Sample records for atomized liquid droplets

  1. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  2. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  3. Direct droplet production from a liquid film: a new gas-assisted atomization mechanism

    NASA Astrophysics Data System (ADS)

    Snyder, Herman E.; Reitz, Rolf D.

    1998-11-01

    X-ray lithography and micro-machining have been used to study gas-assisted liquid atomization in which a liquid film was impinged by a large number of sonic micro-gas jets. Three distinct breakup regimes were demonstrated. Two of these regimes share characteristics with previously observed atomization processes: a bubble bursting at a free surface (Newitt et al. 1954; Boulton-Stone & Blake 1993) and liquid sheet disintegration in a high gas/liquid relative velocity environment (Dombrowski & Johns 1963). The present work shows that suitable control of the gas/liquid interface creates a third regime, a new primary atomization mechanism, in which single liquid droplets are ejected directly from the liquid film without experiencing an intermediate ligament formation stage. The interaction produces a stretched liquid sheet directly above each gas orifice. This effectively pre-films the liquid prior to its breakup. Following this, surface tension contracts the stretched film of liquid into a sphere which subsequently detaches from the liquid sheet and is entrained by the gas jet that momentarily pierces the film. After droplet ejection, the stretched liquid film collapses, covering the gas orifice, and the process repeats. This new mechanism is capable of the efficient creation of finely atomized sprays at low droplet ejection velocities (e.g. 20 [mu]m Sauter mean diameter methanol sprays using air at 239 kPa, with air-to-liquid mass ratios below 1.0, and droplet velocities lower than 2.0 m s[minus sign]1). Independent control of the gas and the liquid flows allows the droplet creation process to be effectively de-coupled from the initial droplet momentum, a characteristic not observed with standard gas-assisted atomization mechanisms.

  4. Self-bound droplets of a dilute magnetic quantum liquid

    NASA Astrophysics Data System (ADS)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  5. Self-bound droplets of a dilute magnetic quantum liquid.

    PubMed

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-10

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  6. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  7. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    PubMed

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.

  8. Selfbound quantum droplets

    NASA Astrophysics Data System (ADS)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  9. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  10. Providing the Efficiency and Dispersion Characteristics of Aerosols in Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Khmelev, V. N.; Shalunov, A. V.; Golykh, R. N.; Nesterov, V. A.; Dorovskikh, R. S.; Shalunova, A. V.

    2017-07-01

    This article is devoted to the investigation of the process of atomization of liquids under the action of ultrasonic vibrations. It has been shown that the ultrasonic atomization parameters are determined by the regimes of action (vibration frequency and amplitude of the atomization surface), the liquid properties (viscosity, surface tension), and the thickness of the liquid layer covering the atomization surface. To reveal the dependences of the efficiency of the process at various dispersion characteristics of produced liquid droplets, we propose a model based on the cavitation-wave theory of droplet formation. The obtained results can be used in designing and using ultrasonic atomizers producing an aerosol with characteristics complying with the requirements on efficiency and dispersivity for the process being realized.

  11. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    PubMed

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  12. Spray forming process for producing molds, dies and related tooling

    DOEpatents

    McHugh, Kevin M.; Key, James F.

    1998-01-01

    A method for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers.

  13. Spray forming system for producing molds, dies and related tooling

    DOEpatents

    McHugh, Kevin M.

    2000-01-01

    A system for the spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as powders, whiskers or fibers.

  14. Spray forming process for producing molds, dies and related tooling

    DOEpatents

    McHugh, K.M.; Key, J.F.

    1998-02-17

    A method is disclosed for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers. 17 figs.

  15. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part II. Droplet dispersion.

    PubMed

    Gonçalves, J A S; Costa, M A M; Aguiar, M L; Coury, J R

    2004-12-10

    Droplet distribution is of fundamental importance to the performance of a Venturi scrubber. Ensuring good liquid distribution can increase performance at minimal liquid usage. In this study, droplet dispersion in a rectangular Pease-Anthony Venturi scrubber, operating horizontally, was examined both theoretically and experimentally. The Venturi throat cross-section was 24 mm x 35 mm, and the throat length varied from 63 to 140 mm. Liquid was injected through a single orifice (1.0 mm diameter) on the throat wall. This arrangement allowed the study of the influence of jet penetration on droplet distribution. Gas velocity at the throat was 58.3 and 74.6 m/s, and the liquid flow rate was 286, 559 and 853 ml/min. A probe with a 2.7 mm internal diameter was used to isokinetically remove liquid from several positions inside the equipment. It was possible to study liquid distribution close to the injection point. A new model for droplet dispersion, which incorporates the new description of the jet atomization process developed by the present authors in the first article of this series, is proposed and evaluated. The model predicted well the experimental data.

  16. Thermally induced secondary atomization of droplet in an acoustic field

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-01-01

    We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.

  17. Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi; Jordan, Eric H.; Cetegen, Baki M.

    2008-03-01

    Thermo-physical processes in liquid ceramic precursor droplets in plasma were modeled. Models include aerodynamic droplet break-up, droplet transport, as well as heat and mass transfer within individual droplets. Droplet size, solute concentration, and plasma temperature effects are studied. Results are discussed with the perspective of selecting processing conditions and injection parameters to obtain certain types of coating microstructures. Small droplets (<5 microns) are found to undergo volumetric precipitation and coating deposition with small unpyrolized material. Droplets can be made to undergo shear break-up by reducing surface tension and small droplets promote volumetric precipitation. Small particles reach substrate as molten splats resulting in denser coatings. Model predicts that larger droplets (>5 microns) tend to surface precipitate-forming shells with liquid core. They may be subjected to internal pressurization leading to shattering of shells and secondary atomization of liquid within. They arrive at the substrate as broken shells and unpyrolized material.

  18. Rapid solidification processing system for producing molds, dies and related tooling

    DOEpatents

    McHugh, Kevin M.

    2004-06-08

    A system for the spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the in-flight atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as powders, whiskers or fibers.

  19. COMBUSTION OF HEAVY LIQUID FUELS

    DTIC Science & Technology

    characteristics of individual fuel droplets, as functions of the external conditions and fuel properties, the droplet combustion process in a flame ... length and the quality of atomization are examined. In addition, atomization quality is covered, and nozzle systems and the construction of nozzles are

  20. Atomization off thin water films generated by high-frequency substrate wave vibrations.

    PubMed

    Collins, David J; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R; Yeo, Leslie Y

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  1. A New Finite-Conductivity Droplet Evaporation Model Including Liquid Turbulence Effect

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing droplets of an evaporating spray is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen [9]. This finite conductivity model is based on the two-temperature film theory in which the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity for the liquid-side film thickness. Both one-way and two-way coupled calculations were performed to investigate the performance cf this model against the published experimental data.

  2. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Dmitriyenko, Margarita A.; Nyashina, Galina S.; Zhdanova, Alena O.; Vysokomornaya, Olga V.

    2016-02-01

    The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone) were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  3. The Breakup Mechanism and the Spray Pulsation Behavior of a Three-Stream Atomizer

    NASA Astrophysics Data System (ADS)

    Ng, Chin; Dord, Anne; Aliseda, Alberto

    2011-11-01

    In many processes of industrial importance, such as gasification, the liquid to gas mass ratio injected at the atomizer exceeds the limit of conventional two-fluid coaxial atomizers. To maximize the shear rate between the atomization gas and the liquid while maintaining a large contact area, a secondary gas stream is added at the centerline of the spray, interior to the liquid flow, which is annular in this configuration. This cylindrical gas jet has low momentum and does not contribute to the breakup process, which is still dominated by the high shear between the concentric annular liquid flow and the high momentum gas stream. The presence of two independently controlled gas streams leads to the appearance of a hydrodynamic instability that manifests itself in pulsating liquid flow rates and droplet sizes. We study the dependency of the atomization process on the relative flow rates of the three streams. We measure the size distribution, droplet number density and total liquid volumetric flow rate as a function of time, for realistic Weber and Ohnesorge numbers. Analysis of the temporal evolution of these physical variables reveals the dominant frequency of the instability and its effect on the breakup and dispersion of droplets in the spray. We present flow visualization and Phase Doppler Particle Analyzer results that provide insight into the behavior of this complex coaxial shear flow.

  4. Droplet breakup in accelerating gas flows. Part 2: Secondary atomization

    NASA Technical Reports Server (NTRS)

    Zajac, L. J.

    1973-01-01

    An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.

  5. On-Line, Real-Time Diagnostics of a Single Fluid Atomization System

    NASA Technical Reports Server (NTRS)

    DelshadKhatibi, P.; Ilbagi, A.; Henein, H.

    2012-01-01

    A drop tube-Impulse Atomization technique was used to produce copper droplets. In this method, energy is transferred to a liquid by plunger movement resulting in spherical droplets emanating from orifices. A mathematical model of the evolution of droplet velocity and temperature at various heights for different sized droplets was developed. A two-color pyrometer, DPV-2000, and a shadowgraph were used to measure droplets radiant energy, diameter and velocity. The temperature values from the model were used to assess the two color pyrometer assumption over the temperature range of measurement. The DVP 2000 measurements were found to be dependent of droplet size wavelength and position of droplets below the atomizing nozzle. By calibrating the instrument for effective emissivity over the range of measurements, the thermal history of droplets may be recorded using a single color pyrometer approach.

  6. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts radiant heat transfer losses to the walls to be only approximately 3 percent of the fuel energy supplied. Additional work is required to determine the effects of secondary atomization on two-phase losses in the nozzle.

  7. Measurement of Droplet Sizes by the Diffraction Ring Method

    DTIC Science & Technology

    1948-07-27

    for measuring the droplet size distribution in sprays ob- tained by pressure injection of a liquid through an orifice «roby air- stream atomization...Diameter vs Injection Pressure 10 6. Distribution Curves for Spray Sample of Water Injected into Air Stream .... 11 Page ii Page Hi i^ujJa-je jii...tion in sprays obtained by pressure injection of a liquid through an orifice or by air- stream atomization. Perhaps the most widely used method

  8. Comparison of Y-jet and OIL effervescent atomizers based on internal and external two-phase flow characteristics

    NASA Astrophysics Data System (ADS)

    Mlkvik, Marek; Zaremba, Matous; Jedelsky, Jan; Jicha, Miroslav

    2016-03-01

    Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s) by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, "outside in liquid" (OIL), configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa) and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%). The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR), internal flow regimes, Weber numbers of a liquid breakup (We) and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.

  9. Small-angle x-ray scattering measurement of a mist of ethanol nanodroplets: An approach to understanding ultrasonic separation of ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Matsuura, Kazuo; Fukazu, Tetsuo; Abe, Fusatsugu; Wakisaka, Akihiro; Kobara, Hitomi; Kaneko, Kazuyuki; Kumagai, Atsushi; Katsuya, Yoshio; Tanaka, Masahiko

    2007-07-01

    Small-angle x-ray scattering measurements using a brilliant x-ray source revealed nanometer sized liquid droplets in a mist formed by ultrasonic atomization. Ultrasonic atomization of ethanol-water mixtures produced a combination of water-rich droplets of micrometer order and ethanol-rich droplets as small as 1nm, which is 10-3 times smaller than the predicted size. These sizes were also obtained for mists generated from the pure liquids. These results will help to clarify the mechanism of "ultrasonic ethanol separation," which has the potential to become an alternative to distillation.

  10. Sheet, ligament and droplet formation in swirling primary atomization

    NASA Astrophysics Data System (ADS)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  11. Modeling of Turbulence Effect on Liquid Jet Atomization

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.

    2007-01-01

    Recent studies indicate that turbulence behaviors within a liquid jet have considerable effect on the atomization process. Such turbulent flow phenomena are encountered in most practical applications of common liquid spray devices. This research aims to model the effects of turbulence occurring inside a cylindrical liquid jet to its atomization process. The two widely used atomization models Kelvin-Helmholtz (KH) instability of Reitz and the Taylor analogy breakup (TAB) of O'Rourke and Amsden portraying primary liquid jet disintegration and secondary droplet breakup, respectively, are examined. Additional terms are formulated and appropriately implemented into these two models to account for the turbulence effect. Results for the flow conditions examined in this study indicate that the turbulence terms are significant in comparison with other terms in the models. In the primary breakup regime, the turbulent liquid jet tends to break up into large drops while its intact core is slightly shorter than those without turbulence. In contrast, the secondary droplet breakup with the inside liquid turbulence consideration produces smaller drops. Computational results indicate that the proposed models provide predictions that agree reasonably well with available measured data.

  12. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance condition. This occurs when the initial acceleration of the diaphragm is higher than the critical acceleration and the driving frequency is larger than the initial resonance frequency of the diaphragm-droplet system. We have incorporated this droplet atomization device into a design for a new heat transfer cell for use in a microgravity environment. The cell is essentially a cylindrical container with a hot surface on one end and a cold surface on the other. The vibrating diaphragm is mounted in the center of the cold surface. Heat transfer occurs through droplet evaporation and condensation on the hot and cold ends of the cell. A prototype of this heat transfer cell has been built and tested. It can operate continuously and provides a modest level of heat transfer, about 20 W/sq cm. Our work during the next few years will be to optimize the design of this cell to see if we can produce a device that has significantly better performance than conventional heat exchangers and heat pipes.

  13. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  14. A combined Eulerian-volume of fraction-Lagrangian method for atomization simulation

    NASA Technical Reports Server (NTRS)

    Seung, S. P.; Chen, C. P.; Ziebarth, John P.

    1994-01-01

    The tracking of free surfaces between liquid and gas phases and analysis of the interfacial phenomena between the two during the atomization and breakup process of a liquid fuel jet is modeled. Numerical modeling of liquid-jet atomization requires the resolution of different conservation equations. Detailed formulation and validation are presented for the confined dam broken problem, the water surface problem, the single droplet problem, a jet breakup problem, and the liquid column instability problem.

  15. On the spray pulsations of the effervescent atomizers

    NASA Astrophysics Data System (ADS)

    Mlkvik, Marek; Knizat, Branislav

    2018-06-01

    The presented paper focuses on the comparison of the two effervescent atomizer configurations—the outside-in-gas (OIG) and the outside-in-liquid (OIL). The comparison was based on the spray pulsation assessment by different methods. The atomizers were tested under the same operating conditions given by the constant injection pressure (0.14 MPa) and the gas to the liquid mass ratio (GLR) varying from 2.5 to 5%. The aqueous maltodextrin solution was used as the working liquid (μ = 60 and 146 mPa·s). We found that the time-averaging method does not provide sufficient spray quality description. Based on the cumulative distribution function (CDF) we found that the OIG atomizer generated the spray with non-uniform droplet size distribution at all investigated GLRs. Exceptionally large droplets were present even in the spray which appeared stable when was analyzed by the time-averaging method.

  16. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  17. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  18. The influence of droplet evaporation on fuel-air mixing rate in a burner

    NASA Technical Reports Server (NTRS)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  19. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    PubMed

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (p<0.01 in all cases). Under appropriate conditions, it was possible to achieve less than 2% hemolysis, suggesting that spray drying may be a feasible option for erythrocyte biopreservation.

  20. A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows

    NASA Technical Reports Server (NTRS)

    Apte, S. V.; Mahesh, K.; Lundgren, T.

    2003-01-01

    Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.

  1. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a sampling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less effected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  2. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop-size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a smapling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less affected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  3. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Li, Qinglian; Zhang, Jiaqi; Cheng, Peng

    2018-05-01

    To understand the atomization characteristics and atomization mechanism of the gas-liquid swirl coaxial (GLSC) injector, a back-lighting photography technique has been employed to capture the instantaneous spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of gas liquid ratio (GLR) on the spray pattern, Sauter mean diameter (SMD), diameter-velocity distribution and mass flow rate distribution were analyzed and discussed. The results show that the atomization of the GLSC injector is dominated by the film breakup when the GLR is small, and violent gas-liquid interaction when the GLR is large enough. The film breakup dominated spray can be divided into gas acceleration region and film breakup region while the violent gas-liquid interaction dominated spray can be divided into the gas acceleration region, violent gas-liquid interaction region and big droplets breakup region. The atomization characteristics of the GLSC injector is significantly influenced by the GLR. From the point of atomization performance, the increase of GLR has positive effects. It decreases the global Sauter mean diameter (GSMD) and varies the SMD distribution from a hollow cone shape (GLR = 0) to an inverted V shape, and finally slanted N shape. However, from the point of spatial distribution, the increase of GLR has negative effects, because the mass flow rate distribution becomes more nonuniform.

  4. Coaxial twin-fluid atomization with pattern air gas streams

    NASA Astrophysics Data System (ADS)

    Hei Ng, Chin; Aliseda, Alberto

    2010-11-01

    Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.

  5. The Primary Break-up Instabilities in a gas-liquid coaxial atomizer combined with electro-spray

    NASA Astrophysics Data System (ADS)

    Osuna, Rodrigo; Machicoane, Nathanael; Aliseda, Alberto

    2017-11-01

    We present an experimental study of a canonical coaxial gas-liquid atomizer, balancing the physics of gas-assisted atomization and electro-sprays. The laminar liquid stream is injected through a long straight metallic pipe at the center of the turbulent gas jet. The liquid needle is used as the anode, while the cathode is formed by a ring located on the streamwise face of the coaxial gas chamber. The gas Reynolds number ranges from 104-106, while keeping the liquid Reynolds number constant at 103. The electrospray voltage applied is varied from 100 to 5000 V and the resulting negative charge transferred to the liquid jet spans from O(10-3 - 10-1) Coulomb per cubic meter. The relative influence of the high speed gas to the liquid electric charge on the primary instability and jet break-up is studied. The effect of the electric field on the atomization process is characterized by high speed visualization at the nozzle exit, complemented with the resulting droplet size distribution in the mid field after break-up has ended. The quantitative visualization captures the fast dynamics of the interface de-stabilization and clearly shows the changes in the liquid stream instabilities caused by the electric field. These instabilities control the liquid droplet sizes and their spatio-temporal distribution in the spray, as measured from light interferometry.

  6. Multiphysics control of a two-fluid coaxial atomizer supported by electric-charge on the liquid jet

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto

    2017-11-01

    We present an experimental setup to investigate multiphysics control strategies on atomization of a laminar fluid stream by a coaxial turbulent jet. Spray control (i.e. driving the droplet size distribution and the spatio-temporal location of the droplets towards a desired objective) has many potential engineering applications, but requires a mechanistic understanding of the processes that control droplet formation and transport (primary and secondary instabilities, turbulent transport, hydrodynamic and electric forces on the droplets, ...). We characterize experimentally the break-up dynamics in a canonical coaxial atomizer, and the spray structure (droplet size, location, and velocity as a function of time) in a series of open loop conditions with harmonic forcing of the gas swirl ratio, liquid injection rate, the electric field strength at the nozzle and along the spray development region. The effect of these actuators are characterized for different gas Reynolds numbers ranging from 104-106. This open-loop characterization of the injector will be used to develop reduced order models for feedback control, as well as to validate assumptions underlying an adjoint-based computational control strategy. This work is part of a large-scale project funded by an ONR MURI to provide fundamental understanding of the mechanisms for feedback control of sprays.

  7. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  8. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector Using Non-invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  9. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector using Non-Invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a Liquid-Liquid Double Swirl Coaxial Injector were studied using noninvasive Optical, Laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler Particle Analysis characterized droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, x-ray radiographs allowed for investigations of sheet thickness and breakup length to be quantified for different recess exits and inlet pressures. Finally Computed Tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  10. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  11. Modeling the spray casting process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Haggar, S.M.; Muoio, N.; Crowe, C.T.

    1995-12-31

    Spray forming is a process in which a liquid metal is atomized into very small droplets and deposited on a substrate. These small droplets cool very rapidly in a high velocity gas jet, giving rise to smaller grain structure and improved mechanical properties. This paper presents a numerical model, based on the trajectory approach, for the velocity and thermal properties of the droplets in the jet and predicts the deposition pattern and the state of the droplets upon contact with the substrate.

  12. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field.

    PubMed

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.

  13. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636

  14. The electrospray: Fundamentals and combustion applications

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro

    1993-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment. In view of the nearly unsurmountable difficulties of this two-phase flow, it would be useful to use an experimental arrangement that allow a systematic study of spray evolution and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones. An Electrostatic Spray (ES) of charged droplets lends itself to this type of combustion experiments under well-defined conditions and can be used to synthesize gradually more complex spray environments. In its simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip. This jet breaks up farther downstream into a fine spray of charged droplets. Several advantages distinguish the electrospray from alternative atomization techniques: the self-dispersion property of the spray due to coulombic repulsion; the absence of droplet coalescence; the potential control of the trajectories of charged droplets by suitable disposition of electrostatic fields; and the decoupling of atomization, which is strictly electrostatic, from gas flow processes. Furthermore, as recently shown in our laboratory, the electrospray can produce quasi-monodisperse droplets over a very broad size range (1-100 microns). The ultimate objective of this research project is to study the formation and burning of electrosprays of liquid fuels first in laminar regimes and then in turbulent ones. Combustion will eventually be investigated in conditions of three-dimensional droplet-droplet interaction, for which experimental studies have been limited to either qualitative observations in sprays or more quantitative observations on simplified systems consisting of a small number of droplets or droplet arrays. The compactness and potential controllability of this spray generaiton system makes it appealing for studies to be undertaken in the next two years on electrospray combustion in reduced-gravity environments such as those achievable at NASA microgravity test facilities.

  15. Theoretical study of liquid droplet dispersion in a venturi scrubber.

    PubMed

    Fathikalajahi, J; Talaie, M R; Taheri, M

    1995-03-01

    The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.

  16. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  17. High-speed imaging optical techniques for shockwave and droplets atomization analysis

    NASA Astrophysics Data System (ADS)

    Slangen, Pierre R.; Lauret, Pierre; Heymes, Frederic; Aprin, Laurent; Lecysyn, Nicolas

    2016-12-01

    Droplets atomization by shockwave can act as a consequence in domino effects on an industrial facility: aggression of a storage tank (projectile from previous event, for example) can cause leakage of hazardous material (toxic and flammable). As the accident goes on, a secondary event can cause blast generation, impacting the droplets and resulting in their atomization. Therefore, exchange surface increase impacts the evaporation rate. This can be an issue in case of dispersion of such a cloud. The experiments conducted in the lab generate a shockwave with an open-ended shock tube to break up liquid droplets. As the expected shockwave speed is about 400 m/s (˜Mach 1.2), the interaction with falling drops is very short. High-speed imaging is performed at about 20,000 fps. The shockwave is measured using both overpressure sensors: particle image velocimetry and pure in line shadowgraphy. The size of fragmented droplets is optically measured by direct shadowgraphy simultaneously in different directions. In these experiments, secondary breakups of a droplet into an important number of smaller droplets from the shockwave-induced flow are shown. The results of the optical characterizations are discussed in terms of shape, velocity, and size.

  18. Direct microscopic image and measurement of the atomization process of a port fuel injector

    NASA Astrophysics Data System (ADS)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  19. Atomizing-gas temperature effect on cryogenic spray dropsize

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1993-01-01

    Correlating expressions for two-phase flow breakup of liquid nitrogen, LN2, jets in sonic velocity nitrogen gasflows were obtained for an atomizing-gas temperature range of 111 to 442 K. The correlations were based on characteristic dropsize measurements obtained with a scattered-light scanner. The effect of droplet vaporization on the measurements of the volume-median dropsize was calculated by using previously determined heat and momentum transfer expressions for droplets evaporating in high-velocity gasflow. Finally, the dropsize of the originally unvaporized spray was calculated, normalized with respect to jet diameter and correlated with atomizing-gas flowrate and temperature.

  20. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.

  1. Apparatus for making environmentally stable reactive alloy powders

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  2. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  3. Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Mayer, W. O. H.

    1994-05-01

    Coaxial injectors have proven to be advantageous for the injection, atomization and mixing of propellants in cryogenic H2/O2 rocket engines. Thereby, a round liquid oxygen jet is atomized by a fast, coaxial gaseous hydrogen jet. This article summarizes phenomenological studies of coaxial spray generation under a broad variation of influencing parameters including injector design, inflow, and fluid conditions. The experimental investigations, performed using spark light photography and high speed cinematography in a shadow graph setup as main diagnostic means, illuminate the most important processes leading to atomization. These are identified as turbulence in the liquid jet, surface instability, surface wave growth and droplet detachment. Numerical simulations including free surface flow phenomena are a further diagnostic tool to elucidate some atomization particulars. The results of the study are of general importance in the field of liquid atomization.

  4. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  5. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE PAGES

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...

    2017-03-16

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  6. Mechanism of Contact between a Droplet and an Atomically Smooth Substrate

    NASA Astrophysics Data System (ADS)

    Lo, Hau Yung; Liu, Yuan; Xu, Lei

    2017-04-01

    When a droplet gently lands on an atomically smooth substrate, it will most likely contact the underlying surface in about 0.1 s. However, theoretical estimation from fluid mechanics predicts a contact time of 10-100 s. What causes this large discrepancy, and how does nature speed up contact by 2 orders of magnitude? To probe this fundamental question, we prepare atomically smooth substrates by either coating a liquid film on glass or using a freshly cleaved mica surface, and visualize the droplet contact dynamics with 30-nm resolution. Interestingly, we discover two distinct speed-up approaches: (1) droplet skidding due to even minute perturbations breaks rotational symmetry and produces early contact at the thinnest gap location, and (2) for the unperturbed situation with rotational symmetry, a previously unnoticed boundary flow around only 0.1 mm /s expedites air drainage by over 1 order of magnitude. Together, these two mechanisms universally explain general contact phenomena on smooth substrates. The fundamental discoveries shed new light on contact and drainage research.

  7. Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet

    NASA Astrophysics Data System (ADS)

    Shan, Y.; Coyle, T. W.; Mostaghimi, J.

    2010-01-01

    Solution precursor plasma spraying (SPPS) is a novel technology with great potential for depositing finely structured ceramic coatings with nano- and sub-micrometric features. The solution is injected into the plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interact with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream. Solid particles are finally formed, and the particle are heated up and accelerated to the substrate to generate the coating. The deposition process and the properties of coatings obtained are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This article numerically investigates the effect of injection modes, a liquid stream injection and a gas-blast injection, on the size distribution of injected droplets. The particle/droplet size, temperature, and position distributions on the substrate are predicted for different injection modes.

  8. Spectroscopic Investigation of the Primary Reaction Intermediates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids.

    PubMed

    Brotton, Stephen J; Lucas, Michael; Chambreau, Steven D; Vaghjiani, Ghanshyam L; Yu, Jiang; Anderson, Scott L; Kaiser, Ralf I

    2017-12-21

    The production of the next generation of hypergolic, ionic-liquid-based fuels requires an understanding of the reaction mechanisms between the ionic liquid and oxidizer. We probed reactions between a levitated droplet of 1-methyl-4-amino-1,2,4-triazolium dicyanamide ([MAT][DCA]), with and without hydrogen-capped boron nanoparticles, and the nitrogen dioxide (NO 2 ) oxidizer. The apparatus exploits an ultrasonic levitator enclosed within a pressure-compatible process chamber equipped with complementary Raman, ultraviolet-visible, and Fourier-transform infrared (FTIR) spectroscopic probes. Vibrational modes were first assigned to the FTIR and Raman spectra of droplets levitated in argon. Spectra were subsequently collected for pure and boron-doped [MAT][DCA] exposed to nitrogen dioxide. By comparison with electronic structure calculations, some of the newly formed modes suggest that the N atom of the NO 2 molecule bonds to a terminal N on the dicyanamide anion yielding [O 2 N-NCNCN] - . This represents the first spectroscopic evidence of a key reaction intermediate in the oxidation of levitated ionic liquid droplets.

  9. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  10. Quantum liquids get thin

    NASA Astrophysics Data System (ADS)

    Ferrier-Barbut, Igor; Pfau, Tilman

    2018-01-01

    A liquid exists when interactions that attract its constituent particles to each other are counterbalanced by a repulsion acting at higher densities. Other characteristics of liquids are short-range correlations and the existence of surface tension (1). Ultracold atom experiments provide a privileged platform with which to observe exotic states of matter, but the densities are far too low to obtain a conventional liquid because the atoms are too far apart to create repulsive forces arising from the Pauli exclusion principle of the atoms' internal electrons. The observation of quantum liquid droplets in an ultracold mixture of two quantum fluids is now reported on page 301 of this issue by Cabrera et al. (2) and a recent preprint by Semeghini et al. (3). Unlike conventional liquids, these liquids arise from a weak attraction and repulsive many-body correlations in the mixtures.

  11. Micromachined ultrasonic droplet generator based on a liquid horn structure

    NASA Astrophysics Data System (ADS)

    Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.

    2004-05-01

    A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.

  12. Assessment of Some Atomization Models Used in Spray Calculations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Bulzin, Dan

    2011-01-01

    The paper presents the results from a validation study undertaken as a part of the NASA s fundamental aeronautics initiative on high altitude emissions in order to assess the accuracy of several atomization models used in both non-superheat and superheat spray calculations. As a part of this investigation we have undertaken the validation based on four different cases to investigate the spray characteristics of (1) a flashing jet generated by the sudden release of pressurized R134A from cylindrical nozzle, (2) a liquid jet atomizing in a subsonic cross flow, (3) a Parker-Hannifin pressure swirl atomizer, and (4) a single-element Lean Direct Injector (LDI) combustor experiment. These cases were chosen because of their importance in some aerospace applications. The validation is based on some 3D and axisymmetric calculations involving both reacting and non-reacting sprays. In general, the predicted results provide reasonable agreement for both mean droplet sizes (D32) and average droplet velocities but mostly underestimate the droplets sizes in the inner radial region of a cylindrical jet.

  13. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  14. Measurements of the Diameter and Velocity Distributions of Atomized Tablet-Coating Solutions for Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Osterday, Kathryn; Aliseda, Alberto; Lasheras, Juan

    2009-11-01

    The atomization of colloidal suspensions is of particular interest to the manufacturing of tablets and pills used as drug delivery systems by the pharmaceutical industry. At various stages in the manufacturing process, the tablets are coated with a spray of droplets produced by co-axial atomizers. The mechanisms of droplet size and spray formation in these types of atomizers are dominated by Kelvin-Helmholtz and Raleigh-Taylor instabilities for both low[1] and high[2] Ohnesorge numbers. We present detailed phase Doppler measurements of the Sauter Mean Diameter of the droplets produced by co-axial spray atomizers using water-based colloidal suspensions with solid concentrations ranging from fifteen to twenty percent and acetone-based colloidal suspensions with solid concentrations ranging from five to ten percent. Our results compare favorably with predictions by Aliseda's model. This suggests that the final size distribution is mainly determined by the instabilities caused by the sudden acceleration of the liquid interface. [1]Varga, C. M., et al. (2003) J. Fluid Mech. 497:405-434 [2]Aliseda, A. et al. (2008). J. Int. J. Multiphase Flow, 34(2), 161-175.

  15. X-ray Radiography Measurements of Shear Coaxial Rocket Injectors

    DTIC Science & Technology

    2013-05-07

    injector EPL profiles have elliptical shape expected from a solid liquid jet  EPL decreases as liquid core is atomized and droplets are...study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors  Use a monochromatic beam of x-rays at a synchrotron...Shear coaxial jets can be found in a number of combustion devices – Turbofan engine exhaust, air blast furnaces, and liquid rocket engines

  16. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and 1688) in which the ES was used as a research tool to examine spray combustion in counter-flow and co-flow spray diffusion flames, as summarized below. The ultimate objective of this investigation is to examine the formation and burning of sprays of liquid fuels, at both normal and reduced gravity, first in laminar regimes and then in turbulent ones.

  17. Uniform-droplet spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less

  18. On the spatial stability of a liquid jet in the presence of vapor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas,more » (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.« less

  19. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  20. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.

  1. Influence of spray nozzle shape upon atomization process

    NASA Astrophysics Data System (ADS)

    Beniuga, Marius; Mihai, Ioan

    2016-12-01

    The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.

  2. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  3. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Wu, Liyin; Li, Qinglian

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. Themore » injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.« less

  4. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  5. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    NASA Astrophysics Data System (ADS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  6. A technique for thick polymer coating of inertial-confinement-fusion targets

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.

    1983-01-01

    A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.

  7. Free energy calculations along entropic pathways. I. Homogeneous vapor-liquid nucleation for atomic and molecular systems

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2016-11-01

    Using the entropy S as a reaction coordinate, we determine the free energy barrier associated with the formation of a liquid droplet from a supersaturated vapor for atomic and molecular fluids. For this purpose, we develop the μ V T -S simulation method that combines the advantages of the grand-canonical ensemble, that allows for a direct evaluation of the entropy, and of the umbrella sampling method, that is well suited to the study of an activated process like nucleation. Applying this approach to an atomic system such as Ar allows us to test the method. The results show that the μ V T -S method gives the correct dependence on supersaturation of the height of the free energy barrier and of the size of the critical droplet, when compared to predictions from the classical nucleation theory and to previous simulation results. In addition, it provides insight into the relation between the entropy and droplet formation throughout this process. An additional advantage of the μ V T -S approach is its direct transferability to molecular systems, since it uses the entropy of the system as the reaction coordinate. Applications of the μ V T -S simulation method to N2 and CO2 are presented and discussed in this work, showing the versatility of the μ V T -S approach.

  8. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  9. Liquid atomization in supersonic flows

    NASA Astrophysics Data System (ADS)

    Missoum, Azzedine

    An experimental investigation of the atomization of a round liquid jet by coaxial, costream injection into a supersonic, Mach 1.5 air flow is reported. Extensive flow visualization was conducted using schlieren/shadowgraph, flash photography, and short duration (ns) laser imaging. The finer details of the jet were revealed when viewed under high magnification with the help of a microscope. The liquid and air pressures were varied individually. Photographic evidence indicates the presence of three regions within the liquid jet: a primary region enclosed by the first shock cell where the primary breakup occurs, a secondary region in which the jet is totally broken because of its interaction with the supersonic wave structure, and a third, subsonic region further downstream. It was found that the breakup mechanism of liquid jets in supersonic airstreams is quite complex. The breakup seems to be initiated by the growth of the turbulent structure on the liquid surface and the subsequent detachment of the three-dimensional structure as fine droplets by the intense shear at the liquid-gas interface. This seems to confirm the boundary layer stripping mechanism. The liquid jet expands into a bubble like formation as it interacts with the first set of waves. Higher liquid injection pressures resulted in higher initial spray angles. The liquid jet displayed a geometry strongly dependent on the pressure distribution resulting from the wave structure present in the supersonic jet. Droplet size and velocity distributions were measured by the P/DPA (Phase/Doppler Particle Analyzer) system. The Sauter Mean Diameter (SMD) was measured at several axial and radial locations at various liquid and air pressures. The SMD shows a decrease with increase in both the air-to-liquid mass flow ratio and the Weber number. The drop size decreased towards the outer edges of the jet. The results lead one to conclude that the coaxial, coflowing configuration is very attractive for atomizing scramjet liquid fuels.

  10. Molecular dynamics analysis of a equilibrium nanoscale droplet on a solid surface with periodic roughness

    NASA Astrophysics Data System (ADS)

    Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka

    2016-11-01

    Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.

  11. Spray combustion under oscillatory pressure conditions

    NASA Technical Reports Server (NTRS)

    Jacobs, H. R.; Santoro, R. J.

    1991-01-01

    The performance and stability of liquid rocket engines is often argued to be significantly impacted by atomization and droplet vaporization processes. In particular, combustion instability phenomena may result from the interactions between the oscillating pressure field present in the rocket combustor and the fuel and oxidizer injection process. Few studies have been conducted to examine the effects of oscillating pressure fields on spray formation and its evolution under rocket engine conditions. The pressure study is intended to address the need for such studies. In particular, two potentially important phenomena are addressed in the present effort. The first involves the enhancement of the atomization process for a liquid jet subjected to an oscillating pressure field of known frequency and amplitude. The objective of this part of the study is to examine the coupling between the pressure field and or the resulting periodically perturbed velocity field on the breakup of the liquid jet. In particular, transverse mode oscillations are of interest since such modes are considered of primary importance in combustion instability phenomena. The second aspect of the project involves the effects of an oscillating pressure on droplet coagulation and secondary atomization. The objective of this study is to examine the conditions under which phenomena following the atomization process are affected by perturbations to the pressure or velocity fields. Both coagulation and represent a coupling mechanism between the pressure field and the energy release process in rocket combustors. It is precisely this coupling which drives combustion instability phenomena. Consequently, the present effort is intended to provide the fundamental insights needed to evaluate these processes as important mechanisms in liquid rocket instability phenomena.

  12. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  13. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  14. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distancemore » increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)« less

  15. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor

    DTIC Science & Technology

    2009-12-01

    In the primary zone, high- temperature, high-pressure air enters from the compressor and flows around fuel injectors spraying atomized liquid -droplet...chemical reaction in which synthesis gas , a mixture of carbon monoxide and hydrogen, is converted into liquid hydrocarbons of various forms. The most...the fuel lines needed to be rebuilt due to a recent COAL lab renovation. The liquid fuel system had not been used for nearly two years so some

  16. X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames (Briefing Charts)

    DTIC Science & Technology

    2015-03-01

    Radiography- Radial EPL Profiles • Near-injector EPL profiles have elliptical shape expected from a solid liquid jet • Closest measurements were...turbulent flames relevant to liquid rocket engines – Explore the use of two different tracers, Argon & Krypton – Identify a path forward to apply these...made 0.02 mm downstream • EPL decreases axially as liquid core is atomized and droplets are accelerated – EPL is a function of local mass flux

  17. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  18. Numerical study of liquid-hydrogen droplet generation from a vibrating orifice

    NASA Astrophysics Data System (ADS)

    Xu, J.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.

    2005-08-01

    Atomic hydrogen propellant feed systems for far-future spacecraft may utilize solid-hydrogen particle carriers for atomic species that undergo recombination to create hot rocket exhaust. Such technology will require the development of particle generation techniques. One such technique could involve the production of hydrogen droplets from a vibrating orifice that would then freeze in cryogenic helium vapor. Among other quantities, the shape and size of the droplet are of particular interest. The present paper addresses this problem within the framework of the incompressible Navier-Stokes equations for multiphase flows, in order to unravel the basic mechanisms of droplet formation with a view to control them. Surface tension, one of the most important mechanisms to determine droplet shape, is modeled as the source term in the momentum equation. Droplet shape is tracked using a volume-of-fluid approach. A dynamic meshing technique is employed to accommodate the vibration of the generator orifice. Numerically predicted droplet shapes show satisfactory agreement with photographs of droplets generated in experiments. A parametric study is carried out to understand the influence of injection velocity, nozzle vibrational frequency, and amplitude on the droplet shape and size. The computational model provides a definitive qualitative picture of the evolution of droplet shape as a function of the operating parameters. It is observed that, primarily, the orifice vibrational frequency affects the shape, the vibrational amplitude affects the time until droplet detachment from the orifice, and the injection velocity affects the size. However, it does not mean that, for example, there is no secondary effect of amplitude on shape or size.

  19. Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2018-03-01

    An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet-vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.

  20. Combustion dynamics of low vapour pressure nanofuel droplets

    NASA Astrophysics Data System (ADS)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is manifested in two frequency ranges: (i) buoyant flame flickering and (ii) auxiliary frequencies arising from high intensity secondary ejections due to bubble ruptures. Addition of alumina NPs enhances the heat absorption rate and ensures the rapid transfer of fuel parcels (detached daughter droplets) from droplet surface to flame front through secondary ejections. Therefore, average HR shows an increasing trend with particle loading rate (PLR). The perikinetic agglomeration model is used to explain the formation of gelatinous sheath during the last phase of droplet burning. Gelatinous mass formed results in bubble entrapment. SEM images of combustion precipitates show entrapped bubble cavities along with surface and sub-surface blowholes. Morphology of combustion precipitate shows a strong variation with PLRs. We have established the coupling mechanisms among heat release, shape oscillations, and secondary atomizations that underline the combustion behaviour of such low vapour pressure nanofuels.

  1. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huisken, Friedrich; Krasnokutski, Serge A.

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the heliummore » droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.« less

  2. The electrospray and its application to targeted drug inhalation.

    PubMed

    Gomez, Alessandro

    2002-12-01

    This review explains the fundamentals of electrostatic spray (electrospray) atomization, with emphasis on operation in the so called cone-jet mode, which produces droplets with a very narrow size distribution. Since the control of droplet size is key to maximizing distal lung deposition, the electrospray should be well-suited to targeted drug inhalation. Electrospray droplets are a few micrometers in diameter, but they originate from a much larger nozzle, which allows nebulization of suspensions without clogging. Also discussed are: the physical principles of the break-up of the liquid ligament; droplet dispersion by Coulombic forces; and the most important scaling law linking the droplet size to liquid flow rate and liquid physical properties. The effects of the most critical of those properties may result in some restrictions on drug formulation. Droplets produced by electrospray are electrically charged, so to prevent electrostatic image forces from causing upper respiratory tract deposition. The charge is neutralized by generating a corona discharge of opposite polarity. Briefly discussed are the main differences between the laboratory systems (with which the electrospray has been quantitatively characterized during research in the past 10 years) and commercial electrospray inhalers under development at BattellePharma. Some remarkable miniaturization has incorporated liquid pump, power supply, breath activation, and dose counter into a palm-size portable device. The maximum flow rates dispersed from these devices are in the range of 8-16 microL/s, which makes them suitable for practical drug inhalation therapy. Fabrication is economically competitive with inexpensive nebulizers. Dramatic improvements in respirable dose efficiency (up to 78% by comparison with commercial metered-dose inhalers and dry powder inhalers) should ensure the commercialization of this promising technology for targeted drug inhalation.

  3. Modeling of turbulence effects on the heat and mass transfer of evaporating sprays

    NASA Astrophysics Data System (ADS)

    Madhanabharatam, Balasubramanyam

    A large diversity of two-phase gas-liquid flows of both scientific and practical interest involves the evaporation of near spherical liquid droplets in high temperature turbulent environments. Current numerical modeling approaches are predominantly focused towards the effects of continuous phase (gas phase) turbulence on the evaporation rates of liquid fuel sprays during the evaporation process, failing to account for the inherent turbulence present in the dispersed phase (liquid phase), due to the injection of sprays at high velocities. Existing models accounting for internal turbulence effects use Direct Numerical Simulations and Large Eddy Simulations that are computationally intensive. This research provides an alternative phenomenological approach of modeling droplet internal turbulence effects through the mass and heat transfer between the droplet surface and the external gas phase within a thin film inside the droplet. This finite conductivity (F-C) model was based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity (alphaeff) within the droplet phase. The alphaeff is estimated from the physical properties of the flow within the droplet rather than from a 'curve-fit' as done conventionally. The results of the one-way coupled study indicated that the equilibrium drop temperature predictions were higher than calculations by the infinite conductivity (I-C) model. The liquid internal turbulence has a considerable effect on the diffusivity in the primary atomization regime. The thermal boundary layer was found to be substantially thick initially, decreasing quickly to a small value, exhibiting a reasonable physical trend. The two-way coupled studies (CFD) indicated that the F-C model, slowed down the evaporation process, produced larger droplets and longer tip penetration lengths during the initial stages of injection. For a jet in a supersonic cross-flow, results indicated that jet penetration increased rapidly in the vicinity of the injector exit and then gradually increased due to increase in the drag of the air stream. A modified drag coefficient was incorporated to improve model accuracy in predictions. Overall the results obtained from the numerical calculations during this study were reasonably comparable to measured data and showed more accurate comparisons to that of the I-C model.

  4. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate

    NASA Astrophysics Data System (ADS)

    Brehm, Martin; Sebastiani, Daniel

    2018-05-01

    To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.

  5. Dynamics of Radially Expanding Liquid Sheets

    NASA Astrophysics Data System (ADS)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  6. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios C.

    2016-08-01

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream flow recirculation, and vortex shedding. Formation of "Λ" shape windward column waves is observed and explained by the combined upward and lateral surface motion. The existence of Rayleigh-Taylor instability as the primary mechanism for the windward column waves is verified for this case by comparing wavelengths from the simulations to those predicted by linear stability analyses. Physical arguments are employed to postulate that the type of instability manifested may be related to conditions such as the gas Weber number and the inlet turbulence level. The decreased column wavelength with increasing Weber number is found to cause enhanced surface stripping and early depletion of liquid core at higher Weber number. A peculiar "three-streak-two-membrane" liquid structure is identified at the lowest Weber number and explained as the consequence of the symmetric recirculation zones behind the jet column. It is found that the vortical flow downstream of the liquid column resembles a von Karman vortex street and that the coupling between the gas flow and droplet transport is weak for the conditions explored.

  7. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoyi, E-mail: lixy2@utrc.utc.com; Soteriou, Marios C.

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quomore » by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream flow recirculation, and vortex shedding. Formation of “Λ” shape windward column waves is observed and explained by the combined upward and lateral surface motion. The existence of Rayleigh-Taylor instability as the primary mechanism for the windward column waves is verified for this case by comparing wavelengths from the simulations to those predicted by linear stability analyses. Physical arguments are employed to postulate that the type of instability manifested may be related to conditions such as the gas Weber number and the inlet turbulence level. The decreased column wavelength with increasing Weber number is found to cause enhanced surface stripping and early depletion of liquid core at higher Weber number. A peculiar “three-streak-two-membrane” liquid structure is identified at the lowest Weber number and explained as the consequence of the symmetric recirculation zones behind the jet column. It is found that the vortical flow downstream of the liquid column resembles a von Karman vortex street and that the coupling between the gas flow and droplet transport is weak for the conditions explored.« less

  8. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    NASA Astrophysics Data System (ADS)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  9. Measurements and predictions of a liquid spray from an air-assist nozzle

    NASA Technical Reports Server (NTRS)

    Bulzan, Daniel L.; Levy, Yeshayahou; Aggarwal, Suresh K.; Chitre, Susheel

    1991-01-01

    Droplet size and gas velocity were measured in a water spray using a two-component Phase/Doppler Particle Analyzer. A complete set of measurements was obtained at axial locations from 5 to 50 cm downstream of the nozzle. The nozzle used was a simple axisymmetric air-assist nozzle. The sprays produced, using the atomizer, were extremely fine. Sauter mean diameters were less than 20 microns at all locations. Measurements were obtained for droplets ranging from 1 to 50 microns. The gas phase was seeded with micron sized droplets, and droplets having diameters of 1.4 microns and less were used to represent gas-phase properties. Measurements were compared with predictions from a multi-phase computer model. Initial conditions for the model were taken from measurements at 5 cm downstream. Predictions for both the gas phase and the droplets showed relatively good agreement with the measurements.

  10. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  11. A computer model for liquid jet atomization in rocket thrust chambers

    NASA Astrophysics Data System (ADS)

    Giridharan, M. G.; Lee, J. G.; Krishnan, A.; Yang, H. Q.; Ibrahim, E.; Chuech, S.; Przekwas, A. J.

    1991-12-01

    The process of atomization has been used as an efficient means of burning liquid fuels in rocket engines, gas turbine engines, internal combustion engines, and industrial furnaces. Despite its widespread application, this complex hydrodynamic phenomenon has not been well understood, and predictive models for this process are still in their infancy. The difficulty in simulating the atomization process arises from the relatively large number of parameters that influence it, including the details of the injector geometry, liquid and gas turbulence, and the operating conditions. In this study, numerical models are developed from first principles, to quantify factors influencing atomization. For example, the surface wave dynamics theory is used for modeling the primary atomization and the droplet energy conservation principle is applied for modeling the secondary atomization. The use of empirical correlations has been minimized by shifting the analyses to fundamental levels. During applications of these models, parametric studies are performed to understand and correlate the influence of relevant parameters on the atomization process. The predictions of these models are compared with existing experimental data. The main tasks of this study were the following: development of a primary atomization model; development of a secondary atomization model; development of a model for impinging jets; development of a model for swirling jets; and coupling of the primary atomization model with a CFD code.

  12. Spray Formation from a Charged Liquid Jet of a Dielectric Fluid

    NASA Astrophysics Data System (ADS)

    Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team

    2017-11-01

    Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.

  13. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrehedral-Phase-Forming Alloys

    NASA Technical Reports Server (NTRS)

    2003-01-01

    By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.

  14. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  15. Atomization of a High Speed Jet

    NASA Astrophysics Data System (ADS)

    Xu, Zhiliang; Samulyak, Roman; Li, Xiaolin; Tzanos, Constantine

    2005-11-01

    We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. Many parameters such as the nuzzle shape, the velocity and the turbulence of the jet and the thermodynamic states of liquid and gas could be contributing causes for jet breakup. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. In order to resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. We model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. On the liquid/vapor interface, a phase transition problem is solved numerically.

  16. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  17. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE PAGES

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul; ...

    2017-03-28

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  18. Collapse of surface nanobubbles.

    PubMed

    Chan, Chon U; Chen, Longquan; Arora, Manish; Ohl, Claus-Dieter

    2015-03-20

    Surface attached nanobubbles populate surfaces submerged in water. These nanobubbles have a much larger contact angle and longer lifetime than predicted by classical theory. Moreover, it is difficult to distinguish them from hydrophobic droplets, e.g., polymeric contamination, using standard atomic force microscopy. Here, we report fast dynamics of a three phase contact line moving over surface nanobubbles, polymeric droplets, and hydrophobic particles. The dynamics is distinct: across polymeric droplets the contact line quickly jumps and hydrophobic particles pin the contact line, while surface nanobubbles rapidly shrink once merging with the contact line, suggesting a method to differentiate nanoscopic gaseous, liquid, and solid structures. Although the collapse process of surface nanobubbles occurs within a few milliseconds, we show that it is dominated by microscopic dynamics rather than bulk hydrodynamics.

  19. Planar Laser Imaging of Sprays for Liquid Rocket Studies

    NASA Technical Reports Server (NTRS)

    Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.

    1990-01-01

    A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.

  20. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.

  1. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.

    2011-11-01

    We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.

  2. Spray Combustion Modeling with VOF and Finite-Rate Chemistry

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See

    1996-01-01

    A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the sharp interface will be modeled as a volume force to avoid stiffness. Formations of droplets, tracking of droplet dynamics and modeling of the droplet breakup/evaporation, are handled through the same unified predictor-corrector procedure. Thus the new algorithm is non-iterative and is flexible for general geometries with arbitrarily complex topology in free surfaces. The FDNS finite-difference Navier-Stokes code is employed as the baseline of the current development. Benchmark test cases of shear coaxial LOX/H2 liquid jet with atomization/combustion and impinging jet test cases are investigated in the present work. Preliminary data comparisons show good qualitative agreement between data and the present analysis. It is indicative from these results that the present method has great potential to become a general engineering design analysis and diagnostics tool for problems involving spray combustion.

  3. Development of an Evaporation Sub-model and Simulation of Multiple Droplet Impingement in Volume of Fluid Method

    NASA Astrophysics Data System (ADS)

    Potham, Sathya Prasad

    Droplet collision and impingement on a substrate are widely observed phenomenon in many applications like spray injection of Internal Combustion Engines, spray cooling, spray painting and atomizers used in propulsion applications. Existing Lagrangian models do not provide a comprehensive picture of the outcome of these events and may involve model constants requiring experimental data for validation. Physics based models like Volume of Fluid (VOF) method involve no parametric tuning and are more accurate. The aim of this thesis is to extend the basic VOF method with an evaporation sub-model and implement in an open source Computational Fluid Dynamics (CFD) software, OpenFOAM. The new model is applied to numerically study the evaporation of spherical n-heptane droplets impinging on a hot wall at atmospheric pressure and a temperature above the Leidenfrost temperature. An additional vapor phase is introduced apart from the liquid and gas phases to understand the mixing and diffusion of vapor and gas phases. The evaporation model is validated quantitatively and qualitatively with fundamental problems having analytical solutions and published results. The effect of droplet number and arrangement on evaporation is studied by three cases with one (Case 1), two (Case 2) and four (Case 3) droplets impinging on hot wall in film boiling regime at a fixed temperature of wall and a constant non-dimensional distance between droplets. Droplet lift and spread, surface temperature, heat transfer, and evaporation rate are examined. It was observed that more liquid mass evaporated in Case 1 compared to the other cases. Droplet levitation begins early in Case 1 and very high levitation observed was partially due to contraction of its shape from elongated to a more circular form. Average surface temperature was also considerably reduced in Case 1 due to high droplet levitation.

  4. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  5. Experimental comparative study of doublet and triplet impinging atomization of gelled fuel based on PIV

    NASA Astrophysics Data System (ADS)

    Yang, Jian-lu; Li, Ning; Weng, Chun-sheng

    2016-10-01

    Gelled propellant is promising for future aerospace application because of its combination of the advantages of solid propellants and liquid propellants. An effort was made to reveal the atomization properties of gelled fuel by particle image velocimetry (PIV) system. The gelled fuel which was formed by gasoline and Nano-silica was atomized using a like-doublet impingement injector and an axisymmetric like-triplet impingement injector. The orifice diameter and length of the nozzle used in this work were of 0.8mm, 4.8mm, respectively. In the impinging spray process, the impingement angles were set at 90° and 120°, and the injection pressures were of 0.50MPa and 1.00MPa. The distance from the exit of the orifice to the impingement point was fixed at 9.6mm. In this study, high-speed visualization and temporal resolution particle image velocimetry techniques were employed to investigate the impingement atomization characteristics. The experimental investigation demonstrated that a long narrow high speed droplets belt formed around the axis of symmetry in the like-doublet impinging atomization area. However, there was no obvious high-speed belt with impingement angle 2θ = 90° and two high-speed belts appeared with impingement angle 2θ = 120° in the like-doublet impingement spray field. The high droplet velocity zone of the like-doublet impingement atomization symmetrically distributed around the central axis, and that of the like-triplet impingement spray deflected to the left of the central axis - opposite of injector. Although the droplets velocity distribution was asymmetry of like-triplet impingement atomization, the injectors were arranged like axisymmetric conical shape, and the cross section of spray area was similar to a circle rather than a narrow rectangle like the like-doublet impingement atomization.

  6. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  7. EMIIM Wetting Properties of & Their Effect on Electrospray Thruster Design

    DTIC Science & Technology

    2012-03-21

    materials can be characterized using the surface tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface...Illustration of the instantaneous dipole formed by electron motion in a hy- drogen atom(left) and how these instantaneous dipoles can attract each other...the extractor grid and of like charge to the emitter. A Taylor cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in

  8. Liquid film on a circular plate formed by a droplet train impingement

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Yamamoto, Shoya

    2017-11-01

    Droplet impingement phenomena are found in the wide variety of industrial processes, however the detail of liquid film structure formed by the continuous impact of droplets is not clarified. In this study, we experimentally investigated behavior of liquid film which was formed by a droplet train impact. Especially, we focus on the diameter of hydraulic jump formed on a circular plate. The effects of nozzle diameter, liquid surface tension and liquid flow rate on the jump diameter were investigated. In addition, we compared the liquid film by the droplet train impact with that by a liquid column impact. As a result, the hydraulic jump was observed under the smaller water flow rate condition compare to the liquid column impact. And the jump diameters for the case of droplet train impact were greater than that of liquid column impact. However, the jump diameters for the small surface tension liquid for the case of droplet train impact were smaller than that of liquid column impact. We consider that this phenomenon is related to both high speed lateral flow after droplet impact and splash formation. In addition, the liquid film heights after hydraulic jump on a small circular plate were sensitive to either the droplet train impact or liquid column impact.

  9. A compressible multiphase framework for simulating supersonic atomization

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  10. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  11. Impact of a complex fluid droplet on wettable and non wettable surfaces

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel; Aliseda, Alberto

    2008-11-01

    The impact of liquid droplets is a phenomenon prevalent in many natural and industrial processes. Such events include rain drops, fuel injection, and ink-jet printing. To date, research in atomization and droplet impact has been focused on Newtonian fluids. In the coating of pharmaceutical tablets, the coating solutions contain polymers, surfactants, and large concentrations of insoluble solids in suspension which inherently exhibit non-Newtonian behavior. In this work, we will present ongoing droplet impact experiments using complex rheology fluids under a wide range of Weber and Ohnesorge numbers. Both hydrophilic and hydrophobic surfaces are been studied, and the effect of surface roughness has also been considered. We will describe the limits of bouncing, spreading, and splashing for these complex fluids. We will also discuss quantitative information such as spreading rates and contact angle measurements on wettable and non-wettable surfaces obtained from high speed images.

  12. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  13. Interaction mechanisms between ceramic particles and atomized metallic droplets

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of SiC particles occurred during droplet solidification. A comparison of the present results to those anticipated from well-established kinetic and thermodynamic models led to some interesting findings. First, the models proposed by Boiling and Cisse[24] and Chernov et al.[58] predict relative low critical interface velocities necessary for entrapment, inconsistent with the present experimental findings. Second, although the observed correlation between the critical front velocity and droplet diameter was generally consistent with that predicted by Stefanescu et a/.’s model,[27] the dependence on the size of SiC particles was not. In view of this discrepancy, three possible mechanisms were proposed to account for the experimental findings: nucleation of α-Al on SiC particles, entrapment of SiC particles between primary dendrite arms, and entrapment of SiC particles between secondary dendrite arms.

  14. Formation and characterization of simulated small droplet icing clouds

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v.5, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub N, and W sub w, i.e., orifice diameter, nitrogen, and water flowrate, respectively, to give the expression for MVD in microns.

  15. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Yuanping, E-mail: huoyuanping@gmail.com; Wang, Junfeng, E-mail: wangjunfeng@ujs.edu.cn; Zuo, Ziwen

    2015-11-15

    A detailed experimental study on the evolution of charged droplet formation and jet transition from a capillary is reported. By means of high-speed microscopy, special attention has been paid to the dynamics of the liquid thread and satellite droplets in the dripping mode, and a method for calculating the surface charge on the satellite droplet is proposed. Jet transition behavior based on the electric Bond number has been visualized, droplet sizes and velocities are measured to obtain the ejection characteristic of the spray plume, and the charge and hydrodynamic relaxation are linked to give explanations for ejection dynamics with differentmore » properties. The results show that the relative length is very sensitive to the hydrodynamic relaxation time. The magnitude of the electric field strength dominates the behavior of coalescence and noncoalescence, with the charge relationship between the satellite droplet and the main droplet being clear for every noncoalescence movement. Ejection mode transitions mainly depend on the magnitude of the electric Bond number, and the meniscus dynamics is determined by the ratio of the charge relaxation time to the hydrodynamic relaxation time.« less

  16. Effect of gas mass flux on cryogenic liquid jet breakup

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1992-01-01

    A scattered-light scanning instrument developed at NASA Lewis Research Center was used to measure the characteristic drop size of clouds of liquid nitrogen droplets. The instrument was calibrated with suspensions of monosized polystyrene spheres. In this investigation of the mechanism of liquid nitrogen jet disintegration in a high-velocity gas flow, the Sauter mean diameter, D32, was found to vary inversely with the nitrogen gas mass flux raised to the power 1.33. Values of D32 varied from 5 to 25 microns and the mass flux exponent of 1.33 agrees well with theory for liquid jet breakup in high-velocity gas flows. The loss of very small droplets due to the high vaporization rate of liquid nitrogen was avoided by sampling the spray very close to the atomizer, i.e., 1.3 cm downstream of the nozzle orifice. The presence of high velocity and thermal gradients in the gas phase also made sampling of the particles difficult. As a result, it was necessary to correct the measurements for background noise produced by both highly turbulent gas flows and thermally induced density gradients in the gas phase.

  17. Electrowetting on polymer dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shih-Kang; Chiu, Cheng-Pu; Lin, Jing-Wei

    2009-04-01

    Polymer dispersed liquid crystal (PDLC) is used as a dielectric layer in electrowetting. By applying voltage between a liquid droplet and the electrode underlying PDLC, electrowetting occurs at the liquid/PDLC interface accompanied with electro-optic responses of the reoriented LC droplets embedded in PDLC. Two basic experiments investigating the electrowetting by sessile water droplets and the electro-optic effects through squeezed water droplets were design and performed. The basic functions of a liquid lens and droplet manipulations, including transporting, splitting, and merging, were demonstrated.

  18. Development of a wet vapor homogeneous liquid metal MHD power system

    NASA Astrophysics Data System (ADS)

    1989-04-01

    During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.

  19. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. The turbulence energy is also considered in this process.

  20. Critical Landau Velocity in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Brauer, Nils B.; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J.; Drabbels, Marcel

    2013-10-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  1. Electrowetting Variable Optics for Visible and Infrared Applications

    NASA Astrophysics Data System (ADS)

    Watson, Alexander Maxwell

    Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.

  2. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    PubMed

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  3. Vitrification and levitation of a liquid droplet on liquid nitrogen

    PubMed Central

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  4. Novel optical switch with a reconfigurable dielectric liquid droplet.

    PubMed

    Ren, Hongwen; Xu, Su; Ren, Daqiu; Wu, Shin-Tson

    2011-01-31

    We demonstrated a novel optical switch with a reconfigurable dielectric liquid droplet. The device consists of a clear liquid droplet (glycerol) surrounded by a black liquid (dye-doped liquid crystal). In the voltage-off state, the incident light passing through the clear liquid droplet is absorbed by the black liquid, resulting in a dark state. In the voltage-on state, the dome of the clear liquid droplet is uplifted by the dielectric force to form a light pipe which in turn transmits the incident light. Upon removing the voltage, the droplet recovers to its original shape and the switch is closed. We also demonstrated a red color light switch with ~10:1 contrast ratio and ~300 ms response time. Devices based on such an operation mechanism will find attractive applications in light shutter, tunable iris, variable optical attenuators, and displays.

  5. Chembio extraction on a chip by nanoliter droplet ejection.

    PubMed

    Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok

    2005-03-01

    This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.

  6. Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Ben Jacob, Eshel; Aranson, Igor S.

    2008-04-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 °C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  7. Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.

    2005-01-01

    This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.

  8. INVESTIGATION INTO THE MECHANISMS OF TISSUE ATOMIZATION BY HIGH INTENSITY FOCUSED ULTRASOUND

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Wang, Yak-Nam; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2014-01-01

    Ultrasonic atomization, or the emission of a fog of droplets, was recently proposed to explain tissue fractionation in boiling histotripsy. However, even though liquid atomization has been studied extensively, the mechanisms of tissue atomization remain unclear. In this paper, high-speed photography and overpressure were used to evaluate the role of bubbles in tissue atomization. As the static pressure increased, the degree of fractionation decreased, and the ex vivo tissue became thermally denatured. The effect of surface wetness on atomization was also evaluated in vivo and in tissue-mimicking gels where surface wetness was found to enhance atomization by forming surface instabilities that augment cavitation. In addition, experimental results indicated that wetting collagenous tissues, such as the liver capsule, allowed atomization to breach such barriers. These results highlight the importance of bubbles and surface instabilities in atomization and could be used to enhance boiling histotripsy for transition to clinical use. PMID:25662182

  9. Development of a computational testbed for numerical simulation of combustion instability

    NASA Technical Reports Server (NTRS)

    Grenda, Jeffrey; Venkateswaran, Sankaran; Merkle, Charles L.

    1993-01-01

    A synergistic hierarchy of analytical and computational fluid dynamic techniques is used to analyze three-dimensional combustion instabilities in liquid rocket engines. A mixed finite difference/spectral procedure is employed to study the effects of a distributed vaporization zone on standing and spinning instability modes within the chamber. Droplet atomization and vaporization are treated by a variety of classical models found in the literature. A multi-zone, linearized analytical solution is used to validate the accuracy of the numerical simulations at small amplitudes for a distributed vaporization region. This comparison indicates excellent amplitude and phase agreement under both stable and unstable operating conditions when amplitudes are small and proper grid resolution is used. As amplitudes get larger, expected nonlinearities are observed. The effect of liquid droplet temperature fluctuations was found to be of critical importance in driving the instabilities of the combustion chamber.

  10. Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-12-01

    We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

  11. Droplet-turbulence interactions in subcritical and supercritical evaporating sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Domenic A.; Coy, Edward; Greenfield, Stuart; Song, Young-Hoon

    1991-01-01

    The objective of this research is to obtain an improved understanding of droplet turbulence interactions in vaporizing liquid sprays under conditions typical of those encountered in liquid fueled rocket engines. The interaction between liquid droplets and the surrounding turbulent gas flow affects droplet dispersion, droplet collisions, droplet vaporization and gas-phase, fuel-oxidant mixing, and therefore has a significant effect on the engine's combustion characteristics. An example of this is the role which droplet-turbulence interactions are believed to play in combustion instabilities. Despite their importance, droplet-turbulence interactions and their effect on liquid fueled rocket engine performance are not well understood. This is particularly true under supercritical conditions, where many conventional concepts, such as surface tension, no longer apply. Our limited understanding of droplet-turbulence interactions, under both subcritical conditions, represents a major limitation in our ability to design improved liquid previously unavailable information and valuable new insights which will directly impact the design of future liquid fueled rocket engines, as well as, allow for the development of significantly improved spray combustion models, making such models useful design tools.

  12. Controlling the Localization of Liquid Droplets in Polymer Matrices by Evaporative Lithography.

    PubMed

    Zhao, Huaixia; Xu, Jiajia; Jing, Guangyin; Prieto-López, Lizbeth Ofelia; Deng, Xu; Cui, Jiaxi

    2016-08-26

    Localized inclusions of liquids provide solid materials with many functions, such as self-healing, secretion, and tunable mechanical properties, in a spatially controlled mode. However, a strategy to control the distribution of liquid droplets in solid matrices directly obtained from a homogeneous solution has not been reported thus far. Herein, we describe an approach to selectively localize liquid droplets in a supramolecular gel directly obtained from its solution by using evaporative lithography. In this process, the formation of droplet-embedded domains occurs in regions of free evaporation where the non-volatile liquid is concentrated and undergoes a phase separation to create liquid droplets prior to gelation, while a homogeneous gel matrix is formed in the regions of hindered evaporation. The different regions of a coating with droplet embedment patterns display different secretion abilities, enabling the control of the directional movement of water droplets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    PubMed

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Janus droplets: liquid marbles coated with dielectric/semiconductor particles.

    PubMed

    Bormashenko, Edward; Bormashenko, Yelena; Pogreb, Roman; Gendelman, Oleg

    2011-01-04

    The manufacturing of water droplets wrapped with two different powders, carbon black (semiconductor) and polytetrafluoroethylene (dielectric), is presented. Droplets composed of two hemispheres (Janus droplets) characterized by various physical and chemical properties are reported first. Watermelon-like striped liquid marbles are reported. Janus droplets remained stable on solid and liquid supports and could be activated with an electric field.

  15. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, We*Re, and gas-to-liquid density ratio, rho sub g/rho sub l. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  16. Single element injector testing for STME injector technology

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.; Davis, J.

    1992-01-01

    An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.

  17. Ligament Mediated Fragmentation of Viscoelastic Liquids

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.

    2016-10-01

    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.

  18. Ligament Mediated Fragmentation of Viscoelastic Liquids.

    PubMed

    Keshavarz, Bavand; Houze, Eric C; Moore, John R; Koerner, Michael R; McKinley, Gareth H

    2016-10-07

    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with n_{min}=4. The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.

  19. Grating droplets with a mesh

    NASA Astrophysics Data System (ADS)

    Soto, Dan; Le Helloco, Antoine; Clanet, Cristophe; Quere, David; Varanasi, Kripa

    2016-11-01

    A drop thrown against a mesh can pass through its holes if impacting with enough inertia. As a result, although part of the droplet may remain on one side of the sieve, the rest will end up grated through the other side. This inexpensive method to break up millimetric droplets into micrometric ones may be of particular interest in a wide variety of applications: enhancing evaporation of droplets launched from the top of an evaporative cooling tower or preventing drift of pesticides sprayed above crops by increasing their initial size and atomizing them at the very last moment with a mesh. In order to understand how much liquid will be grated we propose in this presentation to start first by studying a simpler situation: a drop impacting a plate pierced with a single off centered hole. The study of the role of natural parameters such as the radius drop and speed or the hole position, size and thickness allows us to discuss then the more general situation of a plate pierced with multiple holes: the mesh.

  20. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces

    PubMed Central

    Hao, Chonglei; Li, Jing; Liu, Yuan; Zhou, Xiaofeng; Liu, Yahua; Liu, Rong; Che, Lufeng; Zhou, Wenzhong; Sun, Dong; Li, Lawrence; Xu, Lei; Wang, Zuankai

    2015-01-01

    Droplet impacting on solid or liquid interfaces is a ubiquitous phenomenon in nature. Although complete rebound of droplets is widely observed on superhydrophobic surfaces, the bouncing of droplets on liquid is usually vulnerable due to easy collapse of entrapped air pocket underneath the impinging droplet. Here, we report a superhydrophobic-like bouncing regime on thin liquid film, characterized by the contact time, the spreading dynamics, and the restitution coefficient independent of underlying liquid film. Through experimental exploration and theoretical analysis, we demonstrate that the manifestation of such a superhydrophobic-like bouncing necessitates an intricate interplay between the Weber number, the thickness and viscosity of liquid film. Such insights allow us to tune the droplet behaviours in a well-controlled fashion. We anticipate that the combination of superhydrophobic-like bouncing with inherent advantages of emerging slippery liquid interfaces will find a wide range of applications. PMID:26250403

  1. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2012-08-01

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.

  2. The combination of electrospray and flow focusing

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.; López-Herrera, José M.; Riesco-Chueca, Pascual

    2006-11-01

    An ultra-fine liquid atomization procedure combining the advantages of electrospray and flow focusing is presented. Both techniques are known to produce strikingly small and steady liquid micro-jets issuing from menisci held by capillary forces. Such menisci take the form of a cusp-like drop attached to the feeding tube (flow focusing: FF) or a Taylor cone (electrospray: ES). The issuing micro-jets are forced or ‘sucked’ from the parent meniscus either by pressure or electrohydrodynamic forces. Subsequent capillary breakup of the jet leads to fine sprays of remarkable quality. Here we describe the joint effect of pressurization and electrification in a flow focusing device, and the subsequent coupling of both ES and FF phenomena. For any given liquid and flow rate, the combined procedure gives rise to significantly smaller droplet sizes than observed in any of the source techniques. The co-flowing gas stream removes space charges; in addition, the perforated plate facing the feed tube provides an electric barrier, shielding the jet-meniscus or ‘production’ area from the spray or ‘product’ area. As a result, space charges and electrified droplets are removed from the production area, thus avoiding the ambient electric saturation which becomes a limiting factor in ES-spraying: a significantly enhanced spraying stability ensues, with a much wider operation range than FF or ES. Other unexpected outcomes from the combination are also shown. A theoretical model is developed to predict the emitted droplet size: a first integral of the momentum equation yielding a generalized Bernoulli equation, and an explicit approximation for the jet diameter and droplet size, accurate within a broad parametrical band.

  3. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  4. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  5. Investigations on the droplet distributions in the atomization of kerosene jets in supersonic crossflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyin; Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Li, Qinglian

    2015-09-07

    Phase Doppler anemometry was applied to investigate the atomization processes of a kerosene jet injected into Ma = 1.86 crossflow. Physical behaviors, such as breakup and coalescence, are reproduced through the analysis of the spatial distribution of kerosene droplets' size. It is concluded that Sauter mean diameter distribution shape transforms into “I” type from “C” type as the atomization development. Simultaneously, the breakup of large droplets and the coalescence of small droplets can be observed throughout the whole atomization process.

  6. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

    2017-05-01

    The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

  7. Comparison of numerical simulations to experiments for atomization in a jet nebulizer.

    PubMed

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters.

  8. Comparison of Numerical Simulations to Experiments for Atomization in a Jet Nebulizer

    PubMed Central

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters. PMID:24244334

  9. The precise and accurate production of millimetric water droplets using a superhydrophobic generating apparatus

    NASA Astrophysics Data System (ADS)

    Wood, Michael J.; Aristizabal, Felipe; Coady, Matthew; Nielson, Kent; Ragogna, Paul J.; Kietzig, Anne-Marie

    2018-02-01

    The production of millimetric liquid droplets has importance in a wide range of applications both in the laboratory and industrially. As such, much effort has been put forth to devise methods to generate these droplets on command in a manner which results in high diameter accuracy and precision, well-defined trajectories followed by successive droplets and low oscillations in droplet shape throughout their descents. None of the currently employed methods of millimetric droplet generation described in the literature adequately addresses all of these desired droplet characteristics. The reported methods invariably involve the cohesive separation of the desired volume of liquid from the bulk supply in the same step that separates the single droplet from the solid generator. We have devised a droplet generation device which separates the desired volume of liquid within a tee-apparatus in a step prior to the generation of the droplet which has yielded both high accuracy and precision of the diameters of the final droplets produced. Further, we have engineered a generating tip with extreme antiwetting properties which has resulted in reduced adhesion forces between the liquid droplet and the solid tip. This has yielded the ability to produce droplets of low mass without necessitating different diameter generating tips or the addition of surfactants to the liquid, well-defined droplet trajectories, and low oscillations in droplet volume. The trajectories and oscillations of the droplets produced have been assessed and presented quantitatively in a manner that has been lacking in the current literature.

  10. Oscillating Droplets and Incompressible Liquids: Slow-Motion Visualization of Experiments with Fluids

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    We present fascinating simple demonstration experiments recorded with high-speed cameras in the field of fluid dynamics. Examples include oscillations of falling droplets, effects happening upon impact of a liquid droplet into a liquid, the disintegration of extremely large droplets in free fall and the consequences of incompressibility. (Contains…

  11. Sequential cryogen spraying for heat flux control at the skin surface

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  12. Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

    NASA Astrophysics Data System (ADS)

    Afshar, Ali

    An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.

  13. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  14. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.

    PubMed

    Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan

    2015-02-01

    To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.

  15. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization.

    PubMed

    Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-07

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  16. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

  17. Heat transfer studies on the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Nelson, M.

    1987-01-01

    This paper examines radiation transfer in the droplet sheet of a liquid droplet radiator including non-isotropic scattering by the droplets. Non-isotropic scattering becomes significant for small droplets (diameter less than 0.1 mm) and for low emissivity liquids. For droplets with an emittance of 0.1 and for a droplet sheet optical depth or 5, the radiated power varies by about 12 percent, depending on whether scattering is predominantly forward or backward. An experimental measurement of the power emitted by a cylindrical cloud of heated droplets of silicone fluid is also reported. The measured cloud emissivity correlates, within experimental error, with the analytical model.

  18. A novel percussion type droplet-on-demand generator

    NASA Astrophysics Data System (ADS)

    Hussain, Taaha; Patel, Priyesh; Balachandran, Ramanarayanan; Ladommatos, Nicos

    2015-01-01

    Numerous engineering applications require generation of droplets on demand which are of high uniformity and constant size. The common method to produce droplets is to drive liquid at high pressure through a small orifice/nozzle. The liquid stream disintegrates into small droplets. However this method normally requires large volumes of liquid and is not suitable for applications where single droplets of constant size is required. Such applications require droplet-on-demand generators which commonly employ piezoelectric or pneumatic actuation. It is well known that piezoelectric generators are hard to employ at high pressure and, high temperature applications, and the pneumatic generators often produce satellite (secondary) droplets. This paper describes the development of a novel percussion type droplet-on-demand generator, which overcomes some of the above difficulties and is capable of producing single droplets on demand. The generator consists of a cylindrical liquid filled chamber with a small orifice at the bottom. The top of the chamber is covered with a thin flexible metal disc. A small metal pin is employed to hammer/impact the top metal surface to generate a pressure pulse inside the liquid chamber. The movement and the momentum of the metal pin are controlled using a solenoid device. The pressure pulse generated overcomes the surface tension of the liquid meniscus at the exit of the orifice and ejects a single droplet. The work presented in this paper will demonstrate the capabilities of the droplet generator.

  19. Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.

    2006-12-15

    An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less

  20. Advances and patents about grinding equipments with nano-particle jet minimum quantity lubrication.

    PubMed

    Jia, Dongzhou; Li, Changhe; Wang, Sheng; Zhang, Qiang; Hou, Yali

    2014-01-01

    In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a controllable nano-fluids jet MQL grinding system based on electrostatic atomization. Using the principle of electrostatics, it can achieve the control of droplet transfer by charging the sprayed droplets. This system can improve the uniformity of the droplet spectrum, liquid deposition efficiency and effective utilization of liquid. It can also effectively control the movement patterns of the droplets, thereby reducing the pollution of the environment and providing better health protection for workers. Although researchers accomplished profound and systematic studies on MQL, especially on nano-particles jet MQL. It can solve the shortage of MQL in cooling performance, greatly improve the working environment, save energy and reduce costs to achieve a low-carbon manufacturing. The unique lubricating performance and tribological property of solid nano-particles form nano-particle shearing films at the grinding wheel/workpiece interface, which can enhance the lubricating performance of MQL grinding. Existing studies on MQL grinding equipments, however, cannot meet the needs of the technological development. Therefore, our research provided a general introduction of the latest patients and research progress of nanoparticles jet MQL grinding equipments presented by the research team from Qingdao Technological University.

  1. Field emission electric propulsion thruster modeling and simulation

    NASA Astrophysics Data System (ADS)

    Vanderwyst, Anton Sivaram

    Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the current and the mass efficiency are interrelated. The numerical simulations indicate that more electric power per Newton of thrust on a narrow needle with a thin, high surface tension fluid layer gives better performance.

  2. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    DTIC Science & Technology

    2007-03-30

    Langmuir - Blodgett and self-assembly methods, WNTs are patterned selectively onto various substrates [3,4]. hou et al. assembled SWNTs into aligned...dispersion usually decreases with increasing ionic concentration, it is suggested that chloride ions are produced by dissociating from acid chloride groups...patterns can be attributed to the Marangoni effect and diffusion-limited aggregation (DLA) in the liquid film during droplet evaporation t different

  3. Numerical simulations of an impinging liquid spray in a cross-flow

    NASA Astrophysics Data System (ADS)

    Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.

    2017-11-01

    The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.

  4. The dynamics of milk droplet-droplet collisions

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol solutions experiments. While milk concentrates have complex chemical composition and rheology, glycerol solutions are Newtonian fluids and therefore easy to characterize. The collision morphologies of glycerol solutions and milk concentrates are similar, and the regime maps can be described by the same phenomenological model developed in this work. The regime of bouncing, however, was not observed for any of the milk concentrates.

  5. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  6. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  7. Investigations of two-phase flame propagation under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets uniformly distributed. Ethanol-air mixtures are used and the experiments are performed under reduced gravity conditions in the Airbus A310 ZERO-G of the CNES, during which a 10-2g gravity level is achieved. The experiments are conducted in a pressure-release type dual chamber which consists of a spherical combustion chamber of 1 L which is centered in a high pressure chamber of 11 L. Propagating flames under various mixture, droplet size and pressure conditions are investigated with various optical techniques. The collected flame images and the deduced flame propagation velocities enabled to establish various flame propagation and cellular instability regimes, mainly depending on the droplet size and droplet density. The experiments also permitted comparisons with gaseous flames having the same global equivalence ratio as the two-phase flames, therefore allowing analyzing clearly the role of the presence of the droplets in the flame propagation process.

  8. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid

    2018-02-01

    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  9. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    PubMed

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  10. Light Actuation of Liquid by Optoelectrowetting

    DTIC Science & Technology

    2005-06-01

    liquid lenses with variable focal length [7]. Transport of liquid in droplet forms offers many advan- tages. It eliminates the need for pumps and...novel mechanism for light actuation of liquid droplets. This is realized by integrating a photoconductive material underneath the electrowetting ...optoelectrowetting 2.1. General concept Fig. 1(a) shows the general electrowetting mechanism. A droplet of polarizable liquid is placed on a substrate

  11. Droplets As Liquid Robots.

    PubMed

    Čejková, Jitka; Banno, Taisuke; Hanczyc, Martin M; Štěpánek, František

    2017-01-01

    Liquid droplets are very simple objects present in our everyday life. They are extremely important for many natural phenomena as well as for a broad variety of industrial processes. The conventional research areas in which the droplets are studied include physical chemistry, fluid mechanics, chemical engineering, materials science, and micro- and nanotechnology. Typical studies include phenomena such as condensation and droplet formation, evaporation of droplets, or wetting of surfaces. The present article reviews the recent literature that employs droplets as animated soft matter. It is argued that droplets can be considered as liquid robots possessing some characteristics of living systems, and such properties can be applied to unconventional computing through maze solving or operation in logic gates. In particular, the lifelike properties and behavior of liquid robots, namely (i) movement, (ii) self-division, and (iii) group dynamics, will be discussed.

  12. [The progress in speciation analysis of trace elements by atomic spectrometry].

    PubMed

    Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin

    2013-12-01

    The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.

  13. The evolution of droplet impacting on thin liquid film at superhydrophilic surface

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu

    2017-12-01

    Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.

  14. Fluid Physics

    NASA Image and Video Library

    2003-05-10

    These images, from David Weitz’s liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  15. Acoustic effects of sprays

    NASA Technical Reports Server (NTRS)

    Pindera, Maciej Z.; Przekwas, Andrzej J.

    1994-01-01

    Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.

  16. Satellite Remote Sensing of the Liquid Water Sensitivity in Water Clouds

    NASA Technical Reports Server (NTRS)

    Han, Qing-Yuan; Rossow, William B.; Welch, Ronald; Zeng, Jane; Jansen, James E. (Technical Monitor)

    2001-01-01

    In estimation of the aerosol indirect effect, cloud liquid water path is considered either constant (Twomey effect) or increasing with enhanced droplet number concentrations (drizzle-suppression effect, or Albrecht effect) if cloud microphysics is the prevailing mechanism during the aerosol-cloud interactions. On the other hand, if cloud thermodynamics and dynamics are considered, the cloud liquid water path may be decreased with increasing droplet number concentration, which is predicted by model calculations and observed in ship-track and urban influence studies. This study is to examine the different responses of cloud liquid water path to changes of cloud droplet number concentration. Satellite data (January, April, July and October 1987) are used to retrieve the cloud liquid water sensitivity, defined as the changes of liquid water path versus changes of column droplet number concentrations. The results of a global survey reveal that 1) in at least one third of the cases the cloud liquid water sensitivity is negative, and the regional and seasonal variations of the negative liquid water sensitivity are consistent with other observations; 2) cloud droplet sizes are always inversely proportional to column droplet number concentrations. Our results suggest that an increase of cloud droplet number concentration leads to reduced cloud droplet size and enhanced evaporation, which weakens the coupling between water clouds and boundary layer in warm zones, decreases water supply from surface and desiccates cloud liquid water. Our results also suggest that the current evaluations of negative aerosol indirect forcing by global climate models (GCM), which are based on Twomey effect or Albrecht effect, may be overestimated.

  17. Motion of fine-spray liquid droplets in hot gas flow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kuibin, P. A.; Strizhak, P. A.

    2014-12-01

    Experimental study was performed on motion of fine-spray liquid (water) droplets in a high-temperature (above 1000 K) gases. The study distinguishes three modes of droplet motion through gas medium under condition of intensive evaporation. Experiments defined the ranges of gas velocity, droplets sizes, and velocities that correspond to the droplet motion modes.

  18. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  19. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  20. Mechano-regulated surface for manipulating liquid droplets

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Zhu, Pingan; Tian, Ye; Zhou, Xuechang; Kong, Tiantian; Wang, Liqiu

    2017-04-01

    The effective transfer of tiny liquid droplets is vital for a number of processes such as chemical and biological microassays. Inspired by the tarsi of meniscus-climbing insects, which can climb menisci by deforming the water/air interface, we developed a mechano-regulated surface consisting of a background mesh and a movable microfibre array with contrastive wettability. The adhesion of this mechano-regulated surface to liquid droplets can be reversibly switched through mechanical reconfiguration of the microfibre array. The adhesive force can be tuned by varying the number and surface chemistry of the microfibres. The in situ adhesion of the mechano-regulated surface can be used to manoeuvre micro-/nanolitre liquid droplets in a nearly loss-free manner. The mechano-regulated surface can be scaled up to handle multiple droplets in parallel. Our approach offers a miniaturized mechano-device with switchable adhesion for handling micro-/nanolitre droplets, either in air or in a fluid that is immiscible with the droplets.

  1. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    NASA Astrophysics Data System (ADS)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  2. Drop impact on flowing liquid films: asymmetric splashing

    NASA Astrophysics Data System (ADS)

    Ismail, Renad; Che, Zhizhao; Rotkovitz, Lauren; Adebayo, Idris; Matar, Omar

    2015-11-01

    The splashing of droplets on flowing liquid films is studied experimentally using high-speed photography. The flowing liquid films are generated on an inclined substrate. The flow rate of the liquid film, the inclination angle, and the droplet speed are controlled and their effects on the splashing process studied. Due to the flow in the liquid film and the oblique impact direction, the splashing process is asymmetric. The propagation of the asymmetric crown and the generation of secondary droplets on the rim of the crown are analysed through image processing. The results show that the flow in the liquid films significantly affects the propagation of the liquid crown and the generation of secondary droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  3. Fabrication of hemispherical liquid encapsulated structures based on droplet molding

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroki; Miki, Norihisa

    2015-12-01

    We have developed and demonstrated a method for forming spherical structures of a thin polydimethylsiloxane (PDMS) membrane encapsulating a liquid. Liquid encapsulation can enhance the performance of microelectromechanical systems (MEMS) devices by providing deformability and improved dielectric properties. Parylene deposition and wafer bonding are applied to encapsulate liquid into a MEMS device. In parylene deposition, a parylene membrane is directly formed onto a liquid droplet. However, since the parylene membrane is stiff, the membrane is fragile. Although wafer bonding can encapsulate liquid between two substrates, the surface of the fabricated structure is normally flat. We propose a new liquid encapsulation method by dispensing liquid droplets. At first, a 20 μl PDMS droplet is dispensed on ethylene glycol. A 70 μl glycerin droplet is dispensed into a PDMS casting solution layer. The droplet forms a layer on heated ethylene glycol. Glycerin and ethylene glycol are chosen for their high boiling points. Additionally, a glycerin droplet is dispensed on the layer and surrounded by a thin PDMS casting solution film. The film is baked for 1 h at 75 °C. As the result, a structure encapsulating a liquid in a flexible PDMS membrane is obtained. We investigate the effects of the volume, surface tension, and guide thickness on the shape of the formed structures. We also evaluated the effect of the structure diameter on miniaturization. The structure can be adapted for various functions by changing the encapsulated liquid. We fabricated a stiffness-tunable structure by dispensing a magnetorheoligical fluid droplet with a stiffness that can be changed by an external magnetic field. We also confirmed that the proposed structure can produce stiffness differences that are distinguishable by humans.

  4. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    NASA Astrophysics Data System (ADS)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  5. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less

  6. Vapour-mediated sensing and motility in two-component droplets

    NASA Astrophysics Data System (ADS)

    Cira, N. J.; Benusiglio, A.; Prakash, M.

    2015-03-01

    Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  7. Ultrahigh throughput microfluidic platform for in-air production of microscale droplets

    NASA Astrophysics Data System (ADS)

    Tirandazi, Pooyan; Healy, John; Hidrovo, Carlos H.

    2017-11-01

    In-air droplet formation inside microfluidic networks is an alternative technique to the conventional in-liquid systems for creating uniform, microscale droplets. Recent works have highlighted and quantified the use of a gaseous continuous phase for controlled generation of droplets in the Dripping regime in planar structures. Here we demonstrate a new class of non-planar droplet-based systems which rely on controlled breakup of a liquid microjet within a high speed flow of air inside a confined microfluidic flow-focusing PDMS channel. We investigate the physics of confined gas-liquid flows and the effect of geometry on the behavior of a liquid water jet in a gaseous flow. Droplet breakup in the Jetting regime is studied both numerically and experimentally and the results are compared. We show droplet production capability at rates higher than 100 KHz with droplets ranging from 15-30 μm in diameter and a polydispersity index of less than 15%. This work represents an important investigation into the Jetting regime in confined microchannels. The ability to control jet behavior, generation rate, and droplet size in gas-liquid microflows will further expand the potential applications of this system for high throughput operations in material synthesis and biochemical analysis. We acknowledge funding support from NSF CAREER Award Grant CBET-1522841.

  8. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  9. Generation of Monodisperse Liquid Droplets in a Microfluidic Chip Using a High-Speed Gaseous Microflow

    NASA Astrophysics Data System (ADS)

    Tirandazi, Pooyan; Hidrovo, Carlos

    2015-11-01

    Over the last few years, microfluidic systems known as Lab-on-a-Chip (LOC) and micro total analysis systems (μTAS) have been increasingly developed as essential components for numerous biochemical applications. Droplet microfluidics, however, provides a distinctive attribute for delivering and processing discrete as well as ultrasmall volumes of fluid, which make droplet-based systems more beneficial over their continuous-phase counterparts. Droplet generation in its conventional scheme usually incorporates the injection of a liquid (water) into a continuous immiscible liquid (oil) medium. In this study we demonstrate a novel scheme for controlled generation of monodisperse droplets in confined gas-liquid microflows. We experimentally investigate the manipulation of water droplets in flow-focusing configurations using a high inertial air stream. Different flow regimes are observed by varying the gas and liquid flow rates, among which, the ``dripping regime'' where monodisperse droplets are generated is of great importance. The controlled size and generation rate of droplets in this region provide the capability for precise and contaminant-free delivery of microliter to nanoliter volumes of fluid. Furthermore, the high speed droplets generated in this method represent the basis for a new approach based on droplet pair collisions for fast efficient micromixing which provides a significant development in modern LOC and μTAS devices. This project is currently being supported by an NSF CAREER Award grant CBET-1151091.

  10. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  11. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant

    NASA Astrophysics Data System (ADS)

    Guan, Hao-Sen; Li, Guo-Xiu; Zhang, Nai-Yuan

    2018-03-01

    Due to the current global energy shortage and increasingly serious environmental issues, green propellants are attracting more attention. In particular, the ammonium dinitramide (ADN)-based monopropellant thruster is gaining world-wide attention as a green, non-polluting and high specific impulse propellant. Gel propellants combine the advantages of liquid and solid propellants, and are becoming popular in the field of spaceflight. In this paper, a swirling atomization experimental study was carried out using an ADN aqueous gel propellant under different injection pressures. A high-speed camera and a Malvern laser particle size analyzer were used to study the spray process. The flow coefficient, cone angle of swirl atomizing spray, breakup length of spray membrane, and droplet size distribution were analyzed. Furthermore, the effects of different injection pressures on the swirling atomization characteristics were studied.

  12. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Technical Reports Server (NTRS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-01-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  13. Initial drop size and velocity distributions for airblast coaxial atomizers

    NASA Technical Reports Server (NTRS)

    Eroglu, H.; Chigier, N.

    1991-01-01

    Phase Doppler measurements were used to determine initial drop size and velocity distributions after a complete disintegration of coaxial liquid jets. The Sauter mean diameter (SMD) distribution was found to be strongly affected by the structure and behavior of the preceding liquid intact jet. The axial measurement stations were determined from the photographs of the coaxial liquid jet at very short distances (1-2 mm) downstream of the observed break-up locations. Minimum droplet mean velocities were found at the center, and maximum velocities were near the spray boundary. Size-velocity correlations show that the velocity of larger drops did not change with drop size. Drop rms velocity distributions have double peaks whose radial positions coincide with the maximum mean velocity gradients.

  14. Gallium-rich Pd-Ga phases as supported liquid metal catalysts

    NASA Astrophysics Data System (ADS)

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.

    2017-09-01

    A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

  15. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  16. The electroosmotic droplet switch: countering capillarity with electrokinetics.

    PubMed

    Vogel, Michael J; Ehrhard, Peter; Steen, Paul H

    2005-08-23

    Electroosmosis, originating in the double-layer of a small liquid-filled pore (size R) and driven by a voltage V, is shown to be effective in pumping against the capillary pressure of a larger liquid droplet (size B) provided the dimensionless parameter sigmaR(2)/epsilon|zeta|VB is small enough. Here sigma is surface tension of the droplet liquid/gas interface, epsilon is the liquid dielectric constant, and zeta is the zeta potential of the solid/liquid pair. As droplet size diminishes, the voltage required to pump electroosmotically scales as V approximately R(2)/B. Accordingly, the voltage needed to pump against smaller higher-pressure droplets can actually decrease provided the pump poresize scales down with droplet size appropriately. The technological implication of this favorable scaling is that electromechanical transducers made of moving droplets, so-called "droplet transducers," become feasible. To illustrate, we demonstrate a switch whose bistable energy landscape derives from the surface energy of a droplet-droplet system and whose triggering derives from the electroosmosis effect. The switch is an electromechanical transducer characterized by individual addressability, fast switching time with low voltage, and no moving solid parts. We report experimental results for millimeter-scale droplets to verify key predictions of a mathematical model of the switch. With millimeter-size water droplets and micrometer-size pores, 5 V can yield switching times of 1 s. Switching time scales as B(3)/VR(2). Two possible "grab-and-release" applications of arrays of switches are described. One mimics the controlled adhesion of an insect, the palm beetle; the other uses wettability to move a particle along a trajectory.

  17. Liquid water- and heat-resistant hybrid perovskite photovoltaics via an inverted ALD oxide electron extraction layer design

    DOE PAGES

    Kim, In Soo; Cao, Duyen H.; Buchholz, D. Bruce; ...

    2016-11-09

    Despite rapid advances in conversion efficiency (>22%), the environmental stability of perovskite solar cells remains a substantial barrier to commercialization. Here, we show a significant improvement in the stability of inverted perovskite solar cells against liquid water and high operating temperature (100 °C) by integrating an ultrathin amorphous oxide electron extraction layer via atomic layer deposition (ALD). Here, these unencapsulated inverted devices exhibit a stable operation over at least 10 h when subjected to high thermal stress (100 °C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation.

  18. NASA Glenn Icing Research Tunnel: Upgrade and Cloud Calibration

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  19. NASA Glenn Icing Research Tunnel: 2012 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  20. Liquid-in-gas droplet microfluidics; experimental characterization of droplet morphology, generation frequency, and monodispersity in a flow-focusing microfluidic device

    NASA Astrophysics Data System (ADS)

    Tirandazi, Pooyan; Hidrovo, Carlos H.

    2017-07-01

    Microfluidic techniques for production of uniform droplets usually rely on the use of two immiscible liquids (e.g. water-in-oil emulsions). It has been shown recently that a continuous gas flow instead of a second liquid carrier can be used as an alternative approach in droplet microfluidics. In this work we experimentally investigate the generation of liquid water droplets within air in flow-focusing configurations. Over a wide range of flow conditions we identify six distinct flow regimes inside the microchannel: Co-flowing, Threading, Plugging, Dripping, Multi-Satellite Formation, and Jetting. Flow regimes and their transitions are plotted and characterized based on the Weber number (We) of the system. We further investigate the impact of liquid microchannel size on the flow maps. Generation frequency, morphology, and monodispersity of the droplets are characterized in more detail in the Dripping regime. Generation frequency can be related to the product of the liquid and gas flow rates. However, droplet morphology (length and width) is more dependent on the gas flow rate. We demonstrate the production of monodisperse droplets (d < 100 µm and σ/d < 5 %) up to kHz formation rates in liquid-gas microfluidic systems for the first time. The results of this work provide practical and useful guidelines for precise, oil-free delivery of ultra-small volumes of fluid which can be integrated in lab-on-a-chip systems for a variety of applications in biochemical research and material synthesis.

  1. On the pH of Aqueous Attoliter-Volume Droplets

    NASA Astrophysics Data System (ADS)

    Ramos, Kieran P.; Velpula, Samson S.; Demille, Trevor B.; Pajela, Ryan; Goldner, Lori S.

    Droplets of water dispersed in perfluorinated liquids have widespread use including microfluidics, drug delivery and single-molecule measurements. Perfluorinated liquids are distinctly biocompatible due to their stability, low surface tension, lipophobicity, and hydrophobicity. For this reason, the effect of the perfluorinated surface on droplet contents is usually ignored. However, as the droplet diameter is reduced, we expect that any effect of the water/oil interface on droplet contents will become more obvious. We studied the pH of attoliter-volume aqueous droplets in perfluorinated liquids using pH-sensing fluorescent dyes. Droplets were prepared either by sonication or extrusion from buffer and perfluorinated liquids (FC40 or FC77). A non-ionic surfactant was used to stabilize the droplets. Buffer strength, ionic strength, and pH of the aqueous phase were varied and resulting droplet pH compared to the pH of the buffer from which they were formed. Preliminary data are consistent with a pH in droplets that depends on the concentration of non-ionic surfactant. At low surfactant concentrations, the pH in droplets is distinctly lower than the stock buffer. However, as the concentration of non-ionic surfactant is increased the change in pH decreases. This work was funded by NSF/DBI-1152386.

  2. Acoustic levitator for contactless motion and merging of large droplets in air

    NASA Astrophysics Data System (ADS)

    Bjelobrk, Nada; Nabavi, Majid; Poulikakos, Dimos

    2012-09-01

    Large droplet transport in a line-focussed acoustic manipulator in terms of maximum droplet size is achieved by employing a driving voltage control mechanism. The maximum volume of the transported droplets in the order of few microliters is thereby increased by three orders of magnitude compared to the constant voltage case, widening the application field of this method significantly. A drop-on-demand droplet generator is used to supply the liquid droplets into the system. The ejected sequence of picoliter-size droplets is guided along trajectories by the acoustic field and accumulates at the selected pressure node, merging into a single large droplet. Droplet movement is achieved by varying the reflector height. This also changes the intensity of the radiation pressure during droplet movement, which in turn could atomise the droplet. The acoustic force is adjusted by regulating the driving voltage of the actuator to keep the liquid droplet suspended in air and to prevent atomisation. In the herein presented levitation concept, liquids with a wide range of surface tension (water and tetradecane were tested) can be transported over distances of several mm. The aspect ratio of the droplet in the acoustic field is shown to be a good indicator for radiation pressure intensity and is kept between 1.1 and 1.4 during droplet transport. Despite certain limitations with volatile liquids, the presented acoustic levitator concept has the potential to expand the range of analytical characterisation and manipulation methods in applications ranging from chemistry and biology.

  3. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOEpatents

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  4. Bouncing and coalescence of droplets on falling liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Deygas, Amandine; Matar, Omar

    2014-11-01

    When a droplet impacts on a falling liquid film, the outcome depends on the fluid properties of the droplet, its speed, and angle of incidence, as well as on the film flow rate and associated flow regimes. In this study, the oblique impact of droplets on a falling liquid film is investigated experimentally. The falling film is created on an inclined substrate and the Reynolds number is varied. Droplets with different sizes and different speeds are used to study the impact process for different Weber and Ohnesorge numbers. Different phenomena of droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. An impact regime map is generated, and the effects of droplet impact speed and size, and the film flow rates are studied. The propagation of waves on the liquid film post-impact is analysed. The results show that the flowing film can significantly affect the impact process of droplets, and the latter can alter the propagation of waves on the falling film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  5. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  6. The liquid droplet radiator - An ultralightweight heat rejection system for efficient energy conversion in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1981-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.

  7. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-28

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  8. Spreading of a Lidocaine Formulation on Microneedle-Treated Skin.

    PubMed

    Nayak, Atul; Das, Diganta B; Chao, Tzu C; Starov, Victor M

    2015-12-01

    The spreadability of a liquid drug formulation on skin is an indication of it either remaining stationary or distributing (spreading) as a droplet. Factors determining droplet spreadability of the formulation are spreading area, diameter of the droplet base, viscosity of the liquid, contact angle, volume of droplet on skin and any others. The creation of microcavities from the application of microneedle (MN) has the potential to control droplet spreading, and hence, target specific areas of skin for drug delivery. However, there is little work that demonstrates spreading of liquid drug formulation on MN-treated skin. Below, spreading of a lidocaine hydrogel formulation and lidocaine solution (reference liquid) on porcine skin is investigated over MN-treated skin. Controlled spreadability was achieved with the lidocaine hydrogel on MN-treated skin as compared with lidocaine solution. It was observed that the droplet spreading parameters such as spreading radius, droplet height and dynamic contact angle were slightly lower for the lidocaine hydrogel than the lidocaine solution on skin. Also, the lidocaine hydrogel on MN-treated skin resulted in slower dynamic reduction of droplet height, contact angle and reduced time taken in attaining static advancing droplets because of the MN microcavities. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Quantitative determination of engine water ingestion

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Hernan, M.; Sarohia, V.

    1986-01-01

    A nonintrusive optical technique is described for determination of liquid mass flux in a droplet laden airstream. The techniques were developed for quantitative determination of engine water ingestion resulting from heavy rain or wheel spray. Independent measurements of the liquid water content (LWC) of the droplet laden airstream and of the droplet velocities were made at the stimulated nacelle inlet plane for the liquid mass flux determination. The LWC was measured by illuminating and photographing the droplets contained within a thin slice of the flow field by means of a sheet of light from a pulsed laser. A fluorescent dye introduced in the water enchanced the droplet image definition. The droplet velocities were determined from double exposed photographs of the moving droplet field. The technique was initially applied to a steady spray generated in a wind tunnel. It was found that although the spray was initially steady, the aerodynamic breakup process was inherently unsteady. This resulted in a wide variation of the instantaneous LWC of the droplet laden airstream. The standard deviation of ten separate LWC measurements was 31% of the average. However, the liquid mass flux calculated from the average LWC and droplet velocities came within 10% of the known water ingestion rate.

  10. Fiber-Supported Droplet Combustion Experiment-2

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1998-01-01

    A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical models for heptane, decane, ethanol, and methanol fuels. Since most commercial combustion systems burn droplets in a convective environment, data were obtained without and with convective flow over the burning droplet (see the following photos).

  11. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  12. Acoustic wave-driven oxidized liquid metal-based energy harvester

    NASA Astrophysics Data System (ADS)

    Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung

    2018-06-01

    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.

  13. Simulation of droplet impact onto a deep pool for large Froude numbers in different open-source codes

    NASA Astrophysics Data System (ADS)

    Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.

    2017-11-01

    A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.

  14. Atomistics of vapour–liquid–solid nanowire growth

    PubMed Central

    Wang, Hailong; Zepeda-Ruiz, Luis A.; Gilmer, George H.; Upmanyu, Moneesh

    2013-01-01

    Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays. PMID:23752586

  15. Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation.

    PubMed

    Nasiri, Rasoul; Luo, Kai H

    2017-07-10

    For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.

  16. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  17. Simple and robust resistive dual-axis accelerometer using a liquid metal droplet

    NASA Astrophysics Data System (ADS)

    Huh, Myoung; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon

    2017-12-01

    This paper presents a novel dual-axis accelerometer that consists of a liquid metal droplet in a cone-shaped channel and an electrode layer with four Nichrome electrodes. The sensor uses the advantages of the liquid metal droplet (i.e., high surface tension, electrical conductivity, high density, and deformability). The cone-shaped channel imposes a restoring force on the liquid metal droplet. We conducted simulation tests to determine the appropriate design specifications of the cone-shaped channel. Surface modifications to the channel enhanced the nonwetting performance of the liquid metal droplet. The performances of the sensor were analyzed by a tilting test. When the acceleration was applied along the axial direction, the device showed 6 kΩ/g of sensitivity and negligible crosstalk between the X- and Y-axes. In a diagonal direction test, the device showed 4 kΩ/g of sensitivity.

  18. High-Energy Laser Interaction with Gases, Droplets, and Bulk Liquids.

    NASA Astrophysics Data System (ADS)

    Jarzembski, Maurice Anthony

    Breakdown threshold intensities (I_ {rm TH}) were measured as functions of wavelengths and pressure for air, He, Ar, and Xe using a Nd:YAG pulsed laser. Multiphoton absorption dominates in the UV and cascade collision ionization dominates in the IR; however, both can be affected by other electron gain and loss processes. Presence of droplets lowers breakdown of gases due to field enhancements. Breakdown is initiated either in the droplet material or in the gas. At lambda = 0.532mum for a 50 μm dia. water droplet in He, Ar, and air for p < 800 Torr, breakdown occurs inside the droplet and is independent of gas pressure. For droplet -in-Xe, at p < 140 Torr breakdown occurs inside the droplet and is independent of gas pressure. For droplet-in-Xe, at p < 140 Torr breakdown occurs inside the droplet but at p > 140 Torr, breakdown occurs outside the droplet and is dependent on gas pressure. Pressure dependence of breakdown was observed for 120mum dia. water droplets in Ar at p > 400 Torr. The required intensity for breakdown of droplet depends on I_{ rm TH} of bulk liquid and the effective field enhancement created by the droplet. The I _{rm TH} of droplet-in-air provides an upper limit to the propagation of a high energy laser beam in the atmosphere containing particles. By geometrical optics approach, a significant field enhancement located at the critical ring region, encircling the axis of the sphere in the forward direction at angle theta_{c}, was discovered where nonlinear processes can occur. This was confirmed experimentally and by Mie theory. Field enhancements calculated at the critical ring for water droplets of different sizes agree well with measurements. For a droplet of given size and real refractive index, the effective field enhancement and the volume over which it occurs are two important factors governing the occurrence of breakdown in droplets for both off resonance and on resonance conditions. Measurements of wavelength dependence of breakdown showed that in the UV, I_{rm TH} for droplets and bulk liquids were comparable and lower by few orders of magnitude from that of air. Transmittance and reflectance of bulk liquids in the UV change with intensity implying absorption due to nonlinear processes and consequent increase in the imaginary part of the refractive index of the liquids. In the IR, I_{rm TH} of air and bulk liquids are comparable but for droplets are considerably lower due to field enhancement.

  19. Deforming water droplets with a superhydrophobic silica coating.

    PubMed

    Li, Xiaoguang; Shen, Jun

    2013-11-04

    The surface liquidity of a water droplet is eliminated by rubbing hydrophobic particles onto the droplet surface using a sol-gel silica coating with extremely weak binding force, which results in solid-like deformability of a liquid drop.

  20. The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity

    NASA Technical Reports Server (NTRS)

    Smith, Marc K.; Glezer, Ari

    1996-01-01

    In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.

  1. Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs

    NASA Astrophysics Data System (ADS)

    Sterzer, E.; Knaub, N.; Ludewig, P.; Straubinger, R.; Beyer, A.; Volz, K.

    2014-12-01

    Low Bi content GaAs is a promising material for new optical devices with less heat production. The growth of such devices by metal organic vapor phase epitaxy faces several challenges. This paper summarizes results of the formation of metallic droplets during the epitaxial growth of Ga(AsBi) using all-liquid group III and V precursors. The samples that are grown, investigated by atomic force microscopy and scanning electron microscopy, show a different metal droplet distribution over the surface depending on the growth temperature and the V/III ratio of the precursors. Investigations with energy dispersive X-ray analysis and selective etching prove the appearance of phase separated Ga-Bi and pure Bi droplets at growth temperatures between 375 °C and 425 °C, which is explainable by the phase diagram of Ga-Bi. Since the pure Bi droplets show a preferred orientation on the surface after cool-down, transmission electron microscopy measurements were done by using the dark field imaging mode in addition to electron diffraction and high resolution imaging. These experiments show the single crystalline structure of the Bi droplets. The comparison of experimental diffraction patterns with image simulation shows a preferred alignment of Bi {10-1} lattice planes parallel to GaAs {202} lattice planes with the formation of a coincidence lattice. Thus it is possible to derive a model of how the Bi droplets evolve on the GaAs surface.

  2. The SERS and TERS effects obtained by gold droplets on top of Si nanowires.

    PubMed

    Becker, M; Sivakov, V; Andrä, G; Geiger, R; Schreiber, J; Hoffmann, S; Michler, J; Milenin, A P; Werner, P; Christiansen, S H

    2007-01-01

    We show that hemispherical gold droplets on top of silicon nanowires when grown by the vapor-liquid-solid (VLS) mechanism, can produce a significant enhancement of Raman scattered signals. Signal enhancement for a few or even just single gold droplets is demonstrated by analyzing the enhanced Raman signature of malachite green molecules. For this experiment, trenches (approximately 800 nm wide) were etched in a silicon-on-insulator (SOI) wafer along <110> crystallographic directions that constitute sidewalls ({110} surfaces) suitable for the growth of silicon nanowires in <111> directions with the intention that the gold droplets on the silicon nanowires can meet somewhere in the trench when growth time is carefully selected. Another way to realize gold nanostructures in close vicinity is to attach a silicon nanowire with a gold droplet onto an atomic force microscopy (AFM) tip and to bring this tip toward another gold-coated AFM tip where malachite green molecules were deposited prior to the measurements. In both experiments, signal enhancement of characteristic Raman bands of malachite green molecules was observed. This indicates that silicon nanowires with gold droplets atop can act as efficient probes for tip-enhanced Raman spectroscopy (TERS). In our article, we show that a nanowire TERS probe can be fabricated by welding nanowires with gold droplets to AFM tips in a scanning electron microscope (SEM). TERS tips made from nanowires could improve the spatial resolution of Raman spectroscopy so that measurements on the nanometer scale are possible.

  3. Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

    NASA Astrophysics Data System (ADS)

    Maißer, Anne; Attoui, Michel B.; Gañán-Calvo, Alfonso M.; Szymanski, Wladyslaw W.

    2013-01-01

    A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride—both show strong electrolytic behavior—have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963-977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.

  4. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  5. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  6. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  7. On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow

    NASA Astrophysics Data System (ADS)

    Behzad, Mohsen; Ashgriz, Nasser

    2011-11-01

    The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.

  8. Kinetics of diffusional droplet growth in a liquid/liquid two-phase system

    NASA Technical Reports Server (NTRS)

    Glickman, M. E.; Fradkov, V. E.

    1995-01-01

    A new powerful experimental technique based on holographic observations, developed at the NASA Marshall Space Flight Center, now permits observation of small liquid droplets coarsening. This technique was developed and used for mixed-dimensional coarsening studies. Experiments were conducted on an isopycnic two-phase alloy of succinonitrile and water, annealed isothermally over a four-month period. The succinonitrile-rich droplets precipitate from a water-rich liquid matrix having a density very close to that of the droplets. The matrix and droplets, however, have different optical indices. The results of these experiments, along with the results of computer simulation based on the quasi-static diffusion approximation developed at Rensselaer are reported. These results were published recently. Copies of these papers are attached to this report.

  9. Optofluidic lens actuated by laser-induced solutocapillary forces

    NASA Astrophysics Data System (ADS)

    Malyuk, A. Yu.; Ivanova, N. A.

    2017-06-01

    We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.

  10. Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field

    NASA Technical Reports Server (NTRS)

    Bojarevics, V.; Easter, S.; Pericleous, K.

    2012-01-01

    Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.

  11. Liquid lens driven by elastomer actuator

    NASA Astrophysics Data System (ADS)

    Jin, Boya; Lee, Ji-Hyeon; Zhou, Zuowei; Lee, Gi-Bbeum; Ren, Hongwen; Nah, Changwoon

    2015-09-01

    By filling a liquid droplet in the hole of a dielectric elastomer (DE) film directly, we prepared two small liquid lenses. The aperture of one lens is macro size and the other is micro size. The liquid droplet in each hole of the DE film exhibits a lens character due to its biconvex shape. In relaxed state, the focal length of each liquid droplet is the longest. When a sufficiently high DC voltage is applied, the diameter of each DE hole is decreased by the generated Maxwell stress, causing the curvature of its droplet to increase. As a result, the focal length of each lens is reduced. Here the DE film functions as an actuator. In contrast to previous approaches, our miniature liquid lenses possess the advantages of simple fabrication, fast response time (~ 540 ms), and high optical performance (~ 114 lp/mm). Moreover, the micro-sized liquid lens presents good mechanical stability.

  12. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  13. Serrating Nozzle Surfaces for Complete Transfer of Droplets

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Jin " CJ" ; Yi, Uichong

    2010-01-01

    A method of ensuring the complete transfer of liquid droplets from nozzles in microfluidic devices to nearby surfaces involves relatively simple geometric modification of the nozzle surfaces. The method is especially applicable to nozzles in print heads and similar devices required to dispense liquid droplets having precise volumes. Examples of such devices include heads for soft printing of ink on paper and heads for depositing droplets of deoxyribonucleic acid (DNA) or protein solutions on glass plates to form microarrays of spots for analysis. The main purpose served by the present method is to ensure that droplets transferred from a nozzle have consistent volume, as needed to ensure accuracy in microarray analysis or consistent appearance of printed text and images. In soft printing, droplets having consistent volume are generated inside a print head, but in the absence of the present method, the consistency is lost in printing because after each printing action (in which a drop is ejected from a nozzle), a small residual volume of liquid remains attached to the nozzle. By providing for complete transfer of droplets (and thus eliminating residual liquid attached to the nozzle) the method ensures consistency of volume of transferred droplets. An additional benefit of elimination of residue is prevention of cross-contamination among different liquids printed through the same nozzle a major consideration in DNA microarray analysis. The method also accelerates the printing process by minimizing the need to clean a printing head to prevent cross-contamination. Soft printing involves a hydrophobic nozzle surface and a hydrophilic print surface. When the two surfaces are brought into proximity such that a droplet in the nozzle makes contact with the print surface, a substantial portion of the droplet becomes transferred to the print surface. Then as the nozzle and the print surface are pulled apart, the droplet is pulled apart and most of the droplet remains on the print surface. The basic principle of the present method is to reduce the liquid-solid surface energy of the nozzle to a level sufficiently below the intrinsic solid-liquid surface energy of the nozzle material so that the droplet is not pulled apart and, instead, the entire droplet volume becomes transferred to the print surface. In this method, the liquid-solid surface energy is reduced by introducing artificial surface roughness in the form of micromachined serrations on the inner nozzle surface (see figure). The method was tested in experiments on soft printing of DNA solutions and of deionized water through 0.5-mm-diameter nozzles, of which some were not serrated, some were partially serrated, and some were fully serrated. In the nozzles without serrations, transfer was incomplete; that is, residual liquids remained in the nozzles after printing. However, in every nozzle in which at least half the inner surface was serrated, complete transfer of droplets to the print surface was achieved.

  14. Acoustic Levitation and its Applications in the Study of Liquid Surface Rheology.

    NASA Astrophysics Data System (ADS)

    Tian, Yuren

    Due to its non-contact manipulation and requirement of small amounts of test sample, acoustical levitation has been used to investigate the interfacial dynamics of liquids. In this current work, the surface rheology of liquid drops levitated in air has been studied. The surrounding of a gaseous medium simplifies the theoretical analysis and the interpretation of experimental results. For a ground-based experiment, the effect of gravity and the levitation sound field can change a levitated drop into a nonspherical shape. A theory which involves the multiple interactions between the drop and the sound field, the acoustic scattering by a nonspherical object and the limitation of droplet volume variation is developed. The droplet aspect ratio is determined as a function of the sound pressure, frequency (or wavelength) and the surface tension of liquid under both zero and nonzero gravity environments. The dynamics of a liquid drop of surfactant solution is also theoretically analyzed by including the different surfactant transfer processes at the droplet surface. The approximate solutions of the resonance frequency and damping constant of droplet free quadrupole shape oscillation are derived analytically and verified with the exact numerical solutions. The phase relationship between the driving force and the droplet response is established for the case of forced droplet shape oscillation. The surface viscoelasticity of liquid has shown a strong effect on the droplet dynamics. An acoustic levitation apparatus is constructed and used to levitate a liquid drop in air. By gauging the static shape of the drop versus its spatial location, the equilibrium surface tension of the liquid can be determined. The surface elasticity and viscosity are evaluated from the measurements of the resonance frequency, damping constant and phase relationship of the droplet quadrupole shape oscillation. Different kind of liquids are tested. For surfactant solutions, the experimental results illustrate the existence of surface viscoelasticities.

  15. The internal caustic structure of illuminated liquid droplets

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Hovenac, Edward A.

    1991-01-01

    The internal electric field of an illuminated liquid droplet is studied in detail using both wave theory and ray theory. The internal field obtains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye series expansion of the interior field Mie amplitudes is used to calculate the wave theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given.

  16. Phase Transformation of Droplets into Particles and Nucleation in Atmospheric Pressure Discharges

    NASA Astrophysics Data System (ADS)

    Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.

    2013-09-01

    We investigate the mechanism of phase transformation of liquid precursor droplets into nano-particulates in an atmospheric pressure discharge (APD). This phase transformation is possible when the solid to a liquid mass ratio of slurry droplet reaches a threshold value. The behaviour of phase transformation of a single slurry droplet of HMDSO is described by developing a numerical model under the saturation condition of evaporation. It is observed from the temporal evolution of inner radius (Ri) of a single slurry droplet that its value approaches zero before the entire shifting of a liquid phase and which explains with an expansion in the crust thickness (Ro - Ri) . The solid traces of nano-particles are observed experimentally on the surface coating depositions because the time for transferring the slurry droplet of HMDSO into solid state is amplified with an increment in the radii of droplets and the entire phase transition occurs within residence time for the nano-sized liquid droplets. The GDE coupled with discharge plasma is numerically solved to describe the mechanism of nucleation of nano-sized particles in APD plasma under similar conditions of the experiment. The growth of nucleation in APD plasma depends on the type of liquid precursor, such as HMDSO, TEOS and water, which is verified with a sharp peak in the nucleation rate and saturation ratio. Science Foundation Ireland under Grant No. 08/SRC/I1411.

  17. Kinematics of the Doped Quantum Vortices in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Bernando, Charles; Vilesov, Andrey F.

    2018-05-01

    Recent observation of quantum vortices in superfluid 4He droplets measuring a few hundreds of nanometers in diameter involved decoration of vortex cores by clusters containing large numbers of Xe atoms, which served as X-ray contrast agents. Here, we report on the study of the kinematics of the combined vortex-cluster system in a cylinder and in a sphere. Equilibrium states, characterized by total angular momentum, L, were found by minimizing the total energy, E, which sums from the kinetic energy of the liquid due to the vortex and due to orbiting Xe clusters, as well as solvation energy of the cluster in the droplet. Calculations show that, at small mass of the cluster, the equilibrium displacement of the system from the rotation axis is close to that for the bare vortex. However, upon decrease in L beyond certain critical value, which is larger for heavier clusters, the displacement bifurcates toward the surface region, where the motion of the system is governed by the clusters. In addition, at even smaller L, bare orbiting clusters become energetically favorable, opening the possibility for the vortex to detach from the cluster and to annihilate at the droplet's surface.

  18. Characterization of spray-induced turbulence using fluorescence PIV

    NASA Astrophysics Data System (ADS)

    van der Voort, Dennis D.; Dam, Nico J.; Clercx, Herman J. H.; Water, Willem van de

    2018-07-01

    The strong shear induced by the injection of liquid sprays at high velocities induces turbulence in the surrounding medium. This, in turn, influences the motion of droplets as well as the mixing of air and vapor. Using fluorescence-based tracer particle image velocimetry, the velocity field surrounding 125-135 m/s sprays exiting a 200-μm nozzle is analyzed. For the first time, the small- and large-scale turbulence characteristics of the gas phase surrounding a spray has been measured simultaneously, using a large eddy model to determine the sub-grid scales. This further allows the calculation of the Stokes numbers of droplets, which indicates the influence of turbulence on their motion. The measurements lead to an estimate of the dissipation rate ɛ ≈ 35 m2 s^{-3}, a microscale Reynolds number Re_{λ } ≈ 170, and a Kolmogorov length scale of η ≈ 10^{-4} m. Using these dissipation rates to convert a droplet size distribution to a distribution of Stokes numbers, we show that only the large scale motion of turbulence disperses the droplet in the current case, but the small scales will grow in importance with increasing levels of atomization and ambient pressures.

  19. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, Kyle A.; Butler, Samuel L.; Hill, Richard J. A.

    2015-01-01

    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or `dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax `artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation.

  20. Effect of an oxygen plasma on the physical and chemical properties of several fluids for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.; Coles, C. E.

    1986-01-01

    The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethlsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed deploymerization of the fluid molecule.

  1. Computing fluid-particle interaction forces for nano-suspension droplet spreading: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Weizhou; Shi, Baiou; Webb, Edmund

    2017-11-01

    Recently, there are many experimental and theoretical studies to understand and control the dynamic spreading of nano-suspension droplets on solid surfaces. However, fundamental understanding of driving forces dictating the kinetics of nano-suspension wetting and spreading, especially capillary forces that manifest during the process, is lacking. Here, we present results from atomic scale simulations that were used to compute forces between suspended particles and advancing liquid fronts. The role of nano-particle size, particle loading, and interaction strength on forces computed from simulations will be discussed. Results demonstrate that increasing the particle size dramatically changes observed wetting behavior from depinning to pinning. From simulations on varying particle size, a relationship between computed forces and particle size is advanced and compared to existing expressions in the literature. High particle loading significantly slowed spreading kinetics, by introducing tortuous transport paths for liquid delivery to the advancing contact line. Lastly, we show how weakening the interaction between the particle and the underlying substrate can change a system from exhibiting pinning behavior to de-pinning.

  2. Surfactant induced stabilization of nano liquid crystalline (dodecane-phytantriol) droplet

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Saha, Debasish; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2018-04-01

    The study of formation and stabilization of dodecane-phytantriol (DPT) microemulsions using ionic and nonionic surfactants are investigated. Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques have been employed to study the resulting structures of the micro emulsion droplets. We show the formation of stable microemulsion droplets with absence of lyotropic liquid crystalline phase on addition of nonionic surfactant C12E10. The oil to surfactant ratio plays the crucial role in formation of stable droplet and its size. The dense presence of C12E10 molecules between microemulsion droplets protect them from coalescence while less number of C12E10 between the surface of droplets easily triggers the coalescence process. The interaction with both anionic (SDS) as well as cationic (DTAB) surfactants with DPT phase leads to formation of microemulsion droplets with lyotropic liquid crystalline phase.

  3. Experimental test of liquid droplet radiator performance

    NASA Astrophysics Data System (ADS)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  4. Experimental test of liquid droplet radiator performance

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Simon, M. A.

    1987-01-01

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  5. Tunable Droplet Breakup Dynamics on Micropillared Superhydrophobic Surfaces.

    PubMed

    Zhang, Rui; Hao, Pengfei; Zhang, Xiwen; Niu, Fenglei; He, Feng

    2018-06-22

    Functional materials with controllable droplet breakup properties have extensive application prospects in aircraft anti-icing, spraying cooling, surface coating, and so on. Here we show that introducing micropillar arrays with various morphologies to fabricate superhydrophobic surfaces could either facilitate or suppress droplet splitting. The spacing and height of micropillars play an essential role in tuning the splitting patterns. Delayed splashing occurs on dense pillars which support the liquid lamella and provide channels for air to escape. A novel droplet breakup mechanism is found on sparse tall pillars, which rises from the instability of lateral liquid jets and significantly reduces the droplet breakup threshold. The critical Weber number of the rupture of low-viscous liquid is solely determined by the geometric parameters of micropillars and droplets. This work unveils the impact of ordered microstructures on the droplet breakup dynamics and provides a quantitative analysis of the geometric parameters in revising the breakup criteria.

  6. Impact of droplet on superheated surfaces

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Staat, Hendrik J. J.; Tran, Tuan; Prosperetti, Andrea; Sun, Chao

    2012-11-01

    At impact of a liquid droplet on a smooth surface heated way above the liquid's boiling point, the droplet spreads without any surface contact, floating on its own (Leidenfrost-type) vapor layer, and then bounces back. We show that the dimensionless maximum spreading factor Γ, defined by the ratio of the maximal spreading diameter and the droplet diameter, shows a universal scaling Γ ~ Weγ with the Weber number We - regardless of surface temperature and of liquid properties - which is much steeper than that for the impact on non-heated (hydrophilic or hydrophobic) surfaces, for which γ = 1 / 4 . Based on the idea that the vapor shooting out of the gap between the droplet and the superheated surface drags the liquid outwards, we derive scaling laws for the spreading factor Γ, the vapor layer thickness, and the vapor flow velocity.

  7. Optical and physical requirements for fluid particles marking trailing vortices from aircraft

    NASA Technical Reports Server (NTRS)

    Back, L. H.

    1976-01-01

    A theoretical study of the optical and physical requirements of marking trailing vortices that emanate from aircraft wings was carried out by considering particulate light-scattering properties, ability of particles to follow trailing vortices, and survival time of particles to vortex dissipation. Liquid droplets undergoing evaporation and molecular dispersion were investigated. Droplets should have lifetimes of about 300 sec. Droplet size should be about 1 micron to maximize light scattering with the minimum mass of liquid required. Droplets of this small size would spiral outward very slowly and essentially remain in the vortex cores. Nontoxic hygroscopic liquids, having an affinity for moisture in the air, have been identified. These liquids have relatively low vapor pressures of order 10 to the -5 mm Hg that would insure droplet persistence long enough to mark trailing vortices.

  8. Spray measurements of aerothermodynamic effect on disintegrating liquid jets

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1991-01-01

    An experimental investigation was made to determine the effect of atomizing gas mass flux and temperature on liquid jet breakup in sonic velocity gas flow. Characteristic drop size data were obtained by using the following atomizing gases: nitrogen, argon, and helium to breakup water jets in high velocity gas flow. A scattered light scanning instrument developed at Lewis Research Center was used to measure Sauter mean diameter (SMD). The three gases gave a molecular weight range of 4 to 40 and atomizing gas mass flux and temperature were varied from 6 to 50 g/sq cm and 275-400 K, respectively. The ratio of liquid jet diameter to SMD, D(sub 0)/D(sub 32), was correlated with aerodynamic and liquid-surface force ratios, i.e., the product of the Weber and Reynolds number, We Re, the gas to liquid density ratio, rho(sub g)/rho(sub 1) g and also the molecular scale dimensionless group, rho(sub 1)(Vm exp 3)/ mu(sub 1) g, to give the following expression: D(sub 0)/D(sub 32) = 0.90 x 10(exp -8) x (We Re rho sub g/rho sub 1)exp 0.44 x (rho sub 1 Vm exp 3/mu sub 1 g)exp 0.67 where We Re = ((rho sub g)exp 2(D sub 0)exp 2(V sub C)exp3))/ mu sub 1 sigma, mu sub 1 is liquid viscosity, sigma is surface tension, V sub C is the acoustic gas velocity, V sub m is the RMS velocity of gas molecules, and g is the acceleration of gas molecules due to gravity. Good agreement was obtained with atomization theory for liquid-jet breakup in the regime of aerodynamic stripping. Also, due to its low molecular weight and high acoustic velocity, helium was considerably more effective than nitrogen or argon in producing small-droplet sprays with values of D(sub 32) on the order of 5 microns.

  9. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    NASA Astrophysics Data System (ADS)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  10. Chemical Gradients on Graphene to Drive Droplet Motion

    DTIC Science & Technology

    2013-05-09

    the flexibility of carbon chemistry, graphene provides many options in designing such gradients. Moreover, to effectively move a liquid droplet, the...surface chemistry gradientmust be both continuous (x and y direction) and uniform in the direc - tion perpendicular to the droplet motion (y direction) to...directing the transport of liquid droplets. This work demonstrates that with careful consideration of the surface chem- istry, electron beam-generated

  11. Liquid droplet radiator performance studies

    NASA Astrophysics Data System (ADS)

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  12. Liquid droplet radiator performance studies

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.

  13. Liquid droplet radiator performance studies

    NASA Astrophysics Data System (ADS)

    Mattick, A. T.; Hertzberg, A.

    1984-10-01

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.

  14. Polymer dispersed nematic liquid crystal for large area displays and light valves

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1986-09-01

    A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.

  15. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  16. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermocapillary Convection in Liquid Droplets

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this video is to understand the effects of surface tension on fluid convection. The fluid system chosen is the liquid sessile droplet to show the importance in single crystal growth, the spray drying and cooling of metal, and the advance droplet radiators of the space stations radiators. A cross sectional representation of a hemispherical liquid droplet under ideal conditions is used to show internal fluid motion. A direct simulation of buoyancy-dominant convection and surface tension-dominant convection is graphically displayed. The clear differences between two mechanisms of fluid transport, thermocapillary convection, and bouncy dominant convection is illustrated.

  18. Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Shearer, A. J.; Faeth, G. M.

    1976-01-01

    An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.

  19. Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chung, Sang-Kun (Inventor); Colvin, Michael S. (Inventor); Chang, Manchium (Inventor)

    1991-01-01

    Monodisperse, polymeric microspheres are formed by injecting uniformly shaped droplets of radiation polymerizable monomers, preferably a biocompatible monomer, having covalent binding sites such as hydroxyethylmethacrylate, into a zone, impressing a like charge on the droplet so that they mutually repel each other, spheroidizing the droplets within the zone and collecting the droplets in a pool of cryogenic liquid. As the droplets enter the liquid, they freeze into solid, glassy microspheres, which vaporizes a portion of the cryogenic liquid to form a layer. The like-charged microspheres, suspended within the layer, move to the edge of the vessel holding the pool, are discharged, fall and are collected. The collected microspheres are irradiated while frozen in the cryogenic liquid to form latent free radicals. The frozen microspheres are then slowly thawed to activate the free radicals which polymerize the monomer to form evenly-sized, evenly-shaped, monodisperse polymeric microspheres.

  20. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    PubMed

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  1. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  2. Characterization of light scattering in nematic droplet-polymer films

    NASA Astrophysics Data System (ADS)

    Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo

    1992-06-01

    The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.

  3. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    PubMed

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  4. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  5. Fast electric control of the droplet size in a microfluidic T-junction droplet generator

    NASA Astrophysics Data System (ADS)

    Shojaeian, Mostafa; Hardt, Steffen

    2018-05-01

    The effect of DC electric fields on the generation of droplets of water and xanthan gum solutions in sunflower oil at a microfluidic T-junction is experimentally studied. The electric field leads to a significant reduction of the droplet diameter, by about a factor of 2 in the case of water droplets. The droplet size can be tuned by varying the electric field strength, an effect that can be employed to produce a stream of droplets with a tailor-made size sequence. Compared to the case of purely hydrodynamic droplet production without electric fields, the electric control has about the same effect on the droplet size if the electric stress at the liquid/liquid interface is the same as the hydrodynamic stress.

  6. Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Wang, Yiqi; Huang, Junchao; Yang, Yao; Wang, Renxian; Geng, Xingguo; Zang, Duyang

    2017-12-01

    A sol-gel coating consisting of hydrophobic SiO2 nanoparticles (NPs) was used to produce monolayer NP-covered (mNPc) liquid marbles. The simplest approach was rolling a droplet on this coating, and an identifiable signet allowed determination of the coverage ratio of the resulting liquid marble. Alternatively, the particles were squeezed onto a droplet surface with two such coatings, generating surface buckling from interfacial NP jamming, and then a liquid marble was produced via a jamming-relief process in which water was added into the buckled droplet. This process revealed an ˜7% reduction in particle distance after interfacial jamming. The mNPc liquid marbles obtained by the two methods were transparent with smooth profiles, as naked droplets, and could be advantageously used in fundamental and applied researches for their unique functions.

  7. Stimulated Raman diagnostics in diesel droplets

    NASA Astrophysics Data System (ADS)

    Golombok, Michael

    1991-09-01

    Stimulated Raman spectroscopy (SRS) can simultaneously measure droplet sizes and the associated component concentrations in a fuel injection. As spray evaporation is crucial in determining the performance parameters of a diesel engine, such as cold start and particulate emission formation, the new application of the method for spatially and temporally resolved measurements is a useful new diagnostic, extending our understanding of spray processes. Droplet sizes can be obtained from single shot SRS spectra by measuring the separation between morphology-dependent resonances (MDR) that correspond to standing wave modes confined near the droplet circumference. Power spectrum analysis allows the measurement of more than one droplet from a spectrum using a pumped laser sheet in the fuel spray. The MDRs are responsible for the simultaneous stimulation of multiple Raman spectral lines over and above those seen in bulk liquids. The SRS method for concentration measurement is effectively self-calibrating in that the relative intensity of two adjacent lines is used to measure concentration. Any particular fuel has a unique ratio of SRS antisymmetric to symmetric C-H stretch intensity. If individual components in a fuel blend are characterized beforehand, one can monitor the evolution of the spray during injection by measuring signal intensity ratios which yield the volume fraction of the component of interest. The SRS technique is being used to examine a number of spray dynamics phenomena such as fuel atomization, droplet evolution and front-end volatility effects, which are of current interest in diesel development studies.

  8. Numerical study of liquid film rupture after droplet spreading on a superhydrophilic surface

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng

    2017-11-01

    When a droplet impacts onto a solid surface, different outcomes can be observed, such as rebound, spreading and splashing. We present numerical simulation results on liquid film rupture after spreading of a droplet impact on a smooth superhydrophilic surface. The Navier-Stokes equations are solved using the variable density pressure projection method and the moment-of-fluid method is used to track the droplet interface. A superhydrophilic or superwetting surface has strong affinity to liquid and we assume the contact angle between solid and liquid is almost zero degree. The droplet spreading and film rupture process occurs in two stages: the droplet first spreads onto the surface and flattens into a thin film as it reaches the maximum diameter, then the film rim becomes unstable and the film rupture initiates from the rim toward the center gradually until the entire film breaks up into secondary droplets. The duration of the film rupture stage is much shorter than the spreading stage. The simulation result is compared with experiment and good agreement is achieved. We investigate the film thickness evolution during spreading and the effect of surface wettability on film rupture.

  9. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  10. NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    1994-06-01

    Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.

  11. Assembly of silver nanowire ring induced by liquid droplet

    NASA Astrophysics Data System (ADS)

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-11-01

    Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).

  12. The interfacial structure of water droplets in a hydrophobic liquid

    NASA Astrophysics Data System (ADS)

    Smolentsev, Nikolay; Smit, Wilbert J.; Bakker, Huib J.; Roke, Sylvie

    2017-05-01

    Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ~50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.

  13. Wetting of crystalline polymer surfaces: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fan, Cun Feng; Caǧin, Tahir

    1995-11-01

    Molecular dynamics has been used to study the wetting of model polymer surfaces, the crystal surfaces of polyethylene (PE), poly(tetrafluoroethylene) (PTFE), and poly(ethylene terephthalate) (PET) by water and methylene iodide. In the simulation a liquid droplet is placed on a model surface and constant temperature, rigid body molecular dynamics is carried out while the model surface is kept fixed. A generally defined microscopic contact angle between a liquid droplet and a solid surface is quantitatively calculated from the volume of the droplet and the interfacial area between the droplet and the surface. The simulation results agree with the trend in experimental data for both water and methylene iodide. The shape of the droplets on the surface is analyzed and no obvious anisotropy of the droplets is seen in the surface plane, even though the crystal surfaces are highly oriented. The surface free energies of the model polymer surfaces are estimated from their contact angles with the two different liquid droplets.

  14. Droplet transport system and methods

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul (Inventor)

    2010-01-01

    Embodiments of droplet transport systems and methods are disclosed for levitating and transporting single or encapsulated droplets using thermocapillary convection. One method embodiment, among others comprises providing a droplet of a first liquid; and applying thermocapillary convection to the droplet to levitate and move the droplet.

  15. Reaction Force of Micro-scale Liquid Droplets Constrained Between Parallel Plates through CFD

    NASA Astrophysics Data System (ADS)

    Free, Robert; Hekiri, Haider; Hawa, Takumi

    2012-02-01

    Micro-scale liquid droplets responding to depression between parallel plates are investigated analytically and numerically. The functional dependence of the reaction force accrued in such droplets on droplet size, surface tension, depression amount, and contact angle is explored. For both the 2D and 3D case, an analytical model is developed based on first principles. Computational fluid dynamics is then utilized to evaluate the validity of these models. The reaction force is highly nonlinear, initially increasing very slowly with increasing depression of the droplet, but eventually moving asymptotically to infinity. The force scales linearly with both the droplet free radius and surface tension of the liquid, but has a much more complicated dependence on the contact angle and depression. Explicit expressions for the reaction force have been determined, showing these dependencies. The 3D model has been largely supported by the CFD results. It very accurately predicts the reaction force on the upper plate as the droplet is crushed, accounting for the effect of contact angle, surface tension, and droplet size.

  16. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.

    PubMed

    Zhang, Qingquan; Zeng, Shaojiang; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    This article presents a simple method for trapping arrays of droplets relying on the designed microstructures of the microfluidic device, and this has been successfully used for parallel gas-liquid chemical reaction. In this approach, the trapping structure is composed of main channel, lateral channel and trapping region. Under a negative pressure, array droplets can be generated and trapped in the microstructure simultaneously, without the use of surfactant and the precise control of the flow velocity. By using a multi-layer microdevice containing the microstructures, single (pH gradient) and multiple gas-liquid reactions (metal ion-NH3 complex reaction) can be performed in array droplets through the transmembrane diffusion of the gas. The droplets with quantitative concentration gradient can be formed by only replacing the specific membrane. The established method is simple, robust and easy to operate, demonstrating the potential of this device for droplet-based high-throughput screening.

  17. High-resolution liquid patterns via three-dimensional droplet shape control.

    PubMed

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  18. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.

    PubMed

    Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan

    2015-02-09

    Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  20. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy.

    PubMed

    Contreras, Victor; Valencia, Ricardo; Peralta, Jairo; Sobral, H; Meneses-Nava, M A; Martinez, Horacio

    2018-05-15

    Laser-induced breakdown spectroscopy is presented for trace element detection of liquid samples by analyzing a single droplet levitated by ultrasonic waves. A single liquid droplet is placed in the node of a standing acoustic wave produced by a uniaxial levitator for further chemical analysis. The acoustic levitator consists of a commercial Langevin-type transducer, attached to a concave mechanical amplifier, and a concave reflector. A micro-syringe was used to manually place individual liquid droplet samples in the acoustic levitation system. For chemical analysis, a laser-induced plasma is produced by focusing a single laser pulse on the levitated water droplet after it partially dries. The performance of the acoustic levitator on micron-sized droplets is discussed, and the detection of Ba, Cd, Hg, and Pb at parts per million (milligrams/liter) and sub-parts per million levels is reported. The process, starting from placing the sample in the acoustic levitator and ending on the chemical identification of the traces, takes a few minutes. The approach is particularly interesting in applications demanding limited volumes of liquid samples and relative simple and inexpensive techniques.

  1. DNS of droplet motion in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Rosso, Michele; Elghobashi, S.

    2013-11-01

    The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.

  2. Rapid solidification of metallic particulates

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    In order to maximize the heat transfer coefficient the most important variable in rapid solidification is the powder particle size. The finer the particle size, the higher the solidification rate. Efforts to decrease the particle size diameter offer the greatest payoff in attained quench rate. The velocity of the liquid droplet in the atmosphere is the second most important variable. Unfortunately the choices of gas atmospheres are sharply limited both because of conductivity and cost. Nitrogen and argon stand out as the preferred gases, nitrogen where reactions are unimportant and argon where reaction with nitrogen may be important. In gas atomization, helium offers up to an order of magnitude increase in solidification rate over argon and nitrogen. By contrast, atomization in vacuum drops the quench rate several orders of magnitude.

  3. Directional transport of droplets on wettability patterns at high temperature

    NASA Astrophysics Data System (ADS)

    Huang, Shuai; Yin, Shaohui; Chen, Fengjun; Luo, Hu; Tang, Qingchun; Song, Jinlong

    2018-01-01

    Directional transport of liquid has attracted increasing interest owing to its potential of application in lab-on-a-chip, microfluidic devices and thermal management technologies. Although numerous strategies have been developed to achieve directional transport of liquid at low temperature, controlling the directional transport of liquid at high temperature remains to be a challenging issue. In this work, we reported a novel strategy in which different parts of droplet contacted with surface with different wettability patterns, resulting in a discrepant evaporative vapor film to achieve the directional transport of liquid. The experimental results showed that the state of the liquid on wettability patterned surface gradually changed from contact boiling to Leidenfrost state with the increase of substrate temperature Ts, and liquid on superhydrophilic surface was in composite state of contact boiling and Leidenfrost when Ts was higher than 200 °C. Inspired by the different evaporation states of droplet on the wettability boundary, controlling preferential motion of droplets was observed at high temperature. By designing a surface with wettability pattern on which superhydrophobic region and superhydrophilic region are alternately arranged, a controlled directional transport of droplet can be achieved at high temperature.

  4. Gasification Characterization of Ionic Liquids as Propellants

    DTIC Science & Technology

    2008-05-25

    the droplet is the dominant mode of heat transfer. Furthermore, substantial liquid-phase pyrolytic reaction is initiated when the droplet is heated to...experimental apparatus is shown in Fig. 12. Here a column of a high-boiling-point liquid (Krytox 143AD, a fluorinated oil from DuPont. Density: 1.95 g...6 heating oil (if it were pure, without any volatile component). Because of the very low vapor pressure, the droplet will simply be heated up

  5. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    NASA Astrophysics Data System (ADS)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up for liquid breakup phenomenon observation. The liquid water material in this experiment will play a comparison role as liquid alumina in high temerature enviornment. The method proposed to control the liquid breakup size of liquid droplet is done by the means of changing the liquid properties of surface tension. The surface tenion of liquid plays an inportant role of providing major liquid droplet bounding pressure or Laplace pressure. By reduceing surface tension of liquid leads to lower Laplace pressure of droplet and result in less droplet dynamic stability which could be breakup under external pressure difference. The reduction of surface tension of liquid aluminum could be achieved by adding magnisium and strontium, it is reported that the surface tension reeducation level could reach 10%˜15% when those additive mension above are adding to aluminum. This study of liquid breakup mechanism include two major part, first part is straight two-phase channel experiment and simulation comparison which provide a validation work of CFD simulation performance when compare to experiment. Second part is single droplet breakup experiment, in this experiment the relation of surface tension and liquid breakup behavior is carefully studied. The straight two-phase flow channel experiment setting will enable to us to study the liquid breakup process in macro scale. The quantification method is achieved by analyzing high-speed camera image by MatLab image process code develop in UW-Milwaukee wind tunnel lab which extract data in images and provide information including liquid droplet count and size distribution, wave frequency and time averaging two-phase free boundary. It was found that liquid breakup mechanism proportional to gas-droplet velocity difference square, gas density and liquid droplet size and inverse proportional to liquid surface tension. The single droplet experiment part is provide a close up view of liquid breakup and prove the reduced surface tension will enhance liquid breakup activity. In this study, we could observe the evidence of enhance liquid breakup activity by the reduced surface tension of liquid. Therefor the approach of reducing surface tension of Solid Rocket Motor (SRM) fuel reacting product is a high potential solution to SRM nozzle erosion.

  6. Controlled multistep synthesis in a three-phase droplet reactor

    PubMed Central

    Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.

    2014-01-01

    Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034

  7. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.

    PubMed

    Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G

    2015-09-14

    This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter.

  8. Capillary droplet propulsion on a fibre.

    PubMed

    Haefner, Sabrina; Bäumchen, Oliver; Jacobs, Karin

    2015-09-21

    A viscous liquid film coating a fibre becomes unstable and decays into droplets due to the Rayleigh-Plateau instability (RPI). Here, we report on the generation of uniform droplets on a hydrophobized fibre by taking advantage of this effect. In the late stages of liquid column breakup, a three-phase contact line can be formed at one side of the droplet by spontaneous rupture of the thinning film. The resulting capillary imbalance leads to droplet propulsion along the fibre. We study the dynamics and the dewetting speed of the droplet as a function of molecular weight as well as temperature and compare to a force balance model based on purely viscous dissipation.

  9. Ejection of small droplet from microplate using focused ultrasound

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Mizuno, Yosuke; Nakamura, Kentaro

    2017-08-01

    We discussed an ultrasonic system for single-droplet ejection from a microplate, which is one of the basic and important procedures in the noncontact handling of droplets in air. In this system, a 1.5 MHz concave transducer located below the microplate is used for chasing the liquid surface through a pulse echo method, and also for the ejection of a 1 µL single droplet by the burst of focused ultrasound. We investigated the relationship between the droplet ejection characteristics, the distance from the transducer to the surface of liquid, the material property, and the excitation condition of the focused ultrasonic transducer. It was verified that the optimal position of the transducer was off the focal point of sound pressure by ±1 mm, because the sound intensity had to be controlled to eject a single droplet. Subsequently, we confirmed experimentally that the ejected droplet volume linearly depended on the surface tension of the liquid, and that the droplet volume and ejection velocity were determined by the Webber number, Reynolds number, and Ohnesolge number. In addition, by optimizing the duration of the burst ultrasound, the droplet volume and ejection velocity were controlled.

  10. Backflow and dissipation during the quantum decay of a metastable Fermi liquid

    NASA Astrophysics Data System (ADS)

    Iida, Kei

    1999-02-01

    The particle current in a metastable Fermi liquid against a first-order phase transition is calculated at zero temperature. During fluctuations of a droplet of the stable phase, in accordance with the conservation law, not only does an unperturbed current arise from the continuity at the boundary, but a backflow is induced by the density response. Quasiparticles carrying these currents are scattered by the boundary, yielding a dissipative backflow around the droplet. An energy of the hydrodynamic mass flow of the liquid and a friction force exerted on the droplet by the quasiparticles have been obtained in terms of a potential of their interaction with the droplet.

  11. Rich phenomenology encountered when two jets collide in microgravity

    NASA Astrophysics Data System (ADS)

    Suñol, Francesc; Gonzalez-Cinca, Ricard

    The collision between two impinging liquid jets has been experimentally studied in the low gravity environment provided by the ZARM drop tower. The effects of impact angle and liquid flow rate on the collision between like-doublet jets have been considered. Tests were carried out with distilled water injected through nozzles with an internal diameter of 0.7 mm into a test cell. Impact angle varied between 10(°) and 180(°) (frontal collision), while the liquid flow rate ranged between 20 ml/min and 80 ml/min for each nozzle. Such a large parameter range allowed us to observe different phenomena resulting from the jets collision: oscillating droplets attached to the nozzles, a non-uniform spatial distribution of bouncing droplets, coalescing droplets generating a single central droplet, coalescing jets, bouncing jets, liquid chains and liquid sheets. A map of the different patterns observed has been obtained. We present results on the structure of the jets after collision, the breakup length and the size of the generated droplet. The resulting structure of impinging jets highly depends on the Reynolds and Weber numbers, and the proper alignment of the colliding jets.

  12. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.

    PubMed

    Choi, Inhee; Shin, Yonghee; Song, Jihwan; Hong, SoonGweon; Park, Younggeun; Kim, Dongchoul; Kang, Taewook; Lee, Luke P

    2016-08-23

    Self-formation of colloidal oil droplets in water or water droplets in oil not only has been regarded as fascinating fundamental science but also has been utilized in an enormous number of applications in everyday life. However, the creation of three-dimensional (3D) architectures by a liquid droplet and an immiscible liquid interface has been less investigated than other applications. Here, we report interfacial energy-driven spontaneous self-formation of a 3D plasmonic optical structure at room temperature without an external force. Based on the densities and interfacial energies of two liquids, we simulated the spontaneous formation of a plasmonic optical structure when a water droplet containing metal ions meets an immiscible liquid polydimethylsiloxane (PDMS) interface. At the interface, the metal ions in the droplet are automatically reduced to form an interfacial plasmonic layer as the liquid PDMS cures. The self-formation of both an optical cavity and integrated plasmonic nanostructure significantly enhances the fluorescence by a magnitude of 1000. Our findings will have a huge impact on the development of various photonic and plasmonic materials as well as metamaterials and devices.

  13. Numerical Study of Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad

    2017-01-01

    A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.

  14. LOX droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-01-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  15. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  16. Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham

    Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less

  17. Skylab near-infrared observations of clouds indicating supercooled liquid water droplets

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Wu, M.-L. C.

    1982-01-01

    Orographically-induced lee-wave clouds were observed over New Mexico by a multichannel scanning radiometer on Skylab during December 1973. Channels centered at 0.83, 1.61 and 2.125 microns were used to determine the cloud optical thickness, thermodynamic phase and effective particle size. An additional channel centered at 11.4 microns was used to determine cloud-top temperature, which was corroborated through comparison with the stereographically determined cloud top altitudes and conventional temperature soundings. Analysis of the measured near-infrared reflection functions at 1.61 and 2.125 microns are most easily interpreted as indicating the presence of liquid-phase water droplets. This interpretation is not conclusive even after considerable effort to understand possible sources for misinterpretation. However, if accepted the resulting phase determination is considered anomalous due to the inferred cloud-top temperatures being in the -32 to -47 C range. Theory for the homogeneous nucleation of pure supercooled liquid water droplets predicts very short lifetimes for the liquid phase at these cold temperatures. A possible explanation for the observations is that the wave-clouds are composed of solution droplets. Impurities in the cloud droplets could decrease the homogeneous freezing rate for these droplets, permitting them to exist for a longer time in the liquid phase, at the cold temperatures found.

  18. Adsorption energy as a metric for wettability at the nanoscale

    PubMed Central

    Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.

    2017-01-01

    Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869

  19. Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

    DOE PAGES

    Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham; ...

    2018-05-22

    Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less

  20. Hole growth dynamics in a two dimensional Leidenfrost droplet

    NASA Astrophysics Data System (ADS)

    Raufaste, Christophe; Celestini, Franck; Barzyk, Alexandre; Frisch, Thomas

    2015-03-01

    We studied the behaviors of Leidenfrost droplets confined in a Hele-Shaw cell. These droplets are unstable above a critical size and a hole grows at their center. We experimentally investigate two different systems for which the hole growth dynamics exhibits peculiar features that are driven by capillarity and inertia. We report a first regime characterized by the liquid reorganization from a liquid sheet to a liquid torus with similarities to the burst of micron-thick soap films. In the second regime, the liquid torus expands and thins before fragmentation. Finally, we propose models to account for the experimental results.

  1. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    PubMed

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  2. Stochastic simulation of the spray formation assisted by a high pressure

    NASA Astrophysics Data System (ADS)

    Gorokhovski, M.; Chtab-Desportes, A.; Voloshina, I.; Askarova, A.

    2010-03-01

    The stochastic model of spray formation in the vicinity of the injector and in the far-field has been described and assessed by comparison with measurements in Diesel-like conditions. In the proposed mesh-free approach, the 3D configuration of continuous liquid core is simulated stochastically by ensemble of spatial trajectories of the specifically introduced stochastic particles. The parameters of the stochastic process are presumed from the physics of primary atomization. The spray formation model consists in computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region. This model is combined with KIVA II computation of atomizing Diesel spray in two-ways. First, simultaneously with the gas phase RANS computation, the ensemble of stochastic particles is tracking and the probability field of their positions is calculated, which is used for sampling of initial locations of primary blobs. Second, the velocity increment of the gas due to the liquid injection is computed from the mean volume fraction of the simulated liquid core. Two novelties are proposed in the secondary atomization modeling. The first one is due to unsteadiness of the injection velocity. When the injection velocity increment in time is decreasing, the supplementary breakup may be induced. Therefore the critical Weber number is based on such increment. Second, a new stochastic model of the secondary atomization is proposed, in which the intermittent turbulent stretching is taken into account as the main mechanism. The measurements reported by Arcoumanis et al. (time-history of the mean axial centre-line velocity of droplet, and of the centre-line Sauter Mean Diameter), are compared with computations.

  3. Multiphase Modeling of Secondary Atomization in a Shock Environment

    NASA Astrophysics Data System (ADS)

    St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan

    2017-06-01

    Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.

  4. I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers

    NASA Astrophysics Data System (ADS)

    Varghese, Nisha

    This dissertation describes a fundamental study of weak noncovalent interactions and surface forces that exist at the interfaces of various interacting moieties (small molecules or microbes), and its relevance to colloidal and material chemistry. Chapter 1 presents an emulsion system that enables single-chain anionic or nonionic surfactants to sequester and encapsulate certain water-soluble organic salts, leading to the formation of vesicles in water. The water-soluble organic salt in the system comprises of disodium cromoglycate crystals that are emulsified by surfactants in water to form stable liquid crystal droplets. The work provides an exception to the rule of geometric packing factor that dictates formation of micelles by the surfactants in water. Chapter 2 shows that the odd or even number of carbon atoms present in the aliphatic chain of surfactants affect the ability of surfactants to emulsify aqueous-based liquid crystals of disodium cromoglycate. Such an odd-even effect is frequently observed for solid state properties like melting point, heat of fusion and refractive index but is rarely observed for molecules present in solution. When mixed in water, anionic single-chain surfactants with odd number of carbon atoms emulsifies disodium cromoglycate to form liquid crystal droplets, while surfactants with even number of carbon atoms fail to emulsify disodium cromoglycate. Chapter 3 Bolaamphiphiles usually form vesicles only in extreme conditions or in the presence of surfactants. Here, we explore the co-assembly system of synthesized bolaamphiphiles and disodium cromoglycate in water. The combination of the self-assembly forces of the bolaamphiphile and self-associating property of disodium cromoglycate liquid crystals act together at the interface form a unique microemulsion of liquid crystal droplets of disodium cromoglycate embedded in liquid crystal phase. Chapter 4 describes a key event (adhesion) that precedes infections caused by Candida albicans. Adhesion of C. albicans to a surface is a complex process and is governed by nonspecific attachment or multiple ligand-receptor interactions. The work demonstrates that the multiple ligand-receptor interactions used by C. albicans for adherence to a surface can be individually studied using self-assembled monolayers (SAMs) decorated with minimal motif of the ligands. The SAMs were also used to differentiate between the interactions of the two different morphological forms of C. albicans.. Chapter 5 presents a study on small molecules that were used to inhibit biofilm formed by C. albicans. The acyclic triazoles used in the study were not toxic to the C. albicans and were capable of inhibiting biofilm formed by C. albicans. The acyclic triazole can be used as promising candidates to design new antifungal agents. The chapter also reports the synthesis of squarylated homoserine lactones (SHLs) structural mimics of bacterial acyl homoserine lactones (AHLs) to study the inhibitory effects of SHLs on fungal biofilm. The bacterial AHLs are known to repress the growth of C. albicans and control fungal biofilm in native host environment. The synthesized SHLs were non-toxic to C. albicans and failed to inhibit biofilm formed by C. albicans. . Chapter 6 uses gradient nanotopography combined with controlled surface chemistry to confine bacterial biofilm formed by Escherichia coli. The E. coli biofilm were confined within micrometer sized regions of hydrophobic SAMs surrounded by polyol-terminated SAMs. The study reveals that surface with higher topography enhances the ability of the bioinert SAMs to resist bacterial adherence to surface.

  5. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.

  6. Bi-Component Droplet Combustion in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    2001-01-01

    This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.

  7. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less

  8. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry

    2018-05-01

    Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

  9. Marangoni flow in an evaporating water droplet

    NASA Astrophysics Data System (ADS)

    Xu, Xuefeng; Luo, Jianbin

    2007-09-01

    Marangoni effect has been observed in many liquids, but its existence in pure water is still a debated problem. In the present work, the Marangoni flow in evaporating water droplets has been observed by using fluorescent nanoparticles. Flow patterns indicate that a stagnation point where the surface flow, the surface tension gradient, and the surface temperature gradient change their directions exists at the droplet surface. The deduced nonmonotonic variation of the droplet surface temperature, which is different from that in some previous works, is explained by a heat transfer model considering the adsorbed thin film of the evaporating liquid droplet.

  10. Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames

    NASA Astrophysics Data System (ADS)

    Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin

    2017-05-01

    Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.

  11. Direct numerical simulation of droplet-laden isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow us to explain the pathways for TKE exchange between the carrier turbulent flow and the flow inside the droplet. We also explain the role of the interfacial surface energy in the two-fluid TKE equation through work performed by surface tension. Furthermore, we derive the relationship between the power of surface tension and the rate of change of total droplet surface area. This link allows us to explain how droplet deformation, breakup and coalescence play roles in the temporal evolution of TKE. We then extend the code for non-evaporating droplets and develop a combined VoF method and low-Mach-number approach to simulate evaporating and condensing droplets. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. Finally, we perform DNS of an evaporating liquid droplet in forced isotropic turbulence. We show that the method accurately captures the temperature and vapor fields in the turbulent regime, and that the local evaporation rate can vary along the droplet surface depending on the structure of the surrounding vapor cloud. We also report the time evolution of the mean Sherwood number, which indicates that turbulence enhances the vaporization rate of liquid droplets.

  12. Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere

    2016-07-25

    Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in themore » presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.« less

  13. Modeling of surface tension effects in venturi scrubbing

    NASA Astrophysics Data System (ADS)

    Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.

    A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.

  14. Dielectrophoretic levitation of droplets and bubbles

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1982-01-01

    Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.

  15. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    NASA Technical Reports Server (NTRS)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  16. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.

    1989-01-01

    The icing research tunnel at the NASA Lewis Research Center underwent a major rehabilitation in 1986 to 1987, necessitating recalibration of the icing cloud. The methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content are described. PMS Forward Scattering Spectrometer and Optical Array probes were used for measurement of droplet size. Examples of droplet size distributions are shown for several median volumetric diameters. Finally, the liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and are compared to the FAA icing certification criteria.

  17. Foam model of planetary formation

    NASA Astrophysics Data System (ADS)

    Andreev, Y.; Potashko, O.

    The Analysis of 2637 terrestrial minerals shows presence of characteristic element and isotope structure for each ore irrespective of its site. The model of processes geo-nuclear syntheses elements is offered due to avalanche merge of nucleus which simply explains these laws. Main assumption: nucleus, atoms, connections, ores and minerals were formed in volume of the modern Earth at an early stage of its evolution from uniform proto-substance. Substantive provisions of the model: 1)The most part of nucleus of atoms of all chemical elements of the Earth's crust were formed on the mechanism of avalanche chain merge practically in one stage (in geological scales) in a course of correlated(in scales of a planet) process with allocation of a plenty of heat. 2) Atoms of chemical elements were generated during cooling a planet with preservation of a relative spatial arrangement of nucleus. 3) Chemical compounds have arisen at cooling a surface of a planet and were accompanied by reorganizations (hashing) macro- and geo-scale. 4) Mineral formations are consequence of correlated behaviour of chemical compounds on microscopic scales during phase transition from gaseous or liquid to a firm condition. 5) Synthesis of chemical elements in deep layers of the Earth occurs till now. "Foaming'' instead of "Big Bang" The physical space is continual gas-fluid environment consist of super fluid foam. The continuity, keeping and uniqueness of proto-substance are postulated. Scenario: primary singularity-> droplets(proto-galaxies) droplets(proto-stars)-> droplets(proto-planets)-> droplets(proto- satellites)-> droplets. Proto-planet substance->proton+electron as 1st generation disintegration result of primary foam. Nuclei or nucleonic crystals are the 2nd generation in result of cascade merge of protons into conglomerates. The theory has applied to the analysis of samples of native copper deposit from Rafalovka's ore deposit in Ukraine. The abundance of elements by use of the roentgen fluorescent microanalysis has been made. Changes of a parity of elements are described by nuclear synthesis reactions: 16O+47Ti, 23Na+40Ca, 24Mg+39K, 31P+32S-> 63Cu; 16O+49Ti, 23Na+42Ca, 26Mg+39K, 31P+34S-> 65Cu Dramatical change of isotope parities of 56Fe and 57Fe in the sites of space carried on 3 millimetres. The content of 57Fe is greater then 56Fe in Cu granule.

  18. Growth and melting of droplets in cold vapors.

    PubMed

    L'Hermite, Jean-Marc

    2009-11-01

    A model has been developed to investigate the growth of droplets in a supersaturated cold vapor taking into account their possible solid-liquid phase transition. It is shown that the solid-liquid phase transition is nontrivially coupled, through the energy released in attachment, to the nucleation process. The model is based on the one developed by J. Feder, K. C. Russell, J. Lothe, and G. M. Pound [Adv. Phys. 15, 111 (1966)], where the nucleation process is described as a thermal diffusion motion in a two-dimensional field of force given by the derivatives of a free-energy surface. The additional dimension accounts for droplets internal energy. The solid-liquid phase transition is introduced through a bimodal internal energy distribution in a Gaussian approximation derived from small clusters physics. The coupling between nucleation and melting results in specific nonequilibrium thermodynamical properties, exemplified in the case of water droplets. Analyzing the free-energy landscapes gives an insight into the nucleation dynamics. This landscape can be complex but generally exhibits two paths: the first one can generally be ascribed to the solid state, while the other to the liquid state. Especially at high supersaturation, the growth in the liquid state is often favored, which is not unexpected since in a supersaturated vapor the droplets can stand higher internal energy than at equilibrium. From a given critical temperature that is noticeably lower than the bulk melting temperature, nucleation may end in very large liquid droplets. These features can be qualitatively generalized to systems other than water.

  19. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Min; Wang, Xiao-Wei; Jing, Bo; Zhang, Yun-Hong; Ge, Mao-Fa

    2018-04-01

    The confocal Raman microscopy is utilized to investigate the liquid-liquid phase separation (LLPS) of mixed magnesium sulfate/glutaric acid (MgSO4/GA) droplets deposited on a hydrophobic polytetrafluoroethylene (PTFE) substrate and a hydrophilic quartz substrate. Raman spectra collected from different regions of the mixed droplets provide detailed information of component distributions for MgSO4 and GA. During the dehydration process, the MgSO4/GA mixed particles show the initial liquid-liquid phase separation between 85% and 80% relative humidity (RH) on both the hydrophobic and hydrophilic substrates. For the droplets deposited on the two substrates, the inner phase of droplets is dominated by aqueous MgSO4, which is surrounded by a rich GA organic layer due to the surface tension effects. In addition, the crystallization of GA could be observed in the organic aqueous phase while it is inhibited in the inner MgSO4 phase due to the effects of gel formation of MgSO4 at low RH. The Raman spectra reveal that with decreasing RH the morphology of the mixed droplet evolves from a uniform droplet to the structure of LLPS with the GA crystallizing in the outer layer and MgSO4 gel formed in the inner phase. These findings contribute to the further understanding of the role of interactions between inorganic salts and organic acids on the morphological evolution and environmental effects of atmospheric aerosols under ambient RH conditions.

  20. Atomisation and droplet formation mechanisms in a model two-phase mixing layer

    NASA Astrophysics Data System (ADS)

    Zaleski, Stephane; Ling, Yue; Fuster, Daniel; Tryggvason, Gretar

    2017-11-01

    We study atomization in a turbulent two-phase mixing layer inspired by the Grenoble air-water experiments. A planar gas jet of large velocity is emitted on top of a planar liquid jet of smaller velocity. The density ratio and momentum ratios are both set at 20 in the numerical simulation in order to ease the simulation. We use a Volume-Of-Fluid method with good parallelisation properties, implemented in our code http://parissimulator.sf.net. Our simulations show two distinct droplet formation mechanisms, one in which thin liquid sheets are punctured to form rapidly expanding holes and the other in which ligaments of irregular shape form and breakup in a manner similar but not identical to jets in Rayleigh-Plateau-Savart instabilities. Observed distributions of particle sizes are extracted for a sequence of ever more refined grids, the largest grid containing approximately eight billion points. Although their accuracy is limited at small sizes by the grid resolution and at large size by statistical effects, the distributions overlap in the central region. The observed distributions are much closer to log normal distributions than to gamma distributions as is also the case for experiments.

  1. The investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.; Faeth, G. M.

    1973-01-01

    The combustion and evaporation of liquid fuels at high pressures were investigated. Particular emphasis was placed on conditions where the liquid surface approaches the thermodynamic critical point during combustion. The influence of transient effects on a burning liquid fuel was also investigated through both analysis and measurements of the response of liquid monopropellant combustion to imposed pressure oscillations. Work was divided into four phases (1) Droplet combustion at high pressures, which consider both measurement and analysis of the porous sphere burning rate of liquids in a natural convection environment at elevated pressure. (2) High pressure droplet burning in combustion gases, which involved steady burning and evaporation of liquids from porous spheres in a high pressure environment that simulates actual combustion chamber conditions. (3) Liquid strand combustion, which considered the burning rate, the state of the liquid surface and the liquid phase temperature distribution of a burning liquid monopropellant column over a range of pressures. (4) Oscillatory combustion, which was a theoretical and experimental investigation of the response of a burning liquid monopropellant to pressure oscillations.

  2. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  3. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    PubMed

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  4. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.

    PubMed

    Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali

    2017-02-28

    Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).

  5. Miniaturization of dielectric liquid microlens in package

    PubMed Central

    Yang, Chih-Cheng; Tsai, C. Gary; Yeh, J. Andrew

    2010-01-01

    This study presents packaged microscale liquid lenses actuated with liquid droplets of 300–700 μm in diameter using the dielectric force manipulation. The liquid microlens demonstrated function focal length tunability in a plastic package. The focal length of the liquid lens with a lens droplet of 500 μm in diameter is shortened from 4.4 to 2.2 mm when voltages applied change from 0 to 79 Vrms. Dynamic responses that are analyzed using 2000 frames∕s high speed motion cameras show that the advancing and receding times are measured to be 90 and 60 ms, respectively. The size effect of dielectric liquid microlens is characterized for a lens droplet of 300–700 μm in diameter in an aspect of focal length. PMID:21267438

  6. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  7. Electro-coalescence of particle-coated droplets

    NASA Astrophysics Data System (ADS)

    Shum, Anderson Ho Cheung

    Droplets in air or in an immiscible liquid phase are used widely in applications ranging from personal hygiene products to drug delivery. The stability of the droplets are highly linked to their utility, and thus have been systematically studied. To enhance the stability of the droplets, particles are often added to the droplets. In this talk, I will discuss how the particle layer at droplet interfaces responds to electrical charging of the droplets. The electrical forces can distort the droplet shape, which is opposed by the layer of particles adsorbed. A balance of the electrical and interfacial effects provides a quantitative indicator of the droplet instability. The coalescence of droplets in both air and liquid induced by electrically charging, which we call ``electro-coalescence'', will be introduced, with its potential application in devising a digital millifluidic platform. We thank the Research Grants Council of Hong Kong (No. HKU 719813E, 17304514 and 17306315 and C6004-14G) from the and National Natural Science Foundation of China (No. 21476189/B060201 and 91434202).

  8. Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1993-01-01

    Effects of gas properties on cryogenic liquid-jet atomization in high-velocity helium, nitrogen, and argon gas flows were investigated. Volume median diameter, D(sub v.5e), data were obtained with a scattered-light scanning instrument. By calculating the change in spray drop size, -Delta D(sub v.5)(exp 2), due to droplet vaporization, it was possible to calculate D(sub v.5C). D(sub v.5C) is the unvaporized characteristic drop size formed at the fuel-nozzle orifice. This drop size was normalized with respect to liquid-jet diameter, D(sub O). It was then correlated with several dimensionless groups to give an expression for the volume median diameter of cryogenic LN2 sprays. This expression correlates drop size D(sub v.5c) with aerodynamic and liquid-surface forces so that it can be readily determined in the design of multiphase-flow propellant injectors for rocket combustors.

  9. Injector Design Tool Improvements: User's manual for FDNS V.4.5

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen

    1998-01-01

    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.

  10. Numerical simulation of drop impact on a thin film: the origin of the droplets in the splashing regime

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Che, Zhizhao; Ismail, Renad; Pain, Chris; Matar, Omar

    2015-11-01

    Drop impact on a liquid layer is a feature of numerous multiphase flow problems, and has been the subject of numerous theoretical, experimental and numerical investigations. In the splashing regime, however, little attention has been focused on the origin of the droplets that are formed during the splashing process. The objective of this study is to investigate this issue numerically in order to improve our understanding of the mechanisms underlying splashing as a function of the relevant system parameters. In contrast to the conventional two-phase flow approach, commonly used to simulate splashing, here, a three-dimensional, three-phase flow model, with adaptive, unstructured meshing, is employed to study the liquid (droplet) - gas (surrounding air) - liquid (thin film) system. In the cases to be presented, both liquid phases have the same fluid property, although, clearly, our method can be used in the more general case of two different liquids. Numerical results of droplet impact on a thin film are analysed to determine whether the origin of the droplets following impact corresponds to the mother drop, or the thin film, or both. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  11. Spectroscopy of Lithium Atoms and Molecules on Helium Nanodroplets

    PubMed Central

    2013-01-01

    We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (HeN). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on HeN. The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–Hem, m = 1–3) formation process in the Li–HeN system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–HeN systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu+). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu+(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied. PMID:23895106

  12. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS.

    PubMed

    Salah, S Ouled Taleb; Massinon, M; De Cock, N; Schiffers, B; Lebeau, F

    2015-01-01

    Crop protection is mainly achieved by applying Plant Protection Products (PPP) using hydraulic nozzles, which rely on pressure, to produce a wide droplet size distribution. Because of always increased concerns about drift reduction, a wider range of low drift nozzles, such as air induction nozzles, was adopted in order to reduce the finest part of the spray. While successful for some treatments, the efficiency of coarser sprays is dramatically reduced on small and superhydrophobic target, i.e. at early stage weed control. This may be related to the increased proportion of big bouncing and splashing droplets. On the other hand, Controlled Droplet Application (CDA), using shielded rotary atomizers, stands for an improved control of droplets diameters and trajectories compared to hydraulic nozzles. Unfortunately, these atomizers, because of their horizontal droplet release, are widely recognized to produce more drift than hydraulic nozzles. The present contribution investigates whether the setting of a rotary atomizer 60 degrees forward tilted can reduce drift to acceptable levels in comparison with vertical and 60 degrees forward tilted standard and low drift flat fan nozzles for the same flow rate. In a wind tunnel, the drift potential of a medium spray produced by a tilted shielded rotary atomizer Micromax 120 was benchmarked with that of a flat fan nozzle XR11002 fine spray and that of an anti-drift nozzle Hardi Injet 015 medium spray. Operating parameters were set to apply 0.56 l/min for every spray generator. Vertical drift profiles were measured 2.0 m downward from nozzle axis for a 2 m.s(-1) wind speed. The tilted hydraulic nozzles resulted in a significant drift increase while droplets trajectories are affected by the decrease of the droplet initial vertical speed. Droplets emitted by the shielded rotary atomizer drift due to low entrained air and turbulence. A significant reduction of the cumulative drift was achieved by the rotary atomizer in comparison with flat fan nozzle while still being higher than the anti-drift nozzle. Unfortunately, the drift potential index (DIX) revealed that the cumulative drift reduction may not results in actual drift decrease because of higher drift at higher sampling locations. As a result, the DIX of the shielded rotary atomizer was similar to the standard flat-fan nozzle while the anti-drift nozzle reduced drastically drift as intended. Therefore, the 60 degrees tilted rotary atomizer failed to reach low drift levels as expected despite the reduced span.

  13. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  14. Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity

    NASA Astrophysics Data System (ADS)

    Totani, T.; Itami, M.; Nagata, H.; Kudo, I.; Iwasaki, A.; Hosokawa, S.

    2002-06-01

    The Liquid Droplet Radiator (LDR) has an advantage over comparable conventional radiators in terms of the rejected heat power-weight ratio. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems that will be prerequisite for large space structures. The performance of the LDR under microgravity condition has been studied from the viewpoint of operational space use of the LDR in the future. In this study, the performances of a droplet generator and a droplet collector in the LDR are investigated using drop shafts in Japan: MGLAB and JAMIC. As a result, it is considered that (1) the droplet generator can produce uniform droplet streams in the droplet diameter range from 200 to 280 [µm] and the spacing range from 400 to 950 [µm] under microgravity condition, (2) the droplet collector with the incidence angle of 35 degrees can prevent a uniform droplet stream, in which droplet diameter is 250 [µm] and the velocity is 16 [m/s], from splashing under microgravity condition, whereas splashes may occur at the surface of the droplet collector in the event that a nonuniform droplet stream collides against it.

  15. High-speed ethanol micro-droplet impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Fujita, Yuta; Kiyama, Akihito; Tagawa, Yoshiyuki

    2016-11-01

    Recently, droplet impact draws great attention in the fluid mechanics. In previous work, micro-droplet impact on a solid surface at velocities up to 100 m s-1 was studied. However the study was only on water micro-droplets. In this study, we experimentally investigate high-speed impact of ethanol micro-droplets in order to confirm the feature about maximum spreading radius with another liquid. A droplet is generated from a laser-induced high-speed liquid jet. The diameter of droplets is around 80 μm and the velocity is larger than 30 m s-1. The surface tension of ethanol is 22.4 mNm-1 and density is 789 kgm-3. Weber number ranges We >1000. By using a high-speed camera, we investigate the deformation of droplets as a function of Weber number. This work was supported by JSPS KAKENHI Grant Number JP26709007.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that allmore » small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.« less

  17. Simultaneous measurement of the surface temperature and the release of atomic sodium from a burning black liquor droplet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Woei L.; Nathan, Graham J.; School of Mechanical Engineering, The University of Adelaide

    2010-04-15

    Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificantmore » presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO{sub 2} content in and around the particle. (author)« less

  18. Bioinspired one-dimensional materials for directional liquid transport.

    PubMed

    Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-08-19

    One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate the direction of water droplet's movement on the prepared A-SSs. In addition, the A-SSs with nonuniform spindle-knots, such as multilevel sized spindle-knots and gradient spindle-knots, further demonstrate integrated directional transport ability for water droplets. Through mimicking the main principle of cactus spines in transporting water droplets, we were able to fabricate both single and array A-CSs, which are able to transport liquid droplets directionally both in air and under water. Lastly, we demonstrated some applications of this directional liquid transport, from aspects of efficient fog collection to oil/water separation. In addition, we showed some potential applications in smart catalysis, tracer substance enrichment, smog removal, and drug delivery.

  19. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant

    NASA Astrophysics Data System (ADS)

    Shvetsov, Sergey A.; Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.

    2017-06-01

    Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

  20. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  1. Combustion Studies of Acoustically Suspended Liquid Droplets.

    DTIC Science & Technology

    1988-03-01

    34, 2 1 02 J Acoustic Levitation .’ ABSTRACT (Continue on reverse if necessary and identify by block number) piezoelectrically driven ultrasonic resonator...was developed and tested in this study. The device was used to levitate liquid fuel droplets for evaporation measurements and ignition :tudies. The... levitation technique may hold some promise for onducting non-combustion related droplet measurements, for example evaporation tests, but wIthout further

  2. Hydrophilic directional slippery rough surfaces for water harvesting

    PubMed Central

    Sun, Nan; Nielsen, Steven O.; Wang, Jing

    2018-01-01

    Multifunctional surfaces that are favorable for both droplet nucleation and removal are highly desirable for water harvesting applications but are rare. Inspired by the unique functions of pitcher plants and rice leaves, we present a hydrophilic directional slippery rough surface (SRS) that is capable of rapidly nucleating and removing water droplets. Our surfaces consist of nanotextured directional microgrooves in which the nanotextures alone are infused with hydrophilic liquid lubricant. We have shown through molecular dynamics simulations that the physical origin of the efficient droplet nucleation is attributed to the hydrophilic surface functional groups, whereas the rapid droplet removal is due to the significantly reduced droplet pinning of the directional surface structures and slippery interface. We have further demonstrated that the SRS, owing to its large surface area, hydrophilic slippery interface, and directional liquid repellency, outperforms conventional liquid-repellent surfaces in water harvesting applications. PMID:29670942

  3. Drop Impingement on Highly Wetting Micro/Nano Porous Surfaces

    NASA Astrophysics Data System (ADS)

    Buie, Cullen; Joung, Youngsoo

    2011-11-01

    Recently, we developed a novel fabrication method using a combination of electrophoretic deposition (EPD) and break down anodization (BDA) to achieve highly wetting nanoporous surfaces with microscale features. In this study we investigate droplet impingement behavior on these surfaces as a function of impact velocity, droplet size, and liquid properties. We observe impingement modes we denote as ``necking'' (droplet breaks before full penetration in the porous surface), ``spreading'' (continuous wicking into the porous surface), and ``jetting'' (jets of liquid emanate from the edges of the wicking liquid). To predict the droplet impingement modes, we've developed a non-dimensional parameter that is a function of droplet velocity, dynamic viscosity, effective pore radius and contact angle. The novel dimensionless parameter successfully predicts drop impingement modes across multiple fluids. Results of this study will inform the design of spray impingement cooling systems for electronics applications where the ``spreading'' mode is preferred.

  4. Topological Defects in Liquid Crystals: Studying the Correlation between Defects and Curvature

    NASA Astrophysics Data System (ADS)

    Melton, Charles

    2015-03-01

    Topological defects have recently been the subject of many fascinating studies in soft condensed matter physics. In particular, linking the evolution of topological defects to curvature changes has been a focus, leading possible applications in the areas such as cosmetics, pharmaceuticals, and electronics. In this study, defects in nematic liquid crystal droplets are investigated via laboratory and theoretical techniques. Nematic liquid crystal defects are reproduced via Monte Carlo simulations using a modified 2D XY-Model Hamiltonian. The simulation is performed on a curved surface to replicate a nematic droplet and examine possible defect configurations. To complement this theoretical work, we have trapped nematic droplets inside a dual-beam optical trap. This system allows controllable non-contact droplet deformation on a microscope based platform. Future work will focus on using the trap to stretch nematic droplets, correlating the changing topological defects with theoretical predictions.

  5. Surface morphology of ultrathin graphene oxide films obtained by the SAW atomization

    NASA Astrophysics Data System (ADS)

    Balachova, Olga V.; Balashov, Sergey M.; Costa, Carlos A. R.; Pavani Filho, A.

    2015-08-01

    Lately, graphene oxide (GO) thin films have attracted much attention: they can be used as humidity-sensitive coatings in the surface acoustic wave (SAW) sensors; being functionalized, they can be used in optoelectronic or biodevices, etc. In this research we study surface morphology of small-area thin GO films obtained on Si and quartz substrates by deposition of very small amounts of H2O-GO aerosols produced by the SAW atomizer. An important feature of this method is the ability to work with submicrovolumes of liquids during deposition that provides relatively good control over the film thickness and quality, in particular, minimization of the coffee ring effect. The obtained films were examined using AFM and electron microscopy. Image analysis showed that the films consist of GO sheets of different geometry and sizes and may form discrete or continuous coatings at the surface of the substrates with the minimum thickness of 1.0-1.8 nm which corresponds to one or two monolayers of GO. The thickness and quality of the deposited films depend on the parameters of the SAW atomization (number of atomized droplets, a volume of the initial droplet, etc.) and on sample surface preparation (activation in oxygen plasma). We discuss the structure of the obtained films, uniformity and the surface coverage as a function of parameters of the film deposition process and sample preparation. Qualitative analysis of adhesion of GO films is made by rinsing the samples in DI water and subsequent evaluation of morphology of the remained films.

  6. Dependence of Morphology of SiOx Nanowires on the Supersaturation of Au-Si Alloy Liquid Droplets Formed on the Au-Coated Si Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Li, Ji-Xue; Jin, Ai-Zi; Zhang, Ze

    2001-11-01

    A thermodynamic theory about the dependence of morphology of SiOx nanowires on the super-saturation of alloy liquid droplets has been proposed on the basis of the vapour-liquid-solid growth mechanism and has been supported experimentally. By changing the Si concentration in the Au-Si liquid droplets formed on the Au-coated Si substrate, firework-, tulip- and bud-shaped SiOx nanowires were synthesized by a thermal evaporation method and distributed concentrically around some void defects in the Si substrate. Voids were formed underneath the surface of the Si substrate during the thermal evaporation at 850°C and resulted in the Si-concentration deficient thus different saturation of Au-Si droplets. Electron microscopy analysis showed that the nanowires had an amorphous structure and were terminated by Au-Si particles.

  7. Spray System Trials in the Icing Research Tunnel

    NASA Image and Video Library

    1949-09-21

    The spray bar system introduces water droplets into the Icing Research Tunnel’s air stream at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The icing tunnel was designed in the early 1940s to study ice accretion on airfoils and models. The Carrier Corporation designed a refrigeration system that reduced temperatures to -45° F. The tunnel’s drive fan generated speeds up to 400 miles per hour. The uniform injection of water droplets to the air was a key element of the facility’s operation. The system had to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. The Icing Research Tunnel’s designers struggled to develop a realistic spray system because they did not have access to data on the size of naturally occurring water droplets. For five years a variety of different designs were painstakingly developed and tested before the system was perfected. This photograph shows one of the trials using eight air-atomizing nozzles placed 48 feet upstream from the test section. A multi-cylinder device measured the size, liquid content, and distribution of the water droplets. The final system that was put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The Icing Research Tunnel produced excellent data throughout the 1950s and provided the basis for a hot air anti-icing system used on many transport aircraft.

  8. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    PubMed

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  9. Droplet Combustion and Soot Formation in Microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1994-01-01

    One of the most complex processes involved in the combustion ot liquid fuels is the formation of soot. A well characterized flow field and simplified flame structure can improve considerably the understanding of soot formation processes. The simplest flame shape to analyze for a droplet is spherical with its associated one-dimensional flow field. It is a fundamental limit and the oldest and most often analyzed configuration of droplet combustion. Spherical symmetry in the droplet burning process will arise when there is no relative motion between the droplet and ambience or uneven heating around the droplet periphery, and buoyancy effects are negligible. The flame and droplet are then concentric with each other and there is no liquid circulation within the droplet. An understanding of the effect of soot on droplet combustion should therefore benefit from this simplified configuration. Soot formed during spherically symmetric droplet combustion, however, has only recently drawn attention and it appears to be one of the few aspects associated with droplet combustion which have not yet been thoroughly investigated. For this review, the broad subject of droplet combustion is narrowed considerably by restricting attention specifically to soot combined with spherically symmetric droplet burning processes that are promoted.

  10. Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan

    2017-10-01

    Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.

  11. Anti-infiltration for fabrication of a suspended nanoparticle layer on porous close-packed colloidal arrays.

    PubMed

    Teh, Lay K; Yan, Qingfeng; Wong, Chee C

    2009-04-01

    We develop a new method to fabricate suspended sheets of nanocrystals (NCs) on porous surfaces. The method relies on the resistance of an aqueous suspension droplet to infiltrate a porous network; hence, the method is named anti-infiltration. The process works by combining fluid dynamics of a liquid droplet during impact/absorption onto a porous surface with the convective self-assembly of NCs. The immobilization of the liquid droplet edge due to the self-assembly of NCs at the meniscus is harnessed to halt the lateral spreading of the droplet and, consequently, the capillary penetration of the liquid immediately after droplet impact. Further capillary penetration of the liquid is drastically reduced because of the competition between capillary forces and convective losses as well as the rapid occlusion of the pores as soon as a continuous NC film has formed upon evaporation of the suspension. This method holds promise for a wide variety of optoelectronic, sensing, and separation membrane applications. As an example, we demonstrate that these suspended NC layers are suitable candidates as planar defects embedded within a colloidal photonic crystal.

  12. Imaging and estimating the surface heterogeneity on a droplet containing cosolvents.

    PubMed

    Fang, Xiaohua; Li, Bingquan; Wu, Jun; Maldarelli, Charles; Sokolov, Jonathan C; Rafailovich, Miriam H; Somasundaran, Ponisseril

    2009-07-23

    Cosolvents have numerous applications in many industries as well as scientific research. The shortage in the knowledge of the structures in a cosolvent system is significant. In this work, we display the spatial as well as the kinetic distribution of the cosolvents using droplets as paradigms. When an alcohol/water-containing sessile droplet evaporates on a substrate, it phase segregates into a water-enriched core and a thin alcohol prevailing shell. This is considered to be due to the different escaping rate of solvents out of the liquid-vapor (l-v) interfaces. In between the core and shell phases, there exists a rough and solid-like liquid-liquid (l-l) wall interface as marked by the fluorescent polystyrene spheres and imaged by a confocal microscope. Holes and patches of beads are observed to form on this phase boundary. The water-dispersed beads prefer to partition within the core. The shell prevails in the droplet during most of the drying and shrinks with the l-v boundary. By monitoring the morphological progression of the droplet, the composition of the cosolvent at the liquid-vapor interface is obtained.

  13. Science Using an Electrostatic Levitation Furnace in the MUCAT Sector at the APS

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Kelton, K. F.; Rogers, J. R.

    2004-01-01

    The original motivation for the construction of the BESL prototype was to obtain the first proof of a 50-year-old hypothesis regarding the solidification of liquid metals. Since the 1950s it has been known that under proper conditions liquid metals can be cooled below their melting temperature (undercooled) without crystallizing to the stable solid phase. In 1952 Frank proposed that this was because the atoms in the metallic liquid were arranged with the symmetry of an icosahedron, a Platonic solid consisting of 20 tetrahedra (4-sided pyramid-shaped polyhedra) arranged around a common center. Since this local atomic order is incompatible with the long-range translational periodicity of crystal phases, a barrier is formed to the formation of small regions of the crystal phase, the nucleation barrier. A proof of Frank's hypothesis required a direct correlation between measured icosahedral order in the undercooled liquid and the nucleation barrier. The tendency of sample containers to catalyze nucleation obscured this relation, requiring containerless techniques. Combining containerless processing techniques for electrostatically levitated droplets (ESL) with x-ray synchrotron methods, a team from Washington University, St. Louis, MO, NASA Marshall Space Flight Center, and MUCAT at the APS demonstrated an increasing icosahedral order in TiZrNi liquids with decreasing temperature below the melting temperature. The increased icosahedral order caused the transformation of the liquid to a metastable icosahedral quasicrystal phase, instead of the stable tetrahedrally-coordinated crystal intermetallic, giving the first clear demonstration of the connection between the nucleation barrier and the local structure of the liquid, verifying Frank's hypothesis for this alloy.

  14. On-demand Droplet Manipulation via Triboelectrification

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Vahabi, Hamed; Cackovic, Matthew; Jiang, Rui; Kota, Arun

    2017-11-01

    Controlled manipulation of liquid droplets has attracted tremendous interest across different scientific fields over the past two decades. To date, a variety of external stimuli-mediated methods such as magnetic field, electric field, and light have been developed for manipulating droplets on surfaces. However, these methods usually have drawbacks such as complex fabrication of manipulation platform, low droplet motility, expensive actuation system and lack of precise control. In this work, we demonstrate the controlled manipulation of liquid droplet with both high (e.g., water) and low (e.g., n-hexadecane) dielectric strengths on a smooth, slippery surface via triboelectric effect. Our highly simple, facile and portable methodology enables on-demand, precise manipulation of droplets using solely the electrostatic attraction or repulsion force, which is exerted on the droplet by a simple charged actuator (e.g., Teflon film). We envision that our triboelectric effect enabled droplet manipulation methodology will open a new avenue for droplet based lab-on-a-chip systems, energy harvesting devices and biomedical applications.

  15. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  16. Atomizing apparatus for making polymer and metal powders and whiskers

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  17. Numerical simulation of liquid droplet breakup in supersonic flows

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing

    2018-04-01

    A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.

  18. On the shedding of impaled droplets: The role of transient intervening layers

    NASA Astrophysics Data System (ADS)

    Stamatopoulos, Christos; Schutzius, Thomas M.; Köppl, Christian J.; Hayek, Nicolas El; Maitra, Tanmoy; Hemrle, Jaroslav; Poulikakos, Dimos

    2016-01-01

    Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the “lifting” of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers.

  19. On the shedding of impaled droplets: The role of transient intervening layers

    PubMed Central

    Stamatopoulos, Christos; Schutzius, Thomas M.; Köppl, Christian J.; Hayek, Nicolas El; Maitra, Tanmoy; Hemrle, Jaroslav; Poulikakos, Dimos

    2016-01-01

    Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the “lifting” of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers. PMID:26743806

  20. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  1. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  2. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  3. John H. Dillon Medal Talk: Polymer Droplets

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari

    2008-03-01

    The simplicity of a liquid droplet, say a dew drop on spider silk, is both esthetically beautiful and scientifically intriguing. The interplay of surface energies, thermal motion, and confinement of the liquid, especially on small length scales can reveal interesting physics. Droplets are an ideal confining geometry because the length scales can be easily controlled and it is possible to arrange the system such that each droplet acts as an independent experiment. The talk will focus on some recent examples where we have used the droplet geometry to learn about material properties. It will become apparent in the presentation that the deviations from the ``expected'' behaviour in confined systems are far from subtle!

  4. Droplets size evolution of dispersion in a stirred tank

    NASA Astrophysics Data System (ADS)

    Kysela, Bohus; Konfrst, Jiri; Chara, Zdenek; Sulc, Radek; Jasikova, Darina

    2018-06-01

    Dispersion of two immiscible liquids is commonly used in chemical industry as wall as in metallurgical industry e. g. extraction process. The governing property is droplet size distribution. The droplet sizes are given by the physical properties of both liquids and flow properties inside a stirred tank. The first investigation stage is focused on in-situ droplet size measurement using image analysis and optimizing of the evaluation method to achieve maximal result reproducibility. The obtained experimental results are compared with multiphase flow simulation based on Euler-Euler approach combined with PBM (Population Balance Modelling). The population balance model was, in that specific case, simplified with assumption of pure breakage of droplets.

  5. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    PubMed Central

    Gray, Derek G.; Mu, Xiaoyue

    2015-01-01

    Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure. PMID:28793684

  6. Atomic and Molecular Dynamics on and in Superfluid Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2003-03-01

    Studies of intramolecular and intermolecular dynamics is at the core of Molecular Spectroscopic research several decades. Gas phase, particularly molecular beam, studies have greatly illuminated these processes in isolated molecules, bimolecular collisions, or small covalent and van der Waals complexes. Parallel to this effort have been studies in condensed phases, but there has unfortunately been little intellectual contact between these. The recent development of Helium Nanodropet Isolation Spectroscopy is providing an intellectual bridge between gas phase and condensed phase spectroscopy. While droplets of 10,000 He atoms are effectively a condensed phase, their low temperature ( 0.4 K) and ultralow heat capacities combined with their superfluid state make them an almost ideal matrix in which to study both molecular dynamics, including solute induced relaxations. The nsec times scales for many of the relaxation events, orders of magnitude slower than in classical liquids, results in spectra with unprecedented resolution for the liquid state. In this talk, studies of the Princeton group will be highlighted, with particular emphasis on those for which a combination of theory and experiment have combined to reveal dynamics in this unique Quantum Fluid.

  7. Revealing the physicochemical mechanism for ultrasonic separation of alcohol-water mixtures

    NASA Astrophysics Data System (ADS)

    Kirpalani, D. M.; Toll, F.

    2002-08-01

    The selective separation of ethanol from ethanol-water mixtures by ultrasonic atomization has been reported recently by Sato, Matsuura, and Fujii [J. Chem. Phys. 114, 2382 (2001)]. In that work, experimental data were reported that confirmed the generation of an ethanol-rich droplet mist and attempted to explain the selective separation in terms of parametric decay instability of the capillary wave formed during sonication. In the present work, an alternate mechanism based on the conjunction theory has been postulated for the process of ultrasonic atomization. This mechanism involves the formation of cavitating bubbles in the liquid during sonication and their eventual collapse at the liquid surface into a cloud of microbubbles that moves upwards in a capillary fountain jet. The selective separation of alcohols has been explained as a corollary effect of the physical mechanism resulting in a surface excess of alcohol molecules formed at the surface of the microbubbles. The alcohol molecules vaporize into the microbubbles and release an alcohol-rich mist on their collapse in regions of high accumulation of acoustic energy.

  8. Breakup phenomena of a coaxial jet in the non-dilute region using real-time X-ray radiography

    NASA Astrophysics Data System (ADS)

    Cheung, F. B.; Kuo, K. K.; Woodward, R. D.; Garner, K. N.

    1990-07-01

    An innovative approach to the investigation of liquid jet breakup processes in the near-injector region has been developed to overcome the experimental difficulties associated with optically opaque, dense sprays. Real-time X-ray radiography (RTR) has been employed to observe the inner structure and breakup phenomena of coaxial jets. In the atomizing regime, droplets much smaller than the exit diameter are formed beginning essentially at the injector exit. Through the use of RTR, the instantaneous contour of the liquid core was visualized. Experimental results consist of controlled-exposure digital video images of the liquid jet breakup process. Time-averaged video images have also been recorded for comparison. A digital image processing system is used to analyze the recorded images by creating radiance level distributions of the jet. A rudimentary method for deducing intact-liquid-core length has been suggested. The technique of real-time X-ray radiography has been shown to be a viable approach to the study of the breakup processes of high-speed liquid jets.

  9. Apparatus and methods for cooling and sealing rotary helical screw compressors

    DOEpatents

    Fresco, A.N.

    1997-08-05

    In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.

  10. Apparatus and methods for cooling and sealing rotary helical screw compressors

    DOEpatents

    Fresco, Anthony N.

    1997-01-01

    In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.

  11. Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.

    2016-12-01

    The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.

  12. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  13. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  14. Controlled droplet microfluidic systems for multistep chemical and biological assays.

    PubMed

    Kaminski, T S; Garstecki, P

    2017-10-16

    Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science. Microdroplets present several unique characteristics of interest to a broader research community. The main distinguishing features include (i) large numbers of isolated compartments of tiny volumes that are ideal for single cell or single molecule assays, (ii) rapid mixing and negligible thermal inertia that all provide excellent control over reaction conditions, and (iii) the presence of two immiscible liquids and the interface between them that enables new or exotic processes (the synthesis of new functional materials and structures that are otherwise difficult to obtain, studies of the functions and properties of lipid and polymer membranes and execution of reactions at liquid-liquid interfaces). The most frequent application of droplet microfluidics relies on the generation of large numbers of compartments either for ultrahigh throughput screens or for the synthesis of functional materials composed of millions of droplets or particles. Droplet microfluidics has already evolved into a complex field. In this review we focus on 'controlled droplet microfluidics' - a portfolio of techniques that provide convenient platforms for multistep complex reaction protocols and that take advantage of automated and passive methods of fluid handling on a chip. 'Controlled droplet microfluidics' can be regarded as a group of methods capable of addressing and manipulating droplets in series. The functionality and complexity of controlled droplet microfluidic systems can be positioned between digital microfluidics (DMF) addressing each droplet individually using 2D arrays of electrodes and ultrahigh throughput droplet microfluidics focused on the generation of hundreds of thousands or even millions of picoliter droplets that cannot be individually addressed by their location on a chip.

  15. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  16. Ionic imbalance induced self-propulsion of liquid metals

    PubMed Central

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh

    2016-01-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954

  17. Ionic imbalance induced self-propulsion of liquid metals.

    PubMed

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-04

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  18. Ionic imbalance induced self-propulsion of liquid metals

    NASA Astrophysics Data System (ADS)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  19. Marangoni Effect on the Shape of Freely Receding Evaporating Sessile Droplets of Perfectly Wetting Liquids

    NASA Astrophysics Data System (ADS)

    Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-11-01

    Freely receding evaporating sessile droplets of perfectly wetting liquids (HFE-7100, 7200 and 7500), with small finite contact angles induced by evaporation, are studied with a Mach-Zehnder interferometer. Surprisingly, the experimentally obtained profiles turn out to deviate from the classical macroscopic static shape of a sessile droplet (as determined by gravity and capillarity), often used when modeling evaporating droplets. These deviations can be seen in two ways. Namely, either the droplet appears to be inflated as compared to the classical static shape assuming the same contact angle and contact radius, or the apparent contact angle appears lower than the classical static one assuming the same volume and contact radius. In reality, the experimental profiles exhibit a local decrease of the slope near the contact line, which we attribute to the Marangoni effect in an evaporating sessile droplet. In this case, the radially inward (along the liquid-air interface) direction of the flow delivers more liquid to the center of the droplet making it appear inflated. When the Marangoni effect is weak, as in the case of the poorly volatile HFE-7500, no significant influence is noticed on the drop shape. The experimental results are compared with the predictions of a lubrication-type theoretical model that incorporates the evaporation-induced Marangoni flow. Financial support of FP7 Marie Curie MULTIFLOW Network (PITN-GA-2008-214919), ESA/BELSPO-PRODEX, BELSPO- μMAST (IAP 7/38) & FRS-FNRS is gratefully acknowledged.

  20. Gold metal liquid-like droplets.

    PubMed

    Smirnov, Evgeny; Scanlon, Micheál D; Momotenko, Dmitry; Vrubel, Heron; Méndez, Manuel A; Brevet, Pierre-Francois; Girault, Hubert H

    2014-09-23

    Simple methods to self-assemble coatings and films encompassing nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and we denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid-liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsified conditions produces gold MeLLDs. This methodology relies exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.

  1. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets

    PubMed Central

    Aguirre, Luis E.; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L.; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-01-01

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers—including spider silk and cellulosic fibers—reveal characteristics of the fibers’ surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization. PMID:26768844

  2. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.

    PubMed

    Aguirre, Luis E; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-02-02

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.

  3. Liquid crystal emulsion micro-droplet WGM resonators

    NASA Astrophysics Data System (ADS)

    Ježek, Jan; Pilát, Zdeněk.; Brzobohatý, Oto; Jonáš, Alexandr; Aas, Mehdi; Kiraz, Alper; Zemánek, Pavel

    2014-12-01

    We introduce tunable optofluidic microlasers based on optically stretched or thermally modified, dye-doped emulsion droplets of liquid crystals (LC) confined in a dual-beam optical trap. Droplets were created in microfluidic chips or by shaking. Optically trapped microdroplets emulsified in water and stained with fluorescent dye act as an active ultrahigh-Q optical resonant cavity hosting whispering gallery modes (WGMs). Tuning of the laser emission wavelength was achieved by a controlled deformation of the droplet shape using light-induced forces generated by dual-beam optical trap and by thermal changing of the order in the LC.

  4. Scaling laws for first and second generation electrospray droplets

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Sambath, Krishnaraj; Anthony, Christopher; Collins, Robert; Wagoner, Brayden; Harris, Michael

    2017-11-01

    When uncharged liquid interfaces of pendant and free drops (hereafter referred to as parent drops) or liquid films are subject to a sufficiently strong electric field, they can emit thin fluid jets from conical tip structures that form at their surfaces. The disintegration of such jets into a spray consisting of charged droplets (hereafter referred to as daughter droplets) is common to electrospray ionization mass spectrometry, printing and coating processes, and raindrops in thunderclouds. We use simulation to determine the sizes and charges of these first-generation daughter droplets which are shown to be Coulombically stable and charged below the Rayleigh limit of stability. Once these daughter droplets shrink in size due to evaporation, they in turn reach their respective Rayleigh limits and explode by emitting yet even smaller second-generation daughter droplets from their conical tips. Once again, we use simulation and theory to deduce scaling laws for the sizes and charges of these second-generation droplets. A comparison is also provided for scaling laws pertaining to different generations of daughter droplets.

  5. Video-microscopy of NCAP films: the observation of LC droplets in real time

    NASA Astrophysics Data System (ADS)

    Reamey, Robert H.; Montoya, Wayne; Wong, Abraham

    1992-06-01

    We have used video-microscopy to observe the behavior of liquid crystal (LC) droplets within nematic droplet-polymer films (NCAP) as the droplets respond to an applied electric field. The textures observed at intermediate fields yielded information about the process of liquid crystal orientation dynamics within droplets. The nematic droplet-polymer films had low LC content (less than 1 percent) to allow the observation of individual droplets in a 2 - 6 micrometers size range. The aqueous emulsification technique was used to prepare the films as it allows the straightforward preparation of low LC content films with a controlled droplet size range. Standard electro-optical (E-O) tests were also performed on the films, allowing us to correlate single droplet behavior with that of the film as a whole. Hysteresis measured in E-O tests was visually confirmed by droplet orientation dynamics; a film which had high hysteresis in E-O tests exhibited distinctly different LC orientations within the droplet when ramped up in voltage than when ramped down in voltage. Ramping the applied voltage to well above saturation resulted in some droplets becoming `stuck'' in a new droplet structure which can be made to revert back to bipolar with high voltage pulses or with heat.

  6. Planar regions of GaAs (001) prepared by Ga droplet motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Changxi, E-mail: changxi.zheng@monash.edu; Tang, Wen-Xin; Jesson, David E., E-mail: jessonDE@cardiff.ac.uk

    2016-07-15

    The authors describe a simple method for obtaining planar regions of GaAs (001) suitable for surface science studies. The technique, which requires no buffer layer growth, atomic hydrogen source, or the introduction of As flux, employs controllable Ga droplet motion to create planar trail regions during Langmuir evaporation. Low-energy electron microscopy/diffraction techniques are applied to monitor the droplet motion and characterize the morphology and the surface reconstruction. It is found that the planar regions exhibit atomic flatness at the level of a high-quality buffer layer.

  7. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    PubMed

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  8. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  9. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.

    1972-01-01

    Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.

  10. Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2001-01-09

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  11. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

  12. Liquid metal actuator driven by electrochemical manipulation of surface tension

    NASA Astrophysics Data System (ADS)

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  13. Isothermal absorption of soluble gases by atmospheric nanoaerosols

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Fominykh, A.; Krasovitov, B.; Lushnikov, A.

    2013-01-01

    We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3), and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.

  14. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  15. A combined volume-of-fluid method and low-Mach-number approach for DNS of evaporating droplets in turbulence

    NASA Astrophysics Data System (ADS)

    Dodd, Michael; Ferrante, Antonino

    2017-11-01

    Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.

  16. Non-thermal equilibrium plasma-liquid interactions with femtolitre droplets

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Bingham, Andrew; Patel, Jenish; Rutherford, David; McDowell, David; Mariotti, Davide; Bennet, Euan; Potts, Hugh; Diver, Declan

    2014-10-01

    Plasma-induced non-equilibrium liquid chemistry is little understood. It depends on a complex interplay of interface and near surface processes, many involving energy-dependent electron-induced reactions and the transport of transient species such as hydrated electrons. Femtolitre liquid droplets, with an ultra-high ratio of surface area to volume, were transported through a low-temperature atmospheric pressure RF microplasma with transit times of 1--10 ms. Under a range of plasma operating conditions, we observe a number of non-equilibrium chemical processes that are dominated by energetic electron bombardment. Gas temperature and plasma parameters (ne ~ 1013 cm-3, Te < 4 eV) were determined while size and droplet velocity profiles were obtained using a microscope coupled to a fast ICCD camera under low light conditions. Laminar mixed-phase droplet flow is achieved and the plasma is seen to significantly deplete only the slower, smaller droplet component due possibly to the interplay between evaporation, Rayleigh instabilities and charge emission. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  17. Shock wave-droplet interaction

    NASA Astrophysics Data System (ADS)

    Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan

    2016-11-01

    Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.

  18. Isothermal absorption of soluble gases by atmospheric nanoaerosols.

    PubMed

    Elperin, T; Fominykh, A; Krasovitov, B; Lushnikov, A

    2013-01-01

    We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO(2)), dinitrogen trioxide (N(2)O(3)), and chlorine (Cl(2)) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.

  19. Fixation and chemical analysis of single fog and rain droplets

    NASA Astrophysics Data System (ADS)

    Kasahara, M.; Akashi, S.; Ma, C.-J.; Tohno, S.

    Last decade, the importance of global environmental problems has been recognized worldwide. Acid rain is one of the most important global environmental problems as well as the global warming. The grasp of physical and chemical properties of fog and rain droplets is essential to make clear the physical and chemical processes of acid rain and also their effects on forests, materials and ecosystems. We examined the physical and chemical properties of single fog and raindrops by applying fixation technique. The sampling method and treatment procedure to fix the liquid droplets as a solid particle were investigated. Small liquid particles like fog droplet could be easily fixed within few minutes by exposure to cyanoacrylate vapor. The large liquid particles like raindrops were also fixed successively, but some of them were not perfect. Freezing method was applied to fix the large raindrops. Frozen liquid particles existed stably by exposure to cyanoacrylate vapor after freezing. The particle size measurement and the elemental analysis of the fixed particle were performed in individual base using microscope, and SEX-EDX, particle-induced X-ray emission (PIXE) and micro-PIXE analyses, respectively. The concentration in raindrops was dependent upon the droplet size and the elapsed time from the beginning of rainfall.

  20. Measurement Sensitivity Of Liquid Droplet Parameters Using Optical Fibers

    NASA Astrophysics Data System (ADS)

    Das, Alok K.; Mandal, Anup K.

    1990-02-01

    A new clad probing technique is used to measure the size, number, refractive index and viscosity of liquid droplets sprayed from a pressure nozzle on an uncoated core-clad fiber. The probe monitors the clad mode power loss within the leaky ray zone represented as a three region fiber. Liquid droplets measured are Glycerine, commercial grade Turpentine, Linseed oil and some oil mixtures. The measurement sensitivity depends on probing conditions and clad diameter which is observed experimentally and verified analytically. A maximum sensitivity is obtained for the tapered probe-fiber diameter made equal to the clad thickness. A slowly tapered probe-fiber and a small end angle as well as separation of the sensor-fiber and the probe-fiber further improve the sensitivity. Under the best probing condition for 90-percent Glycerine droplets of - 50 micron diameter and a 50/125 micron sensor fiber with clad refractive index of 1.465 and 0.2 NA, the measured sensitivity per drop is 0.015 and 0.006 dB, respectively, for (10-20) and (100-200) droplets. Sensitivities for different systems are shown. The sensitivity is optimized by choosing proper fiber for known liquids.

  1. Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.; Miskevich, A. A.

    2016-01-15

    Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy,more » refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.« less

  2. Movement of liquid droplets containing polymers on substrate

    NASA Astrophysics Data System (ADS)

    Hu, Guohui; Wang, Heng

    2016-11-01

    It is of both fundamental and practical interests to study the flow physics in the manipulation of droplets. As a microreactor, the macromolecules or particles inside the droplets might have significant influences on their movement. In the present study, the many-body dissipative particle dynamics (MDPD) is utilized to investigate the translocation of droplets containing polymer on a substrate driven by the wettability gradient, where the polymer is modelled as worm-like chain (WLC). The internal flows of the droplets are analyzed, as well as the comparison to the polymer-free moving droplets. The effects of physical parameters, such as the interaction potential between liquid particle and polymer beads, the mass of the beads, on the translocation speed are also addressed in the present study. These results might be helpful to the optimization in design of the microfluidic systems.

  3. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  4. Oscillation of satellite droplets in an Oldroyd-B viscoelastic liquid jet

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen

    2017-01-01

    A one-dimensional numerical simulation is carried out to study the oscillation characteristics of satellite droplets in the beads-on-a-string structure of an Oldroyd-B viscoelastic liquid jet. The oscillation of satellite droplets is compared with the linear oscillation of a single viscoelastic droplet. It is found that, contrary to the predictions of linear theory, the period of oscillation of satellite droplets decreases with time, despite the increase in droplet volume. The mechanism may lie in the existence of the filament, which exerts an extra resistance on droplets. On the other hand, the oscillation of droplets does not influence very much the thinning of the filament. The influence of the axial wave number, viscosity, and elasticity on the oscillation of satellite droplets is examined. Increasing the wave number may result in the decrease in the period and the increase in the decay rate of oscillation, while increasing viscosity may lead to the increase in both the period and the decay rate of oscillation. Elasticity is shown to suppress the oscillation at large wave numbers, but its influence is limited at small wave numbers.

  5. Influence of water mist on propagation and suppression of laminar premixed flame

    NASA Astrophysics Data System (ADS)

    Belyakov, Nikolay S.; Babushok, Valeri I.; Minaev, Sergei S.

    2018-03-01

    The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.

  6. Bioinspired Surface Treatments for Improved Decontamination: Fluoro-Plasma Treatment

    DTIC Science & Technology

    2017-07-21

    methyl salicylate (right) immediately following liquid application (top) and 5 min after liquid application (bottom): painted coupon (A), C2F6, 50 W...applied at 0° after which the supporting platform angle was gradually increased up to 60°. Sliding angles for each of the liquids were identified as the...angle for which movement of the droplet was identified. Shedding angles for each liquid were determined using 12 µL droplets initiated 2.5 cm above

  7. Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2017-10-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.

  8. Physical understanding of gas-liquid annular flow and its transition to dispersed droplets

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.

    2016-07-01

    Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.

  9. Conceptual design of liquid droplet radiator shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Shlomo L.

    1989-01-01

    The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

  10. Pulsed beam of extremely large helium droplets

    NASA Astrophysics Data System (ADS)

    Kuma, Susumu; Azuma, Toshiyuki

    2017-12-01

    We generated a pulsed helium droplet beam with average droplet diameters of up to 2 μ m using a solenoid pulsed valve operated at temperatures as low as 7 K. The droplet diameter was controllable over two orders of magnitude, or six orders of the number of atoms per droplet, by lowering the valve temperature from 21 to 7 K. A sudden droplet size change attributed to the so-called ;supercritical expansion; was firstly observed in pulsed mode, which is necessary to obtain the micrometer-scale droplets. This beam source is beneficial for experiments that require extremely large helium droplets in intense, pulsed form.

  11. The impact of atomization on the surface composition of spray-dried milk droplets.

    PubMed

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evolution of temperature of a droplet of liquid composite fuel interacting with heated airflow

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoy, S. V.

    2016-11-01

    The macroscopic patterns of a temperature change at the center of a droplet of three-component (coal, water, petroleum) composite liquid fuel (CLF) were studied using a low-inertia thermoelectric converter and system of high-speed (up to 105 frames per second) video recording during the induction period at different heating intensity by the air flow with variable parameters: temperature of 670-870 K and motion velocity of 1-4 m/s. The studies were carried out for two groups of CLF compositions: fuel based on brown coal and coal cleaning rejects (filter cake). To assess the effect of liquid combustible component of CLF on characteristics of the ignition process, the corresponding composition of two-component coal-water fuel (CWF) was studied. The stages of inert heating of CLF and CWF droplets with characteristic size corresponding to radius of 0.75-1.5 mm, evaporation of moisture and liquid oil (for CLF), thermal decomposition of the organic part of coal, gas mixture ignition, and carbon burnout were identified. Regularities of changes in the temperature of CLF and CWF droplets at each of identified stages were identified for the cooccurrence of phase transitions and chemical reactions. Comparative analysis of the times of ignition delay and complete combustion of the droplets of examined fuel compositions was performed with varying droplet dimensions, temperatures, and oxidant flow velocity.

  13. Ground deposition of liquid droplets released from a point source in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Panneton, Bernard

    1989-01-01

    A series of field experiments is presented in which the ground deposition of liquid droplets, 120 and 150 microns in diameter, released from a point source at 7 m above ground level, was measured. A detailed description of the experimental technique is provided, and the results are presented and compared to the predictions of a few models. A new rotating droplet generator is described. Droplets are produced by the forced breakup of capillary liquid jets and droplet coalescence is inhibited by the rotational motion of the spray head. The two dimensional deposition patterns are presented in the form of plots of contours of constant density, normalized arcwise distributions and crosswind integrated distributions. The arcwise distributions follow a Gaussian distribution whose standard deviation is evaluated using a modified Pasquill's technique. Models of the crosswind integrated deposit from Godson, Csanady, Walker, Bache and Sayer, and Wilson et al are evaluated. The results indicate that the Wilson et al random walk model is adequate for predicting the ground deposition of the 150 micron droplets. In one case, where the ratio of the droplet settling velocity to the mean wind speed was largest, Walker's model proved to be adequate. Otherwise, none of the models were acceptable in light of the experimental data.

  14. A new electrodynamic balance design for low temperature studies

    NASA Astrophysics Data System (ADS)

    Tong, H.-J.; Ouyang, B.; Pope, F. D.; Kalberer, M.

    2014-07-01

    In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, which was built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range: -40 to +40 °C, which is achieved using a combination of liquid nitrogen cooling and heating by positive temperature coefficient heaters. The measurement of liquid droplet radius is obtained by analyzing the Mie elastic light scattering from a 532 nm laser. The Mie scattering signal was also used to characterize and distinguish droplet freezing events; liquid droplets produce a regular fringe pattern whilst the pattern from frozen particles is irregular. The evaporation rate of singly levitated water droplets was calculated from time resolved measurements of the radii of evaporating droplets and a clear trend of the evaporation rate on temperature was measured. The statistical freezing probabilities of aqueous pollen extracts (pollen washing water) are obtained in the temperature range: -4.5 to -40 °C. It was found that that pollen washing water from water birch (Betula fontinalis occidentalis) pollen can act as ice nuclei in the immersion freezing mode at temperatures as warm as -22.45 (±0.65) °C.

  15. CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.

    1993-01-01

    The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the combustion chamber. The radiative heat flux at combustion chamber and nozzle walls are an order of negligible less than the conductive heat flux. Simulations performed with the heat shield show that a negligible amount of fluid is entrained into the heat shield region. However, the heat shield is shown to be effective in protecting the OMV structure surrounding the engine from the radiated heat.

  16. Method of making particles from an aqueous sol

    DOEpatents

    Rankin, G.W.; Hooker, J.R.

    1973-07-24

    A process for preparing gel particles from an aqueous sol by forming the sol into droplets in a liquid system wherein the liquid phase contains a liquid organic solvent and a barrier agent. The barrier agent prevents dehydration from occurring too rapidly and permits surface tension effects to form sol droplets into the desired spheroidal shape. A preferred barrier agent is mineral oil. (Official Gazette)

  17. Liquid droplet radiator program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Presler, A. F.; Coles, C. E.; Diem-Kirsop, P. S.; White, K. A., III

    1985-01-01

    The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnokutski, Serge A., E-mail: skrasnokutskiy@yahoo.com; Huisken, Friedrich, E-mail: friedrich.huisken@uni-jena.de

    The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup −1} were released in this reaction. This estimation is inmore » line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup −1}.« less

  19. Insights into intermediate phases of human intestinal fluids visualized by atomic force microscopy and cryo-transmission electron microscopy ex vivo.

    PubMed

    Müllertz, Anette; Fatouros, Dimitrios G; Smith, James R; Vertzoni, Maria; Reppas, Christos

    2012-02-06

    The current work aims to study at the ultrastructural level the morphological development of colloidal intermediate phases of human intestinal fluids (HIFs) produced during lipid digestion. HIFs were aspirated near the ligament of Treitz early (30 min), Aspirate(early), and 1 h, Aspirate(1h)(ave,comp), after the administration of a heterogeneous liquid meal into the antrum. The composition of the sample aspirated 1 h after meal administration was similar to the average lumenal composition 1 h after meal administration (Aspirate(1h)(ave,comp)). The colloidal structures of individual aspirates and supernatants of aspirates after ultracentrifugation (micellar phase) were characterized by means of atomic force microscopy (AFM) and cryogenic transmission electron microscopy (Cryo-TEM). AFM revealed domain-like structures in Aspirate(early) and both vesicles and large aggregates Aspirate(1h)(ave,comp). Rough surfaces and domains varying in size were frequently present in the micellar phase of both Aspirate(early) and Aspirate(1h)(ave,comp). Cryo-TEM revealed an abundance of spherical micelles and occasionally presented worm-like micelles coexisting with faceted and less defined vesicles in Aspirate(early) and Aspirate(1h)(ave,comp). In Aspirate(1h)(ave,comp) oil droplets were visualized with bilayers closely located to their surface suggesting lipolytic product phases accumulated on the surface of the oil droplet. In the micellar phase of Aspirate(early), Cryo-TEM revealed the presence of spherical micelles, small vesicles, membrane fragments, oil droplets and plate-like structures. In the micellar phase of Aspirate(1h)(ave,comp) the only difference was the absence of oil droplets. Visualization studies previously performed with biorelevant media revealed structural features with many similarities as presented in the current investigation. The impression of the complexity and diversion of these phases has been reinforced with the excessive variation of structural features visualized ex vivo in the current study offering insights at the ultrastuctural level of intermediate phases which impact drug solubilization.

  20. Fabricated nanogap-rich plasmonic nanostructures through an optothermal surface bubble in a droplet.

    PubMed

    Karim, Farzia; Vasquez, Erick S; Zhao, Chenglong

    2018-01-15

    A rapid and cost-effective method for the fabrication of nanogap-rich structures is demonstrated in this Letter. The method utilizes the Marangoni convection around an optothermal surface bubble inside a liquid droplet with a nanoliter volume. The liquid droplet containing metallic nanoparticles reduces the sample consumption and confines the liquid flow. The optothermal surface bubble creates a strong convective flow that allows for the rapid deposition of the metallic nanoparticles to form nanogap-rich structures on any substrate under ambient conditions. This method will enable a broad range of applications such as biosensing, environmental analysis, and nonlinear optics.

  1. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.

    2017-03-15

    We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less

  2. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  3. Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization

    PubMed Central

    Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela

    Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250

  4. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    PubMed

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  5. Aluminum/hydrocarbon gel propellants: An experimental and theoretical investigation of secondary atomization and predicted rocket engine performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn Christopher

    1997-12-01

    Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.

  6. Solidification Sequence of Spray-Formed Steels

    NASA Astrophysics Data System (ADS)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  7. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Efficient preparation of graphene liquid cell utilizing direct transfer with large-area well-stitched graphene

    NASA Astrophysics Data System (ADS)

    Sasaki, Yuki; Kitaura, Ryo; Yuk, Jong Min; Zettl, Alex; Shinohara, Hisanori

    2016-04-01

    By utilizing graphene-sandwiched structures recently developed in this laboratory, we are able to visualize small droplets of liquids in nanometer scale. We have found that small water droplets as small as several tens of nanometers sandwiched by two single-layer graphene are frequently observed by TEM. Due to the electron beam irradiation during the TEM observation, these sandwiched droplets are frequently moving from one place to another and are subjected to create small bubbles inside. The synthesis of a large area single-domain graphene of high-quality is essential to prepare the graphene sandwiched cell which safely encapsulates the droplets in nanometer size.

  9. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Belloul, M.; Bartolo, J.-F.; Ziraoui, B.; Coldren, F.; Taly, V.; El Abed, A. I.

    2013-07-01

    We investigate the effect of an applied ac high voltage on a confined stable nematic liquid crystal (LC) in a microfluidic device and show that this actuation leads to the formation of highly monodisperse microdroplets with an unexpected constant mean size over a large interval of the forcing frequency F and with a droplets production frequency f ≃2F. We show also that despite the nonlinear feature of the droplets formation mechanism, droplets size, and size distribution are governed simply by the LC flow rate Qd and the forcing frequency F.

  10. Modeling and measurement of electrostatic spray behavior in a rectangular throat of Pease-Anthony venturi scrubber.

    PubMed

    Yang, H T; Viswanathan, S; Balachandran, W; Ray, M B

    2003-06-01

    This paper presents the simulation and experimental results of the distribution of droplets produced by electrostatic nozzles inside a venturi scrubber. The simulation model takes into account initial liquid momentum, hydrodynamic, gravitational and electric forces, and eddy diffusion. The velocity and concentration profile of charged droplets injected from an electrostatic nozzle in the scrubber under the combined influence of hydrodynamic and electric fields were simulated. The effects of operating parameters, such as gas velocity, diameter of the scrubbing droplets, charge-to-mass ratio, and liquid-to-gas ratio on the distribution of the water droplets within the scrubber, were also investigated. The flux distribution of scrubbing liquid in the presence of electric field is improved considerably over a conventional venturi scrubber, and the effect increases with the increase in charge-to-mass ratio. Improved flux distribution using charged droplets increases the calculated overall collection efficiency of the submicron particles. However, the effect of an electric field on the droplet distribution pattern for small drop sizes in strong hydrodynamic field conditions is negligible. Simulated results are in good agreement with the experimental data obtained in the laboratory.

  11. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  12. The mechanical properties of phase separated protein droplets

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  13. An evaporation model of colloidal suspension droplets

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  14. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space

    NASA Astrophysics Data System (ADS)

    Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M.

    2018-06-01

    Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this Letter, we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett. 115, 155302 (2015), 10.1103/PhysRevLett.115.155302], using an attractive bosonic mixture. In this system, spherical droplets form due to the balance of competing attractive and repulsive forces, provided by the mean-field energy close to the collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating potential with negligible residual confinement, we observe self-bound droplets in free space, and we characterize the conditions for their formation as well as their size and composition. This work sets the stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum to the exploration of their superfluid nature.

  15. Investigation of immiscible systems and potential applications

    NASA Technical Reports Server (NTRS)

    Markworth, A. J.; Oldfield, W.; Duga, J.; Gelles, S. H.

    1975-01-01

    The droplet coalescence kinetics at 0 g and 1 g were considered for two systems which contained liquid droplets in a host liquid. One of these (Al-In) typified a system containing a liquid phase miscibility gap and the order (oil-water) a mixture of two essentially insoluble liquids. A number of coalescence mechanisms potentially prominent at low g in this system were analyzed and explanations are presented for the observed unusual stability of the emulsion. Ground base experiments were conducted on the coalescence of In droplets in and Al-In alloy during cooling through the miscibility gap at different cooling rates. These were in qualitative agreement with the computer simulation. Potential applications for systems with liquid phase miscibility gaps were explored. Possibilities included superconductors, electrical contact materials, superplastic materials, catalysts, magnetic materials, and others. The role of space processing in their production was also analyzed.

  16. Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging

    NASA Astrophysics Data System (ADS)

    Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai

    2014-10-01

    Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.

  17. Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging

    PubMed Central

    Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai

    2014-01-01

    Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing. PMID:25355005

  18. Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging.

    PubMed

    Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K Y; Wang, Zuankai

    2014-10-30

    Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.

  19. Smart lens: tunable liquid lens for laser tracking

    NASA Astrophysics Data System (ADS)

    Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang

    2007-05-01

    A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.

  20. Experimental observation of two phase flow of R123 inside a herringbone microfin tube

    NASA Astrophysics Data System (ADS)

    Miyara, Akio; Islam, Mohammad Ariful; Mizuta, Yoshihiko; Kibe, Atsushi

    2003-08-01

    Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the microfins form multi-V-shape in flow direction. For the present experiment three different types of herringbone microfin tubes with helix angle β=8°, 14° and 28° are used. Experimental observations showed how flow diverges and converges inside herringbone microfin tube due to fin arrangement. The effect is more remarkable for larger helix angle. From the measurements of the cross-sectional liquid flow rate distribution, the liquid removal and collection and the entrained droplet are discussed. Quantity of liquid droplets is increased with increase of helix angle. The tube with helix angle β=28° shows higher quantity of liquid droplets than others.

  1. CFD Modeling of Superheated Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    An understanding of fuel atomization and vaporization behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA aeronautics initiative, we have undertaken an assessment study to establish baseline accuracy of existing CFD models used in the evaluation of a ashing jet. In a first attempt towards attaining this goal, we have incorporated an existing superheat vaporization model into our spray solution procedure but made some improvements to combine the existing models valid at superheated conditions with the models valid at stable (non-superheat) evaporating conditions. Also, the paper reports some validation results based on the experimental data obtained from the literature for a superheated spray generated by the sudden release of pressurized R134A from a cylindrical nozzle. The predicted profiles for both gas and droplet velocities show a reasonable agreement with the measured data and exhibit a self-similar pattern similar to the correlation reported in the literature. Because of the uncertainty involved in the specification of the initial conditions, we have investigated the effect of initial droplet size distribution on the validation results. The predicted results were found to be sensitive to the initial conditions used for the droplet size specification. However, it was shown that decent droplet size comparisons could be achieved with properly selected initial conditions, For the case considered, it is reasonable to assume that the present vaporization models are capable of providing a reasonable qualitative description for the two-phase jet characteristics generated by a ashing jet. However, there remains some uncertainty with regard to the specification of certain initial spray conditions and there is a need for experimental data on separate gas and liquid temperatures in order to validate the vaporization models based on the Adachi correlation for a liquid involving R134A.

  2. Liquid-Phase Circulation and Mixing in Multicomponent Droplets Vaporizing in a Laminar Convective Environment

    DTIC Science & Technology

    1993-10-15

    included an f/2.8 dual port long-distance microscope coupled to a black d•rl white CCD video camera. A long-pass filter (with a cut-off at 530 nm) was...evaporation rates of multicomponent droplets is needed for the calibration of exciplex -based vapor/liquid visualization techniques that are employed today in...Publishing Co., Houston. Texas. Hanlon. T. R.. and Melton. L. A. (1992). Exciplex fluorescence thermometry of falling hexadecane droplets. Journal of Heat

  3. Active Mesogenic Droplets: Impact of Liquid Crystallinity and Collective Behavior

    NASA Astrophysics Data System (ADS)

    Bahr, Christian

    Droplets of common mesogenic compounds show a self-propelled motion when immersed in aqueous solutions containing ionic surfactants at concentrations well above the critical micelle concentration. After introducing some general properties of this type of artificial microswimmer, we focus on two topics: the influence of liquid crystallinity on the swimming behavior and the collective behavior of ensembles of a larger number of droplets. The mesogenic properties are not essential for the basic mechanism of self-propulsion, nevertheless they considerably influence the swimming behavior of the droplets. For instance, the shape of the trajectories strongly depends on whether the droplets are in the nematic or isotropic state. The droplet swimmers are also ideally suited for the study of collective behavior: Microfluidics enables the generation of large numbers of identical swimmers and we can tune their buoyancy. We report on the collective behavior in three-dimensional environments. Supported by the Deutsche Forschungsgemeinschaft (SPP 1726 ``Microswimmers'').

  4. Droplet size distributions in waveplate demisters using optical techniques

    NASA Astrophysics Data System (ADS)

    Layton, J. S.; Zaidi, Sohail H.; Altunbas, Ayse; Walters, J. K.; Azzopardi, B. J.

    1997-11-01

    Droplet separators or demisters are extensively used in the chemical industry. The effectiveness of many demisters is decisively affected by droplet sizes. As the misty gas passes through the demister, the liquid droplets impinge on the walls and form a liquid film. A part of this film can be re-entrained by the gas flow in the form of larger droplets. These droplets can escape the demister, affecting its efficiency. The measurement of drop size distributions inside the zigzag passages of the demister can provide useful information about the complex flow phenomena occurring within the demister. In the present work, a wave plate demister of the industrial dimensional specifications has been chosen to investigate the drop size distributions at various flow conditions. The laser diffraction technique has been employed for this purpose. This paper describes the suitability of the technique and presents some laser results to describe the effect of changing flow conditions inside and outside the demister.

  5. A zero-gravity demonstration of the collision and coalescence of water droplets

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.; Smith, R. E.

    1974-01-01

    The mechanics of the collision and coalescence of liquid droplets is one of the main research areas in the fields of nuclear physics, astrophysics, meteorology and fluid mechanics. The crew members on the Skylab 3 and 4 missions were requested to perform demonstrations of the collision and coalescence of water droplets under the low gravity environment at orbital altitude. In Skylab 4 two water droplets with equal volumes, 30 cu cm each, were used. A dark colored droplet (contaminated with grape drink) moving with a velocity of 3.14 cm/sec collided with a stationary pink colored droplet (contaminated with strawberry drink) and coalescence occurred. Theoretical models are proposed to study the various stages of the collision-coalescence processes. Special considerations are concentrated in the investigation of the bounce-coalescence and coalescence-instability processes. The surface tension of the coalesced droplets was calculated to be 52 dynes/cm in perfect agreement with laboratory measurements made after the flight using a reproduction of the liquids.

  6. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet.

    PubMed

    Ao, Takashi; Matsumoto, Mitsuhiro

    2017-10-24

    We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.

  7. Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Qin, Shiyi

    2016-11-01

    A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.

  8. Experiments on Spray from a Rolling Tire

    NASA Astrophysics Data System (ADS)

    Radovich, Charles; Browand, Fred

    2010-11-01

    A novel laboratory apparatus has been built to understand the mechanisms and statistics of droplet production for spray emerging from a rolling tire. Using high-speed imaging, water passing through a single circumferential groove was observed to leave the tire contact patch in the form of a liquid sheet of non-uniform thickness. The sheet breaks into droplets as a result of several, organized instabilities. Measurements for the breakup length of the liquid sheet showed a dependence on Weber number proportional to We-1/6, for Weber numbers of 2700, 10900 and 24400. A technique to identify and size water droplets was developed and the distribution of droplet sizes was determined as a function of Weber number. At We = 2700, droplet sizes between 80 and 9000μm were detected, with a mean diameter near 800μm. Both the range of droplet sizes and the mean diameter were found to decrease with increasing Weber number as (approximately) We-1/2. Correlation Image Velocimetry (CIV) was used to estimate the distribution of droplet velocities as a function of droplet size. The spread of droplet velocities about the tire peripheral speed is strongly correlated with droplet size. The spread can be estimated by a simple physical model incorporating rigid droplets subject to gravity and drag.

  9. Ignition and combustion of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, Stephen R.

    1991-01-01

    The overall objective is the development of a fundamental understanding of the ignition and combustion of aluminum-based slurry (or gel) propellant droplets using a combination of experiment and analysis. Specific objectives are the following: (1) The development and application of a burner/spray rig and single particle optical diagnosis to study the detailed ignition and combustion behavior of small droplets; (2) Understanding the role of surfactants and gellants (or other additives) in promoting or inhibiting secondary atomization of propellant droplets; and (3) The extension of previously developed analytical models and the development of new models to address the phenomena associated with microexplosions (secondary atomization).

  10. Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model

    NASA Astrophysics Data System (ADS)

    Espath, L. F. R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O. N.; Cortes, A. M. A.; Dalcin, L.; Calo, V. M.

    2016-06-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to further insight into the model. Highly resolved simulations involving density-driven flows and merging of droplets allow us to analyze these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modeling droplet dynamics within the framework of NSCH equations is a sensible approach worth further research.

  11. On well-posedness of variational models of charged drops.

    PubMed

    Muratov, Cyrill B; Novaga, Matteo

    2016-03-01

    Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges.

  12. On well-posedness of variational models of charged drops

    PubMed Central

    Novaga, Matteo

    2016-01-01

    Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges. PMID:27118921

  13. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    PubMed

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  14. Influence of solution properties in the laser forward transfer of liquids

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Patrascioiu, A.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.

    2012-09-01

    The influence of the viscosity of the printed solution on the laser-induced forward transfer (LIFT) of liquids is investigated. A set of water and glycerol mixtures with different glycerol content are prepared with the aim of having a collection of solutions covering a wide range of viscosities, from 1.9 to 850 mPa s. Arrays of micrometric droplets of those solutions are spotted through LIFT and characterized by means of optical microscopy, revealing that for all the analyzed solutions there always exists a range of laser fluences leading to the formation of regular circular droplets, with that range increasing and widening with viscosity. The dynamics of liquid ejection is investigated through time-resolved imaging with the aim of understanding the role of viscosity in the process, and its influence on the morphology of the deposited droplets. The acquired stop-action movies reveal that liquid transfer proceeds mainly through jetting, with the exception of LIFT at low viscosities and high laser fluences, in which bursting develops. From this study it is concluded that viscosity plays an important role in the stabilization of liquid ejection and transport, which contributes to the uniformity of the deposited droplets.

  15. Modeling metal droplet sprays in spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muoio, N.G.; Crowe, C.T.; Fritsching, U.

    1995-12-31

    Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.

  16. Mechanism and simulation of droplet coalescence in molten steel

    NASA Astrophysics Data System (ADS)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  17. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yunteng; Zhang, Jie; Li, Yang

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Usingmore » both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.« less

  18. Minimal size of coffee ring structure.

    PubMed

    Shen, Xiaoying; Ho, Chih-Ming; Wong, Tak-Sing

    2010-04-29

    A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, D(c), for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, D(c) can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size approximately 100 nm, the minimum diameter of the coffee ring structure is found to be approximately 10 microm.

  19. Field-Controlled Electrical Switch with Liquid Metal.

    PubMed

    Wissman, James; Dickey, Michael D; Majidi, Carmel

    2017-12-01

    When immersed in an electrolyte, droplets of Ga-based liquid metal (LM) alloy can be manipulated in ways not possible with conventional electrocapillarity or electrowetting. This study demonstrates how LM electrochemistry can be exploited to coalesce and separate droplets under moderate voltages of ~1-10 V. This novel approach to droplet interaction can be explained with a theory that accounts for oxidation and reduction as well as fluidic instabilities. Based on simulations and experimental analysis, this study finds that droplet separation is governed by a unique limit-point instability that arises from gradients in bipolar electrochemical reactions that lead to gradients in interfacial tension. The LM coalescence and separation are used to create a field-programmable electrical switch. As with conventional relays or flip-flop latch circuits, the system can transition between bistable (separated or coalesced) states, making it useful for memory storage, logic, and shape-programmable circuitry using entirely liquids instead of solid-state materials.

  20. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.

    PubMed

    Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi

    2016-02-23

    Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.

  1. Spontaneous self-dislodging of freezing water droplets and the role of wettability

    PubMed Central

    Schutzius, Thomas M.; Eghlidi, Hadi; Poulikakos, Dimos

    2017-01-01

    Spontaneous removal of liquid, solidifying liquid and solid forms of matter from surfaces, is of significant importance in nature and technology, where it finds applications ranging from self-cleaning to icephobicity and to condensation systems. However, it is a great challenge to understand fundamentally the complex interaction of rapidly solidifying, typically supercooled, droplets with surfaces, and to harvest benefit from it for the design of intrinsically icephobic materials. Here we report and explain an ice removal mechanism that manifests itself simultaneously with freezing, driving gradual self-dislodging of droplets cooled via evaporation and sublimation (low environmental pressure) or convection (atmospheric pressure) from substrates. The key to successful self-dislodging is that the freezing at the droplet free surface and the droplet contact area with the substrate do not occur simultaneously: The frozen phase boundary moves inward from the droplet free surface toward the droplet–substrate interface, which remains liquid throughout most of the process and freezes last. We observe experimentally, and validate theoretically, that the inward motion of the phase boundary near the substrate drives a gradual reduction in droplet–substrate contact. Concurrently, the droplet lifts from the substrate due to its incompressibility, density differences, and the asymmetric freezing dynamics with inward solidification causing not fully frozen mass to be displaced toward the unsolidified droplet–substrate interface. Depending on surface topography and wetting conditions, we find that this can lead to full dislodging of the ice droplet from a variety of engineered substrates, rendering the latter ice-free. PMID:28973877

  2. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  3. Not spreading in reverse: The dewetting of a liquid film into a single drop.

    PubMed

    Edwards, Andrew M J; Ledesma-Aguilar, Rodrigo; Newton, Michael I; Brown, Carl V; McHale, Glen

    2016-09-01

    Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet-a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction.

  4. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    PubMed

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  5. Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system.

    PubMed

    Chen, Yan-Yu; Chen, Zhao-Ming; Wang, Hsiang-Yu

    2012-11-07

    Reducing the fluorescence background in microfluidic assays is important in obtaining accurate outcomes and enhancing the quality of detections. This study demonstrates an integrated process including cell labelling, fluorescence background reduction, and biomolecule detection using liquid-liquid extraction in a microfluidic droplet system. The cellular lipids in Chlorella vulgaris and NIH/3T3 cells were labelled with a hydrophobic dye, Nile red, to investigate the performance of the proposed method. The fluorescence background of the lipid detection can be reduced by 85% and the removal efficiency increased with the volume of continuous phase surrounding a droplet. The removal rate of the fluorescence background increased as the surface area to volume ratio of a droplet increased. Before Nile red was removed from the droplet, the signal to noise ratio was as low as 1.30 and it was difficult to distinguish cells from the background. Removing Nile red increased the signal to noise ratio to 22 and 34 for Chlorella vulgaris and NIH/3T3, respectively, and these were 17 fold and 10 fold of the values before extraction. The proposed method successfully demonstrates the enhancement of fluorescence detection of cellular lipids and has great potential in improving other fluorescence-based detections in microfluidic systems.

  6. Droplets on liquid surfaces: Dual equilibrium states and their energy barrier

    NASA Astrophysics Data System (ADS)

    Shabani, Roxana; Kumar, Ranganathan; Cho, Hyoung J.

    2013-05-01

    Floating aqueous droplets were formed at oil-air interface, and two stable configurations of (i) non-coalescent droplet and (ii) cap/bead droplet were observed. General solutions for energy and force analysis were obtained for both configurations and were shown to be in good agreement with the experimental observations. The energy barrier obtained for transition from configuration (i) to configuration (ii) was correlated to the droplet release height and the probability of non-coalescent droplet formation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitra Sivaraman, PNNL

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloudmore » interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less

  8. Dynamique d'étalement

    NASA Astrophysics Data System (ADS)

    de Gennes, Pierre-Gilles

    On analyse la progression d'un coin fiuide sur uo solide (dans le cas ou Tangle de contact thermodynamique θa est nul : regie d'Antonov satisfaite) en tenant compte des interactions Van der Waals a longue portee. On trouve : (a) un angle de contact apparent θa relie a la vitesse d'avancee U par θ^{3}_{a} ˜ U η/γ (η = viscosity, γ tension superficielle du liquide) d'ou une loi rayon/temps d'etalement pour une goutte r(t) 1/10. (b) un film precurseur ζ d'epaisseur ζ(x, f) decroissant asymptotiquement comme x1 ou x est la distance a la ligne triple. L'epaisseur h* d u film au voisinage de la ligne triple est h* a/θa (ou a est une distance atomique). Ceci permet de comprendre le fait (reconnu) que le film precurseur est bien visible seulement si l'angle de contact thermodynamique est nul. We analyse the shape of the liquid-air interface for a droplet spreading on a solid, in a regime where the Antonov rule is satisfied, taking into account the long range Van der Waals interactions between liquid and solid. We find: (a) an apparent contact angle θa related to the velocity U of the triple line by θ^{3}_{a} ˜ U η/γ (η = viscosity, γ surface tension of the liquid). This leads to a law of spreading (radius r/time t) for a droplet r t1/10. (b) a precursor film of thickness ζ, decreasing asymptotically like x-1, where x is the distance from the triple line. The thickness h* of the film at this line is h* a/θa where a is an atomic length: this explains why the precursor films are observed only when the thermodynamic contact angle vanishes.

  9. Simultaneous spreading and evaporation: recent developments.

    PubMed

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been derived theoretically and confirmed experimentally. The theory developed for pure liquids is applicable also to nanofluids, where a good agreement with the available experimental data has been found. However, in the case of evaporation of surfactant solutions the process deviates from the theoretical predictions for pure liquids at concentration below critical wetting concentration and is in agreement with the theoretical predictions at concentrations above it. Crown Copyright © 2013. All rights reserved.

  10. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms

    NASA Astrophysics Data System (ADS)

    Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman

    2018-04-01

    We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

  11. Computational comparison of high and low viscosity micro-scale droplets splashing on a dry surface

    NASA Astrophysics Data System (ADS)

    Boelens, Arnout; Latka, Andrzej; de Pablo, Juan

    2015-11-01

    Depending on viscosity, a droplet splashing on a dry surface can splash immediately upon impact, a so called prompt splash, or after initially spreading on the surface, a late splash. One of the open questions in splashing is whether the mechanism behind both kinds of splashing is the same or not. Simulation results are presented comparing splashing of low viscosity ethanol with high viscosity silicone oil in air. The droplets are several hundred microns large. The simulations are 2D, and are performed using a Volume Of Fluid approach with a Finite Volume technique. The contact line is described using the Generalized Navier Boundary Condition. Both the gas phase and the liquid phase are assumed to be incompressible. The results of the simulations show good agreement with experiments. Observations that are reproduced include the effect of reduced ambient pressure suppressing splashing, and the details of liquid sheet formation and breakup. While the liquid sheet ejected in an early splash breaks up at its far edge, the liquid sheet ejected in a late splash breaks up close to the droplet.

  12. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    PubMed

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-08

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  13. Rydberg-Ritz analysis and quantum defects for Rb and Cs atoms on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2013-08-01

    A Rydberg-Ritz approach is used for the interpretation of Rb-He? and Cs-He? Rydberg states and Rydberg series. Variations of the quantum defects within a Rydberg series give insight into the interaction between the alkali atom's valence electron and the superfluid helium droplet. A screening of the valence electron from the alkali atom core by the helium droplet is observed for high Rydberg states. For states with lower principal quantum number, the effect decreases and the quantum defects are found to lie closer to free atom values, indicating an increased probability for the electron to be found inside the alkali atom core. An investigation of the spin-orbit splitting of the Cs-He? nP(2Π) components reveals that the splitting of the lowest 2Π states is more atom-like [Hund's case (c) coupling] than at higher n states [Hund's case (a) coupling]. In addition, we report a detailed study of the droplet size dependence of Ak-He? Rydberg series on the example of the Rb-He? D(Δ) series. Higher Rydberg states of this series are strongly redshifted, which is also related to the screening effect.

  14. Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets

    NASA Astrophysics Data System (ADS)

    Wan, Zhiliang; Zeng, Hongjun; Feinerman, Alan

    2006-11-01

    The authors report a micromirror device actuated by electrowetting effect. The micromirror surface is formed by a liquid-metal droplet jetted on a substrate and then topped with a parylene/Teflon coated indium tin oxide glass slide. The droplet is deformed by a voltage applied across the parylene/Teflon film. The radius of micromirror is tuned from 13μm (0V) to 88μm (90V), and the normalized area increases from 0.2 to 0.94 accordingly. The switching time ranges from 1ms for a 350μm diameter droplet to 0.2ms for a 50μm one. A 4×1 micromirror array is demonstrated and switched simultaneously.

  15. Colliding droplets: A short film presentation

    NASA Astrophysics Data System (ADS)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  16. Dielectric-Particle Injector For Processing Of Materials

    NASA Technical Reports Server (NTRS)

    Leung, Philip L.; Gabriel, Stephen B.

    1992-01-01

    Device generates electrically charged particles of solid, or droplets of liquid, fabricated from dielectric material and projects them electrostatically, possibly injecting them into electrostatic-levitation chamber for containerless processing. Dielectric-particle or -droplet injector charges dielectric particles or droplets on zinc plate with photo-electrons generated by ultraviolet illumination, then ejects charged particles or droplets electrostatically from plate.

  17. Development of ingan quantum dots by the Stranski-Krastanov method and droplet heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Woodward, Jeffrey Michael

    The development of InGaN quantum dots (QDs) is both scienti?cally challenging and promising for applications in visible spectrum LEDs, lasers, detectors, electroabsorption modulators and photovoltaics. Such QDs are typically grown using the Stranski-Krastanov (SK) growth mode, in which accumulated in-plane compressive strain induces a transition from 2D to 3D growth. This method has a number of inherent limitations, including the unavoidable formation of a 2D wetting layer and the di?culty of controlling the composition, areal density, and size of the dots. In this research, I have developed InGaN QDs by two methods using a plasma-assisted molecular beam epitaxy reactor. In the ?rst method, InGaN QDs were formed by SK growth mode on (0001) GaN/sapphire. In the second, I have addressed the limitations of the SK growth of InGaN QDs by developing a novel alternative method, which was utilized to grow on both (0001) GaN/sapphire and AlN/sapphire. This method relies upon the ability to form thermodynamically stable In-Ga liquid solutions throughout the entire compositional range at relatively low temperatures. Upon simultaneous or sequential deposition of In and Ga on a substrate, the adatoms form a liquid solution, whose composition is controlled by the ratio of the fluxes of the two constituents FIn/(FIn+FGa ). Depending on the interfacial free energy between the liquid deposit and substrate, the liquid deposit and vapor, and the vapor and substrate, the liquid deposit forms Inx-Ga1- x nano-droplets on the substrate. These nano-droplets convert into InxGa1-xN QDs upon exposure to nitrogen RF plasma. InGaN QDs produced by both methods were investigated in-situ by reflection high-energy electron diffraction and ex-situ by atomic force microscopy, field emission scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, and grazing incidence small angle x-ray scattering. The optical activity and device potential of the QDs were investigated by photoluminescence measurements and the formation and evaluation of PIN devices (in which the intrinsic region contains QDs embedded within a higher bandgap matrix). InGaN QDs with areal densities ranging from 109 to 1011 cm -2 and diameters ranging from 11 to 39 nm were achieved.

  18. Probing Ion Transfer across Liquid-Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes.

    PubMed

    Deng, Haiqiang; Dick, Jeffrey E; Kummer, Sina; Kragl, Udo; Strauss, Steven H; Bard, Allen J

    2016-08-02

    We describe a method of observing collisions of single femtoliter (fL) oil (i.e., toluene) droplets that are dispersed in water on an ultramicroelectrode (UME) to probe the ion transfer across the oil/water interface. The oil-in-water emulsion was stabilized by an ionic liquid, in which the oil droplet trapped a highly hydrophobic redox probe, rubrene. The ionic liquid also functions as the supporting electrolyte in toluene. When the potential of the UME was biased such that rubrene oxidation would be possible when a droplet collided with the electrode, no current spikes were observed. This implies that the rubrene radical cation is not hydrophilic enough to transfer into the aqueous phase. We show that current spikes are observed when tetrabutylammonium trifluoromethanesulfonate or tetrahexylammonium hexafluorophosphate are introduced into the toluene phase and when tetrabutylammonium perchlorate is introduced into the water phase, implying that the ion transfer facilitates electron transfer in the droplet collisions. The current (i)-time (t) behavior was evaluated quantitatively, which indicated the ion transfer is fast and reversible. Furthermore, the size of these emulsion droplets can also be calculated from the electrochemical collision. We further investigated the potential dependence on the electrochemical collision response in the presence of tetrabutylammonium trifluoromethanesulfonate in toluene to obtain the formal ion transfer potential of tetrabutylammonium across the toluene/water interface, which was determined to be 0.754 V in the inner potential scale. The results yield new physical insights into the charge balance mechanism in emulsion droplet collisions and indicate that the electrochemical collision technique can be used to probe formal ion transfer potentials between water and solvents with very low (ε < 5) dielectric constants.

  19. Geometries in Soft Matter From Geometric Frustration, Liquid Droplets to Electrostatics in Solution

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    This thesis explores geometric aspects of soft matter systems. The topics covered fall into three categories: (i) geometric frustrations, including the interplay of geometry and topological defects in two dimensional systems, and the frustration of a planar sheet attached to a curved surface; (ii) geometries of liquid droplets, including the curvature driven instabilities of toroidal liquid droplets and the self-propulsion of droplets on a spatially varying surface topography; (iii) the study of the electric double layer structure around charged spherical interfaces by a geometric method. In (i), we study the crystalline order on capillary bridges with varying Gaussian curvature. Energy requires the appearance of topological defects on the surface, which are natural spots for biological activity and chemical functionalization. We further study how liquid crystalline order deforms flexible structured vesicles. In particular we find faceted tetrahedral vesicle as the ground state, which may lead to the design of supra-molecular structures with tetrahedral symmetry and new classes of nano-carriers. Furthermore, by a simple paper model we explore the geometric frustration on a planar sheet when brought to a negative curvature surface in a designed elasto-capillary system. In (ii), motivated by the idea of realizing crystalline order on a stable toroidal droplet and a beautiful experiment on toroidal droplets, we study the Rayleigh instability and the shrinking instability of thin and fat toroidal droplets, where the toroidal geometry plays an essential role. In (iii), by a geometric mapping we construct an approximate analytic spherical solution to the nonlinear Poisson-Boltzmann equation, and identify the applicability regime of the solution. The derived geometric solution enables further analytical study of spherical electrostatic systems such as colloidal suspensions.

  20. New mechanisms of macroion-induced disintegration of charged droplets

    NASA Astrophysics Data System (ADS)

    Consta, Styliani; Oh, Myong In; Malevanets, Anatoly

    2016-10-01

    Molecular modeling has revealed that the presence of charged macromolecules (macroions) in liquid droplets dramatically changes the pathways of droplet fission. These mechanisms are not captured by the traditional theories such as ion-evaporation and charge-residue models. We review the general mechanisms by which macroions emerge from droplets and the factors that determine the droplet fission. These mechanisms include counter-intuitive ;star; droplet formations and extrusion of linear macroions from droplets. These findings may play a direct role in determining macromolecule charge states in electrospray mass spectrometry experiments.

Top