole on the Coulomb branch of the bulk theory ({xi}=0). The third kink represents a composite bimonopole, with twice the minimal magnetic flux. Its mass is twice the mass of the elementary confined monopole. We find instantons in the HT model, and discuss quantum effects in composite strings at strong coupling. In addition, we study the renormalization group flow in this model.« less

  14. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, William; Wong, Gabriel

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  16. Gravitational waves and cosmic strings

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2002-08-01

    Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.

  17. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni

    PubMed Central

    Zhang, Hao; Yang, Ying; Douglas, Jack F.

    2015-01-01

    Although we often think about crystalline materials in terms of highly organized arrays of atoms, molecules, or even colloidal particles, many of the important properties of this diverse class of materials relating to their catalytic behavior, thermodynamic stability, and mechanical properties derive from the dynamics and thermodynamics of their interfacial regions, which we find they have a dynamics more like glass-forming (GF) liquids than crystals at elevated temperatures. This is a general problem arising in any attempt to model the properties of naturally occurring crystalline materials since many aspects of the dynamics of glass-forming liquids remain mysterious. We examine the nature of this phenomenon in the “simple” case of the (110) interface of crystalline Ni, based on a standard embedded-atom model potential, and we then quantify the collective dynamics in this interfacial region using newly developed methods for characterizing the cooperative dynamics of glass-forming liquids. As in our former studies of the interfacial dynamics of grain-boundaries and the interfacial dynamics of crystalline Ni nanoparticles (NPs), we find that the interface of bulk crystalline Ni exhibits all the characteristics of glass-forming materials, even at temperatures well below the equilibrium crystal melting temperature, Tm. This perspective offers a new approach to modeling and engineering the properties of crystalline materials. PMID:25725748

  18. String junction as a baryonic constituent

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Yu. S.; Nefediev, A. V.

    1996-02-01

    We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.

  19. Diffusion of massive particles around an Abelian-Higgs string

    NASA Astrophysics Data System (ADS)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  20. Wilsonian dark matter in string derived Z' model

    NASA Astrophysics Data System (ADS)

    Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.

    2017-09-01

    The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic Z2×Z2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.

  1. Non-perturbative effects and wall-crossing from topological strings

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Soler, Pablo; Uranga, Angel M.

    2009-11-01

    We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d Script N = 2 IIB models. We also discuss the reduction to 4d Script N = 1 by fluxes and/or orientifolds and/or D-branes, and the prospects to resum brane instanton contributions to non-perturbative superpotentials. We argue that the connection between non-perturbative effects and the topological string underlies the continuity of non-perturbative effects across lines of BPS stability. We also confirm this statement in mirror B-model matrix model examples, relating matrix model instantons to non-perturbative D-brane instantons. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, reminiscent of that involved in the physical derivation of the Kontsevich-Soibelmann wall-crossing formula.

  2. Modeling Harpsichord Plucking: The Plectrum and the String

    NASA Astrophysics Data System (ADS)

    Perng, Jack; Rossing, Thomas; Smith, Julius

    2011-11-01

    The harpsichord is a plucked string keyboard instrument that was popular during the Renaissance and Baroque music eras. Although it was later replaced by the more expressive piano, it has mounted a comeback due to the early music movement today. A physical model of the harpsichord's plucking mechanism is presented, detailing the plectrum-string interaction which illustrates many aspects of the harpsichord's characteristic sound.

  3. Note on tachyon moduli and closed strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carneiro da Cunha, Bruno

    2008-07-15

    The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.

  4. {Γ}-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects

    NASA Astrophysics Data System (ADS)

    Badal, Rufat; Cicalese, Marco; De Luca, Lucia; Ponsiglione, Marcello

    2018-03-01

    We propose and analyze a generalized two dimensional XY model, whose interaction potential has n weighted wells, describing corresponding symmetries of the system. As the lattice spacing vanishes, we derive by {Γ}-convergence the discrete-to-continuum limit of this model. In the energy regime we deal with, the asymptotic ground states exhibit fractional vortices, connected by string defects. The {Γ}-limit takes into account both contributions, through a renormalized energy, depending on the configuration of fractional vortices, and a surface energy, proportional to the length of the strings. Our model describes in a simple way several topological singularities arising in Physics and Materials Science. Among them, disclinations and string defects in liquid crystals, fractional vortices and domain walls in micromagnetics, partial dislocations and stacking faults in crystal plasticity.

  5. Spontaneous knotting of an agitated string.

    PubMed

    Raymer, Dorian M; Smith, Douglas E

    2007-10-16

    It is well known that a jostled string tends to become knotted; yet the factors governing the "spontaneous" formation of various knots are unclear. We performed experiments in which a string was tumbled inside a box and found that complex knots often form within seconds. We used mathematical knot theory to analyze the knots. Above a critical string length, the probability P of knotting at first increased sharply with length but then saturated below 100%. This behavior differs from that of mathematical self-avoiding random walks, where P has been proven to approach 100%. Finite agitation time and jamming of the string due to its stiffness result in lower probability, but P approaches 100% with long, flexible strings. We analyzed the knots by calculating their Jones polynomials via computer analysis of digital photos of the string. Remarkably, almost all were identified as prime knots: 120 different types, having minimum crossing numbers up to 11, were observed in 3,415 trials. All prime knots with up to seven crossings were observed. The relative probability of forming a knot decreased exponentially with minimum crossing number and Möbius energy, mathematical measures of knot complexity. Based on the observation that long, stiff strings tend to form a coiled structure when confined, we propose a simple model to describe the knot formation based on random "braid moves" of the string end. Our model can qualitatively account for the observed distribution of knots and dependence on agitation time and string length.

  6. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    PubMed

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  7. Scaling properties of cosmic (super)string networks

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.

    2014-10-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.

  8. Charged string loops in Reissner-Nordström black hole background

    NASA Astrophysics Data System (ADS)

    Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk

    2018-03-01

    We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.

  9. First LIGO search for gravitational wave bursts from cosmic (super)strings

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.; Robinet, F.

    2009-09-01

    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension Gμ/c2≈10-6) can be ruled out at 90% confidence for reconnection probabilities p≤10-3 if loop sizes are set by gravitational back reaction.

  10. Constraints on cosmic strings using data from the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.

  11. Power suppression at large scales in string inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less

  12. Power suppression at large scales in string inflation

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  13. In Search of the Ultimate Building Blocks

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    1996-12-01

    An apology; 1. The beginning of the journey to the small: cutting paper; 2. To molecules and atoms; 3. The magic mystery of the quanta; 4. Dazzling velocities; 5. The elementary particle zoo before 1970; 6. Life and death; 7. The crazy kaons; 8. The invisible quarks; 9. Fields or bootstraps?; 10. The Yang-Mills bonanza; 11. Superconducting empty space: the Higgs-Kibble machine; 12. Models; 13. Colouring in the strong forces; 14. The magnetic monopole; 15. Gypsy; 16. The brilliance of the standard model; 17. Anomalies; 18. Deceptive perfection; 19. Weighing neutrinos; 20. The great desert; 21. Technicolor; 22. Grand unification; 23. Supergravity; 24. Eleven dimensional space-time; 25. Attaching the super string; 26. Into the black hole; 27. Theories that do not yet exist … ; 28. Dominance of the rule of the smallest.

  14. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  15. Permuting input for more effective sampling of 3D conformer space

    NASA Astrophysics Data System (ADS)

    Carta, Giorgio; Onnis, Valeria; Knox, Andrew J. S.; Fayne, Darren; Lloyd, David G.

    2006-03-01

    SMILES strings and other classic 2D structural formats offer a convenient way to represent molecules as a simplistic connection table, with the inherent advantages of ease of handling and storage. In the context of virtual screening, chemical databases to be screened are often initially represented by canonicalised SMILES strings that can be filtered and pre-processed in a number of ways, resulting in molecules that occupy similar regions of chemical space to active compounds of a therapeutic target. A wide variety of software exists to convert molecules into SMILES format, namely, Mol2smi (Daylight Inc.), MOE (Chemical Computing Group) and Babel (Openeye Scientific Software). Depending on the algorithm employed, the atoms of a SMILES string defining a molecule can be ordered differently. Upon conversion to 3D coordinates they result in the production of ostensibly the same molecule. In this work we show how different permutations of a SMILES string can affect conformer generation, affecting reliability and repeatability of the results. Furthermore, we propose a novel procedure for the generation of conformers, taking advantage of the permutation of the input strings—both SMILES and other 2D formats, leading to more effective sampling of conformation space in output, and also implementing fingerprint and principal component analyses step to post process and visualise the results.

  16. A New String Model: NEXUS 3

    NASA Astrophysics Data System (ADS)

    Werner, K.; Liu, F. M.; Ostapchenko, S.; Pierog, T.

    2004-11-01

    After discussing conceptual problems with the conventional string model, we present a new approach, based on a theoretically consistent multiple scattering formalism. First results for proton-proton scattering at 158 GeV are discussed.

  17. The structural dynamics of the American five-string banjo

    NASA Astrophysics Data System (ADS)

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  18. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  19. Noncommutative-geometry model for closed bosonic strings

    NASA Technical Reports Server (NTRS)

    Sen, Siddhartha; Holman, R.

    1987-01-01

    It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.

  20. Automated Systematic Generation and Exploration of Flat Direction Phenomenology in Free Fermionic Heterotic String Theory

    NASA Astrophysics Data System (ADS)

    Greenwald, Jared

    Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.

  1. String tightening as a self-organizing phenomenon.

    PubMed

    Banerjee, Bonny

    2007-09-01

    The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.

  2. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  3. Adventures in heterotic string phenomenology

    NASA Astrophysics Data System (ADS)

    Dundee, George Benjamin

    In this Dissertation, we consider three topics in the study of effective field theories derived from orbifold compactifications of the heterotic string. In Chapter 2 we provide a primer for those interested in building models based on orbifold compactifications of the heterotic string. In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, M S, a compactification scale, MC, and a mass scale for some of the vector-like exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models analyzed, we show that gauge coupling unification is not possible with MEX = M C and in fact we require MEX << MC ˜ 3 x 1016 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 1033 yr ≲ tau(p → pi0e+) ≲ 1036 yr, which is potentially observable by the next generation of proton decay experiments. 80% of the parameter space gives proton lifetimes below Super-K bounds. In Chapter 4, we examine the relationship between the string coupling constant, gSTRING, and the grand unified gauge coupling constant, alphaGUT, in the models of Chapter 3. We find that the requirement that the theory be perturbative provides a non-trivial constraint on these models. Interestingly, there is a correlation between the proton decay rate (due to dimension six operators) and the string coupling constant in this class of models. Finally, we make some comments concerning the extension of these models to the six (and higher) dimensional case. In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabilization within the context of E8 ⊗ E8 heterotic orbifold constructions and, in particular, we focus on the class of "mini-landscape" models. These theories contain a non-Abelian hidden gauge sector which generates a non-perturbative superpotential leading to supersymmetry breaking and moduli stabilization. We demonstrate this effect in a simple model which contains many of the features of the more general construction. In addition, we argue that once supersymmetry is broken in a restricted sector of the theory, then all moduli are stabilized by supergravity effects. Finally, we obtain the low energy superparticle spectrum resulting from this simple model.

  4. ``SO what Will you do if String Theory is WRONG?''

    NASA Astrophysics Data System (ADS)

    Emam, Moataz H.

    2008-07-01

    I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics.

  5. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  6. Factorization of chiral string amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  7. Factorization of chiral string amplitudes

    DOE PAGES

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-16

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  8. Bifurcation analysis and phase diagram of a spin-string model with buckled states.

    PubMed

    Ruiz-Garcia, M; Bonilla, L L; Prados, A

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  9. Bifurcation analysis and phase diagram of a spin-string model with buckled states

    NASA Astrophysics Data System (ADS)

    Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  10. Higher dimensional strange quark matter solutions in self creation cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  11. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)

  12. String limit of the isotropic Heisenberg chain in the four-particle sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, A. G., E-mail: aga2@csa.ru; Komarov, I. V., E-mail: ivkoma@rambler.r

    2008-05-15

    The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.

  13. Cosmic Strings Stabilized by Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Weigel, H.

    2017-03-01

    Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.

  14. CMB temperature trispectrum of cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-01

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.

  15. Galileon string measure and other modified measure extended objects

    NASA Astrophysics Data System (ADS)

    Vulfs, T. O.; Guendelman, E. I.

    2017-12-01

    We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lizarraga, Joanes; Urrestilla, Jon; Daverio, David

    We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck . We obtain revised constraints on the cosmic string tension parameter G μ. For example, in the ΛCDM model with the addition of strings and no primordial tensor perturbations, we find G μ < 2.0 × 10{sup −7} at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. The increased computational volume also makes it possible to simulate fully themore » physical equations of motion, in which the string cores shrink in comoving coordinates. We find however that this, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%. The main cause of the stronger constraints on G μ is instead an improved treatment of the string evolution across the radiation-matter transition.« less

  17. Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient

    PubMed Central

    Rodriguez-Diaz, Alice; Toyama, Yusuke; Abravanel, Daniel L.; Wiemann, John M.; Wells, Adrienne R.; Tulu, U. Serdar; Edwards, Glenn S.; Kiehart, Daniel P.

    2008-01-01

    Dorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure. Purse strings generate the largest force for closure and occur during development and wound healing throughout phylogeny. We use laser microsurgery to remove some or all of the purse strings from developing embryos. Free edges produced by surgery undergo characteristic responses as follows. Intact cells in the free edges, which previously had no purse string, recoil away from the incision and rapidly assemble new, secondary purse strings. Next, recoil slows, then pauses at a turning point. Following a brief delay, closure resumes and is powered to completion by the secondary purse strings. We confirm that the assembly of the secondary purse strings requires RhoA. We show that α-actinin alternates with nonmuscle myosin II along purse strings and requires nonmuscle myosin II for its localization. Together our data demonstrate that purse strings are renewable resources that contribute to the robust and resilient nature of closure. PMID:19404432

  18. Gabriel Weinreich: The life and style

    NASA Astrophysics Data System (ADS)

    Hartmann, William M.

    2003-10-01

    Gabriel Weinreich (Gabi) was born in Vilna, Poland (now the capitol of Lithuania) one year prior to the founding of the Acoustical Society of America. When the second world war began in central Europe, Gabi's family came, in serial fashion, to New York City-Gabi himself arriving in 1941. Gabi studied physics at Columbia, and received a Ph.D. in 1953 for a thesis on atomic physics directed by the legendary I. I. Rabi. He subsequently worked on fundamental properties of semiconductors, first at Bell Labs, then, starting in 1960, at the University of Michigan. In 1977 he turned his attention to the acoustics of musical instruments, mainly the piano and bowed strings. He studied all phases of the physical elements: string excitation, string vibration, coupling, and radiation. Gabi brought his special style to acoustics-a combination of theory and experiment that imaginatively imports ideas and techniques from one area of physics into another, a willingness to attack traditional problems afresh by returning to first principles, and the ability to present ideas with incisive wit and charm so that information is not only informative but is also entertaining.

  19. Linear stiff string vibrations in musical acoustics: Assessment and comparison of models.

    PubMed

    Ducceschi, Michele; Bilbao, Stefan

    2016-10-01

    Strings are amongst the most common elements found in musical instruments and an appropriate physical description of string dynamics is essential to modelling, analysis, and simulation. For linear vibration in a single polarisation, the most common model is based on the Euler-Bernoulli beam equation under tension. In spite of its simple form, such a model gives unbounded phase and group velocities at large wavenumbers, and such behaviour may be interpreted as unphysical. The Timoshenko model has, therefore, been employed in more recent works to overcome such shortcoming. This paper presents a third model based on the shear beam equations. The three models are here assessed and compared with regard to the perceptual considerations in musical acoustics.

  20. Moduli space potentials for heterotic non-Abelian flux tubes: Weak deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2010-09-15

    We consider N=2 supersymmetric QCD with the U(N) gauge group (with no Fayet-Iliopoulos term) and N{sub f} flavors of massive quarks deformed by the mass term {mu} for the adjoint matter, W={mu}A{sup 2}, assuming that N{<=}N{sub f}<2N. This deformation breaks N=2 supersymmetry down to N=1. This theory supports non-Abelian flux tubes (strings) which are stabilized by W. They are referred to as F-term stabilized strings. We focus on the studies of such strings in the vacuum in which N squarks condense, at small {mu}, so that the Z{sub N} strings preserve, in a sense, their Bogomol'nyi-Prasad-Sommerfield nature. The (s)quark massesmore » are assumed to be nondegenerate. We calculate string tensions both in the classical and quantum regimes. Then we translate our results for the tensions in terms of the effective low-energy weighted CP(N{sub f}-1) model on the string world sheet. The bulk {mu} deformation makes this theory N=(0,2) supersymmetric heterotic weighted CP(N{sub f}-1) model in two dimensions. We find the deformation potential on the world sheet. This significantly expands the class of the heterotically deformed CP models emerging on the string world sheet compared to that suggested by Edalati and Tong. Among other things, we show that nonperturbative quantum effects in the bulk theory are exactly reproduced by the quantum effects in the world-sheet theory.« less

  1. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  2. Nonlinearity of the forward-backward correlation function in the model with string fusion

    NASA Astrophysics Data System (ADS)

    Vechernin, Vladimir

    2017-12-01

    The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.

  3. Dualities in CHL-models

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Volpato, Roberto

    2018-04-01

    We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\

  4. Non-perturbative String Theory from Water Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less

  5. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  6. Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2008-09-01

    We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.

  7. Atoms, Strings, Apples, and Gravity: What the Average American Science Teacher Does Not Teach

    ERIC Educational Resources Information Center

    Berube, Clair

    2008-01-01

    American science teachers in elementary and middle school face a dilemma as they prepare students for high school physics and advanced placement classes. The dilemma lies in ensuring that these students are equipped with the high-level science content they need to thrive in such classes. Aside from life sciences and chemistry sciences, how are our…

  8. CMB temperature trispectrum of cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-15

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less

  9. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  10. Love Kills:. Simulations in Penna Ageing Model

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Cebrat, Stanisław; Penna, T. J. P.; Sousa, A. O.

    The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.

  11. A simple model for the evolution of a non-Abelian cosmic string network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr

    2016-06-01

    In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less

  12. Thermal stabilization of superconducting sigma strings and their drum vortons

    NASA Astrophysics Data System (ADS)

    Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine

    2002-05-01

    We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.

  13. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less

  14. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    DOE PAGES

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; ...

    2018-02-02

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less

  15. Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke

    2018-02-01

    Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by their passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving "downward" into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.

  16. Axions, Inflation and String Theory

    NASA Astrophysics Data System (ADS)

    Mack, Katherine J.; Steinhardt, P. J.

    2009-01-01

    The QCD axion is the leading contender to rid the standard model of the strong-CP problem. If the Peccei-Quinn symmetry breaking occurs before inflation, which is likely in string theory models, axions manifest themselves cosmologically as a form of cold dark matter with a density determined by the axion's initial conditions and by the energy scale of inflation. Constraints on the dark matter density and on the amplitude of CMB isocurvature perturbations currently demand an exponential degree of fine-tuning of both axion and inflationary parameters beyond what is required for particle physics. String theory models generally produce large numbers of axion-like fields; the prospect that any of these fields exist at scales close to that of the QCD axion makes the problem drastically worse. I will discuss the challenge of accommodating string-theoretic axions in standard inflationary cosmology and show that the fine-tuning problems cannot be fully addressed by anthropic principle arguments.

  17. Sv-map between type I and heterotic sigma models

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Fotopoulos, A.; Stieberger, S.; Taylor, T. R.

    2018-05-01

    The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α‧ (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.

  18. Reconstruction of piano hammer force from string velocity.

    PubMed

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  19. Anisotropic string cosmological model in Brans–Dicke theory of gravitation with time-dependent deceleration parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com

    We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage ofmore » the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.« less

  20. Connecting the ambitwistor and the sectorized heterotic strings

    NASA Astrophysics Data System (ADS)

    Azevedo, Thales; Jusinskas, Renann Lipinski

    2017-10-01

    The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an infinite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter ℓ in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit ℓ → ∞, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner's RNS description.

  1. String tensions in deformed Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Poppitz, Erich; Shalchian T., M. Erfan

    2018-01-01

    We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.

  2. Accidental Kähler moduli inflation

    NASA Astrophysics Data System (ADS)

    Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske

    2015-09-01

    We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model.

  3. Segmented strings coupled to a B-field

    NASA Astrophysics Data System (ADS)

    Vegh, David

    2018-04-01

    In this paper we study segmented strings in AdS3 coupled to a background two-form whose field strength is proportional to the volume form. By changing the coupling, the theory interpolates between the Nambu-Goto string and the SL(2, ℝ) Wess-Zumino-Witten model. In terms of the kink momentum vectors, the action is independent of the coupling and the classical theory reduces to a single discrete-time Toda-type theory. The WZW model is a singular point in coupling space where the map into Toda variables degenerates.

  4. Bianchi type-II String Cosmological Model with Magnetic Field in Scale-Covariant Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-12-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of scale-covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39, 429, 1977). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento 74, 182, 1983) string cosmological model is obtained in this theory. We use the power law relation between scalar field ϕ and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.

  5. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  6. Effects of cosmic string velocities and the origin of globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less

  7. Coupling of transverse and longitudinal waves in piano strings.

    PubMed

    Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R

    2015-04-01

    The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play.

  8. The confining baryonic Y-strings on the lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming

    2016-01-22

    In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal nearmore » the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.« less

  9. Pointless strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periwal, V.

    1988-01-01

    The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less

  10. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  11. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies

    PubMed Central

    Saylor, Karen L.; Anver, Miriam R.; Salomon, David S.; Golubeva, Yelena G.

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM. PMID:27077656

  12. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  13. Type-I cosmic-string network

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon

    2013-10-01

    We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.

  14. Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere

    NASA Astrophysics Data System (ADS)

    Garner, David; Ramgoolam, Sanjaye

    2013-10-01

    The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.

  15. Critical string from non-Abelian vortex in four dimensions

    DOE PAGES

    Shifman, M.; Yung, A.

    2015-09-25

    In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2) gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP(2,2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. Lastly, we show that the world-sheet theory onmore » the vortex supported in this bulk model is the bona fide critical string.« less

  16. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method

    PubMed Central

    Ovchinnikov, Victor; Karplus, Martin

    2014-01-01

    A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes. PMID:24811667

  17. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Victor; Karplus, Martin

    2014-05-01

    A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15-20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes.

  18. Spectral flow as a map between N = (2 , 0)-models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.

    2014-07-01

    The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.

  19. Mellin transforming the minimal model CFTs: AdS/CFT at strong curvature

    DOE PAGES

    Lowe, David A.

    2016-07-14

    Mack has conjectured that all conformal field theories are equivalent to string theories. Here, we explore the example of the two-dimensional minimal model CFTs and confirm that the Mellin transformed amplitudes have the desired properties of string theory in three-dimensional anti-de Sitter spacetime.

  20. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  1. Topics in Cosmic String Physics and Vacuum Stability of Field Theories

    NASA Astrophysics Data System (ADS)

    Dasgupta, Indranil

    1998-01-01

    In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first order phase transition. I then indicate possible phenomenological applications of this effect and develop simple approximation techniques for computing the rate of seeded tunneling.

  2. Connecting science and the musical arts in teaching tone quality: Integrating Helmholtz motion and master violin teachers' pedagogies

    NASA Astrophysics Data System (ADS)

    Collins, Cheri D.

    Is it possible for students to achieve better tone quality from even their factory-made violins? All violins, regardless of cost, have a common capacity for good tone in certain frequencies. These signature modes outline the first position range of a violin (196-600 hertz). To activate this basic capacity of all violins, the string must fully vibrate. To accomplish this the bow must be pulled across the string with enough pressure (relative to its speed and contact point) for the horsehairs to catch. This friction permits the string to vibrate in Helmholtz Motion, which produces a corner that travels along the edge of the string between the bridge and the nut. Creating this corner is the most fundamental technique for achieving good tone. The findings of celebrated scientists Ernest Chladni, Hermann von Helmholtz, and John Schelleng will be discussed and the tone-production pedagogy of master teachers Carl Flesch, Ivan Galamian, Robert Gerle, and Simon Fischer will be investigated. Important connections between the insights of these scientists and master teachers are evident. Integrating science and art can provide teachers with a better understanding of the characteristics of good tone. This can help their students achieve the best possible sound from their instruments. In the private studio the master teacher may not use the words "Helmholtz Motion." Yet through modeling and listening students are able to understand and create a quality tone. Music teachers without experience in string performance may be assigned to teach strings in classroom and ensembles settings. As a result modeling good tone is not always possible. However, all teachers and conductors can understand the fundamental behavior of string vibration and adapt their instruction strategies towards student success. Better tonal quality for any string instrument is ultimately achieved. Mastery and use of the Helmholtz Motion benefits teachers and students alike. Simple practice exercises for teaching and conducting, based on student discovery rather than modeling, are presented in Appendix A: Application. This approach to teaching good tone can be applied successfully in all string settings and levels.

  3. libFLASM: a software library for fixed-length approximate string matching.

    PubMed

    Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad

    2016-11-10

    Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.

  4. Prior familiarity with components enhances unconscious learning of relations.

    PubMed

    Scott, Ryan B; Dienes, Zoltan

    2010-03-01

    The influence of prior familiarity with components on the implicit learning of relations was examined using artificial grammar learning. Prior to training on grammar strings, participants were familiarized with either the novel symbols used to construct the strings or with irrelevant geometric shapes. Participants familiarized with the relevant symbols showed greater accuracy when judging the correctness of new grammar strings. Familiarity with elemental components did not increase conscious awareness of the basis for discriminations (structural knowledge) but increased accuracy even in its absence. The subjective familiarity of test strings predicted grammaticality judgments. However, prior exposure to relevant symbols did not increase overall test string familiarity or reliance on familiarity when making grammaticality judgments. Familiarity with the symbols increased the learning of relations between them (bigrams and trigrams) thus resulting in greater familiarity for grammatical versus ungrammatical strings. The results have important implications for models of implicit learning.

  5. String duality transformations in f(R) gravity from Noether symmetry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less

  6. A model of mesons in finite extra-dimension

    NASA Astrophysics Data System (ADS)

    Lahkar, Jugal; Choudhury, D. K.; Roy, S.; Bordoloi, N. S.

    2018-05-01

    Recently,problem of stability of H-atom has been reported in extra-finite dimension,and found out that it is stable in extra-finite dimension of size,$R\\leq\\frac{a_0}{4}$,where,$a_0$ is the Bohr radius.Assuming that,the heavy flavoured mesons have also such stability controlled by the scale of coupling constant,we obtain corresponding QCD Bohr radius and it is found to be well within the present theoretical and experimental limit of higher dimension.We then study its consequences in their masses using effective string inspired potential model in higher dimension pursued by us.Within the uncertainty of masses of known Heavy Flavoured mesons the allowed range of extra dimension is $L\\leq10^{-16}m$,which is well below the present theoretical and experimental limit,and far above the Planck length $\\simeq1.5\\times10^{-35}$ m.

  7. Critical non-Abelian vortex in four dimensions and little string theory

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  8. A biomechanical comparison of conventional dynamic compression plates and string-of-pearls™ locking plates using cantilever bending in a canine Ilial fracture model.

    PubMed

    Kenzig, Allison R; Butler, James R; Priddy, Lauren B; Lacy, Kristen R; Elder, Steven H

    2017-07-13

    Fracture of the ilium is common orthopedic injury that often requires surgical stabilization in canine patients. Of the various methods of surgical stabilization available, application of a lateral bone plate to the ilium is the most common method of fixation. Many plating options are available, each having its own advantages and disadvantages. The purpose of this study was to evaluate the biomechanical properties of a 3.5 mm String-of-Pearls™ plate and a 3.5 mm dynamic compression plate in a cadaveric canine ilial fracture model. Hemipelves were tested in cantilever bending to failure and construct stiffness, yield load, displacement at yield, ultimate load, and mode of failure were compared. The mean stiffness of dynamic compression plate (116 ± 47 N/mm) and String-of-Pearls™ plate (107 ± 18 N/mm) constructs, mean yield load of dynamic compression plate (793 ± 333 N) and String-of-Pearls™ plate (860 ± 207 N) constructs, mean displacement at yield of dynamic compression plate (8.6 ± 3.0 mm) and String-of-Pearls™ plate (10.2 ± 2.8 mm) constructs, and ultimate load at failure of dynamic compression plate (936 ± 320 N) and String-of-Pearls™ plate (939 ± 191 N) constructs were not significantly different. No differences were found between constructs with respect to mode of failure. No significant biomechanical differences were found between String-of-Pearls™ plate and dynamic compression plate constructs in this simplified cadaveric canine ilial fracture model.

  9. Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1988-01-01

    These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.

  10. Knowledge, Models and Tools in Support of Advanced Distance Learning

    DTIC Science & Technology

    2006-06-01

    including " Dodger Blue", "Indian Red", and "Light Slate Gray" as well as such conventional colors as "Blue" and "Yellow". Which color names are supported...Format String: 1 1 S I 1 1 3 Either one string or an array of 3 numbers Legal Params: (" Dodger Blue") ([0.0235, 0.38, 1.0]) Format String: * *l* Any number...specifying the values of the red, green, and blue components of the color) or a string that names a predefined color. E.g., makeColor (" Dodger Blue

  11. Non-Abelian cosmic string in the Starobinsky model of gravity

    NASA Astrophysics Data System (ADS)

    Morais Graça, J. P.; de Pádua Santos, A.; Bezerra de Mello, Eugênio R.; Bezerra, V. B.

    In this paper, we analyze numerically the behavior of the solutions corresponding to a non-Abelian cosmic string in the framework of the Starobinsky model, i.e. where f(R) = R + ζR2. We perform the calculations for both an asymptotically flat and asymptotically (anti)-de Sitter spacetimes. We found that the angular deficit generated by the string decreases as the parameter ζ increases, in the case of a null cosmological constant. For a positive cosmological constant, we found that the cosmic horizon is affected in a nontrivial way by the parameter ζ.

  12. Chern-Simons improved Hamiltonians for strings in three space dimensions

    NASA Astrophysics Data System (ADS)

    Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara

    2016-07-01

    In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.

  13. Cosmic R-string, R-tube and vacuum instability

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Hamada, Yuta; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka

    2013-03-01

    We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.

  14. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.

  15. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less

  16. The waiting time problem in a model hominin population.

    PubMed

    Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John

    2015-09-17

    Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.

  17. Blue spectra of Kalb-Ramond axions and fully anisotropic string cosmologies

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    1999-03-01

    The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop outside the horizon, the growing modes leading, ultimately, to logarithmic energy spectra which are ``red'' in frequency and increase at large distance scales. We show that this conclusion can be avoided not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be ``blue'' in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to blue (or flat) logarithmic energy spectra for axionic fluctuations are likely to be isotropized by the effect of string tension corrections.

  18. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, V. N.; Vechernin, V. V.

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity.more » In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.« less

  19. String Scale Gauge Coupling Unification with Vector-Like Exotics and Noncanonical U(1)Y Normalization

    NASA Astrophysics Data System (ADS)

    Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun

    We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.

  20. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  1. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    NASA Technical Reports Server (NTRS)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  2. Second quantization of a covariant relativistic spacetime string in Steuckelberg-Horwitz-Piron theory

    NASA Astrophysics Data System (ADS)

    Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher

    2017-06-01

    A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.

  3. Magnetic Bianchi type II string cosmological model in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai

    2014-07-01

    The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

  4. Inhomogeneous Einstein-Rosen string cosmology

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-08-01

    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.

  5. Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edsjö, J.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Savage, C.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Scott, P.; Seckel, D.; Seunarine, S.; Silverwood, H.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Te{š}ić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-04-01

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.

  6. Large-scale structure from cosmic-string loops in a baryon-dominated universe

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Scherrer, Robert J.

    1988-01-01

    The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.

  7. Massless spinning particle and null-string on AdS d : projective-space approach

    NASA Astrophysics Data System (ADS)

    Uvarov, D. V.

    2018-07-01

    The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.

  8. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires

    NASA Technical Reports Server (NTRS)

    Clark, S. K.; Dodge, R. N.; Nybakken, G. H.

    1972-01-01

    The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.

  9. From the S U (2 ) quantum link model on the honeycomb lattice to the quantum dimer model on the kagome lattice: Phase transition and fractionalized flux strings

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Jiang, F.-J.; Olesen, T. Z.; Orland, P.; Wiese, U.-J.

    2018-05-01

    We consider the (2 +1 ) -dimensional S U (2 ) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges [which transform nontrivially under the Z (2 ) center of the S U (2 ) gauge group] are confined to each other by fractionalized strings with a delocalized Z (2 ) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the three-dimensional Ising universality class separates two confining phases: one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.

  10. Detection of low tension cosmic superstrings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2018-05-01

    Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).

  11. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.

    PubMed

    Starr, Francis W; Douglas, Jack F; Sastry, Srikanth

    2013-03-28

    We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the "mosaic" length of the RFOT model relaxes the conventional assumption that the "entropic droplets" are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.

  12. Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.

  13. Acoustics of the Intonarumori

    NASA Astrophysics Data System (ADS)

    Serafin, Stefania

    2005-04-01

    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  14. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel.

    PubMed

    Cao, D-S; Zhao, J-C; Yang, Y-N; Zhao, C-X; Yan, J; Liu, S; Hu, Q-N; Xu, Q-S; Liang, Y-Z

    2012-01-01

    There is a great need to assess the harmful effects or toxicities of chemicals to which man is exposed. In the present paper, the simplified molecular input line entry specification (SMILES) representation-based string kernel, together with the state-of-the-art support vector machine (SVM) algorithm, were used to classify the toxicity of chemicals from the US Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) database network. In this method, the molecular structure can be directly encoded by a series of SMILES substrings that represent the presence of some chemical elements and different kinds of chemical bonds (double, triple and stereochemistry) in the molecules. Thus, SMILES string kernel can accurately and directly measure the similarities of molecules by a series of local information hidden in the molecules. Two model validation approaches, five-fold cross-validation and independent validation set, were used for assessing the predictive capability of our developed models. The results obtained indicate that SVM based on the SMILES string kernel can be regarded as a very promising and alternative modelling approach for potential toxicity prediction of chemicals.

  15. The exceptional sigma model

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2018-04-01

    We detail the construction of the exceptional sigma model, which describes a string propagating in the "extended spacetime" of exceptional field theory. This is to U-duality as the doubled sigma model is to T-duality. Symmetry specifies the Weylinvariant Lagrangian uniquely and we show how it reduces to the correct 10-dimensional string Lagrangians. We also consider the inclusion of a Fradkin-Tseytlin (or generalised dilaton) coupling as well as a reformulation with dynamical tension.

  16. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, R. A.

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string,more » through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.« less

  17. Dynamical behavior and Jacobi stability analysis of wound strings

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  18. Cosmic microwave background constraints for global strings and global monopoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Eiguren, Asier; Lizarraga, Joanes; Urrestilla, Jon

    We present the first cosmic microwave background (CMB) power spectra from numerical simulations of the global O( N ) linear σ-model, with N =2,3, which have global strings and monopoles as topological defects. In order to compute the CMB power spectra we compute the unequal time correlators (UETCs) of the energy-momentum tensor, showing that they fall off at high wave number faster than naive estimates based on the geometry of the defects, indicating non-trivial (anti-)correlations between the defects and the surrounding Goldstone boson field. We obtain source functions for Einstein-Boltzmann solvers from the UETCs, using a recently developed method thatmore » improves the modelling at the radiation-matter transition. We show that the interpolation function that mimics the transition is similar to other defect models, but not identical, confirming the non-universality of the interpolation function. The CMB power spectra for global strings and global monopoles have the same overall shape as those obtained using the non-linear σ-model approximation, which is well captured by a large- N calculation. However, the amplitudes are larger than the large- N calculation would naively predict, and in the case of global strings much larger: a factor of 20 at the peak. Finally we compare the CMB power spectra with the latest CMB data in other to put limits on the allowed contribution to the temperature power spectrum at multipole l = 10 of 1.7% for global strings and 2.4% for global monopoles. These limits correspond to symmetry-breaking scales of 2.9× 10{sup 15} GeV (6.3× 10{sup 14} GeV with the expected logarithmic scaling of the effective string tension between the simulation time and decoupling) and 6.4× 10{sup 15} GeV respectively. The bound on global strings is a significant one for the ultra-light axion scenario with axion masses m {sub a} ∼< 10{sup −28} eV . These upper limits indicate that gravitational waves from global topological defects will not be observable at the gravitational wave observatory LISA.« less

  19. Conformal twists, Yang–Baxter σ-models & holographic noncommutativity

    NASA Astrophysics Data System (ADS)

    Araujo, Thiago; Bakhmatov, Ilya; Colgáin, Eoin Ó.; Sakamoto, Jun-ichi; Sheikh-Jabbari, Mohammad M.; Yoshida, Kentaroh

    2018-06-01

    Expanding upon earlier results (Araujo et al 2017 Phys. Rev. D 95 105006), we present a compendium of σ-models associated with integrable deformations of AdS5 generated by solutions to homogenous classical Yang–Baxter equation. Each example we study from four viewpoints: conformal (Drinfeld) twists, closed string gravity backgrounds, open string parameters and proposed dual noncommutative (NC) gauge theory. Irrespective of whether the deformed background is a solution to supergravity or generalized supergravity, we show that the open string metric associated with each gravity background is undeformed AdS5 with constant open string coupling and the NC structure Θ is directly related to the conformal twist. One novel feature is that Θ exhibits ‘holographic noncommutativity’: while it may exhibit non-trivial dependence on the holographic direction, its value everywhere in the bulk is uniquely determined by its value at the boundary, thus facilitating introduction of a dual NC gauge theory. We show that the divergence of the NC structure Θ is directly related to the unimodularity of the twist. We discuss the implementation of an outer automorphism of the conformal algebra as a coordinate transformation in the AdS bulk and discuss its implications for Yang–Baxter σ-models and self-T-duality based on fermionic T-duality. Finally, we comment on implications of our results for the integrability of associated open strings and planar integrability of dual NC gauge theories.

  20. [Assessment of an educational technology in the string literature about breastfeeding].

    PubMed

    de Oliveira, Paula Marciana Pinheiro; Pagliuca, Lorita Marlena Freitag

    2013-02-01

    The goal of this study was to assess educational technology in the string literature about breastfeeding. The study was conducted between March and September 2009 by breastfeeding experts and experts on string literature. A psychometric model was adopted as the theoretical-methodological framework. For data collection, an instrument was used to assess the content about breastfeeding and the string literature rules. The analysis was based on comparisons of the notes and critical reflections of experts. Ethical guidelines were followed during the study. After the assessments, the educational technology was adjusted until all of the experts agreed. The assessment of educational technology can reduce obstacles to information dissemination and can lead to improvements in quality of life.

  1. A DFT investigation on geometry and chemical bonding of isoelectronic Si8N6V-, Si8N6Cr, and Si8N6Mn+ clusters

    NASA Astrophysics Data System (ADS)

    Tam, Nguyen Minh; Pham, Hung Tan; Cuong, Ngo Tuan; Tung, Nguyen Thanh

    2017-10-01

    The geometric feature and chemical bonding of isoelectronic systems Si8N6Mq (M = V, Cr, Mn and q = -1, 0, 1, respectively) are investigated by means of density-functional-theory calculations. The encapsulated form is found for all ground-state structures, where the metal atom locates at the central site of the hollow Si8N6 cage. The Si8N6 cage is established by adding two Si atoms to a distorted Si6N6 prism, which is a combination of Si4N2 and Si2N4 strings. Chemical bonding of Si8N6Mq systems is explored by using the electron localization indicator and theory of atom in molecule, revealing the vital role of metal center in stabilizing the clusters.

  2. Chiral phase transition from string theory.

    PubMed

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  3. Edge detection, cosmic strings and the south pole telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Andrew; Brandenberger, Robert, E-mail: stewarta@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2009-02-15

    We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.

  4. Ramond and Neveu-Schwarz paraspinning strings in presence of D-branes

    NASA Astrophysics Data System (ADS)

    Hamam, D.; Belaloui, N.

    2018-03-01

    We investigate the theory of an open parafermionic string between two parallel Dp-, Dq-branes in Ramond and Neveu-Schwarz sectors. Trilinear commutation relations between the string variables are postulated and the corresponding ones in terms of modes are derived. The analysis of the spectrum shows that one can again have a free tachyon Neveu-Schwarz model for some values of the order of the paraquantization associated to some values of p and q. The consistency of this model requires the calculation of the partition function and its confrontation with the results of the degeneracies. A perfect agreement between the two results is obtained and the closure of the Virasoro superalgebra is confirmed.

  5. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  6. Acoustics of Idakkā: An Indian snare drum with definite pitch.

    PubMed

    Jose, Kevin; Chatterjee, Anindya; Gupta, Anurag

    2018-05-01

    The vibration of a homogeneous circular membrane backed by two taut strings is shown to yield several harmonic overtones for a wide range of physical and geometric parameters. Such a membrane is present at each end of the barrel of an idakkā, an Indian snare drum well known for its rich musicality. The audio recordings of the musical drum are analyzed and a case is made for the strong sense of pitch associated with the drum. A computationally inexpensive model of the string-membrane interaction is proposed assuming the strings to be without inertia. The interaction essentially entails wrapping/unwrapping of the string around a curve on the deforming membrane unlike the colliding strings in Western snare drums. The range of parameters for which harmonicity is achieved is examined and is found to be conforming with what is used in actual drum playing and construction.

  7. Colored petri net modeling of small interfering RNA-mediated messenger RNA degradation.

    PubMed

    Nickaeen, Niloofar; Moein, Shiva; Heidary, Zarifeh; Ghaisari, Jafar

    2016-01-01

    Mathematical modeling of biological systems is an attractive way for studying complex biological systems and their behaviors. Petri Nets, due to their ability to model systems with various levels of qualitative information, have been wildly used in modeling biological systems in which enough qualitative data may not be at disposal. These nets have been used to answer questions regarding the dynamics of different cell behaviors including the translation process. In one stage of the translation process, the RNA sequence may be degraded. In the process of degradation of RNA sequence, small-noncoding RNA molecules known as small interfering RNA (siRNA) match the target RNA sequence. As a result of this matching, the target RNA sequence is destroyed. In this context, the process of matching and destruction is modeled using Colored Petri Nets (CPNs). The model is constructed using CPNs which allow tokens to have a value or type on them. Thus, CPN is a suitable tool to model string structures in which each element of the string has a different type. Using CPNs, long RNA, and siRNA strings are modeled with a finite set of colors. The model is simulated via CPN Tools. A CPN model of the matching between RNA and siRNA strings is constructed in CPN Tools environment. In previous studies, a network of stoichiometric equations was modeled. However, in this particular study, we modeled the mechanism behind the silencing process. Modeling this kind of mechanisms provides us with a tool to examine the effects of different factors such as mutation or drugs on the process.

  8. Document retrieval on repetitive string collections.

    PubMed

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  9. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minxi; Liu, Junyu; Lu, Shiyun

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two modelsmore » produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.« less

  10. Initial Systematic Investigations of the Weakly Coupled Free Fermionic Heterotic String Landscape Statistics

    NASA Astrophysics Data System (ADS)

    Renner, Timothy

    2011-12-01

    A C++ framework was constructed with the explicit purpose of systematically generating string models using the Weakly Coupled Free Fermionic Heterotic String (WCFFHS) method. The software, optimized for speed, generality, and ease of use, has been used to conduct preliminary systematic investigations of WCFFHS vacua. Documentation for this framework is provided in the Appendix. After an introduction to theoretical and computational aspects of WCFFHS model building, a study of ten-dimensional WCFFHS models is presented. Degeneracies among equivalent expressions of each of the known models are investigated and classified. A study of more phenomenologically realistic four-dimensional models based on the well known "NAHE" set is then presented, with statistics being reported on gauge content, matter representations, and space-time supersymmetries. The final study is a parallel to the NAHE study in which a variation of the NAHE set is systematically extended and examined statistically. Special attention is paid to models with "mirroring"---identical observable and hidden sector gauge groups and matter representations.

  11. Linear Sigma Model Toolshed for D-brane Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellerman, Simeon

    Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.

  12. Characterization of Fluid Flow through a Simplified Heart Valve Model

    NASA Astrophysics Data System (ADS)

    Katija, Kakani

    2005-11-01

    Research has shown that the leading vortex of a starting jet makes a larger contribution to mass transport than a straight jet. Physical processes terminate growth of the leading vortex ring at a stroke ratio (L/D) between 3.5 and 4.5. This has enhanced the idea that biological systems optimize vortex formation for fluid transport. Of present interest is how fluid transport through a heart valve induces flutter of the valve leaflets. An attempt to characterize the fluid flow through a heart valve was made using a simplified cylinder-string system. Experiments were conducted in a water tank where a piston pushed fluid out of a cylinder (of diameter D) into surrounding fluid. A latex string was attached to the end of the cylinder to simulate a heart valve leaflet. The FFT of the string motion was computed to quantify the flutter behavior observed in the cylinder-string system. By increasing the stroke ratio, the amplitude of transverse oscillations for all string lengths increases. For the string length D/2, the occurrence of flutter coincides with the formation of the vortex ring trailing jet.

  13. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  14. Intonation and compensation of fretted string instruments

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  15. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  16. Local random configuration-tree theory for string repetition and facilitated dynamics of glass

    NASA Astrophysics Data System (ADS)

    Lam, Chi-Hang

    2018-02-01

    We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.

  17. String Theory Methods for Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger symmetries and their gravity duals; 33. Finite temperature and black holes; 34. Hot plasma equilibrium thermodynamics: entropy, charge density and chemical potential of strongly coupled theories; 35. Spectral functions and transport properties; 36. Dynamic and nonequilibrium properties of plasmas: electric transport, Langevin diffusion and thermalization via black hole quasi-normal modes; 37. The holographic superconductor; 38. The fluid-gravity correspondence: conformal relativistic fluids from black hole horizons; 39. Nonrelativistic fluids: from Einstein to Navier-Stokes and back; Part IV. Advanced Applications: 40. Fermi gas and liquid in AdS/CFT; 41. Quantum Hall effect from string theory; 42. Quantum critical systems and AdS/CFT; 43. Particle-vortex duality and ABJM vs. AdS4 X CP3 duality; 44. Topology and non-standard statistics from AdS/CFT; 45. DBI scalar model for QGP/black hole hydro- and thermo-dynamics; 46. Holographic entanglement entropy in condensed matter; 47. Holographic insulators; 48. Holographic strange metals and the Kondo problem; References; Index.

  18. Superconducting cosmic string loops as sources for fast radio bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Feng; Yu, Yun-Wei

    2018-01-01

    The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.

  19. Exact solutions of bulk viscous with string cloud attached to strange quark matter for higher dimensional FRW universe in Lyra geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çağlar, Halife, E-mail: hlfcglr@gmail.com; Aygün, Sezgin, E-mail: saygun@comu.edu.tr

    In this study, we have investigated bulk viscous with strange quark matter attached to the string cloud for higher dimensional Friedman-Robertson-Walker (FRW) universe in Lyra geometry. By using varying deceleration parameter and conservation equations we have solved Einstein Field Equations (EFE’s) and obtained generalized exact solutions for our model. Also we have found that string is not survived for bulk viscous with strange quark matter attached to the string cloud in framework higher dimensional FRW universe in Lyra geometry. This result agrees with Kiran and Reddy, Krori et al, Sahoo and Mishra and Mohanty et al. in four and fivemore » dimensions.« less

  20. Aspects of string phenomenology in particle physics and cosmology

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2017-12-01

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  1. The effective supergravity of little string theory

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  2. Amplitudes on plane waves from ambitwistor strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2017-11-01

    In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.

  3. Existence of topological multi-string solutions in Abelian gauge field theories

    NASA Astrophysics Data System (ADS)

    Han, Jongmin; Sohn, Juhee

    2017-11-01

    In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.

  4. Automorphic Forms and Mock Modular Forms in String Theory

    NASA Astrophysics Data System (ADS)

    Nazaroglu, Caner

    We study a variety of modular invariant objects in relation to string theory. First, we focus on Jacobi forms over generic rank lattices and Siegel forms that appear in N = 2, D = 4 compactifications of heterotic string with Wilson lines. Constraints from low energy spectrum and modularity are employed to deduce the relevant supersymmetric partition functions entirely. This procedure is applied on models that lead to Jacobi forms of index 3, 4, 5 as well as Jacobi forms over root lattices A2 and A3. These computations are then checked against an explicit orbifold model which can be Higgsed to the models under question. Models with a single Wilson line are then studied in detail with their relation to paramodular group Gammam as T-duality group made explicit. These results on the heterotic string side are then turned into predictions for geometric invariants using TypeII - Heterotic duality. Secondly, we study theta functions for indenite signature lattices of generic signature. Building on results in literature for signature (n-1,1) and (n-2,2) lattices, we work out the properties of generalized error functions which we call r-tuple error functions. We then use these functions to build such indenite theta functions and describe their modular completions.

  5. An Interactive Activation Model of the Effect of Context in Perception. Part 2

    DTIC Science & Technology

    1980-07-15

    nonword strings are often seen with letters transposed if the transposition will produce legal strings (Estes, 1975a; c.f. experiment by Stevens reported...Activation Model Rumelhart & McClelland Part II 90 References Anderson, J. A. Neural models with cognitive implications. In D. LaBerge & S. J. Samuels...Washington, DC 20372 Coe391 Dr. Gory PoockNavy Personnel R&D Center Operations Research Department LT Steven D. Harris. MSC, USN San Diego, CA 92152 Code

  6. Construction of cosmic string induced temperature anisotropy maps with CMBFAST and statistical analysis

    NASA Astrophysics Data System (ADS)

    Simatos, N.; Perivolaropoulos, L.

    2001-01-01

    We use the publicly available code CMBFAST, as modified by Pogosian and Vachaspati, to simulate the effects of wiggly cosmic strings on the cosmic microwave background (CMB). Using the modified CMBFAST code, which takes into account vector modes and models wiggly cosmic strings by the one-scale model, we go beyond the angular power spectrum to construct CMB temperature maps with a resolution of a few degrees. The statistics of these maps are then studied using conventional and recently proposed statistical tests optimized for the detection of hidden temperature discontinuities induced by the Gott-Kaiser-Stebbins effect. We show, however, that these realistic maps cannot be distinguished in a statistically significant way from purely Gaussian maps with an identical power spectrum.

  7. Quantum phases of a vortex string.

    PubMed

    Auzzi, Roberto; Prem Kumar, S

    2009-12-04

    We argue that the world sheet dynamics of magnetic k strings in the Higgs phase of the mass-deformed N = 4 theory is controlled by a bosonic O(3) sigma model with anisotropy and a topological theta term. The theory interpolates between a massless O(2) symmetric regime, a massive O(3) symmetric phase, and another massive phase with a spontaneously broken Z(2) symmetry. The first two phases are separated by a Kosterlitz-Thouless transition. When theta = pi, the O(3) symmetric phase flows to an interacting fixed point; sigma model kinks and their dyonic partners become degenerate, mirroring the behavior of monopoles in the parent gauge theory. This leads to the identification of the kinks with monopoles confined on the string.

  8. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance of the food source characteristics and evolutionary possibilities are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Post processing for offline Chinese handwritten character string recognition

    NASA Astrophysics Data System (ADS)

    Wang, YanWei; Ding, XiaoQing; Liu, ChangSong

    2012-01-01

    Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.

  10. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  11. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  12. Bianchi-V string cosmological model with dark energy anisotropy

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  13. A Simple Introduction to Gröbner Basis Methods in String Phenomenology

    NASA Astrophysics Data System (ADS)

    Gray, James

    In this talk I give an elementary introduction to the key algorithm used in recent applications of computational algebraic geometry to the subject of string phenomenology. I begin with a simple description of the algorithm itself and then give 3 examples of its use in physics. I describe how it can be used to obtain constraints on flux parameters, how it can simplify the equations describing vacua in 4d string models and lastly how it can be used to compute the vacuum space of the electroweak sector of the MSSM.

  14. Twistor approach to string compactifications: A review

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei

    2013-01-01

    We review a progress in obtaining the complete non-perturbative effective action of type II string theory compactified on a Calabi-Yau manifold. This problem is equivalent to understanding quantum corrections to the metric on the hypermultiplet moduli space. We show how all these corrections, which include D-brane and NS5-brane instantons, are incorporated in the framework of the twistor approach, which provides a powerful mathematical description of hyperkähler and quaternion-Kähler manifolds. We also present new insights on S-duality, quantum mirror symmetry, connections to integrable models and topological strings.

  15. Study of baryon production mechanism in e+e- annihilation into hadrons

    NASA Astrophysics Data System (ADS)

    Topaz Collaboration; Aoki, M.; Itoh, R.; Watanabe, Y.; Kaneyuki, K.; Ohshima, Y.; Ochi, A.; Tanimori, T.; Abe, K.; Abe, T.; Adachi, I.; Adachi, K.; Aoki, M.; Emi, K.; Enomoto, R.; Fujii, H.; Fujii, T.; Fujii, K.; Fujimoto, J.; Fujiwara, N.; Hayashii, H.; Hirano, H.; Howell, B.; Ikeda, H.; Inoue, Y.; Itami, S.; Iwasaki, H.; Iwasaki, M.; Kajikawa, R.; Kato, S.; Kawabata, S.; Kichimi, H.; Kobayashi, M.; Koltick, D.; Levine, I.; Mamada, H.; Miyabayashi, K.; Miyamoto, A.; Nagai, K.; Nakabayashi, K.; Nakamura, M.; Nakano, E.; Nitoh, O.; Noguchi, S.; Ochiai, F.; Ohishi, N.; Ohnishi, Y.; Okuno, H.; Okusawa, T.; Shibata, E.; Sugiyama, A.; Suzuki, S.; Takahashi, K.; Takahashi, T.; Teramoto, Y.; Tauchi, T.; Tomoto, M.; Tsukamoto, T.; Tsumura, T.; Uno, S.; Yamamoto, A.; Yamauchi, M.

    1998-11-01

    The mechanism of baryon-anti-baryon pair production in e+e- annihilation into hadrons has been studied using the TOPAZ detector at the TRISTAN e+e- collider at an average center-of-mass energy of 58 GeV. The distributions of various p¯p correlations were compared with two prominent models: the cluster-fragmentation model and the string-fragmentation model. We rejected the cluster-fragmentation model at the 90% C.L. Furthermore, in the context of the string-fragmentation model, we favor the ``popcorn'' model, rejecting the ``diquark'' model, where a diquark is considered to be a fundamental entity, at the 95% C.L.

  16. Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism

    NASA Astrophysics Data System (ADS)

    Meessen, Patrick; Ortín, Tomás; Perz, Jan; Shahbazi, C. S.

    2012-09-01

    We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.

  17. Moving heavy quarkonium entropy, effective string tension, and the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Chen, Xun; Feng, Sheng-Qin; Shi, Ya-Fei; Zhong, Yang

    2018-03-01

    The entropy and effective string tension of the moving heavy quark-antiquark pair in the strongly coupled plasmas are calculated by using a deformed an anti-de Sitter/Reissner-Nordström black hole metric. A sharp peak of the heavy-quarkonium entropy around the deconfinement transition can be realized in our model, which is consistent with the lattice QCD result. The effective string tension of the heavy quark-antiquark pair is related to the deconfinement phase transition. Thus, we investigate the deconfinement phase transition by analyzing the characteristics of the effective string tension with different temperatures, chemical potentials, and rapidities. It is found that the results of phase diagram calculated through effective string tension are in agreement with results calculated through a Polyakov loop. We argue that a moving system will reach the phase transition point at a lower temperature and chemical potential than a stationary system. It means that the lifetime of the moving quark-gluon plasma become longer than the static one.

  18. Non-topological cycloops

    NASA Astrophysics Data System (ADS)

    Lake, Matthew; Thomas, Steven; Ward, John

    2010-01-01

    We propose a mechanism for the creation of cosmic string loops with dynamically stabilised windings in the internal space. Assuming a velocity correlations regime in the post-inflationary epoch, such windings are seen to arise naturally in string networks prior to loop formation. The angular momentum of the string in the compact space may then be sufficient to ensure that the windings remain stable after the loop chops off from the network, even if the internal manifold is simply connected. For concreteness we embed our model in the Klebanov-Strassler geometry, which provides a natural mechanism for brane inflation, as well a being one of the best understood compactification schemes in type IIB string theory. We see that the interaction of angular momentum with the string tension causes the loop to oscillate between phases of expansion and contraction. This, in principle, should give rise to a distinct gravitational wave signature, the future detection of which could provide indirect evidence for the existence of extra dimensions.

  19. Models for small-scale structure on cosmic strings. II. Scaling and its stability

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Martins, C. J. A. P.; Shellard, E. P. S.

    2016-11-01

    We make use of the formalism described in a previous paper [Martins et al., Phys. Rev. D 90, 043518 (2014)] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple Ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.

  20. Constraints on axion inflation from the weak gravity conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudelius, Tom, E-mail: rudelius@physics.harvard.edu

    2015-09-01

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and 'anti-alignment' of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the 'generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIBmore » compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.« less

  1. Constraints on axion inflation from the weak gravity conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudelius, Tom

    2015-09-08

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and ‘anti-alignment’ of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the ‘generalized’ weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIBmore » compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.« less

  2. Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)

    DTIC Science & Technology

    2014-10-01

    directory of next hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ...hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ") & utcString

  3. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohbatzadeh, Farshad, E-mail: f.sohbat@umz.ac.ir; Nano and Biotechnology Research Group, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-95447, Mazandaran; Omran, Azadeh Valinataj

    2014-11-15

    In this work, we developed transporting atmospheric pressure cold plasma using single electrode configuration through a sub-millimetre flexible dielectric tube beyond 100 cm. It was shown that the waveform of the applied high voltage is essential for controlling upstream and downstream plasma inside the tube. In this regard, sawtooth waveform enabled the transport of plasma with less applied high voltage compared to sinusoidal and pulsed form voltages. A cold plasma string as long as 130 cm was obtained by only 4 kV peak-to-peak sawtooth high voltage waveform. Optical emission spectroscopy revealed that reactive chemical species, such as atomic oxygen and hydroxyl, are generatedmore » at the tube exit. The effect of tube diameter on the transported plasma was also examined: the smaller the diameter, the higher the applied voltage. The device is likely to be used for sterilization, decontamination, and therapeutic endoscopy as already suggested by other groups in recent past years.« less

  4. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  5. Ecohydraulics of Strings and Beads in Bedrock Rivers

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2016-12-01

    Twenty years ago, Jack Stanford and others described rivers in bedrock canyons as resembling beads on a string when viewed in planform. The beads are relatively wide, low gradient river segments with floodplains, whereas the strings are the intervening steep, narrow river segments with minimal floodplain development. This pattern of longitudinal variations in channel and valley morphology along bedrock canyon rivers is very common, from small channels to major rivers such as the Colorado. Basic understanding of river ecosystems, as well as limited studies, indicates that the beads are more retentive and biologically productive. Although both strings and beads can provide habitat for diverse organisms, strings are more likely to serve as migration corridors, whereas beads provide spawning and nursery habitat, facilitate lateral (channel-floodplain) and vertical (channel-hyporheic) exchanges and associated habitat diversity, and retain dissolved and particulate organic matter. Recognition of the different characteristics and functions of strings and beads can be used to identify their spatial distribution along a river or within a river network and the hydraulically driven processes that sustain channel form, water quality, and biota within strings and beads. Diverse modeling approaches can then be used to quantify the fluxes of water and sediment needed to maintain these hydraulically driven processes. This conceptual framework is illustrated using examples from mountain streams in the Southern Rockies and canyon rivers in the southwestern United States.

  6. Toric-boson model: Toward a topological quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio

    2009-06-01

    We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.

  7. Pulsating strings with mixed three-form flux

    NASA Astrophysics Data System (ADS)

    Hernández, Rafael; Nieto, Juan Miguel; Ruiz, Roberto

    2018-04-01

    Circular strings pulsating in AdS 3 × S 3 × T 4 with mixed R-R and NS-NS three-form fluxes can be described by an integrable deformation of the one-dimensional Neumann-Rosochatius mechanical model. In this article we find a general class of pulsating solutions to this integrable system that can be expressed in terms of elliptic functions. In the limit of strings moving in AdS 3 with pure NS-NS three-form flux, where the action reduces to the SL(2, ℝ) WZW model, we find agreement with the analysis of the classical solutions of the system performed using spectral flow by Maldacena and Ooguri. We use our elliptic solutions in AdS 3 to extend the dispersion relation beyond the limit of pure NS-NS flux.

  8. Super Yang Mills, matrix models and geometric transitions

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2005-03-01

    I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).

  9. Is the 'great attractor' a loop of cosmic string?

    NASA Astrophysics Data System (ADS)

    Hoffman, Y.; Zurek, W. H.

    1988-05-01

    Recent measurements of galaxy velocities suggest that the observed large-scale streaming may be attributed to a massive "attractor". The authors explore the idea that the streaming was induced by a large, moving loop of cosmic string. A stationary loop induces a velocity field that falls off as r-1, where r is the distance from the loop. This is somewhat modified by the motion of the loop, but the r-1 profile still persists in much of the wake of the string. The standard inflationary models of cold or hot dark matter predict, on the other hand, a velocity that should fall off as r-3 away from the density peak. Extension of this model to the Local Supercluster allows one to understand its Virgocentric velocity field of r-1.

  10. PREFACE: Gauge-string duality and integrability: progress and outlook Gauge-string duality and integrability: progress and outlook

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Staudacher, M.; Tseytlin, A.

    2009-06-01

    The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey Frolov, explains in great detail the state-of-the-art of quantizing the AdS5 × S5 string theory's sigma model, gathering evidence for the conjectured integrability from the string side of the correspondence. The ensuing article by Nikolay Gromov starts with the full set of conjectured asymptotic Bethe equations of the model, and indicates how they relate to the firmly established classical integrabiliity of the string sigma model. The article by Benjamin Basso and Gregory Korchemsky discusses the issue of non-perturbative corrections in strong-coupling expansion and connections to the O(6) sigma model. The final article, by Fernando Alday, provides a link between the main topic of this special issue—the integrability of the spectrum of AdS/CFT—and other important observables of the model, such as the set of gluon scattering amplitudes, which may also lead to an exactly solvable problem. We feel that the whole subject of AdS/CFT integrability is still in its infancy, and that much remains to be understood, proved, and extended. It is furthermore quite possible that the underlying structures will prove important for progress on cutting-edge problems in condensed matter theory. This collection of articles by experts in the field should serve as an important assessment of the incomplete status quo of the subject. As such, we hope it will inspire further research activity by ambitious theorists!

  11. Nonmonotonic Logic for Use in Information Retrieval: An Exploratory Paper.

    ERIC Educational Resources Information Center

    Hurt, C. D.

    1998-01-01

    Monotonic logic requires reexamination of the entire logic string when there is a contradiction. Nonmonotonic logic allows the user to withdraw conclusions in the face of contradiction without harm to the logic string, which has considerable application to the field of information searching. Artificial intelligence models and neural networks based…

  12. Analytic study of small scale structure on cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polchinski, Joseph; Rocha, Jorge V.; Department of Physics, University of California, Santa Barbara, California 93106

    2006-10-15

    The properties of string networks at scales well below the horizon are poorly understood, but they enter critically into many observables. We argue that in some regimes, stretching will be the only relevant process governing the evolution. In this case, the string two-point function is determined up to normalization: the fractal dimension approaches one at short distance, but the rate of approach is characterized by an exponent that plays an essential role in network properties. The smoothness at short distance implies, for example, that cosmic string lensing images are almost undistorted. We then add in loop production as a perturbationmore » and find that it diverges at small scales. This need not invalidate the stretching model, since the loop production occurs in localized regions, but it implies a complicated fragmentation process. Our ability to model this process is limited, but we argue that loop production peaks a few orders of magnitude below the horizon scale, without the inclusion of gravitational radiation. We find agreement with some features of simulations, and interesting discrepancies that must be resolved by future work.« less

  13. Coupled dynamics of a viscoelastically supported infinite string and a number of discrete mechanical systems moving with uniform speed

    NASA Astrophysics Data System (ADS)

    Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan

    2018-02-01

    The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.

  14. Thermodynamical string fragmentation

    NASA Astrophysics Data System (ADS)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  15. Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Wahi, P.

    2015-03-01

    We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.

  16. CMB temperature bispectrum induced by cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezedmore » triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.« less

  17. Ising versus S U (2) 2 string-net ladder

    NASA Astrophysics Data System (ADS)

    Vidal, Julien

    2018-03-01

    We consider the string-net model obtained from S U (2) 2 fusion rules. These fusion rules are shared by two different sets of anyon theories. In this paper, we study the competition between the two corresponding non-Abelian quantum phases in the ladder geometry. A detailed symmetry analysis shows that the nontrivial low-energy sector corresponds to the transverse-field cluster model that displays a critical point described by the s o (2) 1 conformal field theory. Other sectors are obtained by freezing spins in this model.

  18. Liquid Crystal Colloids

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  19. Acoustic guided waves in cylindrical solid-fluid structures: Modeling with a sweeping frequency finite element method and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-02-01

    Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.

  20. Transverse momentum correlations of quarks in recursive jet models

    NASA Astrophysics Data System (ADS)

    Artru, X.; Belghobsi, Z.; Redouane-Salah, E.

    2016-08-01

    In the symmetric string fragmentation recipe adopted by PYTHIA for jet simulations, the transverse momenta of successive quarks are uncorrelated. This is a simplification but has no theoretical basis. Transverse momentum correlations are naturally expected, for instance, in a covariant multiperipheral model of quark hadronization. We propose a simple recipe of string fragmentation which leads to such correlations. The definition of the jet axis and its relation with the primordial transverse momentum of the quark is also discussed.

  1. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  2. Cusp anomalous dimension and rotating open strings in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Espíndola, R.; García, J. Antonio

    2018-03-01

    In the context of AdS/CFT we provide analytical support for the proposed duality between a Wilson loop with a cusp, the cusp anomalous dimension, and the meson model constructed from a rotating open string with high angular momentum. This duality was previously studied using numerical tools in [1]. Our result implies that the minimum of the profile function of the minimal area surface dual to the Wilson loop, is related to the inverse of the bulk penetration of the dual string that hangs from the quark-anti-quark pair (meson) in the gauge theory.

  3. Matter-antimatter asymmetry in the universe via string-inspired CPT violation at early eras

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2018-01-01

    In four-space-time dimensional string/brane theory, obtained either through compactification of the extra spatial dimensions, or by appropriate restriction to brane worlds with three large spatial dimensions, the rich physics potential associated with the presence of non-trivial Kalb-Ramond (KR) axion-like fields has not been fully exploited so far. In this talk, I discuss a scenario whereby such fields produce spontaneous Lorentz- and CPT-violating cosmological backgrounds over which strings propagate, which in the early Universe can lead to Baryogenesis through Leptogenesis in models with heavy right-handed neutrinos.

  4. The sound of friction: Real-time models, playability and musical applications

    NASA Astrophysics Data System (ADS)

    Serafin, Stefania

    Friction, the tangential force between objects in contact, in most engineering applications needs to be removed as a source of noise and instabilities. In musical applications, friction is a desirable component, being the sound production mechanism of different musical instruments such as bowed strings, musical saws, rubbed bowls and any other sonority produced by interactions between rubbed dry surfaces. The goal of the dissertation is to simulate different instrument whose main excitation mechanism is friction. An efficient yet accurate model of a bowed string instrument, which combines the latest results in violin acoustics with the efficient digital waveguide approach, is provided. In particular, the bowed string physical model proposed uses a thermodynamic friction model in which the finite width of the bow is taken into account; this solution is compared to the recently developed elasto-plastic friction models used in haptics and robotics. Different solutions are also proposed to model the body of the instrument. Other less common instruments driven by friction are also proposed, and the elasto-plastic model is used to provide audio-visual simulations of everyday friction sounds such as squeaking doors and rubbed wine glasses. Finally, playability evaluations and musical applications in which the models have been used are discussed.

  5. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.

    PubMed

    Yang, Yang; Saleemi, Imran; Shah, Mubarak

    2013-07-01

    This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by automatically discovering high-level subactions or motion primitives, by hierarchical clustering of observed optical flow in four-dimensional, spatial, and motion flow space. The completely unsupervised proposed method, in contrast to state-of-the-art representations like bag of video words, provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic subaction, like directional motion of limb or torso, and is represented by a mixture of four-dimensional Gaussian distributions. For one--shot and k-shot learning, the sequence of primitive labels discovered in a test video are labeled using KL divergence, and can then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into a histogram of primitives or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a composite dataset, and a database of facial expressions. These experiments confirm the validity and discriminative nature of the proposed representation.

  6. The decay width of stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  7. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Fields, CERN, 15 19 January 2007

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.

    2007-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is possible that such an understanding proves crucial in the realization of supersymmetry breaking in string theory. A second long-standing obstacle, which is being tackled with recent techniques, is moduli stabilization, namely the removal of unwanted massless scalar fields from string models. The present status of this problem, and its prospects of solution via the introduction of general sets of fluxes in the compactification space, were covered in the lectures by Brian Wecht. Application of these ideas to connect string theory to particle physics will require a good understanding of the experimental situation at the forthcoming collider LHC at CERN, and the detection tools for signals of new physics, as reviewed in the lectures by Joe Lykken (not covered in the present issue). Along a different line, the role of moduli fields in string theory is expected to provide a natural explanation of models of inflation, and thus of the origin of the cosmological evolution of our universe. The lecture notes by Cliff Burgess provide a review of big bang cosmology, inflation, and its possible explanation in terms of string theory constructions, including some of the most recent results in the field (these notes also appear in the proceedings of two other schools held in the same period). A surprising recent application of string theory is the description, via the ideas of holography and duality between string theories and gauge theories, of physical properties of quantum chromodynamics at high temperature. Indeed experimental data on the physical properties of the quark gluon plasma, produced in heavy ion collision at the RHIC experiment in Brookhaven (and soon at the LHC at CERN) can be recovered, at a semi-quantitative level, from computations in a string theory dual of the system. These applications are reviewed in the lectures by David Mateos. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. A special acknowledgement also goes to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo

  8. Topological strings in d < 1

    NASA Astrophysics Data System (ADS)

    Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik

    1991-03-01

    We calculate correlation functions in minimal topological field theories. These twisted versions of N = 2 minimal models have recently been proposed to describe d < 1 matrix models, once coupled to topological gravity. In our calculation we make use of the Landau-Ginzburg formulation of the N = 2 models, and we find a direct relation between the Landau-Ginzburg superpotential and the KdV differential operator. Using this correspondence we show that the minimal topological models are in perfect agreement with the matrix models as solved in terms of the KdV hierarchy. This proves the equivalence at tree-level of topological and ordinary string thoery in d < 1.

  9. The construction of ``realistic'' four-dimensional strings through orbifolds

    NASA Astrophysics Data System (ADS)

    Font, A.; Ibáñez, L. E.; Quevedo, F.; Sierra, A.

    1990-02-01

    We discuss the construction of "realistic" lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3) × SU(2) × U(1) models as well as models incorporating a left-right SU(2) L × SU(2) R × U(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 × Z 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 × Z 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory.

  10. TimeSet: A computer program that accesses five atomic time services on two continents

    NASA Technical Reports Server (NTRS)

    Petrakis, P. L.

    1993-01-01

    TimeSet is a shareware program for accessing digital time services by telephone. At its initial release, it was capable of capturing time signals only from the U.S. Naval Observatory to set a computer's clock. Later the ability to synchronize with the National Institute of Standards and Technology was added. Now, in Version 7.10, TimeSet is able to access three additional telephone time services in Europe - in Sweden, Austria, and Italy - making a total of five official services addressable by the program. A companion program, TimeGen, allows yet another source of telephone time data strings for callers equipped with TimeSet version 7.10. TimeGen synthesizes UTC time data strings in the Naval Observatory's format from an accurately set and maintained DOS computer clock, and transmits them to callers. This allows an unlimited number of 'freelance' time generating stations to be created. Timesetting from TimeGen is made feasible by the advent of Becker's RighTime, a shareware program that learns the drift characteristics of a computer's clock and continuously applies a correction to keep it accurate, and also brings .01 second resolution to the DOS clock. With clock regulation by RighTime and periodic update calls by the TimeGen station to an official time source via TimeSet, TimeGen offers the same degree of accuracy within the resolution of the computer clock as any official atomic time source.

  11. Strings on AdS_3 x S^3 and the Plane-Wave Limit. Issues on PP-Wave/CFT Holography

    NASA Astrophysics Data System (ADS)

    Zapata, Oswaldo

    2005-10-01

    In this thesis we give explicit results for bosonic string amplitudes on AdS_3 x S^3 and the corresponding plane-wave limit. We also analyze the consequences of our approach for understanding holography in this set up, as well as its possible generalization to other models.

  12. Lightweight In-Plane Actuated Deformable Mirrors for Space Telescopes

    DTIC Science & Technology

    2006-09-01

    dimensional beam-string and axisymmetric plate-membrane. The beam-string (a clamped beam simultaneously under an axial load ) is an important...Tensile load versus radius. . . . . . . . . . . . . . . . . . . . . . 175 7.4. Actuation voltage functions. . . . . . . . . . . . . . . . . . . . 179...membrane Asymptotic finite element Flint and De- noyer [45] 2003 In-plane Circular membrane Numerical least squares fit Actuators modelled as line loads

  13. Classical probes of string/gauge theory duality

    NASA Astrophysics Data System (ADS)

    Ishizeki, Riei

    The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m in S1 is explained. The relation between different limits of the spiky string solution with the Landau-Lifshitz model is of particular interest. The presented solutions provide new classes of string motion that are used to better understand the AdS/CFT correspondence, including the single spike solution and previously unknown examples of supersymmetric Wilson loops.

  14. Rope Hadronization and Strange Particle Production

    NASA Astrophysics Data System (ADS)

    Bierlich, Christian

    2018-02-01

    Rope Hadronization is a model extending the Lund string hadronization model to describe environments with many overlapping strings, such as high multiplicity pp collisions or AA collisions. Including effects of Rope Hadronization drastically improves description of strange/non-strange hadron ratios as function of event multiplicity in all systems from e+e- to AA. Implementation of Rope Hadronization in the MC event generators Dipsy and PYTHIA8 is discussed, as well as future prospects for jet studies and studies of small systems.

  15. Wormhole at the core of an infinite cosmic string

    NASA Astrophysics Data System (ADS)

    Aros, Rodrigo O.; Zamorano, Nelson

    1997-11-01

    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2π deficit at the core. We show that the coordinate singularity associated with this defect can be interpreted as a traversable wormhole lodging at the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott-like solution that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is a 2+1 spacetime solution. A generalization that includes the existence of two interacting parallel wormholes is displayed. These wormholes are not traversable. Finally, we point out that a similar result, flat at infinity and with a 2π defect (or excess) at the core, has been recently published by Dyer and Marleau. Even though theirs is a local string fully coupled to gravity, our toy model captures important aspects of this solution.

  16. Role of curvatures in determining the characteristics of a string vibrating against a doubly curved obstacle

    NASA Astrophysics Data System (ADS)

    Singh, Harkirat; Wahi, Pankaj

    2017-08-01

    The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.

  17. Does a String-Particle Dualism Indicate the Uncertainty Principle's Philosophical Dichotomy?

    NASA Astrophysics Data System (ADS)

    Mc Leod, David; Mc Leod, Roger

    2007-04-01

    String theory may allow resonances of neutrino-wave-strings to account for all experimentally detected phenomena. Particle theory logically, and physically, provides an alternate, contradictory dualism. Is it contradictory to symbolically and simultaneously state that λp = h, but, the product of position and momentum must be greater than, or equal to, the same (scaled) Plank's constant? Our previous electron and positron models require `membrane' vibrations of string-linked neutrinos, in closed loops, to behave like traveling waves, Tws, intermittently metamorphosing into alternately ascending and descending standing waves, Sws, between the nodes, which advance sequentially through 360 degrees. Accumulated time passages as Tws detail required ``loop currents'' supplying magnetic moments. Remaining time partitions into the Sws' alternately ascending and descending phases: the physical basis of the experimentally established 3D modes of these ``particles.'' Waves seem to indicate that point mass cannot be required to exist instantaneously at one point; Mott's and Sneddon's Wave Mechanics says that a constant, [mass], is present. String-like resonances may also account for homeopathy's efficacy, dark matter, and constellations' ``stick-figure projections,'' as indicated by some traditional cultures, all possibly involving neutrino strings. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.5

  18. An Unpublished Draft by Gabriele Veneziano (1973): ``Non-local Field Theory Suggested by Dual Models''

    NASA Astrophysics Data System (ADS)

    Veneziano, G.

    This article reports an old and incomplete note (written in 1973, mostly at the Weizmann Institute, Rehovot, Israel) about a non-local field theory suggested by dual resonance models, and largely inspired by Yukawa’s late work on bilocal fields. It has definite relations to the study of strings in a background (discussed by Ademollo et al.), and to Polyakov’s action for a string moving in a tachyonic background. It also suggests, for the first time, a modification of the uncertainty principle coming from the extended nature of strings. The original note is reported in this article using the slanted typographical style, for an immediate “visive” separation between the old, original text and the modern comments added by the author in the notes and in the final appendix.

  19. Simulations of string vibrations with boundary conditions of third kind using the functional transformation method

    NASA Astrophysics Data System (ADS)

    Trautmann, L.; Petrausch, S.; Bauer, M.

    2005-09-01

    The functional transformation method (FTM) is an established mathematical method for accurate simulation of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. It is a frequency-domain method based on the decomposition into eigenvectors and eigenfrequencies of the underlying physical problem. In this article, the FTM is applied to real-time simulations of vibrating strings which are ideally fixed at one end while the fixing at the other end is modeled by a frequency-dependent input impedance. Thus, boundary conditions of third kind are applied to the model at the end fixed with the input impedance. It is shown that accurate and stable simulations are achieved with nearly the same computational cost as with strings ideally fixed at both ends.

  20. Violin Pedagogy and the Physics of the Bowed String

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander Rhodes

    The paper describes the mechanics of violin tone production using non-specialist language, in order to present a scientific understanding of tone production accessible to a broad readership. As well as offering an objective understanding of tone production, this model provides a powerful tool for analyzing the technique of string playing. The interaction between the bow and the string is quite complex. Literature reviewed for this study reveals that scientific investigations have provided important insights into the mechanics of string playing, offering explanations for factors which both contribute to and limit the range of tone colours and dynamics that stringed instruments can produce. Also examined in the literature review are significant works of twentieth century violin pedagogy exploring tone production on the violin, based on the practical experience of generations of teachers and performers. Hermann von Helmholtz described the stick-slip cycle which drives the string in 1863, which replaced earlier ideas about the vibration of violin strings. Later, scientists such as John Schelleng and Lothar Cremer were able to demonstrate how the mechanics of the bow-string interaction can create different tone colours. Recent research by Anders Askenfelt, Knut Guettler, and Erwin Schoonderwaldt have continued to refine earlier research in this area. The writings of Lucien Capet, Leopold Auer, Carl Flesch, Paul Rolland, Kato Havas, Ivan Galamian, and Simon Fischer are examined and analyzed. Each author describes a different approach to tone production on the violin, representing a different understanding of the underlying mechanism. Analyzing these writings within the context of a scientific understanding of tone production makes it possible to compare these approaches more consistently, and to synthesize different concepts drawn from the diverse sources evaluated.

  1. String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.

  2. Ultralight axion in supersymmetry and strings and cosmology at small scales

    NASA Astrophysics Data System (ADS)

    Halverson, James; Long, Cody; Nath, Pran

    2017-09-01

    Dynamical mechanisms to generate an ultralight axion of mass ˜10-21- 10-22 eV in supergravity and strings are discussed. An ultralight particle of this mass provides a candidate for dark matter that may play a role for cosmology at scales of 10 kpc or less. An effective operator approach for the axion mass provides a general framework for models of ultralight axions, and in one case recovers the scale 10-21- 10-22 eV as the electroweak scale times the square of the hierarchy with an O (1 ) Wilson coefficient. We discuss several classes of models realizing this framework where an ultralight axion of the necessary size can be generated. In one class of supersymmetric models an ultralight axion is generated by instanton-like effects. In the second class higher-dimensional operators involving couplings of Higgs, standard model singlets, and axion fields naturally lead to an ultralight axion. Further, for the class of models considered the hierarchy between the ultralight scale and the weak scale is maintained. We also discuss the generation of an ultralight scale within string-based models. In the single-modulus Kachru-Kallosh-Linde-Trivedi moduli stabilization scheme an ultralight axion would require an ultralow weak scale. However, within the large volume scenario, the desired hierarchy between the axion scale and the weak scale is achieved. A general analysis of couplings of Higgs fields to instantons within the string framework is discussed and it is shown that the condition necessary for achieving such couplings is the existence of vector-like zero modes of the instanton. Some of the phenomenological aspects of these models are also discussed.

  3. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  4. With string model to time series forecasting

    NASA Astrophysics Data System (ADS)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  5. Is the orthographic/phonological onset a single unit in reading aloud?

    PubMed

    Mousikou, Petroula; Coltheart, Max; Saunders, Steven; Yen, Lisa

    2010-02-01

    Two main theories of visual word recognition have been developed regarding the way orthographic units in printed words map onto phonological units in spoken words. One theory suggests that a string of single letters or letter clusters corresponds to a string of phonemes (Coltheart, 1978; Venezky, 1970), while the other suggests that a string of single letters or letter clusters corresponds to coarser phonological units, for example, onsets and rimes (Treiman & Chafetz, 1987). These theoretical assumptions were critical for the development of coding schemes in prominent computational models of word recognition and reading aloud. In a reading-aloud study, we tested whether the human reading system represents the orthographic/phonological onset of printed words and nonwords as single units or as separate letters/phonemes. Our results, which favored a letter and not an onset-coding scheme, were successfully simulated by the dual-route cascaded (DRC) model (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). A separate experiment was carried out to further adjudicate between 2 versions of the DRC model.

  6. The Effect of Friction in Pulleys on the Tension in Cables and Strings

    NASA Astrophysics Data System (ADS)

    Martell, Eric C.; Martell, Verda Beth

    2013-02-01

    Atwood's machine is used in countless introductory physics classes as an illustration of Newton's second law. Initially, the analysis is performed assuming the pulley and string are massless and the axle is frictionless. Although the mass of the pulley is often included when the problem is revisited later in the context of rotational dynamics, the mass of the string and the friction associated with the axle are less frequently discussed. Two questions then arise: 1) If we are ignoring these effects, how realistic is our model? and 2) How can we determine when or if we need to incorporate these effects in order to make our model match up with reality? These questions are connected to fundamental issues faced by physics teachers, namely the frustration students sometimes feel when they do not see how they can use the results of the problems they have been working on and how we can help our students develop effective models for physical systems.

  7. Studying critical string emerging from non-Abelian vortex in four dimensions

    DOE PAGES

    Koroteev, P.; Shifman, M.; Yung, A.

    2016-05-26

    Recently a special vortex string was found in a class of soliton vortices supported in four-dimensional Yang–Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang–Mills theory has the U(2) gauge group and the Fayet–Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP(2,2) model. Here, the full target space ismore » $$\\mathbb R$$ 4 x Y 6 where is a non-compact Calabi–Yau space.« less

  8. Gravitational-wave stochastic background from cosmic strings.

    PubMed

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

  9. Vibration Measurement Method of a String in Transversal Motion by Using a PSD.

    PubMed

    Yang, Che-Hua; Wu, Tai-Chieh

    2017-07-17

    A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string's natural frequency, increase while the speed of motion increases.

  10. Ambitwistor Strings in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel

    2014-08-01

    We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be ablemore » to provide limits which rule out a range of string tensions between G μ ∼ 10{sup −15} and G μ ∼ 10{sup −12}, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.« less

  12. M-theory through the looking glass: Tachyon condensation in the E8 heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horava, Petr; Horava, Petr; Keeler, Cynthia A.

    2007-09-20

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing -- connecting the two E_8 boundaries by a throat -- are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E_8 gauge group and a singlet tachyon. We then use worldsheet methods to studymore » the tachyon condensation in the NSR formulation of this model, and show that it induces a worldsheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for worldsheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the worldsheet gravitino assimilates the goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R_\\xi gauges, and note the importance of logarithmic CFT in the context of tachyon condensation.« less

  13. Chern-Simons gauge theory on orbifolds: Open strings from three dimensions

    NASA Astrophysics Data System (ADS)

    Hořava, Petr

    1996-12-01

    Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.

  14. The Relationship of Dynamical Heterogeneity to the Adam-Gibbs and Random First-Order Transition Theories of Glass Formation

    NASA Astrophysics Data System (ADS)

    Starr, Francis; Douglas, Jack; Sastry, Srikanth

    2013-03-01

    We examine measures of dynamical heterogeneity for a bead-spring polymer melt and test how these scales compare with the scales hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times naturally explains the decoupling of diffusion and structural relaxation time scales. We examine the appropriateness of identifying the size scales of mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the``mosaic'' length of the RFOT model relaxes the conventional assumption that the``entropic droplet'' are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.

  15. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    PubMed

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Rotational symmetry breaking toward a string-valence bond solid phase in frustrated J1 -J2 transverse field Ising model

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-06-01

    We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1 -J2 Ising model on the square lattice, at the limit J2 /J1 = 0.5 . We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a string-VBS state, which breaks lattice rotational symmetry with only two fold degeneracy. The tendency toward the broken symmetry state is justified by numerical exact diagonalization. Moreover, we introduce a map to find the relation between the present model on the checkerboard and square lattices.

  17. Generation of longitudinal vibrations in piano strings: From physics to sound synthesis

    NASA Astrophysics Data System (ADS)

    Bank, Balázs; Sujbert, László

    2005-04-01

    Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano notes. In this paper a simplified modal model is developed, which describes the generation of phantom partials and longitudinal free modes jointly. The model is based on the simplification that the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The modal formulation makes it possible to predict the prominent components of longitudinal vibration as a function of transverse modal frequencies. This provides a qualitative insight into the generation of longitudinal vibration, while the model is still capable of explaining the empirical results of earlier works. The semi-quantitative agreement with measurement results implies that the main source of phantom partials is the transverse to longitudinal coupling, while the string termination and the longitudinal to transverse coupling have only small influence. The results suggest that the longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike peaks at the longitudinal modal frequencies. The model is further simplified and applied for the real-time synthesis of piano sound with convincing sonic results. .

  18. Complex networks generated by the Penna bit-string model: Emergence of small-world and assortative mixing

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Maini, Philip K.

    2005-10-01

    The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.

  19. Dielectric aggregation kinetics of cells in a uniform AC electric field.

    PubMed

    Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira

    2014-01-01

    Cell manipulation and separation technologies have potential biological and medical applications, including advanced clinical protocols such as tissue engineering. An aggregation model was developed for a human carcinoma (HeLa) cell suspension exposed to a uniform AC electric field, in order to explore the field-induced structure formation and kinetics of cell aggregates. The momentum equations of cells under the action of the dipole-dipole interaction were solved theoretically and the total time required to form linear string-like cluster was derived. The results were compared with those of a numerical simulation. Experiments using HeLa cells were also performed for comparison. The total time required to form linear string-like clusters was derived from a simple theoretical model of the cell cluster kinetics. The growth rates of the average string length of cell aggregates showed good agreement with those of the numerical simulation. In the experiment, cells were found to form massive clusters on the bottom of a chamber. The results imply that the string-like cluster grows rapidly by longitudinal attraction when the electric field is first applied and that this process slows at later times and is replaced by lateral coagulation of short strings. The findings presented here are expected to enable design of methods for the organization of three-dimensional (3D) cellular structures without the use of micro-fabricated substrates, such as 3D biopolymer scaffolds, to manipulate cells into spatial arrangement.

  20. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  1. 100 Years Werner Heisenberg: Works and Impact

    NASA Astrophysics Data System (ADS)

    Papenfuß, Dietrich; Lüst, Dieter; Schleich, Wolfgang P.

    2003-09-01

    Over 40 renowned scientists from all around the world discuss the work and influence of Werner Heisenberg. The papers result from the symposium held by the Alexander von Humboldt-Stiftung on the occasion of the 100th anniversary of Heisenberg's birth, one of the most important physicists of the 20th century and cofounder of modern-day quantum mechanics. Taking atomic and laser physics as their starting point, the scientists illustrate the impact of Heisenberg's theories on astroparticle physics, high-energy physics and string theory right up to processing quantum information.

  2. Enhancing AFLOW Visualization using Jmol

    NASA Astrophysics Data System (ADS)

    Lanasa, Jacob; New, Elizabeth; Stefek, Patrik; Honaker, Brigette; Hanson, Robert; Aflow Collaboration

    The AFLOW library is a database of theoretical solid-state structures and calculated properties created using high-throughput ab initio calculations. Jmol is a Java-based program capable of visualizing and analyzing complex molecular structures and energy landscapes. In collaboration with the AFLOW consortium, our goal is the enhancement of the AFLOWLIB database through the extension of Jmol's capabilities in the area of materials science. Modifications made to Jmol include the ability to read and visualize AFLOW binary alloy data files, the ability to extract from these files information using Jmol scripting macros that can be utilized in the creation of interactive web-based convex hull graphs, the capability to identify and classify local atomic environments by symmetry, and the ability to search one or more related crystal structures for atomic environments using a novel extension of inorganic polyhedron-based SMILES strings

  3. String Theory: exact solutions, marginal deformations and hyperbolic spaces

    NASA Astrophysics Data System (ADS)

    Orlando, Domenico

    2006-10-01

    This thesis is almost entirely devoted to studying string theory backgrounds characterized by simple geometrical and integrability properties. The archetype of this type of system is given by Wess-Zumino-Witten models, describing string propagation in a group manifold or, equivalently, a class of conformal field theories with current algebras. We study the moduli space of such models by using truly marginal deformations. Particular emphasis is placed on asymmetric deformations that, together with the CFT description, enjoy a very nice spacetime interpretation in terms of the underlying Lie algebra. Then we take a slight detour so to deal with off-shell systems. Using a renormalization-group approach we describe the relaxation towards the symmetrical equilibrium situation. In he final chapter we consider backgrounds with Ramond-Ramond field and in particular we analyze direct products of constant-curvature spaces and find solutions with hyperbolic spaces.

  4. String scattering amplitudes and deformed cubic string field theory

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2018-01-01

    We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.

  5. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  6. E(lementary)-strings in six-dimensional heterotic F-theory

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-09-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.

  7. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  8. Finite-g Strings

    NASA Astrophysics Data System (ADS)

    Vicedo, Benoit

    2008-10-01

    In view of one day proving the AdS/CFT correspondence, a deeper understanding of string theory on certain curved backgrounds such as AdS_5xS^5 is required. In this dissertation we make a step in this direction by focusing on RxS^3. It was discovered in recent years that string theory on AdS_5xS^5 admits a Lax formulation. However, the complete statement of integrability requires not only the existence of a Lax formulation, but also that the resulting integrals of motion are in pairwise involution. This idea is central to the first part of this thesis. Exploiting this integrability we apply algebro-geometric methods to string theory on RxS^3 and obtain the general finite-gap solution. The construction is based on an invariant algebraic curve previously found in the AdS_5xS^5 case. However, encoding the dynamics of the solution requires specification of additional marked points. By restricting the symplectic structure of the string to this algebro-geometric data we derive the action-angle variables of the system. We then perform a first-principle semiclassical quantisation of string theory on RxS^3 as a toy model for strings on AdS_5xS^5. The result is exactly what one expects from the dual gauge theory perspective, namely the underlying algebraic curve discretises in a natural way. We also derive a general formula for the fluctuation energies around the generic finite-gap solution. The ideas used can be generalised to AdS_5xS^5.

  9. Non-Gaussianities in multifield DBI inflation with a waterfall phase transition

    NASA Astrophysics Data System (ADS)

    Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro

    2012-10-01

    We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.

  10. Classification of standard-like heterotic-string vacua

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.; Rizos, John; Sonmez, Hasan

    2018-02-01

    We extend the free fermionic classification methodology to the class of standard-like heterotic-string vacua, in which the SO (10) GUT symmetry is broken at the string level to SU (3) × SU (2) × U(1) 2. The space of GGSO free phase configurations in this case is vastly enlarged compared to the corresponding SO (6) × SO (4) and SU (5) × U (1) vacua. Extracting substantial numbers of phenomenologically viable models therefore requires a modification of the classification methods. This is achieved by identifying conditions on the GGSO projection coefficients, which are satisfied at the SO (10) level by random phase configurations, and that lead to three generation models with the SO (10) symmetry broken to the SU (3) × SU (2) × U(1) 2 subgroup. Around each of these fertile SO (10) configurations, we perform a complete classification of standard-like models, by adding the SO (10) symmetry breaking basis vectors, and scanning all the associated GGSO phases. Following this methodology we are able to generate some 107 three generation Standard-like Models. We present the results of the classification and one exemplary model with distinct phenomenological properties, compared to previous SLM constructions.

  11. Hot string soup: Thermodynamics of strings near the Hagedorn transition

    NASA Astrophysics Data System (ADS)

    Lowe, David A.; Thorlacius, Lárus

    1995-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.

  12. Collectivity without plasma in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif

    2018-04-01

    We present a microscopic model for collective effects in high multiplicity proton-proton collisions, where multiple partonic subcollisions give rise to a dense system of strings. From lattice calculations we know that QCD strings are transversely extended, and we argue that this should result in a transverse pressure and expansion, similar to the flow in a deconfined plasma. The model is implemented in the PYTHIA8 Monte Carlo event generator, and we find that it can qualitatively reproduce the long range azimuthal correlations forming a near-side ridge in high multiplicity proton-proton events at LHC energies.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svendsen, Harald G.

    In this paper we study a solution of heterotic string theory corresponding to a rotating Kerr-Taub-NUT spacetime. It has an exact CFT description as a heterotic coset model, and a Lagrangian formulation as a gauged WZNW model. It is a generalization of a recently discussed stringy Taub-NUT solution, and is interesting as another laboratory for studying the fate of closed timelike curves and cosmological singularities in string theory. We extend the computation of the exact metric and dilaton to this rotating case, and then discuss some properties of the metric, with particular emphasis on the curvature singularities.

  14. A black hole quartet: New solutions and applications to string theory

    NASA Astrophysics Data System (ADS)

    Padi, Megha

    In this thesis, we study a zoo of black hole solutions which help us connect string theory to the universe we live in. The intuition for how to attack fundamental problems can often be found in a toy model. In Chapter 2, we show that three-dimensional topologically massive gravity with a negative cosmological constant -ℓ -2 and coupling constant has "warped AdS3" solutions with SL(2, R ) x U(1) isometry. For muℓ > 3, we show that certain discrete quotients of warped AdS3 lead to black holes. Their thermodynamics is consistent with the existence of a holographic dual CFT with central charges cR = 15mℓ 2+81Gmm ℓ2+27 and cL = 12mℓ 2Gmm ℓ2+27 . The entropy of many supersymmetric black holes have been accounted for, but more realistic non-supersymmetric black holes have been largely overlooked. In Chapter 3, we derive new single-centered and multi-centered non-BPS black hole solutions for several four dimensional models which, after Kaluza-Klein reduction, admit a description in terms of a sigma model with symmetric target space. In particular, we provide the exact solution with generic charges and asymptotic moduli in N=2 supergravity coupled to one vector multiplet. As it stands, the current formulation of string theory allows for an extremely large number of possible solutions (or vacua). We first analyze this landscape by looking for universal characteristics. In Chapter 4, we provide evidence for the conjecture that gravity is always the weakest force in any string compactification. We show that, in several examples arising in string theory, higher-derivative corrections always make extremal non-supersymmetric black holes lighter than the classical bound M/Q = 1. In Chapter 5, we construct novel black hole bound states, called orientiholes, that are T-dual to IIB orientifold compactifications. The gravitational entropy of such orientiholes provides an "experimental" estimate of the number of vacua in various sectors of the IIB landscape. Furthermore, basic physical properties of orientiholes map to (sometimes subtle) microscopic features, thus providing a useful alternative viewpoint on a number of issues arising in D-brane model building. We also suggest a relation to the topological string analogous to the OSV conjecture.

  15. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

    NASA Astrophysics Data System (ADS)

    Glass, Alexis; Fukudome, Kimitoshi

    2004-12-01

    A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

  16. TOPICAL REVIEW: String cosmology versus standard and inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Gasperini, M.

    2000-06-01

    This paper presents a review of the basic, model-independent differences between the pre-big-bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude either in favour of one or other of the scenarios, but to raise questions that are left to the reader's meditation. Warning: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.

  17. Loop Variables in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.

  18. Nambu sigma model and effective membrane actions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter

    2012-07-01

    We propose an effective action for a p‧-brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M.G.; Abraham, K.; Ackermann, M.

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihoodmore » to arbitrary dark matter models.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon andmore » the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.« less

  1. SO(32) heterotic line bundle models

    NASA Astrophysics Data System (ADS)

    Otsuka, Hajime

    2018-05-01

    We search for the three-generation standard-like and/or Pati-Salam models from the SO(32) heterotic string theory on smooth, quotient complete intersection Calabi-Yau threefolds with multiple line bundles, each with structure group U(1). These models are S- and T-dual to intersecting D-brane models in type IIA string theory. We find that the stable line bundles and Wilson lines lead to the standard model gauge group with an extra U(1) B-L via a Pati-Salam-like symmetry and the obtained spectrum consists of three chiral generations of quarks and leptons, and vector-like particles. Green-Schwarz anomalous U(1) symmetries control not only the Yukawa couplings of the quarks and leptons but also the higher-dimensional operators causing the proton decay.

  2. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, John Austen; /Stanford U., Phys. Dept.

    This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry,more » both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe world-volume theories of point-like D-probes of various Calabi-Yau threefolds.« less

  4. Extending Phrase-Based Decoding with a Dependency-Based Reordering Model

    DTIC Science & Technology

    2009-11-01

    strictly within the confines of phrase-based translation. The hope was to introduce an approach that could take advantage of monolingual syntactic...tuple represents one element of the XML markup, where element is the name of this element, attributes is a dictionary (mapping strings to strings...representing the range of possible compressions, in the form of a dictionary mapping the latter to the former. To represent multiple dependency

  5. M theory through the looking glass: Tachyon condensation in the E{sub 8} heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horava, Petr; Keeler, Cynthia A.

    2008-03-15

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing--connecting the two E{sub 8} boundaries by a throat--are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E{sub 8} gauge group and a singlet tachyon. We then use world sheet methods to study themore » tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R{sub {xi}} gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation.« less

  6. A Non-Critical String (Liouville) Approach to Brain Microtubules:. State Vector Reduction, Memory Coding and Capacity

    NASA Astrophysics Data System (ADS)

    Mavromatos, N. E.; Nanopoulos, D. V.

    Microtubule (MT) networks, subneural paracrystalline cytoskeletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a (1+1)-dimensional noncritical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental friction effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the preconscious states. Quantum space-time effects, as described by noncritical string theory, trigger then an organized collapse of the coherent states down to a specific or conscious state. The whole process we estimate to take { O}(1 sec), in excellent agreement with a plethora of experimental/observational findings. The microscopic arrow of time, endemic in noncritical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age-old problem of how the, central to our feelings of awareness, sensation of the progression of time is generated. In addition, the complete integrability of the stringy model for MT we advocate in this work proves sufficient in providing a satisfactory solution to memory coding and capacity. Such features might turn out to be important for a model of the brain as a quantum computer.

  7. Moduli vacuum misalignment and precise predictions in string inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicoli, Michele; INFN sezione di Bologna,viale Berti Pichat 6/2, 40127 Bologna; Abdus Salam ICTP,Strada Costiera 11, Trieste 34014

    2016-08-03

    The predictions for all the cosmological observables of any inflationary model depend on the number of e-foldings which is sensitive to the post-inflationary history of the universe. In string models the generic presence of light moduli leads to a late-time period of matter domination which lowers the required number of e-foldings and, in turn, modifies the exact predictions of any inflationary model. In this paper we compute exactly the shift of the number of e-foldings in Kähler moduli inflation which is determined by the magnitude of the moduli initial displacement caused by vacuum misalignment and the moduli decay rates. Wemore » find that the preferred number of e-foldings gets reduced from 50 to 45, causing a modification of the spectral index at the percent level. Our results illustrate the importance of understanding the full post-inflationary evolution of the universe in order to derive precise predictions in string inflation. To perform this task it is crucial to work in a setting where there is good control over moduli stabilisation.« less

  8. Description of the heterotic string solutions in U(N) supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolokhov, P. A.; Theoretical Physics Department, St. Petersburg State University, Ulyanovskaya 1, Peterhof, St. Petersburg, 198504; Shifman, M.

    2009-04-15

    We continue the study of heterotic non-Abelian Bogomol'nyi-Prasad-Sommerfield-saturated flux tubes (strings). Previously, such solutions were obtained [M. Shifman and A. Yung, Phys. Rev. D 77, 125016 (2008).] in a particular U(2) gauge theory: N=2 supersymmetric QCD deformed by superpotential terms of a special type breaking N=2 supersymmetry down to N=1. Here we generalize the previous results to U(N) gauge theories. As was suggested by Edalati and Tong [M. Edalati and D. Tong, J. High Energy Phys. 05 (2007) 005.], the string world-sheet theory is a heterotic N=(0,2) sigma model, with the CP(N-1) target space for bosonic fields and an extramore » right-handed fermion which couples to the fermion fields of the N=(2,2) CP(N-1) model. We derive the heterotic N=(0,2) world-sheet model directly from the U(N) bulk theory. Parameters of the bulk theory are related to those of the world-sheet theory. Qualitatively this relation turns out to be the same as in the U(2) case.« less

  9. Worldsheet instantons and the amplitude for string pair production in an external field as a WKB exact functional integral

    NASA Astrophysics Data System (ADS)

    Gordon, James; Semenoff, Gordon W.

    2018-05-01

    We revisit the problem of charged string pair creation in a constant external electric field. The string states are massive and creation of pairs from the vacuum is a tunnelling process, analogous to the Schwinger process where charged particle-anti-particle pairs are created by an electric field. We find the instantons in the worldsheet sigma model which are responsible for the tunnelling events. We evaluate the sigma model partition function in the multi-instanton sector in the WKB approximation which keeps the classical action and integrates the quadratic fluctuations about the solution. We find that the summation of the result over all multi-instanton sectors reproduces the known amplitude. This suggests that corrections to the WKB limit must cancel. To show that they indeed cancel, we identify a fermionic symmetry of the sigma model which occurs in the instanton sectors and which is associated with collective coordinates. We demonstrate that the action is symmetric and that the interaction action is an exact form. These conditions are sufficient for localization of the worldsheet functional integral onto its WKB limit.

  10. Partial restoration of chiral symmetry in a confining string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharzeev, Dmitri E.; Loshaj, F.

    2014-08-01

    Here, we attempt to describe the interplay of confinement and chiral symmetry breaking in QCD by using the string model. We argue that in the quasi-Abelian picture of confinement based on the condensation of magnetic monopoles and the dual Meissner effect, the world sheet dynamics of the confining string can be effectively described by the 1+1 dimensional massless electrodynamics, which is exactly soluble. The transverse plane distribution of the chromoelectric field stretched between the quark and antiquark sources can then be attributed to the fluctuations in the position of the string. The dependence of the chiral condensate in the stringmore » on the (chromo-)electric field can be evaluated analytically, and is determined by the chiral anomaly and the θ-vacuum structure. Moreover, our picture allows us to predict the distribution of the chiral condensate in the plane transverse to the axis connecting the quark and antiquark. This prediction is compared to the lattice QCD results; a good agreement is found.« less

  11. New predictions on meson decays from string splitting

    NASA Astrophysics Data System (ADS)

    Bigazzi, Francesco; Cotrone, Aldo L.

    2006-11-01

    We study certain exclusive decays of high spin mesons into mesons in models of large Nc Yang-Mills with few flavors at strong coupling using string theory. The rate of the process is calculated by studying the splitting of a macroscopic string on the relevant dual gravity backgrounds. In the leading channel for the decay of heavy quarkonium into two open-heavy quark states, one of the two produced mesons has much larger spin than the other. In this channel the decay rate is practically independent on the spin and has a mild dependence on the mass of the heavy quarks. Moreover, it is only power-like suppressed with the mass of the produced quark-anti quark pair. We also reconsider decays of high spin mesons made up of light quarks, confirming the linear dependence of the rate on the mass of the decaying meson. As a bonus of our computation, we provide a formula for the splitting rate of a macroscopic string lying on a Dp-brane in flat space.

  12. Cosmic archaeology with gravitational waves from cosmic strings

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.

    2018-06-01

    Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.

  13. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    DOE PAGES

    Günaydin, Murat; Lüst, Dieter; Malek, Emanuel

    2016-11-07

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less

  14. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günaydin, Murat; Lüst, Dieter; Malek, Emanuel

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less

  15. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeatsmore » of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.« less

  16. Three dimensional finite temperature SU(3) gauge theory near the phase transition

    NASA Astrophysics Data System (ADS)

    Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.

    2013-06-01

    We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.

  17. Chaotic behavior of channeling particles.

    PubMed

    Chen, Ling; Kaloyeros, Alain E.; Wang, Guang-Hou

    1994-03-01

    Channeling describes the collimated motion of energetic charged particles along the lattice plane or axis in a crystal. The energetic particles are steered through the channels formed by strings of atomic constituents in the lattice. In the case of planar channeling, the motion of a charged particle between the atomic planes can be periodic or quasiperiodic, such as a simple oscillatory motion in the transverse direction. In practice, however, the periodic motion of the channeling particles can be accompanied by an irregular, chaotic behavior. In this paper, the Moliere potential, which is considered as a good analytical approximation for the interaction of channeling particles with the rows of atoms in the lattice, is used to simulate the channeling behavior of positively charged particles in a tungsten (100) crystal plane. By appropriate selection of channeling parameters, such as the projectile energy E(0) and incident angle psi(0), the transition of channeling particles from regular to chaotic motion is demonstrated. It is argued that the fine structures that appear in the angular scan channeling experiments are due to the particles' chaotic motion.

  18. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  19. Subterranean barriers, methods, and apparatuses for forming, inspecting, selectively heating, and repairing same

    DOEpatents

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2009-04-07

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  20. Smallest fullerene-like clusters in two-probe device junctions: first principle study

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2017-07-01

    First principle calculations based on density functional theory are realised to investigate the electron transport of the smallest fullerene-like clusters as two-probe junction devices. The junction devices are constructed by mechanically controlled break junction techniques to ensure the maximum stability of the Be20, B20 and N20 cluster molecular junctions. We investigate the density of states, transmission spectrum, molecular orbitals, current and differential conductance characteristics at discrete bias voltages to gain insight about the various transport phenomena occurring in these nano-junctions. The results show that B20 molecule when stringed to gold electrodes works as an ideal nano-device similar to the pure C20 device and is more symmetric in its characteristic nature. However, in N20 molecular device, the conduction is negligible due to the higher atomic interactions within N20 molecule, despite the fact that it is constructed with penta-valent atoms.

  1. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  2. Informing New String Programmes: Lessons Learned from an Australian Experience

    ERIC Educational Resources Information Center

    Murphy, Fintan; Rickard, Nikki; Gill, Anneliese; Grimmett, Helen

    2011-01-01

    Although there are many examples of notable string programmes there has been relatively little comparative analysis of these programmes. This paper examines three benchmark string programmes (The University of Illinois String Project, The Tower Hamlets String Teaching Project and Colourstrings) alongside Music4All, an innovative string programme…

  3. [ital N]-string vertices in string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordes, J.; Abdurrahman, A.; Anton, F.

    1994-03-15

    We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.

  4. Light and compressed gluinos at the LHC via string theory.

    PubMed

    AbdusSalam, S S

    2017-01-01

    In this article, we show that making global fits of string theory model parameters to data is an interesting mechanism for probing, mapping and forecasting connections of the theory to real world physics. We considered a large volume scenario (LVS) with D3-brane matter fields and supersymmetry breaking. A global fit of the parameters to low-energy data shows that the set of LVS models are associated with light gluinos which are quasi-degenerate with the neutralinos and charginos they can promptly decay into, and thus they are possibly hidden to current LHC gluino search strategies.

  5. A new method for finding the minimum free energy pathway of ions and small molecule transportation through protein based on 3D-RISM theory and the string method

    NASA Astrophysics Data System (ADS)

    Yoshida, Norio

    2018-05-01

    A new method for finding the minimum free energy pathway (MFEP) of ions and small molecule transportation through a protein based on the three-dimensional reference interaction site model (3D-RISM) theory combined with the string method has been proposed. The 3D-RISM theory produces the distribution function, or the potential of mean force (PMF), for transporting substances around the given protein structures. By applying the string method to the PMF surface, one can readily determine the MFEP on the PMF surface. The method has been applied to consider the Na+ conduction pathway of channelrhodopsin as an example.

  6. Formation of large-scale structure from cosmic-string loops and cold dark matter

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Scherrer, Robert J.

    1987-01-01

    Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.

  7. Gravity Waves and Linear Inflation From Axion Monodromy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam; /Cornell U., LEPP /Cornell U., Phys. Dept.; Silverstein, Eva

    2010-08-26

    Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensormore » to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.« less

  8. Bianchi type string cosmological models in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Mishra, B.; Sahoo, Parbati; Pacif, S. K. J.

    2016-09-01

    In this work we have studied Bianchi-III and - VI 0 cosmological models with string fluid source in f( R, T) gravity (T. Harko et al., Phys. Rev. D 84, 024020 (2011)), where R is the Ricci scalar and T the trace of the stress energy-momentum tensor in the context of late time accelerating expansion of the universe as suggested by the present observations. The exact solutions of the field equations are obtained by using a time-varying deceleration parameter. The universe is anisotropic and free from initial singularity. Our model initially shows acceleration for a certain period of time and then decelerates consequently. Several dynamical and physical behaviors of the model are also discussed in detail.

  9. String resistance detector

    NASA Technical Reports Server (NTRS)

    Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)

    2007-01-01

    Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.

  10. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  11. Effect of pressure on β relaxation in La60Ni15Al25 metallic glass

    NASA Astrophysics Data System (ADS)

    Xu, H. Y.; Sheng, H. W.; Li, M. Z.

    2018-03-01

    The effect of pressure on β relaxation in La60Ni15Al25 metallic glass (MG) was investigated by activation-relaxation technique in combination with molecular dynamics simulation. It is found that the β relaxation behavior and the potential energy landscape are significantly modulated by pressure. With increasing pressure, the atomic motion in β relaxation in La60Ni15Al25 MG changes from hopping-dominated to the string-like-dominated motion with increased activation energy. Moreover, while the hopping motion is gradually suppressed as pressure is increased, the cooperative rearrangements with more atoms involved but very low activation energies are significantly enhanced by pressure. It is further found that the "subbasins" in the potential energy landscape in La60Ni15Al25 MG become deeper and steeper with increasing pressure, leading to the increase of activation energy. Meanwhile, some neighboring "subbasins" merge under pressure accompanied by the disappearance of energy barriers in-between, leading to events with very low activation energies in the β relaxation. The atomic structure analysis reveals that the transformation of atomic motions in β relaxation in La60Ni15Al25 MG under pressure is strongly correlated with the decrease of pentagon-rich atomic clusters and the increase of clusters with fewer pentagons. These findings provide a new understanding of the β relaxation mechanism and some clues for tuning β relaxation in MGs.

  12. Black string in dRGT massive gravity

    NASA Astrophysics Data System (ADS)

    Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.

    2017-12-01

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r

  13. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models.

    PubMed

    Misra, Dharitri; Chen, Siyuan; Thoma, George R

    2009-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.

  14. The Exploration of Hot Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Jacak, Barbara V.; Müller, Berndt

    2012-07-01

    When nuclear matter is heated beyond 2 trillion degrees, it becomes a strongly coupled plasma of quarks and gluons. Experiments using highly energetic collisions between heavy nuclei have revealed that this new state of matter is a nearly ideal, highly opaque liquid. A description based on string theory and black holes in five dimensions has made the quark-gluon plasma an archetypical strongly coupled quantum system. Open questions about the structure and theory of the quark-gluon plasma are under active investigation. Many of the insights are also relevant to ultracold fermionic atoms and strongly correlated condensed matter.

  15. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    PubMed

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. 39 Questionable Assumptions in Modern Physics

    NASA Astrophysics Data System (ADS)

    Volk, Greg

    2009-03-01

    The growing body of anomalies in new energy, low energy nuclear reactions, astrophysics, atomic physics, and entanglement, combined with the failure of the Standard Model and string theory to predict many of the most basic fundamental phenomena, all point to a need for major new paradigms. Not Band-Aids, but revolutionary new ways of conceptualizing physics, in the spirit of Thomas Kuhn's The Structure of Scientific Revolutions. This paper identifies a number of long-held, but unproven assumptions currently being challenged by an increasing number of alternative scientists. Two common themes, both with venerable histories, keep recurring in the many alternative theories being proposed: (1) Mach's Principle, and (2) toroidal, vortex particles. Matter-based Mach's Principle differs from both space-based universal frames and observer-based Einsteinian relativity. Toroidal particles, in addition to explaining electron spin and the fundamental constants, satisfy the basic requirement of Gauss's misunderstood B Law, that motion itself circulates. Though a comprehensive theory is beyond the scope of this paper, it will suggest alternatives to the long list of assumptions in context.

  17. Quantum vacua of 2d maximally supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Koloğlu, Murat

    2017-11-01

    We analyze the classical and quantum vacua of 2d N=(8,8) supersymmetric Yang-Mills theory with SU( N) and U( N) gauge group, describing the worldvolume interactions of N parallel D1-branes with flat transverse directions {R}^8 . We claim that the IR limit of the SU( N) theory in the superselection sector labeled M (mod N) — identified with the internal dynamics of ( M, N)-string bound states of the Type IIB string theory — is described by the symmetric orbifold N=(8,8) sigma model into ({R}^8)^{D-1}/S_D when D = gcd( M, N) > 1, and by a single massive vacuum when D = 1, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the U( N) theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-Ramond field. This U( N) + B theory has generalized field configurations, labeled by the Z-valued generalized electric flux and an independent {Z}_N -valued 't Hooft flux. We argue that in the quantum mechanical theory, the ( M, N)-string sector with M units of electric flux has a {Z}_N -valued discrete θ angle specified by M (mod N) dual to the 't Hooft flux. Adding the brane center-of-mass degrees of freedom to the SU( N) theory, we claim that the IR limit of the U( N) + B theory in the sector with M bound F-strings is described by the N=(8,8) sigma model into {Sym}^D({R}^8) . We provide strong evidence for these claims by computing an N=(8,8) analog of the elliptic genus of the UV gauge theories and of their conjectured IR limit sigma models, and showing they agree. Agreement is established by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and meromorphic) functions, which turns out to be very restrictive.

  18. Yang-Baxter σ -models, conformal twists, and noncommutative Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Araujo, T.; Bakhmatov, I.; Colgáin, E. Ó.; Sakamoto, J.; Sheikh-Jabbari, M. M.; Yoshida, K.

    2017-05-01

    The Yang-Baxter σ -model is a systematic way to generate integrable deformations of AdS5×S5 . We recast the deformations as seen by open strings, where the metric is undeformed AdS5×S5 with constant string coupling, and all information about the deformation is encoded in the noncommutative (NC) parameter Θ . We identify the deformations of AdS5 as twists of the conformal algebra, thus explaining the noncommutativity. We show that the unimodularity condition on r -matrices for supergravity solutions translates into Θ being divergence-free. Integrability of the σ -model for unimodular r -matrices implies the existence and planar integrability of the dual NC gauge theory.

  19. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  20. Gravity waves and the LHC: towards high-scale inflation with low-energy SUSY

    NASA Astrophysics Data System (ADS)

    He, Temple; Kachru, Shamit; Westphal, Alexander

    2010-06-01

    It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m 3/2, where m 3/2 is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m 3/2 and the Hubble scale of inflation. This is possible because the expectation value of the superpotential < W> relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m 3/2 ≤ TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.

  1. Line segment confidence region-based string matching method for map conflation

    NASA Astrophysics Data System (ADS)

    Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong

    2013-04-01

    In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.

  2. Forbidden territories in the string landscape

    NASA Astrophysics Data System (ADS)

    Kumar, Alok; Mukhopadhyay, Subir; Ray, Koushik

    2007-12-01

    Problems of stabilizing moduli of the type-IIB string theory on toroidal orientifolds T6/Z2, in presence of worldvolume fluxes on various D-branes, are considered. For Z2 actions, introducing either O9 or O3 planes, we rule out the possibility of moduli stabilization in a wide class of models with Script N = 1 supersymmetry, characterized by the type of fluxes turned on along D-brane worldvolume. Our results, in particular, imply that Abelian worldvolume fluxes can not by themselves stabilize closed string moduli, in a consistent supersymmtric model, for above orientifold compactifications. We also discuss other Z2 orientifolds of T6 and show that certain other brane wrappings are also ruled out by similar consistency requirements. In specific setups we consider examples with D9-branes wrapping on a complex three-torus with its world-volume fluxes taken to be semi-homogeneous bundles and D7-branes wrapping holomorphic four-cycles of the complex three-torus carrying world-volume fluxes.

  3. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  4. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  5. Precision determination of weak charge of {sup 133}Cs from atomic parity violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porsev, S. G.; School of Physics, University of New South Wales, Sydney, New South Wales 2052; Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300

    2010-08-01

    We discuss results of the most accurate to-date test of the low-energy electroweak sector of the standard model of elementary particles. Combining previous measurements with our high-precision calculations we extracted the weak charge of the {sup 133}Cs nucleus, Q{sub W}=-73.16(29){sub exp}(20){sub th}[S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009)]. The result is in perfect agreement with Q{sub W}{sup SM} predicted by the standard model, Q{sub W}{sup SM}=-73.16(3), and confirms energy dependence (or running) of the electroweak interaction and places constraints on a variety of new physics scenarios beyond the standard model. In particular, wemore » increase the lower limit on the masses of extra Z-bosons predicted by models of grand unification and string theories. This paper provides additional details to the earlier paper. We discuss large-scale calculations in the framework of the coupled-cluster method, including full treatment of single, double, and valence triple excitations. To determine the accuracy of the calculations we computed energies, electric-dipole amplitudes, and hyperfine-structure constants. An extensive comparison with high-accuracy experimental data was carried out.« less

  6. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  7. The "Magic" String

    ERIC Educational Resources Information Center

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  8. Automatic generation and analysis of solar cell IV curves

    DOEpatents

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  9. Quantum spectral curve for the η-deformed AdS5 × S5 superstring

    NASA Astrophysics Data System (ADS)

    Klabbers, Rob; van Tongeren, Stijn J.

    2017-12-01

    The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.

  10. Nonequilibrium relaxations within the ground-state manifold in the antiferromagnetic Ising model on a triangular lattice.

    PubMed

    Kim, Eunhye; Lee, Sung Jong; Kim, Bongsoo

    2007-02-01

    We present an extensive Monte Carlo simulation study on the nonequilibrium kinetics of triangular antiferromagnetic Ising model within the ground state ensemble which consists of sectors, each of which is characterized by a unique value of the string density p through a dimer covering method. Building upon our recent work [Phys. Rev. E 68, 066127 (2003)] where we considered the nonequilibrium relaxation observed within the dominant sector with p=2/3, we here focus on the nonequilibrium kinetics within the minor sectors with p<2/3. The initial configurations are chosen as those in which the strings are straight and evenly distributed. In the minor sectors, we observe a characteristic spatial anisotropy in both equilibrium and nonequilibrium spatial correlations. We observe emergence of a critical relaxation region (in the spatial and temporal domain) which grows as p deviates from p=2/3. Spatial anisotropy appears in the equilibrium spatial correlation with the characteristic length scale xi(e,V)(p) diverging with vanishing string density as xi(e,V)(p) approximately p(-2) along the vertical direction, while along the horizontal direction the spatial length scale diverges as xi(e,H) approximately p(-1). Analytic forms for the anisotropic equilibrium correlation functions are given. We also find that the spin autocorrelation function A(t) shows a simple scaling behavior A(t)=A(t/tau(A)(p)), where the time scale tau(A)(p) shows a power-law divergence with vanishing p as tau(A)(p) approximately p(-phi) with phi approximately or equal to 4. These features can be understood in terms of random walk nature of the fluctuations of the strings within the typical separation between neighboring strings.

  11. Creation, Phase Change and Evolution of the Universe Based on the "Convection Bang Hypothesis"

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2016-04-01

    In our vision, it is believed that creation and phase change of universe and their coupling began by the gigantic Large Scale Forced Convection System (LSFCS) in very high temperature including a swirling wild wind and energetic particles like gravitons. That wind as the creator of the inflation process was carrying many Quantum Convection Loops (QCLs). Those QCLs have been transformed to black holes as the cores of galaxies. Convection Bang (CB) Model for creation, phase change and evolution of the Universe is constituted based on three assumptions as follows: The first is: "Gravity Hypothesis" that describes the gravity fields generation by the LSFCSs of the heat and mass inside the planets, stars, galaxies and clusters. The LSFCS changes the material properties of the domain and produces coupling of the matched electromagnetic and gravity fields. Gravity hypothesis is a new way to understand gravitation phenomenon which is different from the both Newton's law of gravity and Einstein's theory of general relativity approaches [Gholibeigian et. al, AGU Fall Meeting 2015, P11A-2056 ]. The second is: "Substantial Motion" theory of Iranian philosopher, Mulla Sadra (1571/2-1640), which describes space-time, time's relativity for all atoms (bodies) which are different from each other [Gholibeigian, APS April Meeting 2015, abstract #L1.027], atom's (body) volume squeezing, black hole's mass lightening while increases the velocities of its involved masses inward (a paradox with general relativity), and changes of material properties and geometries in speed of near light speed [Gholibeigian, APS March Meeting 2016, abstract #]. The third is: "Animated Sub-particles" model. These sub-particles (sub-strings) are origin of life and creator of the momentums of the fundamental particles and forces, and basic link of the information transfer to them, [Gholibeigian, APS April Meeting 2015, abstract #L1.027]. In this model, there are four proposed animated sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between their spins. Material's sub-particle is always on and active (from beginning of CB). When the environmental conditions became ready for creation of each field of the plants, animals and humans, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation (phase change) in their own fields. Sub-particles lead the fundamental particles in both individually and systematic (nucleons, atoms, molecules, gens, us...) forms. Sub-particles' system is inside of particles' (bodies)' system. Mechanism: Universe has been managed by coupling of these three assumptions in two micro and macro coupling scales. God, as the main source of information, has been communicated with sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human's sub-particles) to each of them from their inside and outside for process and selection (mutation) of the next step of the motion (phase change) and coupling/communication of their fundamental particles with each other in each Plank's time (or smaller scale). This process is causality for particles' motion in quantum scale too [Gholibeigian, APS March Meeting 2015, abstract #V1.023].

  12. Effect of Notched Strings on Tennis Racket Spin Performance: Ultrahigh-Speed Video Analysis of Spin Rate, Contact Time, and Post-Impact Ball Velocity

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi

    While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.

  13. Syntactic transfer in artificial grammar learning.

    PubMed

    Beesley, T; Wills, A J; Le Pelley, M E

    2010-02-01

    In an artificial grammar learning (AGL) experiment, participants were trained with instances of one grammatical structure before completing a test phase in which they were required to discriminate grammatical from randomly created strings. Importantly, the underlying structure used to generate test strings was different from that used to generate the training strings. Despite the fact that grammatical training strings were more similar to nongrammatical test strings than they were to grammatical test strings, this manipulation resulted in a positive transfer effect, as compared with controls trained with nongrammatical strings. It is suggested that training with grammatical strings leads to an appreciation of set variance that aids the detection of grammatical test strings in AGL tasks. The analysis presented demonstrates that it is useful to conceptualize test performance in AGL as a form of unsupervised category learning.

  14. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    PubMed

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J; Vassallo, David A; Vega, Irving E; Arold, Stefan T; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP domains for increasing the yield of fatty acids in bacterial cultures.

  15. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    PubMed Central

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP domains for increasing the yield of fatty acids in bacterial cultures. PMID:23469090

  16. An Ada/SQL (Structured Query Language) Application Scanner.

    DTIC Science & Technology

    1988-03-01

    Digital ...8217 (" DIGITS "), 46 new STRING’ ("DO"), new STRING’ ("ELSE"), new STRING’ ("ELSIF"), new STRING’ ("END"), new STRING’ ("ENTRY"), new STRING’ ("EXCEPTION...INTEGERPRINT; generic type NUM is digits <>; package FLOATPRINT is package txtprts.ada 18 prcdr PR (FL inFL %YE LINE n LINTYPE UNCLASSIFIED procedure

  17. BOOK REVIEW: String Theory in a Nutshell

    NASA Astrophysics Data System (ADS)

    Skenderis, Kostas

    2007-11-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to the literature. In all, the book contains nearly five hundred exercises for the graduate-level student, which are useful both in teaching courses on string theory and for those who are studying by themselves. A nice feature of this book is that references are made to specific pages earlier in the book, rather than to chapters, which is helpful for students working through the book on their own. In summary,'String Theory in a Nutshell'is a valuable addition to the existing string theory textbooks; it is complementary to the previous books and gives a good treatment of subsequent developments. It is likely to become a staple reference on the subject, used both by students and researchers.

  18. Black branes and black strings in the astrophysical and cosmological context

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Chopovsky, Alexey; Zhuk, Alexander

    2018-03-01

    We consider Kaluza-Klein models where internal spaces are compact flat or curved Einstein spaces. This background is perturbed by a compact gravitating body with the dust-like equation of state (EoS) in the external/our space and an arbitrary EoS parameter Ω in the internal space. Without imposing any restrictions on the form of the perturbed metric and the distribution of the perturbed energy densities, we perform the general analysis of the Einstein and conservation equations in the weak-field limit. All conclusions follow from this analysis. For example, we demonstrate that the perturbed model is static and perturbed metric preserves the block-diagonal form. In a particular case Ω = - 1 / 2, the found solution corresponds to the weak-field limit of the black strings/branes. The black strings/branes are compact gravitating objects which have the topology (four-dimensional Schwarzschild spacetime) × (d-dimensional internal space) with d ≥ 1. We present the arguments in favour of these objects. First, they satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as General Relativity. Second, they are preferable from the thermodynamical point of view. Third, averaging over the Universe, they do not destroy the stabilization of the internal space. These are the astrophysical and cosmological aspects of the black strings/branes.

  19. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    NASA Astrophysics Data System (ADS)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  20. AGSuite: Software to conduct feature analysis of artificial grammar learning performance.

    PubMed

    Cook, Matthew T; Chubala, Chrissy M; Jamieson, Randall K

    2017-10-01

    To simplify the problem of studying how people learn natural language, researchers use the artificial grammar learning (AGL) task. In this task, participants study letter strings constructed according to the rules of an artificial grammar and subsequently attempt to discriminate grammatical from ungrammatical test strings. Although the data from these experiments are usually analyzed by comparing the mean discrimination performance between experimental conditions, this practice discards information about the individual items and participants that could otherwise help uncover the particular features of strings associated with grammaticality judgments. However, feature analysis is tedious to compute, often complicated, and ill-defined in the literature. Moreover, the data violate the assumption of independence underlying standard linear regression models, leading to Type I error inflation. To solve these problems, we present AGSuite, a free Shiny application for researchers studying AGL. The suite's intuitive Web-based user interface allows researchers to generate strings from a database of published grammars, compute feature measures (e.g., Levenshtein distance) for each letter string, and conduct a feature analysis on the strings using linear mixed effects (LME) analyses. The LME analysis solves the inflation of Type I errors that afflicts more common methods of repeated measures regression analysis. Finally, the software can generate a number of graphical representations of the data to support an accurate interpretation of results. We hope the ease and availability of these tools will encourage researchers to take full advantage of item-level variance in their datasets in the study of AGL. We moreover discuss the broader applicability of the tools for researchers looking to conduct feature analysis in any field.

  1. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  2. The physics of unwound and wound strings on the electric guitar applied to the pitch intervals produced by tremolo/vibrato arm systems.

    PubMed

    Kemp, Jonathan A

    2017-01-01

    The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don't alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch).

  3. Fractional bosonic strings

    NASA Astrophysics Data System (ADS)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  4. Strings on plane-waves and spin chains on orbifolds

    NASA Astrophysics Data System (ADS)

    Sadri, Darius

    This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane-wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the "Penrose limit". In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T-duality are also studied, as are BPS Dp-branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of the three-sphere giant graviton, and place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, giving a two dimensional (worldsheet) description of giant gravitons. Chapter four presents some new ideas regarding the relation between super-conformal gauge theories and string theories with three-dimensional target spaces, possible relations of these systems to Hamiltonian lattice gauge theories, and integrable spin chains. We consider N = 1, D = 4 superconformal SU( N)px q Yang-Mills theories dual to AdS5 x S5/Zp x Zq orbifolds. We show that a specific sector of this dilatation operator can be thought of as the transfer matrix for a three-dimensional statistical mechanical system, which in turn is equivalent to a 2 + 1-dimensional string theory where the spatial slices are discretized on a triangular lattice, and comment on the integrability of this N = 1 gauge theory, its connection to three-dimensional lattice gauge theories, extensions to six-dimensional string theories, AdS/CFT type dualities and finally their construction via orbifolds and brane-box models. In the process we discover a new class of almost-BPS BMN type operators with large engineering dimensions but controllably small anomalous corrections.

  5. Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-09-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

  6. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  7. String-driven inflation

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.

  8. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  9. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  10. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    PubMed

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.

  11. Superconducting cosmic string: Equation of state for spacelike and timelike current in the neutral limit

    NASA Astrophysics Data System (ADS)

    Peter, Patrick

    1992-02-01

    The equation of state relating the tension T and the energy per unit length U of a cosmic string is investigated in the simplest nontrivial case, namely, that of a field theory with U(1)local×U(1)global invariance, in four dimensions, which is interpretable as the zero-charge-coupling-constant limit of the more general superconducting string models that have been previously investigated. This limit has the advantage of giving vacuum vortex defects that are strictly local so that the quantities such as U and T that are relevant for the macroscopic description can be computed without ambiguity. In the case of ``electric'' states (with timelike current) for which no comparable previous calculations exist, it is shown there is a critical frequency wc beyond which the vortex becomes unstable due to ``charge'' carrier emission. In the case of ``magnetic'' states (with spacelike current), the present analysis provides more precise results than those of previous investigations, whose predictions are broadly confirmed for typical moderate models in which the tension T remains comparable to the energy density U though not for extreme models, in which serious discrepancies are revealed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Sung Moon; Park, Jeong-Hyuck; Suh, Minwoo, E-mail: sinsmk2003@sogang.ac.kr, E-mail: park@sogang.ac.kr, E-mail: minsuh@usc.edu

    Double Field Theory suggests to view the whole massless sector of closed strings as the gravitational unity. The fundamental symmetries therein, including the O( D , D ) covariance, can determine unambiguously how the Standard Model as well as a relativistic point particle should couple to the closed string massless sector. The theory also refines the notion of singularity. We consider the most general, spherically symmetric, asymptotically flat, static vacuum solution to D =4 Double Field Theory, which contains three free parameters and consequently generalizes the Schwarzschild geometry. Analyzing the circular geodesic of a point particle in string frame, wemore » obtain the orbital velocity as a function of R /( M {sub ∞} G ) which is the dimensionless radial variable normalized by mass. The rotation curve generically features a maximum and thus non-Keplerian over a finite range, while becoming asymptotically Keplerian at infinity, R /( M {sub ∞} G )→ ∞. The adoption of the string frame rather than Einstein frame is the consequence of the fundamental symmetry principle. Our result opens up a new scheme to solve the dark matter/energy problems by modifying General Relativity at 'short' range of R /( M {sub ∞} G ).« less

  13. Masked priming effects are modulated by expertise in the script.

    PubMed

    Perea, Manuel; Abu Mallouh, Reem; Garcı A-Orza, Javier; Carreiras, Manuel

    2011-05-01

    In a recent study using a masked priming same-different matching task, Garcı´a-Orza, Perea, and Munoz (2010) found a transposition priming effect for letter strings, digit strings, and symbol strings, but not for strings of pseudoletters (i.e., EPRI-ERPI produced similar response times to the control pair EDBI-ERPI). They argued that the mechanism responsible for position coding in masked priming is not operative with those "objects" whose identity cannot be attained rapidly. To assess this hypothesis, Experiment 1 examined masked priming effects in Arabic for native speakers of Arabic, whereas participants in Experiments 2 and 3 were lower intermediate learners of Arabic and readers with no knowledge of Arabic, respectively. Results showed a masked priming effect only for readers who are familiar with the Arabic script. Furthermore, transposed-letter priming in native speakers of Arabic only occurred when the order of the root letters was kept intact. In Experiments 3-7, we examined why masked repetition priming is absent for readers who are unfamiliar with the Arabic script. We discuss the implications of these findings for models of visual-word recognition.

  14. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.

    PubMed

    Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang

    2017-02-22

    Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.

  15. Computational algorithms dealing with the classical and statistical mechanics of celestial scale polymers in space elevator technology

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubovic, Leonardo

    Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation

  16. Recursive model for the fragmentation of polarized quarks

    NASA Astrophysics Data System (ADS)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2018-04-01

    We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.

  17. Supramolecular structure of methyl cellulose and lambda- and kappa-carrageenan in water: SAXS study using the string-of-beads model.

    PubMed

    Dogsa, Iztok; Cerar, Jure; Jamnik, Andrej; Tomšič, Matija

    2017-09-15

    A detailed data analysis utilizing the string-of-beads model was performed on experimental small-angle X-ray scattering (SAXS) curves in a targeted structural study of three, very important, industrial polysaccharides. The results demonstrate the quality of performance for this model on three polymers with quite different thermal structural behavior. Furthermore, they show the advantages of the model used by way of excellent fits in the ranges where the classic approach to the small-angle scattering data interpretation fails and an additional 3D visualization of the model's molecular conformations and anticipated polysaccharide supramolecular structure. The importance of this study is twofold: firstly, the methodology used and, secondly, the structural details of important biopolymers that are widely applicable in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Linear modal stability analysis of bowed-strings.

    PubMed

    Debut, V; Antunes, J; Inácio, O

    2017-03-01

    Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.

  19. String Formatting Considered Harmful for Novice Programmers

    ERIC Educational Resources Information Center

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…

  20. Charting the landscape of supercritical string theory.

    PubMed

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  1. Universe or Multiverse?

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2009-08-01

    Part I. Overviews: 1. Introduction and overview Bernard Carr; 2. Living in the multiverse Steven Weinberg; 3. Enlightenment, knowledge, ignorance, temptation Frank Wilczek; Part II. Cosmology and Astrophysics: 4. Cosmology and the multiverse Martin J. Rees; 5. The anthropic principle revisited Bernard Carr; 6. Cosmology from the top down Stephen Hawking; 7. The multiverse hierarchy Max Tegmark; 8. The inflationary universe Andrei Linde; 9. A model of anthropic reasoning: the dark to ordinary matter ratio Frank Wilczek; 10. Anthropic predictions: the case of the cosmological constant Alexander Vilenkin; 11. The definition and classification of universes James D. Bjorken; 12. M/string theory and anthropic reasoning Renata Kallosh; 13. The anthropic principle, dark energy and the LHC Savas Dimopoulos and Scott Thomas; Part III. Particle Physics and Quantum Theory: 14. Quarks, electrons and atoms in closely related universes Craig J. Hogan; 15. The fine-tuning problems of particle physics and anthropic mechanisms John F. Donoghue; 16. The anthropic landscape of string theory Leonard Susskind; 17. Cosmology and the many worlds interpretation of quantum mechanics Viatcheslav Mukhanov; 18. Anthropic reasoning and quantum cosmology James B. Hartle; 19. Micro-anthropic principle for quantum theory Brandon Carter; Part IV. More General Philosophical Issues: 20. Scientific alternatives to the anthropic principle Lee Smolin; 21. Making predictions in a multiverse: conundrums, dangers, coincidences Anthony Aguirre; 22. Multiverses: description, uniqueness and testing George Ellis; 23. Predictions and tests of multiverse theories Don N. Page; 24. Observation selection theory and cosmological fine-tuning Nick Bostrom; 25. Are anthropic arguments, involving multiverses and beyond, legitimate? William R. Stoeger; 26. The multiverse hypothesis: a theistic perspective Robin Collins; 27. Living in a simulated universe John D. Barrow; 28. Universes galore: where will it all end? Paul Davies; Index.

  2. String solutions in spherically-symmetric f(R) gravity vacuum

    NASA Astrophysics Data System (ADS)

    Dil, Emre

    Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.

  3. Remarks on entanglement entropy in string theory

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  4. Discrete-time modelling of musical instruments

    NASA Astrophysics Data System (ADS)

    Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti

    2006-01-01

    This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.

  5. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models

    PubMed Central

    Misra, Dharitri; Chen, Siyuan; Thoma, George R.

    2010-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386

  6. Statistical distribution of the vacuum energy density in racetrack Kähler uplift models in string theory

    NASA Astrophysics Data System (ADS)

    Sumitomo, Yoske; Tye, S.-H. Henry; Wong, Sam S. C.

    2013-07-01

    We study a racetrack model in the presence of the leading α'-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the Kähler Uplift model studied previously, the α'-correction is more controllable for the meta-stable de-Sitter vacua in the racetrack case since the constraint on the compactified volume size is very much relaxed. We find that the vacuum energy density Λ for de-Sitter vacua approaches zero exponentially as the volume grows. We also analyze properties of the probability distribution of Λ in this class of models. As in other cases studied earlier, the probability distribution again peaks sharply at Λ = 0. We also study the Racetrack Kähler Uplift model in the Swiss-Cheese type model.

  7. Predictions of Cockpit Simulator Experimental Outcome Using System Models

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.

  8. Vortex flow and cavitation in diesel injector nozzles

    NASA Astrophysics Data System (ADS)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection events, implying significant hole-to-hole and cycle-to-cycle variations during the corresponding spray development.

  9. Non-Abelian semilocal strings in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2006-06-15

    We consider a benchmark bulk theory in four dimensions: N=2 supersymmetric QCD with the gauge group U(N) and N{sub f} flavors of fundamental matter hypermultiplets (quarks). The nature of the Bogomol'nyi-Prasad-Sommerfield (BPS) strings in this benchmark theory crucially depends on N{sub f}. If N{sub f}{>=}N and all quark masses are equal, it supports non-Abelian BPS strings which have internal (orientational) moduli. If N{sub f}>N these strings become semilocal, developing additional moduli {rho} related to (unlimited) variations of their transverse size. Using the U(2) gauge group with N{sub f}=3, 4 as an example, we derive an effective low-energy theory on themore » (two-dimensional) string world sheet. Our derivation is field theoretic, direct and explicit: we first analyze the Bogomol'nyi equations for string-geometry solitons, suggest an ansatz, and solve it at large {rho}. Then we use this solution to obtain the world-sheet theory. In the semiclassical limit our result confirms the Hanany-Tong conjecture, which rests on brane-based arguments, that the world-sheet theory is an N=2 supersymmetric U(1) gauge theory with N positively and N{sub e}=N{sub f}-N negatively charged matter multiplets and the Fayet-Iliopoulos term determined by the four-dimensional coupling constant. We conclude that the Higgs branch of this model is not lifted by quantum effects. As a result, such strings cannot confine. Our analysis of infrared effects, not seen in the Hanany-Tong consideration, shows that, in fact, the derivative expansion can make sense only provided that the theory under consideration is regularized in the infrared, e.g. by the quark mass differences. The world-sheet action discussed in this paper becomes a bona fide low-energy effective action only if {delta}m{sub AB}{ne}0.« less

  10. Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $$\\sqrt{s} =$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search in energetic, high-multiplicity final states for evidence of physics beyond the standard model, such as black holes, string balls, and electroweak sphalerons, is presented. The data sample corresponds to an integrated luminosity of 35.9 fbmore » $$^{-1}$$ collected with the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV in 2016. Standard model backgrounds, dominated by multijet production, are determined from control regions in data without any reliance on simulation. No evidence for excesses above the predicted background is observed. Model-independent 95% confidence level upper limits on the cross section of beyond the standard model signals in these final states are set and further interpreted in terms of limits on semiclassical black hole, string ball, and sphaleron production. In the context of models with large extra dimensions, semiclassical black holes with minimum masses as high as 10.1 TeV and string balls with masses as high as 9.5 TeV are excluded by this search. Results of the first dedicated search for electroweak sphalerons are presented. An upper limit of 0.021 is set on the fraction of all quark-quark interactions above the nominal threshold energy of 9 TeV resulting in the sphaleron transition.« less

  11. Strings on complex multiplication tori and rational conformal field theory with matrix level

    NASA Astrophysics Data System (ADS)

    Nassar, Ali

    Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.

  12. Wave propagation in axially moving periodic strings

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-04-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.

  13. Grand Unification as a Bridge Between String Theory and Phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pati, Jogesh C.

    2006-06-09

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrinomore » oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.« less

  14. Supersymmetric k-defects

    DOE PAGES

    Koehn, Michael; Trodden, Mark

    2016-03-03

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. Furthermore, we find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  15. Gluon scattering amplitudes from gauge/string duality and integrability

    NASA Astrophysics Data System (ADS)

    Satoh, Yuji

    2014-06-01

    We discuss the gluon scattering amplitudes of the four-dimensional maximally supersymmetric Yang-Mills theory. By the gauge/string duality, the amplitudes at strong coupling are given by the area of the minimal surfaces in anti-de Sitter space, which can be analyzed by a set of integral equations of the thermodynamic Bethe ansatz (TBA) type. By using the two-dimensional integrable models and conformal field theories underlying the TBA system, we derive analytic expansions of the amplitudes around certain kinematic configurations.

  16. About non standard Lagrangians in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Dragoljub D.; Milosevic, Milan

    A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

  17. Running of the spectrum of cosmological perturbations in string gas cosmology

    NASA Astrophysics Data System (ADS)

    Brandenberger, Robert; Franzmann, Guilherme; Liang, Qiuyue

    2017-12-01

    We compute the running of the spectrum of cosmological perturbations in string gas cosmology, making use of a smooth parametrization of the transition between the early Hagedorn phase and the later radiation phase. We find that the running has the same sign as in simple models of single scalar field inflation. Its magnitude is proportional to (1 -ns) (ns being the slope index of the spectrum), and it is thus parametrically larger than for inflationary cosmology, where it is proportional to (1 -ns)2 .

  18. Hydraulics Graphics Package. Users Manual

    DTIC Science & Technology

    1985-11-01

    ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE/SEPARATOR/VALUE OR STRING SLOC ,DISCHARGE HISTOGRAM ENTER: VARIABLE...ENTER: VARIABLE/SEPARATOR/VALUE OR STRING YLBL,FLOW IN 1000 CFS ENTER: VARIABLE/SEPARATORVA LUE OR STRING GLBL, TETON DAM FAILURE ENTER: VARIABLE...SEPARATOR/VALUE OR STRING SECNO, 0 ENTER: VARIABLE/SEPARATOR/VALUE OR STRING GO 1ee0. F go L 0 U I Goo. 200. TETON DAM FAILUPE N\\ rLOIJ Alr 4wi. fiNT. I .I

  19. Impaired letter-string processing in developmental dyslexia: what visual-to-phonology code mapping disorder?

    PubMed

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-05-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cellmore » is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.« less

  1. Device for balancing parallel strings

    DOEpatents

    Mashikian, Matthew S.

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  2. Aspects of some dualities in string theory

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma CFT.

  3. The physics of unwound and wound strings on the electric guitar applied to the pitch intervals produced by tremolo/vibrato arm systems

    PubMed Central

    2017-01-01

    The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don’t alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch). PMID:28934268

  4. Formation of Electron Strings in Narrow Band Polar Semiconductors

    NASA Astrophysics Data System (ADS)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  5. Optimal management of batteries in electric systems

    DOEpatents

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  6. Playing a 3-Stringed Violin: Innovation via the Joint Evolution of People, Process, and Knowledge Management System

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2010-01-01

    Users continuously evaluate the value and performance of their Knowledge Management Systems (KMS). As suggested by a punctuated socio-technical system process model, today's success can quickly become tomorrow's failure should the KMS fail to meet evolving needs and expectations. The more deeply a tool is embedded in the actual work process, the more vulnerable it is to emergent changes and perturbations. This paper uses the metaphor of a "3-stringed violin" to explore how differing levels of user knowledge about tools and processes can lead to system perturbations and how the active involvement of other actors can dampen the impact of perturbations, i.e., help the system survive the operational equivalent of a broken string. Recommendations suggest ways to increase system resiliency and contribute to incremental innovation.

  7. The IMS Software Integration Platform

    DTIC Science & Technology

    1993-04-12

    products to incorporate all data shared by the IMS applications. Some entities (time-series, images, a algorithm -specific parameters) must be managed...dbwhoanii, dbcancel Transaction Management: dbcommit, dbrollback Key Counter Assignment: dbgetcounter String Handling: cstr ~to~pad, pad-to- cstr Error...increment *value; String Maniputation: int cstr topad (array, string, arraylength) char *array, *string; int arrayjlength; int pad tocstr (string

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, L. H.; Wang, X. D.; Yu, Q.

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studiesmore » on the liquid-to-liquid crossover in metallic melts.« less

  9. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.

    PubMed

    Seward, Emily A; Kelly, Steven

    2016-11-15

    Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.

  10. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    PubMed

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Wheeler, J.; Anderson, E.

    2016-02-01

    Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.

  12. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this frameworkmore » with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.« less

  14. Behavior of Tachyon in String Cosmology Based on Gauged WZW Model

    NASA Astrophysics Data System (ADS)

    Lee, Sunggeun; Nam, Soonkeon

    We investigate a string theoretic cosmological model in the context of the gauged Wess-Zumino-Witten model. Our model is based on a product of non-compact coset space and a spectator flat space; [SL(2, R)/U(1)]k × ℝ2. We extend the formerly studied semiclassical consideration with infinite Kac-Moody level k to a finite one. In this case, the tachyon field appears in the effective action, and we solve the Einstein equation to determine the behavior of tachyon as a function of time. We find that tachyon field dominates over dilaton field in early times. In particular, we consider the energy conditions of the matter fields consisting of the dilaton and the tachyon which affect the initial singularity. We find that not only the strong energy but also the null energy condition is violated.

  15. On non-homogeneous tachyon condensation in closed string theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Rado, Laura

    2017-08-01

    Lorentzian continuation of the Sine-Liouville model describes non-homogeneous rolling closed string tachyon. Via T-duality, this relates to the gauged H + 3 Wess-Zumino-Witten model at subcritical level. This model is exactly solvable. We give a closed formula for the 3-point correlation functions for the model at level k within the range 0 < k < 2, which relates to the analogous quantity for k > 2 in a similar way as how the Harlow-Maltz-Witten 3-point function of timelike Liouville field theory relates to the analytic continuation of the Dorn-Otto-Zamolodchikov-Zamolodchikov structure constants: we find that the ratio between both 3-point functions can be written in terms of quotients of Jacobi's θ-functions, while their product exhibits remarkable cancellations and eventually factorizes. Our formula is consistent with previous proposals made in the literature.

  16. Dynamical AdS strings across horizons

    DOE PAGES

    Ishii, Takaaki; Murata, Keiju

    2016-03-01

    We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanishmore » with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.« less

  17. Cosmic strings and the microwave sky. I - Anisotropy from moving strings

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A method is developed for calculating the component of the microwave anisotropy around cosmic string loops due to their rapidly changing gravitational fields. The method is only valid for impact parameters from the string much smaller than the horizon size at the time the photon passes the string. The method makes it possible to calculate the temperature pattern around arbitrary string configurations numerically in terms of one-dimensional integrals. This method is applied to temperature jump across a string, confirming and extending previous work. It is also applied to cusps and kinks on strings, and to determining the temperature pattern far from a strong loop. The temperature pattern around a few loop configurations is explicitly calculated. Comparisons with the work of Brandenberger et al. (1986) indicates that they have overestimated the MBR anisotropy from gravitational radiation emitted from loops.

  18. String-like collective motion and diffusion in the interfacial region of ice

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Tong, Xuhang; Zhang, Hao; Douglas, Jack F.

    2017-11-01

    We investigate collective molecular motion and the self-diffusion coefficient Ds of water molecules in the mobile interfacial layer of the secondary prismatic plane (11 2 ¯ 0 ) of hexagonal ice by molecular dynamics simulation based on the TIP4P/2005 water potential and a metrology of collective motion drawn from the field of glass-forming liquids. The width ξ of the mobile interfacial layer varies from a monolayer to a few nm as the temperature is increased towards the melting temperature Tm, in accordance with recent simulations and many experimental studies, although different experimental methods have differed in their precise estimates of the thickness of this layer. We also find that the dynamics within this mobile interfacial ice layer is "dynamically heterogeneous" in a fashion that has many features in common with glass-forming liquids and the interfacial dynamics of crystalline Ni over the same reduced temperature range, 2/3 < T/Tm < 1. In addition to exhibiting non-Gaussian diffusive transport, decoupling between mass diffusion and the structural relaxation time, and stretched exponential relaxation, we find string-like collective molecular exchange motion in the interfacial zone within the ice interfacial layer and colored noise fluctuations in the mean square molecular atomic displacement 〈u2〉 after a "caging time" of 1 ps, i.e., the Debye-Waller factor. However, while the heterogeneous dynamics of ice is clearly similar in many ways to molecular and colloidal glass-forming materials, we find distinct trends between the diffusion coefficient activation energy Ea for diffusion Ds and the interfacial width ξ from the scale of collective string-like motion L than those found in glass-forming liquids.

  19. Accidental inflation from Kähler uplifting

    NASA Astrophysics Data System (ADS)

    Ben-Dayan, Ido; Jing, Shenglin; Westphal, Alexander; Wieck, Clemens

    2014-03-01

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ``left-rolling" ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ``inflation by deflation" (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α ~ 0.012 and enhanced tensor-to-scalar ratio r ~ 10-5. The latter results differ significantly from many string inflation models.

  20. Optical analysis and thermal management of 2-cell strings linear concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Reddy, K. S.; Kamnapure, Nikhilesh R.

    2015-09-01

    This paper presents the optical and thermal analyses for a linear concentrating photovoltaic/thermal collector under different operating conditions. Linear concentrating photovoltaic system (CPV) consists of a highly reflective mirror, a receiver and semi-dual axis tracking mechanism. The CPV receiver embodies two strings of triple-junction cells (100 cells in each string) adhered to a mild steel circular tube mounted at the focal length of trough. This system provides 560 W of electricity and 1580 W of heat which needs to be dissipated by active cooling. The Al2O3/Water nanofluid is used as heat transfer fluid (HTF) flowing through circular receiver for CPV cells cooling. Optical analysis of linear CPV system with 3.35 m2 aperture and geometric concentration ratio (CR) of 35 is carried out using Advanced System Analysis Program (ASAP) an optical simulation tool. Non-uniform intensity distribution model of solar disk is used to model the sun in ASAP. The impact of random errors including slope error (σslope), tracking error (σtrack) and apparent change in sun's width (σsun) on optical performance of collector is shown. The result from the optical simulations shows the optical efficiency (ηo) of 88.32% for 2-cell string CPV concentrator. Thermal analysis of CPV receiver is carried out with conjugate heat transfer modeling in ANSYS FLUENT-14. Numerical simulations of Al2O3/Water nanofluid turbulent forced convection are performed for various parameters such as nanoparticle volume fraction (φ), Reynolds number (Re). The addition of the nanoparticle in water enhances the heat transfer in the ranges of 3.28% - 35.6% for φ = 1% - 6%. Numerical results are compared with literature data which shows the reasonable agreement.

  1. GUT Model Hierarchies from Intersecting Branes

    NASA Astrophysics Data System (ADS)

    Kokorelis, Christos

    2002-08-01

    By employing D6-branes intersecting at angles in D = 4 type I strings, we construct the first examples of three generation string GUT models (PS-A class), that contain at low energy exactly the standard model spectrum with no extra matter and/or extra gauge group factors. They are based on the group SU(4)C × SU(2)L × SU(2)R. The models are non-supersymmetric, even though SUSY is unbroken in the bulk. Baryon number is gauged and its anomalies are cancelled through a generalized Green-Schwarz mechanism. We also discuss models (PS-B class) which at low energy have the standard model augmented by an anomaly free U(1) symmetry and show that multibrane wrappings correspond to a trivial redefinition of the surviving global U(1) at low energies. There are no colour triplet couplings to mediate proton decay and proton is stable. The models are compatible with a low string scale of energy less that 650 GeV and are directly testable at present or future accelerators as they predict the existence of light left handed weak fermion doublets at energies between 90 and 246 GeV. The neutrinos get a mass through an unconventional see-saw mechanism. The mass relation me = md at the GUT scale is recovered. Imposing supersymmetry at particular intersections generates non-zero Majorana masses for right handed neutrinos as well providing the necessary singlets needed to break the surviving anomaly free U(1), thus suggesting a gauge symmetry breaking method that can be applied in general left-right symmetric models.

  2. The Development of a String Sight-Reading Pitch Skill Hierarchy

    ERIC Educational Resources Information Center

    Alexander, Michael L.; Henry, Michele L.

    2012-01-01

    This study was designed to determine a pitch skill hierarchy for string sight-reading, to determine the effects of key on string sight-reading achievement, and to determine the validity of a tonal pattern system as a measurement of melodic sight-reading skill for string players. High school string students (n = 94) obtained a mean score of 27.28…

  3. Physical cognition: birds learn the structural efficacy of nest material

    PubMed Central

    Bailey, Ida E.; Morgan, Kate V.; Bertin, Marion; Meddle, Simone L.; Healy, Susan D.

    2014-01-01

    It is generally assumed that birds’ choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches’ (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds’ material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds’ choices. PMID:24741011

  4. Physical cognition: birds learn the structural efficacy of nest material.

    PubMed

    Bailey, Ida E; Morgan, Kate V; Bertin, Marion; Meddle, Simone L; Healy, Susan D

    2014-06-07

    It is generally assumed that birds' choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches' (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds' material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds' choices.

  5. Text String Detection from Natural Scenes by Structure-based Partition and Grouping

    PubMed Central

    Yi, Chucai; Tian, YingLi

    2012-01-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405

  6. Text string detection from natural scenes by structure-based partition and grouping.

    PubMed

    Yi, Chucai; Tian, YingLi

    2011-09-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal orientations.

  7. Superclustering in the explosion scenario. II - Prolate spheroidal shells from superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Borden, David; Ostriker, Jeremiah P.; Weinberg, David H.

    1989-01-01

    If galaxies form on shells, then clusters of galaxies should form at the vertices where three shells intersect. Weinberg, Ostriker, and Dekel (WOD, 1989) studied this picture quantitatively and found that an intersecting spherical shell model reproduces many of the properties of the observed distribution of galaxy clusters, but that too much superclustering is produced. In this paper, the WOD analysis is repeated with prolate spheroids that could be created by superconducting cosmic strings. It is found that most of the attractive features of the WOD model are maintained in the more general case and there is slight improvement in some aspects, but that the overall problem of excessive superclustering is not really alleviated.

  8. Unifying Type-II Strings by Exceptional Groups

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2018-05-01

    We construct the exceptional sigma model: a two-dimensional sigma model coupled to a supergravity background in a manifestly (formally) ED (D )-covariant manner. This formulation of the background is provided by exceptional field theory (EFT), which unites the metric and form fields of supergravity in ED (D ) multiplets before compactification. The realization of the symmetries of EFT on the world sheet uniquely fixes the Weyl-invariant Lagrangian and allows us to relate our action to the usual type-IIA fundamental string action and a form of the type-IIB (m , n ) action. This uniqueness "predicts" the correct form of the couplings to gauge fields in both Neveu-Schwarz and Ramond sectors, without invoking supersymmetry.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Xue, Wei, E-mail: yw366@cam.ac.uk, E-mail: wei.xue@sissa.it

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experimentsmore » do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.« less

  10. Global embedding of fibre inflation models

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Muia, Francesco; Shukla, Pramod

    2016-11-01

    We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h 1,1 = 3 which are K3 fibrations over a ℙ1 base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.

  11. How to simulate global cosmic strings with large string tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  12. Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1991-01-01

    Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.

  13. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  14. Holographic Jet Quenching

    NASA Astrophysics Data System (ADS)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based on these results, we develop a phenomenological model of light quark energy loss and use it compute the nuclear modification factor RAA of light quarks in an expanding plasma. Comparison with the LHC pion suppression data shows that, although RAA has the right qualitative structure, the overall magnitude is too low, indicating that the predicted jet quenching is too strong. In the last part of the thesis we consider a novel idea of introducing finite momentum at endpoints of classical (bosonic and supersymmetric) strings, and the phenomenological consequences of this proposal on the energy loss of light quarks. We show that in a general curved background, finite momentum endpoints must propagate along null geodesics and that the distance they travel in an AdS5-Schwarzschild background is greater than in the previous treatments of falling strings. We also argue that this leads to a more realistic description of energetic quarks, allowing for an unambiguous way of distinguishing between the energy in the dual hard probe and the energy in the color fields surrounding it. This proposal also naturally allows for a clear and simple definition of the instantaneous energy loss. Using this definition and the "shooting string" initial conditions, we develope a new formula for light quark energy loss. Finally, we apply this formula to compute the nuclear modification factor RAA of light hadrons at RHIC and LHC, which, after the inclusion of the Gauss-Bonnet quadratic curvature corrections to the AdS5 geometry, shows a reasonably good agreement with the recent data.

  15. Noncommutative Field Theories and (super)string Field Theories

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.

    2002-11-01

    In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.

  16. Gravitational lensing effects of vacuum strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. R., III

    1985-01-01

    Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.

  17. Modal analysis of a nonuniform string with end mass and variable tension

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Galaboff, Z. J.

    1983-01-01

    Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.

  18. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  19. Topological defects in the Georgi-Machacek model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekar; Kurachi, Masafumi; Nitta, Muneto

    2018-06-01

    We study topological defects in the Georgi-Machacek model in a hierarchical symmetry breaking in which extra triplets acquire vacuum expectation values before the doublet. We find a possibility of topologically stable non-Abelian domain walls and non-Abelian flux tubes (vortices or cosmic strings) in this model. In the limit of the vanishing U (1 )Y gauge coupling in which the custodial symmetry becomes exact, the presence of a vortex spontaneously breaks the custodial symmetry, giving rise to S2 Nambu-Goldstone (NG) modes localized around the vortex corresponding to non-Abelian fluxes. Vortices are continuously degenerated by these degrees of freedom, thereby called non-Abelian. By taking into account the U (1 )Y gauge coupling, the custodial symmetry is explicitly broken, the NG modes are lifted to become pseudo-NG modes, and all non-Abelian vortices fall into a topologically stable Z string. This is in contrast to the standard model in which Z strings are nontopological and are unstable in the realistic parameter region. Non-Abelian domain walls also break the custodial symmetry and are accompanied by localized S2 NG modes. Finally, we discuss the existence of domain wall solutions bounded by flux tubes, where their S2 NG modes match. The domain walls may quantum mechanically decay by creating a hole bounded by a flux tube loop, and would be cosmologically safe. Gravitational waves produced from unstable domain walls could be detected by future experiments.

  20. Self-energy and self-force in the space-time of a thick cosmic string

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, N. R.; Bezerra, V. B.

    2001-10-01

    We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed in terms of the S matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.

  1. Exploring the String Landscape: The Dynamics, Statistics, and Cosmology of Parallel Worlds

    NASA Astrophysics Data System (ADS)

    Ahlqvist, Stein Pontus

    This dissertation explores various facets of the low-energy solutions in string theory known as the string landscape. Three separate questions are addressed - the tunneling dynamics between these vacua, the statistics of their location in moduli space, and the potential realization of slow-roll inflation in the flux potentials generated in string theory. We find that the tunneling transitions that occur between a certain class of supersymmetric vacua related to each other via monodromies around the conifold point are sensitive to the details of warping in the near-conifold regime. We also study the impact of warping on the distribution of vacua near the conifold and determine that while previous work has concluded that the conifold point acts as an accumulation point for vacua, warping highly dilutes the distribution in precisely this regime. Finally we investigate a novel form of inflation dubbed spiral inflation to see if it can be realized near the conifold point. We conclude that for our particular models, spiral inflation seems to rely on a de Sitter-like vacuum energy. As a result, whenever spiral inflation is realized, the inflation is actually driven by a vacuum energy.

  2. Rigged String Configurations, Bethe Ansatz Qubits, and Conservation of Parity

    NASA Astrophysics Data System (ADS)

    Lulek, T.

    Bethe Ansatz solutions for the Heisenberg Hamiltonian of a one - dimensional magnetic ring of N nodes, each with the spin 1/2, within the XXX model, have been presented as some composite systems, in a spirit of quantum information theory. The constituents are single - node spin states, which organize into strings of various length, and "seas of holes". The former are responsible for dynamics, whereas the latter determine the range of riggings for strings. Another aim was to demonstrate a unification of Bethe Ansatz eigenstates by means of Galois symmetries of finite field extensions. The key observation is that the original eigenproblem is expressible in integers, and thus, for a finite fixed N, the splitting field of the characteristic polynom of the Heisenberg Hamiltonian is also finite. The Galois group of the latter field permutes, by definition, roots of this polynom, which implies permutation of eigenstates. General considerations are demonstrated on the example of heptagon (N = 7), which admits an implementation of a collection of arithmetic qubits, and also demonstrates a special case of degeneration of the spectrum of the Hamiltonian, resulting from conservation of parity, within the realm of rigged string configurations.

  3. Self-assembly of a nanotube from a black phosphorus nanoribbon on a string of fullerenes at low temperature.

    PubMed

    Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua

    2017-09-13

    A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.

  4. Mechanism of Tennis Racket Spin Performance

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko

    Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.

  5. TISK 1.0: An easy-to-use Python implementation of the time-invariant string kernel model of spoken word recognition.

    PubMed

    You, Heejo; Magnuson, James S

    2018-06-01

    This article describes a new Python distribution of TISK, the time-invariant string kernel model of spoken word recognition (Hannagan et al. in Frontiers in Psychology, 4, 563, 2013). TISK is an interactive-activation model similar to the TRACE model (McClelland & Elman in Cognitive Psychology, 18, 1-86, 1986), but TISK replaces most of TRACE's reduplicated, time-specific nodes with theoretically motivated time-invariant, open-diphone nodes. We discuss the utility of computational models as theory development tools, the relative merits of TISK as compared to other models, and the ways in which researchers might use this implementation to guide their own research and theory development. We describe a TISK model that includes features that facilitate in-line graphing of simulation results, integration with standard Python data formats, and graph and data export. The distribution can be downloaded from https://github.com/maglab-uconn/TISK1.0 .

  6. Two Studies of Pitch in String Instrument Vibrato: Perception and Pitch Matching Responses of University and High School String Players

    ERIC Educational Resources Information Center

    Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.

    2014-01-01

    We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…

  7. Current balancing for battery strings

    DOEpatents

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  8. Comparison of modeled and experimental PV array temperature profiles for accurate interpretation of module performance and degradation

    NASA Astrophysics Data System (ADS)

    Elwood, Teri; Simmons-Potter, Kelly

    2017-08-01

    Quantification of the effect of temperature on photovoltaic (PV) module efficiency is vital to the correct interpretation of PV module performance under varied environmental conditions. However, previous work has demonstrated that PV module arrays in the field are subject to significant location-based temperature variations associated with, for example, local heating/cooling and array edge effects. Such thermal non-uniformity can potentially lead to under-prediction or over-prediction of PV array performance due to an incorrect interpretation of individual module temperature de-rating. In the current work, a simulated method for modeling the thermal profile of an extended PV array has been investigated through extensive computational modeling utilizing ANSYS, a high-performance computational fluid dynamics (CFD) software tool. Using the local wind speed as an input, simulations were run to determine the velocity at particular points along modular strings corresponding to the locations of temperature sensors along strings in the field. The point velocities were utilized along with laminar flow theories in order to calculate Nusselt's number for each point. These calculations produced a heat flux profile which, when combined with local thermal and solar radiation profiles, were used as inputs in an ANSYS Thermal Transient model that generated a solar string operating temperature profile. A comparison of the data collected during field testing, and the data fabricated by ANSYS simulations, will be discussed in order to authenticate the accuracy of the model.

  9. A genetically-engineered von Willebrand disease type 2B mouse model displays defects in hemostasis and inflammation.

    PubMed

    Adam, Frédéric; Casari, Caterina; Prévost, Nicolas; Kauskot, Alexandre; Loubière, Cécile; Legendre, Paulette; Repérant, Christelle; Baruch, Dominique; Rosa, Jean-Philippe; Bryckaert, Marijke; de Groot, Philip G; Christophe, Olivier D; Lenting, Peter J; Denis, Cécile V

    2016-05-23

    von Willebrand disease (VWD)-type 2B is characterized by gain-of-function mutations in the von Willebrand factor (VWF) A1-domain, leading to increased affinity for its platelet-receptor, glycoprotein Ibα. We engineered the first knock-in (KI) murine model for VWD-type 2B by introducing the p.V1316M mutation in murine VWF. Homozygous KI-mice replicated human VWD-type 2B with macrothrombocytopenia (platelet counts reduced by 55%, platelet volume increased by 44%), circulating platelet-aggregates and a severe bleeding tendency. Also, vessel occlusion was deficient in the FeCl3-induced thrombosis model. Platelet aggregation induced by thrombin or collagen was defective for KI-mice at all doses. KI-mice manifested a loss of high molecular weight multimers and increased multimer degradation. In a model of VWF-string formation, the number of platelets/string and string-lifetime were surprisingly enhanced in KI-mice, suggesting that proteolysis of VWF/p.V1316M is differentially regulated in the circulation versus the endothelial surface. Furthermore, we observed increased leukocyte recruitment during an inflammatory response induced by the reverse passive Arthus reaction. This points to an active role of VWF/p.V1316M in the exfiltration of leukocytes under inflammatory conditions. In conclusion, our genetically-engineered VWD-type 2B mice represent an original model to study the consequences of spontaneous VWF-platelet interactions and the physiopathology of this human disease.

  10. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    PubMed

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  11. New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro

    2018-03-01

    We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.

  12. Penrose limits and spin chains in the GJV/CS-SYM duality

    NASA Astrophysics Data System (ADS)

    Araujo, Thiago; Itsios, Georgios; Nastase, Horatiu; Colgáin, Eoin Ó.

    2017-12-01

    We examine Penrose limits of the duality proposed by Guarino, Jafferis and Varela between a type IIA massive background of the type of a warped, squashed AdS 4 × S 6, and a 2+1 dimensional IR fixed point of N=8 super Yang-Mills deformed by Chern-Simons terms to N=2 supersymmetry. One type of Penrose limit for closed strings corresponds to a large charge closed spin chain, and another, for open strings on giant graviton D-branes, corresponds to an open spin chain on sub-determinant operators. For the first limit, we find that like in the ABJM case, there are functions f a ( λ) that interpolate between the perturbative and nonperturbative (string) regions for the magnon energy. For the second, we are unable to match the gravity result with the expected field theory result, making this model more interesting than ones with more supersymmetry.

  13. Thermal distributions of first, second and third quantization

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-05-01

    We treat first quantized string theory as two-dimensional gravity plus matter. This allows us to compute the two-dimensional density of one string states by the method of Darwin and Fowler. One can then use second quantized methods to form a grand microcanonical ensemble in which one can compute the density of multistring states of arbitrary momentum and mass. It is argued that modelling an elementary particle as a d-1-dimensional object whose internal degrees of freedom are described by a massless d-dimensional gas yields a density of internal states given by σ d(m)∼m -aexp((bm) {2(d-1)}/{d}) . This indicates that these objects cannot be in thermal equilibrium at any temperature unless d⩽2; that is for a string or a particle. Finally, we discuss the application of the above ideas to four-dimensional gravity and introduce an ensemble of multiuniverse states parameterized by second quantized canonical momenta and particle number.

  14. T-duality and α'-corrections

    NASA Astrophysics Data System (ADS)

    Marqués, Diego; Nuñez, Carmen A.

    2015-10-01

    We construct an O( d, d) invariant universal formulation of the first-order α'-corrections of the string effective actions involving the dilaton, metric and two-form fields. Two free parameters interpolate between four-derivative terms that are even and odd with respect to a Z 2-parity transformation that changes the sign of the two-form field. The Z 2-symmetric model reproduces the closed bosonic string, and the heterotic string effective action is obtained through a Z 2-parity-breaking choice of parameters. The theory is an extension of the generalized frame formulation of Double Field Theory, in which the gauge transformations are deformed by a first-order generalized Green-Schwarz transformation. This deformation defines a duality covariant gauge principle that requires and fixes the four-derivative terms. We discuss the O( d, d) structure of the theory and the (non-)covariance of the required field redefinitions.

  15. Dissociating Medial Temporal and Striatal Memory Systems With a Same/Different Matching Task: Evidence for Two Neural Systems in Human Recognition.

    PubMed

    Sinha, Neha; Glass, Arnold Lewis

    2017-01-01

    The medial temporal lobe and striatum have both been implicated as brain substrates of memory and learning. Here, we show dissociation between these two memory systems using a same/different matching task, in which subjects judged whether four-letter strings were the same or different. Different RT was determined by the left-to-right location of the first letter different between the study and test string, consistent with a left-to-right comparison of the study and test strings, terminating when a difference was found. This comparison process results in same responses being slower than different responses. Nevertheless, same responses were faster than different responses. Same responses were associated with hippocampus activation. Different responses were associated with both caudate and hippocampus activation. These findings are consistent with the dual-system hypothesis of mammalian memory and extend the model to human visual recognition.

  16. Quantum no-scale regimes in string theory

    NASA Astrophysics Data System (ADS)

    Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé

    2018-05-01

    We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.

  17. Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Komargodski, Zohar; Sever, Amit; Zhiboedov, Alexander

    2017-10-01

    We consider weakly coupled theories of massive higher-spin particles. This class of models includes, for instance, tree-level String Theory and Large-N Yang-Mills theory. The S-matrix in such theories is a meromorphic function obeying unitarity and crossing symmetry. We discuss the (unphysical) regime s, t ≫ 1, in which we expect the amplitude to be universal and exponentially large. We develop methods to study this regime and show that the amplitude necessarily coincides with the Veneziano amplitude there. In particular, this implies that the leading Regge trajectory, j( t), is asymptotically linear in Yang-Mills theory. Further, our analysis shows that any such theory of higherspin particles has stringy excitations and infinitely many asymptotically parallel subleading trajectories. More generally, we argue that, under some assumptions, any theory with at least one higher-spin particle must have strings.

  18. AdS5×S(5) mirror model as a string sigma model.

    PubMed

    Arutyunov, Gleb; van Tongeren, Stijn J

    2014-12-31

    Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally.

  19. Fibre inflation and α-attractors

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke

    2018-02-01

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  20. Ghost vertices for the bosonic string using the group-theoretic approach to string theory

    NASA Astrophysics Data System (ADS)

    Freeman, M. D.; West, P.

    1988-04-01

    The N-string tree-level scattering vertices for the bosonic string are extended to include anticommuting (ghost) oscillators. These vertices behave correctly under the action of the BRST charge Q and reproduce the known results for the scattering of physical states. This work is an application of the group-theoretic approach to string theory. Permanent address: Mathematics Department, King's College, Strand, London WC2R 2LS, UK.

Top