Sample records for atomically rough surfaces

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less

  2. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    PubMed Central

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  3. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  4. Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters

    NASA Astrophysics Data System (ADS)

    Dillinger, Sebastian; Mohrbach, Jennifer; Niedner-Schatteburg, Gereon

    2017-11-01

    We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5-20, m = 1 - mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.

  5. Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee

    2016-08-07

    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less

  6. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    NASA Astrophysics Data System (ADS)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  7. Surface roughness analysis of fiber post conditioning processes.

    PubMed

    Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R

    2008-02-01

    The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.

  8. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy

    Treesearch

    Rebecca Snell; Leslie H. Groom; Timothy G. Rials

    2001-01-01

    Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...

  9. Surface Roughness of Various Diamond-Like Carbon Films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Liu, Yanhong; Chen, Baoxiang

    2006-11-01

    Atomic force microscopy is used to estimate and compare the surface morphology of hydrogenated and hydrogen-free diamond-like carbon (DLC) films. The films were prepared by using DC magnetron sputtering of a graphite target, pulsed cathodic carbon arcs, electron cyclotron resonance (ECR), plasma source ion implantation and dielectric barrier discharge (DBD). The difference in the surface structure is presented for each method of deposition. The influences of various discharge parameters on the film surface properties are discussed based upon the experimental results. The coalescence process via the diffusion of adsorbed carbon species is responsible for the formation of hydrogen-free DLC films with rough surfaces. The films with surface roughness at an atomic level can be deposited by energetic ion impacts in a highly ionized carbon plasma. The dangling bonds created by atomic hydrogen lead to the uniform growth of hydrocarbon species at the a-C:H film surfaces of the ECR or DBD plasmas.

  10. The effect of different chemical agents on human enamel: an atomic force and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela

    2010-12-01

    PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.

  11. The Development of Surface Roughness and Implications for Cellular Attachment in Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep

    2001-01-01

    The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.

  12. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    PubMed

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  13. The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl-Tomlinson model and the simulation of vibration-induced friction reduction.

    PubMed

    van Spengen, W Merlijn; Turq, Viviane; Frenken, Joost W M

    2010-01-01

    We have replaced the periodic Prandtl-Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.

  14. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.

    PubMed

    Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur

    2014-01-01

    Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.

  15. Poly-Gaussian model of randomly rough surface in rarefied gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksenova, Olga A.; Khalidov, Iskander A.

    2014-12-09

    Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less

  16. Graphene thickness dependent adhesion force and its correlation to surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112

    2014-04-28

    In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less

  17. Comparison of four methods of surface roughness assessment of corneal stromal bed after lamellar cutting

    PubMed Central

    Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles

    2017-01-01

    Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095

  18. Pt thermal atomic layer deposition for silicon x-ray micropore optics.

    PubMed

    Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa

    2018-04-20

    We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10  nm and Pt ∼20  nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2  nm rms to 2.2±0.2  nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

  19. Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs

    NASA Astrophysics Data System (ADS)

    Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro

    2018-04-01

    The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.

  20. Ripple formation on atomically flat cleaved Si surface with roughness of 0.038 nm rms by low-energy Ar{sup 1+} ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.

    The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less

  1. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  2. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Lenczewski, Mary; Demko, Rikako

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.

  3. Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy.

    PubMed

    Choi, Samjin; Lee, Seung Jun; Shin, Jae-Ho; Cheong, Youjin; Lee, Hui-Jae; Paek, Joo Hee; Kim, Jae Sik; Jin, Kyung-Hyun; Park, Hun-Kuk

    2011-01-01

    This study examined the surface nanostructures of three orbital implants: nonporous poly(methyl methacrylate) (PMMA), porous aluminum oxide and porous polyethylene. The morphological characteristics of the orbital implants surfaces were observed by atomic force microscopy (AFM). The AFM topography, phase shift and deflection images of the intact implant samples were obtained. The surface of the nonporous PMMA implant showed severe scratches and debris. The surface of the aluminum oxide implant showed a porous structure with varying densities and sizes. The PMMA implant showed nodule nanostructures, 215.56 ± 52.34 nm in size, and the aluminum oxide implant showed crystal structures, 730.22 ± 341.02 nm in size. The nonporous PMMA implant showed the lowest roughness compared with other implant biomaterials, followed by the porous aluminum oxide implant. The porous polyethylene implant showed the highest roughness and severe surface irregularities. Overall, the surface roughness of orbital implants might be associated with the rate of complications and cell adhesion. Copyright © 2011 Wiley Periodicals, Inc.

  4. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    NASA Astrophysics Data System (ADS)

    Felix, T.; Cassini, F. A.; Benetoli, L. O. B.; Dotto, M. E. R.; Debacher, N. A.

    2017-05-01

    The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, RRMS (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91(PET) and 0.88(PEEK), β = 0.25(PET) and z = 3,64(PET).

  5. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  6. Friction of atomically stepped surfaces

    NASA Astrophysics Data System (ADS)

    Dikken, R. J.; Thijsse, B. J.; Nicola, L.

    2017-03-01

    The friction behavior of atomically stepped metal surfaces under contact loading is studied using molecular dynamics simulations. While real rough metal surfaces involve roughness at multiple length scales, the focus of this paper is on understanding friction of the smallest scale of roughness: atomic steps. To this end, periodic stepped Al surfaces with different step geometry are brought into contact and sheared at room temperature. Contact stress that continuously tries to build up during loading, is released with fluctuating stress drops during sliding, according to the typical stick-slip behavior. Stress release occurs not only through local slip, but also by means of step motion. The steps move along the contact, concurrently resulting in normal migration of the contact. The direction of migration depends on the sign of the step, i.e., its orientation with respect to the shearing direction. If the steps are of equal sign, there is a net migration of the entire contact accompanied by significant vacancy generation at room temperature. The stick-slip behavior of the stepped contacts is found to have all the characteristic of a self-organized critical state, with statistics dictated by step density. For the studied step geometries, frictional sliding is found to involve significant atomic rearrangement through which the contact roughness is drastically changed. This leads for certain step configurations to a marked transition from jerky sliding motion to smooth sliding, making the final friction stress approximately similar to that of a flat contact.

  7. Surface Modification of Plastic Substrates Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.

  8. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics.

    PubMed

    Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V

    2014-08-25

    The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.

  9. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  10. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less

  11. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    PubMed

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  12. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  13. Effect of multiple autoclave cycles on the surface roughness of HyFlex CM and HyFlex EDM files: an atomic force microscopy study.

    PubMed

    Yılmaz, K; Uslu, G; Özyürek, T

    2018-02-13

    To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P < 0.05). The highest Ra and RMS values were observed in the HyFlex CM and HyFlex EDM files that were subjected to 10 cycles of autoclave sterilization (P < 0.05). The surface roughness values of the HyFlex CM group showed a significant increase after ten autoclave cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P < 0.05). Although the initial surface roughness values of the HyFlex EDM files were lower than those of the HyFlex CM files, the surface roughness values of the EDM files showed a statistically significant increase after 5 cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.

  14. Near atomically smooth alkali antimonide photocathode thin films

    DOE PAGES

    Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...

    2017-01-24

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  15. Near atomically smooth alkali antimonide photocathode thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Jun; Karkare, Siddharth; Nasiatka, James

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  16. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

    PubMed

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  17. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  18. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.

    PubMed

    Ding, Yong; Xu, Sheng; Zhang, Yue; Wang, Aurelia C; Wang, Melissa H; Xiu, Yonghao; Wong, Ching Ping; Wang, Zhong Lin

    2008-09-03

    Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30 nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.

  19. Wetting properties of molecularly rough surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less

  20. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    NASA Astrophysics Data System (ADS)

    Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju

    2017-01-01

    In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.

  1. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  2. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.

    PubMed

    D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa

    2012-09-01

    To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P < .05). The Ra, Rms, and Mh values were expressed as the mean ± standard deviation. Among as-received archwires, the Stainless Steel (Ra  =  36.6 ± 5.8; Rms  =  48 ± 7.7; Mh  =  328.1 ± 64) archwire was less rough than the others (ANOVA, P < .05). The Sentalloy High Aesthetic was the roughest (Ra  =  133.5 ± 10.8; Rms  =  165.8 ± 9.8; Mh  =  949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.

  3. An in vitro atomic force microscopic study of commercially available dental luting materials.

    PubMed

    Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic

    2013-09-01

    The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P < 0.05) which was in line with the results of Bearing ratio analysis. On the other side, PSD analysis showed that zinc phosphate cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.

  4. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    PubMed Central

    Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.

    2017-01-01

    The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990

  5. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Banks, B. A.; Lenczewski, M.; Demko, R.

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.

  6. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  7. Molecular dynamics analysis of a equilibrium nanoscale droplet on a solid surface with periodic roughness

    NASA Astrophysics Data System (ADS)

    Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka

    2016-11-01

    Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.

  8. Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization

    PubMed Central

    Ewais, Ola H.; Al Abbassy, Fayza; Ghoneim, Mona M.; Aboushelib, Moustafa N.

    2014-01-01

    Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE), fusion sputtering (FS), and low pressure particle abrasion (LPPA). The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness) received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α = 0.05). Results. There were significant differences between all groups regarding surface roughness (F = 1678, P < 0.001), porosity (F = 3278, P < 0.001), and hardness (F = 1106.158, P < 0.001). Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered. PMID:25349610

  9. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.

    2015-09-01

    Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.

  10. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  11. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    PubMed

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  12. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948

  13. Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Baker, S L; Robinson, J C

    2006-02-22

    The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less

  14. Surface Treatment of Plastic Substrates using Atomic Hydrogen Generated on Heated Tungsten Wire at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2007-06-01

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. For the substrate, surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. AHA was useful for pretreatment before film deposition on a plastic substrate because the changes in surface state relate to adhesion improvement. It is concluded that this method is a promising technique for preparing high-performance plastic substrates at low temperatures.

  15. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  16. Carbon nanotube oscillator surface profiling device and method of use

    DOEpatents

    Popescu, Adrian [Tampa, FL; Woods, Lilia M [Tampa, FL; Bondarev, Igor V [Fuquay Varina, NC

    2011-11-15

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  17. Rough Interface Effects on N-S Proximity-Contact Systems

    NASA Astrophysics Data System (ADS)

    Nagato, Yasushi; Nagai, Katsuhiko

    2003-03-01

    We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic dx2-y2 superconductor and calculate the self-consistent pair potential and the density of states at the interface.

  18. Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights

    NASA Astrophysics Data System (ADS)

    Rasmuson, J. A.; Johnson, W. P.

    2017-12-01

    A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.

  19. Novel MRF fluid for ultra-low roughness optical surfaces

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; McFee, Charles

    2014-08-01

    Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.

  20. Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength

    NASA Astrophysics Data System (ADS)

    Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.

    2017-09-01

    Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as λ-0.25+/-0.05. Nanoindentation tests on the Corona Heights sample and another fault sample whose topography was previously measured with AFM (the Yair Fault) reveal a scale-dependent yield stress with power-law exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08, respectively. These values are within one to two standard deviations of the predicted value, and provide experimental evidence that fault roughness is controlled by intrinsic material properties, which produces a characteristic surface geometry.

  1. Structural characterization of bulk GaN crystals grown under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Zuzanna; Kisielowski, C.; Ruvimov, S.; Chen, Y.; Washburn, J.; Grzegory, I.; Bockowski, M.; Jun, J.; Porowski, S.

    1996-09-01

    This paper describes TEM characterization of bulk GaN crystals grown at 1500-1800Kin the form of plates from a solution of atomic nitrogen in liquid gallium under high nitrogen pressure (up to 20 kbars). The x-ray rocking curves for these crystals were in the range of 20-30 arc-sec. The plate thickness along the c axis was about 100 times smaller than the nonpolar growth directions. A substantial difference in material quality was observed on the opposite sides of the plates normal to the c direction. On one side the surface was atomically flat, while on the other side the surface was rough, with pyramidal features up to 100 nm high. The polarity of the crystals was determined using convergent-beam electron diffraction. The results showed that, regarding the long bond between Ga and N along the c-axis, Ga atoms were found to be closer to the flat side of the crystal, while N atoms were found to be closer to the rough side. Near the rough side, within 1/10 to 1/4 of the plate thickness, there was a high density of planar defects (stacking faults and dislocation loops decorated by Ga/void precipitates). A model explaining the defect formation is proposed.

  2. Fractal characterization and wettability of ion treated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.

    2017-02-01

    Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.

  3. Surface Modification of Poly(ethylene naphthalate) Substrate and Its Effect on SiNx Film Deposition by Atomic Hydrogen Annealing

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2007-07-01

    The surface modification of a plastic substrate by atomic hydrogen annealing (AHA) was investigated for flexible displays. In this method, the plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. Both surface roughness and contact angle of water droplet on poly(ethylene naphthalate) (PEN) substrates were increased by AHA. The surface of a PEN substrate was reduced by atomic hydrogen without optical transmittance degradation. In addition, the properties of a silicon nitride (SiNx) film deposited on a PEN substrate were changed by AHA, and the adhesion between the SiNx film and the PEN substrate was excellent for application to flexible displays.

  4. The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation

    PubMed Central

    Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar

    2015-01-01

    Aims: To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. Materials and Methods: The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. Results: The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. Conclusions: The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse. PMID:26069408

  5. The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation.

    PubMed

    Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar

    2015-01-01

    To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse.

  6. Scaling law analysis of paraffin thin films on different surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotto, M. E. R.; Camargo, S. S. Jr.

    2010-01-15

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substratesmore » present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.« less

  7. Contact area of rough spheres: Large scale simulations and simple scaling laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu; Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218; Robbins, Mark O., E-mail: mr@pha.jhu.edu

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the wholemore » range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.« less

  8. Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakaya, Merve, E-mail: mervegunnar@iyte.edu.tr; Bilgilisoy, Elif; Arı, Ozan

    Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, or phase angle, ψ) and atomic force microscopy (AFM) roughness. and ψ values at 3.31 eV, which corresponds to E{sub 1}more » critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data ( and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.« less

  9. Preferential incorporation of substitutional nitrogen near the atomic step edges in diluted nitride alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornet, C.; Nguyen Thanh, T.; Almosni, S.

    We have investigated the influence of the surface roughness on nitrogen incorporation during the molecular beam epitaxy of diluted nitrides, independently of the other growth parameters. GaPN/GaP layers grown simultaneously on surfaces displaying different roughnesses reveal a large difference in nitrogen incorporation despite the same growth temperature and growth rate. The same difference is found on quasi-lattice-matched GaAsPN demonstrating that the phenomenon is not related to any strain-induced mechanisms. The tendency is clearly confirmed when varying the growth conditions. As a direct consequence, the incorporation of substitutional nitrogen near the atomic step edges is found to be 6.7 times moremore » probable than the in-plane nitrogen incorporation. The formation of N-N{sub i} clusters and their stability on the surface is discussed.« less

  10. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  11. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    PubMed

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  12. The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Dever, Therese M.; Quinn, William F.

    1990-01-01

    Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.

  13. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.

  14. Surface kinetic roughening caused by dental erosion: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco

    2008-05-01

    Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.

  15. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory.

    PubMed

    Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

  16. Wire Roughness Assessment of 0.016'' × 0.022'' the Technique Lingual Orthodontics.

    PubMed

    Facchini, Fátima Mm; Filho, Mario Vedovello; Vedovello, Silvia As; Cotrim, Flávio A; Cotrim-Ferreira, Andrຟa; Tubel, Carlos Am

    2017-04-01

    To evaluate the difference in surface roughness of stainless steel archwires of different commercial brands used in lingual orthodontics. Precontoured arches measuring 0.016'' × 0.022'' were selected of the following brands: Tecnident, Adenta, G&H, Highland Metals Inc., Ormco, Incognito, and Ebraces. Quantitative evaluation of the surface roughness of archwires was performed by means of an atomic force microscope in contact mode. Three surface readouts were taken of each sample, analyzing areas of 20 × 20 μm. Each scan of the samples produced a readout of 512 lines, generating three-dimensional images of the wires. The analysis of variance statistical test was applied to prove significant variables (p > 0.05), with H 0 being rejected and H 1 accepted. The Incognito brand showed the lowest surface roughness. The archwires of brands Adenta, Tecnident, Highland, and Ormco showed similar values among them, and all close to these obtained by the Incognito brand. The archwires of the Ebraces brand showed the highest surface roughness, with values being close to those of the G&H Brand. There was a statistical difference in surface roughness of orthodontic archwires among the brands studied. Companies should pay attention to the quality control of their materials, as these may directly affect the quality of orthodontic treatment.

  17. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  18. Effect of strain on the electron effective mobility in biaxially strained silicon inversion layers: An experimental and theoretical analysis via atomic force microscopy measurements and Kubo-Greenwood mobility calculations

    NASA Astrophysics Data System (ADS)

    Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François

    2008-03-01

    Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.

  19. Effect of different surface treatments on roughness of IPS Empress 2 ceramic.

    PubMed

    Kara, Haluk Baris; Dilber, Erhan; Koc, Ozlem; Ozturk, A Nilgun; Bulbul, Mehmet

    2012-03-01

    The aim of this study was to evaluate the influence of different surface treatments (air abrasion, acid etching, laser irradiation) on the surface roughness of a lithium-disilicate-based core ceramic. A total of 40 discs of lithium disilicate-based core ceramic (IPS Empress 2; Ivoclar Vivadent, Schaan, Liechtenstein) were prepared (10 mm in diameter and 1 mm in thickness) according to the manufacturer's instructions. Specimens were divided into four groups (n = 10), and the following treatments were applied: air abrasion with alumina particles (50 μm), acid etching with 5% hydrofluoric acid, Nd:YAG laser irradiation (1 mm distance, 100 mJ, 20 Hz, 2 W) and Er:YAG laser irradiation (1 mm distance, 500 mJ, 20 Hz, 10 W). Following determination of surface roughness (R(a)) by profilometry, specimens were examined with atomic force microscopy. The data were analysed by one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). One-way ANOVA indicated that surface roughness following air abrasion was significantly different from the surface roughness following laser irradiation and acid etching (P < 0.001). The Tukey HSD test indicated that the air abrasion group had a significantly higher mean value of roughness (P < 0.05) than the other groups. No significant difference was found between the acid etching and laser irradiation (both Er:YAG and Nd:YAG) groups (P > 0.05). Air abrasion increased surface roughness of lithium disilicate-based core ceramic surfaces more effectively than acid-etching and laser irradiation.

  20. Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions

    NASA Technical Reports Server (NTRS)

    King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.

    1993-01-01

    We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.

  1. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy

    NASA Astrophysics Data System (ADS)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-05-01

    The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.

  2. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment

    NASA Astrophysics Data System (ADS)

    Zahid, A.; Dai, B.; Hong, R.; Zhang, D.

    2017-10-01

    In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.

  3. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  4. Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Maurya, Sanjeev K.; Srinivasan, Vyas; Khare, Krishnacharya; Khandekar, Sameer

    2017-06-01

    We present the effect of 0.5 keV Ar+ beam irradiation on the wetting properties of metallic thin films. Observations reveal a transition from hydrophilic to hydrophobic nature at higher beam fluences which can be attributed to a reduction in net surface free energy. In this low-energy regime, ion beams do not induce significant surface roughness and chemical heterogeneity. However, they cause implantation of atomic impurities in the near surface region of the target and thus form a heterogeneous system at atomic length scales. Interestingly, the presence of implanted Ar atoms in the near surface region modifies the dispersive intermolecular interaction near the surface but induces no chemical modification due to their inert nature. On this basis, we have developed a theoretical model consistent with the experimental observations that reproduces the effective Hamaker constant with a reasonable accuracy.

  5. Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.

    PubMed

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja

    2018-06-26

    nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr

    Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that themore » Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.« less

  7. Formation of thin film like assembly of exfoliated C3N4 nanoflakes by solvent non-evaporative method using centrifuge

    NASA Astrophysics Data System (ADS)

    Tejasvi, Ravi; Basu, Suddhasatwa

    2017-12-01

    A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.

  8. Roughness-Induced Magnetic Domain in Fe Thin Films on Land-and-Groove Structures Studied by Spin-Polarized Secondary Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu

    2003-10-01

    The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.

  9. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, Regina; Baker, Sherry L.; Windt, David L.

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less

  10. Multiscaling behavior of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Jannesar, M.; Jamali, T.; Sadeghi, A.; Movahed, S. M. S.; Fesler, G.; Meyer, E.; Khoshnevisan, B.; Jafari, G. R.

    2017-06-01

    The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H =0.61 ±0.02 at a 1 σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h (q ) , on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.

  11. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    NASA Astrophysics Data System (ADS)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  12. Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.

    2018-04-01

    In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.

  13. Visual and digital comparative tooth colour assessment methods and atomic force microscopy surface roughness.

    PubMed

    Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J

    2013-10-01

    This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P < 0.05. Atomic force micros copy was used to examine treated ename surfaces and establish surface roughness. Visual tooth colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies.

  14. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  15. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Astrophysics Data System (ADS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-04-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  16. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    PubMed

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P < 0.05). The pulse repetition rate of the Er:YAG laser did not affect roughness of dental enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  17. Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2018-03-01

    One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.

  18. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    PubMed

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  19. A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.

    PubMed

    Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk

    2010-10-01

    In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.

  20. Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol

    PubMed Central

    Munroe, Norman; McGoron, Anthony

    2012-01-01

    In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200

  1. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    NASA Astrophysics Data System (ADS)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  2. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates.

    PubMed

    Shahrousvand, Mohsen; Sadeghi, Gity Mir Mohamad; Shahrousvand, Ehsan; Ghollasi, Marzieh; Salimi, Ali

    2017-08-01

    All of the cells' interactions are done through their surfaces. Evaluation of surface physicochemical scaffolds along with other factors is important and determines the fate of stem cells. In this work, biodegradable and biocompatible polyester/polyether based polyurethanes (PUs) were synthesized by polycaprolactone diol (PCL) and poly (tetra methylene ether) glycol (PTMEG) as the soft segment. To assess better the impact of surface parameters such as stiffness and roughness effects on osteogenic differentiation of the human mesenchymal stem cell (hMSC), the dimension effect of substrates was eliminated and two-dimensional membranes were produced by synthesized polyurethane. Surface and bulk properties of prepared 2D membranes such as surface chemistry, roughness, stiffness and tensile behavior were evaluated by Attenuated total reflectance Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM) and tensile behavior. The prepared 2D PU films had suitable hydrophilicity, biodegradability, water absorption, surface roughness and bulk strength. The hMSCs showed greater osteogenesis expression in PU substrates with more roughness and stiffness than others. The results demonstrated that surface parameters along with other differentiation cues have a synergistic effect on stem cells fates. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of Si wafer thinning processes on (sub)surface defects

    NASA Astrophysics Data System (ADS)

    Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira

    2017-05-01

    Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.

  4. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  5. Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces.

    PubMed

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; Song, Hwangjun

    2010-11-01

    This study investigated the surface characteristics and in vitro osteoconductivity of a titanium (Ti) surface incorporated with the magnesium ions (Mg) produced by hydrothermal treatment for future application as an endosseous implant surface. Mg-incorporated Ti oxide surfaces were produced by hydrothermal treatment using Mg-containing solution on two different microstructured surfaces--abraded minimally rough (Ma) or grit-blasted moderately rough (RBM) samples. The surface characteristics were evaluated using scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). MC3T3-E1 pre-osteoblast cell attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Ma, RBM, Mg-incorporated Ma (Mg), and Mg-incorporated grit-blasted (RBM/Mg) Ti surfaces were evaluated. Hydrothermal treatment produced an Mg-incorporated Ti oxide layer with nanoporous surface structures. Mg-incorporated surfaces showed surface morphologies and surface roughness values almost identical to those of untreated smooth or micro-rough surfaces at the micron scale. ICP-AES analysis showed Mg ions released from treated surfaces into the solution. Mg incorporation significantly increased cellular attachment (P=0 at 0.5 h, P=0.01 at 1 h) on smooth surfaces, but no differences were found on micro-rough surfaces. Mg incorporation further increased ALP activity in cells grown on both smooth and micro-rough surfaces at 7 and 14 days of culture (P=0). Real-time polymerase chain reaction analysis showed higher mRNA expressions of the osteoblast transcription factor gene (Dlx5), various integrins, and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on micro-rough (RBM) and Mg-incorporated (Mg and RBM/Mg) surfaces than those on Ma surfaces. Mg incorporation further increased the mRNA expressions of key osteoblast genes and integrins (α1, α2, α5, and β1) in cells grown on both the smooth and the micro-rough surfaces. These results indicate that an Mg-incorporated nanoporous Ti oxide surface produced by hydrothermal treatment may improve implant bone healing by enhancing the attachment and differentiation of osteoblastic cells. © 2010 John Wiley & Sons A/S.

  6. Compressibility of porous TiO2 nanoparticle coating on paperboard

    PubMed Central

    2013-01-01

    Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS 61.46.-w; 68.08.Bc; 81.07.-b PMID:24160373

  7. Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study.

    PubMed

    Świetlicka, Izabela; Muszyński, Siemowit; Tomaszewska, Ewa; Dobrowolski, Piotr; Kwaśniewska, Anita; Świetlicki, Michał; Skic, Anna; Gołacki, Krzysztof

    2016-10-01

    The aim of this research was to check the effect of the prenatally administered β-hydroxy β-methylbutyrate (HMB) on the development of enamel surface of the spiny mice offspring. The spiny mice dams were randomly assigned into three groups: control group (not supplemented with HMB) and two experimental groups in which powdered HMB was given at the daily dosage of 0.2g/kg of body weight (group I) and 0.02g/kg of body weight (group II) during the last period of gestation. Newborn pups were euthanized by CO 2 inhalation. The morphology of incisor teeth was analysed using atomic force microscopy (AFM) in semi-contact mode in the height, magnitude and phase domains. Height images became a basis for determination of surface roughness parameters. Conducted study indicated that maternal HMB administration markedly influences enamel development. Enamel of offspring's teeth in both experimental groups was characterized by significantly smaller values of indices describing surface roughness and profile. HMB supplementation influenced the calculated parameters regardless of the diet type and offspring sex, however higher dose of HMB caused stronger changes in enamel surface's physical properties and could be observed in higher intensity in the male group. HMB administration caused reduction in the irregularities of enamel surface, thereby possibly reducing the probability of bacteria adhesion and caries development. These observations may serve to improve nutrition and supplementation of animals and could be a lead for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterizing low-Z erosion and deposition in the DIII-D divertor using aluminum

    DOE PAGES

    Chrobak, Chris P.; Doerner, R. P.; Stangeby, Peter C.; ...

    2017-01-28

    Here, we present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ~100nm thick were applied to ideal (smooth) and realistic (rough) surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition and re-erosion in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non spectroscopic measurements. The gross Al erosion yield estimated from both Hemore » and D plasma exposures was ~40-70% of the expected erosion yield based on theoretical physical sputtering yields. However, the multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration, was found to be influenced by the surface roughness and/or porosity. On rough surfaces, the fraction of the eroded Al coating found redeposited outside the original coating area was 25x higher than on smooth surfaces. The amount of Al found redeposited on the rough substrate was in fact proportional to the net eroded Al, suggesting an accumulation of deposited Al in surface pores and other areas shadowed from re-erosion. In order to determine the fraction and distribution of eroded Al returning to the surface, a simple model for erosion and redeposition was developed and fitted to the measurements. The model presented here reproduces many of the observed results in these experiments by using theoretically calculated sputtering yields, calculating surface composition changes and erosion rates in time, assuming a spatial distribution function for redepositing atoms, and accounting for deposit trapping in pores. The results of the model fits reveal that total redeposition fraction increases with higher plasma temperature (~30% for 15-18eV plasmas, and ~45% for 25-30eV plasmas), and that 50% of the atoms redepositing on rough surfaces accumulated in shadowed areas.« less

  9. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    PubMed

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E; Kozioziemski, B; Moody, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less

  11. Nanotribological effects of hair care products and environment on human hair using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Latorre, Carmen; Bhushan, Bharat

    2005-07-01

    Tribological properties are useful in the study of human hair and other biological materials. Major sources of investigation for conditioner treated hair includes localization of conditioner, mechanisms related to changes in surface roughness, friction, and adhesion on the nanoscale due to conditioner agents, and how the products change the microstructure of the cuticle. The paper presents nanotribological studies investigating surface roughness, friction, and adhesion using atomic force/friction force microscopy (AFM/FFM). Test samples include virgin and chemically damaged hair, both with and without commercial conditioner treatment, as well as chemically damaged hair with experimental conditioner treatments. Friction force mapping provides insight into the localized change in friction caused by the application of hair care materials. Adhesive force maps to study adhesion on the cuticle surface provide information about localization and distribution of conditioner as well. A discussion is presented on these properties of hair as a function of relative humidity, temperature, durability, and conditioning treatments.

  12. Surface quality of silicon wafer improved by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi

    2014-08-01

    Differing from the traditional pad polishing, hydrodynamic effect polishing (HEP) is non-contact polishing with the wheel floated on the workpiece. A hydrodynamic lubricated film is established between the wheel and the workpiece when the wheel rotates at a certain speed in HEP. Nanoparticles mixed with deionized water are employed as the polishing slurry, and with action of the dynamic pressure, nanoparticles with high chemisorption due to the high specific surface area can easily reacted with the surface atoms forming a linkage with workpiece surface. The surface atoms are dragged away when nanoparticles are transported to separate by the flow shear stress. The development of grand scale integration put extremely high requirements on the surface quality on the silicon wafer with surface roughness at subnanometer and extremely low surface damage. In our experiment a silicon sample was processed by HEP, and the surface topography before and after polishing was observed by the atomic force microscopy. Experiment results show that plastic pits and bumpy structures on the initial surface have been removed away clearly with the removal depth of 140nm by HEP process. The processed surface roughness has been improved from 0.737nm RMS to 0.175nm RMS(10μm×10μm) and the section profile shows peaks of the process surface are almost at the same height. However, the machining ripples on the wheel surface will duplicate on the silicon surface under the action of the hydrodynamic effect. Fluid dynamic simulation demonstrated that the coarse surface on the wheel has greatly influence on the distribution of shear stress and dynamic pressure on the workpiece surface.

  13. Fabrication of transparent superhydrophobic polytetrafluoroethylene coating

    NASA Astrophysics Data System (ADS)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Biris, Alexandru S.

    2018-06-01

    Polytetrafluoroethylene (PTFE) thin films were successfully deposited on glass substrates using pulsed laser deposition, with deposition times ranging from 30 to 120 minutes (min). The surface roughness of the films increased as deposition time increased, with micro/nanoscale roughness developing when deposition time increased over 60 min. This roughness made the surface superhydrophobic, having a contact angle of about 151.6°±1. UV-vis spectroscopic analysis of the PTFE films revealed that they were highly transparent, up to ∼90% in visible and near-infrared ranges. Furthermore, when the deposition time was increased-which increased the films' thickness-the films were able to absorb 80-90% of ultraviolet light in the wavelength range <300 nm. The researchers used an x-ray photoelectron spectrometer to find the chemical and elemental composition of the films' surfaces. Atomic force microscopy was used to determine the effect of surface roughness on the films' hydrophobicity. The fabricated superhydrophobic films have many potential practical uses, from self-cleaning materials to solar cell panel coatings. Additionally, the low dielectric properties of PTFE make the films' ideal for communication antenna coatings and similar applications.

  14. A parametric study of surface roughness and bonding mechanisms of aluminum alloys with epoxies: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Timilsina, Rajendra; Termaath, Stephanie

    The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.

  15. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  16. DOE Award No. FG02-93ER14331 Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartynski, Robert

    We have studyed new aspects of the relationships between nanoscale surface features and heterogeneous catalysis or electrocatalysis. We concentrate on atomically rough and morphologically unstable surfaces of catalytic metal single crystals (Re, Ru, Ir) that undergo nanoscale faceting when interacting with strongly adsorbed species (e.g. O, N, C) at elevated temperatures.

  17. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    PubMed

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  18. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  19. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  20. Cleaning of optical surfaces by capacitively coupled RF discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Nayak, M.

    2014-04-24

    In this paper, we report cleaning of carbon capped molybdenum (Mo) thin film by in-house developed radio frequency (RF) plasma reactor, at different powers and exposure time. Carbon capped Mo films were exposed to oxygen plasma for different durations at three different power settings, at a constant pressure. After each exposure, the thickness of the carbon layer and the roughness of the film were determined by hard x-ray reflectivity measurements. It was observed that most of the carbon film got removed in first 15 minutes exposure. A high density layer formed on top of the Mo film was also observedmore » and it was noted that this layer cannot be removed by successive exposures at different powers. A significant improvement in interface roughness with a slight improvement in top film roughness was observed. The surface roughness of the exposed and unexposed samples was also confirmed by atomic force microscopy measurements.« less

  1. An investigation into the effect of surface roughness of stainless steel on human umbilical vein endothelial cell gene expression.

    PubMed

    McLucas, E; Moran, M T; Rochev, Y; Carroll, W M; Smith, T J

    2006-01-01

    The surface properties of vascular devices dictate the initial postimplantation reactions that occur and thus the efficacy of the implantation procedure. Over the last number of years, a number of different stent designs have emerged and stents are generally polished to a mirror finish during the manufacturing procedure. This study sought to investigate the effect of stainless steel surface roughness on endothelial cell gene expression using an appropriate cell culture in vitro assay system. Stainless steel discs were roughened by shot blasting or polished by mechanical polishing. The surface roughness of the treated and untreated discs was determined by atomic force microscopy (AFM). Cells were seeded on collagen type 1 gels and left to attach for 24 h. Stainless steel discs of varying roughness were then placed in contact with the cells and incubated for 24 h. RNA extractions and quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was then performed to determine the expression levels of candidate genes in the treated cells compared to suitable control cells. E-selectin and vascular cellular adhesion molecule (VCAM-1) were found to be significantly up-regulated in cells incubated with polished and roughened samples, indicating endothelial cell activation and inflammation. This study indicates that the surface roughness of stainless steel is an important surface property in the development of vascular stents.

  2. In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces.

    PubMed

    Valdez-Salas, Benjamin; Beltrán-Partida, Ernesto; Castillo-Uribe, Sandra; Curiel-Álvarez, Mario; Zlatev, Roumen; Stoytcheva, Margarita; Montero-Alpírez, Gisela; Vargas-Osuna, Lidia

    2017-05-18

    It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis ( S. epidermidis ) and Pseudomonas aeruginosa ( P. aeruginosa ) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.

  3. Silica nano-particle super-hydrophobic surfaces: the effects of surface morphology and trapped air pockets on hydrodynamic drainage forces.

    PubMed

    Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R

    2009-01-01

    We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.

  4. Reducing the surface roughness beyond the pulsed-laser-deposition limit.

    PubMed

    Vasco, E; Polop, C; Sacedón, J L

    2009-10-01

    Here, we outline the theoretical fundamentals of a promising growth kinetics of films from the vapor phase, in which pulsed fluxes are combined with temperature transients to enable short-range surface relaxations (e.g., species rearrangements) and to inhibit long-range relaxations (atomic exchange between species). A group of physical techniques (fully pulsed thermal and/or laser depositions) based on this kinetics is developed that can be used to prepare films with roughnesses even lower than those obtained with pulsed-laser deposition, which is the physical vapor-phase deposition technique that has produced the flattest films reported so far.

  5. Fabrication and characterization of optical super-smooth surfaces

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Kratz, Frank; Ringel, Gabriele A.; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.

    1995-08-01

    Intercomparison roughness measurements have been carried out at supersmooth artefacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), the Optical Heterodyne Profiler Z5500 (Zygo), and an Atomic Force Microscope (Park Scientific) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelength for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that are applied superpolishing techniques yield supersmooth artefacts which can be used for more intercomparisons.

  6. Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment.

    PubMed

    Pezzotti, Giuseppe; Saito, Takuma; Padeletti, Giuseppina; Cossari, Pierluigi; Yamamoto, Kengo

    2010-06-01

    The aim of this study was to perform a surface morphology assessment with nanometer scale resolution on femoral heads made of an advanced zirconia toughened alumina (ZTA) composite. Femoral heads were characterized to a degree of statistical accuracy in the as-received state and after exposures up to 100 h in severe vapor-moist environment. Surface screening was made using an atomic force microscope (AFM). Scanning was systematically repeated on portions of surface as large as several tens of micrometers, randomly selected on the head surface, to achieve sufficient statistical reliability without lowering the nanometer-scale spatial resolution of the roughness measurement. No significant difference was found in the recorded values of surface roughness after environmental exposure (at 134 degrees C, under 2 bar), which was always comparable to that of the as-received head. Surface roughness safely lay <10 nm after environmental exposures up to 100 h, which corresponded to an exposure time in vivo of several human lifetimes (i.e., according to an experimentally derived thermal activation energy). In addition, the roughness results were significantly (about one order of magnitude) lower as compared to those recorded on femoral heads made of monolithic zirconia tested under the same conditions. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Surface characterization of nickel titanium orthodontic arch wires

    PubMed Central

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller,more » the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.« less

  9. Wetting Hysteresis at the Molecular Scale

    NASA Technical Reports Server (NTRS)

    Jin, Wei; Koplik, Joel; Banavar, Jayanth R.

    1996-01-01

    The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.

  10. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE PAGES

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  11. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  12. Application of atomic force microscopy to the study of natural and model soil particles.

    PubMed

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.

  13. Impact of cleaning methods on the structural properties and morphology of SrTiO3 surface

    NASA Astrophysics Data System (ADS)

    Arnay, Iciar; Rubio-Zuazo, Juan; Castro, German R.

    2018-01-01

    SrTiO3 is a widely used substrate for the epitaxial growth of complex systems. Nevertheless, in order to get good quality interface and avoid the formation of defects in the adsorbed layer it is essential to prepare the surface of the substrate prior to the deposition. Thermal and chemical treatments are mostly used to eliminate superficial contamination and improve the surface quality. However, there is a lack of information regarding the impact of these treatments on the formation of structural defects at the SrTiO3 surface. In this work we present a detailed characterization of the SrTiO3 surface for the different cleaning methods paying special attention to the formation of oxygen vacancies, large surface mosaicity and roughness. We prove that thermal treatment induces large surface roughness and that chemical etching produces important structural defects at the surface. Our results show that mechanical polishing provided the best compromise in terms of large surface domains, low roughness, absence of oxygen vacancies and absence of atomic structure modification, although with the presence of low level of contaminants at the SrTiO3 surface.

  14. Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly

    2013-03-01

    Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.

  15. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite.

    PubMed

    Valencia, Germán Ayala; Luciano, Carla Giovana; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2018-02-01

    The aim of this research was to study the effects of laponite concentrations on some properties of nano-biocomposite films based on cassava starch, focusing mainly the relation between the properties of the surface microstructure and roughness, water contact angle and gloss. Nano-biocomposite films were produced by casting. We analyzed gloss, color, opacity, water contact angle, crystallinity by X-ray diffraction, and microstructure by scanning electron microscopy and atomic force microscopy. Texture parameters (energy, entropy and fractal dimension) were extracted from micrographs. We observed a great impact of laponite in the morphology of nano-biocomposite films. Texture parameters correlated with surface heterogeneity and roughness. Finally, surface roughness affected the surface hydrophilicity of nano-biocomposite films. Laponite platelets were exfoliated and/or intercalated with amylose and amylopectin chains. This research reports new information on the effects of laponite concentrations on the morphological, optical and wetting properties of nano-biocomposite films aiming future industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fractal analysis as a potential tool for surface morphology of thin films

    NASA Astrophysics Data System (ADS)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  17. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  18. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    PubMed

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  19. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales

    NASA Astrophysics Data System (ADS)

    Huang, Shiping

    2017-11-01

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  20. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  1. Influence of Surface Properties on the Adhesion of Staphylococcus epidermidis to Acrylic and Silicone

    PubMed Central

    Sousa, Cláudia; Teixeira, Pilar; Oliveira, Rosário

    2009-01-01

    The aim of the present study was to compare the ability of eight Staphylococcus epidermidis strains to adhere to acrylic and silicone, two polymers normally used in medical devices manufacture. Furthermore, it was tried to correlate that with the surface properties of substrata and cells. Therefore, hydrophobicity and surface tension components were calculated through contact angle measurements. Surface roughness of substrata was also assessed by atomic force microscopy (AFM). No relationship was found between microbial surface hydrophobicity and adhesion capability. Nevertheless, Staphylococcus epidermidis IE214 showed very unique adhesion behaviour, with cells highly aggregated between them, which is a consequence of their specific surface features. All strains, determined as being hydrophilic, adhered at a higher extent to silicone than to acrylic, most likely due to its more hydrophobic character and higher roughness. This demonstrates the importance of biomaterial surface characteristics for bacterial adhesion. PMID:20126579

  2. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    PubMed

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  3. Investigations on the effects of mouthrinses on the colour stability and surface roughness of different dental bioceramics

    PubMed Central

    Varol, Osman

    2017-01-01

    PURPOSE In this study, three bioceramic materials, [IPS Empress CAD (Ivoclar), IPS e.max CAD (Ivoclar), and Lava Ultimate CAD (3M ESPE)] were treated with three commercial mouthrinses [Listerine, Tantum Verde, and Klorhex]; and changes in colour reflectance and surface roughness values were then quantitatively assessed. MATERIALS AND METHODS One hundred and twenty ceramic samples, with dimensions of 2 × 12 × 14 mm, were prepared and divided into nine sample groups, except three control samples. The samples were immersed in the mouthrinse solutions for 120 hrs, and changes in colour reflectance and surface roughness values were measured by UV light spectrophotometry (Vita Easyshade; VITA Zahnfabrik) and by profilometer device (MitutoyoSurftest SJ-301), respectively. The change of surface roughness was inspected by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). RESULTS There was a positive correlation between the ΔE and increase in the surface roughness. Two of the ceramic materials, IPS Empress and Lava Ultimate, were affected significantly by the treatment of the mouthrinse solutions (P<.05). The most affecting solution was Tantum Verde and the most affected material was Lava Ultimate. As expected, the most resistant material to ΔE and chemical corrosion was IPS e max CAD among the materials used. CONCLUSION This work implied that mouthrinse with lower alcohol content had less deteriorating effect on colour and on the surface morphology of the bioceramic materials. PMID:28680552

  4. Nanoindentation of orthodontic archwires: The effect of decontamination and clinical use on hardness, elastic modulus and surface roughness.

    PubMed

    Alcock, Joseph P; Barbour, Michele E; Sandy, Jonathan R; Ireland, Anthony J

    2009-08-01

    The purpose of this research was to investigate the effects of decontamination and clinical exposure on the elastic moduli, hardness and surface roughness of two frequently used orthodontic archwires, namely 0.020in.x0.020in. heat activated (martensitic active) nickel titanium archwires and 0.019in.x0.025in. austenitic stainless steel archwires. This study was a prospective clinical trial in which 20 consecutive patients requiring an archwire change as part of their course of orthodontic fixed appliance therapy, had either a nickel titanium or stainless steel archwire fitted as deemed clinically necessary. The effect of clinical use was determined by comparing distal end cuts of the "as received" archwires before and after decontamination, with the same retrieved archwires following clinical use and decontamination. Hardness, elastic modulus and surface roughness were determined using an atomic force microscope (AFM) coupled with a nanoindenter. The results showed that the decontamination regimen and clinical use had no statistically significant effect on the nickel titanium archwires, but did have a statistically significant effect on the steel archwires. Decontamination of the steel wires significantly increased the observed surface hardness (p=0.01) and reduced the surface roughness (p=0.02). Clinical use demonstrated a statistically significant increase in the observed elastic modulus (p<0.001) and a decrease in surface roughness (p=0.001). At present it is difficult to predict the clinical significance of these statistically significant changes in archwire properties on orthodontic tooth movement.

  5. Impact of gyro-motion and sheath acceleration on the flux distribution on rough surfaces

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Mayer, M.; Adelhelm, C.; Balden, M.; Lindig, S.; ASDEX Upgrade Team

    2010-10-01

    As was already observed experimentally, the erosion of tungsten (W) coated graphite (C) tiles in ASDEX-Upgrade (AUG) exhibits regular erosion patterns on the micrometre rough surfaces whose origin is not fully understood: surfaces inclined towards the magnetic field direction show strong net W erosion while surfaces facing away from the magnetic field are shadowed from erosion and may even exhibit net W deposition. This paper presents a model which explains the observed erosion/deposition pattern. It is based on the calculation of ion trajectories dropping through the plasma sheath region to the rough surface with combined magnetic and electrical fields. The surface topography used in the calculations is taken from atomic force microscope measurement of real AUG tiles. The calculated erosion patterns are directly compared with secondary electron microscopy images of the erosion zones from the same location. The erosion on surfaces inclined towards the magnetic field is due to ions from the bulk plasma which enter the sheath gyrating along the magnetic field lines, while the deposition of W on surfaces facing away from the magnetic field is due to promptly re-deposited W that is ionized still within the magnetic pre-sheath.

  6. Cold Bose-Einstein condensates for surface reflection

    NASA Astrophysics Data System (ADS)

    Saba, M.; Leanhardt, A. E.; Pasquini, T. A.; Sanner, C.; Schirotzek, A.; Shin, Y.; Pritchard, D. E.; Ketterle, W.

    2004-05-01

    Atoms can be reflected from a solid surface in spite of the attraction provided by the Casimir-Polder potential if their de Broglie wavelength exceeds the range of the attractive potential, an effect known as quantum reflection and demonstrated for atomic beams hitting a surface at grazing angle [1]. Quantum reflection of atomic Bose-Einstein condensates would have important consequences for experiments and applications requiring manipulation of condensates close to surfaces. However, no matter how cold a condensate is when approaching a surface, the atoms will hit the surface with a kinetic energy appropriate to the healing length, an energy roughly equal to the chemical potential and determined by atom-atom interactions. We circumvented this limitation by building a loose trap for the condensate, so that the atomic cloud can be kept very dilute, reaching the large healing length required to observe quantum reflection [2]. The trap consisted of a small single coil with electric current running in it that pushes the atoms upward, balancing gravity downward. The gravito-magnetic trap had a mean trap frequency of 1 Hz, so that condensates could sit in the trap for several minutes and reach temperatures as low as 500 pK, the lowest temperature ever recorded. We will then discuss how these condensates, whose healing length equals the condensate size, behave when approached to a silicon surface. [1] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001); [2] A. E. Leanhardt et al., Science 301, 1513 (2003)

  7. Topological and morphological analysis of gamma rays irradiated chitosan-poly (vinyl alcohol) blends using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bhatt, Rinkesh; Bisen, D. S.; Bajpai, R.; Bajpai, A. K.

    2017-04-01

    In the present communication, binary blends of poly (vinyl alcohol) (PVA) and chitosan (CS) were prepared by solution cast method and the roughness parameters of PVA, native CS and CS-PVA blend films were determined using atomic force microscopy (AFM). Moreover, the changes in the morphology of the samples were also investigated after irradiation of gamma rays at absorbed dose of 1 Mrad and 10 Mrad for the scanning areas of 5×5 μm2, 10×10 μm2 and 20×20 μm2. Amplitude, statistical and spatial parameters, including line, 3D and 2D image profiles of the experimental surfaces were examined and compared to un-irradiated samples. For gamma irradiated CS-PVA blends the larger waviness over the surface was found as compared to un-irradiated CS-PVA blends but the values of average roughness for both the films were found almost same. The coefficient of skewness was positive for gamma irradiated CS-PVA blends which revealed the presence of more peaks than valleys on the blend surfaces.

  8. Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.

    PubMed

    Hong, Jinkee; Kang, Sang Wook

    2011-09-01

    We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.

  9. Monitoring Demineralization and Subsequent Remineralization of Human Teeth at the Dentin-Enamel Junction with Atomic Force Microscopy.

    PubMed

    Lechner, Bob-Dan; Röper, Stephanie; Messerschmidt, Jens; Blume, Alfred; Magerle, Robert

    2015-09-02

    Using atomic force microscopy, we monitored the nanoscale surface morphology of human teeth at the dentin-enamel junction after performing successive demineralization steps with an acidic soft drink. Subsequently, we studied the remineralization process with a paste containing calcium and phosphate ions. Repeated atomic force microscopy imaging of the same sample areas on the sample allowed us to draw detailed conclusions regarding the specific mechanism of the demineralization process and the subsequent remineralization process. The about 1-μm-deep grooves that are caused by the demineralization process were preferentially filled with deposited nanoparticles, leading to smoother enamel and dentine surfaces after 90 min exposure to the remineralizing agent. The deposited material is found to homogeneously cover the enamel and dentine surfaces in the same manner. The temporal evolution of the surface roughness indicates that the remineralization caused by the repair paste proceeds in two distinct successive phases.

  10. Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies.

    PubMed

    Maji, Debashis; Das, Soumen

    2018-03-01

    Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.

  11. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  12. Adsorption of silica colloids onto like-charged silica surfaces of different roughness

    DOE PAGES

    Dylla-Spears, R.; Wong, L.; Shen, N.; ...

    2017-01-17

    Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less

  13. Surface smoothening effects on growth of diamond films

    NASA Astrophysics Data System (ADS)

    Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava

    2018-04-01

    We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.

  14. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  15. Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Snyder, Aaron; Miller, Sharon K.; Demko, Rikako

    2002-01-01

    Hydrocarbon based polymers that are exposed to atomic oxygen in low Earth orbit are slowly oxidized which results in recession of their surface. Atomic oxygen protective coatings have been developed which are both durable to atomic oxygen and effective in protecting underlying polymers. However, scratches, pin window defects, polymer surface roughness and protective coating layer configuration can result in erosion and potential failure of protected thin polymer films even though the coatings are themselves atomic oxygen durable. This paper will present issues that cause protective coatings to become ineffective in some cases yet effective in others due to the details of their specific application. Observed in-space examples of failed and successfully protected materials using identical protective thin films will be discussed and analyzed. Proposed approaches to prevent the failures that have been observed will also be presented.

  16. Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.

    NASA Astrophysics Data System (ADS)

    Shindler, Joseph Daniel

    X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.

  17. Crystal truncation rods from miscut surfaces

    DOE PAGES

    Petach, Trevor A.; Mehta, Apurva; Toney, Michael F.; ...

    2017-05-08

    Crystal truncation rods are used to study surface and interface structure. Since real surfaces are always somewhat miscut from a low index plane, it is important to study the effect of miscuts on crystal truncation rods. We develop a model that describes the truncation rod scattering from miscut surfaces that have steps and terraces. We show that nonuniform terrace widths and jagged step edges are both forms of roughness that decrease the intensity of the rods. Nonuniform terrace widths also result in a broad peak that overlaps the rods. We use our model to characterize the terrace width distribution andmore » step edge jaggedness on three SrTiO 3 (001) samples, showing excellent agreement between the model and the data, confirmed by atomic force micrographs of the surface morphology. As a result, we expect our description of terrace roughness will apply to many surfaces, even those without obvious terracing.« less

  18. Formation of pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer.

    PubMed

    Kim, Chaeho; Jeon, D

    2008-09-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO(2) surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO(2) and pentacene wetting layer.

  19. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  20. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    NASA Astrophysics Data System (ADS)

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N.; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-01

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10-21 J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  1. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory.

    PubMed

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  2. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  3. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?

    NASA Astrophysics Data System (ADS)

    Emre, Seker; Mehmet, Ali Kilicarslan; Serdar, Polat; Emre, Ozkir; Suat, Pat

    2016-04-01

    This study aimed to evaluate the surface roughness and wetting properties of various dental prosthetic materials after different durations of non-thermal atmospheric plasma (NTAP) treatment. One hundred and sixty discs of titanium (Ti) (n:40), cobalt chromium (Co-Cr) (n:40), yttrium stabilized tetragonal zirconia polycrystals (Y-TZP) (n:40) and polymethylmethacrylate (PMMA) (n:40) materials were machined and smoothed with silicon carbide papers. The surface roughness was evaluated in a control group and in groups with different plasma exposure times [1-3-5 s]. The average surface roughness (Ra) and contact angle (CA) measurements were recorded via an atomic force microscope (AFM) and tensiometer, respectively. Surface changes were examined with a scanning electron microscope (SEM). Data were analyzed with two-way analysis of variance (ANOVA) and the Tukey HSD test α=0.05). According to the results, the NTAP surface treatment significantly affected the roughness and wettability properties (P < 0.05). SEM images reveal that more grooves were present in the NTAP groups. With an increase in the NTAP application time, an apparent increment was observed for Ra, except in the PMMA group, and a remarkable reduction in CA was observed in all groups. It is concluded that the NTAP technology could enhance the roughening and wetting performance of various dental materials. supported by the Department of Scientific Research, Eskisehir Osmangazi University, Turkey (No. 201441045)

  4. Roughness evolution in dewetted Ag and Pt nanoscale films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2018-01-01

    The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.

  5. Ethanol wet-bonding technique sensitivity assessed by AFM.

    PubMed

    Osorio, E; Toledano, M; Aguilera, F S; Tay, F R; Osorio, R

    2010-11-01

    In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed. Tested protocols were: (1) water-rinse (control); (2) 100% ethanol-rinse (1-min); (3) 100% ethanol-rinse (5-min); and (4) progressive ethanol replacement (50-100%). Surface roughness, fibril diameter, and interfibrillar spaces were determined with atomic force microscopy and analyzed by one-way analysis of variance and the Student-Newman-Keuls test (α = 0.05). Dentin roughness and fibril diameter significantly decreased when 100% ethanol (1-5 min) was used for rinsing (p < 0.001). Absolute ethanol produced collapse and shrinkage of collagen fibrils. Ascending ethanol concentrations did not collapse the matrix and shrank the fibrils less than absolute ethanol-rinses.

  6. An atomic force microscopy study on fouling characteristics of modified PES membrane in submerged membrane bioreactor for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Han, Hongjun; Liu, Yanping; Wang, Baozhen

    2008-10-01

    To investigate the fouling characteristics of modified PES membrane in submerged Membrane Bioreactor (MBR) for domestic wastewater treatment, Atomic Force Microscope (AFM) study was conducted to analyze the microstructure characteristics of PES membrane. Surface roughness and section analysis of both virgin and fouled membrane were achieved by software of NanoScope 6.12. Compared to the virgin membrane, the average roughness (Ra), square average roughness (Rms) and ten points average roughness (Rz) of fouled membrane were increased by 100.6nm, 133.7nm and 330.7nm respectively. The section analysis results indicated that the cake layer formed and membrane pore blocked were the main causes for the increase of TMP. Micro-filtration resistance analysis was conducted to support the results of AFM analysis. It is showed that membrane resistance, cake resistance, pore blocking and irreversible fouling resistance is 0.755, 1.721 and 1.386 respectively, which contributed 20%, 44%, and 36%, respectively, to total resistance of submerged MBR (at MLSS 6000mg/L and flux 21.9L/m2Â.h). The results proved that AFM could be used to properly describe the fouling characteristics of modified PES membrane in submerged MBR through roughness and section analysis.

  7. Surface morphology evolution during plasma etching of silicon: roughening, smoothing and ripple formation

    NASA Astrophysics Data System (ADS)

    Ono, Kouichi; Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji

    2017-10-01

    Atomic- or nanometer-scale roughness on feature surfaces has become an important issue to be resolved in the fabrication of nanoscale devices in industry. Moreover, in some cases, smoothing of initially rough surfaces is required for planarization of film surfaces, and controlled surface roughening is required for maskless fabrication of organized nanostructures on surfaces. An understanding, under what conditions plasma etching results in surface roughening and/or smoothing and what are the mechanisms concerned, is of great technological as well as fundamental interest. In this article, we review recent developments in the experimental and numerical study of the formation and evolution of surface roughness (or surface morphology evolution such as roughening, smoothing, and ripple formation) during plasma etching of Si, with emphasis being placed on a deeper understanding of the mechanisms or plasma-surface interactions that are responsible for. Starting with an overview of the experimental and theoretical/numerical aspects concerned, selected relevant mechanisms are illustrated and discussed primarily on the basis of systematic/mechanistic studies of Si etching in Cl-based plasmas, including noise (or stochastic roughening), geometrical shadowing, surface reemission of etchants, micromasking by etch inhibitors, and ion scattering/chanelling. A comparison of experiments (etching and plasma diagnostics) and numerical simulations (Monte Carlo and classical molecular dynamics) indicates a crucial role of the ion scattering or reflection from microscopically roughened feature surfaces on incidence in the evolution of surface roughness (and ripples) during plasma etching; in effect, the smoothing/non-roughening condition is characterized by reduced effects of the ion reflection, and the roughening-smoothing transition results from reduced ion reflections caused by a change in the predominant ion flux due to that in plasma conditions. Smoothing of initially rough surfaces as well as non-roughening of initially planar surfaces during etching (normal ion incidence) and formation of surface ripples by plasma etching (off-normal ion incidence) are also presented and discussed in this context.

  8. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.

    PubMed

    Ji, Yong Woo; Cho, Young Joo; Lee, Chul Hee; Hong, Soon Ho; Chung, Dong Yong; Kim, Eung Kweon; Lee, Hyung Keun

    2015-01-01

    To compare physical characteristics of cosmetic contact lenses (Cos-CLs) and conventional contact lenses (Con-CLs) that might affect susceptibility to bacterial adhesion on the contact lens (CL) surface. Surface characteristics of Cos-CLs and Con-CLs made from the same material by the same manufacturer were measured by atomic force microscopy (AFM) and scanning electron microscopy. To determine the extent and rate of bacterial adhesion, Cos-CL and Con-CL were immersed in serum-free Roswell Park Memorial Institute media containing Staphylococcus aureus or Pseudomonas aeruginosa. Additionally, the rate of removal of adherent bacteria was evaluated using hand rubbing or immersion in multipurpose disinfecting solutions (MPDS). The mean surface roughness (root mean square and peak-to-valley value) measured by AFM was significantly higher for Cos-CL than for Con-CL. At each time point, significantly more S. aureus and P. aeruginosa adhered to Cos-CL than to Con-CL, which correlated with the surface roughness of CL. In Cos-CL, bacteria were mainly found on the tinted surface rather than on the noncolored or convex areas. Pseudomonas aeruginosa attached earlier than S. aureus to all types of CL. However, P. aeruginosa was more easily removed from the surface of CL than S. aureus by hand rubbing or MPDS soaking. Increased surface roughness is an important physical factor for bacterial adhesion in Cos-CL, which may explain why rates of bacterial keratitis rates are higher in Cos-CL users in CL physical characteristics.

  9. Optimum deposition conditions of ultrasmooth silver nanolayers

    PubMed Central

    2014-01-01

    Reduction of surface plasmon-polariton losses due to their scattering on metal surface roughness still remains a challenge in the fabrication of plasmonic devices for nanooptics. To achieve smooth silver films, we study the dependence of surface roughness on the evaporation temperature in a physical vapor deposition process. At the deposition temperature range 90 to 500 K, the mismatch of thermal expansion coefficients of Ag, Ge wetting layer, and sapphire substrate does not deteriorate the metal surface. To avoid ice crystal formation on substrates, the working temperature of the whole physical vapor deposition process should exceed that of the sublimation at the evaporation pressure range. At optimum room temperature, the root-mean-square (RMS) surface roughness was successfully reduced to 0.2 nm for a 10-nm Ag layer on sapphire substrate with a 1-nm germanium wetting interlayer. Silver layers of 10- and 30-nm thickness were examined using an atomic force microscope (AFM), X-ray reflectometry (XRR), and two-dimensional X-ray diffraction (XRD2). PACS 63.22.Np Layered systems; 68. Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization PMID:24685115

  10. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Luo, Hu; Guo, Meijian; Yin, Shaohui; Chen, Fengjun; Huang, Shuai; Lu, Ange; Guo, Yuanfan

    2018-06-01

    Zirconia ceramics is a valuable crucial material for fabricating functional components applied in aerospace, biology, precision machinery, military industry and other fields. However, the properties of its high brittleness and high hardness could seriously reduce its finishing efficiency and surface quality by conventional processing technology. In this work, we present a high efficiency and high-quality finishing process by using magnetorheological finishing (MRF), which employs the permanent magnetic yoke with straight air gap as excitation unit. The sub-nanoscale surface roughness and damage free surface can be obtained after magnetorheological finishing. The XRD results and SEM morphologies confirmed that the mechanical shear removal with ductile modes are the dominant material removal mechanism for the magnetorheological finishing of zirconia ceramic. With the developed experimental apparatus, the effects of workpiece speed, trough speed and work gap on material removal rate and surface roughness were systematically investigated. Zirconia ceramics finished to ultra-smooth surface with surface roughness less than Ra 1 nm was repeatedly achieved during the parametric experiments. Additionally, the highest material removal rate exceeded 1 mg/min when using diamond as an abrasive particle. Magnetorheological finishing promises to be an adaptable and efficient method for zirconia ceramics finishing.

  11. Correlation between surface properties and wettability of multi-scale structured biocompatible surfaces

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.

    2015-11-01

    The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.

  12. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp

    2015-08-03

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less

  13. Surface study of irradiated sapphires from Phrae Province, Thailand using AFM

    NASA Astrophysics Data System (ADS)

    Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.

    2017-09-01

    The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.

  14. Wettability of Y2O3: A Relative Analysis of Thermally Oxidized, Reactively Sputtered and Template Assisted Nanostructured Coatings

    PubMed Central

    Barshilia, Harish C.; Chaudhary, Archana; Kumar, Praveen; Manikandanath, Natarajan T.

    2012-01-01

    The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited Y2O3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle). Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm), which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y2O3 (54 mJ/m2) and thermally oxidized Y-Y2O3 coatings (43 mJ/m2) compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2). PMID:28348296

  15. Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction.

    PubMed

    Jiao, Xingchen; Li, Xiaodong; Jin, Xiuyu; Sun, Yongfu; Xu, Jiaqi; Liang, Liang; Ju, Huanxin; Zhu, Junfa; Pan, Yang; Yan, Wensheng; Lin, Yue; Xie, Yi

    2017-12-13

    Unraveling the role of surface oxide on affecting its native metal disulfide's CO 2 photoreduction remains a grand challenge. Herein, we initially construct metal disulfide atomic layers and hence deliberately create oxidized domains on their surfaces. As an example, SnS 2 atomic layers with different oxidation degrees are successfully synthesized. In situ Fourier transform infrared spectroscopy spectra disclose the COOH* radical is the main intermediate, whereas density-functional-theory calculations reveal the COOH* formation is the rate-limiting step. The locally oxidized domains could serve as the highly catalytically active sites, which not only benefit for charge-carrier separation kinetics, verified by surface photovoltage spectra, but also result in electron localization on Sn atoms near the O atoms, thus lowering the activation energy barrier through stabilizing the COOH* intermediates. As a result, the mildly oxidized SnS 2 atomic layers exhibit the carbon monoxide formation rate of 12.28 μmol g -1 h -1 , roughly 2.3 and 2.6 times higher than those of the poorly oxidized SnS 2 atomic layers and the SnS 2 atomic layers under visible-light illumination. This work uncovers atomic-level insights into the correlation between oxidized sulfides and CO 2 reduction property, paving a new way for obtaining high-efficiency CO 2 photoreduction performances.

  16. Synthesis of Graphene Based Membranes: Effect of Substrate Surface Properties on Monolayer Graphene Transfer.

    PubMed

    Kafiah, Feras; Khan, Zafarullah; Ibrahim, Ahmed; Atieh, Muataz; Laoui, Tahar

    2017-01-21

    In this work, we report the transfer of graphene onto eight commercial microfiltration substrates having different pore sizes and surface characteristics. Monolayer graphene grown on copper by the chemical vapor deposition (CVD) process was transferred by the pressing method over the target substrates, followed by wet etching of copper to obtain monolayer graphene/polymer membranes. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) measurements were carried out to explore the graphene layer transferability. Three factors, namely, the substrate roughness, its pore size, and its surface wetting (degree of hydrophobicity) are found to affect the conformality and coverage of the transferred graphene monolayer on the substrate surface. A good quality graphene transfer is achieved on the substrate with the following characteristics; being hydrophobic (CA > 90°), having small pore size, and low surface roughness, with a CA to RMS (root mean square) ratio higher than 2.7°/nm.

  17. Spectromicroscopy measurements of surface morphology and band structure of exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Knox, Kevin; Locatelli, Andrea; Cvetko, Dean; Mentes, Tevfik; Nino, Miguel; Wang, Shancai; Yilmaz, Mehmet; Kim, Philip; Osgood, Richard; Morgante, Alberto

    2011-03-01

    Monolayer-thick crystals, such as graphene, are an area of intense interest in condensed matter research. ~However, crystal deformations in these 2D systems are known to adversely affect conductivity and increase local chemical reactivity. Additionally, surface roughness in graphene complicates band-mapping and limits resolution in techniques such as angle resolved photoemission spectroscopy (ARPES), the theory of which was developed for atomically flat surfaces. Thus, an understanding of the surface morphology of graphene is essential to making high quality devices and important for interpreting ARPES results. In this talk, we will describe a non-invasive approach to examining the corrugation in exfoliated graphene using a combination of low energy electron microscopy (LEEM) and micro-spot low energy electron diffraction (LEED). We will also describe how such knowledge of surface roughness can be used in the analysis of ARPES data to improve resolution and extract useful information about the band-structure.

  18. Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD

    NASA Technical Reports Server (NTRS)

    Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.

    2011-01-01

    Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors

  19. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  20. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials for Hypersonic Flight

    DTIC Science & Technology

    2011-11-01

    temperatures exceed 2500 K . as they have here. E. Evidence of Volatilization Emission spectroscopy of electronically excited B , Si, and W atoms...specimens. After roughly 30 seconds around 2660 K , the surface temperature of sample 3.3 decays steadily, and the B , Si, and W atom emissions follow...175-189. 51Roine, A., HSC Chemistry for Windows, Version 5.11. Outokumpu Research Oy, Pori, Finland, (2006). 52Hirsch, K ., Roth, B ., Altmann, I

  1. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    NASA Astrophysics Data System (ADS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-06-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts.

  2. Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching

    NASA Astrophysics Data System (ADS)

    Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  3. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-02-01

    Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  4. Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.A.E.; Beijerinck, H.C.W.

    2005-01-01

    Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less

  5. Manufacture and calibration of optical supersmooth roughness artifacts for intercomparisons

    NASA Astrophysics Data System (ADS)

    Ringel, Gabriele A.; Kratz, Frank; Schmitt, Dirk-Roger; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.

    1995-09-01

    Intercomparison roughness measurements have been carried out on supersmooth artifacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using the optical heterodyne profiler Z5500 (Zygo), a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), and an Atomic Force Microscope (Park Scientific Instruments) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelengths for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that the applied superpolishing techniques yield supersmooth artifacts which can be used for more intercomparisons. More than 100 samples were investigated. Criteria were developed to select artifacts from the sample stock.

  6. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Hsu

    2015-12-01

    Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.

  7. Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain,A.; Babalola, S.; Bolotnikov, A.E.

    2008-08-11

    Generally, mechanical polishing is performed to diminish the cutting damage followed by chemical etching to remove the remaining damage on crystal surfaces. In this paper, we detail the findings from our study of the effects of various chemical treatments on the roughness of crystal surfaces. We prepared several CdZnTe (CZT) and CdMnTe (CMT) crystals by mechanical polishing with 5 {micro}m and/or lower grits of Al{sub 2}O{sub 3} abrasive papers including final polishing with 0.05-{micro}m particle size alumina powder and then etched them for different periods with a 2%, 5% Bromine-Methanol (B-M) solution, and also with an E-solution (HNO{sub 3}:H{sub 2}O:Cr{submore » 2}O{sub 7}). The material removal rate (etching rate) from the crystals was found to be 10 {micro}m, 30 {micro}m, and 15 {micro}m per minute, respectively. The roughness of the resulting surfaces was determined by the Atomic Force Microscopy (AFM) to identify the most efficient surface processing method by combining mechanical and chemical polishing.« less

  8. Photoinduced Changes in Ge-Doped Flame Hydrolysis Silica Glass Films

    NASA Astrophysics Data System (ADS)

    Zhang, Letian; Xie, Wenfa; Wang, Jian; Li, Aiwu; Xing, Hua; Zheng, Wei; Qian, Ying; Zhang, Jian; Zhang, Yushu

    2003-12-01

    The influence on the structural and optical properties of Ge-doped flame hydrolysis silica glass films of KrF excimer laser irradiation was investigated. A maximum refractive index change of about 3.41× 10-3 is obtained at approximately 1550 nm after 10 min irradiation. The irradiation process and roughness of the films were analyzed by atomic force microscopy (AFM). As irradiation time increased, the density of the films increased, resulting in decreases in the surface roughness and increases in the refractive index of the films.

  9. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  10. A study of the UV and VUV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1993-01-01

    UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.

  11. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  12. Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.

    2018-01-01

    In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.

  13. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  14. Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2018-03-01

    An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet-vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.

  15. Atomic-scale analysis of deposition and characterization of a-Si:H thin films grown from SiH radical precursor

    NASA Astrophysics Data System (ADS)

    Sriraman, Saravanapriyan; Aydil, Eray S.; Maroudas, Dimitrios

    2002-07-01

    Growth of hydrogenated amorphous silicon films (a-Si:H) on an initial H-terminated Si(001)(2 x1) substrate at T=500 K was studied through molecular-dynamics (MD) simulations of repeated impingement of SiH radicals to elucidate the effects of reactive minority species on the structural quality of the deposited films. The important reactions contributing to film growth were identified through detailed visualization of radical-surface interaction trajectories. These reactions include (i) insertion of SiH into Si-Si bonds, (ii) adsorption onto surface dangling bonds, (iii) surface H abstraction by impinging SiH radicals through an Eley-Rideal mechanism, (iv) surface adsorption by penetration into subsurface layers or dissociation leading to interstitial atomic hydrogen, (v) desorption of interstitial hydrogen into the gas phase, (vi) formation of higher surface hydrides through the exchange of hydrogen, and (vii) dangling-bond-mediated dissociation of surface hydrides into monohydrides. The MD simulations of a-Si:H film growth predict an overall surface reaction probability of 95% for the SiH radical that is in good agreement with experimental measurements. Structural and chemical characterization of the deposited films was based on the detailed analysis of evolution of the films' structure, surface morphology and roughness, surface reactivity, and surface composition. The analysis revealed that the deposited films exhibit high dangling bond densities and rough surface morphologies. In addition, the films are abundant in voids and columnar structures that are detrimental to producing device-quality a-Si:H thin films.

  16. Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.

    1991-01-01

    Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.

  17. Process-Structure-Property Relationships of Micron Thick Gadolinium Oxide Films Deposited by Reactive Electron Beam-Physical Vapor Deposition (EB-PVD)

    DTIC Science & Technology

    2014-12-01

    surface roughness on film properties must be considered. Stability at the interface between the film and the substrate becomes critical with...etc.). Addition of atoms to the growing surface creates additional surface energy. Therefore, nuclei of a critical size 23 must be formed in order... critical nuclei size and a lower nucleation rate. Higher deposition rates result in a decreased critical nuclei size which leads to an increase in

  18. SRF Cavity Surface Topography Characterization Using Replica Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less

  19. Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd

    2018-01-01

    The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.

  20. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    PubMed

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  1. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less

  2. Optimized surface topography of thermoplastics blends modified by graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Girish M., E-mail: varadgm@gmail.com, E-mail: girish.joshi@vit.ac.in; Sharma, Ajay; Pandey, Mayank

    2016-05-23

    Polyacrilonitrile (PAN)/ Polyvinylfloride (PVDF) blends were modified by loading the graphene (0.5 to 1.5 wt %). The presence of graphene reveals the interesting surface properties. The decrease in surface roughness as function of graphene loading was confirmed by the topographic method of recording (two and three dimensional images) with atomic force microscope (AFM). The blends become smoother in nature due to occupied smaller surface area of graphene. This property may be useful for several applications in the marine, naval, nuclear domain and engineering applications as barrier medium.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  4. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. Thismore » value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.« less

  5. Electrochemical Polishing Applications and EIS of a Vitamin B{sub 4}-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-01-01

    Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B{sub 4} (VB{sub 4}). Potentiostatic electrochemicalmore » impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB{sub 4}-based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation.« less

  6. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  7. Surface morphological evolution of epitaxial CrN(001) layers

    NASA Astrophysics Data System (ADS)

    Frederick, J. R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at Ts=600-800 °C by ultrahigh-vacuum magnetron sputter deposition in pure N2 discharges from an oblique deposition angle α=80°. Layers grown at 600 °C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 °C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 °C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as Ts is raised from 600 to 700 to 800 °C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 °C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent β>0.5. In contrast, kinetic roughening controls the surface morphology for Ts=800 °C, as well as the epitaxial fraction of the layers grown at 600 and 700 °C, yielding relatively smooth surfaces and β<=0.27.

  8. Ultrastructural evaluation of enamel after dental bleaching associated with fluoride.

    PubMed

    Dominguez, John A; Bittencourt, Bruna; Michel, Milton; Sabino, Nilson; Gomes, João Carlos; Gomes, Osnara M M

    2012-08-01

    This study evaluated the effects on human enamel after two bleaching procedures: with a fluoridated bleaching agent and with topical fluoride application postbleaching. It used 43 enamel blocks (3 mm(2) ) that were ground flat (600-2,000 grit) and polished with polishing paste (one and one-fourth). Specimens were randomly divided into three groups according to the bleaching procedure: (1) control group, (2) hydrogen peroxide 35% (HPF) and topical application of fluoride 1.23%, and (3) HP 38% (OP) with fluoride in its composition. Bleaching agents were used according to the manufacturer's instructions. Three methodologies were used: nanoindentation, to observe surface hardness and elastic modulus; atomic force microscopy, to observe surface roughness (R(a) - R(z)); and scanning electron microscopy, to observe the enamel surface effects. Group OP had a decrease in the elastic modulus after bleaching, which was recovered at 14 days. An increased roughness (R(a); 32%) was observed on group HPF and had an increased erosion on enamel surface (67%). It was concluded that topical application of fluoride, after using the nonfluoridated whitening agent, increased the roughness values and erosion of enamel. Copyright © 2012 Wiley Periodicals, Inc.

  9. Micromorphology of cactus-pear (Opuntia ficus-indica (L.) Mill) cladodes based on scanning microscopies.

    PubMed

    Ben Salem-Fnayou, Asma; Zemni, Hassène; Nefzaoui, Ali; Ghorbel, Abdelwahed

    2014-01-01

    Cladode ultrastructural features of two prickly and two spineless Opuntia ficus-indica cultivars were examined using environmental scanning electron and atomic force microscopies. Observations focused on cladode as well as spine and glochid surface micromorphologies. Prickly cultivars were characterized by abundant cracked epicuticular wax deposits covering the cladode surface, with an amorphous structure as observed by AFM, while less abundant waxy plates were observed by ESEM on spineless cultivar cladodes. Further AFM observations allowed a rough granular and crystalloid epicuticular wax structure to be distinguished in spineless cultivars. Regarding spine micromorphology, prickly cultivars had strong persistent spines, observed by ESEM as a compact arrangement of oblong epidermal cells with a rough granular structure. However, deciduous spines in spineless cultivars had a broken transversely fissured epidermis covering a parallel arrangement of fibres. Through AFM, the deciduous spine surface presented an irregular hilly and smooth microrelief while persistent spines exhibited rough helical filamentous prints. ESEM and AFM studies of cladode surfaces from prickly and spineless cactus pear cultivars revealed valuable micro-morphological details that ought to be extended to a large number of O. ficus-indica cultivars. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of Heat Treatment on the Physical Properties of Provisional Crowns during Polymerization: An in Vitro Study

    PubMed Central

    Mei, May L.; So, Sam Y. C.; Li, Hao; Chu, Chun-Hung

    2015-01-01

    This study concerned the effect of heat treatment during setting on the physical properties of four resin-based provisional restorative materials: Duralay (polymethyl methacrylate), Trim II (polyethyl methacrylate), Luxatemp (bis-acrylic composite), and Protemp 4 (bis-acrylic composite). Specimens were prepared at 23, 37, or 60 °C for evaluation of flexural strength, surface roughness, color change and marginal discrepancy. Flexural strength was determined by a three-point bending test. Surface profile was studied using atomic force microscopy. Color change was evaluated by comparing the color of the materials before and after placement in coffee. A travelling microscope helped prepare standardized crowns for assessment of marginal discrepancy. Flexural strength of all tested materials cured at 23 °C or 37 °C did not significantly change. The surface roughness and marginal discrepancy of the materials increased at 60 °C curing temperature. Marginal discrepancies, color stability, and other physical properties of materials cured at 23 °C or 37 °C did not significantly change. Flexural strength of certain provisional materials cured at 60 °C increased, but there was also an increase in surface roughness and marginal discrepancy. PMID:28788031

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.

    The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surfacemore » (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.« less

  12. Epi-cleaning of Ge/GeSn heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.

    2015-01-28

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.

  13. Epi-cleaning of Ge/GeSn heterostructures

    NASA Astrophysics Data System (ADS)

    Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A.; Wirths, S.; Buca, D.; Zaumseil, P.; Schroeder, T.; Capellini, G.

    2015-01-01

    We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100-300 °C range.

  14. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  15. Resistivity scaling due to electron surface scattering in thin metal layers

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  16. Thickness and surface roughness study of co-sputtered nanostructured alumina/tungsten (Al2O3/W) thin films

    NASA Astrophysics Data System (ADS)

    Naveen, A.; Krishnamurthy, L.; Shridhar, T. N.

    2018-04-01

    Tungsten (W) and Alumina (Al2O3) thin films have been developed using co-sputtering technique on SS304, Copper (Cu) and Glass slides using Direct Current magnetron sputtering (DC) and Radio Frequency (RF) magnetron sputtering methods respectively. Central Composite Design (CCD) method approach has been adopted to determine the number of experimental plans for deposition and DC power, RF power and Argon gas flow rate have been input parameters, each at 5 levels for development of thin films. In this research paper, study has been carried out determine the optimized condition of deposition parameters for thickness and surface roughness of the thin films. Thickness and average Surface roughness in terms of nanometer (nm) have been characterized by thickness profilometer and atomic force microscopy respectively. The maximum and minimum average thickness observed to be 445 nm and 130 respectively. The optimum deposition condition for W/Al2O3 thin film growth was determined to be at 1000 watts of DC power and 800 watts of RF power, 20 minutes of deposition time, and almost 300 Standard Cubic Centimeter(SCCM) of Argon gas flow. It was observed that average roughness difference found to be less than one nanometer on SS substrate and one nanometer on copper approximately.

  17. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  18. Automated AFM for small-scale and large-scale surface profiling in CMP applications

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2018-03-01

    As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.

  19. Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination

    NASA Technical Reports Server (NTRS)

    Prok, George M.

    1961-01-01

    The effects of surface preparation and gas flow on the recombination of nitrogen atoms at copper and platinum surfaces were determined. Atoms were generated by an electrodeless 2450-megacycle-per-second discharge, and their concentration was measured by gas-phase titration with nitric oxide. Test surfaces were either vacuum-evaporated films or spheres machined from bulk metal and cemented around small glass-bead thermistors. Heat released by recombination was measured as the difference in electrical energy required to maintain a given thermistor temperature with and without a catalytic surface exposed. Recombination coefficients measured at flow velocities of 1120, 1790, 2250, and 3460 centimeters per second and at pressures of 0.42 and 0.59 millimeter of mercury showed that flow conditions had no effect. The results were also independent of atom concentration. A rough indication of the temperature dependence was obtained; it was greater for copper than for platinum. Platinum films deposited on platinum or on glass had the same activity - about 3 percent of the atoms impinging recombined. With copper, however, the glass substrate greatly reduced the percent of atoms recombining over that of a bulk copper substrate where 4 percent of the impinging atoms recombined. This effect could be overcome by depositing a second film on top of the first. Bulk metal samples were subjected to various surface treatments including polishing, degreasing with a chlorinated hydrocarbon, washing with nitric acid, and rinsing with water. Polished, degreased platinum had low activity compared to an evaporated film, but nitric acid treatment made it equivalent. Polished, degreased copper was only slightly less active than a copper film; nitric acid etching decreased the activity still further, probably by preferentially exposing facets of low catalytic efficiency.

  20. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  1. Thermal treatment induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 metallic glass

    NASA Astrophysics Data System (ADS)

    Shah, M.; Satalkar, M.; Kane, S. N.; Ghodke, N. L.; Sinha, A. K.; Varga, L. K.; Teixeira, J. M.; Araujo, J. P.

    2018-05-01

    Effect of thermal annealing induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 alloy is presented. The changes in properties were observed using synchrotron x-ray diffraction technique (SXRD), atomic force microscopy (AFM), magneto-optical kerr effect (MOKE) and bulk magnetic measurements. Significant variations on the both side of surface occur for the annealing temperature upto 500 °C promotes the surface crystallization. Surface roughness appears due to presence of nanocrystallization plays an important role in determining magnetic properties. Observed lower value of bulk coercivity Hc of 6.2 A/m annealed temperature at 450 °C/1 h ascribed to reduction of disorder as compared to the surface (both shiny and wheel side observed by MOKE measurement) whereas improvement of bulk saturation magnetization with annealing temperature indicates first near neighbor shell of Fe atoms are surrounded by Fe atoms. Evolution of coercivity of surface and bulk with annealing temperature has been presented in conjunction with the structural observations.

  2. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  3. Origin of the transition voltage in gold-vacuum-gold atomic junctions.

    PubMed

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2013-01-18

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.

  4. Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces.

    PubMed

    Deng, Bing; Wu, Juanxia; Zhang, Shishu; Qi, Yue; Zheng, Liming; Yang, Hao; Tang, Jilin; Tong, Lianming; Zhang, Jin; Liu, Zhongfan; Peng, Hailin

    2018-05-01

    Corrugation is a ubiquitous phenomenon for graphene grown on metal substrates by chemical vapor deposition, which greatly affects the electrical, mechanical, and chemical properties. Recent years have witnessed great progress in controlled growth of large graphene single crystals; however, the issue of surface roughness is far from being addressed. Here, the corrugation at the interface of copper (Cu) and graphene, including Cu step bunches (CuSB) and graphene wrinkles, are investigated and ascribed to the anisotropic strain relaxation. It is found that the corrugation is strongly dependent on Cu crystallographic orientations, specifically, the packed density and anisotropic atomic configuration. Dense Cu step bunches are prone to form on loose packed faces due to the instability of surface dynamics. On an anisotropic Cu crystal surface, Cu step bunches and graphene wrinkles are formed in two perpendicular directions to release the anisotropic interfacial stress, as revealed by morphology imaging and vibrational analysis. Cu(111) is a suitable crystal face for growth of ultraflat graphene with roughness as low as 0.20 nm. It is believed the findings will contribute to clarifying the interplay between graphene and Cu crystal faces, and reducing surface roughness of graphene by engineering the crystallographic orientation of Cu substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    NASA Astrophysics Data System (ADS)

    Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah

    2015-02-01

    Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.

  6. Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper

    NASA Astrophysics Data System (ADS)

    Marsden, A. J.; Phillips, M.; Wilson, N. R.

    2013-06-01

    At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.

  7. Surface roughness evaluation on mandrels and mirror shells for future X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Spiga, D.

    2008-07-01

    More X-ray missions that will be operating in near future, like particular SIMBOL-X, e-Rosita, Con-X/HXT, SVOM/XIAO and Polar-X, will be based on focusing optics manufactured by means of the Ni electroforming replication technique. This production method has already been successfully exploited for SAX, XMM and Swift-XRT. Optical surfaces for X-ray reflection have to be as smooth as possible also at high spatial frequencies. Hence it will be crucial to take under control microroughness in order to reduce the scattering effects. A high rms microroughness would cause the degradation of the angular resolution and loss of effective area. Stringent requirements have therefore to be fixed for mirror shells surface roughness depending on the specific energy range investigated, and roughness evolution has to be carefully monitored during the subsequent steps of the mirror-shells realization. This means to study the roughness evolution in the chain mandrel, mirror shells, multilayer deposition and also the degradation of mandrel roughness following iterated replicas. Such a study allows inferring which phases of production are the major responsible of the roughness growth and could help to find solutions optimizing the involved processes. The exposed study is carried out in the context of the technological consolidation related to SIMBOL-X, along with a systematic metrological study of mandrels and mirror shells. To monitor the roughness increase following each replica, a multiinstrumental approach was adopted: microprofiles were analysed by means of their Power Spectral Density (PSD) in the spatial frequency range 1000-0.01 μm. This enables the direct comparison of roughness data taken with instruments characterized by different operative ranges of frequencies, and in particular optical interferometers and Atomic Force Microscopes. The performed analysis allowed us to set realistic specifications on the mandrel roughness to be achieved, and to suggest a limit for the maximum number of a replica a mandrel can undergo before being refurbished.

  8. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

    PubMed Central

    Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layermore » due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.« less

  10. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111)

    NASA Astrophysics Data System (ADS)

    Jacobse, Leon; Huang, Yi-Fan; Koper, Marc T. M.; Rost, Marcel J.

    2018-03-01

    Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a `nucleation and early growth' regime of nanoisland formation, and a `late growth' regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the `late growth' regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the `nucleation and early growth' regime, created step sites contribute to the roughness, but not to the electrochemical signal.

  11. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.

    PubMed

    Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin

    2016-07-27

    We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.

  12. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    PubMed

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  13. Useful surface parameters for biomaterial discrimination.

    PubMed

    Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos

    2015-01-01

    Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.

  14. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    NASA Astrophysics Data System (ADS)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  15. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  16. Neutral sodium atoms extraction by micrometeoroid impacts on the surface of Mercury

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Orsini, S.; Capria, M. T.; Milillo, A.; Mura, A.; Mangano, V.; Carbognani, A.

    2003-04-01

    The Mercury's exosphere is more dependent on the micrometeoroid impacts than the lunar exosphere and we have applied an order-to-magnitude calculation on the physical conditions of the sodium atoms during these events. This calculation shows the different ionization degree of sodium atoms depending on the meteoroid impact velocity and the related emission enhancements we may have observing the exosphere. We have applied the same calculation to the visible and UV doublets showing the large difference, a factor 5, between the two emission intensities only taking into account the same micrometeoroids contribution. Furthermore we provide a rough estimate for the impact magnitude in sodium light if we observe the night side of the Mercury's surface from the orbit of the ESA mission BepiColombo. Assuming a specific energy distribution of the emitted neutrals, we simulate the characteristics of the low-energy neutral atom fluxes as observable by the SERENA/ELENA instrument proposed on board the ESA BepiColombo Planetary Orbiter.

  17. Improved mobility in InAlN/AlGaN two-dimensional electron gas heterostructures with an atomically smooth heterointerface

    NASA Astrophysics Data System (ADS)

    Hosomi, Daiki; Miyachi, Yuta; Egawa, Takashi; Miyoshi, Makoto

    2018-04-01

    We attempted to improve the mobility of InAlN/AlGaN two-dimensional electron gas (2DEG) heterostructures by achieving an atomically smooth heterointerface in metalorganic chemical vapor deposition processes. In the result, it was confirmed that the high-growth-rate AlGaN layer was very effective to improve the surface morphology. The atomically smooth surface morphology with a root-mean-square roughness of 0.26 nm was achieved for an Al0.15Ga0.85N layer under the growth rate of approximately 6 µm/h. Furthermore, nearly lattice-matched In0.17Al0.83N/Al0.15Ga0.85N 2DEG heterostructures with the atomically smooth heterointerface exhibited a 2DEG mobility of 242 cm2 V-1 s-1 with a 2DEG density of 2.6 × 1013/cm2, which was approximately 1.5 times larger than the mobility in a sample grown under original conditions.

  18. Effect of tooth brushing on gloss retention and surface roughness of five bulk-fill resin composites.

    PubMed

    O'Neill, Catherine; Kreplak, Laurent; Rueggeberg, Frederick A; Labrie, Daniel; Shimokawa, Carlos Alberto Kenji; Price, Richard Bengt

    2018-01-01

    To determine the effects of tooth brushing on five bulk-fill resin based composites (RBCs). Ten samples of Filtek Supreme Enamel (control), Filtek One Bulk Fill, Tetric EvoCeram Bulk Fill, SonicFill 2, SDR flow+, and Admira Fusion X-tra were light cured for 20 seconds using the Valo Grand curing light. After 24 hours storage in air at 37°C, specimens were brushed in a random order using Colgate OpticWhite dentifrice and a soft toothbrush. Surface gloss was measured prior to brushing, after 5,000, 10,000 and 15,000 back and forth brushing cycles. Surface roughness was measured after 15,000 brushing cycles using atomic force microscopy (AFM) and selected scanning electron microscope (SEM) images were taken. The data was examined using ANOVA and pair-wise comparisons using Scheffe's post-hoc multiple comparison tests (α = 0.05). Surface gloss decreased and the surface roughness increased after brushing. Two-way ANOVA showed that both the RBC and the number of brushing cycles had a significant negative effect on the gloss. One-way ANOVA showed that the RBC had a significant effect on the roughness after 15,000 brushing cycles. For both gloss and roughness, brushing had the least effect on the nano-filled control and nano-filled bulk-fill RBC, and the greatest negative effect on Admira Fusion X-tra. The SEM images provided visual agreement. There was an excellent linear correlation (R 2  = 0.98) between the logarithm of the gloss and roughness. After brushing, the bulk-fill RBCs were all rougher than the control nano-filled RBC. The nano-filled bulk-fill RBC was the least affected by brushing. Bulk-fill RBCs lose their gloss faster and become rougher than the nanofilled conventional RBC, Filtek Supreme Ultra. The nanofilled bulk-fill RBC was the least affected by tooth brushing. © 2017 Wiley Periodicals, Inc.

  19. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  20. Surface topography and ordering-variant segregation in GaInP[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.

    1993-09-27

    Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1

  1. Mobile quantum gravity sensor with unprecedented stability

    NASA Astrophysics Data System (ADS)

    Freier, C.; Hauth, M.; Schkolnik, V.; Leykauf, B.; Schilling, M.; Wziontek, H.; Scherneck, H.-G.; Müller, J.; Peters, A.

    2016-06-01

    Changes of surface gravity on Earth are of great interest in geodesy, earth sciences and natural resource exploration. They are indicative of Earth system's mass redistributions and vertical surface motion, and are usually measured with falling corner-cube- and superconducting gravimeters (FCCG and SCG). Here we report on absolute gravity measurements with a mobile quantum gravimeter based on atom interferometry. The measurements were conducted in Germany and Sweden over periods of several days with simultaneous SCG and FCCG comparisons. They show the best-reported performance of mobile atomic gravimeters to date with an accuracy of 39nm/s2, long-term stability of 0.5nm/s2 and short-term noise of 96nm/s2/√Hz. These measurements highlight the unique properties of atomic sensors. The achieved level of performance in a transportable instrument enables new applications in geodesy and related fields, such as continuous absolute gravity monitoring with a single instrument under rough environmental conditions.

  2. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  3. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla-Spears, R.; Wong, L.; Shen, N.

    Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less

  5. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  6. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    NASA Astrophysics Data System (ADS)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (<0.1 µm) to stylus and optical profilometry in the micro- and mesoscales (0.1 µm-1 mm). This paper presents an experimental length scale study of the surface texture of ground stainless steel followed by an electropolishing process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  7. Real-time and post-plasma studies of influence of low levels of tungsten on carbon erosion and surface evolution behaviour in D2 plasma

    NASA Astrophysics Data System (ADS)

    Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.

    2010-02-01

    A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.

  8. Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.

    PubMed

    Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J

    2012-11-30

    This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Evolution of the Copper Surface in the Course of Oxidation by CCl4-L (L=THF, Dmf, Dmso): Scanning Probe Microscope Study

    NASA Astrophysics Data System (ADS)

    Panteleev, S. V.; Maslennikov, S. V.; Ignatov, S. K.; Spirina, I. V.; Kruglova, M. V.; Gribkov, B. A.; Vdovichev, S. N.

    2013-04-01

    The evolution of compact surface of the 100 nm copper film deposited on the glass-ceramics doped with vanadium coating in the course of the oxidation by the CCl4-L (L = dimethylformamide (DMF), tetrahydrofuran (THF), dimethylsulfoxide (DMSO), CCl4 concentration ≈ 1 mol/L) was studied by atomic force microscopy (AFM) in contact mode. The dynamics of active centers formation and destruction was investigated in the course of the oxidation process. The metallic sample dissolution rate was estimated as a function of the coordinating solvent nature. The development of the metal surface oxidation was established to lead to a significant increase of surface roughness. This phenomenon can be explained by the fact that different parts of the surface react at different rates. Further course of the reaction leads to a significant decrease of the surface roughness of copper films. The amount of the metal reacted has an almost linear dependence on the reaction time. AFM scans indicate that there is the same mechanism of the reaction between copper and carbon tetrachloride for all solvents.

  10. Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale.

    PubMed

    Eder, S J; Feldbauer, G; Bianchi, D; Cihak-Bayr, U; Betz, G; Vernes, A

    2015-07-10

    Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.

  11. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  12. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr

    NASA Astrophysics Data System (ADS)

    Abou-Saleh, A.; Karim, E. T.; Maurice, C.; Reynaud, S.; Pigeon, F.; Garrelie, F.; Zhigilei, L. V.; Colombier, J. P.

    2018-04-01

    Interaction of ultrafast laser pulses with metal surfaces in the spallation regime can result in the formation of anisotropic nanoscale surface morphology commonly referred to as laser-induced periodic surface structures (LIPSS) or ripples. The surface structures generated by a single pulse irradiation of monocrystalline Cr samples are investigated experimentally and computationally for laser fluences that produce high spatial frequency nanostructures in the multi-pulse irradiation regime. Electron microscopy reveals distinct response of samples with different crystallographic surface orientations, with (100) surfaces exhibiting the formation of more refined nanostructure by a single pulse irradiation and a more pronounced LIPSS after two laser pulses as compared to (110) surfaces. A large-scale molecular dynamics simulation of laser interaction with a (100) Cr target provides detailed information on processes responsible for spallation of a liquid layer, redistribution of molten material, and rapid resolidification of the target. The nanoscale roughness of the resolidified surface predicted in the simulation features elongated frozen nanospikes, nanorims and nanocavities with dimensions and surface density similar to those in the surface morphology observed for (100) Cr target with atomic force microscopy. The results of the simulation suggest that the types, sizes and dimensions of the nanoscale surface features are defined by the competition between the evolution of transient liquid structures generated in the spallation process and the rapid resolidification of the surface region of the target. The spallation-induced roughness is likely to play a key role in triggering the generation of high-frequency LIPSS upon irradiation by multiple laser pulses.

  13. Mechanisms by which oxygen acts as a surfactant in giant magnetoresistance film growth

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Petford-Long, A. K.; Cerezo, A.; Bozeman, S. P.; Morrone, A.; Ma, Y. Q.; Georgalakis, A.; Clifton, P. H.

    2003-04-01

    The mechanisms by which oxygen acts as a surfactant in giant magnetoresistance multilayers have been elucidated for the first time. Three-dimensional atom probe analysis of Cu/CoFe multilayers reveals the elemental distributions at the atomic level. Interfacial intermixing and oxygen impurity levels have been quantified for the first time. Both with and without oxygen the intermixing is greater at the CoFe-on-Cu interface than at the Cu-on-CoFe one and for both interfaces, oxygen reduced the intermixing. The oxygen largely floats to the growing surface and is incorporated at grain boundaries. The oxygen also reduces conformal roughness and grain boundary grooving, indicating a reduction in long-range surface diffusion.

  14. Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate

    NASA Astrophysics Data System (ADS)

    Ekinci, Şerafettin

    Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.

  15. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    PubMed

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  16. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  17. Chemical and electrical passivation of Si(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Tian, Fangyuan; Yang, Dan; Opila, Robert L.; Teplyakov, Andrew V.

    2012-01-01

    This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.

  18. Dependence of Pentacene Crystal Growth on Dielectric Roughness for Fabrication of Flexible Field-Effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, H.; Yang, C; Kim, S

    2010-01-01

    The dependence of pentacene nanostructures on gate dielectric surfaces were investigated for flexible organic field-effect transistor (OFET) applications. Two bilayer types of polymer/aluminum oxide (Al{sub 2}O{sub 3}) gate dielectrics were fabricated on commercial Al foils laminated onto a polymer back plate. Some Al foils were directly used as gate electrodes, and others were smoothly polished by an electrolytic etching. These Al surfaces were then anodized and coated with poly({alpha}-methyl styrene) (PAMS). For PAMS/Al{sub 2}O{sub 3} dielectrics onto etched Al foils, surface roughness up to 1 nm could be reached, although isolated dimples with a lateral diameter of several micrometers weremore » still present. On PAMS/Al{sub 2}O{sub 3} dielectrics (surface roughness >40 nm) containing mechanical grooves of Al foil, average hole mobility ({mu}FET) of 50 nm thick pentacene-FETs under the low operating voltages (|V| < 6 V) was {approx}0.15 cm{sup 2} V{sup -1} s{sup -1}. In contrast, pentacene-FETs employing the etched Al gates exhibited {mu}FET of 0.39 cm{sup 2} V{sup -1} s{sup -1}, which was comparable to that of reference samples with PAMS/Al{sub 2}O{sub 3} dielectrics onto flat sputtered Al gates. Conducting-probe atomic force microscopy and two-dimensional X-ray diffraction of pentacene films with various thicknesses revealed different out-of-plane and in-plane crystal orderings of pentacene, depending on the surface roughness of the gate dielectrics.« less

  19. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  20. Optical constants of electroplated gold from spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Herzinger, Craig M.; Hall, James T.; Malingowski, Andrew

    2017-11-01

    The optical constants of an opaque electroplated gold film (Laser Gold from Epner Technology Inc.), were determined by spectroscopic ellipsometry at room temperature over the spectral range from 0.142 μm in the vacuum ultraviolet to 36 μm in the infrared (photon energy range 0.034-8.75 eV). Data from two separate ellipsometer instruments covering different spectral ranges were analyzed simultaneously. The optical constants n&k or ε1&ε2 were determined by fitting an oscillator dispersion model combining Drude, Gaussian, and Sellmeier dispersion functions to the experimental Ψ and Δ data. The data were analyzed using both an ideal bulk substrate model and a simple overlayer model to account for surface roughness. Including the optical surface roughness layer improved ellipsometric data fits in the UV, and using a separate Drude function for the surface layer improved fits in the infrared. The surface roughness was also characterized using an Atomic Force Microscope. Using an oscillator dispersion model for the optical constants determined in this work allows for more realistic extrapolation to longer infrared wavelengths. Extending optical constants out to 50 μm and beyond is important for calibrating far-infrared reflectance measurements. Applications include understanding the thermal performance of cryogenic space-based instruments, such as the James Webb Space Telescope (JWST).

  1. Effect of surface roughness and subsurface damage on grazing-incidence x-ray scattering and specular reflectance.

    PubMed

    Lodha, G S; Yamashita, K; Kunieda, H; Tawara, Y; Yu, J; Namba, Y; Bennett, J M

    1998-08-01

    Grazing-incidence specular reflectance and near-specular scattering were measured at Al-K(alpha) (1.486-keV, 8.34-?) radiation on uncoated dielectric substrates whose surface topography had been measured with a scanning probe microscope and a mechanical profiler. Grazing-incidence specular reflectance was also measured on selected substrates at the Cu-K(alpha) (8.047-keV, 1.54-?) wavelength. Substrates included superpolished and conventionally polished fused silica; SiO(2) wafers; superpolished and precision-ground Zerodur; conventionally polished, float-polished, and precision-ground BK-7 glass; and superpolished and precision-ground silicon carbide. Roughnesses derived from x-ray specular reflectance and scattering measurements were in good agreement with topographic roughness values measured with a scanning probe microscope (atomic force microscope) and a mechanical profiler that included similar ranges of surface spatial wavelengths. The specular reflectance was also found to be sensitive to the density of polished surface layers and subsurface damage down to the penetration depth of the x rays. Density gradients and subsurface damage were found in the superpolished fused-silica and precision-ground Zerodur samples. These results suggest that one can nondestructively evaluate subsurface damage in transparent materials using grazing-incidence x-ray specular reflectance in the 1.5-8-keV range.

  2. Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.

    2017-12-01

    Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.

  3. Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth

    NASA Astrophysics Data System (ADS)

    Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki

    2001-10-01

    Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.

  4. Laser anti-corrosion treatment of metal surfaces

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Ruzankina, Julia; Kascheev, Sergey; Vasilyev, Oleg; Parfenov, V.; Grishkanich, Alexsandr

    2017-02-01

    Metal corrosion is the main problem of all metal constructions and buildings. Annual losses resulting from corrosion in industrialized countries are estimated in the range from 2% to 4 % of gross national product. We used a CW fiber laser with the wavelength of 1064 nm and a power up to 18,4 W for laser irradiation of metal surfaces. We report on the optimal treatment of the metal corrosion with laser power density in the range of 93,3÷ 95,5 W/cm2. After the process of laser treatment of steel surface we observe decreased roughness of steel and a small change in its chemical composition. There was an active research of new ways to improve the surface properties of metals and to increase the corrosion resistance. One of the breakthrough methods to protect the material against corrosion is laser treatment. We used a CW fiber laser operating at 1064 nm with up to 18,4 W output power. Experimentally, the samples (steel plates) were irradiated by laser for 35 seconds. Surface treatment of metal was provided at a room temperature and a relative air humidity of 55%. The impact of laser radiation on the surface has contributed to a small change of its chemical composition. It forms protective fluoride coating on the metal surface. The laser radiation significantly increased the concentration of fluorine in the metal from 0.01 atom. % to 5.24 atom. %. The surface roughness of steel has changed from 3.66 μ to 2.66 μ. Protective coatings with best resistance to corrosion were obtained with laser power density in a range of 93.3 W/cm2 to 95.5 W/cm2.

  5. Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.

    PubMed

    Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi

    2012-06-01

    The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.

  6. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  7. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.

    PubMed

    Burton, Zachary; Bhushan, Bharat

    2006-01-01

    Super-hydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature. These leaves are hydrophobic due to the presence of microbumps and a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surface and to separate out the effects of the microbumps and the wax on the hydrophobicity. Furthermore, the adhesion and friction properties of the leaves, with and without wax, are studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements on the hydrophobic leaves, both with and without wax, were made to fully characterize the leaf surface. Using a model that predicts contact angle as a function of roughness, the roughness factor for the hydrophobic leaves has been calculated, which is used to calculate the contact angle for a flat leaf surface. It is shown that both the microbumps and the wax play an equally important role in the hydrophobic nature as well as adhesion and friction of the leaf. This study will be useful in developing super-hydrophobic surfaces.

  8. Surface scaling analysis of textured MgO thin films fabricated by energetic particle self-assisted deposition

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.

  9. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  10. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    NASA Astrophysics Data System (ADS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  11. High-Temperature Growth of GaN and Al x Ga1- x N via Ammonia-Based Metalorganic Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Billingsley, Daniel; Henderson, Walter; Doolittle, W. Alan

    2010-05-01

    The effect of high-temperature growth on the crystalline quality and surface morphology of GaN and Al x Ga1- x N grown by ammonia-based metalorganic molecular-beam epitaxy (NH3-MOMBE) has been investigated as a means of producing atomically smooth films suitable for device structures. The effects of V/III ratio on the growth rate and surface morphology are described herein. The crystalline quality of both GaN and AlGaN was found to mimic that of the GaN templates, with (002) x-ray diffraction (XRD) full-widths at half- maximum (FWHMs) of ~350 arcsec. Nitrogen-rich growth conditions have been found to provide optimal surface morphologies with a root-mean-square (RMS) roughness of ~0.8 nm, yet excessive N-rich environments have been found to reduce the growth rate and result in the formation of faceted surface pitting. AlGaN exhibits a decreased growth rate, as compared with GaN, due to increased N recombination as a result of the increased pyrolysis of NH3 in the presence of Al. AlGaN films grown directly on GaN templates exhibited Pendellösung x-ray fringes, indicating an abrupt interface and a planar AlGaN film. AlGaN films grown for this study resulted in an optimal RMS roughness of ~0.85 nm with visible atomic steps.

  12. Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique.

    PubMed

    Ajami, S; Coathup, M J; Khoury, J; Blunn, G W

    2017-08-01

    Polyetheretherketone (PEEK) is an alternative to metallic implants in orthopedic applications; however, PEEK is bioinert and does not osteointegrate. In this study, an accelerated neutral atom beam technique (ANAB) was employed to improve the bioactivity of PEEK. The aim was to investigate the growth of human mesenchymal stem cells (hMSCs), human osteoblasts (hOB), and skin fibroblasts (BR3G) on PEEK and ANAB PEEK. The surface roughness and contact angle of PEEK and ANAB PEEK was measured. Cell metabolic activity, proliferation and alkaline phosphatase (ALP) was measured and cell attachment was determined by quantifying adhesion plaques with cells. ANAB treatment increased the surface hydrophilicity [91.74 ± 4.80° (PEEK) vs. 74.82 ± 2.70° (ANAB PEEK), p < 0.001] but did not alter the surface roughness. Metabolic activity and proliferation for all cell types significantly increased on ANAB PEEK compared to PEEK (p < 0.05). Significantly increased cell attachment was measured on ANAB PEEK surfaces. MSCs seeded on ANAB PEEK in the presence of osteogenic media, expressed increased levels of ALP compared to untreated PEEK (p < 0.05) CONCLUSION: Our results demonstrated that ANAB treatment increased the cell attachment, metabolic activity, and proliferation on PEEK. ANAB treatment may improve the osteointegration of PEEK implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1438-1446, 2017. © 2016 Wiley Periodicals, Inc.

  13. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Attar, M. M.

    2014-10-01

    The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  14. Potentiostatic controlled nucleation and growth modes of electrodeposited cobalt thin films on n-Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Mechehoud, Fayçal; Khelil, Abdelbacet; Eddine Hakiki, Nour; Bubendorff, Jean-Luc

    2016-08-01

    The nucleation and growth of Co electrodeposits on n-Si(1 1 1) substrate have been investigated as a function of the applied potential in a large potential range using electrochemical techniques (voltammetry and chrono-amperometry) and surface imaging by atomic force microscopy (AFM). The surface preparation of the sample is crucial and we achieve a controlled n-Si(1 1 1) surface with mono-atomic steps and flat terraces. Using Scharifker-Hills models for fitting the current-time transients, we show that a transition from an instantaneous nucleation process to a progressive one occurs when the overpotential increases. A good agreement between the nucleation and growth parameters extracted from the models and the AFM data's is observed. The growth is of the Volmer-Weber type with a roughness and a spatial extension in the substrate plane of the deposited islands that increase with thickness.

  15. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    NASA Astrophysics Data System (ADS)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  16. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less

  18. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika

    2016-05-23

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less

  19. Effect of tetramethylammonium hydroxide/isopropyl alcohol wet etching on geometry and surface roughness of silicon nanowires fabricated by AFM lithography

    PubMed Central

    Yusoh, Siti Noorhaniah

    2016-01-01

    Summary The optimization of etchant parameters in wet etching plays an important role in the fabrication of semiconductor devices. Wet etching of tetramethylammonium hydroxide (TMAH)/isopropyl alcohol (IPA) on silicon nanowires fabricated by AFM lithography is studied herein. TMAH (25 wt %) with different IPA concentrations (0, 10, 20, and 30 vol %) and etching time durations (30, 40, and 50 s) were investigated. The relationships between etching depth and width, and etching rate and surface roughness of silicon nanowires were characterized in detail using atomic force microscopy (AFM). The obtained results indicate that increased IPA concentration in TMAH produced greater width of the silicon nanowires with a smooth surface. It was also observed that the use of a longer etching time causes more unmasked silicon layers to be removed. Importantly, throughout this study, wet etching with optimized parameters can be applied in the design of the devices with excellent performance for many applications. PMID:27826521

  20. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  1. Studies of EUV contamination mitigation

    NASA Astrophysics Data System (ADS)

    Graham, Samual, Jr.; Malinowski, Michael E.; Steinhaus, Chip; Grunow, Philip A.; Klebanoff, Leonard E.

    2002-07-01

    Carbon contamination removal was investigated using remote RF-O2, RF-H2, and atomic hydrogen experiments. Samples consisted of silicon wafers coated with 100 Angstrom sputtered carbon, as well as bare Si-capped Mo/Si optics. Samples were exposed to atomic hydrogen or RF plasma discharges at 100 W, 200 W, and 300 W. Carbon removal rate, optic oxidation rate, at-wavelength (13.4 nm) peak reflectance, and optic surface roughness were characterized. Data show that RF- O2 removes carbon at a rate approximately 6 times faster RF- H2 for a given discharge power. However, both cleaning techniques induce Mo/Si optic degradation through the loss of reflectivity associated with surface oxide growth for RF-O2 and an unknown mechanism with hydrogen cleaning. Atomic hydrogen cleaning shows carbon removal rates sufficient for use as an in-situ cleaning strategy for EUVoptics with less risk of optic degradation from overexposures than RF-discharge cleaning. While hydrogen cleaning (RF and atomic) of EUV optics has proven effective in carbon removal, attempts to dissociate hydrogen in co-exposures with EUV radiation have resulted in no detectable removal of carbon contamination.

  2. Study of irradiation induced surface pattern and structural changes in Inconel 718 alloy

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Si, Naichao; Zhao, Zhenjiang; Wang, Jian; Zhang, Yifei

    2018-05-01

    Helium ions irradiation induced surface pattern and structural changes of Inconel 718 alloy were studied with the combined utilization of atomic force microscopy (AFM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, SRIM-2013 software was used to calculate the sputtering yield and detailed collision events. The result shows that, irradiation dose play an important role in altering the pattern of the surface. Enhanced irradiation aggravated the surface etching and increased the surface roughness. In ion irradiated layer, large amount of interstitials, vacancies and defect sinks were produced. Moreover, in samples with increasing dose irradiation, the dependence of interplanar spacing variation due to point defects clustering on sink density was discussed.

  3. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, Tayyab

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) modelmore » used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also simultaneously leading to low roughness surface with high removal rates.« less

  4. Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model and two-dimensional models of microwave plasma and hot filament chemical vapor deposition reactors

    NASA Astrophysics Data System (ADS)

    May, P. W.; Harvey, J. N.; Allan, N. L.; Richley, J. C.; Mankelevich, Yu. A.

    2010-12-01

    A one-dimensional kinetic Monte Carlo (KMC) model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model considers adsorption, etching/desorption, lattice incorporation and surface migration but not defect formation or renucleation processes. Two methods have been devised for estimation of the gas phase concentrations of species at the growing diamond surface, and are used to determine adsorption rates for C1Hx hydrocarbons for the different conditions. The rate of migration of adsorbed carbon species is governed by the availability of neighboring radical sites, which, in turn, depend upon the rates of H abstraction and of surface-radical migration. The KMC model predicts growth rates and surface roughness for each of diamond types consistent with experiment. In the absence of defect formation and renucleation the average surface diffusion length, ℓ, is a key parameter controlling surface morphology. When ℓ <2, surface migration is limited by the lack of availability of surface radical sites, and the migrating surface species simply hop back and forth between two adjacent sites but do not travel far beyond their initial adsorption site. Thus, Eley-Rideal processes dominate the growth, leading to the rough surfaces seen in NCD and UNCD. The maximum or "intrinsic" surface roughness occurs for nominally zero-migration conditions (ℓ =0) with an rms value of approximately five carbon atoms. Conversely, when migration occurs over greater distances (ℓ >2), Langmuir-Hinshelwood processes dominate the growth producing the smoother surfaces of MCD and SCD. By extrapolation, we predict that atomically smooth surfaces over large areas should occur once migrating species can travel approximately five sites (ℓ ˜5). β-scission processes are found to be unimportant for MCD and SCD growth conditions, but can remove up to 5% of the adsorbing carbon for NCD and UNCD growth. C1Hx insertion reactions also contribute <1% to the growth for nearly all conditions, while C2Hx (x <2) insertion reactions are negligible due their very low concentrations at the surface. Finally, the predictions for growth rate and morphology for UNCD deposition in a microwave system were found to be anomalous compared to those for all the other growth conditions, suggesting that carbonaceous particulates created in these plasmas may significantly affect the gas chemistry.

  5. Testing the limits of the Maxwell distribution of velocities for atoms flying nearly parallel to the walls of a thin cell.

    PubMed

    Todorov, Petko; Bloch, Daniel

    2017-11-21

    For a gas at thermal equilibrium, it is usually assumed that the velocity distribution follows an isotropic 3-dimensional Maxwell-Boltzmann (M-B) law. This assumption classically implies the assumption of a "cos θ" law for the flux of atoms leaving the surface. Actually, such a law has no grounds in surface physics, and experimental tests of this assumption have remained very few. In a variety of recently developed sub-Doppler laser spectroscopy techniques for gases one-dimensionally confined in a thin cell, the specific contribution of atoms moving nearly parallel to the boundary of the vapor container becomes essential. We report here on the implementation of an experiment to probe effectively the distribution of atomic velocities parallel to the windows for a thin (60 μm) Cs vapor cell. The principle of the setup relies on a spatially separated pump-probe experiment, where the variations of the signal amplitude with the pump-probe separation provide the information on the velocity distribution. The experiment is performed in a sapphire cell on the Cs resonance line, which benefits from a long-lived hyperfine optical pumping. Presently, we can analyze specifically the density of atoms with slow normal velocities ∼5-20 m/s, already corresponding to unusual grazing flight-at ∼85°-88.5° from the normal to the surface-and no deviation from the M-B law is found within the limits of our elementary setup. Finally we suggest tracks to explore more parallel velocities, when surface details-roughness or structure-and the atom-surface interaction should play a key role to restrict the applicability of an M-B-type distribution.

  6. Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating.

    PubMed

    Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo

    2011-06-01

    Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.

  7. Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.

    2014-02-01

    Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.

  8. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness ofmore » the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.« less

  9. Effects of ion- and electron-beam treatment on surface physicochemical properties of polylactic acid

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Savkin, K. P.; Laput, O. A.; Lytkina, D. N.; Botvin, V. V.; Medovnik, A. V.; Kurzina, I. A.

    2017-11-01

    We describe our investigations of the surface physicochemical and mechanical properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ions/cm2 at energies of 20 keV (for C and Ar) and 40 keV (for Ag), and by electron beam treatment with pulse-width of 100-300 μs in 50 μs increments at a beam energy 8 keV. Carbonyl bonds (sbnd Cdbnd O) related IR peak was reduced after ion and electron beam irradiation. Molecular weight of PLA decreases twice and does not depend on the nature of the bombarding particles. The microhardness of treated samples decreases by a factor of 1.3, and the surface conductivity increases by 6 orders of magnitude after ion implantation, and increases only modestly after electron beam treatment. Atomic force microscopy shows that surface roughness increases with irradiation dose. Samples irradiated with Ag to a dose of 1 × 1016 ions/cm2 show the greatest roughness of 190 nm.

  10. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less

  11. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings

    PubMed Central

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders’ concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings. PMID:28243071

  12. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.

    PubMed

    Nahum, Tehila; Dodiuk, Hanna; Kenig, Samuel; Panwar, Artee; Barry, Carol; Mead, Joey

    2017-01-01

    Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

  13. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    NASA Astrophysics Data System (ADS)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  14. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  15. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    NASA Astrophysics Data System (ADS)

    Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana

    2015-07-01

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  16. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. Amore » more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.« less

  17. Growth process optimization of ZnO thin film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  18. Mineral loss and morphological changes in dental enamel induced by a 16% carbamide peroxide bleaching gel.

    PubMed

    Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; Sacono, Nancy Tomoko; Loguércio, Alessandro Dourado; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2013-01-01

    The aim of this study was to compare the effect of a 16% carbamide peroxide (CP) gel and a 10% CP gel on mineralized enamel content and morphology. Enamel blocks from bovine incisors were subjected to a 14-day treatment (8 h/day) with 10% or 16% CP gels. Knoop microhardness was evaluated before bleaching and at 1, 7 or 14 days after this treatment (50 g/15 s). Mineral content (energy-dispersive x-ray spectroscopy), surface roughness and topography (atomic force microscopy) were evaluated at the 14-day period. Data were analyzed statistically by two-way ANOVA and Tukey's test (α=0.05). Significant microhardness reduction was observed at the 7 th and 14 th days for 10% CP gel, and for all bleaching times for 16% CP gel (p<0.05). At the 14-day period, a significant decrease in Ca and P content, increase on surface roughness (p<0.05) as well as on picks and valleys distance were observed when both bleaching gels were used. These enamel alterations were more intense for 16% CP gel. It was concluded that both CP-based gels promoted loss of mineral structure from enamel, resulting in a rough and porous surface. However, 16% CP gel caused the most intense adverse effects on enamel.

  19. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  20. Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals

    DOE PAGES

    Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...

    2017-09-12

    In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less

  1. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  2. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Brötzmann, M.; Hofsäss, H.

    2012-09-01

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.

  3. Alternative Dielectric Films for rf MEMS Capacitive Switches Deposited using Atomic Layer Deposited Al2O3/ZnO Alloys

    DTIC Science & Technology

    2006-07-02

    A s c c s r t h s l © K 1 b c A a e t s C t o 0 d Sensors and Actuators A 135 (2007) 262–272 Alternative dielectric films for rf MEMS capacitive...Zn concentrations in the alloy films , which was lower than expected. Atomic force microscopy images evealed an average surface roughness of 0.27 nm...that was independent of deposition temperature and film composition. The dielectric constants of he Al2O3/ZnO ALD alloys films were calculated to be

  4. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    PubMed

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  5. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement.

    PubMed

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.

  6. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    PubMed Central

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). Results: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Conclusions: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group. PMID:25713488

  7. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  9. Modification of a cyclo-olefin surface by radio-sterilization: is there any effect on the interaction with drug solutions?

    PubMed

    Barakat, Hala; Saunier, Johanna; Aymes Chodur, Caroline; Aubert, Pascal; Vigneron, Jackie; Etcheberry, Arnaud; Yagoubi, Najet

    2013-11-01

    A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The roughness and the wettability of the surface were enhanced by the treatment. The consequences of the surface modifications on the drug interaction with the polymer were studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Surface Morphology of Undoped and Doped ZnSe Films

    NASA Technical Reports Server (NTRS)

    George, T.; Hayes, M.; Chen, H.; Chattopadhyay, K.; Thomas E.; Morgan, S.; Burger, A.

    1998-01-01

    Rare-earth doped ions in polar II-VI semiconductors have recently played an important role in the optical properties of materials and devices. In this study, undoped ZnSe and erbium doped ZnSe films were grown by radio frequency (RF) magnetron sputtering method. Atomic Force Microscopy (AFM) was used together with optical microscopy and UV-Vis spectroscopy to characterize the films. Doped samples were found to have higher surface roughness and quite different surface morphology compared to that of undoped samples. The grown films generally show a relatively smooth and uniform surface indicating that they are of overall good quality. The impact of plasma etching on ZnSe:Er film examined under AFM is also discussed.

  11. Oxygen plasma ashing effects on aluminum and titanium space protective coatings

    NASA Technical Reports Server (NTRS)

    Synowicki, R.; Kubik, R. D.; Hale, J. S.; Peterkin, Jane; Nafis, S.; Woollam, John A.; Zaat, S.

    1991-01-01

    Using variable angle spectroscopic ellipsometry and atomic force microscopy (AFM), the surface roughness and oxidation of aluminum and titanium thin films have been studied as a function of substrate deposition temperature and oxygen plasma exposure. Increasing substrate deposition temperatures affect film microstructure by greatly increasing grain size. Short exposures to an oxygen plasma environment produce sharp spikes rising rapidly above the surface as seen by AFM. Ellipsometric measurements were made over a wide range of plasma exposure times, and results at longer exposure times suggest that the surface is greater than 30% void. This is qualitatively verified by the AFM images.

  12. Effects of growth rate on structural property and adatom migration behaviors for growth of GaInNAs/GaAs (001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Jingling; Gao, Peng; Zhang, Shuguang; Wen, Lei; Gao, Fangliang; Li, Guoqiang

    2018-03-01

    We have investigated the structural properties and the growth mode of GaInNAs films prepared at different growth rates (Rg) by molecular beam epitaxy. The crystalline structure is studied by high resolution X-ray diffraction, and the evolution of GaInNAs film surface morphologies is studied by atomic force microscopy. It is found that both the crystallinity and the surface roughness are improved by increasing Rg, and the change in the growth mode is attributed to the adatom migration behaviors particularly for In atoms, which is verified by elemental analysis. In addition, we have presented some theoretical calculation results related to the N adsorption energy to show the unique N migration behavior, which is instructive to interpret the growth mechanism of GaInNAs films.

  13. Large-Area Atomic Oxygen Facility Used to Clean Fire-Damaged Artwork

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Steuber, Thomas J.; Sechkar, Edward A.

    2000-01-01

    In addition to completely destroying artwork, fires in museums and public buildings can soil a displayed artwork with so much accumulated soot that it can no longer be used for study or be enjoyed by the public. In situations where the surface has not undergone extensive charring or melting, restoration can be attempted. However, soot deposits can be very difficult to remove from some types of painted surfaces, particularly when the paint is fragile or flaking or when the top surface of the paint binder has been damaged. Restoration typically involves the use of organic solvents to clean the surface, but these solvents may cause the paint layers to swell or leach out. Also, immersion of the surface or swabbing during solvent cleaning may move or remove pigment through mechanical contact, especially if the fire damage extends into the paint binder. A noncontact technique of removing organic deposits from surfaces was developed out of NASA research on the effects of oxygen atoms on various materials. Atomic oxygen is present in the atmosphere surrounding the Earth at the altitudes where satellites typically orbit. It can react chemically with surface coatings or deposits that contain carbon. In the reaction, the carbon is converted to carbon monoxide and some carbon dioxide. Water vapor is also a byproduct of the reaction if the surface contains carbon-hydrogen bonds. To study this reaction, NASA developed Earth-based facilities to produce atomic oxygen for material exposure and testing. A vacuum facility designed and built by the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field to provide atomic oxygen over a large area for studying reactions in low Earth orbit has been used to successfully clean several full-size paintings. (This facility can accommodate paintings up to 1.5 by 2.1 m. The atomic oxygen plasma is produced between two large parallel aluminum plates using a radiofrequency power source operating at roughly 400 W. Atomic oxygen is generated uniformly over this area at an operating pressure of 1 to 5 mtorr.

  14. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  15. Characterization of surface roughness of laser deposited titanium alloy and copper using AFM

    NASA Astrophysics Data System (ADS)

    Erinosho, M. F.; Akinlabi, E. T.; Johnson, O. T.

    2018-03-01

    Laser Metal Deposition (LMD) is the process of using the laser beam of a nozzle to produce a melt pool on a metal surface usually the substrate and metal powder is been deposited into it thereby creating a fusion bond with the substrate to form a new material layer against the force gravity. A good metal laminate is formed when the wettability between the dropping metal powder and the substrate adheres. This paper reports the surface roughness of laser deposited titanium alloy and copper (Ti6Al4V + Cu) using the Atomic Force Microscopy (AFM). This AFM is employed in order to sense the surface and produce different manipulated images using the micro-fabricated mechanical tip under a probe cartridge of high resolution. The process parameters employed during the deposition routine determines the output of the deposit. A careful attention is given to the laser deposited Ti6Al4V + Cu samples under the AFM probe because of their single tracked layers with semi-circular pattern of deposition. This research work can be applicable in the surface modification of laser deposited samples for the marine industry.

  16. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.

    PubMed

    Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee

    2015-08-15

    Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Remineralization of early enamel caries lesions using different bioactive elements containing toothpastes: An in vitro study.

    PubMed

    Wang, Yu; Mei, Li; Gong, Lin; Li, Jialing; He, Shaowei; Ji, Yan; Sun, Weibin

    2016-09-14

    Demineralization can be arrested or reversed when remineralization agents are applied to incipient carious or non-cavitated carious lesions. A large number of therapeutic agents including non-fluoridated products have been developed to promote enamel remineralization. This study aims to evaluate the efficacy of different bioactive elements containing toothpastes in remineralization of artificial enamel lesions. Artificial carious lesions were created on 40 human enamel slabs, and were randomly divided into four groups: (1) control group (no treatment), (2) casein phosphopeptide-amorphous calcium phosphate group (CPP-ACP, GC Tooth Mousse), (3) 8% arginine and calcium carbonate group (ACC, Colgate Sensitive Pro-Relief), (4) calcium sodium phosphosilicate group (CSP, NovaMin®). All samples were subjected to 15 days of pH-cycling. Subsequently, a one-hour acid resistance test was carried out. Surface hardness of the samples was assessed using the Knoop hardness test, and surface morphology and roughness were assessed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Data were analyzed using one-way ANOVA, Tukey's test and paired t test. The three tested toothpastes exhibited a significantly higher remineralization efficacy compared with the control group (P< 0.05 for all). After pH-cycling, the specimens treated with Colgate Sensitive Pro-Relief and NovaMin® showed a significant higher surface hardness (P< 0.001 and P= 0.03, respectively) and lower surface roughness (P< 0.05 for both) compared those treated with GC Tooth Mousse. While after the acid resistance test, all groups showed a significant loss of surface hardness (P< 0.001 for all) and significant increase of surface roughness (P< 0.05). The specimens treated with Colgate Sensitive Pro-Relief and NovaMin® still showed a significant higher surface hardness and lower surface roughness in comparison with those treated with GC Tooth Mousse (P< 0.05 for all). No significant difference was found in surface hardness and roughness between Colgate Sensitive Pro-Relief and NovaMin® during the pH-cycling test and acid resistance test (P= 0.45 and P= 0.83, respectively). Colgate Sensitive Pro-Relief and NovaMin® present an advantage in enhancing remineralization and inhibiting demineralization for early enamel carious lesions in comparison with GC Tooth Mousse.

  18. Lens capsule structure assessed with atomic force microscopy

    PubMed Central

    Sueiras, Vivian M.; Moy, Vincent T.

    2015-01-01

    Purpose To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). Methods Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44–88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83–8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco’s Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. Results The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 μm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. Conclusions AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness. PMID:25814829

  19. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    NASA Astrophysics Data System (ADS)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  20. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.

    PubMed

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.

  1. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  2. Study optoelectronic properties for polymer composite thick film

    NASA Astrophysics Data System (ADS)

    Jobayr, Mahmood Radhi; Al Razak, Ali Hussein Abd; Mahdi, Shatha H.; Fadhil, Rihab Nassr

    2018-05-01

    Coupling the epoxy with cadmium oxide particles are important for optical properties that may be affected by various mixing proportions. The aim of this experimental study was to evaluate the effect of different mixing proportions on these properties of reinforced epoxy with cadmium oxide particles. The ultrasonic techniques were used to mix and prepared samples of composites. The surfaces topographic of the 50 µm thick reinforced epoxy films were studied using atomic force microscopy (AFM) and microscopy technique (FTIR) Spectroscopy. AFM imaging and quantitative characterization of the films showed that for all samples the root mean square of the surface roughness increases monotonically with increasing the CdO concentrations (from 0% to 15%). The observed effects of CdO concentrations on surface roughness can be explained by two things: the first reason is that the atoms of additives are combined with the original material to form a new compound that is smoother, more homogeneity and smaller in particle size. The second reason is due to high mixing due to ultrasonic mixing. It is clear also, AFM examination of the prepared samples of reinforced epoxy resin shown that topographical contrast and the identification of small structural details critically depend on hardness of epoxy resin, which in turn depended on the ratio of material (CdO) added. We show that the AFM imaging of the films showed that the mean diameter (104.8nm) of films for all of the samples decreased from 135.50 nm to 83.20 nm with the increase of CdO concentrations.

  3. Effect of irrigation on surface roughness and fatigue resistance of controlled memory wire nickel-titanium instruments.

    PubMed

    Cai, J-J; Tang, X-N; Ge, J-Y

    2017-07-01

    To investigate the effect of irrigation on the surface roughness and fatigue resistance of HyFlex and M3 controlled memory (CM) wire nickel-titanium instruments. Two new files of each brand were analysed by atomic force microscopy (AFM). Then, the instruments were dynamically immersed in either 5.25% sodium hypochlorite (NaOCl) or 17% ethylene diamine tetraacetic acid (EDTA) solution for 10 min, followed by AFM analysis. The roughness average (Ra) and root mean square (RMS) values were analysed statistically using an independent sample t-test. Then, 36 files of each brand were randomly assigned to three groups (n = 12). Group 1 (the control group) was composed of new instruments. Groups 2 and 3 were dynamically immersed in 5.25% NaOCl and 17% EDTA solutions for 10 min, respectively. The number of rotations to failure for various groups was analysed using the one-way analysis of variance software. For M3 files, the Ra and RMS values significantly increased (P < 0.05) after the immersion. For the HyFlex file, the Ra and RMS values significantly increased (P < 0.05) only in EDTA, but not (P > 0.05) NaOCl. The resistance to cyclic fatigue of both HyFlex and M3 files did not significantly decrease (P > 0.05) by immersing in 5.25% NaOCl and 17% EDTA solutions. Except the HyFlex files immersed in NaOCl, the surface roughness of other files exposed to irrigants increased. However, a change in the surface tomography of CM wire instruments caused by contact with irrigants for 10 min did not trigger a decrease in cyclic fatigue resistance. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Mechanism analysis on finishing of reaction-sintered silicon carbide by combination of water vapor plasma oxidation and ceria slurry polishing

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; Yamamura, Kazuya

    2015-05-01

    Reaction-sintered silicon carbide (RS-SiC), which is considered as a promising mirror material for space telescope systems, requires a high surface property. An ultrasmooth surface with a Ra surface roughness of 0.480 nm was obtained after water vapor plasma oxidation for 90 min followed by ceria slurry polishing for 40 min. The oxidation process of RS-SiC by water vapor plasma was analyzed based on the Deal-Grove model, and the theoretical calculation results are consistent with the measured data obtained by scanning white light interferometer (SWLI), scanning electron microscopy/energy-dispersive x-ray, and atomic force microscope. The polishing process of oxidized RS-SiC by ceria slurry was investigated according to the Preston equation, which would theoretically forecast the evolutions of RS-SiC surfaces along with the increasing of polishing time, and it was experimentally verified by comparing the surface roughnesses obtained by SWLI and the surface morphologies obtained by SEM. The mechanism analysis on the finishing of RS-SiC would be effective for the optimization of water vapor plasma oxidation parameters and ceria slurry polishing parameters, which will promote the application of RS-SiC substrates by improving the surface property obtained by the oxidation-assisted polishing method.

  5. Testing the limits of the Maxwell distribution of velocities for atoms flying nearly parallel to the walls of a thin cell

    NASA Astrophysics Data System (ADS)

    Todorov, Petko; Bloch, Daniel

    2017-11-01

    For a gas at thermal equilibrium, it is usually assumed that the velocity distribution follows an isotropic 3-dimensional Maxwell-Boltzmann (M-B) law. This assumption classically implies the assumption of a "cos θ" law for the flux of atoms leaving the surface. Actually, such a law has no grounds in surface physics, and experimental tests of this assumption have remained very few. In a variety of recently developed sub-Doppler laser spectroscopy techniques for gases one-dimensionally confined in a thin cell, the specific contribution of atoms moving nearly parallel to the boundary of the vapor container becomes essential. We report here on the implementation of an experiment to probe effectively the distribution of atomic velocities parallel to the windows for a thin (60 μm) Cs vapor cell. The principle of the setup relies on a spatially separated pump-probe experiment, where the variations of the signal amplitude with the pump-probe separation provide the information on the velocity distribution. The experiment is performed in a sapphire cell on the Cs resonance line, which benefits from a long-lived hyperfine optical pumping. Presently, we can analyze specifically the density of atoms with slow normal velocities ˜5-20 m/s, already corresponding to unusual grazing flight—at ˜85°-88.5° from the normal to the surface—and no deviation from the M-B law is found within the limits of our elementary setup. Finally we suggest tracks to explore more parallel velocities, when surface details—roughness or structure—and the atom-surface interaction should play a key role to restrict the applicability of an M-B-type distribution.

  6. Limits in measurements of contact lens surface profile using atomic force microscopy.

    PubMed

    Brygoła, Rafał; Sęk, Sławomir; Sokołowski, Maciej; Kowalczyk-Hernández, Marek; Pniewski, Jacek

    2018-05-01

    In the paper the results of AFM surface profile measurements of seven new long-wear contact lenses (CL) available in Poland are presented. Calculated statistical roughness parameters are shown, namely standard deviation (RMS), mean roughness, maximum difference between peak and valley, skewness, and kurtosis. It is demonstrated that CLs manufactured using recent methods, such as two-stage polimerisation or extending silicon chains exhibit small RMS, less than 10 nm, in comparison with older generation CLs which maintains RMS on the level of tens of nanometers. Then, a comparison of results obtained using a typical silicon tip and a silicon tip covered with alkylsilane is also demonstrated. As a result, roughness parameters, such as RMS, are higher for the case of alkylsilane-coated tip than for a typical silicon tip, 8.39 ± 0.16 nm vs. 6.22 ± 0.9 nm, which leads to the conclusion that the proper choice of the tip material significantly influences the outcome of the experiment. Finally, the reliability and limits of such measurements are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A model system to mimic environmentally active surface film roughness and hydrophobicity.

    PubMed

    Grant, Jacob S; Shaw, Scott K

    2017-10-01

    This work presents the development and initial assessment of a laboratory platform to allow quantitative studies on model urban films. The platform consists of stearic acid and eicosane mixtures that are solution deposited from hexanes onto smooth, solid substrates. We show that this model has distinctive capabilities to better mimic a naturally occurring film's morphology and hydrophobicity, two important parameters that have not previously been incorporated into model film systems. The physical and chemical properties of the model films are assessed using a variety of analytical instruments. The film thickness and roughness are probed via atomic force microscopy while the film composition, wettability, and water uptake are analyzed by Fourier transform infrared spectroscopy, contact angle goniometry, and quartz crystal microbalance, respectively. Simulated environmental maturation is achieved by exposing the film to regulated amounts of UV/ozone. Ultimately, oxidation of the film is monitored by the analytical techniques mentioned above and proceeds as expected to produce a utile model film system. Including variable roughness and tunable surface coverage results in several key advantages over prior model systems, and will more accurately represent native urban film behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  9. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  10. Low-density polyethylene films treated by an atmospheric Ar-O2 post-discharge: functionalization, etching, degradation and partial recovery of the native wettability state

    NASA Astrophysics Data System (ADS)

    Abou Rich, S.; Dufour, T.; Leroy, P.; Nittler, L.; Pireaux, J. J.; Reniers, F.

    2014-02-01

    To optimize the adhesion of layers presenting strong barrier properties on low-density polyethylene (LDPE) surfaces, we investigated the influence of argon and argon-oxygen atmospheric pressure post-discharges. This study was performed using x-ray photoelectron spectroscopy, atomic force microscopy, optical emission spectroscopy (OES) and dynamic water contact angle (WCA) measurements. After the plasma treatment, a slight increase in the roughness was emphasized, more particularly for the samples treated in a post-discharge supplied in oxygen. Measurements of the surface roughness and of the oxygen surface concentration suggested the competition of two processes playing a role on the surface hydrophilicity and occurring during the post-discharge treatment: the etching and the activation of the surface. The etching rate was estimated to about 2.7 nm s-1 and 5.8 nm s-1 for Ar and Ar-O2 post-discharges, respectively. The mechanisms underlying this etching were investigated through experiments, in which we discuss the influence of the O2 flow rate and the distance (gap) separating the plasma torch from the LDPE surface located downstream. O atoms and NO molecules (emitting in the UV range) detected by OES seem to be good candidates to explain the etching process. An ageing study is also presented to evidence the stability of the treated surfaces over 60 days. After 60 days of storage, we showed that whatever the O2 flow rate, the treated films registered a loss of their hydrophilic state since their WCA increased towards a common threshold of 80°. This ‘hydrophobic recovery’ effect was mostly attributed to the reorientation of induced polar chemical groups into the bulk of the material. Indeed, the relative concentrations of the carbonyl and carboxyl groups at the surface decreased with the storage time and seemed to reach a plateau after 30 days.

  11. Preparation and Microcosmic Structural Analysis of Recording Coating on Inkjet Printing Media

    PubMed Central

    Jiang, Bo; Liu, Weiyan; Bai, Yongping; Huang, Yudong; Liu, Li; Han, Jianping

    2011-01-01

    Preparation of recording coating on inkjet printing (RC-IJP) media was proposed. The microstructure and roughness of RC-IJP was analyzed by scanning electron microscopy (SEM) and atomic force microscope (AFM). The surface infiltration process of RC-IJP was studied by a liquid infiltration instrument. The distribution of C, O and Si composites on recording coating surface is analyzed by energy dispersive spectrum (EDS). The transmission electron microscopy (TEM) analysis showed that the nanoscale silica could be dissolved uniformly in water. Finally, the print color is shown clearly by the preparative recording coating. PMID:21954368

  12. Atomic force microscopy analysis of human cornea surface after UV (λ=266 nm) laser irradiation

    NASA Astrophysics Data System (ADS)

    Spyratou, E.; Makropoulou, M.; Moutsouris, K.; Bacharis, C.; Serafetinides, A. A.

    2009-07-01

    Efficient cornea reshaping by laser irradiation for correcting refractive errors is still a major issue of interest and study. Although the excimer laser wavelength of 193 nm is generally recognized as successful in ablating corneal tissue for myopia correction, complications in excimer refractive surgery leads to alternative laser sources and methods for efficient cornea treatment. In this work, ablation experiments of human donor cornea flaps were conducted with the 4th harmonic of an Nd:YAG laser, with different laser pulses. AFM analysis was performed for examination of the ablated cornea flap morphology and surface roughness.

  13. Characterization of Atomic-Layer-Deposited (ALD) Al2O3-Passivated Sub-50-μm-thick Kerf-less Si Wafers by Controlled Spalling

    NASA Astrophysics Data System (ADS)

    Lee, Yong Hwan; Cha, Hamchorom; Choi, Sunho; Chang, Hyo Sik; Jang, Boyun; Oh, Jihun

    2018-05-01

    A systematic characterization of sub-50-μm-thick, kerf-less monocrystalline Si wafers fabricated by a controlled fracture method is presented. The spalling process introduces various defects on the Si surface, which result in high surface roughness levels, residual stress, and low effective minority carrier lifetimes. In addition, metals used to induce fracturing in Si diffuse in the Si at room temperature and degrade the effective minority carrier lifetime. Selective removal of these defected Si regions improves the residual stress and effective lifetimes of spalled Si wafers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  15. Mechanisms of dust grain charging in plasma with allowance for electron emission processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru

    2017-02-15

    The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.

  16. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    DOE PAGES

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; ...

    2016-10-13

    The growth of quaternary Ga 0.68In 0.32As 0.35P 0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 um-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. In order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys, the growth temperature and substrate miscut are varied. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering andmore » suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Our initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga 0.68In 0.32As 0.35P 0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.« less

  17. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less

  18. Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study.

    PubMed

    Valois, Caroline R A; Silva, Luciano P; Azevedo, Ricardo B

    2008-07-01

    The purpose of this study was to evaluate the surface of rotary nickel-titanium (Ni-Ti) files after multiple autoclave cycles. Two different types of rotary Ni-Ti (Greater Taper and ProFile) were attached to a glass base. After 1, 5, and 10 autoclave cycles the files were positioned in the atomic force microscope. The analyses were performed on 15 different points. The same files were used as control before any autoclave cycle. The following vertical topographic parameters were measured: arithmetic mean roughness, maximum height, and root mean square. The differences were tested by analysis of variance with Tukey test. All topographic parameters were higher for both Greater Taper and ProFile after 10 cycles compared with the control (P < .05). ProFile also showed higher topographic parameters after 5 cycles compared with the control (P < .05). The results indicated that multiple autoclave cycles increase the depth of surface irregularities located on rotary Ni-Ti files.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napari, Mari, E-mail: mari.napari@jyu.fi; Malm, Jari; Lehto, Roope

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{submore » 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.« less

  20. Study of zinc-induced changes in lymphocyte membranes using atomic force microscopy, luminescence, and light scattering methods

    NASA Astrophysics Data System (ADS)

    Filimonenko, D. S.; Khairullina, A. Ya.; Yasinskii, V. M.; Kozlova, N. M.; Zubritskaja, G. P.; Slobozhanina, E. I.

    2011-07-01

    Changes in the surface structure of lymphocyte membranes exposed to various concentrations of zinc ions are studied. It is found by atomic force microscopy that increasing the concentration of zinc ions leads to a reduction in the correlation length of the autocorrelation function of the roughness profile of a lymphocyte compared to control samples; this may indicate the existence of fine structure in the membrane surface. Fluorescence markers are used to observe a reduction in the microviscosity of the lipids in the outer monolayer of the lipid bilayer after lymphocytes are exposed to Zn ions, as well as the exposure of phosphatidylserine on the surface membrane, and the oxidation of HS-groups of membrane proteins. Calculations of the absorption coefficients of lymphocytes modified with zinc reveal the existence of absorption bands owing to the formation of metal-protein complexes and zinc oxide nanoparticles. These results indicate significant changes in the structural and functional state of lymphocyte membranes exposed to zinc ions.

  1. Micromorphological characterization of zinc/silver particle composite coatings.

    PubMed

    Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof; Ţălu, Ştefan

    2015-12-01

    The aim of this study was to evaluate the three-dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df , as well as height values distribution have been determined for the 3D nanostructure surfaces. © 2015 The Authors published by Wiley Periodicals, Inc.

  2. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  3. Surface modifications of ultra-thin gold films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Mallick, P.; Rath, H.; Dash, B. N.; Tripathi, A.; Prakash, Jai; Avasthi, D. K.; Satyam, P. V.; Mishra, N. C.

    2010-10-01

    Gold films of thickness 10 and 20 nm grown on float glass substrate by thermal evaporation technique were irradiated with 107 MeV Ag8+ and 58 MeV Ni5+ ions at different fluences and characterized by Grazing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). The pristine films were continuous and no island structures were found even at these small thicknesses. The surface roughness estimated from AFM data did not show either monotonic increase or decrease with ion fluences. Instead, it increased at low fluences and decreased at high fluences for 20 nm thick film. In the 10 nm film roughness first increased with ion fluence, then decreased and again increased at higher fluences. The pattern of variation, however, was identical for Ni and Ag beams. Both the beams led to the formation of cracks on the film surface at intermediate fluences. The observed ion-irradiation induced thickness dependent topographic modification is explained by the spatial confinement of the energy deposited by ions in the reduced dimension of the films.

  4. Magnesium coated bioresorbable phosphate glass fibres: investigation of the interface between fibre and polyester matrices.

    PubMed

    Liu, Xiaoling; Grant, David M; Parsons, Andrew J; Harper, Lee T; Rudd, Chris D; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg(2+) in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.

  5. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    PubMed Central

    Liu, Xiaoling; Grant, David M.; Parsons, Andrew J.; Harper, Lee T.; Rudd, Chris D.; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness. PMID:24066297

  6. Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.

    PubMed

    Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J

    2013-07-01

    There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Structure and optical properties of TiO2 thin films deposited by ALD method

    NASA Astrophysics Data System (ADS)

    Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz

    2017-12-01

    This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.

  9. Effect of surface roughness on droplet splashing

    NASA Astrophysics Data System (ADS)

    Hao, Jiguang

    2017-12-01

    It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.

  10. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  11. Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming.

    PubMed

    Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong

    2011-01-21

    Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Nanostructural surface engineering of grafted polymers on inorganic oxide substrates for membrane separations

    NASA Astrophysics Data System (ADS)

    Yoshida, Wayne Hiroshi

    Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.

  13. Effect of slurry composition on the chemical mechanical polishing of thin diamond films

    PubMed Central

    Werrell, Jessica M.; Mandal, Soumen; Thomas, Evan L. H.; Brousseau, Emmanuel B.; Lewis, Ryan; Borri, Paola; Davies, Philip R.; Williams, Oliver A.

    2017-01-01

    Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films’ various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones. PMID:29057022

  14. Effect of slurry composition on the chemical mechanical polishing of thin diamond films

    NASA Astrophysics Data System (ADS)

    Werrell, Jessica M.; Mandal, Soumen; Thomas, Evan L. H.; Brousseau, Emmanuel B.; Lewis, Ryan; Borri, Paola; Davies, Philip R.; Williams, Oliver A.

    2017-12-01

    Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films' various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones.

  15. Lacunarity study of speckle patterns produced by rough surfaces

    NASA Astrophysics Data System (ADS)

    Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.

    2017-11-01

    In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.

  16. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces

    NASA Astrophysics Data System (ADS)

    Thakkar, Manan; Busse, Angela; Sandham, Neil

    2017-02-01

    Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.

  17. Effect of Physicochemical Anomalies of Soda-Lime Silicate Slides on Biomolecule Immobilization

    DTIC Science & Technology

    2009-01-01

    roughness. EXPERIMENTAL SECTION Materials. Standard soda - lime glass microscope slides were obtained from several sources (Table 1). Rabbit anti-lipid A...had changed, confir- mation was obtained from the manufacturers that slides in set A1 were the same soda - lime glass slides as those in set A2 and...manufacture of soda - lime glass slides. X-ray Photoelectron Spectroscopy (XPS). To identify el- emental disparities in the glass surface, relative atomic

  18. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

    NASA Astrophysics Data System (ADS)

    Ram, S. D. Gopal; Ravi, G.; Athimoolam, A.; Mahalingam, T.; Kulandainathan, M. Anbu

    2011-12-01

    Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.

  19. Adsorption Analysis of Lactoferrin to Titanium, Stainless Steel, Zirconia, and Polymethyl Methacrylate Using the Quartz Crystal Microbalance Method

    PubMed Central

    Yoshida, Eiji; Hayakawa, Tohru

    2016-01-01

    It is postulated that biofilm formation in the oral cavity causes some oral diseases. Lactoferrin is an antibacterial protein in saliva and an important defense factor against biofilm development. We analyzed the adsorbed amount of lactoferrin and the dissociation constant (K d) of lactoferrin to the surface of different dental materials using an equilibrium analysis technique in a 27 MHz quartz crystal microbalance (QCM) measurement. Four different materials, titanium (Ti), stainless steel (SUS), zirconia (ZrO2) and polymethyl methacrylate (PMMA), were evaluated. These materials were coated onto QCM sensors and the surfaces characterized by atomic force microscopic observation, measurements of surface roughness, contact angles of water, and zeta potential. QCM measurements revealed that Ti and SUS showed a greater amount of lactoferrin adsorption than ZrO2 and PMMA. Surface roughness and zeta potential influenced the lactoferrin adsorption. On the contrary, the K d value analysis indicated that the adsorbed lactoferrin bound less tightly to the Ti and SUS surfaces than to the ZrO2 and PMMA surfaces. The hydrophobic interaction between lactoferrin and ZrO2 and PMMA is presumed to participate in better binding of lactoferrin to ZrO2 and PMMA surfaces. It was revealed that lactoferrin adsorption behavior was influenced by the characteristics of the material surface. PMID:26998486

  20. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less

  1. Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays

    NASA Astrophysics Data System (ADS)

    Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Mao, Shengchun

    2015-08-01

    Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F-) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F-, smaller azimuth angle of Fsbnd Ag(T4)sbnd Si, shorter bond length of Fsbnd Si compared with Fsbnd Ag. As F- was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF4 when it bonded with enough F- while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F- to Si.

  2. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  3. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  4. Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si(100): Size and roughness evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffino, F.; Canino, A.; Grimaldi, M. G.

    Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less

  5. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-06-01

    In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  6. Nanoscale electro-structural characterisation of ohmic contacts formed on p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Frazzetto, Alessia; Giannazzo, Filippo; Lo Nigro, Raffaella; di Franco, Salvatore; Bongiorno, Corrado; Saggio, Mario; Zanetti, Edoardo; Raineri, Vito; Roccaforte, Fabrizio

    2011-12-01

    This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM. The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

  7. Impact of thickness on the structural properties of high tin content GeSn layers

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  8. Structural changes of a-CNx thin films induced by thermal annealing

    NASA Astrophysics Data System (ADS)

    Aziz, Siti Aisyah Abd; Awang, Rozidawati

    2018-04-01

    In this work, amorphous carbon nitride (a-CNx) thin films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique at different RF powers of 60, 70, 80, 90 and 100 W for 30 min. These films were prepared using a mixture of acetylene (C2H2) at 20 sccm and nitrogen (N2) gases at 50 sccm. The films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The chemical bondings of the film were analyzed by Fourier Transform Infra-red Spectroscopy (FTIR) while surface morphology and film roughness were determined by Atomic Force Microscopy (AFM). The FTIR analysis reveals that annealing resulted in the loss of C-H and C-N bonds and formation of graphitic sp2C cluster with the dissociation of N and C in the films. AFM indicates that the film surface becomes less rough which effectually enhances structural modifications and the rearrangement of the microstructure of the films after annealing.

  9. Effect of chlorhexidine-containing prophylactic agent on the surface characterization and frictional resistance between orthodontic brackets and archwires: an in vitro study

    PubMed Central

    2013-01-01

    Background The purpose of this study was to assess the surface characterization and frictional resistance between stainless steel brackets and two types of orthodontic wires made of stainless steel and nickel-titanium alloys after immersion in a chlorhexidine-containing prophylactic agent. Methods Stainless steel orthodontic brackets with either stainless steel (SS) or heat-activated nickel-titanium (Ni-Ti) wires were immersed in a 0.2% chlorhexidine and an artificial saliva environment for 1.5 h. The frictional force was measured on a universal testing machine with a crosshead speed of 10 mm/min over a 5-mm of archwire. The surface morphology of bracket slots and surface roughness of archwires after immersion in chlorhexidine were also characterized using a scanning electron microscope (SEM) and an atomic force microscope (AFM), respectively. Results There was no significant difference in the frictional resistance values between SS and Ni-Ti wires immersed in either chlorhexidine or artificial saliva. The frictional resistance values for the SS and Ni-Ti wires immersed in 0.2% chlorhexidine solution were not significantly different from that inartificial saliva. No significant difference in the average surface roughness for both wires before (as-received) and after immersion in either chlorhexidine or artificial saliva was observed. Conclusions One-and-half-hour immersion in 0.2% chlorhexidine mouthrinse did not have significant influence on the archwires surface roughness or the frictional resistance between stainless steel orthodontic brackets and archwires made of SS and Ni-Ti. Based on these results, chlorhexidine-containing mouthrinses may be prescribed as non-destructive prophylactic agents on materials evaluated in the present study for orthodontic patients. PMID:24325758

  10. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    NASA Astrophysics Data System (ADS)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  11. Potential roughness near lithographically fabricated atom chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, P.; Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 Rue Lhomond, F-75005 Paris; Andersson, L. M.

    2007-12-15

    Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-{mu}m-wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough edges. A technique for further reduction of potential roughnessmore » by several orders of magnitude based on time-orbiting magnetic fields is outlined.« less

  12. Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.

    2010-12-01

    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.

  13. Surface roughness: A review of its measurement at micro-/nano-scale

    NASA Astrophysics Data System (ADS)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  14. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less

  15. Property of filler-loaded magnetic ferrite from plastic waste bottle used to treat municipal domestic sewage.

    PubMed

    Zhao, Ru-Jin; Gong, Li-Ying; Zhu, Hai-Dong; Liu, Qiao; Xu, Li-Xia; Lu, Lu; Yang, Qi-Zhi

    2018-06-01

    The present work investigates the properties of self-made magnetic filler from plastic waste bottle and explores a new technology approach of waste plastic resource utilization. The magnetic filler was prepared by air plasma modification and loading magnetic ferrite on the plastic strip from waste plastic bottle. The surface properties of magnetic filler were characterized by Atomic Force Microscope (AFM), contact angle system and Fourier Transform Infrared (FTIR). AFM images of original and modified plastic strip showed that low-temperature plasma treatment markedly increased the surface roughness of plastic strip. The mean roughness (Ra) of plastic strip rose from 1.116 to 5.024 nm. FTIR spectra indicated that a lot of polar oxygenic groups were introduced onto the surface of plastic by plasma modification. Modification by low-temperature plasma increased the hydrophilicity of plastic strip surface. When treatment time is 40 s, water contact angle of plastic strip surface reduced from 78.2° of original plastic strip to 25.3°. When used in bioreactor, magnetic filler had very favorable microenvironment for microorganism growth. Magnetic filler was more efficient for removing chemical oxygen demand (COD) and [Formula: see text] in sewage than nonmagnetic filler. The resource utilization of plastic wastes will become reality if the magnetic filler is applied widely.

  16. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    PubMed

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  17. Experimental exploration of the hydrodynamic effect polishing machinability for different types of material

    NASA Astrophysics Data System (ADS)

    Peng, W. Q.; Li, Y.; Wang, Z.; Li, S. Y.

    2018-01-01

    Hydrodynamic effect polishing (HEP), in which the material removal relies on the chemisorption between nanoparticles and the workpiece surface in elastic mode, can realize automatic level smooth surface without surface/subsurface damage. The machinability of different types of optical material (such as monocrystalline silicon and crystalline quartz, amorphous silicate glass, Zerodur and so on) were investigated experimentally. The workpiece surfaces before and after being polished by HEP was observed by atomic force microscopy. The experimental results show the surface roughness of monocrystalline silicon and quartz, amorphous silicate glass have decreased from Rms 0.737nm to Rms 0.175nm, Rms 0.490nm to Rms 0.187nm, Rms 0.469nm to Rms 0.157nm respectively, and meanwhile all the defects and bumpy structures have been removed clearly. However the surface roughness has increased from Rms 0.213nm to Rms 0.321nm with the obvious increment of micro unevenness. By comparison, we can conclude that excellent performance is shown when HEP is applied on the optical material structure with a single monocrystalline or amorphous component. However the ultrasmooth surface cannot be obtained when HEP was applied on the combinational materials such as Zerodur glass. The micro unevenness increases gradually along with polishing process due to the different material removal of the monocrystalline and amorphous component.

  18. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  19. Morphogenesis of mimivirus and its viral factories: an atomic force microscopy study of infected cells.

    PubMed

    Kuznetsov, Yuri G; Klose, Thomas; Rossmann, Michael; McPherson, Alexander

    2013-10-01

    Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side.

  20. Morphogenesis of Mimivirus and Its Viral Factories: an Atomic Force Microscopy Study of Infected Cells

    PubMed Central

    Kuznetsov, Yuri G.; Klose, Thomas; Rossmann, Michael

    2013-01-01

    Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side. PMID:23926353

  1. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, K.; Broetzmann, M.; Hofsaess, H.

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less

  2. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of NaCl salt rejection). Depending on the membrane pore size and used modifiers, the permeate flux was in the range of 0.5-4.5 kg·m(-2)·h(-1) and 0.3-4.2 kg·m(-2)·h(-1) for 5 kD and 300 kD membranes, respectively.

  3. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  4. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  5. Modification of polycarbonate surface in oxidizing plasma

    NASA Astrophysics Data System (ADS)

    Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.

    2017-11-01

    The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.

  6. Guided self-assembly of nanostructured titanium oxide

    NASA Astrophysics Data System (ADS)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  7. Guided self-assembly of nanostructured titanium oxide.

    PubMed

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu, Yingda

    2012-02-24

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO(x) nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO(x) nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO(x) nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO(x) nanorods with rough surfaces are formed by the self-assembly of TiO(x) nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO(x) nanorods shows stronger ER properties than that of the other nanostructured TiO(x) particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  8. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less

  9. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity & temperature profiles

    NASA Astrophysics Data System (ADS)

    Pooja, Pathania, Y.; Ahluwalia, P. K.

    2015-05-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  10. Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto

    2006-12-10

    To develop x-ray mirrors for micropore optics, smooth silicon (111)sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 {mu}m wide (111) sidewalls was fabricated using a 220 {mu}m thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time,x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements.

  11. Micropore x-ray optics using anisotropic wet etching of (110) silicon wafers.

    PubMed

    Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Mitsuda, Kazuhisa; Hoshino, Akio; Ishisaki, Yoshitaka; Yang, Zhen; Takano, Takayuki; Maeda, Ryutaro

    2006-12-10

    To develop x-ray mirrors for micropore optics, smooth silicon (111) sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 microm wide (111) sidewalls was fabricated using a 220 microm thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time, x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements.

  12. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  13. Structural, Electrical and Optical Properties of Sputtered-Grown InN Films on ZnO Buffered Silicon, Bulk GaN, Quartz and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bashir, Umar; Hassan, Zainuriah; Ahmed, Naser M.; Afzal, Naveed

    2018-05-01

    Indium nitride (InN) films were grown on Si (111), bulk GaN, quartz and sapphire substrates by radio frequency magnetron sputtering. Prior to the film deposition, a zinc oxide (ZnO) buffer layer was deposited on all the substrates. The x-ray diffraction patterns of InN films on ZnO-buffered substrates indicated c-plane-oriented films whereas the Raman spectroscopy results indicated A1 (LO) and E2 (high) modes of InN on all the substrates. The crystalline quality of InN was found to be better on sapphire and quartz than on the other substrates. The surface roughness of InN was studied using an atomic force microscope. The results indicated higher surface roughness of the film on sapphire as compared to the others; however, roughness of the film was lower than 8 nm on all the substrates. The electrical properties indicated higher electron mobility of InN (20.20 cm2/Vs) on bulk GaN than on the other substrates. The optical band gap of InN film was more than 2 eV in all the cases and was attributed to high carrier concentration in the film.

  14. Advanced optical simulation of scintillation detectors in GATE V8.0: first implementation of a reflectance model based on measured data

    NASA Astrophysics Data System (ADS)

    Stockhoff, Mariele; Jan, Sebastien; Dubois, Albertine; Cherry, Simon R.; Roncali, Emilie

    2017-06-01

    Typical PET detectors are composed of a scintillator coupled to a photodetector that detects scintillation photons produced when high energy gamma photons interact with the crystal. A critical performance factor is the collection efficiency of these scintillation photons, which can be optimized through simulation. Accurate modelling of photon interactions with crystal surfaces is essential in optical simulations, but the existing UNIFIED model in GATE is often inaccurate, especially for rough surfaces. Previously a new approach for modelling surface reflections based on measured surfaces was validated using custom Monte Carlo code. In this work, the LUT Davis model is implemented and validated in GATE and GEANT4, and is made accessible for all users in the nuclear imaging research community. Look-up-tables (LUTs) from various crystal surfaces are calculated based on measured surfaces obtained by atomic force microscopy. The LUTs include photon reflection probabilities and directions depending on incidence angle. We provide LUTs for rough and polished surfaces with different reflectors and coupling media. Validation parameters include light output measured at different depths of interaction in the crystal and photon track lengths, as both parameters are strongly dependent on reflector characteristics and distinguish between models. Results from the GATE/GEANT4 beta version are compared to those from our custom code and experimental data, as well as the UNIFIED model. GATE simulations with the LUT Davis model show average variations in light output of  <2% from the custom code and excellent agreement for track lengths with R 2  >  0.99. Experimental data agree within 9% for relative light output. The new model also simplifies surface definition, as no complex input parameters are needed. The LUT Davis model makes optical simulations for nuclear imaging detectors much more precise, especially for studies with rough crystal surfaces. It will be available in GATE V8.0.

  15. Effect of surface morphology on friction of graphene on various substrates

    NASA Astrophysics Data System (ADS)

    Cho, Dae-Hyun; Wang, Lei; Kim, Jin-Seon; Lee, Gwan-Hyoung; Kim, Eok Su; Lee, Sunhee; Lee, Sang Yoon; Hone, James; Lee, Changgu

    2013-03-01

    The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion.The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion. Electronic supplementary information (ESI) available: Sample preparation method, identification of graphene thickness, AFM and FFM measurements. See DOI: 10.1039/c3nr34181j

  16. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  17. Nanometre-scale investigations by atomic force microscopy into the effect of different treatments on the surface structure of hair.

    PubMed

    Durkan, C; Wang, N

    2014-12-01

    To investigate the effect of different washing regimes on the surface of human hair at the nanometre scale - comparable to the size of typical deposits left behind by commercial products. Atomic force microscopy (AFM) and related techniques. It can be directly seen that washing hair using commercial hair care products removes deposits that naturally form on the shaft, revealing the underlying structure of the hair, whereas in many cases leaving new deposits behind. The spatial distribution of these deposits is explored and quantified. The spatial distribution of the surface charge of pristine hair is mapped, and the electrical screening effect of deposits is directly observed. We also show that the roughness of the treated hair depends directly on the type of product used, with a marked difference between shampoo and conditioner. Some products leave isolated deposits behind, whereas others leave layers of material behind which wet the hair surface. Atomic force microscopy and the related techniques we have employed in a forensic approach is able to distinguish between different hair care products on the basis of the deposits they leave behind. This opens up the capability of further analysis tools to complement already existing techniques. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less

  19. PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.

    The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.

  20. Surface Roughness of the Moon Derived from Multi-frequency Radar Data

    NASA Astrophysics Data System (ADS)

    Fa, W.

    2011-12-01

    Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.

  1. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces

    PubMed Central

    Stavis, Courtney; Clare, Tami Lasseter; Butler, James E.; Radadia, Adarsh D.; Carr, Rogan; Zeng, Hongjun; King, William P.; Carlisle, John A.; Aksimentiev, Aleksei; Bashir, Rashid; Hamers, Robert J.

    2011-01-01

    Carbon is an extremely versatile family of materials with a wide range of mechanical, optical, and mechanical properties, but many similarities in surface chemistry. As one of the most chemically stable materials known, carbon provides an outstanding platform for the development of highly tunable molecular and biomolecular interfaces. Photochemical grafting of alkenes has emerged as an attractive method for functionalizing surfaces of diamond, but many aspects of the surface chemistry and impact on biological recognition processes remain unexplored. Here we report investigations of the interaction of functionalized diamond surfaces with proteins and biological cells using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and fluorescence methods. XPS data show that functionalization of diamond with short ethylene glycol oligomers reduces the nonspecific binding of fibrinogen below the detection limit of XPS, estimated as > 97% reduction over H-terminated diamond. Measurements of different forms of diamond with different roughness are used to explore the influence of roughness on nonspecific binding onto H-terminated and ethylene glycol (EG)-terminated surfaces. Finally, we use XPS to characterize the chemical stability of Escherichia coli K12 antibodies on the surfaces of diamond and amine-functionalized glass. Our results show that antibody-modified diamond surfaces exhibit increased stability in XPS and that this is accompanied by retention of biological activity in cell-capture measurements. Our results demonstrate that surface chemistry on diamond and other carbon-based materials provides an excellent platform for biomolecular interfaces with high stability and high selectivity. PMID:20884854

  2. The VHCF experimental investigation of FV520B-I with surface roughness Ry

    NASA Astrophysics Data System (ADS)

    Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.

    2018-05-01

    Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.

  3. Morphological Properties of Siloxane-Hydrogel Contact Lens Surfaces.

    PubMed

    Stach, Sebastian; Ţălu, Ştefan; Trabattoni, Silvia; Tavazzi, Silvia; Głuchaczka, Alicja; Siek, Patrycja; Zając, Joanna; Giovanzana, Stefano

    2017-04-01

    The aim of this study was to quantitatively characterize the micromorphology of contact lens (CL) surfaces using atomic force microscopy (AFM) and multifractal analysis. AFM and multifractal analysis were used to characterize the topography of new and worn siloxane-hydrogel CLs made of Filcon V (I FDA group). CL surface roughness was studied by AFM in intermittent-contact mode, in air, on square areas of 25 and 100 μm 2 , by using a Nanoscope V MultiMode (Bruker). Detailed surface characterization of the surface topography was obtained using statistical parameters of 3-D (three-dimensional) surface roughness, in accordance with ISO 25178-2: 2012. Before wear, the surface was found to be characterized by out-of-plane and sharp structures, whilst after a wear of 8 h, two typical morphologies were observed. One morphology (sharp type) has a similar aspect as the unworn CLs and the other morphology (smooth type) is characterized by troughs and bumpy structures. The analysis of the AFM images revealed a multifractal geometry. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. Surface statistical parameters deduced by multifractal analysis can be used to assess the CL micromorphology and can be used by manufacturers in developing CLs with improved surface characteristics. These parameters can also be used in understanding the tribological interactions of the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid (friction, wear, and micro-elastohydrodynamic lubrication at a nanometer scale).

  4. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer

    NASA Astrophysics Data System (ADS)

    El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.

    2018-06-01

    In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.

  5. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less

  6. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.

  7. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  8. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    NASA Astrophysics Data System (ADS)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  9. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Inhibition of Crystal Growth during Plasma Enhanced Atomic Layer Deposition by Applying BIAS

    PubMed Central

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-01-01

    In this study, the influence of direct current (DC) biasing on the growth of titanium dioxide (TiO2) layers and their nucleation behavior has been investigated. Titania films were prepared by plasma enhanced atomic layer deposition (PEALD) using Ti(OiPr)4 as metal organic precursor. Oxygen plasma, provided by remote inductively coupled plasma, was used as an oxygen source. The TiO2 films were deposited with and without DC biasing. A strong dependence of the applied voltage on the formation of crystallites in the TiO2 layer is shown. These crystallites form spherical hillocks on the surface which causes high surface roughness. By applying a higher voltage than the plasma potential no hillock appears on the surface. Based on these results, it seems likely, that ions are responsible for the nucleation and hillock growth. Hence, the hillock formation can be controlled by controlling the ion energy and ion flux. The growth per cycle remains unchanged, whereas the refractive index slightly decreases in the absence of energetic oxygen ions. PMID:28793679

  11. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  12. Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes

    NASA Astrophysics Data System (ADS)

    Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-03-01

    The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.

  13. Surface roughness measurement in the submicrometer range using laser scattering

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.

    2000-06-01

    A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.

  14. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Yang; Zhang, Guojing; Gullikson, Eric M.; Goldberg, Ken A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  15. Research of Surface Roughness Anisotropy

    NASA Astrophysics Data System (ADS)

    Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.

    2017-04-01

    The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.

  16. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.

    PubMed

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  17. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.

  18. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    NASA Astrophysics Data System (ADS)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  19. Micromorphological characterization of zinc/silver particle composite coatings

    PubMed Central

    Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof

    2015-01-01

    ABSTRACT The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension D f, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc. PMID:26500164

  20. Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo

    2016-04-07

    Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Timore » interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.« less

  1. Laser induced nanostructures created from Au layer on polyhydroxybutyrate

    NASA Astrophysics Data System (ADS)

    Michaljaničová, I.; Slepička, P.; Juřík, P.; Švorčík, V.

    2017-11-01

    Nanostructures as well as composite materials expand the range of materials properties and allow use of these materials in new and highly specific applications. In this paper, we described laser modification of polyhydroxybutyrate films covered with thin gold layer, which led to the formation of various composite structures. The crucial for the composite structures creation was setting of appropriate laser parameters; 15 mJ cm-2 laser fluence and 6 000 pulses were recognized as the best. The morphology of structures was determined by the thickness of the Au layer. The most interesting formations, very porous with the biggest roughness, were observed after treatment of foils covered with 10 nm of Au. The morphology was observed by atomic force microscopy. The influence on roughness and the difference between projected area and surface area was also determined.

  2. Analogies to Demonstrate the Effect of Roughness on Surface Wettability

    ERIC Educational Resources Information Center

    Yolcu, Hasan

    2017-01-01

    This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…

  3. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  4. Effects of SiO 2 overlayer at initial growth stage of epitaxial Y 2O 3 film growth

    NASA Astrophysics Data System (ADS)

    Cho, M.-H.; Ko, D.-H.; Choi, Y. G.; Lyo, I. W.; Jeong, K.; Whang, C. N.

    2000-12-01

    We investigated the dependence of the Y 2O 3 film growth on Si surface at initial growth stage. The reflection high-energy electron diffraction, X-ray scattering, and atomic force microscopy showed that the film crystallinity and morphology strongly depended on whether Si surface contained O or not. In particular, the films grown on oxidized surfaces revealed significant improvement in crystallinity and surface smoothness. A well-ordered atomic structure of Y 2O 3 film was formed on 1.5 nm thick SiO 2 layer with the surface and interfacial roughness markedly enhanced, compared with the film grown on the clean Si surfaces. The epitaxial film on the oxidized Si surface exhibited extremely small mosaic structures at interface, while the film on the clean Si surface displayed an island-like growth with large mosaic structures. The nucleation sites for Y 2O 3 were provided by the reaction between SiO 2 and Y at the initial growth stage. The SiO 2 layer known to hinder crystal growth is found to enhance the nucleation of Y 2O 3, and provides a stable buffer layer against the silicide formation. Thus, the formation of the initial SiO 2 layer is the key to the high-quality epitaxial growth of Y 2O 3 on Si.

  5. Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles.

    PubMed

    Song, Bo; Zhou, Yi; Schönherr, Holger

    2016-11-01

    The formation of self-assembled monolayers (SAMs) of binary mixtures of 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on ultraflat template-stripped gold (TSG) surfaces was systematically investigated to clarify the assembly behavior, composition, and degree of possible phase segregation in light of atomic force microscopy (AFM) studies of surface nanobubbles on these substrates. The data for SAMs on TSG were compared to those obtained by adsorption on rough evaporated gold, as reported in a previous study. Quartz crystal microbalance and surface plasmon resonance data acquired in situ on TSG indicate that similar to SAM formation on conventional evaporated gold substrates ODT and MHDA form monolayers and bilayers, respectively. The second layer on MHDA, whose formation is attributed to hydrogen bonding, can be easily removed by adequate rinsing with water. The favorable agreement of the grazing incidence reflection Fourier transform infrared (GIR FTIR) spectroscopy and contact angle data analyzed with the Israelachvili-Gee model suggests that the binary SAMs do not segregate laterally. This conclusion is fully validated by high-resolution friction force AFM observations down to a length scale of 8-10 nm, which is much smaller than the typical observed surface nanobubble radii. Finally, correspondingly functionalized TSG substrates are shown to be valuable supports for studying surface nanobubbles by AFM in water and for addressing the relation between surface functionality and nanobubble formation and properties.

  6. Roughness evolution of metallic implant surfaces under contact loading and nanometer-scale chemical etching.

    PubMed

    Ryu, J J; Letchuman, S; Shrotriya, P

    2012-10-01

    Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  8. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  9. Numerical analysis of the bucket surface roughness effects in Pelton turbine

    NASA Astrophysics Data System (ADS)

    Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.

    2013-12-01

    The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.

  10. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique

    NASA Astrophysics Data System (ADS)

    Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung

    2016-05-01

    We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.

  11. Numerical simulation of electroosmotic flow in rough microchannels using the lattice Poisson-Nernst-Planck methods

    NASA Astrophysics Data System (ADS)

    Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman

    2018-05-01

    In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.

  12. The improvement of surface roughness by polishing method of arcylic door panel at Taishi Tech Sdn Bhd

    NASA Astrophysics Data System (ADS)

    Basirin, Hammadi bin Mohd; Nawi, Ismail bin Haji Mohd

    2017-04-01

    This research is an approach to improve the surface roughness for acrylic door panel by using polishing process. The polishing process involve is sanding process by 3 types of sand paper. The sanding process used to improve the surface roughness by using the different grit sizes of sand paper. The experiment was done by using two types of material s, that is plywood and medium density board (MDF). These two materials are the main materials in producing the arcrylic door panel. The surface roughness of these two materials affects the qualities and quantities of the acrylic door panel. The surface structure was measured by using Optical Microscope and Scanning Electron Microscope (SEM) and the surface roughness was measured by using Mitutoyo surfest SJ 400 Tester. Results indicates that using the different types of grit are influence the surface roughness of the material. When the higher types of grit sizes had been used, the average roughness of the surface are decrease. In summary, a good surface roughness condition produced when using the higher types of grit sizes sand paper.

  13. Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2004-01-01

    Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.

  14. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  15. Nanocomposites based on self-assembly poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) and Fe3O4-NPs. Thermal stability, morphological characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.

    2018-02-01

    The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.

  16. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5.

    PubMed

    Awasthi, Shraddha; Srivastava, Neha; Singh, Tripti; Tiwary, D; Mishra, Pradeep Kumar

    2017-05-01

    Polythene is considered as one of the important object used in daily life. Being versatile in nature and resistant to microbial attack, they effectively cause environmental pollution. In the present study, biodegradation of low-density polyethylene (LDPE) have been performed using fungal lab isolate Rhizopus oryzae NS5. Lab isolate fungal strain capable of adhering to LDPE surface was used for the biodegradation of LDPE. This strain was identified as Rhizopus oryzae NS5 (Accession No. KT160362). Fungal growth was observed on the surface of the polyethylene when cultured in potato dextrose broth at 30 °C and 120 rpm, for 1 month. LDPE film was characterized before and after incubation by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and universal tensile machine. About 8.4 ± 3% decrease (gravimetrically) in weight and 60% reduction in tensile strength of polyethylene was observed. Scanning electron microscope analysis showed hyphal penetration and degradation on the surface of polyethylene. Atomic force microscope analysis showed increased surface roughness after treatment with fungal isolate. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the polyethylene pieces. Present study shows the potential of Rhizopus oryzae NS5 in polyethylene degradation in eco friendly and sustainable manner.

  17. Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Li, Chao

    Broadband multilayer antireflection coatings (ARCs) are keys to improving solar cell efficiencies. The goal of this dissertation is to optimize the multilayer Al2O3/TiO2/Al2O 3 ARC designed for a III-V space multi-junction solar cell with understanding influences of post-annealing and varying deposition parameters on the optical properties. Accurately measuring optical properties is important in accessing optical performances of ARCs. The multilayer Al2O3/TiO 2/Al2O3 ARC and individual Al2O 3 and TiO2 layers were characterized by a novel X-ray reflectivity (XRR) method and a combined method of grazing-incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and XRR developed in this study. The novel XRR method combining an enhanced Fourier analysis with specular XRR simulation effectively determines layer thicknesses and surface and interface roughnesses and/or grading with sub-nanometer precision, and densities less than three percent uncertainty. Also, the combined method of GISAXS, AFM, and XRR characterizes the distribution of pore size with one-nanometer uncertainty. Unique to this method, the diffuse scattering from surface and interface roughnesses is estimated with surface parameters (root mean square roughness sigma, lateral correlation length ξ, and Hurst parameter h) obtained from AFM, and layer densities, surface grading and interface roughness/grading obtained from specular XRR. It is then separated from pore scattering. These X-ray scattering techniques obtained consistent results and were validated by other techniques including optical reflectance, spectroscopic ellipsometry (SE), glancing incidence X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The ARCs were deposited by atomic layer deposition with standard parameters at 200 °C. The as-deposited individual Al2O3 layer on Si is porous and amorphous as indicated by the combined methods of GISAXS, AFM, and XRR. Both post-annealing at 400 °C for 40 min in air and varying ALD parameters can eliminate pores, and lead to consistent increases in density and refractive index determined by the XRR method, SE, and optical reflectance measurements. After annealing, the layer remains amorphous. On the other hand, the as-deposited TiO 2 layer is non-porous and amorphous. It is densified and crystallized after annealing at 400 °C for 10 min in air. The multilayer Al2O 3/TiO2/Al2O3 ARC deposited on Si has surface and interface roughnesses and/or grading on the order of one nanometer. Annealing at 400 °C for 10 min in air induces densification and crystallization of the amorphous TiO2 layer as well as possible chemical reactions between TiO2 and Si diffusing from the substrate. On the other hand, Al2O3 layers remain amorphous after annealing. The thickness of the top Al2O3 layer decreases - likely due to interdiffusion between the top two layers and loss of hydrogen from hydroxyl groups initially present in the ALD layers. The thickness of the bottom Al2O3 layer increases, probably due to the diffusion of Si atoms into the bottom layer. In addition, the multilayer Al 2O3/TiO2/Al2O3 ARC was deposited on AlInP (30nm) / GaInP (100nm) / GaAs that includes the topmost layers of III-V multi-junction solar cells. Reflectance below 5 % is achieved within nearly the whole wavelength range of the current-limiting sub-cell. Also, internal scattering occurs in the TiO2 layer possibly associated with the initiated crystallization in the TiO2 layer while absent in the amorphous Al2O3 layers.

  18. Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.

    PubMed

    Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay

    2015-05-01

    The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.

  19. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    PubMed Central

    Tan, Wensheng; Wang, Xiao

    2017-01-01

    Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force. PMID:29278367

  20. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, B.; Persson, B. N. J.; Oh, Y. R.

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less

  1. The Effect of Multiple Surface Treatments on Biological Properties of Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2014-09-01

    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface conditions. Based on the data obtained in this study, low-energy laser processing generally yields a better biological response. The maximum bioactivity was attained in those samples exposed to a three step treatment including low-energy laser treatment followed by grit blasting and anodizing.

  2. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment.

    PubMed

    Liu, Huixia; Jiang, Yingjie; Tan, Wensheng; Wang, Xiao

    2017-12-26

    Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  3. Release of titanium after insertion of dental implants with different surface characteristics – an ex vivo animal study

    PubMed Central

    Pettersson, Mattias; Pettersson, Jean; Molin Thorén, Margareta; Johansson, Anders

    2017-01-01

    Abstract In the present study, amount of titanium (Ti) released into the surrounding bone during placement of implants with different surface structure was investigated. Quantification of Ti released during insertion from three different implants was performed in this ex vivo study. Jaw bone from pigs was used as model for installation of the implants and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used for analysis of the released Ti. Implant surface were examined with scanning electron microscopy (SEM), before and after the placement into the bone. Ti was abraded to the surrounding bone upon insertion of a dental implant and the surface roughness of the implant increased the amount of Ti found. Diameter and total area of the implant were of less importance for the Ti released to the bone. No visible damages to the implant surfaces could be identified in SEM after placement. PMID:29242814

  4. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Yubin; Li, Qiuying, E-mail: liqy@ecust.edu.cn; Shanghai Key Laboratory Polymeric Materials

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzedmore » by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.« less

  5. TED Study of Si(113) Surfaces

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    A TED study of Si(113) surfaces was carried out. Reflections from the 3 × 2 reconstruction were seen at room temperature, while half-order reflections were very faint. The surface showed the phase transition between the 3 × 1 and the disordered (rough) structures at about 930°C. The (113) surface structure at room temperature was analyzed using TED intensity. Four kinds of structure models proposed previously, including both the 3 × 1 and the 3 × 2 reconstructed structures, were examined. The R-factors calculated using the energy-optimized atomic coordinates are not sufficiently small. After minimization of the R-factors, Dabrowski's 3 × 2 structure model is most agreeable, while Ranke's 3 × 1 and 3 × 2 structure models are not to be excluded. STM observation showed that the surface is composed of small domains of the 3 × 2 structure.

  6. Rock discontinuity surface roughness variation with scale

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.

  7. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    PubMed Central

    Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  8. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    PubMed

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  9. Determining efficacy of monitoring devices on ceramic bond to resin composite

    PubMed Central

    Osorio, Estrella; Aguilera, Fátima S.; Osorio, Raquel; García-Godoy, Franklin; Cabrerizo-Vilchez, Miguel A.; Toledano, Manuel

    2012-01-01

    Objectives: This paper aims to assess the effectiveness of 3D nanoroughness and 2D microroughness evaluations, by their correlation with contact angle measurements and shear bond strength test, in order to evaluate the effect of two different acids conditioning on the bonding efficacy of a leucite-based glass-ceramic to a composite resin. Study Design: Ceramic (IPS Empress) blocks were treated as follows: 1) no treatment, 2) 37% phosphoric acid (H3PO4), 15 s, 3) 9% hydrofluoric acid (HF), 5 min. Micro- and nano-roughness were assessed with a profilometer and by means of an atomic force microscopy (AFM). Water contact angle (CA) measurements were determined to assess wettability of the ceramic surfaces with the asixymetric drop shape analysis contact diameter technique. Shear bond strength (SBS) was tested to a resin composite (Z100) with three different adhesive systems (Scotchbond Multipurpose Plus, Clearfil New Bond, ProBOND). Scanning electron microscopy (SEM) images were performed. Results: Nanoroughness values assessed in 50x50 μm areas were higher for the HF group, these differences were not detected by profilometric analysis. HF treatment created the nano- roughest surfaces and the smallest CA (p<0.05), producing the highest SBS to the composite resin with all tested adhesive systems (p<0.05). No differences existed between the SBS produced by the adhesive systems evaluated with any of the surface treatments tested. Conclusions: Nano-roughness obtained in a 50x50 µm scan size areas was the most reliable data to evaluate the topographical changes produced by the different acid treatments on ceramic surfaces. Key words:Dental ceramic, acid etching, bonding efficacy, resin composite, adhesive systems, contact angle, roughness. PMID:22549693

  10. Determining Surface Roughness in Urban Areas Using Lidar Data

    NASA Technical Reports Server (NTRS)

    Holland, Donald

    2009-01-01

    An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.

  11. A new fiber optic sensor for inner surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  12. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  13. QCM and AFM Study of atomic scale polishing and roughening of surfaces exposed to nanoparticle suspensions of diamond, Al2O3 and SiO2.

    NASA Astrophysics Data System (ADS)

    Krim, Jacqueline; Acharya, Biplav; Chestnut, Melanie; Marek, Antonin; Shendarova, Olga; Smirnov, Alex

    The addition of nanoparticles to conventional automotive lubricants is known in many cases to result in increased energy efficiency, but the atomic scale mechanisms leading to the increased efficiency are yet to be established. To explore this issue, we studied surface uptake and nanotribological properties of nanoparticle suspensions of diamond, Al2O3 and SiO2 dispersed in water and/or oil (PAO6) in real time by means of an in situ Quartz Crystal Microbalance (QCM) technique, with a focus on the impact of the suspension on the surface roughness and texture of the QCM electrode and how the results compared to macroscopic reductions in friction and increased energy efficiency for the same materials' combinations. The frequency and dissipative properties (mechanical resistance) of QCM's with both gold and nickel surface electrodes were first studied for immersed samples upon addition of the nanoparticles. Nanodiamonds resulted in an increased mechanical resistance while the addition of Al2O3 and SiO2 nanoparticles resulted in a decreased resistance, indicating a reduced resistance of the fluid to the motion of the QCM. Atomic Force Microscope (AFM) measurements were then performed on the QCM electrodes after exposure to the suspensions, to explore potential polishing and/or roughening effects. The results are closely linked to the macroscopic friction and wear attributes. Work supported by NSF.

  14. Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity.

    PubMed

    Lavery, Kristopher A; Prabhu, Vivek M; Satija, Sushil; Wu, Wen-Li

    2010-12-01

    Off-specular neutron reflectometry was applied to characterize the form and amplitude of lateral compositional variations at a buried reaction-diffusion front. In this work, off-specular neutron measurements were first calibrated using off-specular x-ray reflectivity and atomic force microscopy via a roughened glass surface, both as a free surface and as a buried interface that was prepared by spin coating thin polymer films upon the glass surface. All three methods provided consistent roughness values despite the difference in their detection mechanism. Our neutron results demonstrated, for the first time, that the compositional heterogeneity at a buried reaction front can be measured; the model system used in this study mimics the deprotection reaction that occurs during the photolithographic process necessary for manufacturing integrated circuits.

  15. Microfabricated Amorphous Silicon Nanopillars on an Ultrasmooth 500-nm-thick Titanium Adhesion Layer

    DTIC Science & Technology

    2012-09-01

    After Ti deposition, the wafers were pretreated with 10 ml of liquid hexamethyldisilazane ( HMDS ) to promote adhesion by photoresist. The HMDS was...film with a high flux of Ti atoms and shows large grains and a rough surface. In figure 2b, some residue can be seen near the 1000-nm pillars on the...closely to the SEM image shown in appendix B, which has a measured angle near 51°. In the future, a more vertical sidewall is likely to be desired

  16. Colloidal quantum dot active layers for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark

    2006-07-01

    In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.

  17. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface

    NASA Astrophysics Data System (ADS)

    Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail

    2018-06-01

    Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.

  18. Towards predictive models for transitionally rough surfaces

    NASA Astrophysics Data System (ADS)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Yunpeng; Sawin, Herbert H.

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followedmore » the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.« less

  20. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    PubMed

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.

  1. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    PubMed Central

    Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk

    2014-01-01

    Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265

  2. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  3. Emulation of Forward-looking Radar Technology for Threat Detection in Rough Terrain Environments: A Scattering and Imaging Study

    DTIC Science & Technology

    2012-12-01

    a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3

  4. Tribological changes in the articular cartilage of a human femoral head with avascular necrosis.

    PubMed

    Seo, Eun-Min; Shrestha, Suman K; Duong, Cong-Truyen; Sharma, Ashish Ranjan; Kim, Tae-Woo; Vijayachandra, Ayyappan; Thompson, Mark S; Cho, Myung Guk; Park, Sungchan; Kim, Kwanghoon; Park, Seonghun; Lee, Sang-Soo

    2015-06-29

    The present study evaluated the tribological properties of the articular cartilage surface of the human femoral head with postcollapse stage avascular necrosis (AVN) using atomic force microscopy. The cartilage surface in the postcollapse stage AVN of the femoral head was reported to resemble those of disuse conditions, which suggests that the damage could be reversible and offers the possibilities of success of head-sparing surgeries. By comparing the tribological properties of articular cartilage in AVN with that of osteoarthritis, the authors intended to understand the cartilage degeneration mechanism and reversibility of AVN. Human femoral heads with AVN were explanted from the hip replacement surgery of four patients (60-83 years old). Nine cylindrical cartilage samples (diameter, 5 mm and height, 0.5 mm) were sectioned from the weight-bearing areas of the femoral head with AVN, and the cartilage surface was classified according to the Outerbridge Classification System (AVN0, normal; AVN1, softening and swelling; and AVN2, partial thickness defect and fissuring). Tribological properties including surface roughness and frictional coefficients and histochemistry including Safranin O and lubricin staining were compared among the three groups. The mean surface roughness Rq values of AVN cartilage increased significantly with increasing Outerbridge stages: Rq = 137 ± 26 nm in AVN0, Rq = 274 ± 49 nm in AVN1, and Rq = 452 ± 77 nm in AVN2. Significant differences in Rq were observed among different Outerbridge stages in all cases (p < 0.0001). The frictional coefficients (μ) also increased with increasing Outerbridge stages. The frictional coefficient values were μ = 0.115 ± 0.034 in AVN0, μ = 0.143 ± 0.025 in AVN1, and μ = 0.171 ± 0.039 in AVN2. Similarly to the statistical analysis of surface roughness, significant statistical differences were detected between different Outerbridge stages in all cases (p < 0.05). Both surface roughness and frictional coefficient of cartilage, which were linearly correlated, increased with increasing Outerbridge stages in postcollapse AVN. The underlying mechanism of these results can be related to proteoglycan loss within the articular cartilage that is also observed in osteoarthritis. With regard to the tribological properties, the cartilage degeneration mechanism in AVN was similar to that of osteoarthritis without reversibility.

  5. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    NASA Astrophysics Data System (ADS)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive strength between the contacting surfaces.

  6. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  7. Cheap and fast measuring roughness on big surfaces with an imprint method

    NASA Astrophysics Data System (ADS)

    Schopf, C.; Liebl, J.; Rascher, R.

    2017-10-01

    Roughness, shape and structure of a surface offer information on the state, shape and surface characteristics of a component. Particularly the roughness of the surface dictates the subsequent polishing of the optical surface. The roughness is usually measured by a white light interferometer, which is limited by the size of the components. Using a moulding method of surfaces that are difficult to reach, an imprint is taken and analysed regarding to roughness and structure. This moulding compound method is successfully used in dental technology. In optical production, the moulding compound method is advantageous in roughness determination in inaccessible spots or on large components (astrological optics). The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 "Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined. The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).

  8. Effect of fabrication parameters on morphological and optical properties of highly doped p-porous silicon

    NASA Astrophysics Data System (ADS)

    Zare, Maryam; Shokrollahi, Abbas; Seraji, Faramarz E.

    2011-09-01

    Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.

  9. The evolution of fracture surface roughness and its dependence on slip

    NASA Astrophysics Data System (ADS)

    Wells, Olivia L.

    Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.

  10. Numerical investigation of roughness effects in aircraft icing calculations

    NASA Astrophysics Data System (ADS)

    Matheis, Brian Daniel

    2008-10-01

    Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.

  11. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    PubMed

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

  12. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    PubMed Central

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  13. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  14. A Transport Equation Approach to Modeling the Influence of Surface Roughness on Boundary Layer Transition

    NASA Astrophysics Data System (ADS)

    Langel, Christopher Michael

    A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.

  15. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  16. Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium

    NASA Astrophysics Data System (ADS)

    Elofsson, V.; Almyras, G. A.; Lü, B.; Garbrecht, M.; Boyd, R. D.; Sarakinos, K.

    2018-04-01

    We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.

  17. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Jung, Yong Chae

    2008-06-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. When two hydrophilic bodies are brought into contact, any liquid present at the interface forms menisci, which increases adhesion/friction and the magnitude is dependent upon the contact angle. Certain plant leaves are known to be superhydrophobic in nature due to their roughness and the presence of a thin wax film on the leaf surface. Various leaf surfaces on the microscale and nanoscale have been characterized in order to separate out the effects of the microbumps and nanobumps and the wax on the hydrophobicity. The next logical step in realizing superhydrophobic surfaces that can be produced is to design surfaces based on understanding of the leaves. The effect of micropatterning and nanopatterning on the hydrophobicity was investigated for two different polymers with micropatterns and nanopatterns. Scale dependence on adhesion was also studied using atomic force microscope tips of various radii. Studies on silicon surfaces patterned with pillars of varying diameter, height and pitch values and deposited with a hydrophobic coating were performed to demonstrate how the contact angles vary with the pitch. The effect of droplet size on contact angle was studied by droplet evaporation and a transition criterion was developed to predict when air pockets cease to exist. Finally, an environmental scanning electron microscope study on the effect of droplet size of about 20 µm radius on the contact angle of patterned surfaces is presented. The importance of hierarchical roughness structure on destabilization of air pockets is discussed.

  18. Grinding With Diamond Burs and Hydrothermal Aging of a Y-TZP Material: Effect on the Material Surface Characteristics and Bacterial Adhesion.

    PubMed

    Dutra, Dam; Pereira, Gkr; Kantorski, K Z; Exterkate, Ram; Kleverlaan, C J; Valandro, L F; Zanatta, F B

    The aim of this study was to evaluate the effect of grinding with diamond burs and low-temperature aging on the material surface characteristics and bacteria adhesion on a yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) surface. Y-TZP specimens were made from presintered blocks, sintered as recommended by the manufacturer, and assigned into six groups according to two factors-grinding (three levels: as sintered, grinding with extra-fine diamond bur [25-μm grit], and grinding with coarse diamond bur [181-μm grit]) and hydrothermal aging-to promote low-temperature degradation (two levels: presence/absence). Phase transformation (X-ray diffractometer), surface roughness, micromorphological patterns (atomic force microscopy), and contact angle (goniometer) were analyzed. Bacterial adhesion (colony-forming units [CFU]/biofilm) was quantified using an in vitro polymicrobial biofilm model. Both the surface treatment and hydrothermal aging promoted an increase in m-phase content. Roughness values increased as a function of increasing bur grit sizes. Grinding with a coarse diamond bur resulted in significantly lower values of contact angle (p<0.05) when compared with the extra-fine and control groups, while there were no differences (p<0.05) after hydrothermal aging simulation. The CFU/biofilm results showed that neither the surface treatment nor hydrothermal aging simulation significantly affected the bacteria adherence (p>0.05). Grinding with diamond burs and hydrothermal aging modified the Y-TZP surface properties; however, these properties had no effect on the amount of bacteria adhesion on the material surface.

  19. S180 cell growth on low ion energy plasma treated TiO 2 thin films

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna

    2008-03-01

    X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.

  20. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    PubMed

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.

  1. Molecular dynamics simulation studies of ionic liquid electrolytes for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Hu, Zongzhi

    Molecular Dynamics (MD) simulation has been performed on various Electric Double Layer Capacitors (EDLCs) systems with different Room Temperature Ionic Liquids (RTILs) as well as different structures and materials of electrodes using a computationally efficient, low cost, united atom (UA)/explicit atom (EA) force filed. MD simulation studies on two 1-butyl-3-methylimidazolium (BMIM) based RTILs, i.e., [BMIM][BF4] and [BMIM][PF6], have been conducted on both atomic flat and corrugated graphite as well as (001) and (011) gold electrode surfaces to understand the correlations between the Electric Double Layer (EDL) structure and their corresponding differential capacitance (DC). Our MD simulations have strong agreement with some experimental data. The structures of electrodes also have a strong effect on the capacitance of EDLCs. MD simulations have been conducted on RTILs of N-methyl-N- propylpyrrolidinium [pyr13] and bis(fluorosulfonyl)imide (FSI) as well as [BMIM][PF6] on both curvature electrodes (fullerenes, nanotube, nanowire) and atomic flat electrode surfaces. It turns out that the nanowire electrode systems have the largest capacitance, following by fullerene systems. Nanotube electrode systems have the smallest capacitance, but they are still larger than that of atomically flat electrode system. Also, RTILs with slightly different chemical structure such as [Cnmim], n = 2, 4, 6, and 8, FSI and bis(trifluoromethylsulfonyl)imide (TFSI), have been examined by MD simulation on both flat and nonflat graphite electrode surfaces to study the effect of cation and anion's chemical structures on EDL structure and DC. With prismatic (nonflat) graphite electrodes, a transition from a bell-shape to a camel-shape DC dependence on electrode potential was observed with increase of the cation alkyl tail length for FSI systems. In contrast, the [Cnmim][TFSI] ionic liquids generated only a camel-shape DC on the rough surface regardless of the length of alkyl tail.

  2. Optimum surface roughness prediction for titanium alloy by adopting response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze

    Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.

  3. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai; Zhang, Zuoguang

    2017-04-01

    Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 1020 atoms/cm2 were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  4. Atomic layer deposition of magnesium fluoride via bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessy, John, E-mail: hennessy@caltech.edu; Jewell, April D.; Greer, Frank

    2015-01-15

    A new process has been developed to deposit magnesium fluoride (MgF{sub 2}) thin films via atomic layer deposition (ALD) for use as optical coatings in the ultraviolet. MgF{sub 2} was deposited in a showerhead style ALD reactor using bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride (HF) as precursors at substrate temperatures from 100 to 250 °C. The use of HF was observed to result in improved morphology and reduced impurity content compared to other reported MgF{sub 2} ALD approaches that use metal fluoride precursors as the fluorine-containing chemistry. Characterization of these films has been performed using spectroscopic ellipsometry, atomic force microscopy, and x-raymore » photoelectron spectroscopy for material deposited on silicon substrates. Films at all substrate temperatures were transparent at wavelengths down to 190 nm and the low deposition temperature combined with low surface roughness makes these coatings good candidates for a variety of optical applications in the far ultraviolet.« less

  5. Monitoring of Surface Roughness in Aluminium Turning Process

    NASA Astrophysics Data System (ADS)

    Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat

    2018-01-01

    As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.

  6. Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light

    NASA Astrophysics Data System (ADS)

    Izumi, Norikazu; Minami, Takayuki; Mayama, Hiroyuki; Takata, Atsushi; Nakamura, Shinichiro; Yokojima, Satoshi; Tsujii, Kaoru; Uchida, Kingo

    2008-09-01

    Photochromic diarylethene forms super water-repellent surfaces upon irradiation with UV light. Microfibril-like crystals grow on the solid diarylethene surface after UV irradiation, and the contact angle of water on the surface becomes larger with increasing surface roughness with time. The fractal analysis was made by the box-counting method for the rough surfaces. There are three regions in the roughness size having the fractal dimension of ca. 2.4 (size of roughness smaller than 5 µm), of ca. 2.2 (size of roughness between 5-40 µm), and of ca. 2.0 (size of roughness larger than 40 µm). The fractal dimension of ca. 2.4 was due to the fibril-like structures generated gradually by UV irradiation on diarylethene surfaces accompanied with an increase in the contact angle. The surface structure with larger fractal dimension mainly contributes to realizing the super water-repellency of the diarylethene surfaces. This mechanism of spontaneous formation of fractal surfaces is similar to that for triglyceride and alkylketene dimer waxes.

  7. Measuring skew in average surface roughness as a function of surface preparation

    NASA Astrophysics Data System (ADS)

    Stahl, Mark T.

    2015-08-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  8. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  9. Passive microwave sensing of soil moisture content - The effects of soil bulk density and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1983-01-01

    Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.

  10. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    NASA Astrophysics Data System (ADS)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  11. Study the Formation of H2, HD and D2 under Various Interstellar Conditions

    NASA Astrophysics Data System (ADS)

    Sahu, Dipen; Chakrabarti, Sandip Kumar; Das, Ankan

    2016-07-01

    Hydrogen is the most abundant molecule in the Interstellar medium (ISM). Formation of gas phase hydrogen molecule is inefficient; perhaps grain surface acts as a necessary ingredients for the formation of H_2 molecule. H atoms accrete on the grain surface, recombine there and desorb in the gas phase. Similarly, deuterium accretion on grain surfaces can produce simple dueterated molecules (HD and D_2) on the ISM. Unlike gas phase reactions, rate equations can not yield accurate result for grain surface reactions due to inherent randomness of surface species. We use Monte-Carlo method to follow this surface chemistry which effectively take care of this randomness. We use square grids and impose periodic boundary condition on them to mimic the spherical nature of grains. Various types of rough surfaces are considered to study the impact on effective production rates. We found that these simple but most important molecules are produced in low temperature (physisorption sites) as well as in high temperature (chemisorption sites) regions.

  12. Origins of Folding Instabilities on Polycrystalline Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.

    2014-12-01

    Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.

  13. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.

    PubMed

    Lu, Jia; Zhou, Huaichun

    2017-07-01

    The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

  14. Numerical analysis of the effect of surface roughness on mechanical fields in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges

    2018-06-01

    This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.

  15. Atom chips in the real world: the effects of wire corrugation

    NASA Astrophysics Data System (ADS)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  16. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  17. Incorporating Skew into RMS Surface Roughness Probability Distribution

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  18. Soil roughness, slope and surface storage relationship for impervious areas

    NASA Astrophysics Data System (ADS)

    Borselli, Lorenzo; Torri, Dino

    2010-11-01

    SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.

  19. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.

    PubMed

    Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R

    2004-09-01

    Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.

  20. Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2-SrHAP surface modified cp-titanium for osteomyelitis treatment.

    PubMed

    D, Nancy; N, Rajendran

    2018-04-15

    Commercially pure Titanium (Cp-Ti) was electrophoretically modified using double layer coatings consisting of TiO 2 -SrHAP as the first layer (TH) followed by vancomycin incorporated Chitosan/Gelatin as the second layer (THV). The nano crystalline phase of coated Strontium incorporated hydroxyapatite (Sr-HAP) confirmed through X-ray diffraction studies (XRD). The polyelectrolyte complex formation between chitosan and gelatin, the stability of the drug, the bonding between chitosan and Sr-HAP were confirmed through infra-red spectroscopic studies (IR). The average roughness (R a ) value calculated from atomic force microscopy (AFM) corroborates with the water contact angle data, which clearly confirms the tuning property of the surface in relation to the surface energy and roughness of the coated samples. The total amount of vancomycin encapsulated was calculated to be 11.5 μg. Antibacterial activity was found against both Staphylococcus aureus strains methicillin resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MRSA) for a drug concentration of 2.74 μg released after 12 h of immersion. The in-vitro cell culture studies showed enhanced cellular activity for THV samples. Thus, THV samples have a dual action at the surface, by resisting the bacterial adhesion and enhancing cellular interaction at the bio-interface, making it a promising candidate to treat osteomyelitis infection. Copyright © 2018. Published by Elsevier B.V.

Top