Science.gov

Sample records for atpap15 enhances phosphorus

  1. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  2. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances.

    PubMed

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Zeng, Raymond J; Li, Wen-Wei; Yu, Han-Qing

    2013-10-15

    Phosphorus-accumulating organisms are considered to be the key microorganisms in the enhanced biological phosphorus removal (EBPR) process. A large amount of phosphorus is found in the extracellular polymeric substances (EPS) matrix of these microorganisms. However, the roles of EPS in phosphorus removal have not been fully understood. In this study, the phosphorus in the EBPR sludge was fractionated and further analyzed using quantitative (31)P nuclear magnetic resonance spectroscopy. The amounts and forms of phosphorus in EPS as well as their changes in an anaerobic-aerobic process were also investigated. EPS could act as a reservoir for phosphorus in the anaerobic-aerobic process. About 5-9% of phosphorus in sludge was reserved in the EPS at the end of the aerobic phase and might further contribute to the phosphorus removal. The chain length of the intracellular long-chain polyphosphate (polyP) decreased in the anaerobic phase and then recovered under aerobic conditions. However, the polyP in the EPS had a much shorter chain length than the intracellular polyP in the whole cycle. The migration and transformation of various forms of phosphorus among microbial cells, EPS, and bulk liquid were also explored. On the basis of these results, a model with a consideration of the roles of EPS was proposed, which is beneficial to elucidate the mechanism of phosphorus removal in the EBPR system.

  3. Calcium effect on enhanced biological phosphorus removal.

    PubMed

    Barat, R; Montoya, T; Borras, L; Seco, A; Ferrer, J

    2006-01-01

    The role of calcium (Ca) in enhanced biological phosphorus removal and its possible implications on the metabolic pathway have been studied. The experience has been carried out in an SBR under anaerobic-aerobic conditions for biological phosphorus removal during 8 months. The variations of influent Ca concentration showed a clear influence on the EBPR process, detecting significant changes in Y(PO4). These Y(PO4) variations were not due to influent P/COD ratio, pH, denitrification and calcium phosphate formation. The Y(PO4) has been found to be highly dependent on the Ca concentration, increasing as Ca concentration decreases. The results suggest that high Ca concentrations produce "inert" granules of polyphosphate with Ca as a counterion that are not involved in P release and uptake. Furthermore, microbiological observations confirmed that appreciable changes in PAO and GAO populations were not observed. This behaviour could suggest a change in the bacterial metabolic pathway, with prevailing polyphosphate-accumulating metabolism (PAM) at low influent Ca concentration and glycogen-accumulating metabolism (GAM) at high concentration.

  4. Enhanced phosphorus removal by microbial-collaborating sponge iron.

    PubMed

    Wang, Ya'e; Li, Jie; Zhai, Siyuan; Wei, Zhiyong; Feng, Juanjuan

    2015-01-01

    The collaborative and mutually reinforcing phosphorus removal in domestic wastewater in a sponge iron and microorganisms system was studied through a laboratory and a pilot scale experiment. The results showed that the total phosphorus concentration of the effluent of less than 0.5 mg/L could be achieved. The results also support that the biochemical reaction accelerated the iron electrochemical corrosion. As a driving force, iron bacteria strengthened the chemical oxidation of Fe(II) to Fe(III). The chemical precipitation of Fe(III) is the main form of phosphorus removal. In addition, there exists adsorption phosphorus removal by phosphate-accumulating organisms. The mechanism of the enhanced phosphorus removal by microbial-collaborating sponge iron was thus proposed.

  5. Enhanced biological phosphorus removal employing EDTA disodium

    SciTech Connect

    Bojinova, D.; Velkova, R.

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  6. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  7. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems.

  8. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  9. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater.

  10. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  11. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  12. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared. PMID:27087523

  13. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived.

  14. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. PMID:26144019

  15. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    PubMed Central

    McMahon, Katherine D.; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg2+, and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms. PMID:12324346

  16. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase.

    PubMed

    Yang, Haibing; Knapp, Jane; Koirala, Pratistha; Rajagopal, Divya; Peer, Wendy Ann; Silbart, Lawrence K; Murphy, Angus; Gaxiola, Roberto A

    2007-11-01

    Plants challenged by limited phosphorus undergo dramatic morphological and architectural changes in their root systems in order to increase their absorptive surface area. In this paper, it is shown that phosphorus deficiency results in increased expression of the type I H+-pyrophosphatase AVP1 (AVP, Arabidopsis vacuolar pyrophosphatase), subsequent increased P-type adenosine triphosphatase (P-ATPase)-mediated rhizosphere acidification and root proliferation. Molecular genetic manipulation of AVP1 expression in Arabidopsis, tomato and rice results in plants that outperform controls when challenged with limited phosphorus. However, AVP1 over-expression and the resulting rhizosphere acidification do not result in increased sensitivity to AlPO4, apparently because of the enhancement of potassium uptake and the release of organic acids. Thus, the over-expression of type I H+-pyrophosphatases appears to be a generally applicable technology to help alleviate agricultural losses in low-phosphorus tropical/subtropical soils and to reduce phosphorus runoff pollution of aquatic and marine environments resulting from fertilizer application. PMID:17711412

  17. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    PubMed

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge.

  18. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    PubMed Central

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  19. Phosphorus mobilizing consortium Mammoth P(™) enhances plant growth.

    PubMed

    Baas, Peter; Bell, Colin; Mancini, Lauren M; Lee, Melanie N; Conant, Richard T; Wallenstein, Matthew D

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity. PMID:27326379

  20. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils.

    PubMed

    Li, Long; Li, Shu-Min; Sun, Jian-Hao; Zhou, Li-Li; Bao, Xing-Guo; Zhang, Hong-Gang; Zhang, Fu-Suo

    2007-07-01

    Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume-grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P(2)O(5) per hectare), and not significantly at high rate of P application (>112.5 kg of P(2)O(5) per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils.

  1. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  2. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  3. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.

    PubMed

    Martin, Patrick; Dyhrman, Sonya T; Lomas, Michael W; Poulton, Nicole J; Van Mooy, Benjamin A S

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles.

  4. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.

    PubMed

    Martin, Patrick; Dyhrman, Sonya T; Lomas, Michael W; Poulton, Nicole J; Van Mooy, Benjamin A S

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles. PMID:24753593

  5. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus

    PubMed Central

    Martin, Patrick; Dyhrman, Sonya T.; Lomas, Michael W.; Poulton, Nicole J.; Van Mooy, Benjamin A. S.

    2014-01-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles. PMID:24753593

  6. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus

    NASA Astrophysics Data System (ADS)

    Martin, Patrick; Dyhrman, Sonya T.; Lomas, Michael W.; Poulton, Nicole J.; Van Mooy, Benjamin A. S.

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles.

  7. Experience from 10 years of full-scale operation with enhanced biological phosphorus removal at Oresundsverket.

    PubMed

    Tykesson, E; Jönsson, L E; la Cour Jansen, J

    2005-01-01

    Ten years of full-scale experience with enhanced biological phosphorus removal (EBPR) has been evaluated. During the start-up period lack of carbon source was the main operational problem and a higher level of volatile fatty acids was secured by introducing a primary sludge hydrolysis. Acidic thermal sludge hydrolysis was used as the sludge treatment method at the plant during about three years. One effluent stream, rich in carbon and precipitant, was brought back to the process leading to an improvement of the phosphorus removal both by an improved biological process and chemical precipitation. A quite stable process of EBPR was developed with low levels of effluent phosphorus concentration. Stringent effluent discharge limits during short evaluation periods necessitated a continued work for improvement of the short-term stability. During periods with lack of carbon, such as industrial holiday or rainy periods, both simultaneous precipitation and reduced aeration have been successfully tested as strategies for securing low levels of effluent phosphorus.

  8. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes.

    PubMed

    Zuthi, M F R; Guo, W S; Ngo, H H; Nghiem, L D; Hai, F I

    2013-07-01

    A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal in ASPs and MBRs while discussing the inhibitory process requirements for other nutrients' removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement.

  9. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across

  10. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across

  11. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters

    SciTech Connect

    Ingall, E.; Jahnki, R.

    1994-06-01

    Phosphorus regeneration and burial fluxes determined from in situ benthic flux chamber and solid phase measurements at sites on the Californian continental margin, Peruvian continental slope, North Carolina continental slope, and from the Santa Monica basin, California are reported. Comparison of these sites indicates that O{sub 2}-depleted bottomwaters enhance P regeneration from sediments, diminishing overall phosphorus burial efficiency. Based on these observations, a positive feedback, linking ocean anoxia, enhanced benthic phosphorus regeneration, and marine productivity is proposed. On shorter timescales, these results also suggest that O{sub 2} depletion in coastal regions caused by eutrophication may enhance P regeneration from sediments, thereby providing additional P necessary for increased biological productivity. 42 refs., 2 figs., 2 tabs.

  12. Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils.

    PubMed

    Hufnagel, Barbara; de Sousa, Sylvia M; Assis, Lidianne; Guimaraes, Claudia T; Leiser, Willmar; Azevedo, Gabriel C; Negri, Barbara; Larson, Brandon G; Shaff, Jon E; Pastina, Maria Marta; Barros, Beatriz A; Weltzien, Eva; Rattunde, Henry Frederick W; Viana, Joao H; Clark, Randy T; Falcão, Alexandre; Gazaffi, Rodrigo; Garcia, Antonio Augusto F; Schaffert, Robert E; Kochian, Leon V; Magalhaes, Jurandir V

    2014-10-01

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.

  13. Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils1[C][W][OPEN

    PubMed Central

    Hufnagel, Barbara; de Sousa, Sylvia M.; Assis, Lidianne; Guimaraes, Claudia T.; Leiser, Willmar; Azevedo, Gabriel C.; Negri, Barbara; Larson, Brandon G.; Shaff, Jon E.; Pastina, Maria Marta; Barros, Beatriz A.; Weltzien, Eva; Rattunde, Henry Frederick W.; Viana, Joao H.; Clark, Randy T.; Falcão, Alexandre; Gazaffi, Rodrigo; Garcia, Antonio Augusto F.; Schaffert, Robert E.; Kochian, Leon V.; Magalhaes, Jurandir V.

    2014-01-01

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil. PMID:25189534

  14. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process.

  15. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.

    PubMed

    Heal, K V; Dobbie, K E; Bozika, E; McHaffie, H; Simpson, A E; Smith, K A

    2005-01-01

    No single end-use has yet been identified that is capable of consuming the projected production of ochre (mainly iron (III) oxides) from mine drainage treatment. However, the high sorption capacity of ochre for phosphorus (up to 26 mg kg(-1)) means that it could be used in constructed wetlands to enhance phosphorus removal. Laboratory batch experiments showed that coarse-grained ochre removes 90% of all phosphorus forms from sewage effluent after 15 minutes of shaking. From a larger-scale experiment, it is estimated that constructed wetlands with an ochre substrate should remove phosphorus from sewage effluent for up to 200-300 years. The suitability of ochre for phosphorus removal is being investigated at the field scale in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance of the wetland were monitored for 15 months prior to installation at the inlet in November 2003 of a tank containing approximately 1200 kg ochre. Results so far show that improved hydraulic design is required for ochre to increase the mean phosphorus removal efficiency of the system (27 +/- 28%), but potentially toxic metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, Zn) have not been released from the ochre into the wetland outflow.

  16. Impacts of carbon source addition on denitrification and phosphorus uptake in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2013-01-01

    In this study, simultaneous denitrification and phosphorus (P) removal were investigated in batch tests using nitrified mixed liquor and secondary wastewater influent from a full-scale treatment plant and different levels of acetate and propionate as supplemental carbon sources. Without supplemental carbon source, denitrification occurred at low rate and P release and P uptake was negatively affected (i.e., P removal of only 59.7%). When acetate and propionate were supplied, denitrification and P release occurred simultaneously under anoxic conditions. For acetate and propionate at a C/N stoichiometric ratio of 7.6, P release was negatively affected by denitrification. For acetate, the percent P removal and denitrification were very similar for C/N ratios of 22 (5X stoichiometric) and 59 (10X stoichiometric). For propionate, both percent P removal and denitrification deteriorated for C/N ratios of 22 (5X stoichiometric) and 45 (10X stoichiometric). It was observed that carbon source added in excess to stoichiometric ratio was consumed in the aerobic zone, but P was not taken up. This implies that PAO bacteria may utilize the excess carbon source in the aerobic zone rather than their polyhydroxyalkanoate (PHA) reserves, thereby promoting deterioration of the system.

  17. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part III: Anaerobic sources of reducing equivalents.

    PubMed

    Schuler, Andrew J; Jenkins, David

    2003-01-01

    Laboratory-scale sequencing batch reactors exhibiting enhanced biological phosphorus removal (EBPR) operated at different influent phosphorus/chemical oxygen demand (COD) ratios were analyzed to evaluate possible anaerobic sources of reducing equivalents. Assuming anaerobic glycogen degradation was the sole anaerobic reducing equivalent source, an anaerobic phase carbon balance showed that glycogen-accumulating metabolism (GAM)-dominated systems were nearly carbon-balanced, but that polyphosphate-accumulating metabolism (PAM)-dominated systems had end-anaerobic phase carbon deficits. An anaerobic-phase reducing equivalent balance showed a reducing equivalent excess for the GAM-dominated systems and a deficit for the PAM-dominated systems, suggesting that glycogen degradation was not the sole reducing equivalent source for PAM. Reducing equivalent balances showed that metabolic models including complete anaerobic tricarboxylic acid (TCA) cycle activity, partial TCA cycle activity, and the glyoxylate bypass could provide the reducing equivalents required in PAM. Metabolic precursors produced in glycolysis, the TCA cycle, or modified versions of the TCA cycle could allow anaerobic growth and account for the PAM carbon deficits. The importance of considering both PAM and GAM activity in evaluating EBPR metabolic models was illustrated.

  18. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems.

  19. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  20. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed.

  1. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  2. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  3. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    SciTech Connect

    Li, Weibing; Yue, Jiguang; Hua, Fangxia; Feng, Chang; Bu, Yuyu; Chen, Zhuoyuan

    2015-10-15

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.

  4. Phosphorus Retention by Stormwater Detention Areas: Estimation, Enhancement, and Economics

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Hodges, A.

    2015-12-01

    Stormwater detention areas (SDAs) are considered an important best management practice (BMP) both in agricultural and urban areas. In sub-tropical Florida where sandy soils and shallow water table make the nutrient leaching losses from agricultural areas inevitable, the SDAs are relied upon as a last point of treatment. Field-measured water and phosphorus (P) fluxes from an agricultural SDA showed that contrary to generally held view, the SDA was a source of P for the first year (retention efficiency = -12%). For the next year, the SDA served as a sink (54%). The source function of the SDA was a combined effect of high rainfall, dilution of agricultural drainage with rainfall from a tropical storm, and legacy-based soil P saturation. Volume reduction was the main reason for P retention because of no remaining P sorption capacity in the soil in most of the SDA area. Although a net sink of P for Year 2, an event-wise analysis showed the SDA to be a source of P for three out of seven outflow events in Year 2 indicating P release from soil. Because surface P treatment efficiency during both years was either less than or approximately the same as surface water retention efficiency, volume reduction and not sorption or biological assimilation controlled P retention. Hydraulic (e.g. increased storage), managerial (biomass harvesting) and chemical (alum treatment) modifications were evaluated by using a stormwater treatment model and field data. The model was successfully field-verified using well accepted performance measures (e.g. Nash-Sutcliffe efficiency). Maximum additional P retention was shown to be achieved by biomass harvesting (>100%) followed by chemical treatment (71%), and increased spillage level (29%). Economic feasibility of the aforementioned modifications and development of a payment for environmental services (PES) program was identified through a cost-benefit analysis for maintaining these SDAs as sink of P in the long-term.

  5. Pectin enhances rice (Oryza sativa) root phosphorus remobilization.

    PubMed

    Zhu, Xiao Fang; Wang, Zhi Wei; Wan, Jiang Xue; Sun, Ying; Wu, Yun Rong; Li, Gui Xin; Shen, Ren Fang; Zheng, Shao Jian

    2015-02-01

    Plants growing in phosphorus (P)-deficient conditions can either increase their exploration of the environment (hence increasing P uptake) or can solubilize and reutilize P from established tissue sources. However, it is currently unclear if P stored in root cell wall can be reutilized. The present study shows that culture of the rice cultivars 'Nipponbare' (Nip) and 'Kasalath' (Kas) in P-deficient conditions results in progressive reductions in root soluble inorganic phosphate (Pi). However, Nip consistently maintains a higher level of soluble Pi and lower relative cell wall P content than does Kas, indicating that more cell wall P is released in Nip than in Kas. P-deficient Nip has a greater pectin and hemicellulose 1 (HC1) content than does P-deficient Kas, consistent with the significant positive relationship between pectin and root-soluble Pi levels amongst multiple rice cultivars. These observations suggest that increased soluble Pi might result from increased pectin content during P starvation. In vitro experiments showed that pectin releases Pi from insoluble FePO4. Furthermore, an Arabidopsis thaliana mutant with reduced pectin levels (qua1-2), has less root soluble Pi and is more sensitive to P deficiency than the wild type (WT) Col-0, whereas NaCl-treated WT plants exhibit both an increased root pectin content and an elevated soluble Pi content during P-starvation. These observations indicate that pectin can facilitate the remobilization of P deposited in the cell wall. This is a previously unknown mechanism for the reutilization of P in P-starved plants.

  6. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L.

  7. Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system.

    PubMed

    Yang, Qinzheng; Zhao, Huazhang; Zhao, Nannan; Ni, Jinren; Gu, Xuejing

    2016-09-01

    This report proposed a novel technique for the regulation of phosphorus flux based on a bioelectrochemical system. In the simulated water system, a simple in situ sediment microbial fuel cell (SMFC) was constructed. SMFC voltage was increased with time until it was 0.23V. The redox potential of the sediment was increased from -220mV to -178mV during the process. Phosphorus concentration in the water system was decreased from 0.1mg/L to 0.01mg/L, compared with 0.09mg/L in the control. The installation of a SMFC produced an external current and internal circuit, which promoted the transfer of phosphate in overlying water to the sediment, enhanced the microbial oxidation of Fe(2+), and increased the formation of stable phosphorus in sediment. In conclusion, phosphorus flux from the overlying water to sediment was enhanced by SMFC, which has the potential to be used for eutrophication control of water bodies.

  8. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. PMID:25776916

  9. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    PubMed

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively. PMID:19555991

  10. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  11. Detection and prevention of enhanced biological phosphorus removal deterioration caused by Zoogloea overabundance.

    PubMed

    Montoya, T; Borrás, L; Aguado, D; Ferrer, J; Seco, A

    2008-01-01

    A sequencing batch reactor was operated in the conventional anaerobic-aerobic mode for enhanced biological phosphorus removal using acetate as the sole substrate. Despite the nutrients concentrations in the influent being high enough to satisfy the biological requirements, Zoogloea ramigera managed to grow in the system until it had negative effects on the process performance. The excess of exocellular polymeric material produced by this microorganism contributed to a viscous bulking phenomenon and caused important settling problems. The examination of the sludge under the microscope was a valuable tool to diagnose the cause of the imbalance in the process. The strategy adopted to avoid the deterioration of the process (changing key operational factors affecting the Z. ramigera development) allowed the successful recovery the enhanced biological phosphorus removal system. The effectiveness of this approach was confirmed by analyzing several parameters along the operational period (SVI, Y(PO4), TSS, %VSS...) together with microbiological examinations of the sludge.

  12. Detection and prevention of enhanced biological phosphorus removal deterioration caused by Zoogloea overabundance.

    PubMed

    Montoya, T; Borrás, L; Aguado, D; Ferrer, J; Seco, A

    2008-01-01

    A sequencing batch reactor was operated in the conventional anaerobic-aerobic mode for enhanced biological phosphorus removal using acetate as the sole substrate. Despite the nutrients concentrations in the influent being high enough to satisfy the biological requirements, Zoogloea ramigera managed to grow in the system until it had negative effects on the process performance. The excess of exocellular polymeric material produced by this microorganism contributed to a viscous bulking phenomenon and caused important settling problems. The examination of the sludge under the microscope was a valuable tool to diagnose the cause of the imbalance in the process. The strategy adopted to avoid the deterioration of the process (changing key operational factors affecting the Z. ramigera development) allowed the successful recovery the enhanced biological phosphorus removal system. The effectiveness of this approach was confirmed by analyzing several parameters along the operational period (SVI, Y(PO4), TSS, %VSS...) together with microbiological examinations of the sludge. PMID:18610543

  13. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Li, Wei; Wang, Xiaoguang; Liu, Lifeng

    2016-09-01

    Hematite (i.e., α-Fe2O3) nanorod photoanodes passivated with a phosphorus overlayer have been fabricated by decomposing sodium hypophosphite (NaH2PO2) at a low temperature over the hematite nanorod surface. Extensive scanning electron microscopy, transmission electron microscopy, x-ray diffractometry and UV–vis spectroscopy characterizations confirm that conformal deposition of an amorphous phosphorus overlayer does not change the crystal structure, morphology, and optical absorption properties of hematite photoanodes. X-ray photoelectron spectroscopy reveals that phosphorus in the deposited overlayer exists in an oxidized state. Comprehensive steady-state polarization, transient photocurrent response, and impedance spectroscopy measurements as well as Mott–Schottky analysis manifest that the phosphorus overlayer is able to effectively passivate surface states and suppress electron–hole recombination, substantially enhancing the photocurrent for water oxidation. Combining the phosphorization treatment with two-step thermal activation, a photocurrent density of 1.1 mA cm‑2 is achieved at 1.23 V versus reversible hydrogen electrode under illumination of 100 mW cm‑2, ca 55 times higher than that of the non-activated pristine hematite photoanode measured under the same conditions. The simple and fast phosphorization strategy we present here can be readily applied to passivate surfaces of other semiconductor photoelectrodes to improve their photoelectrochemical performance.

  14. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.

    PubMed

    Xiong, Dehua; Li, Wei; Wang, Xiaoguang; Liu, Lifeng

    2016-09-16

    Hematite (i.e., α-Fe2O3) nanorod photoanodes passivated with a phosphorus overlayer have been fabricated by decomposing sodium hypophosphite (NaH2PO2) at a low temperature over the hematite nanorod surface. Extensive scanning electron microscopy, transmission electron microscopy, x-ray diffractometry and UV-vis spectroscopy characterizations confirm that conformal deposition of an amorphous phosphorus overlayer does not change the crystal structure, morphology, and optical absorption properties of hematite photoanodes. X-ray photoelectron spectroscopy reveals that phosphorus in the deposited overlayer exists in an oxidized state. Comprehensive steady-state polarization, transient photocurrent response, and impedance spectroscopy measurements as well as Mott-Schottky analysis manifest that the phosphorus overlayer is able to effectively passivate surface states and suppress electron-hole recombination, substantially enhancing the photocurrent for water oxidation. Combining the phosphorization treatment with two-step thermal activation, a photocurrent density of 1.1 mA cm(-2) is achieved at 1.23 V versus reversible hydrogen electrode under illumination of 100 mW cm(-2), ca 55 times higher than that of the non-activated pristine hematite photoanode measured under the same conditions. The simple and fast phosphorization strategy we present here can be readily applied to passivate surfaces of other semiconductor photoelectrodes to improve their photoelectrochemical performance.

  15. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Li, Wei; Wang, Xiaoguang; Liu, Lifeng

    2016-09-01

    Hematite (i.e., α-Fe2O3) nanorod photoanodes passivated with a phosphorus overlayer have been fabricated by decomposing sodium hypophosphite (NaH2PO2) at a low temperature over the hematite nanorod surface. Extensive scanning electron microscopy, transmission electron microscopy, x-ray diffractometry and UV-vis spectroscopy characterizations confirm that conformal deposition of an amorphous phosphorus overlayer does not change the crystal structure, morphology, and optical absorption properties of hematite photoanodes. X-ray photoelectron spectroscopy reveals that phosphorus in the deposited overlayer exists in an oxidized state. Comprehensive steady-state polarization, transient photocurrent response, and impedance spectroscopy measurements as well as Mott-Schottky analysis manifest that the phosphorus overlayer is able to effectively passivate surface states and suppress electron-hole recombination, substantially enhancing the photocurrent for water oxidation. Combining the phosphorization treatment with two-step thermal activation, a photocurrent density of 1.1 mA cm-2 is achieved at 1.23 V versus reversible hydrogen electrode under illumination of 100 mW cm-2, ca 55 times higher than that of the non-activated pristine hematite photoanode measured under the same conditions. The simple and fast phosphorization strategy we present here can be readily applied to passivate surfaces of other semiconductor photoelectrodes to improve their photoelectrochemical performance.

  16. Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-P soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice protein kinase, OsPSTOL1, was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum performance und...

  17. The role of potassium, magnesium and calcium in the Enhanced Biological Phosphorus Removal treatment plants.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2005-09-01

    Cations as potassium and magnesium play an important role in maintaining the stability of Enhanced Biological Phosphorus Removal (EBPR) process. In this paper potassium, magnesium and calcium behaviour in EBPR treatment plants has been studied. An ASM2d model extension which takes into account the role of potassium and magnesium in the EBPR process has been developed. Finally, a simulation of the effect on P removal of a shortage of K and Mg was studied. The experimental results showed that K and Mg play an important role in the EBPR process being cotransported with P into and out of bacterial cells. It has been observed that calcium is not involved in P release and uptake. The values of the molar ratios K/P (0.28 mol K mol P(-1)) and Mg/P (0.36 mol Mg mol P(-1)) were obtained accomplishing the charge balance, with different K/Mg mass ratios and without phosphorus precipitation. Model predictions accurately reproduced experimental data. The simulations carried out showed the important effect of the K and Mg influent concentration for P removal efficiency. The results illustrate that the proposed ASM2d model extension must be considered in order to accurately simulate the phosphorus removal process.

  18. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  19. [Research on polyhydroxyalkanoate form a key aspect to enhanced biological phosphorus transformation].

    PubMed

    Liu, Yan; Xing, Zhi-qiang; Chen, Yin-guang; Zhou, Qi

    2006-06-01

    To investigate the influence of PHB and PHV formed on phosphorus (P) release, uptake and removal during enhanced biological phosphorus removal (EBPR), anaerobic/aerobic batch experiments were conducted with biomass acclimated with propionic to acetic acid carbon molar ratios of 0.5 and 2 on two sequencing batch reactors (SBR1 and SBR2). Statistically significant correlations between polyhydroxyalkanoate (PHA) quantity and form and P release/uptake and removal were observed (R2 >0.90). The regression coefficients showed that for biomass cultured with customizing wastewater P release and uptake were both a function of PHB but not of PHV, but higher P removal was largely because of PHV as the predominant type rather than PHV. For biomass cultured with different ratios of propionic to acetic acid, the SBR2 biomass synthesized and utilized more PHB and less PHV and showed higher net P removal (average increase of 16.69%) than SBR1. Thus acetate/propionate content of influent had a major influenceon PHA type and quantity and determine phosphorus (P) release, uptake and removal. Accordingly, PHB and PHV transformations should be taken into account as key aspect for optimizing EBPR.

  20. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge.

  1. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  2. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  3. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  4. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge. PMID:24964811

  5. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    PubMed

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. PMID:26143588

  6. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    PubMed

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater.

  7. Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Yang, Lingming; Zhou, Hong; Ye, Peide D.

    2016-04-01

    In this letter, a new approach to chemically dope black phosphorus (BP) is presented, which significantly enhances the device performance of BP field-effect transistors for an initial period of 18 h, before degrading to previously reported levels. By applying 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), low ON-state resistance of 3.2 ohm.mm and high field-effect mobility of 229 cm2/Vs are achieved with a record high drain current of 532 mA/mm at a moderate channel length of 1.5 {\\mu}m.

  8. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed.

  9. Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: a new prospective chemical technology for phosphorus pollution control.

    PubMed

    Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang

    2014-02-01

    Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process.

  10. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement

    PubMed Central

    Sun, Yi; Brauckmann, Ole; Nixdorf, Donald R.; Kentgens, Arno; Garwood, Michael; Idiyatullin, Djaudat; Heerschap, Arend

    2016-01-01

    Three-dimensional phosphorus MR images (31P MRI) of teeth are obtained at a nominal resolution of 0.5 mm in less than 15 minutes using acquisition pulse sequences sensitive to ultra-short transversal relaxation times. The images directly reflect the spatially resolved phosphorus content of mineral tissue in dentin and enamel; they show a lack of signal from pulp tissue and reduced signal from de-mineralized carious lesions. We demonstrate for the first time that the signal in 31P MR images of mineralized tissue is enhanced by a 1H-31P nuclear Overhauser effect (NOE). Using teeth as a model for imaging mineralized human tissue, graded differences in signal enhancement are observed that correlate well with known mineral content. From solid-state NMR experiments we conclude that the NOE is facilitated by spin diffusion and that the NOE difference can be assigned to a higher water content and a different micro-structure of dentin. Thus, a novel method for imaging mineral content without ionizing radiation is proposed. This method has potential use in the assessment of de-mineralization states in humans, such as caries of teeth and osteoporosis of bones. PMID:27498919

  11. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement.

    PubMed

    Sun, Yi; Brauckmann, Ole; Nixdorf, Donald R; Kentgens, Arno; Garwood, Michael; Idiyatullin, Djaudat; Heerschap, Arend

    2016-01-01

    Three-dimensional phosphorus MR images ((31)P MRI) of teeth are obtained at a nominal resolution of 0.5 mm in less than 15 minutes using acquisition pulse sequences sensitive to ultra-short transversal relaxation times. The images directly reflect the spatially resolved phosphorus content of mineral tissue in dentin and enamel; they show a lack of signal from pulp tissue and reduced signal from de-mineralized carious lesions. We demonstrate for the first time that the signal in (31)P MR images of mineralized tissue is enhanced by a (1)H-(31)P nuclear Overhauser effect (NOE). Using teeth as a model for imaging mineralized human tissue, graded differences in signal enhancement are observed that correlate well with known mineral content. From solid-state NMR experiments we conclude that the NOE is facilitated by spin diffusion and that the NOE difference can be assigned to a higher water content and a different micro-structure of dentin. Thus, a novel method for imaging mineral content without ionizing radiation is proposed. This method has potential use in the assessment of de-mineralization states in humans, such as caries of teeth and osteoporosis of bones. PMID:27498919

  12. Prediction of intracellular storage polymers using quantitative image analysis in enhanced biological phosphorus removal systems.

    PubMed

    Mesquita, Daniela P; Leal, Cristiano; Cunha, Jorge R; Oehmen, Adrian; Amaral, A Luís; Reis, Maria A M; Ferreira, Eugénio C

    2013-04-01

    The present study focuses on predicting the concentration of intracellular storage polymers in enhanced biological phosphorus removal (EBPR) systems. For that purpose, quantitative image analysis techniques were developed for determining the intracellular concentrations of PHA (PHB and PHV) with Nile blue and glycogen with aniline blue staining. Partial least squares (PLS) were used to predict the standard analytical values of these polymers by the proposed methodology. Identification of the aerobic and anaerobic stages proved to be crucial for improving the assessment of PHA, PHB and PHV intracellular concentrations. Current Nile blue based methodology can be seen as a feasible starting point for further enhancement. Glycogen detection based on the developed aniline blue staining methodology combined with the image analysis data proved to be a promising technique, toward the elimination of the need for analytical off-line measurements.

  13. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation

    NASA Astrophysics Data System (ADS)

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-01

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  14. Enhanced stability of black phosphorus field-effect transistors with SiO₂ passivation.

    PubMed

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-30

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  15. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    PubMed Central

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity. PMID:22170425

  16. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal.

    PubMed

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-06-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of 'Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.

  17. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal

    PubMed Central

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc; Nielsen, Jeppe Lund; Wimmer, Reinhard; Le, Vang Quy; McIlroy, Simon Jon; Petrovski, Steve; Seviour, Robert J; Calteau, Alexandra; Nielsen, Kåre Lehmann; Nielsen, Per Halkjær

    2013-01-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to ‘Candidatus Accumulibacter phosphatis' is unclear, although they may occupy different ecological niches in EBPR communities. The genomes of four Tetrasphaera isolates (T. australiensis, T. japonica, T. elongata and T. jenkinsii) were sequenced and annotated, and the data used to construct metabolic models. These models incorporate central aspects of carbon and phosphorus metabolism critical to understanding their behavior under the alternating anaerobic/aerobic conditions encountered in EBPR systems. Key features of these metabolic pathways were investigated in pure cultures, although poor growth limited their analyses to T. japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaera-related PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate and substrate fermentation. During the aerobic phase, the stored glycogen is catabolized to provide energy for growth and to replenish the intracellular polyphosphate reserves needed for subsequent anaerobic metabolism. They are also able to denitrify. This physiology is markedly different to that displayed by ‘Candidatus Accumulibacter phosphatis', and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation. PMID:23178666

  18. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". PMID:23317522

  19. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems.

    PubMed

    Lawson, Christopher E; Strachan, Blake J; Hanson, Niels W; Hahn, Aria S; Hall, Eric R; Rabinowitz, Barry; Mavinic, Donald S; Ramey, William D; Hallam, Steven J

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems.

  20. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid.

  1. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs.

  2. Methanol-driven enhanced biological phosphorus removal with a syntrophic consortium.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Vanneste, Gianni; Guisasola, Albert; Baeza, Juan A

    2013-02-01

    The presence of suitable carbon sources for enhanced biological phosphorus removal (EBPR) plays a key role in phosphorus removal from wastewater in urban WWTP. For wastewaters with low volatile fatty acids (VFAs) content, an external carbon addition is necessary. As methanol is the most commonly external carbon source used for denitrification it could be a priori a promising alternative, but previous attempts to use it for EBPR have failed. This study is the first successful report of methanol utilization as external carbon source for EBPR. Since a direct replacement strategy (i.e., supply of methanol as a sole carbon source to a propionic-fed PAO-enriched sludge) failed, a novel process was designed and implemented successfully: development of a consortium with anaerobic biomass and polyphosphate accumulating organisms (PAOs). Methanol-degrading acetogens were (i) selected against other anaerobic methanol degraders from an anaerobic sludge; (ii) subjected to conventional EBPR conditions (anaerobic + aerobic); and (iii) bioaugmented with PAOs. EBPR with methanol as a sole carbon source was sustained in a mid-term basis with this procedure.

  3. Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2012-05-01

    The microbial selection on an enhanced biological phosphorus removal (EBPR) system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with glucose as the carbon source. Fluorescence In Situ Hybridization analysis was performed to target two polyphosphate accumulating organisms (PAOs) (i.e., Candidatus Accumulibacter phosphatis and Microlunatus phosphovorus) and two glycogen accumulating organisms (GAOs) (i.e., Candidatus Competibacter phosphatis and Micropruina glycogenica). The results show that glucose might not select for Candidatus Accumulibacter phosphatis. However, Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica might be selected. The highest percent relative abundance (% RA) of Candidatus Accumulibacter phosphatis was about 42%; this occurred at the beginning of the experimental period when phosphorus removal was efficient. However, the % RA of these bacteria decreased, reaching below 4% at the end of the run. The maximum % RA of Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica was about 21, 37, 17%, respectively. It appears that a higher glucose concentration might be detrimental for Microlunatus phosphovorus and Micropruina glycogenica. Results also indicate a dominance of GAOs over PAOs when EBPR systems are fed with glucose. It is possible that the GAOs outcompete the PAOs at low pH values; it has been reported that at low pH, GAOs use glycogen as the energy source to uptake glucose. As a result, P-removal deteriorated. Therefore, glucose is not a strong candidate as a carbon source to supplement EBPR systems that do not contain sufficient volatile fatty acids.

  4. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal.

    PubMed

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc; Nielsen, Jeppe Lund; Wimmer, Reinhard; Le, Vang Quy; McIlroy, Simon Jon; Petrovski, Steve; Seviour, Robert J; Calteau, Alexandra; Nielsen, Kåre Lehmann; Nielsen, Per Halkjær

    2013-03-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to 'Candidatus Accumulibacter phosphatis' is unclear, although they may occupy different ecological niches in EBPR communities. The genomes of four Tetrasphaera isolates (T. australiensis, T. japonica, T. elongata and T. jenkinsii) were sequenced and annotated, and the data used to construct metabolic models. These models incorporate central aspects of carbon and phosphorus metabolism critical to understanding their behavior under the alternating anaerobic/aerobic conditions encountered in EBPR systems. Key features of these metabolic pathways were investigated in pure cultures, although poor growth limited their analyses to T. japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaera-related PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate and substrate fermentation. During the aerobic phase, the stored glycogen is catabolized to provide energy for growth and to replenish the intracellular polyphosphate reserves needed for subsequent anaerobic metabolism. They are also able to denitrify. This physiology is markedly different to that displayed by 'Candidatus Accumulibacter phosphatis', and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation.

  5. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint".

  6. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  7. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems.

    PubMed

    Lawson, Christopher E; Strachan, Blake J; Hanson, Niels W; Hahn, Aria S; Hall, Eric R; Rabinowitz, Barry; Mavinic, Donald S; Ramey, William D; Hallam, Steven J

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems. PMID:25857222

  8. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. PMID:25063972

  9. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems.

  10. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    PubMed

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis. PMID:18751532

  11. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes.

  12. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.

    PubMed

    Xing, Lizhen; Ren, Li; Tang, Bo; Wu, Guangxue; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  13. The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems.

    PubMed

    Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2013-02-01

    In this study, the effect of nitrite/FNA on the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) is investigated. The results clearly show that FNA has a detrimental effect on the acetate uptake rate by both PAOs and GAOs, but this adverse effect is much stronger on PAOs than on GAOs. Also, when FNA was increased, phosphate release to acetate uptake ratio by PAOs increased substantially (250-300% compared to control), which was accompanied by decreases (40-60%) in glycogen degradation and PHA production to VFA uptake. In contrast, these ratios for GAOs remained constant or increased slightly towards the highest FNA concentration applied. These results indicate that the anaerobic metabolism of PAOs is more adversely affected than that of GAOs when FNA is present. This might provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal systems when nitrite is present.

  14. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (I): Model constitution].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    Based on activated sludge model No. 2 (ASM2), the anaerobic/aerobic kinetic model of phosphorus-accumulating organisms (PAO) was established with mixed short-chain fatty acids (SCFAs) as the base substance in enhanced biological phosphorus removal process. The characteristic of the PAO model was that the anaerobic metabolism rates of glycogen degradation, poly-beta-hydroxyalkanoates synthesis and polyphosphate hydrolysis were expressed by SCFAs uptake equation, and the effects of anaerobic maintenance on kinetics and stoichiometry were considered. The PAO kinetic model was composed of 3 soluble components, 4 particulate components and a pH parameter, which constituted the matrix of stoichiometric coefficients. On the basis of PAO model, the GAO kinetic model was established, which included 7 processes, and phosphorus content influenced the aerobic metabolism only.

  15. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).

    PubMed

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Goel, Ramesh

    2015-09-15

    Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems.

  16. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).

    PubMed

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Goel, Ramesh

    2015-09-15

    Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems. PMID:26024959

  17. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation.

    PubMed

    Tong, Juan; Chen, Yinguang

    2007-10-15

    This paper examines the feasibility of using alkaline fermentative short-chain fatty acids (SCFAs) as the carbon sources of enhanced biological phosphorus removal (EBPR) microorganisms. First, the released phosphorus was recovered from the SCFA-containing alkaline fermentation liquid by the formation of struvite precipitation, and 92.8% of the soluble ortho-phosphorus (SOP) could be recovered under conditions of Mg/P = 1.8 (mol/mol), pH 10.0, and a reaction time of 2 min. One reason for a Mg addition required in this study that was higher than the theoretical value was thatthe organic compounds consumed Mg. Then, two sequencing batch reactors (SBRs) were operated, respectively, with acetic acid and alkaline fermentative SCFAs as the carbon source of EBPR. The transformations of SOP, polyhydroxyalkanoates (PHAs), and glycogen and the removal of phosphorus were compared between two SBRs. It was observed that the phosphorus removal efficiency was around 98% with the fermentative SCFAs, and about 71% with acetic acid, although the former showed much lower transformations of both PHAs and glycogen. The reasons that fermentative SCFAs caused much higher SOP removal than acetic acid were due to less PHAs used for glycogen synthesis and a higher PHA utilization efficiency for SOP uptake. Finally, the toxicity of fermentation liquid to EBPR microorganisms was examined, and no inhibitory effect was observed. It can be concluded from this studythatthe SCFAs from alkaline fermentation of waste activated sludge were a superior carbon source for EBPR microorganisms than pure acetic acid.

  18. Effect of Sludge Type on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactors

    NASA Astrophysics Data System (ADS)

    Li, Xing; Gao, Dawen; Zhang, Baihui

    2010-11-01

    Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the study of distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in EBPR. Two SBRs were concurrently operated to investigate the different phosphorus removal characteristics between granules (R1) and flocculate sludge (R2). Results indicated that R2 had a faster progress for enriching phosphorus-accumulating organisms compared with R1, and the phosphorus removal reached the steady state after 40 days in R1 but only 30 days in R2. The moisture content of granules (85.63%) was smaller than that (91.36%) in R2, and the granules had a higher removal efficiency of NH4+-N. However, flocculent sludge could release and take up more phosphorus. The special phosphorus release rate (SPRR) and special phosphorus uptake rate (SPUR) were 8.818 mg/gVSSṡh and 9.921 mg/gVSSṡh in R2 which were consistently larger than that (0.999 mg/gVSSṡh and 0.754 mg/gVSSṡh) in R1. The results of DGGE of PCR-amplified 16SrDNA fragments revealed that the diversity and the amount of phosphorus accumulating microbial of bacteria in flocculent sludge were much more than that in the granules. It can be concluded that the flocculent sludge showed a better phosphorus removal.

  19. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants. PMID:25880602

  20. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants.

  1. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system.

    PubMed

    Xie, Jianna; Zhou, Jia; Wang, Xiurong; Liao, Hong

    2015-05-01

    Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean-soybean mixed cultures were employed to illuminate P acquisition among plants in mixed stands of transgenic and wild-type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild-type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean-maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture. PMID:25048220

  2. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system.

    PubMed

    Xie, Jianna; Zhou, Jia; Wang, Xiurong; Liao, Hong

    2015-05-01

    Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean-soybean mixed cultures were employed to illuminate P acquisition among plants in mixed stands of transgenic and wild-type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild-type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean-maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture.

  3. High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants.

    PubMed

    Kindaichi, Tomonori; Nierychlo, Marta; Kragelund, Caroline; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2013-06-01

    Microbial communities are typically characterized by conditions of nutrient limitation so the availability of the resources is likely a key factor in the niche differentiation across all species and in the regulation of the community structure. In this study we have investigated whether four species exhibit any in situ short-term changes in substrate uptake pattern when exposed to variations in substrate and growth conditions. Microautoradiography was combined with fluorescence in situ hybridization to investigate in situ cell-specific substrate uptake profiles of four probe-defined coexisting species in a wastewater treatment plant with enhanced biological phosphorus removal. These were the filamentous 'Candidatus Microthrix' and Caldilinea (type 0803), the polyphosphate-accumulating organism 'Candidatus Accumulibacter', and the denitrifying Azoarcus. The experimental conditions mimicked the conditions potentially encountered in the respective environment (starvation, high/low substrate concentration, induction with specific substrates, and single/multiple substrates). The results showed that each probe-defined species exhibited very distinct and constant substrate uptake profile in time and space, which hardly changed under any of the conditions tested. Such niche partitioning implies that a significant change in substrate composition will be reflected in a changed community structure rather than the substrate uptake response from the different species.

  4. Metagenomes obtained by 'deep sequencing' - what do they tell about the enhanced biological phosphorus removal communities?

    PubMed

    Albertsen, Mads; Saunders, Aaron M; Nielsen, Kåre L; Nielsen, Per H

    2013-01-01

    Metagenomics enables studies of the genomic potential of complex microbial communities by sequencing bulk genomic DNA directly from the environment. Knowledge of the genetic potential of a community can be used to formulate and test ecological hypotheses about stability and performance. In this study deep metagenomics and fluorescence in situ hybridization (FISH) were used to study a full-scale wastewater treatment plant with enhanced biological phosphorus removal (EBPR), and the results were compared to an existing EBPR metagenome. EBPR is a widely used process that relies on a complex community of microorganisms to function properly. Insight into community and species level stability and dynamics is valuable for knowledge-driven optimization of the EBPR process. The metagenomes of the EBPR communities were distinct compared to metagenomes of communities from a wide range of other environments, which could be attributed to selection pressures of the EBPR process. The metabolic potential of one of the key microorganisms in the EPBR process, Accumulibacter, was investigated in more detail in the two plants, revealing a potential importance of phage predation on the dynamics of Accumulibacter populations. The results demonstrate that metagenomics can be used as a powerful tool for system wide characterization of the EBPR community as well as for a deeper understanding of the function of specific community members. Furthermore, we discuss and illustrate some of the general pitfalls in metagenomics and stress the need of additional DNA extraction independent information in metagenome studies.

  5. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way.

  6. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    PubMed

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.

  7. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way. PMID:24901627

  8. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.

    PubMed

    Postma, Johannes Auke; Lynch, Jonathan Paul

    2011-07-01

    Root cortical aerenchyma (RCA) is induced by hypoxia, drought, and several nutrient deficiencies. Previous research showed that RCA formation reduces the respiration and nutrient content of root tissue. We used SimRoot, a functional-structural model, to provide quantitative support for the hypothesis that RCA formation is a useful adaptation to suboptimal availability of phosphorus, nitrogen, and potassium by reducing the metabolic costs of soil exploration in maize (Zea mays). RCA increased the growth of simulated 40-d-old maize plants up to 55%, 54%, or 72% on low nitrogen, phosphorus, or potassium soil, respectively, and reduced critical fertility levels by 13%, 12%, or 7%, respectively. The greater utility of RCA on low-potassium soils is associated with the fact that root growth in potassium-deficient plants was more carbon limited than in phosphorus- and nitrogen-deficient plants. In contrast to potassium-deficient plants, phosphorus- and nitrogen-deficient plants allocate more carbon to the root system as the deficiency develops. The utility of RCA also depended on other root phenes and environmental factors. On low-phosphorus soils (7.5 μM), the utility of RCA was 2.9 times greater in plants with increased lateral branching density than in plants with normal branching. On low-nitrate soils, the utility of RCA formation was 56% greater in coarser soils with high nitrate leaching. Large genetic variation in RCA formation and the utility of RCA for a range of stresses position RCA as an interesting crop-breeding target for enhanced soil resource acquisition.

  9. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    PubMed

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation.

  10. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    PubMed

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. PMID:26204227

  11. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.

    PubMed

    Bucci, Vanni; Majed, Nehreen; Hellweger, Ferdi L; Gu, April Z

    2012-03-20

    A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect

  12. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems.

  13. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.

    PubMed

    Bucci, Vanni; Majed, Nehreen; Hellweger, Ferdi L; Gu, April Z

    2012-03-20

    A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect

  14. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. PMID:25222332

  15. Enhancing soluble phosphorus removal within buffer strips using industrial by-products.

    PubMed

    Habibiandehkordi, Reza; Quinton, John N; Surridge, Ben W J

    2014-11-01

    Using industrial by-products (IBPs) in conjunction with buffer strips provides a potentially new strategy for enhancing soluble phosphorus (P) removal from agricultural runoff. Here, we investigate the feasibility of this approach by assessing the P sorption properties of IBPs at different solution-IBPs contact time (1-120 min) and solution pH (3, 5.5, 7.5), as well as possible adverse environmental effects including P desorption or heavy metal mobilisation from IBPs. Batch experiments were carried out on two widely available IBPs in the UK that demonstrated high P sorption capacity but different physicochemical characteristics, specifically ochre and Aluminium (Al) based water treatment residuals (Al-WTR). A series of kinetic sorption-desorption experiments alongside kinetic modelling were used to understand the rate and the mechanisms of P removal across a range of reaction times. The results of the kinetic experiments indicated that P was initially sorbed rapidly to both ochre and Al-WTR, followed by a second phase characterised by a slower sorption rate. The excellent fits of kinetic sorption data to a pseudo-second order model for both materials suggested surface chemisorption as the rate-controlling mechanism. Neither ochre nor Al-WTR released substantial quantities of either P or heavy metals into solution, suggesting that they could be applied to buffer strip soils at recommended rates (≤30 g kg(-1) soil) without adverse environmental impact. Although the rate of P sorption by freshly-generated Al-WTR applied to buffer strips reduced following air-drying, this would not limit its practical application to buffer strips in the field if adequate contact time with runoff was provided. PMID:24928382

  16. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81.

  17. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system.

  18. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. PMID:27295254

  19. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. PMID:27085149

  20. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  1. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set.

  2. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants

    PubMed Central

    Albertsen, Mads; McIlroy, Simon J.; Stokholm-Bjerregaard, Mikkel; Karst, Søren M.; Nielsen, Per H.

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  3. Enhancement of donor ionization in phosphorus-doped n-diamond

    NASA Astrophysics Data System (ADS)

    Koide, Yasuo

    2005-05-01

    In order to explore a possibility for controlling an electron concentration in phosphorus-doped n-diamond, electron and ionized-donor concentrations in n-diamond/cBN and n-diamond/AlN heterojunctions are analyzed by self-consistently solving Poisson and Schrödinger equations. Although the electron concentration is an order of 10 11 cm -3 at room temperature for single n-diamond with a donor concentration of 5 × 10 18 cm -3 and a compensation ratio of 0.01, a modulation-doping technique predicts to provide full ionization of phosphorus donor in the n-diamond/cBN heterostructure and generation of an electron concentration larger than 10 18 cm -3 at room temperature.

  4. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  5. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  6. Enhanced phosphorus removal in the DAF process by flotation scum recycling for advanced treatment of municipal wastewater.

    PubMed

    Kwak, Dong-Heui; Lee, Ki-Cheol

    2015-01-01

    To remove phosphorus (P) from municipal wastewater, various types of advanced treatment processes are being actively applied. However, there is commonly a space limit in municipal wastewater treatment plants (MWTPs). For that reason, the dissolved air flotation (DAF), which is well known for small space and flexible application process, is preferred as an additive process to enhance the removal of P. A series of experiments were conducted to investigate the feasibility of flotation scum recycling for effective P removal from a MWTP using a DAF pilot plant over 1 year. The average increases in the removal efficiencies due to flotation scum recycling were 22.6% for total phosphorus (T-P) and 18.3% for PO4-P. A higher removal efficiency of T-P was induced by recycling the flotation scum because a significant amount of Al components remained in the flotation scum. The increase in T-P removal efficiency, due to the recycling of flotation scum, shifted from the boundary of the stoichiometric precipitate to the equilibrium control region. Flotation scum recycling may contribute to improving the quality of treated water and reducing treatment costs by minimizing the coagulant dosage required.

  7. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation.

    PubMed

    Li, Miao; Wu, Yue-Jin; Yu, Zeng-Liang; Sheng, Guo-Ping; Yu, Han-Qing

    2009-03-01

    Ipomoea aquatica with low-energy N+ ion implantation was used for the removal of both nitrogen and phosphorus from the eutrophic Chaohu Lake, China. The biomass growth, nitrate reductase and peroxidase activities of the implanted I. aquatica were found to be higher than those of I. aquatica without ion implantation. Higher NO3-N and PO4-P removal efficiencies were obtained for the I. aquatica irradiation at 25 keV, 3.9 x 10(16) N+ ions/cm(2) and 20 keV 5.2 x 10(16) N+ ions/cm(2), respectively (p < 0.05). Moreover, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those of the controls. I. aquatica with ion implantation was directly responsible for 51-68% N removal and 54-71% P removal in the three experiments. The results further confirm that the ion implantation could enhance the growth potential of I. aquatica in real eutrophic water and increase its nutrient removal efficiency. Thus, the low-energy ion implantation for aquatic plants could be considered as an approach for in situ phytoremediation and bioremediation of eutrophic waters.

  8. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution.

    PubMed

    Guo, Shien; Deng, Zhaopeng; Li, Mingxia; Jiang, Baojiang; Tian, Chungui; Pan, Qingjiang; Fu, Honggang

    2016-01-26

    Phosphorus-doped hexagonal tubular carbon nitride (P-TCN) with the layered stacking structure was obtained from a hexagonal rod-like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P-TCN involves two steps: 1) the precursor was prepared by self-assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid-assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P-TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P-TCN exhibited a high hydrogen evolution rate of 67 μmol h(-1) (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g-C3 N4 reported. PMID:26692105

  9. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands.

    PubMed

    López-Vázquez, Carlos M; Hooijmans, Christine M; Brdjanovic, Damir; Gijzen, Huub J; van Loosdrecht, Mark C M

    2008-05-01

    The influence of operating and environmental conditions on the microbial populations of the enhanced biological phosphorus removal (EBPR) process at seven full-scale municipal activated sludge wastewater treatment plants (WWTPs) in The Netherlands was studied. Data from the selected WWTPs concerning process configuration, operating and environmental conditions were compiled. The EBPR activity from each plant was determined by execution of anaerobic-anoxic-aerobic batch tests using fresh activated sludge. Fractions of Accumulibacter as potential phosphorus accumulating organisms (PAO), and Competibacter, Defluviicoccus-related microorganisms and Sphingomonas as potential glycogen accumulating organisms (GAO) were quantified using fluorescence in situ hybridization (FISH). The relationships among plant process configurations, operating parameters, environmental conditions, EBPR activity and microbial populations fractions were evaluated using a statistical approach. A well-defined and operated denitrification stage and a higher mixed liquor pH value in the anaerobic stage were positively correlated with the occurrence of Accumulibacter. A well-defined denitrification stage also stimulated the development of denitrifying PAO (DPAO). A positive correlation was observed between Competibacter fractions and organic matter concentrations in the influent. Nevertheless, Competibacter did not cause a major effect on the EBPR performance. The observed Competibacter fractions were not in the range that would have led to EBPR deterioration. Likely, the low average sewerage temperature (12+/-2 degrees C) limited their proliferation. Defluviicoccus-related microorganisms were seen only in negligible fractions in a few plants (<0.1% as EUB), whereas Sphingomonas were not observed.

  10. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution.

    PubMed

    Guo, Shien; Deng, Zhaopeng; Li, Mingxia; Jiang, Baojiang; Tian, Chungui; Pan, Qingjiang; Fu, Honggang

    2016-01-26

    Phosphorus-doped hexagonal tubular carbon nitride (P-TCN) with the layered stacking structure was obtained from a hexagonal rod-like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P-TCN involves two steps: 1) the precursor was prepared by self-assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid-assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P-TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P-TCN exhibited a high hydrogen evolution rate of 67 μmol h(-1) (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g-C3 N4 reported.

  11. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. PMID:26092200

  12. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge.

  13. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. PMID:27472749

  14. Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Zheng, Xiongliu; Sun, Peide; Lou, Juqing; Cai, Jing; Song, Yingqi; Yu, Shenjing; Lu, Xuanyu

    2013-11-01

    The inhibition of free ammonia (FA) to the granule-based enhanced biological phosphorus removal (EBPR) system and the recoverability from macro- to micro-scale were investigated in this study. FA was found to seriously deteriorate the EBPR performance and sludge characteristic (settleability and morphology). The FA inhibitory threshold of 17.76 mg NL(-1) was established. Acclimation phenomenon took place when poly-phosphate accumulating organisms (PAOs) were exposed for long time to constant FA concentration (8.88 mg NL(-1)). The repressed polysaccharides excretion could lead to breaking the stability and integrity of the granules. Therefore, the reduced particle size and granule disintegration were observed. The molecular analysis revealed that FA had a significant influence on the microbial communities and FA inhibition may provide a competitive advantage to glycogen accumulating organisms (GAOs) over PAOs. Interestingly, the community composition was found irreversible by recovery (Dice coefficients, 36.3%), although good EBPR performance was re-achieved.

  15. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading.

  16. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1).

  17. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal.

    SciTech Connect

    Wilmes, P; Andersson, Anders F.; Lefsrud, Mark G; Wexler, Margaret; Shah, Manesh B; Zhang, B; Hettich, Robert {Bob} L; Bond, P. L.; Verberkmoes, Nathan C; Banfield, Jillian F.

    2008-01-01

    Enhanced biological phosphorus removal (EBPR) selects for polyphosphate accumulating organisms to achieve phosphate removal from wastewater. We used highresolution community proteomics to identify key metabolic pathways in "Candidatus Accumulibacter phosphatis"-mediated EBPR and to evaluate the contributions of co- 5 existing strains within the dominant population. Results highlight the importance of denitrification, fatty acid cycling and the glyoxylate bypass in EBPR. Despite overall strong similarity in protein profiles under anaerobic and aerobic conditions, fatty acid degradation proteins were more abundant during the anaerobic phase. By comprehensive genome-wide alignment of orthologous proteins, we uncovered strong 10 functional partitioning for enzyme variants involved in both core-metabolism and EBPR-specific pathways among the dominant strains. These findings emphasize the importance of genetic diversity in maintaining the stable performance of EBPR systems and demonstrate the power of integrated cultivation-independent genomics and proteomics for analysis of complex biotechnological systems.

  18. The long-term effect of nitrite on the granule-based enhanced biological phosphorus removal system and the reversibility.

    PubMed

    Zheng, Xiongliu; Sun, Peide; Lou, Juqing; Fang, Zhiguo; Guo, Maoxin; Song, Yingqi; Tang, Xiudi; Jiang, Tao

    2013-03-01

    This study investigated the long-term effect of nitrite on the granule-based enhanced biological phosphorus removal (EBPR) system and the reversibility from macro- to micro-scale. Nitrite was found to seriously deteriorate the EBPR performance and result in severe sludge bulking. The inhibited polysaccharides excretion could lead to breaking the stability and integrity of the granules. Therefore, the reduced particle size and granule disintegration were observed. In this study, granules with lower ratio of proteins to polysaccharides (1.76) had better structure and function than the higher (3.84). Experimental results demonstrated that the microbial community structure was largely changed due to the presence of nitrite. In comparison, glycogen accumulating organisms (GAOs) had stronger resistibility and higher recovery rate than poly-phosphate accumulating organisms (PAOs). Interestingly, the community composition was unable to recover (Dice coefficients, 33.0%), although good EBPR performance was achieved only by propagating other types of PAOs.

  19. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). PMID:25189512

  20. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.

    PubMed

    Wang, Juan; Qi, Rong; Liu, Miaomiao; Li, Qian; Bao, Haipeng; Li, Yaming; Wang, Shen; Tandoi, Valter; Yang, Min

    2014-01-01

    We investigated the bacterial community compositions and phosphorus removal performance under sludge bulking and non-bulking conditions in two biological wastewater treatment systems (conventional A²/O (anaerobic/anoxic/aerobic) and inverted A²/O (anoxic/anaerobic/aerobic) processes) receiving the same raw wastewater. Sludge bulking resulted in significant shift in bacterial compositions from Proteobacteria dominance to Actinobacteria dominance, characterized by the significant presence of filamentous 'Candidatus Microthrix parvicella'. Quantitative real-time polymerase chain reaction (PCR) analysis revealed that the relative abundance of 'Candidatus Accumulibacter phosphatis', a key polyphosphate-accumulating organism responsible for phosphorus removal, with respect to 16s rRNA genes of total bacteria was 0.8 and 0.7%, respectively, for the conventional and inverted A²/O systems when sludge bulking occurred, which increased to 8.2 and 12.3% during the non-bulking period. However, the total phosphorus removal performance during the bulking period (2-week average: 97 ± 1 and 96 ± 1%, respectively) was not adversely affected comparable to that during the non-bulking period (2-week average: 96 ± 1 and 96 ± 1%, respectively). Neisser staining revealed the presence of large polyphosphate granules in 'Candidatus Microthrix parvicella', suggesting that this microbial group might have been responsible for phosphorus removal during the sludge bulking period when 'Candidatus Accumulibacter phosphatis' was excluded from the systems.

  1. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.

    PubMed

    Wang, Juan; Qi, Rong; Liu, Miaomiao; Li, Qian; Bao, Haipeng; Li, Yaming; Wang, Shen; Tandoi, Valter; Yang, Min

    2014-01-01

    We investigated the bacterial community compositions and phosphorus removal performance under sludge bulking and non-bulking conditions in two biological wastewater treatment systems (conventional A²/O (anaerobic/anoxic/aerobic) and inverted A²/O (anoxic/anaerobic/aerobic) processes) receiving the same raw wastewater. Sludge bulking resulted in significant shift in bacterial compositions from Proteobacteria dominance to Actinobacteria dominance, characterized by the significant presence of filamentous 'Candidatus Microthrix parvicella'. Quantitative real-time polymerase chain reaction (PCR) analysis revealed that the relative abundance of 'Candidatus Accumulibacter phosphatis', a key polyphosphate-accumulating organism responsible for phosphorus removal, with respect to 16s rRNA genes of total bacteria was 0.8 and 0.7%, respectively, for the conventional and inverted A²/O systems when sludge bulking occurred, which increased to 8.2 and 12.3% during the non-bulking period. However, the total phosphorus removal performance during the bulking period (2-week average: 97 ± 1 and 96 ± 1%, respectively) was not adversely affected comparable to that during the non-bulking period (2-week average: 96 ± 1 and 96 ± 1%, respectively). Neisser staining revealed the presence of large polyphosphate granules in 'Candidatus Microthrix parvicella', suggesting that this microbial group might have been responsible for phosphorus removal during the sludge bulking period when 'Candidatus Accumulibacter phosphatis' was excluded from the systems. PMID:25051486

  2. Analysis of poly-β-hydroxyalkonates (PHA) during the enhanced biological phosphorus removal process using FTIR spectroscopy.

    PubMed

    Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing

    2014-06-01

    Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge.

  3. Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing.

    PubMed

    Nielsen, Jeppe Lund; Nguyen, Hien; Meyer, Rikke Louise; Nielsen, Per Halkjær

    2012-07-01

    Microbiology in wastewater treatment has mainly been focused on problem-causing filamentous bacteria or bacteria directly involved in nitrogen and phosphorus removal, and to a lesser degree on flanking groups, such as hydrolysing and fermenting bacteria. However, these groups constitute important suppliers of readily degradable substrates for the overall processes in the plant. This study aimed to identify glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plant (WWTP), and to determine their abundance in similar WWTPs. Glucose-fermenting micro-organisms were identified by an in situ approach using RNA-based stable isotope probing. Activated sludge was incubated anaerobically with (13)C(6)-labelled glucose, and (13)C-enriched rRNA was subsequently reverse-transcribed and used to construct a 16S rRNA gene clone library. Phylogenetic analysis of the library revealed the presence of two major phylogenetic groups of gram-positive bacteria affiliating with the genera Tetrasphaera, Propionicimonas (Actinobacteria), and Lactococcus and Streptococcus (Firmicutes). Specific oligonucleotide probes were designed for fluorescence in situ hybridization (FISH) to specifically target the glucose-fermenting bacteria identified in this study. The combination of FISH with microautoradiography confirmed that Tetrasphaera, Propionicimonas and Streptococcus were the dominant glucose fermenters. The probe-defined fermenters were quantified in 10 full-scale EBPR plants and averaged 39 % of the total biovolume. Tetrasphaera and Propionicimonas were the most abundant glucose fermenters (average 33 and 4 %, respectively), while Streptococcus and Lactococcus were present only in some WWTPs (average 1 and 0.4 %, respectively). Thus the population of actively metabolizing glucose fermenters seems to occupy a relatively large component of the total biovolume.

  4. Analysis of poly-β-hydroxyalkonates (PHA) during the enhanced biological phosphorus removal process using FTIR spectroscopy.

    PubMed

    Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing

    2014-06-01

    Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge. PMID:25358156

  5. Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (Chenopodiaceae) with no enhancement of phosphorus nutrition.

    PubMed

    Zhang, Tao; Shi, Ning; Bai, Dengsha; Chen, Yinglong; Feng, Gu

    2012-01-01

    The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM) colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%). Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the large ribosomal rDNA subunit detected four culturable Glomus species, G. intraradices, G. mosseae, G. etunicatum and G. microaggregatum together with eight unculturable species belong to the Glomeromycota in the root system of C. arenarius collected from the field. These results establish the mycotrophic status of C. arenarius. Both in the field and in the greenhouse inoculation trial, the growth of C. arenarius was stimulated by the indigenous AM fungal community and the inoculated AM fungal isolates, respectively, but the P uptake and concentration of the mycorrhizal plants did not increase significantly over the controls in both experiments. Furthermore, the AM fungi significantly increased seed production. Our results suggest that an alternative reciprocal benefit to carbon-phosphorus trade-off between AM fungi and the chenopod plant might exist in the extremely arid environment.

  6. Arbuscular Mycorrhizal Fungi Promote the Growth of Ceratocarpus arenarius (Chenopodiaceae) with No Enhancement of Phosphorus Nutrition

    PubMed Central

    Bai, Dengsha; Chen, Yinglong; Feng, Gu

    2012-01-01

    The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM) colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%). Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the large ribosomal rDNA subunit detected four culturable Glomus species, G. intraradices, G. mosseae, G. etunicatum and G. microaggregatum together with eight unculturable species belong to the Glomeromycota in the root system of C. arenarius collected from the field. These results establish the mycotrophic status of C. arenarius. Both in the field and in the greenhouse inoculation trial, the growth of C. arenarius was stimulated by the indigenous AM fungal community and the inoculated AM fungal isolates, respectively, but the P uptake and concentration of the mycorrhizal plants did not increase significantly over the controls in both experiments. Furthermore, the AM fungi significantly increased seed production. Our results suggest that an alternative reciprocal benefit to carbon-phosphorus trade-off between AM fungi and the chenopod plant might exist in the extremely arid environment. PMID:22957011

  7. A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture.

    PubMed

    Gaxiola, Roberto A; Edwards, Mark; Elser, James J

    2011-08-01

    Concerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields. Plants possess a large number of adaptive responses to P(i) (orthophosphate) limitation that provide potential raw materials to enhance P(i) scavenging abilities of crop plants. Understanding and engineering these adaptive responses to increase the efficiency of crop capture of natural and fertilizer P(i) in soils is one way to optimize P(i) use efficiency (PUE) and, together with other approaches, help to meet the P sustainability challenge in agriculture. Research on the molecular and physiological basis of P(i) uptake is facilitating the generation of plants with enhanced P(i) use efficiency by genetic engineering. Here we describe work done in this direction with emphasis on the up-regulation of plant proton-translocating pyrophosphatases (H(+)-PPases).

  8. Phosphorus-doped tin oxides/carbon nanofibers webs as lithium-ion battery anodes with enhanced reversible capacity

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Teng, Donghua; Li, Ting; Yu, Yunhua; Shao, Xiaohong; Yang, Xiaoping

    2014-12-01

    Phosphorus-doped tin oxides/carbon nanofibers (P-SnOx/CNFs) composite materials are prepared via electrospinning of a mixed solution composed of polyacrylonitrile (PAN), N,N-dimethyl formamide (DMF), tin tetrachloride, ethylene glycol and phosphoric acid as well as subsequent thermal treatments. The P-SnOx/CNFs samples with tunable P-doping contents are directly used as anodes for lithium-ion batteries without any binders and conductors, exhibiting enhanced reversible capacities and cycling stabilities in comparison with pristine undoped SnOx/CNFs (0P-SnOx/CNFs). In a controlled experiment, the 0.25P-SnOx/CNFs anode with the atomic ratio of P:Sn = 0.25:1 shows the highest specific reversible capacity of 676 mA h g-1 at 200 mA g-1 after 100 cycles. Even at a higher current density of 2000 mA g-1, it still maintains a superior specific reversible capacity of 288 mA h g-1. The improved electrochemical performances are attributed to the P-doping effects such as inducement of a stable structural protection for tin particles, and enhancement of lithium ion diffusion coefficient and electron kinetics of electrode materials.

  9. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.

    PubMed

    Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing

    2016-10-01

    Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile. PMID:27300290

  10. Phosphorus Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...

  11. Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process.

    PubMed

    Ki, C Y; Kwon, K H; Kim, S W; Min, K S; Lee, T U; Park, D J

    2014-01-01

    In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent).

  12. Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process.

    PubMed

    Ki, C Y; Kwon, K H; Kim, S W; Min, K S; Lee, T U; Park, D J

    2014-01-01

    In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent). PMID:24845316

  13. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure. PMID:23477409

  14. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi.

    PubMed

    Raliya, Ramesh; Tarafdar, Jagadish Chandra; Biswas, Pratim

    2016-04-27

    Phosphorus (P) is a limiting factor to plant growth and productivity in almost half of the world's arable soil, and its uptake in plants is often constrained because of its low solubility in the soil. To avoid repeated and large quantity application of rock phosphate as a P fertilizer and enhance the availability of native P acquisition by the plant root surface, in this study a biosynthesized ZnO nanoparticle was used. Zn acts as a cofactor for P-solubilizing enzymes such as phosphatase and phytase, and nano ZnO increased their activity between 84 and 108%. The level of resultant P uptake in mung bean increased by 10.8%. In addition, biosynthesized ZnO also improves plant phenology such as stem height, root volume, and biochemical indicators such as leaf protein and chlorophyll contents. In the rhizosphere, increased chlorophyll content and root volume attract microbial populations that maintain soil biological health. ICP-MS results showed ZnO nanoparticles were distributed in all plant parts, including seeds. However, the concentration of Zn was within the limit of the dietary recommendation. To the best of our knowledge, this is the first holistic study focusing on native P mobilization using ZnO nanoparticles in the life cycle of mung bean plants. PMID:27054413

  15. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration.

    PubMed

    Vera, I; Araya, F; Andrés, E; Sáez, K; Vidal, G

    2014-08-01

    Phosphorus (P) contained in sewage maybe removed by mesocosm-scale constructed wetlands (MCW), although removal efficiency is only between 20% and 60%. P removal can be enhanced by increasing wetland adsorption capacity using special media, like natural zeolite, operating under aerobic conditions (oxidation-reduction potential (ORP) above +300 mV). The objective of this study was to evaluate P removal in sewage treated by MCW with artificial aeration and natural zeolite as support medium for the plants. The study compared two parallel lines of MCW: gravel and zeolite. Each line consisted in two MCW in series, where the first MCW of each line has artificial aeration. Additionally, four aeration strategies were evaluated. During the operation, the following parameters were measured in each MCW: pH, temperature, dissolved oxygen and ORP. Phosphate (PO4(-3) - P) and chemical oxygen demand (COD), five-day biological oxygen demand (BOD5), total suspended solids (TSS) and ammonium. (NH4(+) - N) were evaluated in influents and effluents. Plant growth (biomass) and proximate analysis for P content into Schoenoplectus californicus were also performed. The results showed that PO4(-3) - P removal efficiency was 70% in the zeolite medium, presenting significant differences (p < .05) with the results obtained by the gravel medium. Additionally, aeration was found to have a significant effect (p < .05) only in the gravel medium with an increase in up to 30% for PO43 - P removal. Thus, S. californicus contributed to 10-20% of P removal efficiency.

  16. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  17. Microbial communities involved in enhanced biological phosphorus removal from wastewater--a model system in environmental biotechnology.

    PubMed

    Nielsen, Per Halkjær; Saunders, Aaron Marc; Hansen, Aviaja Anna; Larsen, Poul; Nielsen, Jeppe Lund

    2012-06-01

    Enhanced biological phosphorus removal (EBPR) is one of the most advanced and complicated wastewater treatment processes applied today, and it is becoming increasingly popular worldwide as a sustainable way to remove and potentially reuse P. It is carried out by complex microbial communities consisting primarily of uncultured microorganisms. The EBPR process is a well-studied system with clearly defined boundaries which makes it very suitable as a model ecosystem in microbial ecology. Of particular importance are the transformations of C, N, and P, the solid-liquid separation properties and the functional and structural stability. A range of modern molecular methods has been used to study these communities in great detail including single cell microbiology, various -omics methods, flux analyses, and modeling making this one of the best studied microbial ecosystems so far. Recently, an EBPR core microbiome has been described and we present in this article some highlights and show how this complex microbial community can be used as model ecosystem in environmental biotechnology.

  18. 'Candidatus Halomonas phosphatis', a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants.

    PubMed

    Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2012-10-01

    Microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was used to screen for potential polyphosphate-accumulating organisms (PAOs) in full-scale enhanced biological phosphorus removal (EBPR) plants. Clone library analyses and application of MAR-FISH using newly designed probes revealed that small rods related to uncultured Halomonas within the gammaproteobacterial family Halomonadaceae were actively involved in uptake of orthophosphate. Although deeply branched in the Gammaproteobacteria, they were not targeted by the gammaproteobacterial probe (GAM42a). A part of them were also not targeted with the general bacterial probes (EUBmix). They could take up short-chain fatty acids (e.g. acetate and propionate) and ethanol under both anaerobic and aerobic conditions. Polyhydroxyalkanoate storage was observed under anaerobic conditions. There was no indication of a denitrifying capability. A survey of the occurrence of these Halomonas-PAOs in 23 full-scale EBPR plants revealed that they made up 0.5-5.7% of all bacteria in the plants, and were often in higher abundance than the well-described PAOs 'Candidatus Accumulibacter phosphatis'. This indicates a potentially important role for these uncultured Halomonas bacteria in the EBPR process in full-scale plants and we propose to name them 'Candidatus Halomonas phosphatis'.

  19. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  20. Molecular characterization of denitrifying bacteria isolated from the anoxic reactor of a modified DEPHANOX plant performing enhanced biological phosphorus removal.

    PubMed

    Zafiriadis, Ilias; Ntougias, Spyridon; Mirelis, Paraskevi; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2012-06-01

    Enhanced Biological Phosphorus Removal (EBPR) under anoxic conditions was achieved using a Biological Nutrient Removal (BNR) system based on a modification of the DEPHANOX configuration. Double-probe Fluorescence in Situ Hybridization (FISH) revealed that Polyphosphate Accumulating Organisms (PAOs) comprised 12.3 +/- 3.2% of the total bacterial population in the modified DEPHANOX plant. The growing bacterial population on blood agar and Casitone Glycerol Yeast Autolysate agar (CGYA) medium was 16.7 +/- 0.9 x 10(5) and 3.0 +/- 0.6 x 10(5) colony forming units (cfu) mL(-1) activated sludge, respectively. A total of 121 bacterial isolates were characterized according to their denitrification ability, with 26 bacterial strains being capable of reducing nitrate to gas. All denitrifying isolates were placed within the alpha-, beta-, and gamma-subdivisions of Proteobacteria and the family Flavobacteriaceae. Furthermore, a novel denitrifying bacterium within the genus Pseudomonas was identified. This is the first report on the isolation and molecular characterization of denitrifying bacteria from EBPR sludge using a DEPHANOX-type plant.

  1. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi.

    PubMed

    Raliya, Ramesh; Tarafdar, Jagadish Chandra; Biswas, Pratim

    2016-04-27

    Phosphorus (P) is a limiting factor to plant growth and productivity in almost half of the world's arable soil, and its uptake in plants is often constrained because of its low solubility in the soil. To avoid repeated and large quantity application of rock phosphate as a P fertilizer and enhance the availability of native P acquisition by the plant root surface, in this study a biosynthesized ZnO nanoparticle was used. Zn acts as a cofactor for P-solubilizing enzymes such as phosphatase and phytase, and nano ZnO increased their activity between 84 and 108%. The level of resultant P uptake in mung bean increased by 10.8%. In addition, biosynthesized ZnO also improves plant phenology such as stem height, root volume, and biochemical indicators such as leaf protein and chlorophyll contents. In the rhizosphere, increased chlorophyll content and root volume attract microbial populations that maintain soil biological health. ICP-MS results showed ZnO nanoparticles were distributed in all plant parts, including seeds. However, the concentration of Zn was within the limit of the dietary recommendation. To the best of our knowledge, this is the first holistic study focusing on native P mobilization using ZnO nanoparticles in the life cycle of mung bean plants.

  2. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs. PMID:19470091

  3. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  4. Investigation into cyclic utilization of carbon source in an advanced sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER) wastewater treatment process.

    PubMed

    Yan, Peng; Ji, Fang-Ying; Wang, Jing; Chen, You-Peng; Shen, Yu; Fang, Fang; Guo, Jin-Song

    2015-01-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously reduce sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The ability to recover organic substance from excess sludge to enhance nutrient removal (especially nitrogen) and its performance as a C-source were evaluated in this study. The chemical oxygen demand/total nitrogen (COD/TN) and volatile fatty acids/total phosphorus (VFA/TP) ratios for the supernatant of the alkaline-treated sludge were 3.1 times and 2.7 times those of the influent, respectively. The biodegradability of the supernatant was much better than that of the influent. The system COD was increased by 91 mg/L, and nitrogen removal was improved by 19.6% (the removal rate for TN reached 80.4%) after the return of the alkaline-treated sludge as an internal C-source. The C-source recovered from the excess sludge was successfully used to enhance nitrogen removal. The internal C-source contributed 24.1% of the total C-source, and the cyclic utilization of the system C-source was achieved by recirculation of alkaline-treated sludge in the sludge reduction, inorganic solids separation, phosphorus recovery (SIPER) process.

  5. Investigation into cyclic utilization of carbon source in an advanced sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER) wastewater treatment process.

    PubMed

    Yan, Peng; Ji, Fang-Ying; Wang, Jing; Chen, You-Peng; Shen, Yu; Fang, Fang; Guo, Jin-Song

    2015-01-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously reduce sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The ability to recover organic substance from excess sludge to enhance nutrient removal (especially nitrogen) and its performance as a C-source were evaluated in this study. The chemical oxygen demand/total nitrogen (COD/TN) and volatile fatty acids/total phosphorus (VFA/TP) ratios for the supernatant of the alkaline-treated sludge were 3.1 times and 2.7 times those of the influent, respectively. The biodegradability of the supernatant was much better than that of the influent. The system COD was increased by 91 mg/L, and nitrogen removal was improved by 19.6% (the removal rate for TN reached 80.4%) after the return of the alkaline-treated sludge as an internal C-source. The C-source recovered from the excess sludge was successfully used to enhance nitrogen removal. The internal C-source contributed 24.1% of the total C-source, and the cyclic utilization of the system C-source was achieved by recirculation of alkaline-treated sludge in the sludge reduction, inorganic solids separation, phosphorus recovery (SIPER) process. PMID:26524455

  6. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal.

    PubMed

    Kim, Jeong Myeong; Lee, Hyo Jung; Lee, Dae Sung; Jeon, Che Ok

    2013-03-01

    To characterize the denitrifying phosphorus (P) uptake properties of "Candidatus Accumulibacter phosphatis," a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of "Ca. Accumulibacter" and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized "Ca. Accumulibacter" subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and "Candidatus Competibacter phosphatis" [from 16.4% to 20.0%]), while the overall "Ca. Accumulibacter" abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the "Ca. Accumulibacter" clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all "Ca. Accumulibacter" clades successfully took up phosphorus in the presence of nitrate. However, the "Ca. Accumulibacter" clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by "Ca. Accumulibacter" clades occurred when nitrite was added. These results suggest that the "Ca. Accumulibacter" cells lack nitrate reduction capabilities and that P uptake by "Ca. Accumulibacter" is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and "Ca. Competibacter."

  7. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure.

    PubMed

    Mackey, Katherine R M; Roberts, Kathryn; Lomas, Michael W; Saito, Mak A; Post, Anton F; Paytan, Adina

    2012-10-01

    Atmospheric P solubility affects the amount of P available for phytoplankton in the surface ocean, yet our understanding of the timing and extent of atmospheric P solubility is based on short-term leaching experiments where conditions may differ substantially from the surface ocean. We conducted longer- term dissolution experiments of atmospheric aerosols in filtered seawater, and found up to 9-fold greater dissolution of P after 72 h compared to instantaneous leaching. Samples rich in anthropogenic materials released dissolved inorganic P (DIP) faster than mineral dust. To gauge the effect of biota on the fate of atmospheric P, we conducted field incubations with aerosol samples collected in the Sargasso Sea and Red Sea. In the Sargasso Sea phytoplankton were not P limited, and biological activity enhanced DIP release from aerosols, and aerosols induced biological mineralization of dissolved organic P in seawater, leading to DIP accumulation. However, in the Red Sea where phytoplankton were colimited by P and N, soluble P was rapidly consumed by phytoplankton following aerosol enrichment. Our results suggest that atmospheric P dissolution could continue over multiple days once reaching the surface ocean, and that previous estimates of atmospheric P deposition may underestimate the contribution from this source. PMID:22574853

  8. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure.

    PubMed

    Mackey, Katherine R M; Roberts, Kathryn; Lomas, Michael W; Saito, Mak A; Post, Anton F; Paytan, Adina

    2012-10-01

    Atmospheric P solubility affects the amount of P available for phytoplankton in the surface ocean, yet our understanding of the timing and extent of atmospheric P solubility is based on short-term leaching experiments where conditions may differ substantially from the surface ocean. We conducted longer- term dissolution experiments of atmospheric aerosols in filtered seawater, and found up to 9-fold greater dissolution of P after 72 h compared to instantaneous leaching. Samples rich in anthropogenic materials released dissolved inorganic P (DIP) faster than mineral dust. To gauge the effect of biota on the fate of atmospheric P, we conducted field incubations with aerosol samples collected in the Sargasso Sea and Red Sea. In the Sargasso Sea phytoplankton were not P limited, and biological activity enhanced DIP release from aerosols, and aerosols induced biological mineralization of dissolved organic P in seawater, leading to DIP accumulation. However, in the Red Sea where phytoplankton were colimited by P and N, soluble P was rapidly consumed by phytoplankton following aerosol enrichment. Our results suggest that atmospheric P dissolution could continue over multiple days once reaching the surface ocean, and that previous estimates of atmospheric P deposition may underestimate the contribution from this source.

  9. Enhancement of carbon sequestration in soil in the temperature grasslands of northern China by addition of nitrogen and phosphorus.

    PubMed

    He, Nianpeng; Yu, Qiang; Wang, Ruomeng; Zhang, Yunhai; Gao, Yang; Yu, Guirui

    2013-01-01

    Increased nitrogen (N) deposition is common worldwide. Questions of where, how, and if reactive N-input influences soil carbon (C) sequestration in terrestrial ecosystems are of great concern. To explore the potential for soil C sequestration in steppe region under N and phosphorus (P) addition, we conducted a field experiment between 2006 and 2012 in the temperate grasslands of northern China. The experiment examined 6 levels of N (0-56 g N m(-2) yr(-1)), 6 levels of P (0-12.4 g P m(-2) yr(-1)), and a control scenario. Our results showed that addition of both N and P enhanced soil total C storage in grasslands due to significant increases of C input from litter and roots. Compared with control plots, soil organic carbon (SOC) in the 0-100 cm soil layer varied quadratically, from 156.8 to 1352.9 g C m(-2) with N addition gradient (R(2) = 0.99, P < 0.001); and logarithmically, from 293.6 to 788.6 g C m(-2) with P addition gradient (R(2) = 0.56, P = 0.087). Soil inorganic carbon (SIC) decreased quadratically with N addition. The net C sequestration on grassland (including plant, roots, SIC, and SOC) increased linearly from -128.6 to 729.0 g C m(-2) under N addition (R(2) = 0.72, P = 0.023); and increased logarithmically, from 248.5 to 698 g C m(-2)under P addition (R(2) = 0.82, P = 0.014). Our study implies that N addition has complex effects on soil carbon dynamics, and future studies of soil C sequestration on grasslands should include evaluations of both SOC and SIC under various scenarios.

  10. Dynamics of Microbial Community Structure of and Enhanced Biological Phosphorus Removal by Aerobic Granules Cultivated on Propionate or Acetate▿

    PubMed Central

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-01-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafter, an exponential increase in enhanced biological phosphorus removal (EBPR) activity was observed in the propionate granules, but a linear and erratic increase was detected in the acetate ones. Besides Accumulibacter and Competibacter, other bacterial populations found in both granules were associated with Chloroflexus and Acidovorax. The EBPR activity in the propionate granules was high and stable, whereas EBPR in the acetate granules was erratic throughout the study and suffered from a deterioration period that could be readily reversed by inducing hydrolysis of polyphosphate in presumably saturated Accumulibacter cells. Using a new ppk1 gene-based dual terminal-restriction fragment length polymorphism (T-RFLP) approach revealed that Accumulibacter diversity was highest in the floccular sludge inoculum but that when granules were formed, propionate readily favored the dominance of Accumulibacter type IIA. In contrast, acetate granules exhibited transient shifts between type I and type II before the granules were dominated by Accumulibacter type IIA. However, ppk1 gene sequences from acetate granules clustered separately from those of propionate granules. Our data indicate that the mere presence of Accumulibacter is not enough to have consistently high EBPR but that the type of Accumulibacter determines the robustness of the phosphate removal process. PMID:21926195

  11. Performance and metabolic aspects of a novel enhanced biological phosphorus removal system with intermittent feeding and alternate aeration.

    PubMed

    Melidis, Paraschos; Kapagiannidis, Anastasios G; Ntougias, Spyridon; Davididou, Konstantina; Aivasidis, Alexander

    2014-01-01

    A novel enhanced biological phosphorus removal (EBPR) system, which combined the intermittent feeding design with an anaerobic selector, was examined using on-line oxidation reduction potential (ORP), nitrate and ammonium probes. Two experimental periods were investigated: the aerobic and anoxic phases were set at 40 and 20 minutes respectively for period I, and set at 30 and 30 minutes for period II. Chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and P removal were measured as high as 87%, 96% and 93% respectively, while total Kjeldahl nitrogen (TKN) and NH4(+) removal averaged 85% and 91%. Two specific denitrification rates (SDNRs), which corresponded to the consumption of the readily biodegradable and slowly biodegradable COD, were determined. SDNR-1 and SDNR-2 during period I were 0.235 and 0.059 g N g(-1) volatile suspended solids (VSS) d(-1) respectively, while the respective rates during period II were 0.105 and 0.042 g N g(-1) VSS d(-1). The specific nitrate formation and ammonium oxidizing rates were 0.076 and 0.064 g N g(-1) VSS d(-1) for period I and 0.065 and 0.081 g N g(-1) VSS d(-1) for period II respectively. The specific P release rates were 2.79 and 4.02 mg P g(-1) VSS h(-1) during period I and II, while the respective anoxic/aerobic uptake rates were 0.42 and 0.55 mg P g(-1) VSS h(-1). This is the first report on an EBPR scheme using the intermittent feeding strategy. PMID:24759519

  12. Performance and metabolic aspects of a novel enhanced biological phosphorus removal system with intermittent feeding and alternate aeration.

    PubMed

    Melidis, Paraschos; Kapagiannidis, Anastasios G; Ntougias, Spyridon; Davididou, Konstantina; Aivasidis, Alexander

    2014-01-01

    A novel enhanced biological phosphorus removal (EBPR) system, which combined the intermittent feeding design with an anaerobic selector, was examined using on-line oxidation reduction potential (ORP), nitrate and ammonium probes. Two experimental periods were investigated: the aerobic and anoxic phases were set at 40 and 20 minutes respectively for period I, and set at 30 and 30 minutes for period II. Chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and P removal were measured as high as 87%, 96% and 93% respectively, while total Kjeldahl nitrogen (TKN) and NH4(+) removal averaged 85% and 91%. Two specific denitrification rates (SDNRs), which corresponded to the consumption of the readily biodegradable and slowly biodegradable COD, were determined. SDNR-1 and SDNR-2 during period I were 0.235 and 0.059 g N g(-1) volatile suspended solids (VSS) d(-1) respectively, while the respective rates during period II were 0.105 and 0.042 g N g(-1) VSS d(-1). The specific nitrate formation and ammonium oxidizing rates were 0.076 and 0.064 g N g(-1) VSS d(-1) for period I and 0.065 and 0.081 g N g(-1) VSS d(-1) for period II respectively. The specific P release rates were 2.79 and 4.02 mg P g(-1) VSS h(-1) during period I and II, while the respective anoxic/aerobic uptake rates were 0.42 and 0.55 mg P g(-1) VSS h(-1). This is the first report on an EBPR scheme using the intermittent feeding strategy.

  13. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered. PMID:25950504

  14. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric.

    PubMed

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm(2)V(-1)s(-1) coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  15. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    PubMed Central

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V−1s−1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  16. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-05-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V‑1s‑1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering.

  17. “Candidatus Accumulibacter” Population Structure in Enhanced Biological Phosphorus Removal Sludges as Revealed by Polyphosphate Kinase Genes▿

    PubMed Central

    He, Shaomei; Gall, Daniel L.; McMahon, Katherine D.

    2007-01-01

    We investigated the fine-scale population structure of the “Candidatus Accumulibacter” lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of “Candidatus Accumulibacter” 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the “Candidatus Accumulibacter” lineage. Sequences from at least five clades of “Candidatus Accumulibacter” were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using “Candidatus Accumulibacter”-specific 16S rRNA and “Candidatus Accumulibacter” clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total “Candidatus Accumulibacter” lineage and the relative distributions and abundances of the five “Candidatus Accumulibacter” clades. The qPCR-based estimation of the total “Candidatus Accumulibacter” fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined “Candidatus Accumulibacter” clades. The relative distributions of “Candidatus Accumulibacter” clades varied among different EBPR systems and also temporally within a system. Our results suggest that the “Candidatus Accumulibacter” lineage is more diverse than previously realized and that different clades within the lineage are

  18. Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag.

    PubMed

    Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong

    2016-08-01

    As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment.

  19. Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag.

    PubMed

    Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong

    2016-08-01

    As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. PMID:27179297

  20. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (III): Model application].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    The kinetic model based on SCFAs metabolism was applied for the prediction of phosphorus-and glycogen-accumulating organisms (PAO and GAO) competition with different carbon sources and m(P)/m(COD) ratios. When acetic acid was used as the sole carbon source, the biomass compositions were almost the same as those before cultivation, and neither PAO nor GAO could be out-competed from EBPR. However, increasing propionic acid in the influent helped PAO to be the predominance organism, and EBPR performance kept excellent when the ratio of propionate to mixed acids (acetate + propionate) was higher than 0.33. It also found that the m(P)/m(COD) ratio should be kept at 0.04-0.10 to avoid phosphorus became a limiting factor for PAO growth. This was because at low m(P)/m(COD) ratios, such as 0.01, GAO would take up 95% of the total (PAO + GAO) biomass.

  1. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  2. Pilot-scale test of an advanced, integrated wastewater treatment process with sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER).

    PubMed

    Yan, Peng; Ji, Fangying; Wang, Jing; Fan, Jianping; Guan, Wei; Chen, Qingkong

    2013-08-01

    Sludge reduction technologies are increasingly important in wastewater treatment, but have some defects. In order to remedy them, a novel, integrated process including sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal was developed. The pilot-scale system was operated steadily at a treatment scale of 10 m(3)/d for 90 days. The results showed excellent nutrient removal, with average removal efficiencies for NH4(+)-N, TN, TP, and COD reaching 98.2 ± 1.34%, 75.5 ± 3.46%, 95.3 ± 1.65%, and 92.7 ± 2.49%, respectively. The ratio of mixed liquor volatile suspended solids (MLVSS) to mixed liquor suspended solids (MLSS) in the system gradually increased, from 0.33 to 0.52. The process effectively prevented the accumulation of inert or inorganic solids in activated sludge. Phosphorus was recovered as a crystalline product with aluminum ion from wastewater. The observed sludge yield Yobs of the system was 0.103 gVSS/g COD, demonstrating that the system's sludge reduction potential is excellent.

  3. Enhanced biological phosphorus removal in the retrofitting from an anoxic selector to an anaerobic selector in a full-scale activated sludge process in Singapore.

    PubMed

    Cao, Y; Ang, C M; Chua, K C; Woo, F W; Chi, H; Bhawna, B; Chong, C T; Ganesan, N; Ooi, K E; Wah, Y L

    2009-01-01

    This paper presents the investigation results of retrofitting an anoxic selector to an anaerobic selector through stepwise reduction of air supply in a full-scale activated sludge process with a focus on enhanced biological phosphorus removal (EBPR). The process experienced gradual shift from a Ludzack-Ettinger (LE) to an anaerobic-anoxic-oxic (A(2)O) process and subsequently, an anaerobic-oxic (A/O) process. The major findings are: (i) the average influent-based PO(4) (3-)-P release in the anaerobic selector compartment was 16.3 mg P l(-1) and that in the secondary clarifier was 1.7 mg P l(-1). 75% of the SCOD and 93% of the acetic acid in the primary effluent were taken up in the anaerobic selector compartment, respectively; (ii) PO(4) (3-)-P uptake contributed by both aerobic and denitrifying phosphorus accumulating organisms (DPAOs) occurred mainly in the first and second aerobic lanes together with simultaneous nitrification and denitrification (SND) while there was not much contribution from the last aerobic lane; (iii) The average PO(4) (3-)-P concentration of the final effluent was 2.4 mg P l(-1) corresponding to a removal efficiency of 85%; (iv) the SVI was satisfactory after retrofitting; and (v) the increase of NH(4) (+)-N in the final effluent from the commencement to the completion of the retrofitting resulted in an approximate 40-50% reduction in oxygen demand and a significant aeration energy saving was achieved.

  4. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    PubMed

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  5. Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation.

    PubMed

    Li, Miao; Sheng, Guo-ping; Wu, Yue-jin; Yu, Zeng-liang; Bañuelos, Gary S; Yu, Han-qing

    2014-01-01

    Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2 × 10(16) N(+) ions/cm(2) and 30 keV 4.16 × 10(16) N(+) ions/cm(2), respectively (p < 0.05). Furthermore, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those in the control and were positively correlated with TN and TP supplied. L. multiflorum itself was directly responsible for 39-49 and 47-58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum.

  6. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils.

    PubMed

    Pan, Gang; Li, Lei; Zhao, Dongye; Chen, Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized "nanomagnetite" could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase.

  7. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation

    NASA Astrophysics Data System (ADS)

    Tessin, Allyson; Sheldon, Nathan D.; Hendy, Ingrid; Chappaz, Anthony

    2016-09-01

    The sedimentary record of the Coniacian-Santonian Oceanic Anoxic Event 3 (OAE 3) in the North American Western Interior Seaway is characterized by a prolonged period of enhanced organic carbon (OC) burial. This study investigates the role of Fe in enhancing organic matter preservation and maintaining elevated primary productivity to sustain black shale deposition within the Coniacian-Santonian-aged Niobrara Formation in the USGS #1 Portland core. Iron speciation results indicate the development of a reactive Fe limitation coeval with reduced bioturbation and increased organic matter preservation, suggesting that decreased sulfide buffering by reactive Fe may have promoted enhanced organic matter preservation at the onset of OAE 3. An Fe limitation would also provide a feedback mechanism to sustain elevated primary productivity through enhanced phosphorus recycling. Additionally our results demonstrate inconsistencies between Fe-based and trace metal redox reconstructions. Iron indices from the Portland core indicate a single stepwise change, whereas the trace metal redox proxies indicate fluctuating redox conditions during and after OAE 3. Using Fe speciation to reconstruct past redox conditions may be complicated by a number of factors, including Fe sequestration in diagenetic carbonate phases and efficient sedimentary pyrite formation in a system with limited Fe supply and high levels of export production.

  8. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    PubMed

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage.

  9. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    PubMed

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  10. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (II): Process simulation].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    Two groups of sequencing batch reactors were used to study the metabolism substrate transformation of phosphorus-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) fed with mixed acetic and propionic acids. Seven stoichiometry parameters and 24 kinetic parameters were contained in the PAO and GAO kinetic model, and stoichiometry parameters were deduced from the stoichiometry models, while kinetic parameters were determined by experimental results. The kinetic model parameters of stoichiometry and kinetics were determined according the experiments and the literature. Subsequently, the substrate transformations of PAO and GAO were calculated by the Matlab software. The model curves matched the SBR experimental data well, indicating that the kinetic model based on SCFAs metabolism could be used to simulate PAO and GAO in anaerobic-aerobic conditions.

  11. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  12. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.

    PubMed

    Iwai, Masako; Ikeda, Keiko; Shimojima, Mie; Ohta, Hiroyuki

    2014-08-01

    When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)- and phosphorus (P)-starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic-growth-phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation-dependent overexpressor of a Chlamydomonas type-2 diacylglycerol acyl-CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up-regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation-inducible promoter.

  13. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding

    PubMed Central

    Rose, T. J.; Impa, S. M.; Rose, M. T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S. E.; Wissuwa, M.

    2013-01-01

    Background Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. Scope This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Conclusions Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars. PMID:23071218

  14. Influence of nitrite accumulation on "Candidatus Accumulibacter" population structure and enhanced biological phosphorus removal from municipal wastewater.

    PubMed

    Zeng, Wei; Li, Boxiao; Wang, Xiangdong; Bai, Xinlong; Peng, Yongzhen

    2016-02-01

    A modified University of Cape Town (MUCT) process was used to treat real municipal wastewater with low carbon to nitrogen ratio (C/N). To our knowledge, this is the first study where the influence of nitrite accumulation on "Candidatus Accumulibacter" clade-level population structure was investigated during nitritation establishment and destruction. Real time quantitative PCR assays were conducted using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. Abundances of total "Candidatus Accumulibacter", the relative distributions and population structure of the five "Candidatus Accumulibacter" clades were characterized. Under complete nitrification, clade I using nitrate as electron acceptor was below 5% of total "Candidatus Accumulibacter". When the reactor was transformed into nitritation, clade I gradually disappeared. Clade IID using nitrite as electron acceptor for denitrifying phosphorus (P) removal was always the dominant "Candidatus Accumulibacter" throughout the operational period. This clade was above 90% on average in total "Candidatus Accumulibacter", even up to nearly 100%, which was associated with good performance of denitrifying P removal via nitrite pathway. The nitrite concentrations affected the abundance of clade IID. The P removal was mainly completed by anoxic P uptake of about 88%. The P removal efficiency clearly had a positive correlation with the nitrite accumulation ratio. Under nitritation, the P removal efficiency was 30% higher than that under complete nitrification, suggesting that nitrite was appropriate as electron acceptor for denitrifying P removal when treating carbon-limited wastewater.

  15. Influence of nitrite accumulation on "Candidatus Accumulibacter" population structure and enhanced biological phosphorus removal from municipal wastewater.

    PubMed

    Zeng, Wei; Li, Boxiao; Wang, Xiangdong; Bai, Xinlong; Peng, Yongzhen

    2016-02-01

    A modified University of Cape Town (MUCT) process was used to treat real municipal wastewater with low carbon to nitrogen ratio (C/N). To our knowledge, this is the first study where the influence of nitrite accumulation on "Candidatus Accumulibacter" clade-level population structure was investigated during nitritation establishment and destruction. Real time quantitative PCR assays were conducted using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. Abundances of total "Candidatus Accumulibacter", the relative distributions and population structure of the five "Candidatus Accumulibacter" clades were characterized. Under complete nitrification, clade I using nitrate as electron acceptor was below 5% of total "Candidatus Accumulibacter". When the reactor was transformed into nitritation, clade I gradually disappeared. Clade IID using nitrite as electron acceptor for denitrifying phosphorus (P) removal was always the dominant "Candidatus Accumulibacter" throughout the operational period. This clade was above 90% on average in total "Candidatus Accumulibacter", even up to nearly 100%, which was associated with good performance of denitrifying P removal via nitrite pathway. The nitrite concentrations affected the abundance of clade IID. The P removal was mainly completed by anoxic P uptake of about 88%. The P removal efficiency clearly had a positive correlation with the nitrite accumulation ratio. Under nitritation, the P removal efficiency was 30% higher than that under complete nitrification, suggesting that nitrite was appropriate as electron acceptor for denitrifying P removal when treating carbon-limited wastewater. PMID:26439519

  16. [Autotrophic nitrogen removal and enhanced biological phosphorus removal from municipal wastewater in a three-sludge system].

    PubMed

    Yi, Peng; Zhang, Shu-Jun; Gan, Yi-Ping; Chang, Jiang; Peng, Yong-Zhen; Cao, Xiang-Sheng

    2010-10-01

    Using a three-sludge system consisted of anaerobic/oxic (A/O) process, partial nitritation and anaerobic ammonium oxidation (ANAMMOX) reactors, cost-effective removal of nitrogen and phosphate from municipal wastewater was achieved. The experimental results showed that effluent total phosphorus (TP) of the A/O system was less than 0.5 mg/L under hydraulic retention time (HRT) of 3.6 h. Partial nitritation with nitrite accumulation efficiency of 75% -96% was realized in the partial nitritation system under room temperature, DO < 0.2 mg/L and HRT of 4.6 h. Under temperature of 27-30 degrees C and HRT of 1.4 h, effluent total nitrogen (TN) and TN removal rate of ANAMMOX reactor were less than 8 mg/L with the minimum value of 1.6 mg/L and 0.57 kg/(m3 x d), respectively. In the three-sludge system, phosphate accumulating organisms, ammonia-oxidizing bacteria and Anammox bacteria existed under suitably environmental condition to optimize the microbial community structure and improve treatment efficiency of various units. Autotrophic nitrogen removal can reduce 62.5% of the oxygen supply, save 100% of denitrification carbon sources theoretically, lower the sludge production, and greatly decrease carbon dioxide emission. As compared to traditional biological nutrient removal process, the three-sludge system has great advantages and potential in energy saving and carbon dioxide emission reduction to realize sustainable development of water resources.

  17. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity.

    PubMed

    Majed, Nehreen; Chernenko, Tatyana; Diem, Max; Gu, April Z

    2012-05-01

    This study proposed and demonstrated the application of a new Raman microscopy-based method for metabolic state-based identification and quantification of functionally relevant populations, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in enhanced biological phosphorus removal (EBPR) system via simultaneous detection of multiple intracellular polymers including polyphosphate (polyP), glycogen, and polyhydroxybutyrate (PHB). The unique Raman spectrum of different combinations of intracellular polymers within a cell at a given stage of the EBPR cycle allowed for its identification as PAO, GAO, or neither. The abundance of total PAOs and GAOs determined by Raman method were consistent with those obtained with polyP staining and fluorescence in situ hybridization (FISH). Different combinations and quantities of intracellular polymer inclusions observed in single cells revealed the distribution of different sub-PAOs groups among the total PAO populations, which exhibit phenotypic and metabolic heterogeneity and diversity. These results also provided evidence for the hypothesis that different PAOs may employ different extents of combination of glycolysis and TCA cycle pathways for anaerobic reducing power and energy generation and it is possible that some PAOs may rely on TCA cycle solely without glycolysis. Sum of cellular level quantification of the internal polymers associated with different population groups showed differentiated and distributed trends of glycogen and PHB level between PAOs and GAOs, which could not be elucidated before with conventional bulk measurements of EBPR mixed cultures.

  18. Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism.

    PubMed

    Fang, Jing; Sun, Pei-de; Xu, Shao-juan; Luo, Tao; Lou, Ju-qing; Han, Jing-yi; Song, Ying-qi

    2012-10-01

    Influence of Cr(VI) on P removal in enhanced biological phosphorus removal (EBPR) system was investigated with respect to the composition of poly-phosphate-accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), the transformation of poly-β-hydroxyalkanoates (PHA) and glycogen, enzymes' activities, and the intracellular Cr. Whether EBPR system could revive after Cr(VI) shock was also explored. Results showed P removal performance was completely inhibited by Cr(VI) with the concentration more than 5 mg L(-1). PAOs were more sensitive to Cr(VI) than GAOs and the other bacteria were. PHA consumption, glycogen synthesis and adenylate kinase's activity had been inhibited by 5 mg L(-1) Cr(VI). Both adenylate kinase's activity and P removal efficiency were negatively correlated with the intracellular Cr. Recovery experiments revealed that P removal performance with 5 mg L(-1) Cr(VI) shock could revive after a 2-day recovery treatment, while systems with high level Cr(VI) (20 and 60 mg L(-1)) shock could not.

  19. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    PubMed

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  20. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide

    NASA Astrophysics Data System (ADS)

    Kerr, M. J.; Schmidt, J.; Cuevas, A.; Bultman, J. H.

    2001-04-01

    The emitter saturation current density (JOe) and surface recombination velocity (Sp) of various high quality passivation schemes on phosphorus-diffused solar cell emitters have been determined and compared. The passivation schemes investigated were (i) stoichiometric plasma enhanced chemical vapor deposited (PECVD) silicon nitride (SiN), (ii) forming gas annealed thermally grown silicon oxide, and (iii) aluminum annealed (alnealed) thermal silicon oxide. Emitters with sheet resistances ranging from 30 to 430 and 50 to 380 Ω/□ were investigated for planar and random-pyramid textured silicon surfaces, which covers both industrial and laboratory emitters. The electronic surface passivation quality provided by PECVD SiN films was found to be good, with Sp values ranging from 1400 to 25 000 cm/s for planar emitters. Thin thermal silicon oxides were found to provide superior passivation to PECVD SiN, with the best passivation provided by an alnealed thin oxide (Sp values between 250 and 21 000 cm/s). The optimized PECVD SiN films are, nevertheless, sufficiently good for most silicon solar cell applications.

  1. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity.

    PubMed

    Majed, Nehreen; Chernenko, Tatyana; Diem, Max; Gu, April Z

    2012-05-01

    This study proposed and demonstrated the application of a new Raman microscopy-based method for metabolic state-based identification and quantification of functionally relevant populations, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in enhanced biological phosphorus removal (EBPR) system via simultaneous detection of multiple intracellular polymers including polyphosphate (polyP), glycogen, and polyhydroxybutyrate (PHB). The unique Raman spectrum of different combinations of intracellular polymers within a cell at a given stage of the EBPR cycle allowed for its identification as PAO, GAO, or neither. The abundance of total PAOs and GAOs determined by Raman method were consistent with those obtained with polyP staining and fluorescence in situ hybridization (FISH). Different combinations and quantities of intracellular polymer inclusions observed in single cells revealed the distribution of different sub-PAOs groups among the total PAO populations, which exhibit phenotypic and metabolic heterogeneity and diversity. These results also provided evidence for the hypothesis that different PAOs may employ different extents of combination of glycolysis and TCA cycle pathways for anaerobic reducing power and energy generation and it is possible that some PAOs may rely on TCA cycle solely without glycolysis. Sum of cellular level quantification of the internal polymers associated with different population groups showed differentiated and distributed trends of glycogen and PHB level between PAOs and GAOs, which could not be elucidated before with conventional bulk measurements of EBPR mixed cultures. PMID:22471394

  2. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes.

  3. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus

    NASA Astrophysics Data System (ADS)

    Hu, Shaozheng; Ma, Lin; You, Jiguang; Li, Fayun; Fan, Zhiping; Lu, Guang; Liu, Dan; Gui, Jianzhou

    2014-08-01

    Preparation of Fe and P co-doped g-C3N4 was described, using dicyandiamide monomer, ferric nitrate, and diammonium hydrogen phosphate as precursor. X-ray diffraction (XRD), N2 adsorption, UV-vis spectroscopy, Fourier transform infrared spectra (FT-IR), photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and photocurrent measurement were used to characterize the prepared catalysts. The results indicated that the addition of dopants inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, decreased the band gap energy, and restrained the recombination of photogenerated electrons and holes. Fe and P co-doped g-C3N4 exhibited much higher Rhodamine B (RhB) photodegradation rate and H2 production ability than that of single doped and neat g-C3N4 catalysts. The possible mechanism and doping sites of P and Fe were proposed.

  4. Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C.

    2016-06-01

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = -3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = -0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = -0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M ⊙ of 56Ni, characteristic of a faint SN. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

  5. Supplemental Escherichia coli phytase and strontium enhance bone strength of young pigs fed a phosphorus-adequate diet.

    PubMed

    Pagano, Angela R; Yasuda, Koji; Roneker, Karl R; Crenshaw, Thomas D; Lei, Xin Gen

    2007-07-01

    Young pigs represent an excellent model of youth to assess potentials of dietary factors for improving bone structure and function. We conducted 2 experiments to determine whether adding microbial phytase (2,000 U/kg, OptiPhos, JBS United) and Sr (50 mg/kg, SrCO3 Alfa Aesar) into a P-adequate diet further improved bone strength of young pigs. In Expt. 1, 24 gilts (8.6 +/- 0.1 kg body wt) were divided into 2 groups (n = 12), and fed a corn-soybean-meal basal diet (BD, 0.33% available P) or BD + phytase for 6 wk. In Expt. 2, 32 pigs (11.4 +/- 0.2 kg) were divided into 4 groups (n = 8), and fed BD, BD + phytase, BD + Sr, or BD + phytase and Sr for 5 wk. Both supplemental phytase and Sr enhanced (P < 0.05) breaking strengths (11-20%), mineral content (6-15%), and mineral density (6-11%) of metatarsals and femurs. Supplemental phytase also resulted in larger total bone areas (P < 0.05) and a larger cross-sectional area of femur (P = 0.06). Concentrations of Sr were elevated 4-fold (P < 0.001) in both bones by Sr, and moderately increased (P = 0.05-0.07) in metatarsal by phytase. In conclusion, supplemental phytase at 2000 U/kg of P-adequate diets enhanced bone mechanical function of weanling pigs by modulating both geometrical and chemical properties of bone. The similar benefit of supplemental Sr was mainly due to an effect on bone chemical properties. PMID:17585033

  6. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.

    PubMed

    Choi, Chang Hyuck; Park, Sung Hyeon; Woo, Seong Ihl

    2012-08-28

    N-doped carbon, a promising alternative to Pt catalyst for oxygen reduction reactions (ORRs) in acidic media, is modified in order to increase its catalytic activity through the additional doping of B and P at the carbon growth step. This additional doping alters the electrical, physical, and morphological properties of the carbon. The B-doping reinforces the sp(2)-structure of graphite and increases the portion of pyridinic-N sites in the carbon lattice, whereas P-doping enhances the charge delocalization of the carbon atoms and produces carbon structures with many edge sites. These electrical and physical alternations of the N-doped carbon are more favorable for the reduction of the oxygen on the carbon surface. Compared with N-doped carbon, B,N-doped or P,N-doped carbon shows 1.2 or 2.1 times higher ORR activity at 0.6 V (vs RHE) in acidic media. The most active catalyst in the reaction is the ternary-doped carbon (B,P,N-doped carbon), which records -6.0 mA/mg of mass activity at 0.6 V (vs RHE), and it is 2.3 times higher than that of the N-doped carbon. These results imply that the binary or ternary doping of B and P with N into carbon induces remarkable performance enhancements, and the charge delocalization of the carbon atoms or number of edge sites of the carbon is a significant factor in deciding the oxygen reduction activity in carbon-based catalysts. PMID:22769428

  7. Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C.

    2016-06-01

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = ‑3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = ‑0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = ‑0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M ⊙ of 56Ni, characteristic of a faint SN. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

  8. Estimation of phosphorus flux in rivers during flooding.

    PubMed

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in

  9. Dietary phosphorus, serum phosphorus, and cardiovascular disease.

    PubMed

    Menon, Madhav C; Ix, Joachim H

    2013-10-01

    Recent epidemiologic studies have linked higher serum phosphorus concentrations to cardiovascular disease (CVD) events and mortality. This association has been identified in the general population and in those with chronic kidney disease (CKD). The risk of adverse outcomes appears to begin with phosphorus concentrations within the upper limit of the normal reference range. Multiple experimental studies have suggested pathogenetic mechanisms that involve direct and indirect effects of high phosphorus concentrations to explain these associations. Drawing from these observations, guideline-forming agencies have recommended that serum phosphorus concentrations be maintained within the normal reference range in patients with CKD and that dietary phosphorus restriction or use of intestinal phosphate binders should be considered to achieve this goal. However, outside the dialysis population, the links between dietary phosphorus intake and serum phosphorus concentrations, and dietary phosphorus intake and CVD events, are uncertain. With specific reference to the nondialysis populations, this review discusses the available data linking dietary phosphorus intake with serum phosphorus concentrations and CVD events.

  10. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    PubMed

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  11. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-01

    This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. PMID:27498011

  12. Phosphorus in diet

    MedlinePlus

    According to Institute of Medicine recommendations, the recommended dietary intakes of phosphorus are as follows: 0 to 6 ... Food and Nutrition Board, Institute of Medicine. DRI Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride . ...

  13. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  14. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  15. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  16. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  17. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load. PMID:23465504

  18. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load.

  19. Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic-biological contact oxidation system.

    PubMed

    Zhang, Miao; Yang, Qing; Zhang, Jianhua; Wang, Cong; Wang, Shuying; Peng, Yongzhen

    2016-10-01

    A two-sludge system consisting of anaerobic anoxic oxic-biological contact oxidation (A(2)/O-BCO) was developed to treat domestic wastewater with a low carbon/nitrogen (COD/TN) ratio (around 3.21) by shortening sludge retention time (SRT) for phosphorus accumulating organisms (PAOs) in the A(2)/O reactor and prolonging SRT for nitrifiers in the BCO reactor. Specifically, the BCO reactor was composed of three stages in series (N1, N2 and N3), so that simultaneous nitrogen and phosphorus removals by denitrifying PAOs (DNPAOs) was achieved in the A(2)/O reactor with [Formula: see text] as the electron acceptor from the BCO reactor. Long term operational tests (600 days) were conducted with various operational parameters [e.g., hydraulic retention time (HRTs), nitrate recycling ratio (Rs), volume ratio (Vs)] to examine the denitrifying phosphorus removal performance. The system exhibited the highest removal of TN and [Formula: see text] at the HRTs of 8 h, Rs of 300% and Vs of 2:4:1. The optimal TN and [Formula: see text] removals were 80.30% and 96.61% at low COD/TN of 3.21. The species diversity and microbial community examined by the Illumina MiSeq method demonstrated the fact of two-sludge system, and the improved community structure by long-term optimization was prominent comparing with the seed sludge. Additionally, Accumulibacter and Dechloromonas were the dominant functional PAOs with 25.74% in the A(2)/O reactor, while nitrifiers (including Nitrosomonas and Nitrospira) were gradually enriched with 13.10%, 21.33%, and 31.10% in the three stages of the BCO reactor.

  20. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  1. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  2. The Global Phosphorus Cycle

    NASA Astrophysics Data System (ADS)

    Ruttenberg, K. C.

    2003-12-01

    Phosphorus is an essential nutrient for all life forms. It is a key player in fundamental biochemical reactions (Westheimer, 1987) involving genetic material (DNA, RNA) and energy transfer (ATP), and in structural support of organisms provided by membranes (phospholipids) and bone (the biomineral hydroxyapatite). Photosynthetic organisms utilize dissolved phosphorus, carbon, and other essential nutrients to build their tissues using energy from the Sun. Biological productivity is contingent upon the availability of phosphorus to these simple organisms that constitute the base of the food web in both terrestrial and aquatic systems. (For reviews of P-utilization, P-biochemicals, and pathways in aquatic plants, see Fogg (1973), Bieleski and Ferguson (1983), and Cembella et al. (1984a, 1984b).)Phosphorus locked up in bedrock, soils, and sediments is not directly available to organisms. Conversion of unavailable forms to dissolved orthophosphate, which can be directly assimilated, occurs through geochemical and biochemical reactions at various stages in the global phosphorus cycle. Production of biomass fueled by P-bioavailability results in the deposition of organic matter in soils and sediments, where it acts as a source of fuel and nutrients to microbial communities. Microbial activity in soils and sediments, in turn, strongly influences the concentration and chemical form of phosphorus incorporated into the geological record.The global phosphorus cycle has four major components: (i) tectonic uplift and exposure of phosphorus-bearing rocks to the forces of weathering; (ii) physical erosion and chemical weathering of rocks producing soils and providing dissolved and particulate phosphorus to rivers; (iii) riverine transport of phosphorus to lakes and the ocean; and (iv) sedimentation of phosphorus associated with organic and mineral matter and burial in sediments (Figure 1). The cycle begins anew with uplift of sediments into the weathering regime.

  3. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Ma, Ruguang; Candelaria, Stephanie L.; Wang, Jiacheng; Liu, Qian; Uchaker, Evan; Li, Pengxi; Chen, Yongfang; Cao, Guozhong

    2016-05-01

    Phosphorus (P)/sulfur (S) co-doped porous carbon derived from resorcinol and furaldehyde are synthesized through one-step sol-gel processing with the addition of phosphorus pentasulfide as P and S source followed with freeze-drying and pyrolysis in nitrogen. The P/S co-doping strategy facilitates the pore size widening both in micropore and mesopore regions, together with the positive effect on the degree of graphitization of porous carbon through elimination of amorphous carbon through the formation and evaporation of carbon disulfide. As an electrode for supercapacitor application, P/S co-doped porous carbon demonstrates 43.5% improvement on specific capacitance of the single electrode compared to pristine porous carbon in organic electrolyte at a current of 0.5 mA due to the P-induced pseudocapacitive reactions. As for electrocatalytic use, promoted electrocatalytic activity and high resistance to crossover effects of oxygen reduction reaction (ORR) in alkaline media are observed after the introduction of P and S into porous carbon. After air activation, the specific capacitance of the single electrode of sample PS-pC reaches up to 103.5 F g-1 and an improved oxygen reduction current density.

  4. Phosphorus recovery from wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  5. Black phosphorus gas sensors.

    PubMed

    Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu

    2015-05-26

    The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.

  6. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-01

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described. PMID:26270791

  7. Phosphorus chemistry in everyday living

    SciTech Connect

    Toy, D.F.; Walsh, E.F.

    1987-01-01

    This book brings to life the versatility of phosphorus and its compounds and is filled with personal anecdotes and experiences of the authors. Covers the uses of phosphorus in matches and warfare; phosphates and food, fertilizers, cleaners, and detergents; organic phosphorus nerve gases and insecticides. Also discusses phosphoric acids, organic phosphorus polymers, deoxyribonucleic and ribonucleic acids and adenosine triphosphate.

  8. Phosphorus, phosphorous, and phosphate.

    PubMed

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means.

  9. Phosphorus blood test

    MedlinePlus

    ... serum; HPO4 -2 ; PO4 -3 ; Inorganic phosphate; Serum phosphorus ... that may affect the test. These medicines include water pills (diuretics), antacids, and laxatives. DO NOT stop taking any medicine before talking to your provider.

  10. Phosphorus cycling in the Early Aptian

    NASA Astrophysics Data System (ADS)

    Oakes, R.; Dittrich, M.; Wortmann, U. G.

    2012-12-01

    depending on deposition conditions. We find that during the anoxic event Ca-P preservation is enhanced, a trend which is not mirrored by an increase in total phosphorus concentration. This suggests that the formation of authigenic apatite via sink switching may have been enhanced during OAE1a. This agrees with the findings of a modern field and lab based study which proposes that more P is fixed than regenerated under anoxic conditions but contradicts earlier studies which suggest that more P will be refluxed from sediments under anoxic bottom-water conditions.

  11. Impact of fish farming on the distribution of phosphorus in sediments in the middle Adriatic area.

    PubMed

    Matijević, Slavica; Kuspilić, Grozdan; Kljaković-Gaspić, Zorana; Bogner, Danijela

    2008-03-01

    During the last decade, intensive fish farming developed along the central Croatian coast, creating a need to study and evaluate its potential influence on unaffected sites. We considered phosphorus as an indicator of the influence of fish farming and investigated the distribution of phosphorus forms in sediment from several fish farms and marine areas of different trophic status in the middle Adriatic. Analyses of samples were performed with modified SEDEX techniques. Our results indicated that authigenic apatite phosphorus showed no significant differences among the investigated stations, while organic phosphorus concentrations reflected the trophic status of the station area. Below-cage sediment was characterized by enhanced fish debris phosphorus and low detrital apatite phosphorus concentrations, while sediment from an anthropogenically influenced bay showed the highest values of iron bound phosphorus species. Among the different P fractions, fish debris phosphorus proved to be the most sensitive indicator of the influence of fish farming on marine sediment.

  12. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.).

    PubMed

    Maiti, Dipankar; Toppo, Neha Nancy; Variar, Mukund

    2011-11-01

    Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil-root-based inoculum. Integration of AM fungal inoculation with the maize-horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%).

  13. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.).

    PubMed

    Maiti, Dipankar; Toppo, Neha Nancy; Variar, Mukund

    2011-11-01

    Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil-root-based inoculum. Integration of AM fungal inoculation with the maize-horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%). PMID:21448812

  14. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  15. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    PubMed

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future.

  16. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    PubMed

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future. PMID:22889679

  17. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake.

    PubMed

    Xu, Pengliang; Christie, Peter; Liu, Yu; Zhang, Junling; Li, Xiaolin

    2008-11-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg(-1)) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.

  18. Phosphorus in prebiotic chemistry.

    PubMed

    Schwartz, Alan W

    2006-10-29

    The prebiotic synthesis of phosphorus-containing compounds-such as nucleotides and polynucleotides-would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the 'phosphorus problem' is no longer the stumbling block which it was once thought to be. PMID:17008215

  19. Effect of pH on biological phosphorus uptake.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2006-12-01

    An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models successfully characterized the enhanced biological phosphorus removal performance of the SBR. Furthermore, BNRM1 also reproduced the pH variations observed and the decrease in the phosphorus uptake rate. This model includes a switch function in the kinetic expressions to represent the pH inhibition in biological processes. The pH inhibition constants related to polyphosphate storage process were obtained by adjusting model predictions to measured phosphorus concentrations. On the other hand, pH inhibition should be included in ASM2d to accurately simulate experimental phosphorus evolution observed in an A/O SBR.

  20. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  1. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants.

    PubMed

    Pastor, L; Marti, N; Bouzas, A; Seco, A

    2008-07-01

    The influence of separate and mixed thickening of primary and secondary sludge on struvite recovery was studied. Phosphorus precipitation in the digester was reduced from 13.7 g of phosphorus per kg of treated sludge in the separate thickening experiment to 5.9 in the mixed thickening experiment. This lessening of the uncontrolled precipitation means a reduction of the operational problems and enhances the phosphorus availability for its later crystallization. High phosphorus precipitation and recovery efficiencies were achieved in both crystallization experiments. However, mixed thickening configuration showed a lower percentage of phosphorus precipitated as struvite due to the presence of high calcium concentrations. In spite of this low percentage, the global phosphorus mass balance showed that mixed thickening experiment produces a higher phosphorus recovery as struvite per kg of treated sludge (i.e., 3.6 gP/kg sludge vs. 2.5 gP/kg sludge in separate thickening).

  2. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets.

    PubMed

    Erande, Manisha B; Pawar, Mahendra S; Late, Dattatray J

    2016-05-11

    Recent investigations on two-dimensional black phosphorus material mainly highlight work on few atomic layers and multilayers. It is still unknown if the black phosphorus atomically thin sheet is an ideal structure for the enhanced gas-solid interactions due to its large surface area. To further investigate this concern, we have synthesized few atomic layer thick nanosheets of black phosphorus using an electrochemical exfoliation method. The surface morphology and thickness of the nanosheet were identified using AFM, TEM, and Raman spectroscopy. The black phosphorus nanosheet thick film device was used for the gas sensing application with exposure to different humidites. Further, the few layer black phosphorus nanosheet based transistor shows good mobility and on/off ratio. The UV light irradiation on the black phosphorus nanosheet shows good response time. The overall results show that the few layer thick film of black phosphorus nanosheets sample exhibits creditable sensitivity and better recovery time to be used in humidity sensor and photodetector applications.

  3. Black Phosphorus RF Transistor

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wang, Xiaomu; Xia, Fengnian; Wang, Luhao; Jiang, Hao; Xia, Qiangfei; Chin, Mattew L.; Dubey, Madan; Han, Shu-Jen

    2015-03-01

    Few-layer and thin film form of layered black phosphorus (BP) has recently emerged as a promising material for applications in high performance thin film electronics and infrared optoelectronics. Layered BP offers a ~ 0.3eV bandgap and high mobility, leading to transistor devices with decent on/off ratio and high on-state current density. Here, we demonstrate the GHz frequency operation of black phosphorus field-effect transistor for the first time. BP transistors demonstrated here show excellent current saturation with an on-off ratio exceeding 2 × 103. The S-parameter characterization is performed for the first time on black phosphorus transistors, giving a 12 GHz short-circuit current-gain cut-off frequency and 20 GHz maximum oscillation frequency in 300 nm channel length devices. A current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm are achieved for hole conductions. The results reveal the promising potential of black phosphorus transistors for enabling the next generation thin film transistor technology that can operate in the multi-GHz frequency range and beyond.

  4. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR).

    PubMed

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10-50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera. PMID:26983801

  5. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    PubMed Central

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera. PMID:26983801

  6. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10-50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  7. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR).

    PubMed

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10-50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  8. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  9. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological time scales

    NASA Astrophysics Data System (ADS)

    Buendíia, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2013-12-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  10. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological timescales

    NASA Astrophysics Data System (ADS)

    Buendía, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2014-07-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  11. Multiple phosphorus chemical sites in heavily phosphorus-doped diamond

    SciTech Connect

    Okazaki, Hiroyuki; Yoshida, Rikiya; Muro, Takayuki; Nakamura, Tetsuya; Hirai, Masaaki; Kato, Hiromitsu; Yamasaki, Satoshi; Takano, Yoshihiko; Ishii, Satoshi; Oguchi, Tamio

    2011-02-21

    We have performed high-resolution core level photoemission spectroscopy on a heavily phosphorus (P)-doped diamond film in order to elucidate the chemical sites of doped-phosphorus atoms in diamond. P 2p core level study shows two bulk components, providing spectroscopic evidence for multiple chemical sites of doped-phosphorus atoms. This indicates that only a part of doped-phosphorus atoms contribute to the formation of carriers. From a comparison with band calculations, possible origins for the chemical sites are discussed.

  12. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    NASA Astrophysics Data System (ADS)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  13. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement. PMID:26649476

  14. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement.

  15. Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on reduction of total suspended solids (TSS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu) and zinc (Zn) in swine lagoons using (i) enhanced solid–liquid separation with polymer (SS) and (i...

  16. Effects of Simulated Climate Conditions on Phosphorus Cycling in an Annual Grassland

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Defforey, D.; Paytan, A.

    2012-12-01

    The Jasper Ridge Global Change Experiment is a long-term study of the effects of simulated climate change conditions on an annual grassland. The different treatments consist of elevated atmospheric CO2 levels, enhanced nitrate deposition, as well as higher temperatures and precipitation rates. The above ground vegetation from each plot is harvested and separated by species, with the dominant species being selected for analysis. The aim of this study is to investigate the effects of different climate conditions on the phosphorus content and phosphorus cycling in terrestrial plants. Phosphorus content in grass samples is determined using the colorimetric reaction (soluble reactive phosphorus content), as well as combustion and acid digestion (total phosphorus content). Since phosphorus only has one stable isotope, the δ18O signature in phosphate is used as a proxy to investigate phosphorus cycling in this ecosystem. These three tools will be combined and evaluated as indicators for phosphorus limitation in each respective treatment site and provide a better understanding of phosphorus cycling in annual grasslands and the potential effects of climate change on phosphorus cycling.

  17. The removal of phosphorus during wastewater treatment: a review.

    PubMed

    Yeoman, S; Stephenson, T; Lester, J N; Perry, R

    1988-01-01

    Phosphorus removal from wastewater can be achieved either through chemical removal, advanced biological treatment or a combination of both. The chemical removal of phosphorus involves the addition of calcium, iron and aluminium salts to achieve phosphorus precipitation by various mechanisms which are discussed. In addition, the effects of operating conditions, especially wastewater characteristics; sludge production in terms of quality and quantity; optimisation of chemical use and re-use; points of chemical addition combined with biological treatment; alternative chemical/physical treatments and examples of full-scale applications are also reviewed. Biological phosphorus removal is dependent upon the uptake of phosphorus in excess of normal bacterial metabolic requirements and is proposed as an alternative to chemical treatment. Early developments and the postulated removal mechanisms are reviewed; these include either natural chemical precipitation, enhanced biological removal, or a combination of both. The nature of excess biological phosphorus removal in activated sludge wastewater treatment plants is evaluated, considering various operating parameters, bacteriology and process designs. PMID:15092663

  18. Preparation of high purity phosphorus

    DOEpatents

    Rupp, Arthur F.; Woo, David V.

    1981-01-01

    High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.

  19. Synthesis of pure phosphorus nanostructures.

    PubMed

    Winchester, Richard A L; Whitby, Max; Shaffer, Milo S P

    2009-01-01

    To Bi or not to Bi? The synthesis of phosphorus nanorods of two differing morphologies is reported, in both the presence and absence of a bismuth catalyst. Not only do these materials represent a new class of elemental nanorods but they also give valuable insight into the complex allotropy of phosphorus. PMID:19180611

  20. [Effects of soil phosphorus level on morphological and photosynthetic characteristics of Ageratina adenophora and chromolaena odorata].

    PubMed

    Wang, Manlia; Feng, Yulong; Li, Xin

    2006-04-01

    In this paper, a comparative study was made on the growth, morphology, biomass allocation, and photosynthesis of two invasive plant species Ageratina adenophora and Chromolaena odorata under five soil phosphorus levels, aimed to know how the test plant species acclimate to the changes of soil phosphorus level, evaluate which plant traits were associated with the invasiveness of the two species, and know whether the increased level of soil phosphorus could facilitate their invasion. The results showed that the two species had considerable phenotypic plasticity and ? phosphorus acclimation ability. At low phosphorus levels, their root mass ratio increased, which could enhance the nutrient capture ability, while at high phosphorus levels, their specific leaf area, maximum net photosynthetic rate, light saturation point, and chlorophyll and carotenoid contents per unit area were high, and the assimilative capacity and area increased, which could facilitate their carbon gain. A. adenophora had higher phosphorus acclimation ability than C. odorata. With the increase of phosphorous level, the relative growth rate, total biomass, branch number, leaf area index, and maximum net photosynthetic rate of the two species increased significantly, and most of the parameters were not decreased significantly under over-optimal phosphorus level. The two species could grow better under high phosphorus levels which were usually excessive and/or harmful for most native species, and enhanced soil phosphorus level might promote their invasion. At high phosphorus levels, the two invasive plant species might shade out native species through increasing their plant height, branch number, and leaf area index. The two species could maintain relatively high growth rate under high phosphorus levels in dry season when native plant species almost stopped growing. The ability that the invasive plant species could temporally use natural resources which native plant species could not use was also

  1. Extraction of soil organic phosphorus.

    PubMed

    Turner, Benjamin L; Cade-Menun, Barbara J; Condron, Leo M; Newman, Susan

    2005-04-15

    Organic phosphorus is an important component of soil biogeochemical cycles, but must be extracted from soil prior to analysis. Here we critically review the extraction of soil organic phosphorus, including procedures for quantification, speciation, and assessment of biological availability. Quantitative extraction conventionally requires strong acids and bases, which inevitably alter chemical structure. However, a single-step procedure involving sodium hydroxide and EDTA (ethylenediaminetetraacetate) is suitable for most soils and facilitates subsequent speciation by nuclear magnetic resonance spectroscopy. Analysis of extracts by molybdate colorimetry is a potential source of error in all procedures, because organic phosphorus is overestimated in the presence of inorganic polyphosphates or complexes between inorganic phosphate and humic substances. Sequential extraction schemes fractionate organic phosphorus based on chemical solubility, but the link to potential bioavailability is misleading. Research should be directed urgently towards establishing extractable pools of soil organic phosphorus with ecological relevance.

  2. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  3. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  4. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-01

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  5. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-01

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies. PMID:27214029

  6. Prebiotic phosphorus chemistry reconsidered

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E. (Principal Investigator)

    1997-01-01

    The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.

  7. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone.

  8. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone. PMID:26119308

  9. Phosphorus Dynamic in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2010-12-01

    The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.

  10. Phosphorus removal mechanisms at the Yellow River Sweetwater Creek Water Reclamation Facility, Gwinnett County, Georgia. Master's thesis

    SciTech Connect

    Borowy, J.T.

    1994-01-01

    This research investigated the capabilities of the Yellow River Sweetwater Creek Water Reclamation Facility in Gwinnett County, GA. to remove phosphorus biologically. Phosphorus levels and removal locations were analyzed in plant operational units (sampling events), while in reactor experiments (pilot studies), waste was subjected to various conditions to promote-biological phosphorus release and uptake. Analysis of plant conditions at the time of experimentation indicates that one-half of the plant phosphorus removal is accomplished biologically through incorporation of phosphorus in microbial cells during growth. It does not appear, however, that enhanced biological phosphorus removal (BPR) is possible due to wastestream characteristics and/or microbial population. It was noted that the basic anaerobic-aerobic sequence associated with enhanced BPR appears to be occurring with the secondary clarifier sludge blanket and return to compartment A of the nitrification basin.

  11. Dietary phosphorus and kidney disease.

    PubMed

    Uribarri, Jaime

    2013-10-01

    High serum phosphate is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Therefore, maintenance of normal serum phosphate levels is a major concern in the clinical care of this population with dietary phosphorus restriction and/or use of oral phosphate binders considered to be the best corrective care. This review discusses (1) evidence for an association between serum phosphate levels and bone and cardiovascular disease (CVD) in CKD patients as well as progression of kidney disease itself; (2) the relationship between serum phosphate and dietary phosphorus intake; and (3) implications from these data for future research. Increasing our understanding of the relationship between altered phosphorus metabolism and disease in CKD patients may clarify the potential role of excess dietary phosphorus as a risk factor for disease in the general population.

  12. Black Phosphorus Optoelectronics and Electronics

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian

    Black phosphorus recently emerged as a promising new 2D material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. It serendipitously bridges the zero-gap graphene and the relatively large-bandgap transition metal dichalcogenides such as molybdenum disulfide (MoS2) . In this talk, I will first cover the basic properties of few-layer and thin-film black phosphorus, followed by a discussion of recent observation of highly anisotropic robust excitons in monolayer black phosphorus. Finally I will present a few potential applications of black phosphorus such as radio-frequency transistors and wideband photodetectors. We acknowledge support from the Office of Naval Research, the Air Force Office of Scientific Research, the National Science Foundation and Yale University.

  13. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater.

    PubMed

    Merzouki, M; Bernet, N; Delgenès, J P; Benlemlih, M

    2005-08-01

    An anaerobic-anoxic sequencing batch reactor (A2 SBR) coupled with a fixed-bed nitrification reactor for simultaneous carbon, nitrogen and phosphorus removal was evaluated using slaughterhouse wastewater. Whereas the treatment could not be successfully carried out on the raw wastewater, the process showed very good nutrient removal performances after prefermentation. The removals of COD, N-NH4 and P-PO4 achieved were 99%, 85% and 99%, respectively. The increase in volatile fatty acid (VFA) and phosphate concentrations in the effluent after prefermentation may explain the high levels of biological carbon, nitrogen and phosphorus removal observed. A simple prefermentation is, therefore, necessary but sufficient to ensure good performances of the denitrifying enhanced biological phosphorus removal (EBPR) process.

  14. Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage.

    PubMed

    Jin, Zhan; Ji, Fang-Ying; Xu, Xuan; Xu, Xiao-Yi; Chen, Qing-Kong; Li, Qi

    2014-11-01

    In this study, an advanced wastewater treatment process, the denitrifying phosphorus/side stream phosphorus removal system (DPR-Phostrip), was developed for the purpose of enhancing denitrifying phosphorus removal. The enrichment of denitrifying phosphorus-accumulating organisms (DPAOs) and the microbial community structure of DPR-Phostrip were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the metabolic activity of seed sludge and activated sludge collected after 55 days of operation were evaluated by Biolog™ analysis. This experimental study of DPR-Phostrip operation showed that nutrients were removed effectively, and denitrifying phosphorus removal was observed during the pre-anoxic period. PCR-DGGE analysis indicated that DPR-Phostrip supported DPAO growth while inhibiting PAOs and GAOs. The major dominant species in DPR-Phostrip were Bacteroidetes bacterium, Saprospiraceae bacterium, and Chloroflexi bacterium. Moreover, the functional diversity indices calculated on the basis of Biolog analysis indicated that DPR-Phostrip had almost no effect on microbial community diversity but was associated with a shift in the dominant species, which confirms the results of the PCR-DGGE analysis. The results for average well color development, calculated via Biolog analysis, showed that DPR-Phostrip had a little impact on the metabolic activity of sludge. Further principal component analysis suggested that the ability to utilize low-molecular-weight organic compounds was reduced in DPR-Phostrip.

  15. Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage.

    PubMed

    Jin, Zhan; Ji, Fang-Ying; Xu, Xuan; Xu, Xiao-Yi; Chen, Qing-Kong; Li, Qi

    2014-11-01

    In this study, an advanced wastewater treatment process, the denitrifying phosphorus/side stream phosphorus removal system (DPR-Phostrip), was developed for the purpose of enhancing denitrifying phosphorus removal. The enrichment of denitrifying phosphorus-accumulating organisms (DPAOs) and the microbial community structure of DPR-Phostrip were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the metabolic activity of seed sludge and activated sludge collected after 55 days of operation were evaluated by Biolog™ analysis. This experimental study of DPR-Phostrip operation showed that nutrients were removed effectively, and denitrifying phosphorus removal was observed during the pre-anoxic period. PCR-DGGE analysis indicated that DPR-Phostrip supported DPAO growth while inhibiting PAOs and GAOs. The major dominant species in DPR-Phostrip were Bacteroidetes bacterium, Saprospiraceae bacterium, and Chloroflexi bacterium. Moreover, the functional diversity indices calculated on the basis of Biolog analysis indicated that DPR-Phostrip had almost no effect on microbial community diversity but was associated with a shift in the dominant species, which confirms the results of the PCR-DGGE analysis. The results for average well color development, calculated via Biolog analysis, showed that DPR-Phostrip had a little impact on the metabolic activity of sludge. Further principal component analysis suggested that the ability to utilize low-molecular-weight organic compounds was reduced in DPR-Phostrip. PMID:25073616

  16. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus.

  17. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  18. III. Quantitative aspects of phosphorus excretion in ruminants.

    PubMed

    Bravo, David; Sauvant, Daniel; Bogaert, Catherine; Meschy, François

    2003-01-01

    Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus content). Another source of faecal endogenous phosphorus is rumen microbial phosphorus that escaped solubilisation during post-rumen digestion. All factors stimulating microbial growth would increase phosphorus uptake by the rumen microbes and consequently the faecal endogenous phosphorus. Understanding the determinants of faecal endogenous phosphorus flow will help to precise the determination of net phosphorus requirements for maintenance. The role of plasma phosphorus in urinary phosphorus loss is discussed.

  19. Evaporation Behavior of Phosphorus from Metallurgical Grade Silicon via Calcium-Based Slag Treatment and Hydrochloric Acid Leaching

    NASA Astrophysics Data System (ADS)

    Huang, Liuqing; Lai, Huixian; Lu, Chenghao; Fang, Ming; Ma, Wenhui; Xing, Pengfei; Luo, Xuetao; Li, Jintang

    2016-01-01

    Phosphorus removal from metallurgical grade silicon by CaO-SiO2-CaCl2 slag treatment, HCl leaching, and vacuum refining was investigated. The effect of different compositions of slag was evaluated. The calcium concentration in slag-treated silicon increased with increasing CaO/SiO2 mass ratio of slag, decreasing the evaporation efficiency of phosphorus in molten silicon. The total phosphorus removal efficiency changed from 93.0% to 98.3% when the slag-treated silicon was treated with HCl before vacuum refining. The final concentration of phosphorus in silicon was 0.43 ppmw. This is because phosphorus was removed from metallurgical-grade silicon as follows: Phosphorus reacts with slag at the silicon/slag interface and forms Ca3(PO4)2 and Ca3P2, most of which diffuse from the interface to the slag phase. The remaining Ca3(PO4)2 and Ca3P2 reduce the phosphorus removal efficiency by altering the activity coefficient of phosphorus in molten silicon. HCl leaching enhanced the phosphorus removal efficiency by removing the remaining Ca3(PO4)2 and Ca3P2. Therefore, the mass transfer of phosphorus from metallurgical-grade silicon was accelerated.

  20. Fire-Resistant Polyimides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J.

    1986-01-01

    Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.

  1. Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus

    ERIC Educational Resources Information Center

    Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.

    2010-01-01

    A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…

  2. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  3. Edge phonons in black phosphorus.

    PubMed

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  4. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  5. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus.

    PubMed

    Xiang, Du; Han, Cheng; Wu, Jing; Zhong, Shu; Liu, Yiyang; Lin, Jiadan; Zhang, Xue-Ao; Ping Hu, Wen; Özyilmaz, Barbaros; Neto, A H Castro; Wee, Andrew Thye Shen; Chen, Wei

    2015-03-12

    Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm(2) V(-1) s(-1) after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

  6. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Xiang, Du; Han, Cheng; Wu, Jing; Zhong, Shu; Liu, Yiyang; Lin, Jiadan; Zhang, Xue-Ao; Ping Hu, Wen; Özyilmaz, Barbaros; Neto, A. H. Castro; Wee, Andrew Thye Shen; Chen, Wei

    2015-03-01

    Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm2 V-1 s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

  7. Phosphorus Accumulating Organisms and Biogeochemical Hotspots

    NASA Astrophysics Data System (ADS)

    Archibald, J.; Walter, M. T.

    2008-12-01

    Despite extensive research, many of the processes that control phosphorus (P) movement from agricultural fields to streams and lakes are not well understood. This limits our ability to develop management strategies that will mediate P contamination of freshwater ecosystems and subsequent eutrophication. Recent advances in molecular microbiology have prompted a paradigm shift in wastewater treatment that recognizes and exploits the ways specific microbial processes influence P solubility. Central to this enhanced biological phosphorus removal in wastewater treatment plants is a relatively recently discovered microorganism, Candidatus accumulibacter, which takes-up P and stores it internally as polyphosphate under alternating aerobic and anaerobic conditions. Within the past few months we have discovered this organism in the natural environment and its role in P biogeochemistry is unclear. We speculate that it may function similarly in variable source areas, which experience cycles of saturation and desaturation, as it does in the anaerobic- aerobic cycles in a wastewater treatment plant. If so, there may be potential opportunities to realize similarly new perspectives and advancements in the watershed context as have been seen in wastewater technologies. Here we present some of our preliminary findings.

  8. Cholestatic presentation of yellow phosphorus poisoning.

    PubMed

    Lakshmi, C P; Goel, Amit; Basu, Debdatta

    2014-01-01

    Yellow phosphorus, a component of certain pesticide pastes and fireworks, is well known to cause hepatotoxicity. Poisoning with yellow phosphorus classically manifests with acute hepatitis leading to acute liver failure which may need liver transplantation. We present a case of yellow phosphorus poisoning in which a patient presented with florid clinical features of cholestasis highlighting the fact that cholestasis can rarely be a presenting feature of yellow phosphorus hepatotoxicity. PMID:24554916

  9. Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation.

    PubMed

    Ge, Shaofeng; Li, Chaokai; Zhang, Zhiming; Zhang, Chenglong; Zhang, Yudao; Qiu, Jun; Wang, Qinsheng; Liu, Junku; Jia, Shuang; Feng, Ji; Sun, Dong

    2015-07-01

    Black phosphorus has recently emerged as a promising material for high-performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap, and anisotropic electronic properties. Dynamical evolution of photoexcited carriers and the induced transient change of electronic properties are critical for materials' high-field performance but remain to be explored for black phosphorus. In this work, we perform angle-resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photoexcitation. We find that the anisotropy of reflectivity is enhanced in the pump-induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise attractive possibilities of creating high-field, angle-sensitive electronic, optoelectronic, and remote sensing devices exploiting the dynamical electronic anisotropy with black phosphorus.

  10. Black phosphorus nonvolatile transistor memory.

    PubMed

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-28

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (10(4) s), and cyclic endurance (1000 cycles). PMID:27074903

  11. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  12. Major Minerals - Calcium, Magnesium, Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  13. Natural phosphorus sources for the Pacific Northwest

    USGS Publications Warehouse

    Johnson, Hank

    2011-01-01

    Phosphorus is a naturally occurring element found in all rocks; the amount varies by the type of rock. The amount of phosphorus in sediments is expected to be correlated with the amount of phosphorus in the parent rocks. Streambed sediment collected by the National Uranium Resource Evaluation (NURE) Program were used to estimate the variation of phosphorus across the Pacific Northwest. This file provides an estimate of the mean concentration of phosphorus in soils for each incremental catchment of the USGS Pacific Northwest SPARROW model.

  14. Few-layer black phosphorus nanoparticles.

    PubMed

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  15. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  16. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus.

    PubMed

    Wu, Jing; Koon, Gavin Kok Wai; Xiang, Du; Han, Cheng; Toh, Chee Tat; Kulkarni, Eeshan S; Verzhbitskiy, Ivan; Carvalho, Alexandra; Rodin, Aleksandr S; Koenig, Steven P; Eda, Goki; Chen, Wei; Neto, A H Castro; Özyilmaz, Barbaros

    2015-08-25

    Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10(13) Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10(4) A W(-1) by applying a source-drain bias (VSD) of 3 V, which is the highest ever measured in any 2D material and 10(7) times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature.

  17. Struvite precipitation and phosphorus removal using magnesium sacrificial anode.

    PubMed

    Kruk, Damian J; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-04-01

    Struvite precipitation using magnesium sacrificial anode as the only source of magnesium is presented. High-purity magnesium alloy cast anode was found to be very effective in recovery of high-quality struvite from water solutions and from supernatant of fermented waste activated sludge from a wastewater treatment plant that does not practice enhanced biological phosphorus removal. Struvite purity was strongly dependent on the pH and the electric current density. Optimum pH of the 24 mM phosphorus and 46 mM ammonia solution (1:1.9 P:N ratio) was in the broad range between 7.5 and 9.3, with struvite purity exceeding 90%. Increasing the current density resulted in elevated struvite purity. No upper limits were observed in the studied current range of 0.05-0.2 A. Phosphorus removal rate was proportional to the current density and comparable for tests with water solutions and with the supernatant from fermented sludge. The highest P-removal rate achieved was 4.0 mg PO4-P cm(-2) h(-1) at electric current density of 45 A m(-2). Initial substrate concentrations affected the rate of phosphorus removal. The precipitated struvite accumulated in bulk liquid with significant portions attached to the anode surface from which regular detachment occurred.

  18. Global warming and the phosphorus cycle

    SciTech Connect

    Tarasova, N.P.; Smetannikov, Y.V.; Balitsky, V.Y. )

    1994-09-01

    Greenhouse-induced climate change seriously influences the phosphorus cycle. In this paper the authors have analyzed how environmental conditions cause an increase or a decrease in the phosphorus content of the soil. Phosphorus production in South Kazakhstan without strict control for fulfilling environment-protection measures may lead to the chemical erosion of soils, i.e., disturb the balance of soluble and insoluble, as well as organic and inorganic, forms of phosphorus. Phosphorus accumulation in the soil can be promoted by heavy metals. The authors have constructed a general dynamic system for phosphorus flows in the soil. The results of 7-years monitoring of the soils in the region of South Kazakhstan are discussed and compared with the dynamic system. The role of chemical elements promoting phosphorus accumulation in the soil is further analyzed.

  19. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas. PMID:26092358

  20. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.

  1. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.

    PubMed

    Dittrich, Maria; Gabriel, Oliver; Rutzen, Christian; Koschel, Rainer

    2011-03-15

    A whole-lake hypolimnetic Ca(OH)(2) addition, that induced calcium carbonate precipitation, combined with deep water aeration has been applied to eutrophic Lake Luzin, Germany during 1996-1998. In this study we investigated the dynamic of phosphorus and its binding forms in seston and sediment before and during the treatment. The sedimentation rates of phosphorus increased within three years of induced calcite precipitation. The phosphorus binding forms shifted to the calcite-bound phosphorus in the settling matter. The increase of calcite-bound P in the settling material did not coincide with the maximum induced CaCO(3)-precipitation caused by the hypolimnetic addition of Ca(OH)(2). An impact of chemicals additions and pH on phosphorus binding forms in seston and surface sediments has been studied in laboratory experiments with sediment core incubations and slurry experiments. Laboratory studies showed that the lowest phosphorus flux from sediment was related to the experiment with pH=7 in overlaying water adjusted with Ca(OH)(2). The adjusting of pH with Ca(OH)(2) leads to a lower P flux of 2.3 mg Pm(-2)d(-1), while the highest P-flux is attributed to the experiment with the pH which was adjusted with NaOH. Phosphorus fraction which reflects phosphorus binding on carbonates in surface sediments increased within one year of treatment, enhancing the phosphorus retention capacity of sediments. PMID:21292312

  2. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.

    PubMed

    Liu, Ying; Chen, Shi; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-10-30

    Microcystis aeruginosa was cultured with 0.05-5 mg L(-1) of phosphorus and exposed to 200-500 ng L(-1) of amoxicillin for seven days. Amoxicillin presented no significant effect (p>0.05) on the growth of M. aeruginosa at phosphorus levels of 0.05 and 0.2 mg L(-1), but stimulated algal growth as a hormesis effect at phosphorus levels of 1 and 5 mg L(-1). Phosphorus and amoxicillin affected the contents of chlorophyll-a, adenosine triphosphate (ATP) and malondialdehyde, the expression of psbA and rbcL, as well as the activities of adenosinetriphosphatase and glutathione S-transferase in similar manners, but regulated the production and release of microcystins and the activities of superoxide dismutase and peroxidase in different ways. Increased photosynthesis activity was related with the ATP consumption for the stress response to amoxicillin, and the stress response was enhanced as the phosphorus concentration increased. The biodegradation of amoxicillin by M. aeruginosa increased from 11.5% to 28.2% as the phosphorus concentration increased. Coexisting amoxicillin aggravated M. aeruginosa pollution by increasing cell density and concentration of microcystins, while M. aeruginosa alleviated amoxicillin pollution via biodegradation. The interactions between M. aeruginosa and amoxicillin were significantly regulated by phosphorus (p<0.05) and led to a complicated situation of combined pollution. PMID:25956638

  3. Phosphorus as sintering activator in powder metallurgical steels: characterization of the distribution and its technological impact.

    PubMed

    Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert

    2004-06-01

    Powder metallurgy is a highly developed method of manufacturing reliable ferrous parts. The main processing steps in a powder metallurgical line are pressing and sintering. Sintering can be strongly enhanced by the formation of a liquid phase during the sintering process when using phosphorus as sintering activator. In this work the distribution (effect) of phosphorus was investigated by means of secondary ion mass spectrometry (SIMS) supported by Auger electron spectroscopy (AES) and electron probe micro analysis (EPMA). To verify the influence of the process conditions (phosphorus content, sintering atmosphere, time) on the mechanical properties, additional measurements of the microstructure (pore shape) and of impact energy were performed. Analysis of fracture surfaces was performed by means of scanning electron microscopy (SEM). The concentration of phosphorus differs in the samples from 0 to 1% (w/ w). Samples with higher phosphorus concentrations (1% (w/ w) and above) are also measurable by EPMA, whereas the distributions of P at technically relevant concentrations and the distribution of possible impurities are only detectable (visible) by means of SIMS. The influence of the sintering time on the phosphorus distribution will be demonstrated. In addition the grain boundary segregation of P was measured by AES at the surface of in-situ broken samples. It will be shown that the distribution of phosphorus depends also on the concentration of carbon in the samples.

  4. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets.

    PubMed

    Erande, Manisha B; Pawar, Mahendra S; Late, Dattatray J

    2016-05-11

    Recent investigations on two-dimensional black phosphorus material mainly highlight work on few atomic layers and multilayers. It is still unknown if the black phosphorus atomically thin sheet is an ideal structure for the enhanced gas-solid interactions due to its large surface area. To further investigate this concern, we have synthesized few atomic layer thick nanosheets of black phosphorus using an electrochemical exfoliation method. The surface morphology and thickness of the nanosheet were identified using AFM, TEM, and Raman spectroscopy. The black phosphorus nanosheet thick film device was used for the gas sensing application with exposure to different humidites. Further, the few layer black phosphorus nanosheet based transistor shows good mobility and on/off ratio. The UV light irradiation on the black phosphorus nanosheet shows good response time. The overall results show that the few layer thick film of black phosphorus nanosheets sample exhibits creditable sensitivity and better recovery time to be used in humidity sensor and photodetector applications. PMID:27096546

  5. The impact of introduced round gobies (Neogobius melanostomus) on phosphorus cycling in central Lake Erie

    USGS Publications Warehouse

    Bunnell, D.B.; Johnson, T.B.; Knight, C.T.

    2005-01-01

    We used an individual-based bioenergetic model to simulate the phosphorus flux of the round goby (Neogobius melanostomus) population in central Lake Erie during 1995-2002. Estimates of round goby diet composition, growth rates, and population abundance were derived from field sampling. As an abundant introduced fish, we predicted that round gobies would influence phosphorus cycling both directly, through excretion, and indirectly, through consumption of dreissenid mussels, whose high mass-specific phosphorus excretion enhances recycling. In 1999, when age-1+ round gobies reached peak abundance near 350 million (2.4 kg??ha-1), annual phosphorus excretion was estimated at 7 t (1.4 ?? 10-3 mg P??m-2??day -1). From an ecosystem perspective, however, round gobies excreted only 0.4% of the phosphorus needed by the benthic community for primary production. Indirectly, round gobies consumed <0.2% of dreissenid population biomass, indicating that round gobies did not reduce nutrient availability by consuming dreissenids. Compared with previous studies that have revealed introduced species to influence phosphorus cycling, round gobies likely did not attain a sufficiently high biomass density to influence phosphorus cycling in Lake Erie. ?? 2005 NRC Canada.

  6. Effects of Simulated Climate Conditions on Phosphorus Cycling in an Annual Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Paytan, A.; Defforey, D.; Roberts, K.

    2014-12-01

    The Jasper Ridge Global Change Experiment is a long-term study of the effects of simulated climate change conditions on an annual grassland ecosystem. The different treatments consist of elevated atmospheric CO2 levels, enhanced nitrate deposition, as well as higher temperatures and precipitation rates. A representative portion of the above ground vegetation from each plot is harvested. The aim of this study is to investigate the effects of different climate conditions on the phosphorus content and phosphorus cycling in terrestrial plants. Since phosphorus only has one stable isotope, the δ18O signature in phosphate is used as a proxy to investigate phosphorus cycling. Although this technique has been successful in determining phosphorous cycling in aquatic systems, only a few studies have used this approach for terrestrial ecosystems. We analyzed the δ18O of the most abundant grass from each of the plots and treatments. The δ18O values of each sample are compared to elemental budgets of carbon, nitrogen, and phosphorous for correlation as well as soil enzyme activities. and the combination of measures are assessed as indicators for phosphorus limitation in each respective treatment site and provide a better understanding of phosphorus cycling in annual grasslands and the potential effects of climate change on phosphorus cycling.

  7. Black phosphorus nonvolatile transistor memory

    NASA Astrophysics Data System (ADS)

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-01

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles).We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02078j

  8. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  9. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    PubMed

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.

  10. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  11. Negative compressibility in graphene-terminated black phosphorus heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Yingying; Chen, Xiaolong; Wu, Zefei; Xu, Shuigang; Han, Tianyi; Lin, Jiangxiazi; Skinner, Brian; Cai, Yuan; He, Yuheng; Cheng, Chun; Wang, Ning

    2016-01-01

    Negative compressibility is a many-body effect wherein strong correlations give rise to an enhanced gate capacitance in two-dimensional (2D) electronic systems. We observe capacitance enhancement in a newly emerged 2D layered material, atomically thin black phosphorus (BP). The encapsulation of BP by hexagonal boron nitride sheets with few-layer graphene as a terminal ensures ultraclean heterostructure interfaces, allowing us to observe negative compressibility at low hole carrier concentrations. We explain the negative compressibility based on the Coulomb correlation among in-plane charges and their image charges in a gate electrode in the framework of Debye screening.

  12. Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; DiGuiseppi, David; Schweitzer-Stenner, Reinhard; Ji, Hai-Feng

    2016-09-19

    Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra-long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X-ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I-V curve similar to that of black phosphorus and a similar mobility reaching 300 cm(2)  V(-1)  s with an Ion /Ioff ratio approaching 10(2) . A significant response to infrared light was observed from the FET device. PMID:27553637

  13. Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; DiGuiseppi, David; Schweitzer-Stenner, Reinhard; Ji, Hai-Feng

    2016-09-19

    Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra-long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X-ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I-V curve similar to that of black phosphorus and a similar mobility reaching 300 cm(2)  V(-1)  s with an Ion /Ioff ratio approaching 10(2) . A significant response to infrared light was observed from the FET device.

  14. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  15. Phosphorus and Nutrition in Chronic Kidney Disease

    PubMed Central

    González-Parra, Emilio; Gracia-Iguacel, Carolina; Egido, Jesús; Ortiz, Alberto

    2012-01-01

    Patients with renal impairment progressively lose the ability to excrete phosphorus. Decreased glomerular filtration of phosphorus is initially compensated by decreased tubular reabsorption, regulated by PTH and FGF23, maintaining normal serum phosphorus concentrations. There is a close relationship between protein and phosphorus intake. In chronic renal disease, a low dietary protein content slows the progression of kidney disease, especially in patients with proteinuria and decreases the supply of phosphorus, which has been directly related with progression of kidney disease and with patient survival. However, not all animal proteins and vegetables have the same proportion of phosphorus in their composition. Adequate labeling of food requires showing the phosphorus-to-protein ratio. The diet in patients with advanced-stage CKD has been controversial, because a diet with too low protein content can favor malnutrition and increase morbidity and mortality. Phosphorus binders lower serum phosphorus and also FGF23 levels, without decreasing diet protein content. But the interaction between intestinal dysbacteriosis in dialysis patients, phosphate binder efficacy, and patient tolerance to the binder could reduce their efficiency. PMID:22701173

  16. Impact of phosphorus control measures on in-river phosphorus retention associated with point source pollution

    NASA Astrophysics Data System (ADS)

    Demars, B. O. L.; Harper, D. M.; Pitt, J.-A.; Slaughter, R.

    2005-01-01

    In-river phosphorus retention alters the quantity and timings of phosphorus delivery to downstream aquatic systems. Many intensive studies of in-river phosphorus retention have been carried out but generally on a short time scale (2-4 years). In this paper, monthly water quality data, collected by the Environment Agency of England and Wales over 12 years (1990-2001), were used to model daily phosphorus fluxes and monthly in-river phosphorus retention in the lowland calcareous River Wensum, Norfolk, UK. The effectiveness of phosphorus stripping at two major sewage treatment works was quantified over different hydrological conditions. The model explained 78% and 88% of the observed variance before and after phosphorus control, respectively. During relatively dry years, there was no net export of phosphorus from the catchment. High retention of phosphorus occurred, particularly during the summer months, which was not compensated for, by subsequent higher flow events. The critical discharge (Q) above which net remobilisation would occur, was only reached during few, high flow events Q25-Q13. Phosphorus removal from the effluent at two major STWs (Sewage Treatment Works) reduced the phosphorus catchment mass balance variability by 20-24% under the Q99-Q1. range of flow conditions. Although the absorbing capacity of the catchment against human impact was remarkable, further phosphorus remedial strategies will be necessary to prevent downstream risks of eutrophication occuring independently of the unpredictable variability in weather conditions.

  17. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  18. Serum phosphorus adds to value of serum parathyroid hormone for assessment of bone turnover in renal osteodystrophy.

    PubMed

    Gentry, Jimmy; Webb, Jonathan; Davenport, Daniel; Malluche, Hartmut H

    2016-07-01

    It is well-established that parathyroid hormone (PTH) correlates with the level of bone turnover in patients with chronic kidney disease stage 5D (CKD-5D). Hyperphosphatemia is a well-established complication of end-stage renal disease and is usually attributed to dietary intake. This study evaluates the relationship between serum phosphorus levels and bone turnover in patients with CKD-5D. 93 patients with CKD-5D from the Kentucky Bone Registry who had sequentially undergone anterior iliac bone biopsies were reviewed. Undecalcified bone sections were qualitatively assessed for turnover and placed into a group with low turnover and a group with non-low (normal/high) turnover. Results of PTH and phosphorus concentrations in blood drawn at the time of biopsies were compared between the groups. PTH and phosphorus levels were significantly higher in the non-low turnover group compared to the low turnover group. Cutoff levels for PTH and phosphorus were tested for predictive power of bone turnover. Both PTH and phosphorus correlated with turnover. Adding serum phosphorus to serum PTH enhanced predictive power of PTH for low turnover. The vast majority of patients with serum phosphorus levels ≥ 6.0 mg/dL had non-low turnover, while the majority of those with low turnover had phosphorus values < 6.0 mg/dL. Classification and regression-tree analysis showed that elevated serum phosphorus (> 6.2 mg/dL) in patients with PTH < 440 pg/mL was helpful in diagnosing nonlow turnover in this range of PTH. In patients with PTH ranges of 440 - 814 pg/mL, serum phosphorus levels > 4.55 mg/dL ruled out low turnover bone disease. This suggests that not only dietary intake but also bone affects serum phosphorus levels. PMID:27191663

  19. [Optimization of nitrogen and phosphorus removal in vertical subsurface flow constructed wetlands by using polypropylene pellet as part of substrate].

    PubMed

    Tang, Xian-Qiang; Li, Jin-Zhong; Li, Xue-Ju; Liu, Xue-Gong; Huang, Sui-Liang

    2008-05-01

    Constructed wetlands experiments were conducted by using shale and Typha latifolia L. as vertical subsurface flow constructed wetland substrate and plant for eutrophic Jin River water treatment, and part of shale with polypropylene pellet was replaced to investigate its effect on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, theoretic residence time was equal to 12 h. During the entire running period, maximal monthly mean ammonia-nitrogen (NH(4+) -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the full shale used wetland, polypropylene pellet enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal by 13.38%, 8.9%, 9.29% and 8.25% respectively. After finishing the experiment, aboveground plant biomass (stems and leaves) of Typha latifolia L. was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that polypropylene pellet restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. The subsequent harvesting of the plants resulted in the additional removal of total nitrogen and phosphorus of about 29.382 g x m(-2) and 13.469 g x m(-2), respectively.

  20. Trapping phosphorus in runoff with a phosphorus removal structure.

    PubMed

    Penn, Chad J; McGrath, Joshua M; Rounds, Elliott; Fox, Garey; Heeren, Derek

    2012-01-01

    Reduction of phosphorus (P) inputs to surface waters may decrease eutrophication. Some researchers have proposed filtering dissolved P in runoff with P-sorptive byproducts in structures placed in hydrologically active areas with high soil P concentrations. The objectives of this study were to construct and monitor a P removal structure in a suburban watershed and test the ability of empirically developed flow-through equations to predict structure performance. Steel slag was used as the P sorption material in the P removal structure. Water samples were collected before and after the structure using automatic samples and analyzed for total dissolved P. During the first 5 mo of structure operation, 25% of all dissolved P was removed from rainfall and irrigation events. Phosphorus was removed more efficiently during low flow rate irrigation events with a high retention time than during high flow rate rainfall events with a low retention time. The six largest flow events occurred during storm flow and accounted for 75% of the P entering the structure and 54% of the P removed by the structure. Flow-through equations developed for predicting structure performance produced reasonable estimates of structure "lifetime" (16.8 mo). However, the equations overpredicted cumulative P removal. This was likely due to differences in pH, total Ca and Fe, and alkalinity between the slag used in the structure and the slag used for model development. This suggests the need for an overall model that can predict structure performance based on individual material properties.

  1. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  2. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Hu, J.; Hetland, R.

    2012-05-01

    The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Texas-Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7 yr simulation (2001-2007) compare well with available observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but enhanced fluxes westward in the Atchafalaya and far-field regions. Two discharge scenarios with altered river phosphate concentrations (±50 %) reveal a significant variation (±40 % in July) in the spatial extent of phosphorus limitation with changes in phosphate load.

  3. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors.

    PubMed

    Buscema, Michele; Groenendijk, Dirk J; Blanter, Sofya I; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-06-11

    Few-layer black phosphorus, a new elemental two-dimensional (2D) material recently isolated by mechanical exfoliation, is a high-mobility layered semiconductor with a direct bandgap that is predicted to strongly depend on the number of layers, from 0.35 eV (bulk) to 2.0 eV (single layer). Therefore, black phosphorus is an appealing candidate for tunable photodetection from the visible to the infrared part of the spectrum. We study the photoresponse of field-effect transistors (FETs) made of few-layer black phosphorus (3-8 nm thick), as a function of excitation wavelength, power, and frequency. In the dark state, the black phosphorus FETs can be tuned both in hole and electron doping regimes allowing for ambipolar operation. We measure mobilities in the order of 100 cm(2)/V s and a current ON/OFF ratio larger than 10(3). Upon illumination, the black phosphorus transistors show a response to excitation wavelengths from the visible region up to 940 nm and a rise time of about 1 ms, demonstrating broadband and fast detection. The responsivity reaches 4.8 mA/W, and it could be drastically enhanced by engineering a detector based on a PN junction. The ambipolar behavior coupled to the fast and broadband photodetection make few-layer black phosphorus a promising 2D material for photodetection across the visible and near-infrared part of the electromagnetic spectrum. PMID:24821381

  4. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.

    PubMed

    Wu, Chang-Yong; Peng, Yong-Zhen; Wang, Ran-Deng; Zhou, Yue-Xi

    2012-02-01

    The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L(-1) during the operation.

  5. Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.

    PubMed

    Vigiak, O; Rattray, D; McInnes, J; Newham, L T H; Roberts, A M

    2012-11-15

    Phosphorus pollution severely impairs the water quality of rivers in Australia and worldwide. Conceptual models have proved useful to assess management impact on phosphorus loads, particularly in data-sparse environments. This paper develops and evaluates the coupling of a point-scale model (HowLeaky2008) to a catchment scale model (CatchMODS) to enhance modelling of farm management impacts on in-stream phosphorus loads. The model was tested in two adjacent catchments in northern Victoria (Avon-Richardson and Avoca), Australia. After calibration of the in-stream attenuation parameter against measurements at gauging stations, the model simulated specific annual phosphorus loads across the catchments well (Nash-Sutcliffe model efficiency of 0.52 in the Avon-Richardson and 0.83 for the Avoca catchment). Phosphorus loads at both catchment outlets under current conditions were estimated at 7 t y(-1) and were dominated by field exports. Changes to farm management practices, i.e. the use of perennial pastures in grazing systems and zero-tillage in cropping systems were estimated to reduce phosphorus load by 31% in the Avon-Richardson catchment and 19% in the Avoca catchment, relative to current practices (annual pasture and minimum tillage). The model afforded a major improvement in conceptual modelling by explicit simulation of the impacts of soil and climatic conditions on field-scale exports and by placing them in the context of landscape processes.

  6. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors.

    PubMed

    Buscema, Michele; Groenendijk, Dirk J; Blanter, Sofya I; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-06-11

    Few-layer black phosphorus, a new elemental two-dimensional (2D) material recently isolated by mechanical exfoliation, is a high-mobility layered semiconductor with a direct bandgap that is predicted to strongly depend on the number of layers, from 0.35 eV (bulk) to 2.0 eV (single layer). Therefore, black phosphorus is an appealing candidate for tunable photodetection from the visible to the infrared part of the spectrum. We study the photoresponse of field-effect transistors (FETs) made of few-layer black phosphorus (3-8 nm thick), as a function of excitation wavelength, power, and frequency. In the dark state, the black phosphorus FETs can be tuned both in hole and electron doping regimes allowing for ambipolar operation. We measure mobilities in the order of 100 cm(2)/V s and a current ON/OFF ratio larger than 10(3). Upon illumination, the black phosphorus transistors show a response to excitation wavelengths from the visible region up to 940 nm and a rise time of about 1 ms, demonstrating broadband and fast detection. The responsivity reaches 4.8 mA/W, and it could be drastically enhanced by engineering a detector based on a PN junction. The ambipolar behavior coupled to the fast and broadband photodetection make few-layer black phosphorus a promising 2D material for photodetection across the visible and near-infrared part of the electromagnetic spectrum.

  7. N-type control of single-crystal diamond films by ultra-lightly phosphorus doping

    NASA Astrophysics Data System (ADS)

    Kato, Hiromitsu; Ogura, Masahiko; Makino, Toshiharu; Takeuchi, Daisuke; Yamasaki, Satoshi

    2016-10-01

    A wide impurity doping range of p- and n-type diamond semiconductors will facilitate the development of various electronics. This study focused on producing n-type diamond with ultra-lightly impurity doping concentrations. N-type single-crystal diamond films were grown on (111)-oriented diamond substrates by phosphorus doping using the optimized doping conditions based on microwave plasma-enhanced chemical vapor deposition with a high magnetron output power of 3600 W. The surface morphology was investigated by an optical microscopy using the Nomarski prism and confocal laser microscopy, and the phosphorus concentration was estimated by a secondary ion mass spectrometry. The phosphorus concentration was reproducibly controlled to between 2 × 1015 and 3 × 1017 cm-3 using a standard mass flow controller, and the average incorporation efficiency was around 0.1%. The electrical properties of the films were characterized by the Hall effect measurements as a function of temperature over a wide range from 220 to 900 K. N-type conductivity with thermal activation from a phosphorus donor level at around 0.57 eV was clearly observed for all the phosphorus-doped diamond films. The electron mobility of the film with a phosphorus concentration of 2 × 1015 cm-3 was recorded at 1060 cm2/V s at 300 K and 1500 cm2/V s at 225 K.

  8. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003).

    PubMed

    de-Bashan, Luz E; Bashan, Yoav

    2004-11-01

    Large quantities of phosphate present in wastewater is one of the main causes of eutrophication that negatively affects many natural water bodies, both fresh water and marine. It is desirable that water treatment facilities remove phosphorus from the wastewater before they are returned to the environment. Total removal or at least a significant reduction of phosphorus is obligatory, if not always fulfilled, in most countries. This comprehensive review summarizes the current status in phosphorus-removal technologies from the most common approaches, like metal precipitation, constructed wetland systems, adsorption by various microorganisms either in a free state or immobilized in polysaccharide gels, to enhanced biological phosphorus removal using activated sludge systems, and several innovative engineering solutions. As chemical precipitation renders the precipitates difficult, if not impossible, to recycle in an economical industrial manner, biological removal opens opportunities for recovering most of the phosphorus and beneficial applications of the product. This review includes the options of struvite (ammonium-magnesium-phosphate) and hydroxyapatite formation and other feasible options using, the now largely regarded contaminant, phosphorus in wastewater, as a raw material for the fertilizer industry. Besides updating our knowledge, this review critically evaluates the advantage and difficulties behind each treatment and indicates some of the most relevant open questions for future research.

  9. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Hu, J.; Hetland, R.

    2012-11-01

    The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited in marine waters, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7-yr simulation (2001-2007) compare well with several sources of observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but slightly enhanced fluxes west of Atchafalaya Bay. Simulations with altered river phosphate concentrations (±50%) show that significant variation in the spatial extent of phosphorus limitation (±40% in July) results from changes in phosphate load.

  10. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.

    PubMed

    Schroeder, M S; Janos, D P

    2005-05-01

    We examined the effects of arbuscular mycorrhizas (AM), phosphorus fertilization, intraspecific density, and their interaction, on the growth, phosphorus uptake, and root morphology of three facultative mycotrophic crops (Capsicum annuum, Zea mays, and Cucurbita pepo). Plants were grown in pots with or without AM at three densities and four phosphorus availabilities for 10 weeks. AM colonization, plant weight, and shoot phosphorus concentration were measured at harvest. Root morphology was assessed for C. annuum and Z. mays. Phosphorus fertilization reduced but did not eliminate AM colonization of all species. AM, phosphorus, and density interacted significantly to modify growth of C. annuum and C. pepo such that increased density and phosphorus diminished beneficial effects of AM. Increased density reduced positive effects of AM on C. annuum and C. pepo shoot phosphorus concentrations. AM altered both Z. mays and C. annuum root morphology in ways that complemented potential phosphorus uptake by mycorrhizas, but increased density and phosphorus diminished these effects. We infer that increased density predominantly influenced plant responses by affecting whether or not carbon (photosynthate) or phosphorus limited plant growth. By exacerbating carbon limitation, high density reduced the benefit/cost ratio of mycorrhizas and minimized their effects.

  11. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, D.M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  12. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Val, Klump J.; Edgington, D.N.; Sager, P.E.; Robertson, D.M.

    1997-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus (700 metric tons (t)??year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg??cm-2??year-1 with an average of 20 mg??cm-2 year-1. The phosphorus content of these sediments varies from 70 ??mol??g-1. Deposition is highly focused, with ???0% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  13. Phosphorus Moieties Make Polymers Less Flammable

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1992-01-01

    Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.

  14. Removal of phosphorus by peritoneal dialysis.

    PubMed

    Delmez, J A

    1993-01-01

    Substantial evidence exists that peritoneal dialysis, as currently practiced, cannot alone remove adequate amounts of phosphorus in well-nourished patients. Current efforts should address the possibility of developing improved nontoxic oral phosphorus binders and/or different compositions of dialysate fluid. PMID:8399639

  15. Sustainable use of phosphorus: a finite resource.

    PubMed

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes.

  16. Phosphorus Availability Coefficients from Various Organic Sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine Phosphorus Availability Coefficients (PACs) for a variety of organic phosphorus (P) sources, and to examine the relationship between PACs measured in simulated rainfall runoff and alternative soil incubations. PAC is an important parameter in the P-Ind...

  17. Aquatic plant debris improve phosphorus sorption into sediment under anoxic condition.

    PubMed

    Jin, Chong-Wei; Du, Shao-Ting; Dong, Wu-Yuan; Wang, Jue-Hua; Shen, Cheng; Zhang, Yong-Song

    2013-11-01

    The effects of plant debris on phosphorus sorption by anoxic sediment were investigated. Addition of plant debris significantly enhanced the decrease of soluble relative phosphorus (SRP) in overlying water at both 10 and 30 °C during the 30-day investigation. Both cellulose and glucose, two typical plant components, also clearly enhanced the SRP decrease in anoxic overlying water. The measurement of phosphorus (P) fractions in sediment revealed that the levels of unstable P forms were decreased by plant debris addition, whereas the opposites were true for stable P forms. However, under sterilized condition, plant debris/glucose addition has no effect on the SRP decrease in overlying water. Overall, our results suggested that plant debris improve P sorption into sediment under anoxic condition through a microorganism-mediated mechanism. PMID:23686758

  18. BICT biological process for nitrogen and phosphorus removal.

    PubMed

    Huang, Y; Li, Y; Pan, Y

    2004-01-01

    An updated biological nitrogen and phosphorus removal process--BICT (Bi-Cyclic Two-Phase) biological process--is proposed and investigated. It is aimed to provide a process configuration and operation mode that has facility and good potential for optimizing operation conditions, especially for enhancing the stability and reliability of the biological nutrient removal process. The proposed system consists of an attached-growth reactor for growing autotrophic nitrifying bacteria, a set of suspended-growth sequencing batch reactors for growing heterotrophic organisms, an anaerobic biological selector and a clarifier. In this paper, the fundamental concept and operation principles of BICT process are described, and the overall performances, major operation parameters and the factors influencing COD, nitrogen and phosphorus removal in the process are also discussed based on the results of extensive laboratory experiments. According to the experimental results with municipal sewage and synthetic wastewater, the process has strong and stable capability for COD removal. Under well controlled conditions, the removal rate of TN can reach over 80% and TP over 90% respectively, and the effluent concentrations of TN and TP can be controlled below 15 mg/L and 1.0 mg/L respectively for municipal wastewater. The improved phosphorus removal has been reached at short SRT, and the recycling flow rate of supernatant between the main reactors and attached-growth reactor is one of the key factors controlling the effect of nitrogen removal.

  19. Humidity Effects and Anisotropic Etching During Exfoliated Black Phosphorus Degradation

    NASA Astrophysics Data System (ADS)

    Favron, Alexandre; Moraille, Patricia; Gaufres, Etienne; Roorda, Tycho; Levesque, Pierre L.; Leonelli, Richard; Martel, Richard

    Black phosphorus, a lamellar structure similar to graphene, is a high mobility semiconductor having a tunable optical band gap from 0.3 eV up to ~2 eV with decreasing layer thickness. Our previous study has highlighted a fast photo-oxidation in ambient conditions when black phosphorus is exfoliated as thin layers. The kinetics of this degradation is also enhanced by quantum confinement effects and faster for the thinnest layers, which represents an important hurdle to prepare few layers. Here we further investigate the role of water in the process by following the reaction kinetics in different humidity using fast AFM imaging. We report on important changes of wettability of thin layers at room temperature depending on the degradation stages and layer thickness. For a given level of humidity at equilibrium, we observe the formation of water droplets. Those droplets form preferentially on defects sites and cracks and then grow on the thicker parts of the flake to finally accumulate on to the thinnest regions. This sequence of water droplet growth faster from thick to thin layers is interpreted as being due to a lowering of surface tension with decreasing layer thickness. In a second study, the oxidation kinetics of layers completely immersed in water reveal an anisotropic oxidation process with preferential etching in specific orientations of the crystal. This study will be discussed in the context of a reactivity of black phosphorus that appears both anisotropic and thickness-dependent.

  20. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.

    PubMed

    Braak, Etienne; Auby, Sarah; Piveteau, Simon; Guilayn, Felipe; Daumer, Marie-Line

    2016-01-01

    Phosphorus (P) recycling as mineral fertilizer from wastewater activated sludge (WAS) depends on the amount that can be dissolved and separated from the organic matter before the final crystallization step. The aim of the biological phosphorus dissolution potential (BPDP) test developed here was to assess the maximum amount of P that could be biologically released from WAS prior that the liquid phase enters the recovery process. It was first developed for sludge combining enhanced biological phosphorus removal and iron chloride. Because carbohydrates are known to induce acidification during the first stage of anaerobic digestion, sucrose was used as a co-substrate. Best results were obtained after 24-48 h, without inoculum, with a sugar/sludge ratio of 0.5 gCOD/gVS and under strict anaerobic conditions. Up to 75% of the total phosphorus in sludge from a wastewater treatment plant combining enhanced biological phosphorus removal and iron chloride phosphorus removal could be dissolved. Finally, the test was applied to assess BPDP from different sludge using alum compounds for P removal. No dissolution was observed when alum polychloride was used and less than 20% when alum sulphate was used. In all the cases, comparison to chemical acidification showed that the biological process was a major contributor to P dissolution. The possibility to crystallize struvite was discussed from the composition of the liquids obtained. The BPDP will be used not only to assess the potential for phosphorus recycling from sludge, but also to study the influence of the co-substrates available for anaerobic digestion of sludge.

  1. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.

    PubMed

    Braak, Etienne; Auby, Sarah; Piveteau, Simon; Guilayn, Felipe; Daumer, Marie-Line

    2016-01-01

    Phosphorus (P) recycling as mineral fertilizer from wastewater activated sludge (WAS) depends on the amount that can be dissolved and separated from the organic matter before the final crystallization step. The aim of the biological phosphorus dissolution potential (BPDP) test developed here was to assess the maximum amount of P that could be biologically released from WAS prior that the liquid phase enters the recovery process. It was first developed for sludge combining enhanced biological phosphorus removal and iron chloride. Because carbohydrates are known to induce acidification during the first stage of anaerobic digestion, sucrose was used as a co-substrate. Best results were obtained after 24-48 h, without inoculum, with a sugar/sludge ratio of 0.5 gCOD/gVS and under strict anaerobic conditions. Up to 75% of the total phosphorus in sludge from a wastewater treatment plant combining enhanced biological phosphorus removal and iron chloride phosphorus removal could be dissolved. Finally, the test was applied to assess BPDP from different sludge using alum compounds for P removal. No dissolution was observed when alum polychloride was used and less than 20% when alum sulphate was used. In all the cases, comparison to chemical acidification showed that the biological process was a major contributor to P dissolution. The possibility to crystallize struvite was discussed from the composition of the liquids obtained. The BPDP will be used not only to assess the potential for phosphorus recycling from sludge, but also to study the influence of the co-substrates available for anaerobic digestion of sludge. PMID:26786893

  2. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  3. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  4. Impact of phosphorus control measures on in-river phosphorus retention associated with point source pollution

    NASA Astrophysics Data System (ADS)

    Demars, B. O. L.; Harper, D. M.; Pitt, J.-A.; Slaughter, R.

    2005-06-01

    In-river phosphorus retention alters the quantity and timings of phosphorus delivery to downstream aquatic systems. Many intensive studies of in-river phosphorus retention have been carried out but generally on a short time scale (2-4 years). In this paper, monthly water quality data, collected by the Environment Agency of England and Wales over 12 years (1990-2001), were used to model daily phosphorus fluxes and monthly in-river phosphorus retention in the lowland calcareous River Wensum, Norfolk, UK. The calibrated model explained 79% and 89% of the observed variance before and after phosphorus control, respectively. A split test revealed that predicted TP loads were in good agreement with observed TP loads (r2=0.85), although TP loads were underestimated under high flow conditions. During relatively dry years, there was no net export of phosphorus from the catchment. High retention of phosphorus occurred, particularly during the summer months, which was not compensated for, by subsequent higher flow events. This was despite a relatively modest critical discharge (Q) above which net remobilisation occur. Phosphorus removal from the effluent at two major STWs (Sewage Treatment Works) reduced phosphorus retention but not the remobilisation. This may indicate that the presence of impoundments and weirs, or overbank flows may have more control on the phosphorus dynamics under high flow conditions. Further phosphorus remedial strategies will be necessary to prevent downstream risks of eutrophication occurring independently of the unpredictable variability in weather conditions. More research is also needed to quantify the impact of the weir and overbank flows on phosphorus dynamics.

  5. Metagenomic analysis of phosphorus removing sludgecommunities

    SciTech Connect

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  6. Nitrogen and phosphorus budget in rewetted fens.

    PubMed

    Lenz, A; Wild, U

    2001-01-01

    A former dewatered fen was flooded for a multi-purpose landuse system including cattail production, fen protection, and water purification. These research plants with an area of 6 ha consist of three constructed surface-flow wetlands. The inflowing water is polluted by non-point sources due to intensive agriculture. The focus of this paper is the estimation of the potential of rewetted fens to reduce phosphorus and nitrogen. The dominating forms of nitrogen in the inflow are organic nitrogen and nitrate. The reduction rate is higher for nitrate than for organic nitrogen, although the nitrate reductions occur only during the summer season. If no nitrate is available for denitrification, there is a release of ammonia from the peat into the water. The main form of phosphorus in the in- and outflow is ortho-phosphate. In contrast to the values of nitrate, the concentrations of phosphorus are very regular with no significant seasonal pattern. When nitrate isn't available in the water any more, the release of phosphorus begins and the rewetted fens change from a sink for phosphorus to a source of it. Rewetted fens can be a sink for phosphorus and nitrogen with nitrate as the limiting factor. Only if denitrification can occur, can the release of ammonia and phosphorus from the peat layer be prevented.

  7. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  8. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  9. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  10. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  11. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Inner water-tight metal cans containing not over 0.5 kg (1 pound) of phosphorus with screw-top closures... 49 Transportation 2 2013-10-01 2013-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered...

  12. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Inner water-tight metal cans containing not over 0.5 kg (1 pound) of phosphorus with screw-top closures... 49 Transportation 2 2014-10-01 2014-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered...

  13. Black phosphorus for future devices

    NASA Astrophysics Data System (ADS)

    Meunier, Vincent

    Black phosphorus (or ``phosphorene'' at the monolayer limit) has attracted significant attention as an emerging 2D material due to its unique properties compared with well-explored graphene and transition metal dichalcogenides such as MoS2 and WSe2. In bulk form, this monoelemental layered structure is a highly anisotropic semiconductor with a bandgap of 0.3 eV which presents marked distinctions in optical and electronic properties depending on crystalline directions. In addition, black phosphorus possesses a high carrier mobility, making it promising for applications in high frequency electronics. A large number of characterization studies have been performed to understand the intrinsic properties of BP. Here I wil present a number of investigations where first-principles modelling was combined with scanning tunneling microscopy (STM), Raman spectroscopy, and transmission electron microscopy (TEM) to assist in the design of phosphorene-based devices. . I will provide an overview of these studies and position them in the context of the very active research devoted to this material. In particular, I will show how low-frequency Raman spectra provide a unique handle on the physics of multilayered systems and how BP's structural anisotropy weaves its way to its unusual polarization dependent Raman signature. Finally, I will show recent progress where nanopores, nanobridges, and nanogaps have been sculpted directly from a few-layer BP sample using a TEM, and indicate the potential use of these results on the creation of phosphorene-based nanoelectronics. I wil conclude this talk with a critical look at the issues of phosphorene stability under ambient conditions. Collaborators on this research include: Liangbo Liang, Bobby G. Sumpter, Alex Puretzky, Minghu Pan, (Oak Ridge National Laboratory), Marija Drndic (University of Pennsylvania), Mildred Dresselhaus, Xi-Ling, Shengxi Huang (Massachusetts Institute of Technology).

  14. Weak Localization in few layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Gillgren, Nathaniel; Shi, Yanmeng; Espiritu, Timothy; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning (Jeanie)

    Few-layer black phosphorus has recently attracted interest from the scientific community due to its high mobility, tunable band gap, and large anisotropy. Recent experiments have demonstrated that black phosphorus provides a promising candidate to explore the physics of 2D semiconductors. In this study we explore the magnetotransport of few-layer black phosphorus-boron nitride hetereostructure devices at low magnetic fields. Weak localization is observed at low temperatures. We extract the dephasing length and measure its dependence on temperature, carrier density and electric field.

  15. Dietary and plasma phosphorus in hens with fatty liver syndrome.

    PubMed

    Miles, R D; Christmas, R B; Harms, R H

    1982-12-01

    Plasma inorganic phosphorus was determined in two experiments in hens that had fatty liver syndrome. In Experiment 1, plasma inorganic phosphorus was determined in twelve strains of hens all fed the same diet. Plasma inorganic phosphorus immediately following oviposition was elevated in all strains. The two strains in the first experiment with the highest as well as the two strains with the lowest plasma inorganic phosphorus were used in the second experiment. Each of the four strains were subdivided into three groups of 60 hens each and fed a practical layer diet containing either .30, .75, or 1.40% total phosphorus and 3.4% calcium. Significant differences were found in plasma inorganic phosphorus between strains fed the three dietary phosphorus levels. Results indicated that plasma inorganic phosphorus is related to dietary phosphorus in hens with an elevated plasma inorganic phosphorus level associated with fatty liver syndrome.

  16. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

    PubMed

    Cordell, D; Rosemarin, A; Schröder, J J; Smit, A L

    2011-08-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution.

  17. A supply-based concentration rating curve to predict total phosphorus concentrations in the Rhine River

    NASA Astrophysics Data System (ADS)

    Van der Perk, M.; Vogels, M. F. A.

    2012-04-01

    Concentration rating curves are useful for the analysis of the response of sediment or solute concentrations to changes in stream discharge or for the interpolation of infrequent concentration measurements in time with discharge as auxiliary variable, for example to estimate annual sediment or solute loads. A known limitation of rating curves is that their performance is generally poor, which can be partly attributed to the fact that rating curve methods neglect the hysteresis effects in the concentration response to changes in discharge. To enhance the performance of rating curve models, they should account for these hysteresis effects. Here, we present a supply-based concentration rating curve for total phosphorus concentrations in the Rhine River, the Netherlands, which does account for the above hysteresis effects. The supply-based concentration rating curve has four components: 1) The traditional power law rating curve of the form C = a Qb where C is the phosphorus concentration [M L-3], Qis the river discharge [L T-1], and a and b are constants [-]; 2) A long-term linear trend; 3) A seasonal trend of the form C(t) = Acos [2π(t - Tk)/T] where A is the concentration amplitude [M L-3], t is the time (T), Tk is the phase shift (T), and T is the period [T] (365.25 d). 4) A discharge dependent supply or loss term of the form C = -ΔS/(QΔt), where S is the phosphorus stock [M]. The phosphorus stock was assumed to increase linearly during periods of deposition, i.e. the discharge is below a critical discharge. If the discharge is greater than the critical discharge during a sufficiently long period (> 16 days), the decrease in phosphorus stock was assumed to be proportional to the excess discharge above the critical discharge. For model parameterization and calibration, we used the daily Aqualarm data of total phosphorus concentrations and the Waterbase data of water discharge measured daily by Rijkswaterstaat (Dutch Ministry of Infrastructure and the Environment

  18. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material. PMID:27359041

  19. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material.

  20. Colloid-Associated Phosphorus Transport in Heterogeneous Alluvial Gravel Aquifer Media

    NASA Astrophysics Data System (ADS)

    Lafogler, M.; Pang, L.; McGill, E.; Baumann, T.; Close, M.

    2012-04-01

    Kaolinite the highest fractions of colloid associated phosphorous were observed, Goethite showed the lowest effect on phosphorous mobilization. By using CXTFIT parameters according to the velocity enhancement of the colloid-associated phosphorus transport were modeled. They showed that the velocity of colloids was 1.1 to 1.5 times higher than the conservative tracer. During the experiments the pH was around 7. Here, the surface charge of the sediments, Kaolinite, and E. coli are slightly negative while Goethite colloids are slightly positively charged. Therefore, the adsorption of phosphate to Goethite is high and the attachment efficiency of Goethite at the sediment is high. Together, this explains the observed low recovery rates of phosphate in the presence of colloids.

  1. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    NASA Astrophysics Data System (ADS)

    Lotfi, Derbali; Hatem, Ezzaouia

    2012-07-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current-voltage ( I- V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I- V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells.

  2. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro.

    PubMed

    Ward, Brian C; Webster, Thomas Jay

    2006-06-01

    To date, long-term functions of osteoblasts leading to calcium and phosphorus mineral deposition on nanometals have not been determined. Nanometals are metals with constituent metal particles and/or surface features less than 100 nm in at least one dimension. For this reason, the objective of this in vitro study was to determine the amount of calcium and phosphorus mineral formation on microphase compared to nanophase Ti, Ti6Al4V, and CoCrMo cultured with and without osteoblasts (bone-forming cells). The results of this study provided the first evidence of significantly greater calcium and phosphorus deposition by osteoblasts and precipitation from culture media without osteoblasts on nanophase compared to respective microphase Ti6Al4V and CoCrMo after 21 days; the greatest calcium and phosphorus mineral deposition occurred on nanophase CoCrMo while the greatest calcium and phosphorus mineral precipitation without osteoblasts occurred on nanophase Ti6Al4V. No differences were found for any type of Ti: wrought, microphase, or nanophase. Moreover, increased calcium and phosphorus mineral content correlated to greater amounts of underlying aluminum content on Ti6Al4V surfaces. Since, compared to microphase Ti6Al4V, nanophase Ti6Al4V contained a higher amount of aluminum at the surface (due to greater surface area), this may provide a reason for enhanced calcium and phosphorus mineral content on nanophase Ti6Al4V. Regardless of the mechanism, this study continues to support the further investigation of nanometals for improved orthopedic applications.

  3. Effect of Aluminum on the Uptake and Metabolism of Phosphorus by Barley Seedlings 1

    PubMed Central

    Clarkson, David T.

    1966-01-01

    The uptake of P32 and its incorporation into phosphorylated compounds was examined in the roots of barley seedlings which had been pretreated with aluminum. The rate at which phosphorus increased in Al-roots was greater than in controls, especially during the first 15 minutes of incubation. It was shown that the increased phosphorus in Al-roots was Pi and that it was almost completely exchangeable. Similar increases over controls were found when root segments were incubated in phosphorus solutions containing 10−3 m DNP and at low temperature. The increased Pi in Al-roots did not result in an increase in the total amount of phosphorus incorporated into phosphorylated compounds. Aluminum treatment markedly decreased the incorporation of P32 into sugar phosphates but increased the pool size of ATP and other nucleotide triphosphates present in the roots. The specific activities of P32 in ATP in Al-roots and controls were similar indicating that the rates of ATP synthesis were similar in each case. Preliminary investigations showed that aluminum citrate inhibited both purified yeast hexokinase and phosphorylated sugar production by crude mitochondrial extracts from barley roots. The results suggest that there are 2 reactions between aluminum and phosphorus: 1) at the cell surface or in the free space which results in the fixation of phosphate by an adsorption-precipitation reaction; 2) within the cell, possibly within the mitochondria, which results in a marked decrease in the rate of sugar phosphorylation, probably effected by the inhibition of hexokinase. The evidence does not support the view that aluminum enhances phosphorus uptake or that the superficial reaction between aluminum and phosphate interferes with phosphorus transport. Images PMID:16656224

  4. Anisotropic exciton Stark shift in black phosphorus

    NASA Astrophysics Data System (ADS)

    Chaves, A.; Low, Tony; Avouris, P.; ćakır, D.; Peeters, F. M.

    2015-04-01

    We calculate the excitonic spectrum of few-layer black phosphorus by direct diagonalization of the effective mass Hamiltonian in the presence of an applied in-plane electric field. The strong attractive interaction between electrons and holes in this system allows one to investigate the Stark effect up to very high ionizing fields, including also the excited states. Our results show that the band anisotropy in black phosphorus becomes evident in the direction-dependent field-induced polarizability of the exciton.

  5. Method of removing phosphorus impurities from yellowcake

    SciTech Connect

    Brown, R.A.; Winkley, D.C.

    1983-04-05

    PhospHorus impurities are removed from yellowcake by dissolving it in hydrochloric or sulfuric acid to a U/sub 3/O/sub 88/ assay of at least 150 g/l at a pH of 2; precipitating uranium peroxide W hydrogen peroxide while keeping the pH between 2.2 and 2.6 and recovering the uranium peroxide from the phosphorus impurities remaining in solution.

  6. Soil test phosphorus and cumulative phosphorus budgets in fertilized grassland.

    PubMed

    Messiga, Aimé Jean; Ziadi, Noura; Jouany, Claire; Virkajärvi, Perttu; Suomela, Raija; Sinaj, Sokrat; Bélanger, Gilles; Stroia, Ciprian; Morel, Christian

    2015-03-01

    We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water.

  7. Recovery of phosphorus from dairy manure: a pilot-scale study.

    PubMed

    Zhang, Hui; Lo, Victor K; Thompson, James R; Koch, Frederic A; Liao, Ping H; Lobanov, Sergey; Mavinic, Donald S; Atwater, James W

    2015-01-01

    Phosphorus was recovered from dairy manure via a microwave-enhanced advanced oxidation process (MW/H2O2-AOP) followed by struvite crystallization in a pilot-scale continuous flow operation. Soluble phosphorus in dairy manure increased by over 50% after the MW/H2O2-AOP, and the settleability of suspended solids was greatly improved. More than 50% of clear supernatant was obtained after microwave treatment, and the maximum volume of supernatant was obtained at a hydrogen peroxide dosage of 0.3% and pH 3.5. By adding oxalic acid into the supernatant, about 90% of calcium was removed, while more than 90% of magnesium was retained. As a result, the resulting solution was well suited for struvite crystallization. Nearly 95% of phosphorus in the treated supernatant was removed and recovered as struvite.

  8. Effects of phosphorus fertilizer supplementation on antioxidant enzyme activities in tomato fruits.

    PubMed

    Ahn, Taehyun; Oke, Moustapha; Schofield, Andrew; Paliyath, Gopinadhan

    2005-03-01

    The effects of soil and foliar phosphorus supplementation on the activities and levels of superoxide dismutase (SOD), guaiacol peroxidase (POX), and ascorbate peroxidase (APX) in tomato fruits were evaluated by determining enzyme activities and isoenzyme analysis. Both protein levels and enzyme activities varied depending on the variety and season. In general, phosphorus supplementation did not alter SOD, POX, and APX activities significantly;however, some treatments showed season- and stage-specific enhancement in activities as noticed with hydrophos and seniphos supplementation. Three different SOD isozymes were observed, and these isozymes showed very similar staining intensities in response to P application and during the three developmental stages studied. Two major isozymes of POX and two different APX isozymes were observed at all the developmental stages. The results suggest that antioxidant enzyme activities may be influenced by the availability of phosphorus, but are subject to considerable variation depending on the developmental stage and the season. PMID:15740037

  9. Assessing phosphorus reduction efforts in the Everglades

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    Years of agricultural and urban runoff have resulted in too much phosphorus in northern regions of the Florida Everglades. To deal with this problem, very large constructed wetlands, known as Stormwater Treatment Areas (STAs), have been built to strip phosphorus from runoff before the water enters protected Everglades areas. The more than $1 billion STA project currently relies on large areas (cells) of submerged aquatic vegetation (SAV) to absorb phosphorus as the final stage of treatment. To evaluate how well the treatment cells are functioning, as well as the potential lower limits of treatment, it is essential to have an accurate picture of the inflows, outflows, and background phosphorus levels. Juston and DeBusk made long-term measurements in one of the SAV cells. They found that after total phosphorous levels in the cells reached about 15 micrograms per liter, no more phosphorus removal occurred. They also analyzed inflow and outflow data from the cell and inferred background phosphorus concentrations for eight additional SAV cells. Background concentrations averaged around 16 micrograms per liter. (Water Resources Research, doi:10.1029/2010WR009294, 2011)

  10. Soil phosphorus constrains biodiversity across European grasslands.

    PubMed

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization.

  11. Phosphorus speciation by coupled HPLC-ICPMS: low level determination of reduced phosphorus in natural materials

    NASA Astrophysics Data System (ADS)

    Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline

    2015-04-01

    Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  12. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  13. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation.

  14. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  15. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation. PMID:25116500

  16. Phosphorus amendment competitively prevents chromium uptake and mitigates its toxicity in Spinacea oleracea L.

    PubMed

    Sayantan, D; Shardendu

    2015-06-01

    In this study, we assessed the role of phosphorus in preventing chromium uptake by plants. Two-factor complete randomized pot experiment (5x5 pattern) was conducted hydroponically with Spinacea oleracea L. (spinach), for 28 days in green house. Five concentrations of Cr (2.0, 3.5, 5.0, 6.5 and 8.0 mM), each amended with five concentrations of phosphorus (25, 50, 75, 100 and 125 mM) were supplied. With the phosphorus amendment in the growth medium, accumulation of chromium decreased up to 55% in root and 50% in shoot tissues. A 1.8-fold enhancement in total chlorophyll and 2-fold increase in the biomass of root and shoot were observed due to phosphorus amendment. Levels of superoxide dismutase, catalase, peroxidase and malondialdehyde were reduced by 27, 11.7, 38.1 and 45.5% in root tissues; and 27, 17.4, 32.3 and 35.1%, in shoot tissues, respectively. In conclusion, the phosphorus amendment has been shown not only to moderate the Cr-toxicity in S. oleracea but also enrich chlorophyll content as well as the biomass.

  17. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    2016-01-01

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal. PMID:27508376

  18. A study on influential factors of high-phosphorus wastewater treated by electrocoagulation-ultrasound.

    PubMed

    Li, Jiangping; Song, Chen; Su, Yixin; Long, Hai; Huang, Ta; Yeabah, Trokon Omarley; Wu, Wei

    2013-08-01

    A combined treatment of electrocoagulation and ultrasound was proposed to solve some problems which exist in the phosphorus removal processes in fine chemical industry. The intermittently discharged wastewater has the features of high initial phosphorus concentration and wide initial pH variation. The electrocoagulation-ultrasound effective performance for the removal of phosphorus was investigated. The results obtained from synthetic wastewater showed that the total phosphorus (TP) decreased from 86 to about 0.4 mg/L, and the removal efficiency reached about 99.6 %, when ultrasound was applied to the electrocoagulation cell under the optimum working conditions in 10 min. Comparatively, the TP removal efficiency of electrocoagulation group was 81.3 % and the ultrasound group has almost no change. Therefore, we can conclude that the electrocoagulation and ultrasound synergistic effect can effectively degrade high-phosphorus wastewater. We have discussed the impact of various parameters on the electrocoagulation-ultrasound based on the phosphorus removal efficiency. The results obtained from synthetic wastewater showed that the optimum working pH was found to be 6, allowing the effluent to be met the emission standards without pH adjustment. An increased current enhanced the speed of treatment significance, but higher current (>40 mA/cm(2)) enhanced ultrasonic cavitation effect causing flocculation ineffective. In addition, it was found that the optimum ultrasonic power was 4 W/cm(2) and the frequency was 20 kHz. The best ultrasound intervention and ultrasonic irradiation time were processed with electrocoagulation simultaneously. The results indicated that the electrocoagulation-ultrasound could be utilized as an attractive technique for removal of phosphate in the real wastewater.

  19. Estimate of dietary phosphorus intake using 24-h urine collection.

    PubMed

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-07-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record.

  20. Rapid and portable electrochemical quantification of phosphorus.

    PubMed

    Kolliopoulos, Athanasios V; Kampouris, Dimitrios K; Banks, Craig E

    2015-04-21

    Phosphorus is one of the key indicators of eutrophication levels in natural waters where it exists mainly as dissolved phosphorus. Various analytical protocols exist to provide an offsite analysis, and a point of site analysis is required. The current standard method recommended by the Environmental Protection Agency (EPA) for the detection of total phosphorus is colorimetric and based upon the color of a phosphomolybdate complex formed as a result of the reaction between orthophosphates and molybdates ions where ascorbic acid and antimony potassium tartrate are added and serve as reducing agents. Prior to the measurements, all forms of phosphorus are converted into orthophosphates via sample digestion (heating and acidifying). The work presented here details an electrochemical adaptation of this EPA recommended colorimetric approach for the measurement of dissolved phosphorus in water samples using screen-printed graphite macroelectrodes for the first time. This novel indirect electrochemical sensing protocol allows the determination of orthophosphates over the range from 0.5 to 20 μg L(-1) in ideal pH 1 solutions utilizing cyclic voltammetry with a limit of detection (3σ) found to correspond to 0.3 μg L(-1) of phosphorus. The reaction time and influence of foreign ions (potential interferents) upon this electroanalytical protocol was also investigated, where it was found that a reaction time of 5 min, which is essential in the standard colorimetric approach, is not required in the new proposed electrochemically adapted protocol. The proposed electrochemical method was independently validated through the quantification of orthophosphates and total dissolved phosphorus in polluted water samples (canal water samples) with ion chromatography and ICP-OES, respectively. This novel electrochemical protocol exhibits advantages over the established EPA recommended colorimetric determination for total phosphorus with lower detection limits and shorter experimental times

  1. Rapid and portable electrochemical quantification of phosphorus.

    PubMed

    Kolliopoulos, Athanasios V; Kampouris, Dimitrios K; Banks, Craig E

    2015-04-21

    Phosphorus is one of the key indicators of eutrophication levels in natural waters where it exists mainly as dissolved phosphorus. Various analytical protocols exist to provide an offsite analysis, and a point of site analysis is required. The current standard method recommended by the Environmental Protection Agency (EPA) for the detection of total phosphorus is colorimetric and based upon the color of a phosphomolybdate complex formed as a result of the reaction between orthophosphates and molybdates ions where ascorbic acid and antimony potassium tartrate are added and serve as reducing agents. Prior to the measurements, all forms of phosphorus are converted into orthophosphates via sample digestion (heating and acidifying). The work presented here details an electrochemical adaptation of this EPA recommended colorimetric approach for the measurement of dissolved phosphorus in water samples using screen-printed graphite macroelectrodes for the first time. This novel indirect electrochemical sensing protocol allows the determination of orthophosphates over the range from 0.5 to 20 μg L(-1) in ideal pH 1 solutions utilizing cyclic voltammetry with a limit of detection (3σ) found to correspond to 0.3 μg L(-1) of phosphorus. The reaction time and influence of foreign ions (potential interferents) upon this electroanalytical protocol was also investigated, where it was found that a reaction time of 5 min, which is essential in the standard colorimetric approach, is not required in the new proposed electrochemically adapted protocol. The proposed electrochemical method was independently validated through the quantification of orthophosphates and total dissolved phosphorus in polluted water samples (canal water samples) with ion chromatography and ICP-OES, respectively. This novel electrochemical protocol exhibits advantages over the established EPA recommended colorimetric determination for total phosphorus with lower detection limits and shorter experimental times

  2. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm. PMID:26790176

  3. The renaissance of black phosphorus

    PubMed Central

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-01-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field. PMID:25820173

  4. The renaissance of black phosphorus

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-04-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  5. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    SciTech Connect

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.

  6. The renaissance of black phosphorus.

    PubMed

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S

    2015-04-14

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  7. Evaluation of Phosphorus Source Coefficients as Predictors of Runoff Phosphorus Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine Phosphorus Source Coefficients (PSC) for organic phosphorus (P) sources, and to examine the relationship between PSCs and P concentrations measured in simulated rainfall runoff. The PSC is an important parameter in the P Site Index (PSI). An incubatio...

  8. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area.

    PubMed

    Xiao, Guangli; Li, Tingxuan; Zhang, Xizhou; Yu, Haiying; Huang, Huagang; Gupta, D K

    2009-11-15

    Phosphorus accumulation potentials were investigated for 12 dominant plant species growing in a phosphorus mining area in Shifang, as well as their corresponding non-mining ecotypes growing in Ya'an, China. High phosphorus concentrations were observed in the seedling and flowering stages of two species, Pilea sinofasciata and Polygonum hydropiper, up to 16.23 and 8.59 g kg(-1), respectively, which were 3.4 and 7 times higher than in the non-mining ecotypes. Available phosphorus levels in the respective rhizosphere soils of these plants were 112.84 and 121.78 mg kg(-1), 12 and 4 times higher than in the non-rhizosphere soil. Phosphorus concentrations in shoots of the mining ecotypes of all 12 species were significantly negatively correlated with available phosphorus in the rhizosphere soils (p<0.05), whereas a positive correlation was observed in the non-mining ecotypes. The biomass in shoot of the mining ecotype of P. hydropiper was nearly 2 times that in the non-mining ecotype. The results suggested that P. sinofasciata and P. hydropiper were efficient candidates among the tested species for phosphorus accumulation in shoots, and that further studies should be conducted to investigate their potential to be adopted as phosphorus accumulators.

  9. Phosphorus flux from wetland ditch sediments.

    PubMed

    Hill, C R; Robinson, J S

    2012-10-15

    The accumulation of phosphorus (P) in the bottom sediment of field drainage ditches poses a threat to the ecology both of the ditch water and downstream water courses. We investigated the amounts, forms and internal loading of sediment-bound P along two drainage ditches that regulate water levels in a basin fen (~200 ha) supporting a mixture of restored wetland and drained agricultural fields. Water levels in the Lady's Drove Rhyne are currently managed to enhance the biodiversity of the wetland (Catcott Lows Reserve - an area formerly cultivated for arable crop production); whereas, the East Ditch is managed to drain adjoining land that remains under arable and livestock production. Laboratory-based chemical fractionation schemes were used to characterise the forms and potential mobility of the sediment-bound P, whilst pore-water equilibrators were employed in situ to evaluate the diffusive flux of P through the sediment-water column, and to characterise the corresponding redox conditions. Along both ditches, sediment pore-water profiles indicated conditions ranging from weakly to very reducing conditions with increasing depth, and net fluxes of P from the sediment to overlying water. P flux values ranged from 0.33 to 1.30 mg m(-2) day(-1). Both the degree of P saturation (DPS) of the sediment and NaOH extractable (Fe/Al-bound) P correlated significantly (P<0.05) with P flux. Both in the wetland and agricultural ditches, by far the highest values for P flux were recorded at sites closest to points of drainage water entry from the corresponding, adjoining land. Although the P flux data were obtained from only a single sampling event, this study highlights the contribution of historical as well as ongoing agricultural land use on the sustained elevated P status of ditch sediments in lowland catchments.

  10. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    PubMed

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. PMID:23128732

  11. Monitoring to assess progress toward meeting the total maximum daily load for phosphorus in the Assabet River, Massachusetts: phosphorus loads, 2008 through 2010

    USGS Publications Warehouse

    Zimmerman, Marc J.; Savoie, Jennifer G.

    2013-01-01

    Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the

  12. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  13. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  14. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  15. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  16. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  17. Supporting phosphorus management in Austria: Potential, priorities and limitations.

    PubMed

    Zoboli, Ottavia; Zessner, Matthias; Rechberger, Helmut

    2016-09-15

    Protecting water bodies from eutrophication, ensuring long-term food security and shifting to a circular economy represent compelling objectives to phosphorus management strategies. This study determines how and to which extent the management of phosphorus in Austria can be optimized. A detailed national model, obtained for the year 2013 through Material Flow Analysis, represents the reference situation. Applicability and limitations are discussed for a range of actions aimed at reducing consumption, increasing recycling, and lowering emissions. The potential contribution of each field of action is quantified and compared using three indicators: Import dependency, Consumption of fossil-P fertilizers and Emissions to water bodies. Further, the uncertainty of this assessment is characterized and priorities for the upgrade of data collection are identified. Moreover, all the potential gains discussed in the article are applied to the reference situation to generate an ideal target model. The results show that in Austria a large scope for phosphorus stewardship exists. Strategies based exclusively either on recycling or on the decline of P consumption hold a similar potential to reduce import dependency by 50% each. An enhanced P recycling from meat and bone meal, sewage sludge and compost could replace the current use of fossil-P fertilizers by 70%. The target model, i.e. the maximum that could be achieved taking into account trade-offs between different actions, is characterized by an extremely low import dependency of 0.23kgPcap(-1)y(-1) (2.2kgPcap(-1)y(-1) in 2013), by a 28% decline of emissions to water bodies and by null consumption of fossil-P fertilizers. This case study shows the added value of using Material Flow Analysis as a basis to design sound management strategies. The systemic approach inherent to it allows performing a proper comparative assessment of different actions, identifying priorities, and visualizing a target model. PMID:27177138

  18. The Chemical Evolution of Phosphorus

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 <= [Fe/H] <= -0.2, and obtained an upper limit for a star with [Fe/H] ~ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of -1 <= [Fe/H] <= +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.

  19. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    PubMed Central

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p <0.001). A majority of binder prescriptions have insufficient binding capacity to maintain phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  20. Metabolic Adaptations of White Lupin Roots and Shoots under Phosphorus Deficiency.

    PubMed

    Müller, Julia; Gödde, Victoria; Niehaus, Karsten; Zörb, Christian

    2015-01-01

    White lupin (Lupinus albus L.) is highly adapted to phosphorus-diminished soils. P-deficient white lupin plants modify their root architecture and physiology to acquire sparingly available soil phosphorus. We employed gas chromatography-mass spectrometry (GC-MS) for metabolic profiling of P-deficient white lupins, to investigate biochemical pathways involved in the P-acquiring strategy. After 14 days of P-deficiency, plants showed reduced levels of fructose, glucose, and sucrose in shoots. Phosphorylated metabolites such as glucose-6-phosphate, fructose-6-phosphate, myo-inositol-phosphate and glycerol-3-phosphate were reduced in both shoots and roots. After 22 days of P-deficiency, no effect on shoot or root sugar metabolite levels was found, but the levels of phosphorylated metabolites were further reduced. Organic acids, amino acids and several shikimate pathway products showed enhanced levels in 22-day-old P-deficient roots and shoots. These results indicate that P-deficient white lupins adapt their carbohydrate partitioning between shoot and root in order to supply their growing root system as an early response to P-deficiency. Organic acids are released into the rhizosphere to mobilize phosphorus from soil particles. A longer period of P-deficiency leads to scavenging of Pi from P-containing metabolites and reduced protein anabolism, but enhanced formation of secondary metabolites. The latter can serve as stress protection molecules or actively acquire phosphorus from the soil. PMID:26635840

  1. Metabolic Adaptations of White Lupin Roots and Shoots under Phosphorus Deficiency

    PubMed Central

    Müller, Julia; Gödde, Victoria; Niehaus, Karsten; Zörb, Christian

    2015-01-01

    White lupin (Lupinus albus L.) is highly adapted to phosphorus-diminished soils. P-deficient white lupin plants modify their root architecture and physiology to acquire sparingly available soil phosphorus. We employed gas chromatography–mass spectrometry (GC-MS) for metabolic profiling of P-deficient white lupins, to investigate biochemical pathways involved in the P-acquiring strategy. After 14 days of P-deficiency, plants showed reduced levels of fructose, glucose, and sucrose in shoots. Phosphorylated metabolites such as glucose-6-phosphate, fructose-6-phosphate, myo-inositol-phosphate and glycerol-3-phosphate were reduced in both shoots and roots. After 22 days of P-deficiency, no effect on shoot or root sugar metabolite levels was found, but the levels of phosphorylated metabolites were further reduced. Organic acids, amino acids and several shikimate pathway products showed enhanced levels in 22-day-old P-deficient roots and shoots. These results indicate that P-deficient white lupins adapt their carbohydrate partitioning between shoot and root in order to supply their growing root system as an early response to P-deficiency. Organic acids are released into the rhizosphere to mobilize phosphorus from soil particles. A longer period of P-deficiency leads to scavenging of Pi from P-containing metabolites and reduced protein anabolism, but enhanced formation of secondary metabolites. The latter can serve as stress protection molecules or actively acquire phosphorus from the soil. PMID:26635840

  2. Secondary poisoning of kestrels by white phosphorus

    USGS Publications Warehouse

    Sparling, D.W.; Federoff, N.E.

    1997-01-01

    Since 1982, extensive waterfowl mortality due to white phosphorus (P4) has been observed at Eagle River Flats, a tidal marsh near Anchorage, Alaska. Ducks and swans that ingest P4 pellets become lethargic and may display severe convulsions. Intoxicated waterfowl attract raptors and gulls that feed on dead or dying birds. To determine if avian predators can be affected by secondary poisoning, we fed American kestrels (Falco sparverius) 10-day-old domestic chickens that had been dosed with white phosphorus. Eight of 15 kestrels fed intact chicks with a pellet of P4 implanted in their crops died within seven days. Three of 15 kestrels fed chicks that had their upper digestive tracts removed to eliminate any pellets of white phosphorus also died. Hematocrit and hemoglobin in kestrels decreased whereas lactate dehydrogenaseL, glucose, and alanine aminotransferase levels in plasma increased with exposure to contaminated chicks. Histological examination of liver and kidneys showed that the incidence and severity of lesions increased when kestrels were fed contaminated chicks. White phosphorus residues were measurable in 87% of the kestrels dying on study and 20% of the survivors. This study shows that raptors can become intoxicated either by ingesting portions of digestive tracts containing white phosphorus pellets or by consuming tissues of P4 contaminated prey.

  3. Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium.

    PubMed

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Biliński, A; Lewandowska-Szumieł, M; Rajchel, B

    2002-08-01

    This work presents data on the structure and corrosion resistance of titanium after phosphorus-ion implantation with a dose of 10(17)P/cm2. The ion energy was 25keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by X-ray photoelectron spectroscopy and secondary ion mass spectrometry. The corrosion resistance was examined by electrochemical methods in a simulated body fluid at a temperature of 37 C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both phosphorus-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by transmission electron microscope results, the surface layer formed during phosphorus-ion implantation was amorphous. The results of electrochemical examinations indicate that phosphorus-ion implantation increases the corrosion resistance after short-term as well as long-term exposures.

  4. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake

    PubMed Central

    Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  5. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake.

    PubMed

    Caione, Gustavo; Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha(-1) of P2O5) in the presence or absence of filter cake (7.5 t ha(-1), dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  6. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  7. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  8. Selective myelosuppression following yellow phosphorus ingestion.

    PubMed

    Basheer, Aneesh; Mookkappan, Sudhagar; Padhi, Somanath; Iqbal, Nayyar

    2015-01-01

    Toxicity from accidental and intentional ingestion of yellow phosphorus, ubiquitously present in fireworks and rodenticides, has recently become more frequent. Gastrointestinal, renal, neurologic, and cardiovascular manifestations are common, with mortality of 23 per cent to 73 per cent. Reports of haematological abnormalities are rare. We report only the second case of severe neutropenia secondary to selective myelosuppression in a 14-year-old girl following intentional ingestion of yellow phosphorus. Leucocyte counts recovered spontaneously without further complications. Our case indicates that, besides hepatic and renal function monitoring, physicians should meticulously monitor blood counts in such cases for early detection of marrow suppression. Further studies are required to elucidate the complex mechanisms and significance of this unusual toxicity of yellow phosphorus. PMID:25848404

  9. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  10. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  11. Size dependence of phosphorus doping in silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    He, Wei; Li, Zhengping; Wen, Chao; Liu, Hong; Shen, Wenzhong

    2016-10-01

    Doping of silicon nanocrystals (Si-NCs) is one of the major challenges for silicon nanoscale devices. In this work, phosphorus (P) doping in Si-NCs which are embedded within an amorphous silicon matrix is realized together with the growth of Si-NCs by plasma-enhanced chemical vapor deposition under a tunable substrate direct current (DC) bias. The variation of phosphorus concentration with substrate bias can be explained by the competition of bonding processes of Si–Si and P–Si bonds. The formation of Si–Si and P–Si bonds is differently influenced by the ion bombardment controlled by the substrate bias, due to their bonding energy difference. We have studied the influences of grain size on P doping in Si-NCs. Free carrier concentration, which is provided by activated P atoms, decreases with decreasing grain size due to increasing formation energy and activation energy of P atoms incorporated in Si-NCs. Furthermore, we have studied the P locations inside Si-NCs and hydrogen passivation of P in the form of P–Si–H complexes using the first-principles method. Hydrogen passivation of P can also contribute to the reduced free carrier concentration in smaller Si-NCs. These results provide valuable understanding of P doping in Si-NCs.

  12. Transcriptional responses of maize seedling root to phosphorus starvation.

    PubMed

    Lin, Hai-Jian; Gao, Jian; Zhang, Zhi-Ming; Shen, Ya-Ou; Lan, Hai; Liu, Li; Xiang, Kui; Zhao, Maojun; Zhou, Shufeng; Zhang, Yong-Zhong; Gao, Shi-Bin; Pan, Guang-Tang

    2013-09-01

    Maize (Zea mays) is the most widely cultivated crop around the world, however, it is commonly affected by phosphate (Pi) deficiency and the underlying molecular basis of responses mechanism is still unknown. In this study, the transcriptional response of maize roots to Pi starvation at 3 days after the onset of Pi deprivation was assessed. The investigation revealed a total of 283 Pi-responsive genes, of which 199 and 84 genes were found to be either up- or down-regulated respectively, by 2-fold or more. Pi-responsive genes were found to be involved in sugar and nitrogen metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. In addition, the expression patterns of maize inorganic phosphorus transporters, acid phosphatase, phytase, 2-deoxymugineic acid synthase1, POD and MYB transcription factor were validated in 178 roots response to low phosphorus stress. of which, two genes encoding phytase and acid phosphatase were significantly induced by Pi deficiency and may play a pivotal role in the process of absorption and re-utilization of Pi in Maize. These results not only enhance our knowledge about molecular processes associated with Pi deficiency, but also facilitate the identification of key molecular determinants for improving Pi use in maize. Moreover, this work sets a framework to produce Pi-specific maize microarrays to study the changes in global gene expression between Pi-efficient and Pi-inefficient maize genotypes. PMID:23670044

  13. Size dependence of phosphorus doping in silicon nanocrystals.

    PubMed

    He, Wei; Li, Zhengping; Wen, Chao; Liu, Hong; Shen, Wenzhong

    2016-10-21

    Doping of silicon nanocrystals (Si-NCs) is one of the major challenges for silicon nanoscale devices. In this work, phosphorus (P) doping in Si-NCs which are embedded within an amorphous silicon matrix is realized together with the growth of Si-NCs by plasma-enhanced chemical vapor deposition under a tunable substrate direct current (DC) bias. The variation of phosphorus concentration with substrate bias can be explained by the competition of bonding processes of Si-Si and P-Si bonds. The formation of Si-Si and P-Si bonds is differently influenced by the ion bombardment controlled by the substrate bias, due to their bonding energy difference. We have studied the influences of grain size on P doping in Si-NCs. Free carrier concentration, which is provided by activated P atoms, decreases with decreasing grain size due to increasing formation energy and activation energy of P atoms incorporated in Si-NCs. Furthermore, we have studied the P locations inside Si-NCs and hydrogen passivation of P in the form of P-Si-H complexes using the first-principles method. Hydrogen passivation of P can also contribute to the reduced free carrier concentration in smaller Si-NCs. These results provide valuable understanding of P doping in Si-NCs. PMID:27632417

  14. Effect of humic substances on phosphorus removal by struvite precipitation.

    PubMed

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity. PMID:26151483

  15. Size dependence of phosphorus doping in silicon nanocrystals.

    PubMed

    He, Wei; Li, Zhengping; Wen, Chao; Liu, Hong; Shen, Wenzhong

    2016-10-21

    Doping of silicon nanocrystals (Si-NCs) is one of the major challenges for silicon nanoscale devices. In this work, phosphorus (P) doping in Si-NCs which are embedded within an amorphous silicon matrix is realized together with the growth of Si-NCs by plasma-enhanced chemical vapor deposition under a tunable substrate direct current (DC) bias. The variation of phosphorus concentration with substrate bias can be explained by the competition of bonding processes of Si-Si and P-Si bonds. The formation of Si-Si and P-Si bonds is differently influenced by the ion bombardment controlled by the substrate bias, due to their bonding energy difference. We have studied the influences of grain size on P doping in Si-NCs. Free carrier concentration, which is provided by activated P atoms, decreases with decreasing grain size due to increasing formation energy and activation energy of P atoms incorporated in Si-NCs. Furthermore, we have studied the P locations inside Si-NCs and hydrogen passivation of P in the form of P-Si-H complexes using the first-principles method. Hydrogen passivation of P can also contribute to the reduced free carrier concentration in smaller Si-NCs. These results provide valuable understanding of P doping in Si-NCs.

  16. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    PubMed

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  17. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    PubMed Central

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  18. Phosphorus index as a phosphorus awareness tool: documented phosphorus use reduction in New York state.

    PubMed

    Ketterings, Quirine M; Czymmek, Karl J

    2012-01-01

    In 1999, New York introduced its concentrated animal feeding operation (CAFO) permit followed, in 2001, by release of the New York phosphorus index (NY-PI) and establishment of a statewide on-farm research partnership. State policy requires that the Natural Resources Conservation Service's 590 nutrient management standard, and therefore the NY-PI, be implemented on all CAFO farms as well as animal feeding operations (AFOs) receiving state or federal cost share funds for manure storage and other related practices. Since the introduction of the NY-PI, P fertilizer sales (farm use) declined from 14,470 Mg in 2001 (8.6 kg P ha) to 7,376 Mg in 2009 (5.0 kg P ha). Cost of fertilizer was not a significant covariate for the reduction in P use over time. Certified nutrient management planners were surveyed in 2011 to evaluate their perceptions of drivers for changes in P use. In addition, whole farm P balances were recorded for 54 New York dairy farms. The survey data illustrate key ingredients for success: (i) statewide awareness of environmental challenges through both regulations and extension programming; (ii) science-based, user-friendly tools that allow for farm-specific responses to the challenges; (iii) risk assessment of management alternatives through on-farm research; (iv) enforcement of regulations; and (v) existence of economically feasible alternatives. Whole farm balances showed a reduction in P surplus of 44%, averaged across farms, whereas milk production increased, further illustrating the willingness and economic potential to make changes that improve production efficiency and reduce risk of nutrient loss to the environment. PMID:23128734

  19. Effect of oligochaete worm body fluids on biological phosphorus removal in a bench-scale EBPR system.

    PubMed

    Jiang, Tao; Du, Shaoting; Sun, Peide; Zhu, Mingshan

    2012-01-01

    During waste sludge reduction by oligochaetes, phosphorus (P) concentrations in the effluent have been noticed to increase. In the current study, batch experiments were carried out in order to provide explanations for this phosphorus release. The results indicated that increase in effluent phosphorus concentration might not be directly linked to the phosphorus in worm body fluids, as the phosphorus concentration in the system at the start of each operational period did not change significantly. However, the phosphorus removal efficiency rapidly dropped from 93.9% +/- 1.9% to 62.2% +/- 1.3% with increasing addition ofoligochaete worm body fluids. Furthermore, an increase in worm body fluids induced a remarkable enhancement ofanaerobic phosphorus release rate as well as anaerobic storage of poly-beta-hydroxyalkanoate (PHA). At a worm density (wet weight) of 14.4 g/L, the anaerobic phosphorus release rate was elevated by 31.1% +/- 2.8% and 57.3% +/- 4.6% at 2.5% and 5.0% worm death rate, respectively, compared with the control. The contribution of worm body fluids to PHA production was 39.3-67.7 mg/g of dead worm (wet weight), which was mainly attributed to the extra synthesis of poly-beta-hydroxyvalerate (PHV). Unfortunately, in the concomitant aerobic stage, inhibition of 3-hydroxybutyric acid (PHB) oxidation and ammonia utilization was observed along with the increasing addition of worm body fluids. Meanwhile, nitrite elevation was found at the beginning of the aerobic stage, which might be negative to the aerobic metabolic processes performed by phosphate-accumulating organisms (PAOs), namely PHB oxidation, phosphate uptake and ammonia utilization for biomass growth.

  20. [Bone and Nutrition. A novel function of phosphorus].

    PubMed

    Taketani, Yutaka; Imi, Yukiko; Abuduli, Maerjianghan

    2015-07-01

    Phosphorus is an essential nutrient for bone formation by forming hydroxyapatite with calcium. Simultaneously, phosphorus is also a component of high energy bond of ATP, nucleic acids, and phospholipids. Recent studies have demonstrated that excess or lack of dietary phosphorus intake may cause vascular dysfunction, cardiac hypertrophy, and impaired glucose tolerance. Here, we introduce recent findings about the effects of high or low dietary phosphorus intake on several organs except for bone.

  1. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  2. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  3. Incommensurate Structure of Phosphorus Phase IV

    SciTech Connect

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Ohishi, Yasuo

    2007-04-27

    There are six known phases for phosphorus at room temperature under high pressure. Only the structure of phase IV, which exists from 107 GPa to 137 GPa, remains unsolved. We performed a powder x-ray diffraction experiment and a Rietveld analysis and successfully determined its structure to be an incommensurately modulated structure by only 1 site of atomic position. High-pressure phases of halogens and chalcogens have previously been shown to have a similar modulated structure; however, phosphorus phase IV is different from them and was shown to be the third case.

  4. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  5. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  6. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  7. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  8. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  9. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  10. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  11. Soil phosphorus dynamics under sprinkler and furrow irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furrow irrigation detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus movement, producers can convert from furrow to sprinkler irrigation. We completed research on soil phosphorus dynamics in furrow versus sprin...

  12. Availability of phosphorus contained in poultry litter for lambs.

    PubMed

    Tagari, H; Silanikove, N; Hurwitz, S

    1981-03-01

    Percentage net phosphorus availability (NPHA) and set phosphorus utilization (NPHU) of the phosphorus contained in a heat-sterilized poultry litter (PL) as compared to feed grade dicalcium phosphate (DCP) for lambs was assessed by the "slope" method. The method was based on the evaluation of the function of apparent phosphorus absorption (NPHA), or retention (NPHU), on phosphorus intake. Nitrogen retention was also evaluated. Plasma inorganic phosphorus concentration as a function of phosphorus intake was evaluated and compared to NPHA and NPHU. The percentage of NPHA was found to be 63.7 and 39, and that of NPHU was 63 and 38 for the phosphorus supplied by DCP and PL, respectively. Thus, the NPHA or NPHU for the phosphorus contained in PL is 60.9 and 60.3% of that of DCP, respectively. The slope ratio between the two phosphate supplements as observed for plasma inorganic phosphorus concentrations was similar to those found for NPHA and NPHU but the coefficient of variation was 5 times higher. Nitrogen digestibility was not affected by the level of phosphorus in the diets. Correlation between nitrogen retention and NPHA or NPHU was, however, significant (P less than 0.05). The slopes of dependence of N retention upon phosphorus intake were 2.81 and 1.6 (P less than 0.05) for DCP and PL treatments, respectively, and the ratio between the slopes was 0.57, close to the ratio of NPHU in PL to DCP-supplemented diets.

  13. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for transportation or transported by rail, highway, or water, must be packaged in water or dry in...

  14. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for transportation or transported by rail, highway, or water, must be packaged in water or dry in...

  15. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for transportation or transported by rail, highway, or water, must be packaged in water or dry in...

  16. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  17. Effects of carbon on phosphorus diffusion in SiGe:C and the implications on phosphorus diffusion mechanisms

    SciTech Connect

    Lin, Yiheng; Xia, Guangrui; Yasuda, Hiroshi; Wise, Rick; Schiekofer, Manfred; Benna, Bernhard

    2014-10-14

    The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si₀.₈₂Ge₀.₁₈:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si₀.₈₂Ge₀.₁₈:C than for Si:C. In Si₀.₈₂Ge₀.₁₈:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusion any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.

  18. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems.

    PubMed

    Schönbrunner, Iris M; Preiner, Stefan; Hein, Thomas

    2012-08-15

    One of the consequences of human impacts on floodplains is a change in sedimentation leading to enhanced floodplain aggradation. Thus, accumulated sediments rich in nutrients might interfere with floodplain restoration. In this study we investigated the phosphorus release behavior of sediments from shallow backwaters of an isolated floodplain of the Danube River situated east of the city of Vienna with the aim to understand the effects of changes in dry/wet cycles on established floodplain sediments. In the light of restoration plans aiming at increased surface water exchange with the river main channel, the response of sediments to frequent alternations between desiccation and inundation periods is a key issue as changes of sediment properties are expected to affect phosphorus release. In order to determine the effect of changing hydrological conditions on internal phosphorus loading, we exposed sediments to different dry/wet treatments in a laboratory experiment. Total phosphorus (TP) release from sediments into the water column increased with increasing duration of dry periods prior to re-wetting. Partial correlation analysis showed significant positive correlations between ΔTP and ΔNH(4)(+) as well as between ΔTP and ΔFe(3+) concentrations (Δ refers to the difference between the final and initial concentration during the wetting period), indicating that enhanced mineralization rates leading to a concomitant release of NH(4)(+) and TP and the reduction of iron hydroxides leading to a concomitant release of Fe(3+) and TP are the mechanisms responsible for the rise in TP. Repeated drying and wetting resulted in elevated phosphorus release. This effect was more pronounced when drying periods led to an 80% reduction in water content, indicating that the degree of drying is a major determinant controlling phosphorus release upon re-wetting. The reconnection of isolated floodplains will favor fluctuating hydrologic conditions and is therefore expected to

  19. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic-anoxic activated sludge system.

    PubMed

    Kapagiannidis, A G; Zafiriadis, I; Aivasidis, A

    2012-03-01

    A continuous-flow anaerobic-anoxic (A2) activated sludge system was operated for efficient enhanced biological phosphorus removal (EBPR). Because of the system configuration with no aeration zones, phosphorus (P) uptake takes place solely under anoxic conditions with simultaneous denitrification. Basic operating conditions, namely biomass concentration, influent carbon to phosphorus ratio and anaerobic retention time were chosen as variables in order to assess their impact on the system performance. The experimental results indicated that maintenance of biomass concentration above 2,500 mg MLVSS/L resulted in the complete phosphate removal from the influent (i.e. 15 mg PO(4) (3-)-P/L) for a mean hydraulic residence time (HRT) of 15 h. Additionally, by increasing the influent COD/P ratio from 10 to 20 g/g, the system P removal efficiency was improved although the experimental results indicated a possible enhancement of the competition between phosphorus accumulating organisms (PAOs) and other microbial populations without phosphorus uptake ability. Moreover, because of the use of acetate (i.e. easily biodegradable substrate) as the sole carbon source in the system feed, application of anaerobic retention times greater than 2 h resulted in no significant release of additional P in the anaerobic zone and no further amelioration of the system P removal efficiency. The application of anoxic P removal resulted in more than 50% reduction of the organic carbon necessitated for nitrogen and phosphorus removal when compared to a conventional EBPR system incorporating aerobic phosphorus removal.

  20. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems.

    PubMed

    Schönbrunner, Iris M; Preiner, Stefan; Hein, Thomas

    2012-08-15

    One of the consequences of human impacts on floodplains is a change in sedimentation leading to enhanced floodplain aggradation. Thus, accumulated sediments rich in nutrients might interfere with floodplain restoration. In this study we investigated the phosphorus release behavior of sediments from shallow backwaters of an isolated floodplain of the Danube River situated east of the city of Vienna with the aim to understand the effects of changes in dry/wet cycles on established floodplain sediments. In the light of restoration plans aiming at increased surface water exchange with the river main channel, the response of sediments to frequent alternations between desiccation and inundation periods is a key issue as changes of sediment properties are expected to affect phosphorus release. In order to determine the effect of changing hydrological conditions on internal phosphorus loading, we exposed sediments to different dry/wet treatments in a laboratory experiment. Total phosphorus (TP) release from sediments into the water column increased with increasing duration of dry periods prior to re-wetting. Partial correlation analysis showed significant positive correlations between ΔTP and ΔNH(4)(+) as well as between ΔTP and ΔFe(3+) concentrations (Δ refers to the difference between the final and initial concentration during the wetting period), indicating that enhanced mineralization rates leading to a concomitant release of NH(4)(+) and TP and the reduction of iron hydroxides leading to a concomitant release of Fe(3+) and TP are the mechanisms responsible for the rise in TP. Repeated drying and wetting resulted in elevated phosphorus release. This effect was more pronounced when drying periods led to an 80% reduction in water content, indicating that the degree of drying is a major determinant controlling phosphorus release upon re-wetting. The reconnection of isolated floodplains will favor fluctuating hydrologic conditions and is therefore expected to

  1. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Phosphorus Reduction Efforts in the Florida Everglades

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2009-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the CERP. Specifically, GPM measurements could augment in situ precipitation data that are used to model agricultural phosphorus discharged into the Everglades. This solution benefits society by aiding water resource managers in identifying effective phosphorus reduction scenarios and thereby returning the Everglades to a more natural state. This solution supports the Water Management, Coastal Management, and Ecological Forecasting National Applications.

  2. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    SciTech Connect

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  3. Osteophagia provide giraffes with phosphorus and calcium?

    PubMed

    Bredin, I P; Skinner, J D; Mitchell, G

    2008-03-01

    The daily requirement for calcium and phosphorus by giraffes to sustain the growth and maintenance of their skeletons is large. The source of sufficient calcium is browse. The source of necessary phosphorus is obscure, but it could be osteophagia, a frequently observed behaviour in giraffes. We have assessed whether bone ingested as a result of osteophagia can be digested in the rumen. Bone samples from cancellous (cervical vertebrae) and dense bones (metacarpal shaft) were immersed in the rumens of five sheep, for a period of up to 30 days, and the effect compared to immersion in distilled water and in artificial saliva for 30 days. Distilled water had no effect on the bones. Dense bone samples were softened by exposure to the saliva and rumen fluid, but did not lose either calcium or phosphorus. In saliva and rumen fluid the cancellous bone samples also softened, and their mass and volume decreased as a result of exposure to saliva, but in neither fluid did they lose significant amounts of calcium and phosphorus. We conclude that although saliva and rumen fluid can soften ingested bones, there is an insignificant digestion of bones in the rumen.

  4. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  5. EFFECT OF PHOSPHORUS TREATMENT ON LEAD MINERALOGY

    EPA Science Inventory

    Remediation of Pb-contaminated soils by amendments of phosphate may prove to be a viable way of sequestering Pb in the natural environment. Test plots of Pb-contaminated soil near Joplin, MO were treated with a variety of phosphorus-based amendments to observe the influence of co...

  6. Fire-Resistant Polyamides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1988-01-01

    Flammability and weight loss reduced. Fire-resistant polymers obtained from 1-{(dialkoxyphosphonyl) methyl}-2, 4- and -2, 6-diaminobenzenes by reaction with acyl or diacyl halides of higher functionality. Incorporation of compounds containing phosphorus into certain polymers shown previously to increase fire retardance. Discovery adds new class of polyamides to group of such polymers.

  7. Potential phosphorus recovery by struvite formation.

    PubMed

    Jaffer, Y; Clark, T A; Pearce, P; Parsons, S A

    2002-04-01

    Formation of struvite (MgNH4PO4 x 6H2O) at sewage treatment works can cause operational problems and decrease efficiency. Struvite has a commercial value and the controlled formation and recovery of it would be beneficial. A mass balance was conducted at full scale across the whole sewage treatment plant in order to identify a stream to conduct bench-scale struvite crystallisation studies. The most suitable stream was identified as the centrifuge liquors. The average flow of the liquor stream was 393 m3 d(-1) and the composition was as follows: 167 mg L(-1) phosphorus, 44 mg L(-1) magnesium, 615 mg L(-1) ammonium, 56 mg L(-1) calcium and 2580 mg L(-1) of alkalinity. The pH averaged at 7.6 and the stream had a predicted struvite precipitation potential of 140 mg L(-1). Struvite crystallisation occurred quickly during the trials, by raising the pH of the centrifuge liquors to 9.0 and dosing with magnesium. Up to 97% phosphorus removal as struvite was achieved. Struvite formation occurred when the molar ratio of magnesium:phosphorus was at least 1.05:1. Below this ratio phosphorus removals of 72% were observed, but not exclusively as struvite. Annual yields of struvite were calculated to be 42-100 tonnes a year, depending on the dose regime. Revenue from the sale of produced struvite could be between Pound Sterling8400 and Pound Sterling20,000 a year. PMID:12044083

  8. Phosphorus retention capacity in red ferralitic soil.

    PubMed

    Pérez, M M; Bossens, J; Rosa, E; Tack, F M G

    2014-01-01

    In this study the main physical-chemical characteristics of red ferralitic soil to use as substrate in subsurface wetlands was determined. The P-removal was evaluated in a short-term isotherm batch experiment and in a column percolation experiment. The acid characteristic and high content of iron minerals in the red ferralitic soil facilitated the phosphorus removal. Also the sorption isotherms at two different temperatures were obtained. The results showed that the sorption capacity increases with an increase in solution temperature from 25 to 35 °C. The experimental data were fitted to Langmuir and Freundlich models, having a better fit to the Freundlich isotherms. The maximum P-sorption capacities estimated using the Langmuir isotherm were 0.96 and 1.13 g/kg at 25 and 35 °C respectively. Moreover a column experiment was carried out at two different flows. Sequential extractions of the phosphorus-saturated soil indicated that phosphorus is mainly bound with iron or aluminum minerals. The results have demonstrated a good potential for red ferralitic soil for phosphorus removal from urban wastewater. PMID:25401322

  9. Phosphorus recovery and reuse from waste streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  10. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  11. Nanotubes based on monolayer blue phosphorus

    NASA Astrophysics Data System (ADS)

    Montes, E.; Schwingenschlögl, U.

    2016-07-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  12. The role of phosphorus in chemical evolution.

    PubMed

    Maciá, Enrique

    2005-08-01

    In this tutorial review we consider the role of phosphorus and its compounds within the context of chemical evolution in galaxies. Following an interdisciplinary approach we first discuss the position of P among the main biogenic elements by considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. Then we review the phosphorus distribution in different cosmic sites, such as terrestrial planets, interplanetary dust particles, cometary dust, planetary atmospheres and the interstellar medium (ISM). In this way we realize that this element is both scarce and ubiquitous in the universe. These features can be related to the complex nucleosynthesis of P nuclide in the cores of massive stars under explosive conditions favouring a wide distribution of this element through the ISM, where it would be ready to react with other available atoms. A general tendency towards more oxidized phosphorus compounds is clearly appreciated as chemical evolution proceeds from circumstellar and ISM materials to protoplanetary and planetary condensed matter phases. To conclude we discuss some possible routes allowing for the incorporation of phosphorus compounds of prebiotic interest during the earlier stages of solar system formation.

  13. Temperature-dependant study of phosphorus ion implantation in germanium

    NASA Astrophysics Data System (ADS)

    Razali, M. A.; Smith, A. J.; Jeynes, C.; Gwilliam, R. M.

    2012-11-01

    We present experimental results on shallow junction formation in germanium by phosphorus ion implantation and standard rapid thermal processing. An attempt is made to improve phosphorus activation by implanting phosphorus at high and low temperature. The focus is on studying the germanium damage and phosphorus activation as a function of implant temperature. Rutherford backscattering spectrometry with channelling and Hall Effect measurements are employed for characterisation of germanium damage and phosphorus activation, respectively. High and low temperature implants were found to be better compared to room temperature implant.

  14. Phosphorus Retention Models for Tennessee Valley Authority Reservoirs

    NASA Astrophysics Data System (ADS)

    Higgins, John M.; Kim, Byung R.

    1981-06-01

    Data for the 18 largest Tennessee Valley Authority (TVA) reservoirs are compared with previously developed models for predicting steady state phosphorus concentrations in lakes. A plug flow model is presented for lakes and reservoirs which have significant longitudinal variation in phosphorus concentration. The results indicate that phosphorus sedimentation and retention coefficients developed for natural lakes are not directly applicable to TVA reservoirs. The apparent settling velocity of phosphorus in TVA reservoirs was substantially higher than previously reported values for natural lakes. Application of the plug flow model to Cherokee Reservoir showed good agreement with measured in-lake phosphorus concentrations.

  15. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  16. Phosphorus-induced positive charge in native oxide of silicon wafers

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Munakata, Chusuke

    1994-06-01

    Alternating current surface photovoltage is enhanced in p-type silicon (Si) wafers, which are rinsed with a phosphorus (P)-contaminated water solution, whereas it is reduced in n-type Si wafers, indicating that the positive charge appears at wafer surfaces. This result suggests that P reacts with SiO2 in the form of (POSi)+ network, causing a positive charge in the native oxide.

  17. Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater.

    PubMed

    Gouider, Mbarka; Mlaik, Najwa; Feki, Mongi; Sayadi, Sami

    2011-08-01

    The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively. PMID:21905410

  18. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    PubMed

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics.

  19. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation

    NASA Astrophysics Data System (ADS)

    Boyle, R. A.; Dahl, T. W.; Dale, A. W.; Shields-Zhou, G. A.; Zhu, M.; Brasier, M. D.; Canfield, D. E.; Lenton, T. M.

    2014-09-01

    Animal burrowing and sediment-mixing (bioturbation) began during the run up to the Ediacaran/Cambrian boundary, initiating a transition between the stratified Precambrian and more well-mixed Phanerozoic sedimentary records, against the backdrop of a variable global oxygen reservoir probably smaller in size than present. Phosphorus is the long-term limiting nutrient for oxygen production via burial of organic carbon, and its retention (relative to carbon) within organic matter in marine sediments is enhanced by bioturbation. Here we explore the biogeochemical implications of a bioturbation-induced organic phosphorus sink in a simple model. We show that increased bioturbation robustly triggers a net decrease in the size of the global oxygen reservoir--the magnitude of which is contingent upon the prescribed difference in carbon to phosphorus ratios between bioturbated and laminated sediments. Bioturbation also reduces steady-state marine phosphate levels, but this effect is offset by the decline in iron-adsorbed phosphate burial that results from a decrease in oxygen concentrations. The introduction of oxygen-sensitive bioturbation to dynamical model runs is sufficient to trigger a negative feedback loop: the intensity of bioturbation is limited by the oxygen decrease it initially causes. The onset of this feedback is consistent with redox variations observed during the early Cambrian rise of bioturbation, leading us to suggest that bioturbation helped to regulate early oxygen and phosphorus cycles.

  20. Phosphorus diffusions for gettering-induced improvement of lifetime in various silicon materials

    SciTech Connect

    Gee, J.M.

    1991-01-01

    Solar-grade silicon frequently contains large quantities of defects and impurities that can significantly degrade the excess-carrier lifetime through introduction of recombination sites. The impurities frequently include metals as well as high concentrations of high carbon and/or oxygen. Defects and impurities can also degrade the electrical properties of solar cells fabricated in solar-grade silicon by causing shunt currents or excess junction current. Fabrication of acceptable solar cells from such materials requires processes that are tolerant of, or that can even improve impure and defective material. Phosphorus diffusion is a well-known technique for gettering of impurities in silicon. The effect of phosphorus diffusion on the excess-carrier lifetime in various silicon materials was investigated. The optimum phosphorus diffusion schedule and enhancement of lifetime was found to be material specific, with substantial (5-fold) increases found for some materials. Possible reasons for the variability of phosphorus gettering with different materials is discussed. 11 refs., 6 figs., 3 tabs.

  1. Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters.

    PubMed

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2012-02-01

    The objective of this study was to develop a phosphorus retention mechanisms model based on precipitation and crystallization in electric arc furnace slag filters. Three slag columns were fed during 30 to 630 days with a reconstituted mining effluent at different void hydraulic retention times. Precipitates formed in columns were characterized by X-ray diffraction and transmission electronic microscopy. The proposed model is expressed in the following steps: (1) the rate limiting dissolution of slag is represented by the dissolution of CaO, (2) a high pH in the slag filter results in phosphorus precipitation and crystal growth, (3) crystal retention takes place by filtration, settling and growth densification, (4) the decrease in available reaction volume is caused by crystal and other particulate matter accumulation (and decrease in available reaction time), and (5) the pH decreases in the filter over time if the reaction time is too low (which results in a reduced removal efficiency). Crystal organization in a slag filter determines its phosphorus retention capacity. Supersaturation and water velocity affect crystal organization. A compact crystal organization enhances the phosphorus retention capacity of the filter. A new approach to define filter performance is proposed: saturation retention capacity is expressed in units of mg P/mL voids.

  2. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    PubMed

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics. PMID:26939844

  3. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-18

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  4. Quantifying phosphorus and light effects in stream algae

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J

    2009-01-01

    Simultaneous gradients of phosphorus and light were applied in experimental streams to develop quantitative relationships between these two important abiotic variables and the growth and composition of benthic microalgae. Algal biovolume and whole-stream metabolism responded hyperbolically to phosphorus enrichment, increasing approximately two-fold over the 5-300 g L-1 range of experimental phosphorus concentrations. The saturation threshold for phosphorus effects occurred at 25 g L-1 of soluble reactive phosphorus (SRP). Light effects were much stronger than those of phosphorus, resulting in a nearly ten-fold increase in algal biovolume over the 10-400 mol photons m-2 s-1 range of experimental irradiances. Biovolume accrual was light-saturated at 100 mol photons m-2 s-1 (5 mol photons m-2 d-1). Light effects were diminished by low phosphorus concentrations, and phosphorus effects were diminished by low irradiances, but evidence of simultaneous limitation by both phosphorus and light at subsaturating irradiances was weak. Contrary to the light:nutrient hypothesis, algal phosphorus content was not significantly affected by light, even in the lowest SRP treatments. However, algal nitrogen content increased substantially at lower irradiances, and it was very highly correlated with algal chlorophyll a content. Phosphorus enrichment in streams is likely to have its largest effect at concentrations <25 g L-1 SRP, but the effect of enrichment is probably minimized when streambed irradiances are kept below 2 mol photons m-2 d-1 by riparian shading or turbidity

  5. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    NASA Astrophysics Data System (ADS)

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  6. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  7. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  8. Isolating phosphorus from sludge in the presence of surfactants

    SciTech Connect

    Nikandrov, I.S.; Kogtev, S.E.; Solinov, I.A.

    1988-09-10

    The authors have examined extracting phosphorus by treatment with solutions containing surfactants, which were oleic acid, sodium tripolyphosphate, and trisodium phosphate, which were of pure or chemically pure grades. The phosphorus slime from the Kuibyshevfosfor Cooperative contained 68% elemental phosphorus; the slime from making red phosphorus at the Korund Cooperative contained 67% elemental phosphorus. The aqueous surfactant was added at an appropriate concentration in a ratio of five to the sludge. The ratio and the concentration providing a high degree of extraction were found in preliminary experiments. The decrease in phosphorus extraction as the temperature difference between the heating medium and the sludge in the reactor increases (it governs the boiling rate) to more than 40% is due to the properties changing on account of the rapid oxidation of the phosphorus and the partial steam distillation. The surfactant isolated from the solution after filtration is suitable for second treatment of new sludge batches.

  9. A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Dale, Andrew W.; Boyle, Richard A.; Lenton, Timothy M.; Ingall, Ellery D.; Wallmann, Klaus

    2016-09-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated by burrowing, tube-dwelling organisms (bioirrigation). The model is constrained using an empirical database including burial ratios of Corg with respect to organic P (Corg:Porg) and total reactive P (Corg:Preac), burial efficiencies of Corg and Porg, and inorganic carbon-to-phosphorus regeneration ratios. If Porg is preferentially mineralized relative to Corg during aerobic respiration, as many previous studies suggest, then the simulated Porg pool is found to be completely depleted. A modified model that incorporates the redox-dependent microbial synthesis of polyphosphates and Porg (termed the microbial P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from the aerobic sediment layers where mineralization rates are highest, thereby mitigating diffusive PO43- fluxes to the bottom water. They also expand the redox niche where microbial P uptake occurs. The model was applied to a hypothetical shelf setting in the early Paleozoic; a time of the first radiation of benthic fauna. Results show that even shallow bioturbation at that time may have had a significant impact on P burial. Our model provides support for a recent study that proposed that faunal radiation in ocean sediments led to enhanced P burial and, possibly, a stabilization of atmospheric O2 levels. The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments.

  10. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria-A Step to Phosphorus Security in Agriculture.

    PubMed

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  11. Innovative Method for Separating Phosphorus and Iron from High-Phosphorus Oolitic Hematite by Iron Nugget Process

    NASA Astrophysics Data System (ADS)

    Han, Hongliang; Duan, Dongping; Wang, Xing; Chen, Siming

    2014-10-01

    This study puts forward a new method to separate phosphorus and iron from high-phosphorus oolitic hematite through iron nuggets process. Firstly, the physical, chemical, and microscopic characteristics of high-phosphorus oolitic hematite are investigated. Then, the reaction mechanisms of high-phosphorus hematite together with feasibility to separating phosphorus and iron by iron nugget process are discussed. Meanwhile, the experiments of high-phosphorus hematite used in rotary hearth furnace iron nugget processes are studied as well. The results indicate that the iron nugget process is a feasible and efficient method for iron and phosphorus separation of high-phosphorus oolitic hematite. The phosphorus content in iron nuggets is relatively low. Through the optimization of process parameters, the lowest of phosphorus in iron nuggets is 0.22 pct, the dephosphorization rate is above 86 pct, and the recovery of Fe is above 85 pct by the iron nugget process. This study aims to provide a theoretical and technical basis for economical and rational use of high-phosphorus oolitic hematite.

  12. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City

    PubMed Central

    Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management.

  13. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City

    PubMed Central

    Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  14. Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply.

    PubMed

    Vardien, Waafeka; Steenkamp, Emma T; Valentine, Alexander J

    2016-02-01

    Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.

  15. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City.

    PubMed

    Metson, Geneviève S; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world's main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region's "phosphorus footprint" - the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident's annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  16. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria—A Step to Phosphorus Security in Agriculture

    PubMed Central

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50–100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  17. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City.

    PubMed

    Metson, Geneviève S; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world's main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region's "phosphorus footprint" - the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident's annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management.

  18. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland.

    PubMed

    Hasegawa, Shun; Macdonald, Catriona A; Power, Sally A

    2016-04-01

    Free-air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)-limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18-month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P-limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (-0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability - particularly for phosphate - in P-limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C-accumulation under future predicted CO2 concentrations.

  19. [Effect of intermittent artificial aeration on nitrogen and phosphorus removal in subsurface vertical-flow constructed wetlands].

    PubMed

    Tang, Xian-qiang; Li, Jin-zhong; Li, Xue-Ju; Liu, Xue-gong; Huang, Sui-liang

    2008-04-01

    Shale and T. latifolia were used as subsurface vertical-flow constructed wetland substrate and vegetation for eutrophic Jin River water treatment, and investigate the effect of intermittent aeration on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, and ratio of air and water was 5:1. During the entire running period, maximal monthly mean ammonia-nitrogen (NH4+ -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the non-aerated wetland, aeration enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal: 10.1%, 4.7%, 10.2% and 8.8% for aeration in the middle, and 25.1%, 10.0%, 7.7% and 7.4% for aeration at the bottom of the substrate, respectively. However, aeration failed to improve the nitrate-nitrogen removal. During the whole experimental period, monthly mean NO3(-) -N removal rates were much lower for aerated constructed wetlands (regarding aeration in the middle and at the bottom) than those for non-aerated system. After finishing the experiment, aboveground plant biomass (stems and leaves) of T. latifolia was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that intermittent aeration restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. Additional total nitrogen removal of 11.6 g x m(-2) and 12.6 g x m(-2) by aboveground T. latifolia biomass for intermittent artificial aeration in the middle and at the bottom of the wetland substrate, respectively, was observed.

  20. [Radioactivity of phosphorus implanted TiNi alloy].

    PubMed

    Zhao, Xingke; Cai, Wei; Zhao, Liancheng

    2003-09-01

    Exposed to neutron flow, the phosphorus implanted TiNi alloy gets radioactive. This radioactive material is used in vascular stent for prevention and cure of restenosis. Phosphorus implantation is carried out in a plasma immerged ion implantation system, and the dose of phosphorus implantation is in the range of 2-10 x 10(17) cm-2. After ion implantation, the alloy is exposed to the slow neutron flow in a nuclear reactor, the dose of the slow neutron is 1.39-5.88 x 10(19) n/cm2. The radioactivity of the TiNi alloy was measured by liquid scintillation spectrometry and radio-chromic-film dosimetry. The result shows that whether the phosphorus is implanted or not, the TiNi alloy comes to be radioactive after exposure to neutron flow. Just after neutron irradiation, the radiation dose of phosphorus implanted TiNi alloy is about one hundred times higher than that of un-phosphorus implanted TiNi alloy. The radiation difference between phosphorus and un-phosphorus implanted alloy decreases as time elapses. Within three months after neutron irradiation, the average half-decay period of phosphorus implanted TiNi alloy is about 62 days. The radiation ray penetration of phosphorus implanted TiNi alloy is deeper than that of pure 32P; this is of benefit to making radiation uniformity between stent struts and reducing radiation grads beyond the edge of stent.

  1. Patient education for phosphorus management in chronic kidney disease

    PubMed Central

    Kalantar-Zadeh, Kamyar

    2013-01-01

    Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310

  2. Microstructural characterization of superalloy 718 with boron and phosphorus additions

    SciTech Connect

    Horton, J.A.; McKamey, C.G.; Miller, M.K.; Cao, W.D.; Kennedy, R.L.

    1997-06-01

    Boron and phosphorus additions are known to improve the stress rupture properties of IN-718. One possible mechanism to explain this property improvement relies on the boron and phosphorus additions slowing down the growth of {gamma}{double_prime} and {gamma}{prime} precipitates during high temperature service or aging. However, atom probe analysis found no segregation of boron and phosphorus to {gamma}-{gamma}{double_prime} or to {gamma}-{gamma}{prime} interfaces in the alloys with the high boron and high phosphorus levels. No difference in growth rates were found by transmission electron microscopy in the sizes of the {gamma}{double_prime} or {gamma}{prime} in alloys with high phosphorus and high boron as compared to commercial alloys and to alloys with even lower levels of phosphorus and boron. Atom probe analysis further found that much of the phosphorus, boron, and carbon segregated to grain boundaries. Creep curves comparing the alloys with high levels of phosphorus and boron and alloys with low levels of phosphorus and boron show a large difference in strain rate in the first hours of the test. These results suggest that the boron and phosphorus may have a direct effect on dislocation mobility by some pinning mechanism.

  3. [Research progress on phosphorus budgets and regulations in reservoirs].

    PubMed

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  4. [Research progress on phosphorus budgets and regulations in reservoirs].

    PubMed

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches. PMID:25876422

  5. Landslide-induced changes in soil phosphorus speciation and availability in Xitou, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Hsiao, Sheng-Che; Huang, Yu-Sheng; Chen, Chiu-Ping; Menyailo, Oleg

    2016-04-01

    Phosphorus is an important nutrient in forest ecosystem. In tropical/subtropical areas, phosphorus is generally limited because of strong soil weathering but its speciation and availability can be changed by disturbances, such as the geological landslide events. In this study, we evaluated the changes in soil P speciation and availability after landslide in a mountainous forest ecosystem in Xitou, central Taiwan. Five soil pedons along a landslide/nonlanslide affected sequence from deep landslide deposit to nonlandslide were collected. The Hedley's sequential extraction procedure and synchrotron-based phosphorus x-ray adsorption near edge structure (XANES) spectroscopy were applied for the surface 0-10 cm and 10-20 cm soils to provide information concerning chemical and structural composition of phosphorus. The results indicated that plant available P (Resin-P + NaHCO3 extract P) and total P were reduced after landslide, from 150 and 500 mg kg-1, respectively, at nonlandsliding sites to 50 and 350 mg kg-1 at landsliding sites. However, the apatite-type P was significantly increased after landslide, from about 70 mg kg-1 at nonlandsliding sites to around 200 mg kg-1 at landsliding sites. Similar trend of enhanced apatite-type P after landslide was also observed in the XANES spectra. The ryegrass pot experiment confirmed that the landsliding soils were less fertile and had less growth rate. However, both nitrogen and phosphorus nutrients were limited at landsliding sites. The results demonstrated that soil P speciation and availability were significantly altered after landslide; these resultant changes are expected to influence functions in forest ecosystems.

  6. The "white ocean" hypothesis: a late pleistocene southern ocean governed by coccolithophores and driven by phosphorus.

    PubMed

    Flores, José-Abel; Filippelli, Gabriel M; Sierro, Francisco J; Latimer, Jennifer

    2012-01-01

    Paleoproductivity is a critical component in past ocean biogeochemistry, but accurate reconstructions of productivity are often hindered by limited integration of proxies. Here, we integrate geochemical (phosphorus) and micropaleontological proxies at millennial timescales, revealing that the coccolithophore record in the Subantarctic zone of the South Atlantic Ocean is driven largely by variations in marine phosphorus availability. A quantitative micropaleontological and geochemical analysis carried out in sediments retrieved from Ocean Drilling Program Site 1089 (Subantarctic Zone) reveals that most of the export productivity in this region over the last 0.5 my was due to coccolithophores. Glacial periods were generally intervals of high productivity, with productivity reaching a peak at terminations. Particularly high productivity was observed at Termination V and Termination IV, events that are characterized by high abundance of coccolithophores and maxima in the phosphorus/titanium and strontium/titanium records. We link the increase in productivity both to regional oceanographic phenomena, i.e., the northward displacement of the upwelling cell of the Antarctic divergence when the ice-sheet expanded, and to the increase in the inventory of phosphorus in the ocean due to enhanced transfer of this nutrient from continental margins during glacial lowstands in sea level. The Mid-Brunhes interval stands out from the rest of the record, being dominated by the small and highly calcified species Gephyrocapsa caribbeanica that provides most of the carbonate in these sediments. This likely represents higher availability of phosphorus in the surface ocean, especially in mesotrophic and oligotrophic zones. Under these condition, some coccolithophore species developed an r-strategy (opportunistic species; growth rate maximized) resulting in the bloom of G. caribbeanica. These seasonal blooms of may have induced "white tides" similar to those observed today in Emiliania

  7. The "white ocean" hypothesis: a late pleistocene southern ocean governed by coccolithophores and driven by phosphorus.

    PubMed

    Flores, José-Abel; Filippelli, Gabriel M; Sierro, Francisco J; Latimer, Jennifer

    2012-01-01

    Paleoproductivity is a critical component in past ocean biogeochemistry, but accurate reconstructions of productivity are often hindered by limited integration of proxies. Here, we integrate geochemical (phosphorus) and micropaleontological proxies at millennial timescales, revealing that the coccolithophore record in the Subantarctic zone of the South Atlantic Ocean is driven largely by variations in marine phosphorus availability. A quantitative micropaleontological and geochemical analysis carried out in sediments retrieved from Ocean Drilling Program Site 1089 (Subantarctic Zone) reveals that most of the export productivity in this region over the last 0.5 my was due to coccolithophores. Glacial periods were generally intervals of high productivity, with productivity reaching a peak at terminations. Particularly high productivity was observed at Termination V and Termination IV, events that are characterized by high abundance of coccolithophores and maxima in the phosphorus/titanium and strontium/titanium records. We link the increase in productivity both to regional oceanographic phenomena, i.e., the northward displacement of the upwelling cell of the Antarctic divergence when the ice-sheet expanded, and to the increase in the inventory of phosphorus in the ocean due to enhanced transfer of this nutrient from continental margins during glacial lowstands in sea level. The Mid-Brunhes interval stands out from the rest of the record, being dominated by the small and highly calcified species Gephyrocapsa caribbeanica that provides most of the carbonate in these sediments. This likely represents higher availability of phosphorus in the surface ocean, especially in mesotrophic and oligotrophic zones. Under these condition, some coccolithophore species developed an r-strategy (opportunistic species; growth rate maximized) resulting in the bloom of G. caribbeanica. These seasonal blooms of may have induced "white tides" similar to those observed today in Emiliania

  8. Controlled Sculpture of Black Phosphorus Nanoribbons.

    PubMed

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S; Meunier, Vincent; Drndić, Marija

    2016-06-28

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with great promise for fast functional electronics and optoelectronics. We demonstrate the controlled structural modification of few-layer BP along arbitrary crystal directions with sub-nanometer precision for the formation of few-nanometer-wide armchair and zigzag BP nanoribbons. Nanoribbons are fabricated, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscopy (TEM) and scanning TEM nanosculpting. We predict that the few-nanometer-wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. The demonstration of this procedure is key for the development of BP-based electronics, optoelectronics, thermoelectrics, and other applications in reduced dimensions. PMID:27192448

  9. Phosphorus chemistry in the tidal Hudson River

    SciTech Connect

    Fox, L.E. )

    1991-06-01

    A study of inorganic phosphborus in the tidal Hudson River was performed from Noverber 1988 to October 1989. Results indicate that phosphate concentrations are at or near equilibrium with a suspended solid phase consisting of amorphous ferric phosphate in amorphous ferric hydroxide. Equilibrium was observed over most of the river, over most of the year. Undersaturation was observed regularly below river mile 40 in the month of July. It represented the major deviation from equilibration. Low suspended sediment levels and dilution from sea water are believed to be responsible for undersaturation. Dissolved iron was near equilibrium with amorphous ferric hydroxide except in July. Recognition of the wide range of watersheds where phosphorus equilibrium controls phosphate concentrations suggests that the global, terrestrial flux of biologically available phosphorus may be double current estimates.

  10. Black phosphorus field-effect transistors.

    PubMed

    Li, Likai; Yu, Yijun; Ye, Guo Jun; Ge, Qingqin; Ou, Xuedong; Wu, Hua; Feng, Donglai; Chen, Xian Hui; Zhang, Yuanbo

    2014-05-01

    Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

  11. Controlled Sculpture of Black Phosphorus Nanoribbons.

    PubMed

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S; Meunier, Vincent; Drndić, Marija

    2016-06-28

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with great promise for fast functional electronics and optoelectronics. We demonstrate the controlled structural modification of few-layer BP along arbitrary crystal directions with sub-nanometer precision for the formation of few-nanometer-wide armchair and zigzag BP nanoribbons. Nanoribbons are fabricated, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscopy (TEM) and scanning TEM nanosculpting. We predict that the few-nanometer-wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. The demonstration of this procedure is key for the development of BP-based electronics, optoelectronics, thermoelectrics, and other applications in reduced dimensions.

  12. In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage.

    PubMed

    Milowska, Katarzyna; Szwed, Aleksandra; Zablocka, Maria; Caminade, Anne-Marie; Majoral, Jean-Pierre; Mignani, Serge; Gabryelak, Teresa; Bryszewska, Maria

    2014-10-20

    We have investigated whether polyamidoamine (PAMAM), phosphorus (pd) and viologen-phosphorus (vpd) dendrimers can prevent damage to embryonic mouse hippocampal cells (mHippoE-18) caused by rotenone, which is used as a pesticide, insecticide, and as a nonselective piscicide, that works by interfering with the electron transport chain in mitochondria. Several basic aspects, such as cell viability, production of reactive oxygen species and changes in mitochondrial transmembrane potential, were analyzed. mHippoE-18 cells were treated with these structurally different dendrimers at 0.1μM. A 1h incubation with dendrimers was followed by the addition of rotenone at 1μM, and a further 24h incubation. PAMAM, phosphorus and viologen-phosphorus dendrimers all increased cell viability (reduced cell death-data need to be compared with untreated controls). A lower level of reactive oxygen species and a favorable effect on mitochondrial system were found with PAMAM and viologen-phosphorus dendrimers. These results indicate reduced toxicity in the presence of dendrimers. PMID:25108046

  13. Phosphorus Migration During Direct Reduction of Coal Composite High-Phosphorus Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xue, Qingguo; Wang, Guang; Zhang, Yuanyuan; Wang, Jingsong

    2016-02-01

    This study investigated the direct reduction process and phosphorus migration features of high-phosphorus iron ores using simulated experiments. Results show that iron oxide was successfully reduced, and a Fe-Si-Al slag formed in carbon-bearing pellets at 1473 K (1200 °C). Fluorapatite then began to decompose into Ca3(PO4)2 and CaF2. As the reaction continued, Ca3(PO4)2 and Fe-Si-Al slag reacted quickly with each other to generate CaAl2Si2O8 and P2, while CaF2 turned into SiF4 gas in the presence of high SiO2. A small amount remained in the slag phase and formed CaAl2Si2O8. Further analysis detailed the migration process of the phosphorus into iron phases, as well as the relationship between carburization and phosphorus absorption in the iron phases. As carbon content in the iron phase increased, the austenite grain boundary melted and formed a large quantity of liquid iron which quickly absorbed the phosphorus. Based on the results of simulation and analysis, this paper proposed a method which reduced the absorption of P by the metallic iron formed and reduced P content in metallic iron during direct reduction.

  14. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  15. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

  16. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction. PMID:26516073

  17. Determination of phosphorus in cereal lipids.

    PubMed

    Kovacs, M I

    1986-05-01

    The effect of digestion methods on the determination of phosphorus in cereal lipids was reinvestigated. Samples were either digested with sulfuric acid or ashed in a muffle furnace at 600 degrees C. The standard deviation and the coefficient of variation were significantly higher for the acid-digested samples. Ashing gave more reliable results, especially when large amounts of lipid material had to be oxidized. PMID:3728960

  18. Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system

    PubMed Central

    Wang, Yun-Kun; Pan, Xin-Rong; Geng, Yi-Kun; Sheng, Guo-Ping

    2015-01-01

    Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered. PMID:26541793

  19. Where is the Phosphorus in Cometary Volatiles?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury

    2015-08-01

    Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.

  20. Redox chemistry in the phosphorus biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-10-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine-PH3-a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10-20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.