Sample records for attached inflatable decelerators

  1. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  2. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  3. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  4. Deployment and Performance Characteristics of 5-Foot Diameter (1.5m) Attached Inflatable Decelerators from Mach Numbers 2.2-4.4

    NASA Technical Reports Server (NTRS)

    Bohon, Herman L.; Miserentino, Robert

    1970-01-01

    Deployment characteristics and steady-state performance data were obtained over the Mach number range from 2.2 to 4.4 and at angles of attack from 0 degrees to l0 degrees. All attached inflatable decelerator (AID) models deployed successfully and exhibited flutter-free performance after deployment. Shock loads commonly associated with inflation of parachutes during deployment were not experienced. Force and moment data and ram-air pressure data were obtained throughout the Mach number range and at angles of attack from 0 degrees to l0 degrees. The high drag coefficient of 1.14 was in good agreement with the value predicted by the theory used in the design and indicated other AID shapes may be designed on a rational basis with a high degree of confidence.

  5. Enveloping Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  6. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid- structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  7. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid-structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  8. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  9. Modal Test of Six-Meter Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Abraham, Nijo; Buehrle, Ralph; Templeton, Justin; Lindell, Mike; Hancock, Sean M.

    2014-01-01

    A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.

  10. Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Komar, D. R.

    2011-01-01

    This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.

  11. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  12. Aerodynamic Coefficients from Aeroballistic Range Testing of Deployed- and Stowed-SIAD SFDT Models

    NASA Technical Reports Server (NTRS)

    Wilder, Michael C.; Brown, Jeffrey D.; Bogdanoff, David W.; Yates, Leslie A.; Dyakonov, Artem A.; Clark, Ian G.; Grinstead, Jay H.

    2017-01-01

    This report documents a ballistic-range test campaign conducted in 2012 in order to estimate the aerodynamic stability characteristics of two configurations of the Supersonic Flight Dynamics Test (SFDT) vehicle prior to its initial flight in 2014. The SFDT vehicle was a test bed for demonstrating several new aerodynamic decelerator technologies then being developed under the Low-Density Supersonic Decelerator (LDSD) Project. Of particular interest here is the Supersonic Inflatable Aerodynamic Decelerator (SIAD), an inflatable attached torus used to increase the drag surface area of an entry vehicle during the supersonic portion of the entry trajectory. Two model configurations were tested in the ballistic range: one representing the SFDT vehicle prior to deployment of the SIAD, and the other representing the nominal shape with the SIAD inflated. Both models were fabricated from solid metal, and therefore, the effects of the flexibility of the inflatable decelerator were not considered. The test conditions were chosen to match, as close as possible, the Mach number, Reynolds number, and motion dynamics expected for the SFDT vehicle in flight, both with the SIAD stowed and deployed. For SFDT models with the SIAD stowed, 12 shots were performed covering a Mach number range of 3.2 to 3.7. For models representing the deployed SIAD, 37 shots were performed over a Mach number range of 2.0 to 3.8. Pitch oscillation amplitudes covered a range from 0.7 to 20.6 degrees RMS. Portions of this report (data analysis approach, aerodynamic modeling, and resulting aerodynamic coefficients) were originally published as an internal LDSD Project report [1] in 2012. In addition, this report provides a description of the test design approach, the test facility, and experimental procedures. Estimated non-linear aerodynamic coefficients, including pitch damping, for both model configurations are reported, and the shot-by-shot trajectory measurements, plotted in comparison with calculated trajectories based on the derived non-linear aerodynamic coefficients, are provided as appendices. Since the completion of these tests, two full-scale SFDT flights have been successfully conducted: one in June 2014 [2, 3], and one in June 2015 [3].

  13. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  14. Comparison of Analysis with Test for Static Loading of Two Hypersonic Inflatable Aerodynamic Decelerator Concepts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2015-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.

  15. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  16. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  17. Methods to Determine the Deformation of the IRVE Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Young, William R.

    2011-01-01

    Small resonant targets used in conjunction with a microwave reflectometer to determine the deformation of the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) during reentry are investigated. The reflectometer measures the distance to the targets and from this the HIAD deformation is determined. The HIAD is used by the Inflatable Reentry Vehicle Experiment (IRVE) which investigates the use of inflatable heat shields for atmospheric reentry. After several different microwave reflectometer systems were analyzed and compared it was determined that the most desirable for this application is the Frequency Doubling Target method.

  18. Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.

    2010-01-01

    NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.

  19. Preliminary Structural Sensitivity Study of Hypersonic Inflatable Aerodynamic Decelerator Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2014-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.

  20. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  1. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  2. A bridge between unified cosmic history by f( R)-gravity and BIonic system

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza

    2016-04-01

    Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.

  3. The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerato

    NASA Image and Video Library

    2013-05-31

    The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerator, an inflatable spacecraft technology that allows payloads to survive the harsh conditions of atmospheric re-entry. This photo was taken at NASA Langley in Building 1250 when sensors were being applied.

  4. The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerato

    NASA Image and Video Library

    2013-04-25

    The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerator, an inflatable spacecraft technology that allows payloads to survive the harsh conditions of atmospheric re-entry. This photo was taken at NASA Langley in Building 1250 when sensors were being applied.

  5. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  6. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  7. IRVE-3 Post-Flight Reconstruction

    NASA Technical Reports Server (NTRS)

    Olds, Aaron D.; Beck, Roger; Bose, David; White, Joseph; Edquist, Karl; Hollis, Brian; Lindell, Michael; Cheatwood, F. N.; Gsell, Valerie; Bowden, Ernest

    2013-01-01

    The Inflatable Re-entry Vehicle Experiment 3 (IRVE-3) was conducted from the NASA Wallops Flight Facility on July 23, 2012. Launched on a Black Brant XI sounding rocket, the IRVE-3 research vehicle achieved an apogee of 469 km, deployed and inflated a Hypersonic Inflatable Aerodynamic Decelerator (HIAD), re-entered the Earth's atmosphere at Mach 10 and achieved a peak deceleration of 20 g's before descending to splashdown roughly 20 minutes after launch. This paper presents the filtering methodology and results associated with the development of the Best Estimated Trajectory of the IRVE-3 flight test. The reconstructed trajectory is compared against project requirements and pre-flight predictions of entry state, aerodynamics, HIAD flexibility, and attitude control system performance.

  8. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the ascent phase of the mission as well as from the extreme heat fluxes produced during the supersonic test phase by the main motor plume and aeroheating. The passive thermal design approach for the SFDT vehicle relies upon careful and complex bounding analysis of all three modes of heat transfer - conduction, convection, and radiation - coupled with a tightly managed transient power dissipation timeline for onboard electronics components throughout all mission phases.

  9. Flight Tests Results from Supersonic Deployment of an 18-Foot Diameter (5.49 meter) Towed Ballute Decelerator

    NASA Technical Reports Server (NTRS)

    Mayhue, Robert J.; Eckstrom, Clinton V.

    1969-01-01

    A ram-air-inflated, towed ballute decelerator having a maximum frontal diameter of 18 feet (5.49 meters) was deployed during free flight at a Mach number of 3.15 and a dynamic pressure of 38.5 lb/ft(exp 2) (1843.4 newtons/m(exp 2)). Deployment and extraction of the test ballute were normal but inflation stopped about 1 second after mortar firing and produced an average plateau drag force of 1500 pounds (6.7 kN) for about 1 second. Approximately 30 percent of expected total frontal area was obtained.

  10. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1997-11-18

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  11. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1998-12-08

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  12. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  13. The challenges of integrating instrumentation with inflatable aerodynamic decelerators

    NASA Astrophysics Data System (ADS)

    Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.

    New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.

  14. Engineering design manual of parachute decelerator characteristics for space shuttle solid rocket booster recovery

    NASA Technical Reports Server (NTRS)

    Mansfield, D. L.

    1973-01-01

    The design criteria and characteristics of parachutes for recovery of the solid rocket boosters used with the space shuttle launch are presented. A computer program for analyzing the requirements of the parachute decelerators is described. The computer inputs for both the drogue and main parachute decelerators are; (1) parachute size, (2) deployment conditions, (3) inflation times, (4) reefing times, (5) mass properties, (6) spring properties, and (7) aerodynamic coefficients. Graphs of the parachute performance are included.

  15. Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series

    NASA Technical Reports Server (NTRS)

    Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil

    2014-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.

  16. Application of inflatable aeroshell structures for Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Jurewicz, David; Lichodziejewski, Leo; Tutt, Ben; Gilles, Brian; Brown, Glen

    Future space missions will require improvements in the Entry, Descent, and Landing (EDL) phases of the mission architecture. The focus of this paper is to discuss recent advances in analysis, fabrication techniques, ground testing, and flight testing of a stacked torus Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and its application to the future of EDL. The primary structure of a stacked torus HIAD consists of nested inflatable tori of increasing major diameter bonded and strapped to form a rigid structure after inflation. The underlying structure of the decelerator is covered with a flexible Thermal Protection System (TPS) capable of high heat flux. The inflatable aeroshell and TPS are packed around a centerbody within the launch fairing and deployed prior to atmospheric reentry. Recent fabrication of multiple HIADs between 3 and 6 meters has led to significant advances in process control and validation of the scalability of the technology. Progress has been made in generating and validating LS-DYNA FEA models to replicate flight loading in addition to analytical models of substructures. Coupon and component testing has improved the validation of modeling techniques and assumptions at the subsystem level. A ground testing campaign at the National Full-Scale Aerodynamics Center (NFAC) wind tunnel at NASA Ames Research center generated substantial aerodynamic and loading data to validate full system modeling with comparable dynamic pressures to a hypersonic reentry. The Inflatable Reentry Vehicle - 3 (IRVE-3) sounding rocket flight test was conducted with NASA Langley Research Center in July 2012. The IRVE-3 mission verified the structural and thermal performance of the stacked torus configuration. Further development of the stacked torus configuration is currently being conducted to increase the thermal capability, deceleration loads, and understanding of the interactions and effects of constituent components. The results of this research have expanded the- feasible flight envelope of stacked torus HIAD designs over a range of sizes, loading conditions, and heating.

  17. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.

  18. Inflatable Aerocapture Decelerators for Mars Orbiters

    NASA Technical Reports Server (NTRS)

    Brown, Glen J.; Lingard, J. Stephen; Darley, Matthew G.; Underwood, John C.

    2007-01-01

    A multi-disciplinary research program was recently completed, sponsored by NASA Marshall Space Flight Center, on the subject of aerocapture of spacecraft weighing up to 5 metric tons at Mars. Heavier spacecraft will require deployable drag area beyond the dimensional limits of current and planned launch fairings. This research focuses on the approach of lightweight inflatable decelerators constructed with thin films, using fiber reinforcement and having a temperature limitation of 500 C. Trajectory analysis defines trajectories for a range of low ballistic coefficients for which convective heat flux is compatible with the material set. Fluid-Structure Interaction (FSI) tools are expanded to include the rarified flow regime. Several non-symmetrical configurations are evaluated for their capability to develop lift as part of the necessary trajectory control strategy. Manufacturing technology is developed for 3-D stretch forming of polyimide films and for tailored fiber reinforcement of thin films. Finally, the mass of the decelerator is estimated and compared to the mass of a traditional rigid aeroshell.

  19. Overview of the 2nd Gen 3.7m HIAD Static Load Test

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.; Cheatwood, F. M.; Cassell, A. M.; Anderson, P.; Lowery, A.

    2015-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for human class payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). In October of 2014, a 3.7m HIAD inflatable structure with an integrated flexible thermal protection sys-tem (F-TPS) was subjected to a static load test series to verify the designs structural performance. The 3.7m HIAD structure was constructed in a 70 deg sphere-cone stacked-toroid configuration using eight inflatable tori, which were joined together using adhesives and high strength textile webbing to help distribute the loads throughout the inflatable structure. The inflatable structure was fabricated using 2nd generation structural materials that permit an increase in use temperature to 400 C+ as compared to the 250 C limitation of the 1st generation materials. In addition to the temperature benefit, these materials also offer a 40 reduction in structure mass. The 3.7m F-TPS was fabricated using high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. The F-TPS was constructed of 2nd generation TPS materials increasing its heating capability from 35W sq cm to over 100W sq cm. This test article is the first stacked-torus HIAD to be fabricated and tested with a 70 deg sphere-cone. All previous stacked-torus HIADs have employed a 60o sphere-cone. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for dis-placement of the inflatable structure as loads were applied. The tub rim was attached to the floor to provide an airtight seal. The center body of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to characterize deformed shape, shoulder deflection, strap loads, and cord loads as a function of structural configuration and applied static load. In this overview, the 3.7m HIAD static load test series will be discussed in detail, including the 3.7m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally results and conclusions from the test series.

  20. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.

  1. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  2. Mission Applications of a HIAD for the Mars Southern Highlands

    NASA Technical Reports Server (NTRS)

    Winski, Richard; Bose, Dave; Komar, David R.; Samareh, Jamshid

    2013-01-01

    Recent discoveries of evidence of a flowing liquid in craters throughout the Mars Southern Highlands, like Terra Sirenum, have spurred interest in sending science missions to those locations; however, these locations are at elevations that are much higher (0 to +4 km MOLA) than any previous landing site (-1 to -4 km MOLA). New technologies may be needed to achieve a landing at these sites with significant payload mass to the surface. A promising technology is the hypersonic inflatable aerodynamic decelerator (HIAD); a number of designs have been advanced but the stacked torus has been recently successfully flight tested in the IRVE-2 and IRVE-3 projects through the NASA Langley Research Center. This paper will focus on a variety of mission applications of the stacked torus type attached HIAD to the Mars southern highlands.

  3. Wind-Tunnel Investigation of a Balloon as a Towed Decelerator at Mach Numbers from 1.47 to 2.50

    NASA Technical Reports Server (NTRS)

    McShera, John T.; Keyes, J. Wayne

    1961-01-01

    A wind-tunnel investigation has been conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 deg. Towed spherical balloons were found to be stable at supersonic speeds. The drag coefficient of the balloon is reduced by the presence of a tow cable and a further reduction occurs with the addition of a payload. The balloon inflation pressure required to maintain an almost spherical shape is about equal to the free-stream dynamic pressure. Measured pressure and temperature distribution around the balloon alone were in fair agreement with predicted values. There was a pronounced decrease in the pressure coefficients on the balloon when attached to a tow cable behind a payload.

  4. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Torus Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Chen, Tony; Moholt, Matthew R.; Hudson, Larry D.

    2017-01-01

    The Armstrong Flight Research Center has performed loads testing of a series of developmental atmospheric entry decelerator structural components. Test setup hardware were designed and fabricated. In addition, test plan and checklist were developed for the consistent and efficient execution of the tests. Eight test articles were successfully tested in over one hundred test runs as test objectives were met. Test article buckling shapes and buckling loads were observed. Displacements and strains were also recorded as various load cases were applied. The test data was sent to Langley Research Center to help with the construction of the finite element model of the decelerator assembly.

  5. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.

    PubMed

    Lin, Jui-Te; Huang, Morris; Sprigle, Stephen

    2015-01-01

    The purpose of this study was to develop a simple approach to evaluate resistive frictional forces acting on manual wheelchairs (MWCs) during straight and turning maneuvers. Using a dummy-occupied MWC, decelerations were measured via axle-mounted encoders during a coast-down protocol that included straight trajectories and fixed-wheel turns. Eight coast-down trials were conducted to test repeatability and repeated on separate days to evaluate reliability. Without changing the inertia of the MWC system, three tire inflations were chosen to evaluate the sensitivity in discerning deceleration differences using effect sizes. The technique was also deployed to investigate the effect of different MWC masses and weight distributions on resistive forces. Results showed that the proposed coast-down technique had good repeatability and reliability in measuring decelerations and had good sensitivity in discerning differences in tire inflation, especially during turning. The results also indicated that increased loading on drive wheels reduced resistive losses in straight trajectories while increasing resistive losses during turning. During turning trajectories, the presence of tire scrub contributes significantly to the amount of resistive force. Overall, this new coast-down technique demonstrates satisfactory repeatability and sensitivity for detecting deceleration changes during straight and turning trajectories, indicating that it can be used to evaluate resistive loss of different MWC configurations and maneuvers.

  6. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  7. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  8. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W. Thor

    1998-01-01

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.

  9. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  10. ISP Aerocapture Technology

    NASA Astrophysics Data System (ADS)

    James, B.

    2004-11-01

    Aerocapture technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by NASA Headquarters and implemented at the NASA Marshall Space Flight Center in Huntsville, Alabama. Aerocapture is a flight maneuver designed to aerodynamically decelerate a spacecraft from hyperbolic approach to a captured orbit during one pass through the atmosphere. Small amounts of propulsive fuel are used for attitude control and periapsis raise only. This technique is very attractive since it permits spacecraft to be launched from Earth at higher verlocities, reducing trip times. The aerocapture technique also significantly reduces the overall mass of the propulsion systems. This allows for more science payload to be added to the mission. Alternatively, a smaller launch vehicle could be used, reducing overall mission cost. Aerocapture can be realized in various ways. It can be accomplished using rigid aeroshells, such as those used in previous mission efforts (like Apollo, the planned Aeroassist Flight Experiment and the Mars Exploration Rovers). Aerocapture can also be achieved with inflatable deceleration systems. This family includes the use of a potentially lighter, inflatable aeroshell or a large, trailing ballute - a combination parachute and balloon made of durable, thin material and stowed behind the vehicle for deployment. Aerocapture utilizing inflatable decelerators is also derived from previous efforts, but will necessitate further research to reach the technology readiness level (TRL) that the rigid aeroshell has achieved. Results of recent Aerocapture Systems analysis studies for small bodies and giant planets show that aerocapture can be enhancing for most missions and absolutely enabling for some mission scenarios. In this way, Aerocapture could open up exciting, new science mission opportunities.

  11. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  12. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  13. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W.T.

    1998-06-02

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.

  14. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan; Venkatapathy, Ethiraj; Candler, Graham; Palmer, Grant

    1991-01-01

    The effectiveness of two types of hypersonic decelerators are computationally examined: mechanically deployable flares and inflatable ballutes. CFD is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The surface pressure coefficients, the drag, and the extent of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5 in order to assure that the SRM will splash down in the Pacific Ocean. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  15. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Thomas, Herbert D.; Dwyer Cianciolo, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    This paper explores the impact of human Mars mission architecture decisions on the design and performance of a lander using the HIAD entry system: (a) Earth departure options, (b) Mars arrival options, (c) Entry Descent and Landing options.

  16. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    NASA Technical Reports Server (NTRS)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  17. Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.

    2009-01-01

    The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.

  18. Inflatable Emergency Atmospheric-Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Hall, Jeffrey; Wu, Jiunn Jeng

    2004-01-01

    In response to the loss of seven astronauts in the Space Shuttle Columbia disaster, large, lightweight, inflatable atmospheric- entry vehicles have been proposed as means of emergency descent and landing for persons who must abandon a spacecraft that is about to reenter the atmosphere and has been determined to be unable to land safely. Such a vehicle would act as an atmospheric decelerator at supersonic speed in the upper atmosphere, and a smaller, central astronaut pod could then separate at lower altitudes and parachute separately to Earth. Astronaut-rescue systems that have been considered previously have been massive, and the cost of designing them has exceeded the cost of fabrication of a space shuttle. In contrast, an inflatable emergency-landing vehicle according to the proposal would have a mass between 100 and 200 kg, could be stored in a volume of approximately 0.2 to 0.4 cu m, and could likely be designed and built much less expensively. When fully inflated, the escape vehicle behaves as a large balloon parachute, or ballute. Due to very low mass-per-surface area, a large radius, and a large coefficient of drag, ballutes decelerate at much higher altitudes and with much lower heating rates than the space shuttle. Although the space shuttle atmospheric reentry results in surface temperatures of about 1,600 C, ballutes can be designed for maximum temperatures below 600 C. This allows ballutes to be fabricated with lightweight ZYLON(Registered TradeMark) or polybenzoxazole (PBO), or equivalent.

  19. High Altitude Flight Test of a Reefed 12.2 Meter Diameter Disk-Gap-Band Parachute with Deployment at Mach Number of 2.58

    NASA Technical Reports Server (NTRS)

    Grow, R. Bruce; Preisser, John S.

    1971-01-01

    A reefed 12.2-meter nominal-diameter (40-ft) disk-gap-band parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. A three-stage rocket was used to drive the instrumented payload to an altitude of 43.6 km (143,000 ft), a Mach number of 2.58, and a dynamic pressure of 972 N/m(exp 2) (20.3 lb/ft(exp 2)) where the parachute was deployed by means of a mortar. The parachute deployed satisfactorily and reached a partially inflated condition characterized by irregular variations in parachute projected area. A full, stable reefed inflation was achieved when the system had decelerated to a Mach number of about 1.5. The steady, reefed projected area was 49 percent of the steady, unreefed area and the average drag coefficient was 0.30. Disreefing occurred at a Mach number of 0.99 and a dynamic pressure of 81 N/m(exp 2) (1.7 lb/ft(exp 2)). The parachute maintained a steady inflated shape for the remainder of the deceleration portion of the flight and throughout descent. During descent, the average effective drag coefficient was 0.57. There was little, if any, coning motion, and the amplitude of planar oscillations was generally less than 10 degrees. The film also shows a wind tunnel test of a 1.7-meter-diameter parachute inflating at Mach number 2.0.

  20. Structural testing and analysis of a braided, inflatable fabric torus structure

    NASA Astrophysics Data System (ADS)

    Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.

    2017-10-01

    Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.

  1. Attitude Control Performance of IRVE-3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  2. Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Zhakhovsky, V. V.; Migdal, K. P.

    2016-04-01

    Dynamics of a thin gold film on a silica substrate triggered by fast heating with the use of a subpicosecond laser pulse is studied. The pressure waves generated by such heating may result in spalling (delamination) of the film and its flying away from the substrate after an acoustic time defined by the film thickness and speed of sound in metal. Intensity of the heating laser beam has the spatial Gaussian distribution in a cross section. Therefore, the heating of film surface is non-uniform along cylindrical radius measured from the beam axis. As a result of such heating, the velocity distribution in material flying away from the substrate has a maximum at the beam axis. Thus, the separated film has dome-like shape which inflates with time. Volume of an empty cavity between the separated film and the substrate increases during inflation. Typical flight velocities are in the range of 30-200 m/s. The inflation stage can last from few to several tens of nanoseconds if the diffraction-limited micron-sized laser focal spots are used. Capillary forces acting along the warped flying film decelerate the inflation of dome. Capillary deceleration of a bulging dome focuses mass flow along the dome shell in the direction of its axis. This results in formation of an axial jet and droplet in a tip of the dome. Our new simulation results and comparisons with experiments are presented. The results explain appearance of debris in a form of frozen droplets on a surface of an irradiated spot. This is the consequence of the capillary return of a droplet.

  3. Flight Test of 31.2 Diameter Modified Ringsail Parachute Deployed at Mach 1.39, Dynamic Pressure 11 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Preisser, John S.; Eckstrom, Clinton V.; Murrow, Harold N.

    1967-01-01

    A 31.2-foot (9.51 meter) nominal diameter (reference area 764 ft(exp 2) (71.0 m(exp 2)) ringsail parachute modified to provide 15-percent geometric porosity was flight tested while attached to a 201-pound mass (91.2 kilogram) instrumented payload as part of the rocket launch portion of the NASA Planetary Entry Parachute Program (PEPP). The parachute deployment was initiated by the firing of a mortar at a Mach number of 1.39 and a dynamic pressure of 11.0 lb/ft(exp 2) (527 newtons/m(exp 2)) at an altitude of 122,500 feet (37.3 kilometers). The parachute deployed to suspension-line stretch (snatch force) in 0.35 second, and 0.12 second later the drag force increase associated with parachute inflation began. The parachute inflated in 0.24 second to the full-open condition for a total elapsed opening time of 0.71 second. The maximum opening load of 3970 pounds (17,700 newtons) came at the time the parachute was just fully opened. During the deceleration period, the parachute exhibited an average drag coefficient of 0.52 and oscillations of the parachute canopy were less than 5 degrees. During the steady-state terminal descent portion of the test period, the average effective drag coefficient (based on vertical descent velocity) was 0.52.

  4. Testing of Flexible Ballutes in Hypersonic Wind Tunnels for Planetary Aerocapture

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2007-01-01

    Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3- mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.

  5. Testing of Flexible Ballutes in Hypersonic Wind Tunnels for Planetary Aerocapture

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2006-01-01

    Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3-mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.

  6. Wake measurements in a strong adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.

    1994-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  7. Langley Aerospace Research Summer Scholars (LARSS) Scholars Pres

    NASA Image and Video Library

    2013-08-07

    250 students participated in the Langley Aerospace Research Summer Scholars (LARSS) Presentations focused on 3D modeling of STARBUKS calibration components in the National Transonic Facility, hypersonic aerodynamic inflatable decelerator, and optimization of a microphone-based array for flight testing. Reid Center LaRC Hampton, VA

  8. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  9. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan A.; Venkatapathy, Ethiraj

    1993-01-01

    The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  10. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  11. Inflatable Vessel and Method

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)

    2003-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  12. The use of inflatable structures for re-entry of orbiting vehicles

    NASA Astrophysics Data System (ADS)

    Kendall, Robert T.; Maddox, Arthur R.

    1990-10-01

    Inflatable recovery systems offer the unique advantage that a large high-drag shape can be stored initially in a relatively small package. The resulting shapes decelerate rapidly with lower heating inputs than other types of re-entry vehicles. Recent developments have led to some light-weight materials, with little thermal protection, can withstand the heating inputs to such vehicles. As a result, inflatable recovery vehicles offer a simple, reliable and economical way to return various vehicles from orbit. This paper examines the application of this concept to a large and a small vehicle with the accompanying dynamics that might be expected. More complex systems could extend the concept to emergency personnel escape systems, payload abort and satellite recovery systems.

  13. Dynamic CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    NASA Technical Reports Server (NTRS)

    Brock, Joseph M; Stern, Eric

    2016-01-01

    Dynamic CFD simulations of the SIAD ballistic test model were performed using US3D flow solver. Motivation for performing these simulations is for the purpose of validation and verification of the US3D flow solver as a viable computational tool for predicting dynamic coefficients.

  14. 29 CFR 1915.151 - Scope, application and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deceleration devices. Body belt means a strap with means for both securing it about the waist and attaching it to a lanyard, lifeline, or deceleration device. Body harness means straps which may be secured about.... Connector means a device which is used to couple (connect) parts of a personal fall arrest system or parts...

  15. 29 CFR 1915.151 - Scope, application and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... deceleration devices. Body belt means a strap with means for both securing it about the waist and attaching it to a lanyard, lifeline, or deceleration device. Body harness means straps which may be secured about.... Connector means a device which is used to couple (connect) parts of a personal fall arrest system or parts...

  16. 29 CFR 1915.151 - Scope, application and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... deceleration devices. Body belt means a strap with means for both securing it about the waist and attaching it to a lanyard, lifeline, or deceleration device. Body harness means straps which may be secured about.... Connector means a device which is used to couple (connect) parts of a personal fall arrest system or parts...

  17. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  18. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  19. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.

  20. Transformable and Reconfigurable Entry, Descent and Landing Systems and Methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ian M. (Inventor); Venkatapathy, Ethiraj (Inventor); Hamm, Kenneth R. (Inventor)

    2014-01-01

    A deployable aerodynamic decelerator structure includes a ring member disposed along a central axis of the aerodynamic decelerator, a plurality of jointed rib members extending radially from the ring member and a flexible layer attached to the plurality of rib members. A deployment device is operable to reconfigure the flexible layer from a stowed configuration to a deployed configuration by movement of the rib members and a control device is operable to redirect a lift vector of the decelerator structure by changing an orientation of the flexible layer.

  1. Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2015-01-01

    NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..

  2. Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.

    2006-01-01

    The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod

  3. Aerial Deployment and Inflation System for Mars Helium Balloons

    NASA Technical Reports Server (NTRS)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  4. CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests

    NASA Technical Reports Server (NTRS)

    Brock, Joseph; Stern, Eric; Wilder, Michael

    2017-01-01

    A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.

  5. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Collins, Tim; Dwyer Cianciolo, Alicia; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. The Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed for a sustainable human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. As we seek to better understand how these choices affect the performance of the lander, this work informs and influences requirements for transportation systems to deliver the landers to Mars and enable these missions. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting other elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators (HIAD), one of several entry system technologies currently considered for human missions.

  6. Verification and Validation Testing of the Parachute Decelerator System Prior to the First Supersonic Flight Dynamics Test for the Low Density Supersonic Decelerator Program

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Witkowski, Allen

    2015-01-01

    The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.

  7. LDSD Test Vehicle Attached to Launch Tower

    NASA Image and Video Library

    2015-06-09

    NASA's Low-Density Supersonic Decelerator test vehicle attached to launch tower just prior to take off. LDSD completed its second flight test when the saucer-shaped craft splashed down safely Monday, June 8, 2015, in the Pacific Ocean off the coast of the Hawaiian island of Kauai. http://photojournal.jpl.nasa.gov/catalog/PIA19683

  8. Pneumatic raft automatically reforms after rupture of buoyant member

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.; Shewmake, G. A.

    1968-01-01

    Unique, inflated, expandable socks are attached within the inflated chamber of a raft or a float in such a way that collapse of the chamber wall through damage, causes the adjacent sock to expand and restore the original configuration.

  9. Improvements to the Synthesis of Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Nguyen, Baochau N.; Guo, Haiquan; Vivod, Stephanie; He, Zuhui; Malow, Ericka; Silva, Rebecca

    2011-01-01

    Cross-linked polyimide aerogels are viable approach to higher temperature, flexible insulation for inflatable decelerators. Results indicate that the all-polyimide aerogels are as strong or stronger than polymer reinforced silica aerogels at the same density. Currently, examining use of carbon nanofiber and clay nanoparticles to improve performance. Flexible, polyimide aerogels have potential utility in other applications such as space suits, habitats, shelter applications, etc. where low dusting is desired

  10. Gas Generators and Their Potential to Support Human-Scale HIADS (Hypersonic Inflatable Aerodynamic Decelerators)

    NASA Technical Reports Server (NTRS)

    Bodkin, Richard J.; Cheatwood, F. M.; Dillman, Robert A; Dinonno, John M.; Hughes, Stephen J.; Lucy, Melvin H.

    2016-01-01

    As HIAD technology progresses from 3-m diameter experimental scale to as large as 20-m diameter for human Mars entry, the mass penalties of carrying compressed gas has led the HIAD team to research current state-of-the-art gas generator approaches. Summarized below are several technologies identified in this survey, along with some of the pros and cons with respect to supporting large-scale HIAD applications.

  11. The vestibular system of the owl

    NASA Technical Reports Server (NTRS)

    Money, K. E.; Correia, M. J.

    1973-01-01

    Five owls were given vestibular examinations, and two of them were sacrificed to provide serial histological sections of the temporal bones. The owls exhibited a curious variability in the postrotatory head nystagmus following abrupt deceleration; sometimes a brisk nystagnus with direction opposite to that appropriate to the stimulus would occur promptly after deceleration. It was found also that owls can exhibit a remarkable head stability during angular movement of the body about any axis passing through the skull. The vestibular apparatus in the owl is larger than in man, and a prominent crista neglecta is present. The tectorial membrane, the cupula, and the otolithic membranes of the utricle, saccule, and lagena are all attached to surfaces in addition to the surfaces hearing hair cells. These attachments are very substantial in the utricular otolithic membrane and in the cupula.

  12. Stable, inflatable life raft for high seas rescue operations

    NASA Technical Reports Server (NTRS)

    Barnett, J. H., Jr.; Harrison, F.; Marak, R.; Radnofsky, M. I.

    1971-01-01

    Raft is easily deployed and highly maneuverable in water. It has false bottom of water ballast containers attached to underside, making it exceptionally stable platform from which swimmers can operate. Raft is attachable to external moorings.

  13. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  14. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  15. Saucer Shoal: LDSD Recovery off Kauai

    NASA Image and Video Library

    2015-06-11

    Two members of the U.S. Navy's Mobile Diving Salvage Unit (MDSU) 1 Explosive Ordnance Detachment work on recovering the test vehicle for NASA's Low-Density Supersonic Decelerator (LDSD) project. The saucer-shaped LDSD craft splashed down at 11:49 a.m. HST (2:49 PDT/5:49 p.m. EDT) Monday, June 8, 2015, in the Pacific Ocean off the west coast of the Kauai, Hawaii, after a four-hour experimental flight test that investigated new technologies for landing future robotic and human Mars missions. During the flight test, a Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a supersonic parachute were deployed. The SIAD operated as expected, dramatically slowing the test vehicle's velocity. When the parachute was deployed into the supersonic slipstream, it appeared to blossom to full inflation prior to the emergence of a tear which then propagated and destroyed the parachute's canopy. As a result, the saucer's splashdown in the Pacific Ocean was hard, resulting in fracturing parts of the structure. Memory cards containing comprehensive test data -- including high-speed, high-resolution imagery recorded during the flight -- were successfully recovered. Also recovered were the test vehicle and its components, the supersonic parachute, the ballute used to deploy the parachute, and a large weather balloon that initially carried the saucer to an altitude of 120,000 feet. http://photojournal.jpl.nasa.gov/catalog/PIA19684

  16. Flight Test of a 40-Foot Nominal-Diameter Disk-Gap-Band Parachute Deployed at a Mach Number of 1.91 and a Dynamic Pressure of 11.6 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Preisser, John S.

    1968-01-01

    A 40-foot (12.2 meter) nominal-diameter disk-gap-band parachute was flight tested as part of the NASA Supersonic Planetary Entry Decelerator Program (SPED-I). The test parachute was ejected by a deployment mortar from an instrumented payload at an altitude of 140,000 feet (42.5 kilometers). The payload was at a Mach number of 1.91 and the dynamic pressure was 11.6 pounds per square foot (555 newtons per square meter) at the time the parachute deployment mortar was fired. The parachute reached suspension line stretch in 0.43 second with a resultant snatch force loading of 1990 pounds (8850 newtons). The maximum parachute opening load of 6500 pounds (28,910 newtons) came 0.61 second later at a total elapsed time from mortar firing of 1.04 seconds. The first full inflation occurred at 1.12 seconds and stable inflation was achieved at approximately 1.60 seconds. The parachute had an average axial-force coefficient of 0.53 during the deceleration period. During the steady-state descent portion of the flight test, the average effective drag coefficient was also 0.53 and pitch-yaw oscillations of the canopy averaged less than 10 degrees in the altitude region above 100,000 feet (30.5 meters).

  17. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    NASA Astrophysics Data System (ADS)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  18. Method and apparatus for an inflatable shell

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor)

    2012-01-01

    A method of assembling an inflatable shell of a structure comprises folding a plurality of shell sections about a set of fold lines and integrating the plurality of shell sections together with one another to form the shell. In another embodiment, an inflatable shell comprises a plurality of shell sections, each shell section having two pairs of fold lines for folding into stowage comprising a first gore section having a plurality of first gore panels layered and collectively folded about at a first set of fold lines. Each layer of the first gore panels and second gore panels are configured such that, once the first gore panel and second gore panel are attached to one another at the respective side edges of each panel, the lines of attachment forming a second set of fold lines for the shell section. A system and method for fabricating gore panels is also disclosed.

  19. Inflation with air via a facepiece for facilitating insertion of a nasogastric tube: a prospective, randomised, double-blind study.

    PubMed

    Gupta, D; Agarwal, A; Nath, S S; Goswami, D; Saraswat, V; Singh, P K

    2007-02-01

    Insertion of a nasogastric tube is a routine procedure but during anaesthesia it is often difficult and time consuming. One hundred and sixty adults undergoing elective surgery under general anaesthesia were randomly divided into two groups. After induction of anaesthesia, neuromuscular blockade and tracheal intubation, a nasogastric tube was inserted through the nose with the head of the patient in the neutral position, either with or without prior inflation with air via a facepiece attached to a self-inflating bag applied firmly with the face. Insertion of the nasogastric tube was successful in 75/78 (96%) following inflation compared with 54/80 (68%) without inflation (p<0.001). In four patients receiving inflation, a fibreoptic endoscope was passed as far as the upper oesophageal sphincter; this revealed opening of the upper oesophageal sphincter during inflation.

  20. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  1. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Wercinski, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.

  2. Decelerated invasion and waning-moon patterns in public goods games with delayed distribution.

    PubMed

    Szolnoki, Attila; Perc, Matjaž

    2013-05-01

    We study the evolution of cooperation in the spatial public goods game, focusing on the effects that are brought about by the delayed distribution of goods that accumulate in groups due to the continuous investments of cooperators. We find that intermediate delays enhance network reciprocity because of a decelerated invasion of defectors, who are unable to reap the same high short-term benefits as they do in the absence of delayed distribution. Long delays, however, introduce a risk because the large accumulated wealth might fall into the wrong hands. Indeed, as soon as the curvature of a cooperative cluster turns negative, the engulfed defectors can collect the heritage of many generations of cooperators and by doing so start a waning-moon pattern that nullifies the benefits of decelerated invasion. Accidental meeting points of growing cooperative clusters may also act as triggers for the waning-moon effect, thus linking the success of cooperators with their propensity to fail in a rather bizarre way. Our results highlight that "investing in the future" is a good idea only if that future is sufficiently near and not likely to be burdened by inflation.

  3. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context.

    PubMed

    Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Watanabe, Ritsuko

    2016-11-01

    To simulate the deceleration processes of secondary electrons produced by a high-energy Auger electron in water, and particularly to focus on the spatial and temporal distributions of the secondary electron and the collision events (e.g. ionization, electronic excitation, and dissociative electron attachment) that are involved in the multiplication of lesions at sites of DNA damage. We developed a dynamic Monte Carlo code that considers the Coulombic force between an ejected electron and its parent cation produced by the Auger electron in water. Thus our code can simulate some return electrons to the parent cations. Using the code, we calculated to within the order of femtoseconds the temporal evolution of collision events, the mean energy, and the mean traveling distance (including its spatial probability distribution) of the electron at an ejected energy of 20 eV. Some of the decelerating electrons in water in the Coulombic field were attracted to the ionized atoms (cations) by the Coulombic force within hundreds of femtoseconds, although the force did not significantly enhance the number of ionization, electronic excitation, and dissociative electron attachment collision events leading to water radiolysis. The secondary electrons are decelerated in water by the Coulombic force and recombined to the ionized atoms (cations). Furthermore, the some return electrons might be prehydrated in water layer near the parent cation in DNA if the electrons might be emitted from the DNA. The prehydrated electron originated from the return electron might play a significant role in inducing DNA damage.

  4. Modification of one man life raft

    NASA Technical Reports Server (NTRS)

    Soter, E. J. (Inventor)

    1974-01-01

    A one man inflatable life raft is described. The raft has an inflatable tube perimetrically bounding the occupant receiving space with a flexible floor member. A zippered opening in the floor allows entry and facilitates the use of a constant diameter tube. An airtight fabric bulkhead divides the peripheral tube longitudinally into inflatable tube sections, where if either tube section were punctured, the bulkhead would move into the punctured section to substitute for the punctured wall portion and maintain the inflatable volume of the tube. The floor member is attached to the central portion of the tube wall so that either side of the raft can be the up side.

  5. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    NASA Technical Reports Server (NTRS)

    Swanson, Greg; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD projects experience in scaling the technology has reached a critical juncture in development. Growing from a 6m to a 15m class system will introduce many...

  6. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  7. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2001-01-01

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  8. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  9. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    NASA Technical Reports Server (NTRS)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed as well as an overview of the on-board flight software used to trigger and sequence the main flight events necessary to deploy the deceleration technologies. Finally, as-flown performance of the SFDT-1 system will be discussed.

  10. Experimental Study of Convective Heating on the Back Face and Payload of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berry, Scott A.; Hollingsworth, Kevin E.; Wright, Sheila A.

    2017-01-01

    A wind tunnel test program has been conducted to define convective heating environments on the back-face of a Hypersonic Inflatable Aerodynamic Decelerator aeroshell. Wind tunnel testing was conducted at Mach 6 and Mach 10 at unit Reynolds numbers from 0.5×10(exp 6)/ft to 3.9×10(exp 6)/ft on a 6.3088 in diameter aeroshell model. Global heating data were obtained through phosphor thermography on the aeroshell back face, as well as on the payload and the aeroshell front face. For all test conditions, laminar flow was produced on the aeroshell front face, while the separated wake shear layer and aeroshell back-face boundary layer were transitional or turbulent. Along the leeward centerline of the aeroshell back face and payload centerbody, heating levels increased with both free stream Reynolds number and angle of attack. The Reynolds number dependency was due to increasing strength of wake turbulence with Reynolds number. The angle-of-attack dependency was due to movement of the wake-vortex reattachment point on the aeroshell back face. The maximum heating levels on the aeroshell back face and payload were approximately 5% to 6%, respectively, of the aeroshell front-face stagnation point. To allow for extrapolation of the ground test data to flight conditions, the back face and payload heating levels were correlated as a function of aeroshell front-face peak momentum thickness Reynolds numbers.

  11. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  12. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  13. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; hide

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  14. IRVE-II Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  15. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  16. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    NASA Astrophysics Data System (ADS)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  17. Entry, Descent, and Landing for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; DwyerCianciolo, Alicia M.

    2012-01-01

    One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.

  18. Parachute Decelerator System Performance During the Low Density Supersonic Decelerator Program's First Supersonic Flight Dynamics Test

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Witkowski, Allen

    2015-01-01

    During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.

  19. Test Plan for the Technology Maturation of Supersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Kelly, Jenny R.; Cruz, Juan R.

    2009-01-01

    Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.

  20. Technology Demonstration Missions

    NASA Technical Reports Server (NTRS)

    McDougal, John; French, Raymond; Adams-Fogle, Beth; Stephens, Karen

    2015-01-01

    Technology Demonstration Missions (TDM) is in its third year of execution, being initiated in 2010 and baselined in January of 2012. There are 11 projects that NASA Marshall Space Flight Center (MSFC) has contributed to or led: (1) Evolvable Cryogenics (eCryo): Cyrogenic Propellant Storage and Transfer Engineering Development Unit (EDU), a proof of manufacturability effort, used to enhance knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. (2) Composites for Exploration Upper Stage (CEUS): Design, build, test, and address flight certification of a large composite shell suitable for the second stage of the Space Launch System (SLS). (3) Deep Space Atomic Clock (DSAC): Spaceflight to demo small, low-mass atomic clock that can provide unprecedented stability for deep space navigation. (4) Green Propellant Infusion Mission (GPIM): Demo of high-performance, green propellant propulsion system suitable for Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)-class spacecraft. (5) Human Exploration Telerobotics (HET): Demonstrating how telerobotics, remote control of a variety of robotic systems, can take routine, highly repetitive, dangerous or long-duration tasks out of human hands. (6) Laser Communication Relay Demo (LCRD): Demo to advance optical communications technology toward infusion into deep space and near Earth operational systems, while growing the capabilities of industry sources. (7) Low Density Supersonic Decelerator (LDSD): Demo new supersonic inflatable decelerator and parachute technologies to enable Mars landings of larger payloads with greater precision at a wider range of altitudes. (8) Mars Science Laboratory (MSL) Entry Descent & Landing Instrumentation (MEDLI): Demo of embedded sensors embedded in the MSL heat shield, designed to record the heat and atmospheric pressure experienced during the spacecraft's high-speed, hot entry in the Martian atmosphere. (9) Solar Electric Propulsion (SEP): 50-kW class spacecraft that uses flexible blanket solar arrays for power generation and an electric propulsion system that delivers payload from low-Earth orbit to higher orbits. (10) Solar Sail Demonstration (SSD): Demo to validate sail deployment techniques for solar sails that are propelled by the pressure of sunlight. (11) Terrestrial HIAD Orbit Reentry (THOR): Demo of a 3.7-m Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry vehicle to test second generation aerothermal performance and modeling.

  1. Large inflated-antenna system

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  2. Decelerations of Parachute Opening Shock in Skydivers.

    PubMed

    Gladh, Kristofer; Lo Martire, Riccardo; Äng, Björn O; Lindholm, Peter; Nilsson, Jenny; Westman, Anton

    2017-02-01

    High prevalence of neck pain among skydivers is related to parachute opening shock (POS) exposure, but few investigations of POS deceleration have been made. Existing data incorporate equipment movements, limiting its representability of skydiver deceleration. This study aims to describe POS decelerations and compare human- with equipment-attached data. Wearing two triaxial accelerometers placed on the skydiver (neck-sensor) and equipment (rig-sensor), 20 participants made 2 skydives each. Due to technical issues, data from 35 skydives made by 19 participants were collected. Missing data were replaced using data substitution techniques. Acceleration axes were defined as posterior to anterior (+ax), lateral right (+ay), and caudal to cranial (+az). Deceleration magnitude [amax (G)] and jerks (G · s-1) during POS were analyzed. Two distinct phases related to skydiver positioning and acceleration direction were observed: 1) the x-phase (characterized by -ax, rotating the skydiver); and 2) the z-phase (characterized by +az, skydiver vertically oriented). Compared to the rig-sensor, the neck-sensor yielded lower amax (3.16 G vs. 6.96 G) and jerk (56.3 G · s-1 vs. 149.0 G · s-1) during the x-phase, and lower jerk (27.7 G · s-1 vs. 54.5 G · s-1) during the z-phase. The identified phases during POS should be considered in future neck pain preventive strategies. Accelerometer data differed, suggesting human-placed accelerometry to be more valid for measuring human acceleration.Gladh K, Lo Martire R, Äng BO, Lindholm P, Nilsson J, Westman A. Decelerations of parachute opening shock in skydivers. Aerosp Med Hum Perform. 2017; 88(2):121-127.

  3. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    NASA Technical Reports Server (NTRS)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.

  4. 49 CFR 238.435 - Interior fittings and surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... expected to strike the fitting, when the floor of the passenger car decelerates with a triangular crash... attachment in a passenger car shall be designed to withstand, with deflection but without total failure, the... triangular crash pulse having a peak of 8g and a duration of 250 milliseconds. (b) Each seat back in a...

  5. 49 CFR 238.435 - Interior fittings and surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... expected to strike the fitting, when the floor of the passenger car decelerates with a triangular crash... attachment in a passenger car shall be designed to withstand, with deflection but without total failure, the... triangular crash pulse having a peak of 8g and a duration of 250 milliseconds. (b) Each seat back in a...

  6. 49 CFR 238.435 - Interior fittings and surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... expected to strike the fitting, when the floor of the passenger car decelerates with a triangular crash... attachment in a passenger car shall be designed to withstand, with deflection but without total failure, the... triangular crash pulse having a peak of 8g and a duration of 250 milliseconds. (b) Each seat back in a...

  7. 49 CFR 238.435 - Interior fittings and surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... expected to strike the fitting, when the floor of the passenger car decelerates with a triangular crash... attachment in a passenger car shall be designed to withstand, with deflection but without total failure, the... triangular crash pulse having a peak of 8g and a duration of 250 milliseconds. (b) Each seat back in a...

  8. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  9. Air bags and the skin.

    PubMed

    Corazza, Monica; Trincone, Silvana; Zampino, Maria Rosaria; Virgili, Annarosa

    2004-01-01

    Air bags, fitted in the majority of new automobiles, are safety devices activated when a sudden deceleration causes the ignition of a propellant cartridge containing sodium azide. The bag is inflated by nitrogen liberated during the combustion. Deployment releases various high-temperature gases, including nitrogen and carbon dioxide, and produces sodium hydroxide, a highly irritant alkaline substance. In about 7%-8% of cases, air bags cause dermatologic injuries such as traumatic lesions, irritant dermatitis, and chemical and thermal burns. Nondermatologic lesions, such as ocular damage (alkali keratitis, corneal abrasions), ear lesions, bone fractures, and contusive damage can also be caused by air bag deployment.

  10. SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    NASA Technical Reports Server (NTRS)

    White, Joseph; Dutta, Soumyo; Striepe, Scott

    2015-01-01

    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.

  11. LDSD Ready for Launch

    NASA Image and Video Library

    2015-06-05

    NASA's Low-Density Supersonic Decelerator (LDSD) hangs from a launch tower at U.S. Navy's Pacific Missile Range Facility in Kauai, Hawaii. The saucer-shaped vehicle will test two devices for landing heavy payloads on Mars: an inflatable donut-shaped device and a supersonic parachute. The launch tower helps link the vehicle to a balloon; once the balloon floats up, the vehicle is released from the tower and the balloon carries it to high altitudes. The vehicle's rocket takes it to even higher altitudes, to the top of the stratosphere, where the supersonic test begins. http://photojournal.jpl.nasa.gov/catalog/PIA19342

  12. LDSD on the Launch Tower

    NASA Image and Video Library

    2015-06-05

    NASA's Low-Density Supersonic Decelerator (LDSD) hangs from a launch tower at U.S. Navy's Pacific Missile Range Facility in Kauai, Hawaii. The saucer-shaped vehicle will test two devices for landing heavy payloads on Mars: an inflatable donut-shaped device and a supersonic parachute. The launch tower helps link the vehicle to a balloon; once the balloon floats up, the vehicle is released from the tower and the balloon carries it to high altitudes. The vehicle's rocket takes it to even higher altitudes, to the top of the stratosphere, where the supersonic test begins. http://photojournal.jpl.nasa.gov/catalog/PIA19343

  13. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  14. The effect of cuff presence and cuff inflation on airway pressure in a canine tracheostomy tube model.

    PubMed

    Wignall, Jamie R; Baines, Stephen J

    2014-01-01

    To evaluate the effect of cuff presence and cuff inflation on airway pressure in an inspiratory model of canine tracheostomy. Ex vivo experimental study. Cadaver tracheas from Beagle dogs were attached aborally to a vacuum. Airway pressure and flow rate was measured before and after placement of tracheostomy tubes. None. Adult uncuffed tubes and cuffed tracheostomy tubes (sizes 4, 6, 8, and 10) were placed within tracheas. Cuffs were investigated without inflation and at maximum cuff inflation. Airway pressure was measured at constant airflow rates at 30 and 60 L/min. At set flow rates, airway pressures of tracheostomy tubes were compared to the intact trachea. A size 4 uncuffed tracheostomy tube showed the lowest airway pressure and a size 4 cuffed trachestomy tube with inflation showed the highest airway pressures. For sizes 6, 8, and 10 tubes, the presence of a cuff with and without inflation significantly increased airway pressure. Inflation of a cuff always significantly increased airway pressure. Similar pressure is seen between sizes 4 and 6 uncuffed tubes. Cuffed tracheostomy tubes should not be used unless specifically indicated due to increased airway pressure. © Veterinary Emergency and Critical Care Society 2013.

  15. Pilot Deployment of the LDSD Parachute via a Supersonic Ballute

    NASA Technical Reports Server (NTRS)

    Tanner, Christopher L.; O'Farrell, Clara; Gallon, John C.; Clark, Ian G.; Witkowski, Allen; Woodruff, Paul

    2015-01-01

    The Low Density Supersonic Decelerator (LDSD) Project required the use of a pilot system due to the inability to mortar deploy its main supersonic parachute. A mortar deployed 4.4 m diameter supersonic ram-air ballute was selected as the pilot system for its high drag coefficient and stability relative to candidate supersonic parachutes at the targeted operational Mach number of 3. The ballute underwent a significant development program that included the development of a new liquid methanol-based pre-inflation system to assist the ballute inflation process. Both pneumatic and pyrotechnic mortar tests were conducted to verify orderly rigging deployment, bag strip, inflation aid activation, and proper mortar performance. The ballute was iteratively analyzed between fluid and structural analysis codes to obtain aerodynamic and aerothermodynamic estimates as well as estimates of the ballute's structural integrity and shape. The ballute was successfully flown in June 2014 at a Mach number of 2.73 as part of the first LDSD supersonic flight test and performed beyond expectations. Recovery of the ballute indicated that it did not exceed its structural or thermal capabilities. This flight set a historical precedent as it represented the largest ballute to have ever been successfully flown at this Mach number by a NASA entity.

  16. Exact solutions of bulk viscous with string cloud attached to strange quark matter for higher dimensional FRW universe in Lyra geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çağlar, Halife, E-mail: hlfcglr@gmail.com; Aygün, Sezgin, E-mail: saygun@comu.edu.tr

    In this study, we have investigated bulk viscous with strange quark matter attached to the string cloud for higher dimensional Friedman-Robertson-Walker (FRW) universe in Lyra geometry. By using varying deceleration parameter and conservation equations we have solved Einstein Field Equations (EFE’s) and obtained generalized exact solutions for our model. Also we have found that string is not survived for bulk viscous with strange quark matter attached to the string cloud in framework higher dimensional FRW universe in Lyra geometry. This result agrees with Kiran and Reddy, Krori et al, Sahoo and Mishra and Mohanty et al. in four and fivemore » dimensions.« less

  17. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  18. Accelerated acidosis in response to variable fetal heart rate decelerations in chronically hypoxic ovine fetuses.

    PubMed

    Amaya, Kevin E; Matushewski, Brad; Durosier, L Daniel; Frasch, Martin G; Richardson, Bryan S; Ross, Michael G

    2016-02-01

    Due to limitations of technology, clinicians are typically unable to determine if human fetuses are normoxic or moderately, chronically hypoxic. Risk factors for chronic hypoxia include fetal growth restriction, which is associated with an increased incidence of oligohydramnios and thus a risk for umbilical cord occlusion (UCO) and variable fetal heart rate (FHR) decelerations. At delivery, fetal growth restriction infants (<3rd percentile) have nearly twice the incidence of low Apgar scores and umbilical pH <7.0. Despite the risks of oligohydramnios and intermittent UCO, there is little understanding of the acid/base responses rates of chronically hypoxic fetuses to variable FHR decelerations as might occur during human labor. We sought to compare the increase in base deficit (BD) among chronically hypoxic as compared to normoxic ovine fetuses in response to simulated mild, moderate, and severe variable FHR decelerations. Near-term ovine fetuses were chronically prepared with brachial artery catheters and an inflatable umbilical cuff occluder. Following a recovery period, normoxic (n = 9) and spontaneously hypoxic (n = 5) fetuses were identified (arterial O2 saturation ≤55%). Both animal groups underwent graded, 1-minute occlusions every 2.5 minutes with 1 hour of mild (∼30 beats/min [bpm] decrease from baseline), 1 hour of moderate (∼60 bpm decrease from baseline), and up to 2 hours of severe (∼90 bpm decrease from baseline) variable FHR decelerations until fetal arterial pH reached 7.00, when occlusions were stopped. Repetitive UCO resulted in development of acidosis (pH <7.0) in both groups. Hypoxic and normoxic fetuses demonstrated similar BD increases in response to both mild (0.39, interquartile range [IQR] 0.28-0.45 vs 0.26, IQR 0.01-0.30 mEq/L/10 min, P = .25) and severe (1.97, IQR 1.50-2.43 vs 1.51, IQR 0.97-2.45 mEq/L/10 min, P = .63) variable decelerations. However, moderate variable decelerations increased BD in hypoxic fetuses at 2.5 times the rate of normoxic fetuses (0.97, IQR 0.52-1.72 vs 0.39, IQR 0.23-0.47 mEq/L/10 min, P = .03). During the recovery period, hypoxic fetuses cleared BD slower than normoxic fetuses (0.08 ± 0.02 vs 0.12 ± 0.03 mEq/L/min, P = .02). In comparison to normoxic fetuses, hypoxic fetuses can more rapidly progress to significant metabolic acidosis in response to moderate FHR variable decelerations, and more slowly recover with in utero resuscitation, likely a consequence of impaired placental function and fetal physiologic responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Development flight tests of the Viking decelerator system.

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.; Eckstrom, C. V.; Henke, D. W.

    1973-01-01

    Significant aspects of a low altitude flight test phase of the overall Viking decelerator system development are given. This test series included nine aircraft drop tests that were conducted at the Joint Parachute Test Facility, El Centro, California, between September 1971 and May 1972. The test technique and analytical planning method utilized to best simulate loading conditions in a low density environment are presented and some test results are shown to assess their adequacy. Performance effects relating to suspension line lengths of 1.7 D sub o with different canopy loadings are noted. System hardware developments are described, in particular the utilization of a fabric deployment mortar cover which remained attached to the parachute canopy. Finally, the contribution of this test series to the overall program is assessed.

  20. Extrapolating the Trends of Test Drop Data with Opening Shock Factor Calculations: the Case of the Orion Main and Drogue Parachutes Inflating to 1st Reefed Stage

    NASA Technical Reports Server (NTRS)

    Potvin, Jean; Ray, Eric

    2017-01-01

    We describe a new calculation of the opening shock factor C (sub k) characterizing the inflation performance of NASA's Orion spacecraft main and drogue parachutes opening under a reefing constraint (1st stage reefing), as currently tested in the Capsule Parachute Assembly System (CPAS) program. This calculation is based on an application of the Momentum-Impulse Theorem at low mass ratio (R (sub m) is less than 10 (sup -1)) and on an earlier analysis of the opening performance of drogues decelerating point masses and inflating along horizontal trajectories. Herein we extend the reach of the Theorem to include the effects of payload drag and gravitational impulse during near-vertical motion - both important pre-requisites for CPAS parachute analysis. The result is a family of C (sub k) versus R (sub m) curves which can be used for extrapolating beyond the drop-tested envelope. The paper proves this claim in the case of the CPAS Mains and Drogues opening while trailing either a Parachute Compartment Drop Test Vehicle or a Parachute Test Vehicle (an Orion capsule boiler plate). It is seen that in all cases the values of the opening shock factor can be extrapolated over a range in mass ratio that is at least twice that of the test drop data.

  1. 76 FR 67500 - Postal Service Price Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... available data from the Bureau of Labor Statistics provides the Postal Service with inflation-based price... includes a brief introductory section, three enumerated parts, and three attachments. The Postal Service also submitted separate workpapers supporting the planned changes. The introductory section includes...

  2. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the Aerocover configuration. Both the Aerocovers and the TPS were populated with high contrast targets so that photogrammetric solutions of the loaded surface could be created. These solutions both refined the aerodynamic shape for CFD modeling and provided a deformed shape to validate structural Finite Element Analysis (FEA) models. Extensive aerothermal testing has been performed on the TPS candidates. This testing has been conducted in several facilities across the country. The majority of the testing has been conducted in the Boeing Large Core Arc Tunnel (LCAT). HIAD is continuing to mature testing methodology in this facility and is developing new test sample fixtures and control methodologies to improve understanding and quality of the environments to which the samples are subjected. Additional testing has been and continues to be performed in the NASA LaRC 8ft High Temperature Tunnel, where samples up to 2ft by 2ft are being tested over representative underlying structures incorporating construction features such as sewn seams and through-thickness quilting. With the successful completion to the IRVE-3 flight demonstration, mission planning efforts are ramping up on the development of the HIAD Earth Atmospheric Reenty Test (HEART) which will demonstrate a relevant scale vehicle in relevant environments via a large-scale aeroshell (approximately 8.5m) entering at orbital velocity (approximately 7km/sec) with an entry mass on the order of 4MT. Also, the Build to Print (BTP) hardware built as a risk mitigation for the IRVE-3 project to have a "spare" ready to go in the event of a launch vehicle delivery failure is now available for an additional sub-orbital flight experiment. Mission planning is underway to define a mission that can utilize this existing hardware and help the HIAD project further mature this technology.

  3. Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.

    2014-01-01

    INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.

  4. 46 CFR 169.525 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Firefighting Equipment Equipment for Primary Lifesaving Apparatus § 169.525 General. (a) Equipment for primary lifesaving apparatus must kept in good condition. (b) Lifeboats, inflatable liferafts and lifefloats must be... apparatus. (d) Loose equipment, except boathooks in lifeboats, must be securely attached to the lifesaving...

  5. Deployable Aeroshell Flexible Thermal Protection System Testing

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Ware, Joanne S.; DelCorso, Joseph A.; Lugo, Rafael A.

    2009-01-01

    Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned.

  6. The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2013-01-01

    To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD sensing technologies. Traditionally all space based sensing systems transmit their data through a wired interface. This limits the amount of sensors able to be integrated within the IAD due to volume and routing restrictions of the supporting signal and excitation wires. To alleviate this situation, multiple wireless data acquisition technologies have been researched and developed through rapid prototyping efforts. The final custom multi-nodal wireless system utilized during the summer 2012 IAD test series consisted of four remote nodes and one receiving base station. The system reliably conditioned and acquired 20+ sensors over the course of the wind tunnel test series. These developments in wireless data acquisition techniques can eliminate the need for structural feedthroughs and reduce system mass associated with wiring and wire harnesses. This makes the utilization of flight instrumentation more attractive to future missions, which would result in further improved characterization of IAD technology, and overall, increased scientific knowledge regarding the response of inflatable structures to extreme entry environments. [

  7. A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules.

    PubMed

    Natividad, Rainier; Del Rosario, Manuel; Chen, Peter C Y; Yeow, Chen-Hua

    2018-06-01

    A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.

  8. Time to adjust to changes in ventilation settings varies significantly between different T-piece resuscitators, self-inflating bags, and manometer equipped self-inflating bags.

    PubMed

    Hartung, Julia C; Dold, Simone K; Thio, Marta; tePas, Arjan; Schmalisch, Gerd; Roehr, Charles Christoph

    2014-06-01

    Resuscitation guidelines give no preference over use of self-inflating bags (SIBs) or T-piece resuscitators (TPR) for manual neonatal ventilation. We speculated that devices would differ significantly regarding time required to adjust to changed ventilation settings. This was a laboratory study. Time to adjust from baseline peak inflation pressure (PIP) (20 cmH2O) to target PIP (25 and 40 cmH2O), ability to adhere to predefined ventilation settings (PIP, PEEP, and inflation rate [IR]), and the variability within and between operators were assessed for a SIB without manometer, SIB with manometer (SIBM), and two TPRs. Adjustment time was significantly longer with TPRs, compared with SIB and SIBM. The SIBM and TPRs were < 5% (median) off target PIP, and the SIB was 14% off target PIP. Significant variability between operators (interquartile range [IQR]: 71%) was seen with SIBs. PIP adjustment takes longer with TPRs, compared with SIB/SIBM. TPRs and SIBM allow satisfactory adherence to ventilation parameters. SIBs should only be used with manometer attached. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. 75 FR 69145 - Postal Rate Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    .... Attachment 2--a redacted copy of Governors' Decision No. 09-15 which establishes prices and classifications... Notice states that Governors' Decision No. 09-15 established prices and classifications not of general... annual inflation information from the Consumer Price Index for All Urban Consumers. Id. Based on this and...

  10. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  11. Aircraft Crash Survival Design Guide. Volume 4. Aircraft Seats, Restraints, Litters, and Cockpit/Cabin Delethalization

    DTIC Science & Technology

    1989-12-01

    ILLUSTRATIONS (CONTD) 44 Tubular strut wire - bending energy absorber ...... ........... 91 45 Inversion tube concepL with typical force-deformation...expected from a rod-bending sled decelerator and a wire - bending seat load limiter (Refer- ences 35 and 36). Therefore, correcting the calculated...attaching the seat bucket to the rollers, compressive as well as tensile loads can be sustained. Two variations of the wire - bending device have been

  12. Pathfinder Photogrammetry Research for Ultra-Lightweight and Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Giersch, Louis Roy Miller

    2001-01-01

    The defining characteristic of ultra-lightweight and inflatable space structures is that they are both very large and very low mass. This makes standard contacting methods of measurement (e.g. attaching accelerometers) impractical because the dynamics of the structure would be changed by the mass of the contacting instrument. Optical measurements are therefore more appropriate. Photogrammetry is a leading candidate for the optical analysis of gossamer structures because it allows for the measurement of a large number of points, is amenable to time sequences, and offers the potential for a high degree of accuracy. The purpose of this thesis is to develop the methodology and determine the effectiveness of a photogrammetry system in measuring ultra-lightweight and inflatable space structures. The results of this thesis will be considered in the design of an automated photogrammetry system for the l6m-diameter vacuum chamber at the NASA Langley Research Center.

  13. Inflatable belt for the application of electrode arrays

    NASA Astrophysics Data System (ADS)

    Sadleir, R. J.; Fox, R. A.; Turner, V. F.

    2000-02-01

    A prototype device for application of a multiple electrode array to the human abdomen is described and assessed. The device consists of a segmented pneumatic (PVC) belt that, upon inflation, presses electrodes onto the skin simultaneously and with predetermined relative spacings. A single belt can fit a wide range of subject sizes and is comfortable for subjects to wear. It may be useful under conditions where the time taken to attach electrodes is crucial—as in hospital emergency ward applications, and where the maintenance of constant relative electrode spacings is important. The noise performance of these electrodes was only slightly poorer than that obtained using adhesive ECG electrodes.

  14. Particle creation and reheating in a braneworld inflationary scenario

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-10-01

    We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.

  15. Human Mars Lander Design for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Chapman, Jack; Sutherlin, Steve; Taylor, Brian; Fabisinski, Leo; Collins, Tim; Cianciolo Dwyer, Alicia; Samareh, Jamshid; Robertson, Ed; Studak, Bill; hide

    2016-01-01

    Landing humans on Mars will require entry, descent, and landing capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. To better assess entry, descent, and landing technology options and sensitivities to future human mission design variations, a series of design studies on human-class Mars landers has been initiated. This paper describes the results of the first design study in the series of studies to be completed in 2016 and includes configuration, trajectory and subsystem design details for a lander with Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry technology. Future design activities in this series will focus on other entry technology options.

  16. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  17. Ditching Tests with a 1/16-Size Model of the Navy XP2V-1 Airplane at the Langley Tank No. 2 Monorail

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J.; Tarshis, Robert P.

    1947-01-01

    Tests were made with a 1/16 size dynamically similar model of the Navy XP2V-1 airplane to study its performance when ditched. The model was ditched in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and conditions of damage were simulated. The performance of the node1 was determined and recorded from visual observations, by recording time histories of the longitudinal decelerations, and by taking motion pictures of the ditchings From the results of the tests with the model the following conclusions were drawn: 1. The airplane should be ditched at the normal landing attitude. The flaps should be fully extended to obtain the lowest possible landing speed; 2. Extensive damage will occur in a ditching and the airplane probably will dive violently after a run of about 2 fuselage lengths. Maximum longitudinal decelerations up to about 4g will be encountered; and 3. If a trapezoidal hydroflap 4 feet by 2 feet by 1 foot is attached to the airplane at station 192.4, diving will be prevented and the airplane will probably porpoise in a run of about 4 fuselage lengths with a maximum longitudinal deceleration of less than 3.5g.

  18. 46 CFR 160.151-29 - Additional approval tests for SOLAS A and SOLAS B inflatable liferafts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT... appendage must be attached to a testing jig similar in material and construction to the appendage's intended... water. The dry weight must be recorded. (2) The appendage and jig must then be quickly lowered into the...

  19. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and bulletins in effect as indicated on the annual list issued in accordance with § 160.151-35(b)(2...) A source of clean, dry, pressurized air; hoses; and attachments for inflating liferafts; (h) A..., except for items of equipment that are readily available; (p) A means for load-testing davit-launched...

  20. 26 CFR 48.4071-2 - Determination of weight.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... maintaining its air pressure. (ii) When tires are sold with metal rims or rim bases attached, the manufacturer... that is used in connection with inflating the tube or maintaining its air pressure. (b) Alternative... a tubeless tire, the total weight includes the weight of the air valve and stem or any other...

  1. 26 CFR 48.4071-2 - Determination of weight.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... maintaining its air pressure. (ii) When tires are sold with metal rims or rim bases attached, the manufacturer... that is used in connection with inflating the tube or maintaining its air pressure. (b) Alternative... a tubeless tire, the total weight includes the weight of the air valve and stem or any other...

  2. 26 CFR 48.4071-2 - Determination of weight.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... maintaining its air pressure. (ii) When tires are sold with metal rims or rim bases attached, the manufacturer... that is used in connection with inflating the tube or maintaining its air pressure. (b) Alternative... a tubeless tire, the total weight includes the weight of the air valve and stem or any other...

  3. Emergence of Soft Communities from Geometric Preferential Attachment

    PubMed Central

    Zuev, Konstantin; Boguñá, Marián; Bianconi, Ginestra; Krioukov, Dmitri

    2015-01-01

    All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed. PMID:25923110

  4. Flight Test of a 30-Foot Nominal-Diameter Disk-Gap-Band Parachute Deployed at Mach 1.56 and Dynamic Pressure of 11.4 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Preisser, John S.

    1967-01-01

    A 30-foot (9.1 meter) nominal-diameter disk-gap-band parachute (reference area 707 sq ft (65.7 m(exp 2)) was flight tested with a 200-pound (90.7 kg) instrumented payload as part of the NASA Planetary Entry Parachute Program. A deployment mortar ejected the test parachute when the payload was at a Mach number of 1.56 and a dynamic pressure of 11.4 lb/sq ft (546 newtons per m 2 ) at an altitude of 127,500 feet (38.86 km). The parachute reached suspension line stretch in 0.37 second resulting in a snatch force loading of 1270 pounds (5650 N). Canopy inflation began 0.10 second after line stretch. A delay in the opening process occurred and was apparently due to a momentary interference of the glass-fiber shroud used in packing the parachute bag in the mortar. Continuous canopy inflation began 0.73 second after initiation of deployment and 0.21 second later full inflation was attained for a total elapsed time from mortar fire of 0.94 second. The maximum opening load of 3915 pounds (17,400 newtons) occurred at the time the canopy was first fully opened. The parachute exhibited an average drag coefficient of 0.52 during the deceleration period and pitch-yaw oscillations of the canopy were less than 5 degrees. During the steady-state descent portion of the test period, the average effective drag coefficient was about 0.47 (based on vertical descent velocity and total system weight).

  5. High Altitude Flight Test of a 40-Foot Diameter (12.2 meter) Ringsail Parachute at Deployment Mach Number of 2.95

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1970-01-01

    A 40-foot-nominal-diameter (12.2-meter) modified ringsail parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. The 41-pound (18.6-kg) test parachute system was deployed from a 239.5-pound (108.6-kg) instrumented payload by means of a deployment mortar when the payload was at an altitude of 171,400 feet (52.3 km), a Mach number of 2.95, and a free-stream dynamic pressure of 9.2 lb/sq ft (440 N/m(exp 2)). The parachute deployed properly, suspension line stretch occurring 0.54 second after mortar firing with a resulting snatch-force loading of 932 pounds (4146 newtons). The maximum loading due to parachute opening was 5162 pounds (22 962 newtons) at 1.29 seconds after mortar firing. The first near full inflation of the canopy at 1.25 seconds after mortar firing was followed immediately by a partial collapse and subsequent oscillations of frontal area until the system had decelerated to a Mach number of about 1.5. The parachute then attained a shape that provided full drag area. During the supersonic part of the test, the average axial-force coefficient varied from a minimum of about 0.24 at a Mach number of 2.7 to a maximum of 0.54 at a Mach number of 1.1. During descent under subsonic conditions, the average effective drag coefficient was 0.62 and parachute-payload oscillation angles averaged about &loo with excursions to +/-20 degrees. The recovered parachute was found to have slight damage in the vent area caused by the attached deployment bag and mortar lid.

  6. Materials Needs for Future In-Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2006-01-01

    NASA's In-Space Propulsion Technology Project is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. Earth-storable bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth- Storable rockets with specific impulses about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 sq m up to 62500 sq m) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/sq cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (-100 C) for up to 10 years and then withstand the high temperatures (500 C) encountered during aerocapture.

  7. Energy absorption device for shock loading

    NASA Astrophysics Data System (ADS)

    Howard, C. D.; Lagrange, Donald E.; Beatty, David A.; Littman, David C.

    1995-02-01

    A shock energy absorbing device provides shock protection for the riser line employed to attach an aerodynamic deceleration device to a primary body during deployment of the system into an airstream. During deployment, for example, by dropping an unopened parachute and attached load or by rocket delivery of the unopened parachute and attached load, the parachute is made to open at a desired altitude whereupon very large shock tension forces are generated which are applied to the line. In order to protect the line from failing under these forces and to reduce the requirement for a bulky, heavy line, a shock absorber is provided in the form of a block having one or more breakable web portions formed therein and through which the riser line is threaded. Upon deployment of the system into an airstream, the shock tension forces operate to fracture some or all of the breakable web portions thereby dissipating the shock energy generated during deployment and protecting the riser line from failure.

  8. Lightweight Helmet For Eye/Balance Studies

    NASA Technical Reports Server (NTRS)

    Mcstravick, M. Catherine; Proctor, David R.; Wood, Scott J.

    1988-01-01

    Lightweight helmet serves as mounting platform for stimulus and sensor modules in experiments on role of vestibulo-ocular reflex in motion sickness and space-adaptation syndrome. Fitted liner and five inflatable air bladders stabilize helmet with respect to subject's head. Personal bite board attached to chin-bar assembly makes hard palate in subject's mouth serve as final position reference for helmet.

  9. Flexible Interior-Impression-Molding Tray

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.

    1991-01-01

    Device used inside combustion chamber of complicated shape for nondestructive evaluation of qualities of welds, including such features as offset, warping, misalignment of parts, and dropthrough. Includes flexible polypropylene tray trimmed to fit desired interior surface contour. Two neodymium boron magnets and inflatable bladder attached to tray. Tray and putty inserted in cavity to make mold of interior surface.

  10. Gravitational wave signals and cosmological consequences of gravitational reheating

    NASA Astrophysics Data System (ADS)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.

  11. On the design and feasibility of a pneumatically supported actively guided space tower

    NASA Astrophysics Data System (ADS)

    Seth, Raj Kumar

    2010-07-01

    Space tethers have been investigated widely as a means to provide easy access to space. However, the design and construction of such a device presents significant unsolved technological challenges. An alternative approach is proposed to the construction of a space elevator that utilises a free-standing core structure to provide access to near space regions and to reduce the cost of space launch. The theoretical and experimental investigation of the bending of inflatable cylindrical cantilevered beams made of modem fabric materials provides the basis for the design of an inflatable space tower. Experimental model structures were deployed and tested in order to determine design guidelines for the core structure. The feasibility of the construction of a thin walled inflatable space tower of 20 km vertical extent comprised of pneumatically inflated sections that are actively controlled and stabilised to balance external disturbances and support the structure is discussed. The response of the structure under wind loads is analyzed and taken into account for determining design guidelines. Such an approach avoids problems associated with a space tether including material strength constraints, the need for in-space construction, the fabrication of a cable at least 50,000 km in length, and the ageing and meteorite damage effects associated with a thin tether or cable in Low Earth Orbit. A suborbital tower of 20 km height would provide an ideal mounting point where a geostationary orbital space tether could be attached without experiencing atmospheric turbulence and weathering in the lower atmosphere. The tower can be utilized as a platform for various scientific and space missions or as an elevator to carry payloads and tourists. In addition, space towers can significantly be utilized to generate electrical power by harvesting high altitude renewable energy sources. Keywords: Space Elevator, Inflatable Space Tower, Inflatable Structure, Inflatable Beam, Inflatable Multiple-beam Structure, Cantilevered Beam, Pneumatic Structures.

  12. Methodology for Flight Relevant Arc-Jet Testing of Flexible Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Bruce, Walter E., III; Mesick, Nathaniel J.; Sutton, Kenneth

    2013-01-01

    A methodology to correlate flight aeroheating environments to the arc-jet environment is presented. For a desired hot-wall flight heating rate, the methodology provides the arcjet bulk enthalpy for the corresponding cold-wall heating rate. A series of analyses were conducted to examine the effects of the test sample model holder geometry to the overall performance of the test sample. The analyses were compared with arc-jet test samples and challenges and issues are presented. The transient flight environment was calculated for the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Earth Atmospheric Reentry Test (HEART) vehicle, which is a planned demonstration vehicle using a large inflatable, flexible thermal protection system to reenter the Earth's atmosphere from the International Space Station. A series of correlations were developed to define the relevant arc-jet test environment to properly approximate the HEART flight environment. The computed arcjet environments were compared with the measured arc-jet values to define the uncertainty of the correlated environment. The results show that for a given flight surface heat flux and a fully-catalytic TPS, the flight relevant arc-jet heat flux increases with the arc-jet bulk enthalpy while for a non-catalytic TPS the arc-jet heat flux decreases with the bulk enthalpy.

  13. Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Black, Jonathan T.

    2003-01-01

    Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored, circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retroreflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.

  14. Videogrammetry Using Projected Circular Targets: Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Pappa, Richard S.

    2003-01-01

    Videogrammetry is the science of calculating 3D object coordinates as a function of time from image sequences. It expands the method of photogrammetry to multiple time steps enabling the object to be characterized dynamically. Photogrammetry achieves the greatest accuracy with high contrast, solid-colored circular targets. The high contrast is most often effected using retro-reflective targets attached to the measurement article. Knowledge of the location of each target allows those points to be tracked in a sequence of images, thus yielding dynamic characterization of the overall object. For ultra-lightweight and inflatable gossamer structures (e.g. solar sails, inflatable antennae, sun shields, etc.) where it may be desirable to avoid physically attaching retro-targets, a high-density grid of projected circular targets - called dot projection - is a viable alternative. Over time the object changes shape or position independently of the dots. Dynamic behavior, such as deployment or vibration, can be characterized by tracking the overall 3D shape of the object instead of tracking specific object points. To develop this method, an oscillating rigid object was measured using both retro- reflective targets and dot projection. This paper details these tests, compares the results, and discusses the overall accuracy of dot projection videogrammetry.

  15. Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.

  16. HIAD Advancements and Extension of Mission Applications

    NASA Technical Reports Server (NTRS)

    Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.

    2016-01-01

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate geometry concepts that will greatly expand HIAD mission applications.

  17. Aerocapture Benefits to Future Science Missions

    NASA Technical Reports Server (NTRS)

    Artis, Gwen; James, Bonnie

    2006-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the "aeroassist" techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each subsystem technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped "ballutes" and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.

  18. National Health Expenditure Growth in the 1980's: An Aging Population, New Technologies, and Increasing Competition

    PubMed Central

    Freeland, Mark S.; Schendler, Carol Ellen

    1983-01-01

    Health care spending in the United States more than tripled between 1971 and 1981, increasing from $83 billion to $287 billion. This growth in health sector spending substantially outpaced overall growth in the economy, averaging 13.2 percent per year compared to 10.5 percent for the gross national product (GNP). By 1981, one out of every ten dollars of GNP was spent on health care, compared to one out of every thirteen dollars of GNP in 1971. If current trends continue and if present health care financing arrangements remain basically unchanged, national health expenditures are projected to reach approximately $756 billion in 1990 and consume roughly 12 percent of GNP. The focal issue in health care today is cost and cost Increases. The outlook for the 1980's is for continued rapid growth but at a diminished rate. The primary force behind this moderating growth is projected lower inflation. However, real growth rates are also expected to moderate slightly. The chief factors influencing the growth of health expenditures in the eighties are expected to be aging of the population, new medical technologies, increasing competition, restrained public funding, growth in real income, increased health manpower, and a deceleration in economy-wide inflation. Managers, policy makers and providers in the health sector, as in all sectors, must include in today's decisions probable future trends. Inflation, economic shocks, and unanticipated outcomes of policies over the last decade have intensified the need for periodic assessments of individual industries and their relationship to the macro economy. This article provides such an assessment for the health care industry. Baseline current-law projections of national health expenditures are made to 1990. PMID:10309852

  19. Flight Tests of a 40-Foot Nominal Diameter Modified Ringsail Parachute Deployed at Mach 1.64 and Dynamic Pressure of 9.1 Pounds Per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Murrow, Harold N.; Preisser, John S.

    1967-01-01

    A ringsail parachute, which had a nominal diameter of 40 feet (12.2 meters) and reference area of 1256 square feet (117 m(exp 2)) and was modified to provide a total geometric porosity of 15 percent of the reference area, was flight tested as part of the rocket launch portion of the NASA Planetary Entry Parachute Program. The payload for the flight test was an instrumented capsule from which the test parachute was ejected by a deployment mortar when the system was at a Mach number of 1.64 and a dynamic pressure of 9.1 pounds per square foot (43.6 newtons per m(exp 2)). The parachute deployed to suspension line stretch in 0.45 second with a resulting snatch force of 1620 pounds (7200 newtons). Canopy inflation began 0.07 second later and the parachute projected area increased slowly to a maximum of 20 percent of that expected for full inflation. During this test, the suspension lines twisted, primarily because the partially inflated canopy could not restrict the twisting to the attachment bridle and risers. This twisting of the suspension lines hampered canopy inflation at a time when velocity and dynamic-pressure conditions were more favorable.

  20. High speed cinematography of the initial break-point of latex condoms during the air burst test.

    PubMed

    Stube, R; Voeller, B; Davidhazy, A

    1990-06-01

    High speed cinematography of latex condoms inflated to burst under standard (ISO) conditions reveals that rupture of the condom typically is initiated at a small focal point on the shank of the condom and then rapidly propagates throughout the condom's surface, often ending with partial or full severance of the condom at its point of attachment to the air burst instrument. This sequence of events is the reverse of that sometimes hypothesized to occur, where initiation of burst was considered to begin at the attachment point and to constitute a testing method artifact. This hypothesis of breakage at the attachment point, if true, would diminish the value of the air burst test as a standard for assessing manufacturing quality control as well as for condom strength measurements and comparisons.

  1. Photogrammetry and Videogrammetry Methods for Solar Sails and Other Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Pappa, Richard S.

    2004-01-01

    Ultra-lightweight and inflatable gossamer space structures are designed to be tightly packaged for launch, then deploy or inflate once in space. These properties will allow for in-space construction of very large structures 10 to 1000 meters in size such as solar sails, inflatable antennae, and space solar power stations using a single launch. Solar sails are of particular interest because of their potential for propellantless propulsion. Gossamer structures do, however, have significant complications. Their low mass and high flexibility make them very difficult to test on the ground. The added mass and stiffness of attached measurement devices can significantly alter the static and dynamic properties of the structure. This complication necessitates an alternative approach for characterization. This paper discusses the development and application of photogrammetry and videogrammetry methods for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, noncontact, dynamic characterization using dot projection videogrammetry.

  2. HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept

    NASA Technical Reports Server (NTRS)

    Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.

    2016-01-01

    This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a heritage design compressed gas system to minimize development costs. The data will be captured to both an onboard recorder and a recorder that is jettisoned and recovered separately from the reentry vehicle to mitigate risk. This paper provides an overview, including the architecture and flight concept of operations, for the proposed HULA flight experiment.

  3. Materials Needs for Future In-space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les

    2008-01-01

    NASA is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. (Chemical Propulsion) Earth-storable chemical bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth-Storable rockets with specific impulses (Isp) about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. (Solar Sail Propulsion) The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 m2 up to 62500 m2) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. (Aerocapture) Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/cu cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (_100oC) for up to 10 years and then withstand the high temperatures (500oC) encountered during aerocapture. The presentation will describe the status of each propulsion technology and summarize the materials needed for their implementation.

  4. Design of a Parachute Canopy Instrumentation Platform

    NASA Technical Reports Server (NTRS)

    Alshahin, Wahab M.; Daum, Jared S.; Holley, James J.; Litteken, Douglas A.; Vandewalle, Michael T.

    2015-01-01

    This paper discusses the current technology available to design and develop a reliable and compact instrumentation platform for parachute system data collection and command actuation. Wireless communication with a parachute canopy will be an advancement to the state of the art of parachute design, development, and testing. Embedded instrumentation of the parachute canopy will provide reefing line tension, skirt position data, parachute health monitoring, and other telemetry, further validating computer models and giving engineering insight into parachute dynamics for both Earth and Mars entry that is currently unavailable. This will allow for more robust designs which are more optimally designed in terms of structural loading, less susceptible to adverse dynamics, and may eventually pave the way to currently unattainable advanced concepts of operations. The development of this technology has dual use potential for a variety of other applications including inflatable habitats, aerodynamic decelerators, heat shields, and other high stress environments.

  5. Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition law

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; Ananias Neto, Jorge; Mendes, Albert C. R.; Bonilla, Alexander

    2018-02-01

    In this work, we have illustrated the difference between both Tsallis and Kaniadakis entropies through cosmological models obtained from the formalism proposed by Padmanabhan, which is called holographic equipartition law. Similarly to the formalism proposed by Komatsu, we have obtained an extra driving constant term in the Friedmann equation if we deform the Tsallis entropy by Kaniadakis' formalism. We have considered initially Tsallis entropy as the black-hole (BH) area entropy. This constant term may lead the universe to be in an accelerated or decelerated mode. On the other hand, if we start with the Kaniadakis entropy as the BH area entropy and then by modifying the Kappa expression by Tsallis' formalism, the same absolute value but with opposite sign is obtained. In an opposite limit, no driving inflation term of the early universe was derived from both deformations.

  6. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.

    PubMed

    Guo, Haiquan; Meador, Mary Ann B; McCorkle, Linda; Quade, Derek J; Guo, Jiao; Hamilton, Bart; Cakmak, Miko; Sprowl, Guilherme

    2011-02-01

    We report the first synthesis of polyimide aerogels cross-linked through a polyhedral oligomeric silsesquioxane, octa(aminophenyl)silsesquioxane (OAPS). Gels formed from polyamic acid solutions of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), bisaniline-p-xylidene (BAX) and OAPS were chemically imidized and dried using supercritical CO(2) extraction to give aerogels having density around 0.1 g/cm(3). The aerogels are greater than 90 % porous, have high surface areas (230 to 280 m(2)/g) and low thermal conductivity (14 mW/m-K at room temperature). Notably, the polyimide aerogels cross-linked with OAPS have higher modulus than polymer reinforced silica aerogels of similar density and can be fabricated as both monoliths and thin films. Thin films of the aerogel are flexible and foldable making them an ideal insulation for space suits, and inflatable structures for habitats or decelerators for planetary re-entry, as well as more down to earth applications.

  7. Wind Tunnel Investigation of a Balloon as Decelerator at Mach Numbers from 1.47 to 2.50

    NASA Technical Reports Server (NTRS)

    McShera, John T.; Keyes, J. Wayne

    1961-01-01

    A wind-tunnel investigation was conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 degrees. Tow-cable length was approximately 24 inches from asymmetric body to cone on the upstream side of the balloon. As the tow cable was lengthened the balloon reached a point in the test section where wall-reflected shocks intersected the balloon and caused severe oscillations. As a result, the tow cable broke and the inflatable balloon model was destroyed. Further tests used a model rigid plastic sphere 6.75 inches in diameter. Tow cable length was approximately 24 inches from asymmetric body to the upstream side of the sphere.

  8. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanis, Pierre-Henri

    We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} having a linear component p = αρc{sup 2} and a polytropic component p = kρ{sup 1+1/n}c{sup 2}. For α= 1/3, n= 1 and k=−4/(3ρ{sub P}), where ρ{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes themore » transition between the vacuum energy era and the radiation era. For t≥ 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup −35} m to a size a{sub 1}= 2.6110{sup −6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup −44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ= 0). For α= 0, n=−1 and k=−ρ{sub Λ}, where ρ{sub Λ}= 7.0210{sup −24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub Λ}. corresponding to a time t{sub 2}= 0.203t{sub Λ} where l{sub Λ}= 4.38 10{sup 26} m is the cosmological length and t{sub Λ}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}∼t{sub 2}). Our model gives the same results as the standard ΛCDM model for t≫t{sub P} and completes it by incorporating a phase of early inflation for t < 23.3t{sub P} in a very natural manner. Furthermore, it reveals a nice 'symmetry' between the early and the late evolution of the universe. The early universe is modeled by a polytrope n=+ 1 and the late universe by a polytrope n=−1. Furthermore, the cosmological constant Λ in the late universe plays a role similar to the Planck constant ℏ in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the 'cosmophysics' just like the Planck constant describes the 'microphysics'. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant 'problem' may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.« less

  9. Homogenization of Vehicle Fleet Frontal Crash Pulses from 2000–2010

    PubMed Central

    Locey, Caitlin M.; Garcia-Espana, J. Felipe; Toh, Akira; Belwadi, Aditya; Arbogast, Kristy B.; Maltese, Matthew R.

    2012-01-01

    Full-scale vehicle crash tests are performed globally to assess vehicle structure and restraint system performance. The crash pulse, captured by accelerometers mounted within the occupant compartment, measures the motion of the vehicle during the impact event. From an occupant’s perspective, the crash pulse is the inertial event to which the vehicle’s restraint systems must respond in order to mitigate the forces and accelerations that act on a passenger, and thus reduce injury risk. The objective of this study was to quantify the characteristics of crash pulses for different vehicle types in the contemporary North American fleet, and delineate current trends in crash pulse evolution. NHTSA and Transport Canada crash test databases were queried for full-frontal rigid barrier crash tests of passenger vehicles model year 2000–2010 with impact angle equaling zero degrees. Acceleration-time histories were analyzed for all accelerometers attached to the vehicle structure within the occupant compartment. Custom software calculated the following crash pulse characteristics (CPCs): peak deceleration, time of peak deceleration, onset rate, pulse duration, and change in velocity. Vehicle body types were classified by adapting the Highway Loss Data Institute (HLDI) methodology, and vehicles were assigned a generation start year in place of model year in order to more accurately represent structural change over time. 1094 vehicle crash tests with 2795 individual occupant compartment-mounted accelerometers were analyzed. We found greater peak decelerations and and shorter pulse durations across multiple vehicle types in newer model years as compared to older. For midsize passenger cars, large passenger cars, and large SUVs in 56 km/h rigid barrier tests, maximum deceleration increased by 0.40, 0.96, and 1.57 g/year respectively, and pulse duration decreased by 0.74, 1.87, and 2.51 ms/year. We also found that the crash pulse characteristics are becoming more homogeneous in the modern vehicle fleet; the range of peak deceleration values for all vehicle classes decreased from 17.1 g in 1997–1999 generation start years to 10.7 g in 2009–2010 generation years, and the pulse duration range decreased from 39.5 ms to 13.4 ms for the same generation year groupings. This latter finding suggests that the designs of restraint systems may become more universally applicable across vehicle body types, since the occupant compartment accelerations are not as divergent for newer vehicles. PMID:23169139

  10. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no observed drogue chute failures, Jeffreys Prior was used to calculate a reliability of R =.998. Based on these results, it is concluded that the LMP and drogue parachutes on the Shuttle SRB are suited to their mission and changes made over their life have improved the reliability of the parachute.

  11. Supersonic Disk Gap Band Parachute Performance in the Wake of a Viking-Type Aeroshell from Mach 2 to 2.5

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Roeder, James; Kelsch, Richard; Wernet, Mark; Machalick, Walt; Reuter, James; Witkowski, Al

    2008-01-01

    Supersonic wind tunnel testing of 0.813 m diameter Disk-Gap-Band parachutes is being conducted in the NASA Glenn Research Center (GRC) 10' x 10' wind-tunnel. The tests are conducted in support of the Mars Science Laboratory Parachute Decelerator System development and qualification. Four percent of full-scale parachutes were constructed similarly to the flight-article in material and construction techniques. The parachutes are attached to a 4% scale MSL entry-vehicle to simulate the free-flight configuration. The parachutes are tested from Mach 2 to 2.5 over a Reynolds number (Re) range of 1 to 3 x 10(exp 6), representative of the MSL deployment envelope. Constrained and unconstrained test configurations are investigated to quantify the effects of parachute trim, suspension line interaction, and alignment with the capsule wake. The parachute is constrained horizontally through the vent region, to measure canopy breathing and wake interaction for fixed trim angles of 0 and 10 degrees from the velocity vector. In the unconstrained configuration the parachute is permitted to trim and cone, similar to the free-flight varying its alignment relative to the entry-vehicle wake. Test diagnostics were chosen to quantify parachute performance and to provide insight into the flow field structure. An in-line load cell provided measurement of unsteady and mean drag as a function of Mach and Re. High-speed shadowgraph video of the upstream parachute flow field was used to capture bow-shock motion and stand of distance. Particle image velocimetry of the upstream parachute flow field provides spatially and temporally resolved measurement velocity and turbulent statistics. Multiple high speed video views of targets placed in the interior of the canopy enable photo-grammetric measurement of the fabric motion in time and space from reflective. High speed video is also used to document the supersonic inflation and measure trim angle, projected area, and frequency of area oscillations.

  12. An analysis of the deployment of a pumpkin balloon on mars

    NASA Astrophysics Data System (ADS)

    Rand, J.; Phillips, M.

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, which produces stress resultants determined by the volume of the system, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. The application of this technology to very large systems is currently being demonstrated by NASA's Ultra Long Duration Balloon (ULDB) Program. However, this type of balloon has certain features that may be exploited to produce a system far more robust than a comparable sphere during deployment, inflation, and operation for long periods of time. When this concept is applied to a system designed to carry two kilograms in the atmosphere of Mars, the resulting balloon is small enough to alter the construction techniques and produce an envelope which is free of tucks and folds which may cause uncontrolled stress concentrations. A technique has been demonstrated where high strength tendons may be pretensioned prior to installation along the centerline of each gore. Since this position is the shortest distance between the apex and nadir of the balloon, the tendons will automatically resist the forces caused by deployment and inflation and thereby protect the thin film gas barrier from damage. A suitable balloon has been designed for this type of mission using five-micron Mylar Type C film for the gas barrier and P O braided cables for the meridionalB load carrying members. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a ten-kilogram system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred to the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon, altering the pressure distribution and shape. As a result, stresses are seen to increase beyond the design margin of safety, requiring the balloon to be redesigned. In addition, several scale models of this balloon were dynamically deployed in the laboratory to demonstrate that the deployment forces are indeed carried by the tendons

  13. Chronic diseases as predictors of labour market attachment after participation in subsidised re-employment programme: a 6-year follow-up study.

    PubMed

    Nwaru, Chioma A; Peutere, Laura; Kivimäki, Mika; Pentti, Jaana; Vahtera, Jussi; Virtanen, Pekka J

    2017-11-01

    Little is known about the work patterns of re-employed people. We investigated the labour market attachment trajectories of re-employed people and assessed the influence of chronic diseases on these trajectories. The study was based on register data of 18 944 people (aged 18-60 years) who participated in a subsidised re-employment programme in Finland. Latent class growth analysis with zero-inflated Poisson was used to model the labour market attachment trajectories over a 6-year follow-up time. Multinomial logistic regression was used to examine the associations between chronic diseases and labour market attachment trajectories, adjusting for age, gender, educational level, size of town and calendar year in subsidised re-employment programme. We identified four distinct labour market attachment trajectories, namely: strengthening (a relatively stable attachment throughout the follow-up time; 77%), delayed (initial weak attachment increasing later; 6%), leavers (attachment declined with time; 10%) and none-attached (weak attachment throughout the study period; 7%). We found that severe mental problems strongly increased the likelihood of belonging in the leavers (OR 3.61; 95% CI 2.23 to 5.37) and none-attached (OR 3.41; 95% CI 1.91 to 6.10) trajectories, while chronic hypertension was associated with none-attached (OR 1.37; 95% CI 1.06 to 1.77) trajectory. The associations between other chronic diseases (diabetes, heart disease, asthma and arthritics) and labour market attachment trajectories were less evident. Re-employed people appear to follow distinct labour market attachment trajectories over time. Having chronic diseases, especially mental disorders appear to increase the risk for relatively poor labour market attachment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  15. Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions

    NASA Astrophysics Data System (ADS)

    Artis, Gwen R.; James, B.

    2006-12-01

    NASA’s In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the “aeroassist” techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each sub-system technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped “ballutes” and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.

  16. Unmanned Evaluation of Mares Abyss 22 Navy Open Circuit Scuba Regulator for Cold Water Diving

    DTIC Science & Technology

    2011-05-05

    regulator is shown above the water. Note the blue mouthpiece adaptor, white oral static pressure pick-up ring , and gray routing block attached for...e.g., an inflation whip or a second-stage octopus ), submersible pressure gage, or gas-integrated computer were connected to the first stage. As...adaptor (shown in blue ) inward into the second-stage assembly, Figure 9 indicates typical 9 internal second-stage icing experienced during Phase

  17. Kon-tiki enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction.

    PubMed

    Pérez-Moreno, Juan J; Espina-Zambrano, Agueda G; García-Calderón, Clara B; Estrada, Beatriz

    2017-03-01

    Cell-extracellular-matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown. We show that the conserved transmembrane Drosophila proteoglycan Kon-tiki (Kon, also known as Perdido) interacts with the αPS2βPS integrin (αPS2 is encoded by inflated and βPS by myospheroid ) to mediate muscle-tendon adhesion. kon and inflated double mutant embryos show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since phosphorylated Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing its transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon-dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction. © 2017. Published by The Company of Biologists Ltd.

  18. Emergence and expansion of cosmic space as due to M0-branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Setare, Mohammad Reza; Capozziello, Salvatore

    2015-12-01

    Recently, Padmanabhan (arXiv:1206.4916 [hep-th]) discussed that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region causes the accelerated expansion of the universe. The main question arising is: what is the origin of this inequality between the surface degrees of freedom and the bulk degrees of freedom? We answer this question in M-theory. In our model, first M0-branes are compactified on one circle and N D0-branes are created. Then N D0-branes join each other, grow, and form one D5-branes. Next, the D5-brane is compactified on two circles and our universe's D3-brane, two D1-branes and some extra energies are produced. After that, one of the D1-branes, which is closer to the universe's brane, gives its energy into it, and this leads to an increase in the difference between the numbers of degrees of freedom and the occurring inflation era. With the disappearance of this D1-brane, the number of degrees of freedom of boundary surface and bulk region become equal and inflation ends. At this stage, extra energies that are produced due to the compactification cause an expansion of the universe and deceleration epoch. Finally, another D1-brane dissolves in our universe's brane, leads to an inequality between degrees of freedom, and there occurs a new phase of acceleration.

  19. NASA Tech Briefs, February 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include: Calibration Test Set for a Phase-Comparison Digital Tracker; Wireless Acoustic Measurement System; Spiral Orbit Tribometer; Arrays of Miniature Microphones for Aeroacoustic Testing; Predicting Rocket or Jet Noise in Real Time; Computational Workbench for Multibody Dynamics; High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube; Gratings and Random Reflectors for Near-Infrared PIN Diodes; Optically Transparent Split-Ring Antennas for 1 to 10 GHz; Ice-Penetrating Robot for Scientific Exploration; Power-Amplifier Module for 145 to 165 GHz; Aerial Videography From Locally Launched Rockets; SiC Multi-Chip Power Modules as Power-System Building Blocks; Automated Design of Restraint Layer of an Inflatable Vessel; TMS for Instantiating a Knowledge Base With Incomplete Data; Simulating Flights of Future Launch Vehicles and Spacecraft; Control Code for Bearingless Switched- Reluctance Motor; Machine Aided Indexing and the NASA Thesaurus; Arbitrating Control of Control and Display Units; Web-Based Software for Managing Research; Driver Code for Adaptive Optics; Ceramic Paste for Patching High-Temperature Insulation; Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape; Protective Skins for Aerogel Monoliths; Code Assesses Risks Posed by Meteoroids and Orbital Debris; Asymmetric Bulkheads for Cylindrical Pressure Vessels; Self-Regulating Water-Separator System for Fuel Cells; Self-Advancing Step-Tap Drills; Array of Bolometers for Submillimeter- Wavelength Operation; Delta-Doped CCDs as Detector Arrays in Mass Spectrometers; Arrays of Bundles of Carbon Nanotubes as Field Emitters; Staggering Inflation To Stabilize Attitude of a Solar Sail; and Bare Conductive Tether for Decelerating a Spacecraft.

  20. Flight Test of a 30-Foot Nominal Diameter Cross Parachute Deployed at a Mach Number of 1.57 and a Dynamic Pressure of 9.7 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Preisser, John S.

    1968-01-01

    A 30-foot (9.1-meter) nominal-diameter cross-type parachute with a cloth area (reference area) of 709 square feet (65.9 square meters) was flight tested in the rocket-launched portion of the NASA Planetary Entry Parachute Program (PEPP). The test parachute was ejected from an instrumented payload by means of a mortar when the system was at a Mach number of 1.57 and a dynamic pressure of 9.7 psf. The parachute deployed to suspension-line stretch in 0.44 second with a resulting snatch-force loading of 1100 pounds (4900 newtons), Canopy inflation began at 0.58 second and a first full inflation was achieved at approximately 0.77 second. The maximum opening load occurred at 0.81 second and was 4255 pounds (18,930 newtons). Thereafter, the test item exhibited a canopy-shape instability in that the four panel arms experienced fluctuations, a "scissoring" type of motion predominating throughout the test period. Calculated values of axial-force coefficient during the deceleration portion of the test varied between 0.35 and 1.05, with an average value of 0.69. During descent, canopy-shape variations had reduced to small amplitudes and resultant pitch-yaw angles of the payload with respect to the local vertical averaged less than 10 degrees. The effective drag coefficient, based on the vertical components of velocity and acceleration during system descent, was 0.78.

  1. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.

  2. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2013-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.

  3. Decelerated medical education.

    PubMed

    McGrath, Brian; McQuail, Diane

    2004-09-01

    The aim of the study was to obtain information regarding the prevalence, structure, student characteristics and outcomes of formal decelerated medical education programs. A 13-item survey was mailed to all US medical schools examining characteristics of decelerated curricular programs. Responses were received from 77 schools (62% response). Some 24 (31%) indicated a formal decelerated option; 13 (57%) decelerate the first year while four (17%) decelerate year 1 or year 2. Participants may be selected before matriculation or after difficulty in 14 (61%) programs while four (17%) select only after encountering difficulty. Students may unilaterally choose deceleration in 10 (43%); 4.3% (0.1-12) of total matriculants were decelerated. The proportion of decelerated students identified as underrepresented minority (URM) was 37% (0-100), representing 10.5% (0-43) of total URM enrollment. Twelve (52%) programs do not provide unique support beyond deceleration. Standards for advancement are identical for decelerated and regular students in 17 schools (81%). In total, 10% (0-100) of decelerated students were dismissed within the last five years, representing 24% (0-90) of all dismissals. Few schools provided grade point average (GPA) or Medical College Admissions Test (MCAT) data but the limited responses indicate that many decelerated students are at risk for academic difficulty. It is concluded that decelerated curricular options are available at a significant number of US medical schools. Decelerated students comprise a small proportion of total enrollment but URM matriculants represent a disproportionate share of participants. Decelerated programs appear to be successful as measured by dismissal rates if one accepts attrition which exceeds that for regular MD students. Variation in dismissal rates is difficult to interpret given the lack of GPA and MCAT data. One half of all programs offer no additional support activities beyond deceleration. More data are needed to determine the relative contribution of deceleration vs. other support measures to the advancement of students at academic risk.

  4. Fabrication of the HIAD Large-Scale Demonstration Assembly and Upcoming Mission Applications

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; Dinonno, J. M.; Cheatwood, F M.

    2017-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale.In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.

  5. Fabrication of the HIAD Large-Scale Demonstration Assembly

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; DiNonno, J. M.; Cheatwood, F. M.

    2017-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale. In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.

  6. The Relationship between Changes in Arterial Pressure, Esophageal Pressure and the EMG (Electromyography) of Various Muscle Groups during the L-1 Straining Maneuver at Different Spine-to-Thigh Angles

    DTIC Science & Technology

    1987-07-01

    and Fatiguing flandgrip,, 45 LiST OF TABLES NUMBER P AG F. I Anthroponetric Data of Subjects ...................... 29 2 (:harges In Peso , MBP and...Pressure ( Peso ): Intraesophageal pressut) wam measured from inflated esophageal balloons attached to a pressure transducer and taken to be a...during inspiration and less negative (upward) deflection during expiration. Peso was recorded foe the entire duration of the experimental period

  7. Hands-on experiences with buoyant-less water

    NASA Astrophysics Data System (ADS)

    Sliško, Josip; Planinšič, Gorazd

    2010-05-01

    The phenomenon of weightlessness is known to students thanks to videos of amazing things astronauts do in spaceships orbiting the Earth. In this article we propose two hands-on activities which give students opportunities to infer by themselves the absence of buoyant force in a gravity accelerated system. The system is a free-falling or vertically tossed bottle filled with water with a small, inflated balloon attached to the bottom by a spring. Practical hints on how to make efficient demonstration experiments are added.

  8. Aerocapture Guidance and Performance at Mars for High-Mass Systems

    NASA Technical Reports Server (NTRS)

    Zumwalt, Carlie H.; Sostaric, Ronald r.; Westhelle, Carlos H.; Cianciolo, Alicia Dwyer

    2010-01-01

    The objective of this study is to understand the performance associated with using the aerocapture maneuver to slow high-mass systems from an Earth-approach trajectory into orbit around Mars. This work is done in conjunction with the Mars Entry Descent and Landing Systems Analysis (EDL-SA) task to explore candidate technologies necessary for development in order to land large-scale payloads on the surface of Mars. Among the technologies considered include hypersonic inflatable aerodynamic decelerators (HIADs) and rigid mid-lift to drag (L/D) aeroshells. Nominal aerocapture trajectories were developed for the mid-L/D aeroshell and two sizes of HIADs, and Monte Carlo analysis was completed to understand sensitivities to dispersions. Additionally, a study was completed in order to determine the size of the larger of the two HIADs which would maintain design constraints on peak heat rate and diameter. Results show that each of the three aeroshell designs studied is a viable option for landing high-mass payloads as none of the three exceed performance requirements.

  9. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  10. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaham, B.; Faculté des Sciences et des Sciences Appliquées, Université de Bouira Rue Drissi Yahia 10000 Bouira; Tahraoui, A., E-mail: alatif-tahraoui@yahoo.fr

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grainsmore » trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.« less

  11. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  12. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster decelerator subsystem drop test vehicle. Volume 3: Pylon load data method 1

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.

  13. Inflatable re-entry shield ready for test in space

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The Russian spacecraft Mars'96 for instance, which was launched in November 1996 but failed to reach its nominal orbit, carried two modules designed to land on that planet's surface. For the last part of the mission, an Inflatable Re-Entry and Descent Technology (IRDT) had been deployed. The main components of this system were an aerobraking and thermally protective shell, a densely packed inflating material and a pressurisation system. This technology is now considered applicable to other re-entry scenarios such as payload recovery from the International Space Station, planetary landers for science missions and atmospheric research. A demonstration mission on 9/10 February 2000 will evaluate the performance of this new technology before it is offered to potential users. A Russian Soyuz/Fregat launcher, lifting off from the Kazakh steppe near Baikonur, will provide a low-cost flight opportunity for the test vehicle, which is equipped with the inflatable heat shield and a sensor package developed by DaimlerChrysler Aerospace (DASA). After four orbits around the Earth, the test vehicle will be powered by the launcher's upper stage to re-enter the atmosphere for a landing the next day about 1800 km north-west of the launch site. During the mission, a number of technical parameters such as pressure, temperature and deceleration will be monitored and the inflation of the re-entry/descent structure observed. "From this novel technology, we are expecting a major breakthrough, to make re-entry of small payloads more and more reliable, simpler and less costly than traditional systems", explains Dieter Kassing, ESA's IRDT project manager. One of the main instruments on board the test vehicle is a sensor device developed by the University of Stuttgart for the determination of oxygen partial pressure in low Earth orbit and during re-entry. The scientific/technical investigations will be led by Dr. Ulrich Schoettle (Stuttgart University). Lionel Marraffa (ESA) will lead the evaluation of the IRDT's aerothermodynamic behaviour. DASA was responsible for integration of the sensor package and is ESA's co-investigator for evaluation of the application aspects of this new technology. In addition to the sensor package, the mission will accommodate a collection of special stones to study the physical and chemical modifications in sedimentary rocks, i.e. simulated meteorites, during atmospheric infall. Co-investors of this experiment are Dr. André Brack (CNRS, Orleans) and Dr. Gero Kurat (Vienna University). This experiment is being co-sponsored by ESA. The Russian/European Starsem launch company and NPO Lavochkin, the Russian company that developed the original IRDT technology, will be responsible for launch, orbit control, re-entry and recovery of the sensor package under contract with the International Science & Technology Centre (Moscow). ESA, the European Commission and DASA are co-funding this contract, contributing $600K each.

  14. Crash pulse optimization for occupant protection at various impact velocities.

    PubMed

    Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji

    2015-01-01

    Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the velocity and the probability of occupant injury. The optimized vehicle deceleration consisted of a high deceleration in the initial phase, a small deceleration in the middle phase, and then a high deceleration in the final phase. The optimized vehicle crash pulse at a single impact velocity is effective for reducing occupant deceleration in a crash at the specific impact velocity. However, the crash pulse does not necessarily lead to occupant deceleration reduction at a lower velocity. The optimized vehicle deceleration-deformation characteristics, which are effective for all impact velocities, depend on the weighting of the occupant injury measures at each impact velocity.

  15. Multistage Zeeman decelerator for molecular-scattering studies

    NASA Astrophysics Data System (ADS)

    Cremers, Theo; Chefdeville, Simon; Janssen, Niek; Sweers, Edwin; Koot, Sven; Claus, Peter; van de Meerakker, Sebastiaan Y. T.

    2017-04-01

    We present a concept for a multistage Zeeman decelerator that is optimized particularly for applications in molecular beam scattering experiments. The decelerator consists of a series of alternating hexapoles and solenoids, that effectively decouple the transverse focusing and longitudinal deceleration properties of the decelerator. It can be operated in a deceleration and acceleration mode, as well as in a hybrid mode that makes it possible to guide a particle beam through the decelerator at constant speed. The deceleration features phase stability, with a relatively large six-dimensional phase-space acceptance. The separated focusing and deceleration elements result in an unequal partitioning of this acceptance between the longitudinal and transverse directions. This is ideal in scattering experiments, which typically benefit from a large longitudinal acceptance combined with narrow transverse distributions. We demonstrate the successful experimental implementation of this concept using a Zeeman decelerator consisting of an array of 25 hexapoles and 24 solenoids. The performance of the decelerator in acceleration, deceleration, and guiding modes is characterized using beams of metastable helium (3S ) atoms. Up to 60% of the kinetic energy was removed for He atoms that have an initial velocity of 520 m/s. The hexapoles consist of permanent magnets, whereas the solenoids are produced from a single hollow copper capillary through which cooling liquid is passed. The solenoid design allows for excellent thermal properties and enables the use of readily available and cheap electronics components to pulse high currents through the solenoids. The Zeeman decelerator demonstrated here is mechanically easy to build, can be operated with cost-effective electronics, and can run at repetition rates up to 10 Hz.

  16. [Endovascular and surgical treatment of a patient with traumatic rupture of the aorta and hepatic artery].

    PubMed

    Chernaya, N R; Muslimov, R Sh; Selina, I E; Kokov, L S; Vladimirova, E S; Navruzbekov, M S; Gulyaev, V A

    2016-01-01

    Traumatic rupture of the aorta is the second most common cause of death in closed chest injury. The latest findings of autopsy showed that 80% of lethal outcomes in aortic injury occur in the prehospital period. Taking into consideration the incidence and high rate of death prior to the diagnosis stage, aortic rupture in closed thoracic injury is an important problem. Due to the characteristic mechanism of the development (during sharp deceleration of the body) this type of traumatic lesion of the aorta became known as "deceleration syndrome". The most vulnerable to tension aortic portion is its neck where the mobile part of the thoracic aorta is connected to the fixed arch in the place of the arterial ligament attachment. Open surgical intervention in patients with severe closed chest injury (often concomitant injury) is associated with high mortality and complications. Currently endovascular prosthetic repair of the aorta is a method of choice at the primary stage of treatment of patients with aortic injury. In this article we present a rare case report of concomitant lesion of large vessels (the descending aortic portion and proper hepatic artery) in a patient with severe concomitant injury, as well as peculiarities of diagnosis and combined treatment (endovascular prosthetic repair of the aorta and hepatic artery with an aotovein).

  17. Brief: Field measurements of casing tension forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, M.S.; Lewis, D.B.; Boswell, R.S.

    1995-02-01

    Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less

  18. Proposal of a calculation method to determine the structural components' contribution on the deceleration of a passenger compartment based on the energy-derivative method.

    PubMed

    Nagasaka, Kei; Mizuno, Koji; Ito, Daisuke; Saida, Naoya

    2017-05-29

    In car crashes, the passenger compartment deceleration significantly influences the occupant loading. Hence, it is important to consider how each structural component deforms in order to control the passenger compartment deceleration. In frontal impact tests, the passenger compartment deceleration depends on the energy absorption property of the front structures. However, at this point in time there are few papers describing the components' quantitative contributions on the passenger compartment deceleration. Generally, the cross-sectional force is used to examine each component's contribution to passenger compartment deceleration. However, it is difficult to determine each component's contribution based on the cross-sectional forces, especially within segments of the individual members itself such as the front rails, because the force is transmitted continuously and the cross-sectional forces remain the same through the component. The deceleration of a particle can be determined from the derivative of the kinetic energy. Using this energy-derivative method, the contribution of each component on the passenger compartment deceleration can be determined. Using finite element (FE) car models, this method was applied for full-width and offset impact tests. This method was also applied to evaluate the deceleration of the powertrain. The finite impulse response (FIR) coefficient of the vehicle deceleration (input) and the driver chest deceleration (output) was calculated from Japan New Car Assessment Program (JNCAP) tests. These were applied to the component's contribution on the vehicle deceleration in FE analysis, and the component's contribution to the deceleration of the driver's chest was determined. The sum of the contribution of each component coincides with the passenger compartment deceleration in all types of impacts; therefore, the validity of this method was confirmed. In the full-width impact, the contribution of the crush box was large in the initial phases, and the contribution of the passenger compartment was large in the final phases. For the powertrain deceleration, the crush box had a positive contribution and the passenger compartment had a negative contribution. In the offset test, the contribution of the honeycomb and the passenger compartment deformation to the passenger compartment deceleration was large. Based on the FIR analysis, the passenger compartment deformation contributed the most to the chest deceleration of the driver dummy in the full-width impact. Based on the energy-derivative method, the contribution of the components' deformation to deceleration of the passenger compartment can be calculated for various types of crash configurations more easily, directly, and quantitatively than by using conventional methods. In addition, by combining the energy-derivative method and FIR, each structure's contribution to the occupant deceleration can be obtained. The energy-derivative method is useful in investigating how the deceleration develops from component deformations and also in designing deceleration curves for various impact configurations.

  19. Can superhorizon cosmological perturbations explain the acceleration of the universe?

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.; Seljak, Uroš

    2005-10-01

    We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several “no go” theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes.

  20. The Effects of Parachute System Mass and Suspension-Line Elastic Properties on the LADT #3 Viking Parachute Inflation Load

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Poole, Lamont R.

    1971-01-01

    Analytical calculations have considered the effects of 1) varying parachute system mass, 2) suspension-line damping, and 3) alternate suspension-line force-elongation data on the canopy force history. Results indicate the canopy force on the LADT #3 parachute did not substantially exceed the recorded vehicle force reading and that the above factors can have significant effects on the canopy force history. Analytical calculations have considered the effects of i) varying parachute system mass, 2) suspension line damping, and 3) different suspension-line force-elongation data on the canopy force history. Based on the results of this study the following conclusions are drawn: Specifically, 1. At the LADT #3 failure time of 1.70 seconds, the canopy force ranged anywhere from 15.7% below to 2.4% above the vehicle force depending upon the model and data used. Therefore, the canopy force did not substantially exceed the recorded vehicle force reading. 2. At a predicted full inflation time of 1.80 seconds the canopy force would be greater than the vehicle force by from 1.1% to 10.6%, again depending upon the model and data used. Generally, 3. At low altitudes, enclosed and apparent air mass can significantly effect the canopy force calculated and should, therefore, not be neglected. 4. The canopy force calculations are sensitive to decelerator physical properties. In this case changes in the damping and/or force-elongation characteristics produced significant changes in the canopy force histories. Accurate prediction of canopy force histories requires accurate inputs in these areas.

  1. Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.

  2. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.

    2004-04-01

    A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.

  3. A driving simulator study of driver performance on deceleration lanes.

    PubMed

    Calvi, A; Benedetto, A; De Blasiis, M R

    2012-03-01

    Deceleration lanes are important because they help drivers transition from high-speed lanes to low-speed ramps. Although they are designed to allow vehicles to depart the freeway safely and efficiently, many studies report high accident rates on exit ramps with the highest percentage of crashes taking place in deceleration lanes. This paper describes the results of a driving simulator study that focused on driving performance while approaching a divergence area and decelerating during the exiting maneuver. Three different traffic scenarios were simulated to analyze the influence of traffic volume on driving performance. Thirty drivers drove in the simulator in these scenarios while data on their lateral position, speed and deceleration were collected. Our results indicate there are considerable differences between the main assumptions of models generally used to design deceleration lanes and actual driving performance. In particular, diverging drivers begin to decelerate before arriving at the deceleration lane, causing interference with the main flow. Moreover, speeds recorded at the end of the deceleration lane exceed those for which the ramp's curves are designed; this creates risky driving conditions that could explain the high crash rates found in studies of exit ramps. Finally, statistical analyses demonstrate significant influences of traffic volume on some aspects of exiting drivers' performance: lower traffic volume results in elevated exiting speed and deceleration, and diverging drivers begin to decelerate earlier along the main lane when traffic volume is low. However, speeds at the end of the deceleration lane and the site of lane changing are not significantly influenced by traffic volume. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effects of deceleration and rate of deceleration on live seated human subjects

    DOT National Transportation Integrated Search

    1977-10-01

    This report describes the testing of live, seated human subjects to determine : the maximum deceleration and associated rate of change of deceleration (jerk) at : which the majority of potential users of automated guideway transportation (ACT) : syst...

  5. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-2, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1972-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.

  6. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  7. Soft-Ground Aircraft Arresting Systems.

    DTIC Science & Technology

    1987-08-01

    19 Rut Depth in Foam Arrestor Bed for Aircraft A. .. .... 30 20 Aircraft B Deceleration in Gravel Arrestor. ... .... 32 21Arrf u ephPoiei rvl retr...Bed Arrestment ....... ... ... ... ... .... 43 30 Aircraft D Deceleration in Gravel Bed .... ......... 44 31 Aircraft D Rut Depth Obtained in Gravel...The deceleration of Aircraft D is shown in Figure 30 . The peak deceleration was about 0.43 g’s. The initial part of the deceleration curve shows a

  8. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration

    NASA Astrophysics Data System (ADS)

    Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.

    2012-08-01

    Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.

  9. Attached and Unattached Bacterial Communities in a 120-Meter Corehole in an Acidic, Crystalline Rock Aquifer

    PubMed Central

    Lehman, R. Michael; Roberto, Francisco F.; Earley, Drummond; Bruhn, Debby F.; Brink, Susan E.; O'Connell, Sean P.; Delwiche, Mark E.; Colwell, Frederick S.

    2001-01-01

    The bacteria colonizing geologic core sections (attached) were contrasted with those found suspended in the groundwater (unattached) by examining the microbiology of 16 depth-paired core and groundwater samples using a suite of culture-independent and culture-dependent analyses. One hundred twenty-two meters was continuously cored from a buried chalcopyrite ore hosted in a biotite-quartz-monzonite porphyry at the Mineral Park Mine near Kingman, Ariz. Every fourth 1.5-m core was acquired using microbiologically defensible methods, and these core sections were aseptically processed for characterization of the attached bacteria. Groundwater samples containing unattached bacteria were collected from the uncased corehole at depth intervals corresponding to the individual cores using an inflatable straddle packer sampler. The groundwater was acidic (pH 2.8 to 5.0), with low levels of dissolved oxygen and high concentrations of sulfate and metals, including ferrous iron. Total numbers of attached cells were less than 105 cells g of core material−1 while unattached cells numbered about 105 cells ml of groundwater−1. Attached and unattached acidophilic heterotrophs were observed throughout the depth profile. In contrast, acidophilic chemolithotrophs were not found attached to the rock but were commonly observed in the groundwater. Attached communities were composed of low numbers (<40 CFU g−1) of neutrophilic heterotrophs that exhibited a high degree of morphologic diversity, while unattached communities contained higher numbers (ca. 103 CFU ml−1) of neutrophilic heterotrophs of limited diversity. Sulfate-reducing bacteria were restricted to the deepest samples of both core and groundwater. 16S ribosomal DNA sequence analysis of attached, acidophilic isolates indicated that organisms closely related to heterotrophic, acidophilic mesophiles such as Acidiphilium organovorum and, surprisingly, to the moderately thermophilic Alicyclobacillus acidocaldarius were present. The results indicate that viable (but possibly inactive) microorganisms were present in the buried ore and that there was substantial distinction in biomass and physiological capabilities between attached and unattached populations. PMID:11319087

  10. Obstetrics at Decisive Crossroads Regarding Pattern-Recognition of Fetal Heart Rate Decelerations: Scientific Principles and Lessons From Memetics.

    PubMed

    Sholapurkar, Shashikant L

    2018-04-01

    The survival of cardiotocography (CTG) as a tool for intrapartum fetal monitoring seems threatened somewhat unjustifiably and unwittingly despite the absence of better alternatives. Fetal heart rate (FHR) decelerations are center-stage (most important) in the interpretation of CTG with maximum impact on three-tier classification. The pattern-discrimination of FHR decelerations is inexorably linked to their nomenclature. Unscientific or flawed nomenclature of decelerations can explain the dysfunctional CTG interpretation leading to errors in detection of acidemic fetuses. There are three contrasting concepts about categorization of FHR decelerations: 1) all rapid decelerations (the vast majority) should be grouped as "variable" because they are predominantly due to cord-compression, 2) all decelerations are due to chemoreflex from fetal hypoxemia hence their timing is not important, and 3) FHR decelerations should be categorized into "early/late/variable" based primarily on their time relationship to contractions. These theoretical concepts are like memes (ideas/beliefs). Lessons from "memetics" are that the most popular, attractive or established beliefs may not necessarily be true, scientific, beneficial or even without harm. Decelerations coincident with contractions with trough corresponding to the peak of contractions cannot be explained by cord-compression or increasing hypoxia (from compromised uteroplacental perfusion, cord-compression or even cerebral hypoperfusion/anoxia purportedly conceivable from head-compression). Decelerations due to hypoxemia would be associated with delayed recovery of decelerations (lag phase). It is a scientific imperative to cast away disproven/falsified theories. Practices based on unscientific theories lead to patient harm. Clinicians should urgently adopt the categorization of FHR decelerations based primarily of the time relationship to contractions as originally proposed by Hon and Caldeyro-Barcia. This analytical review shows it to be underpinned by most robust physiological and scientific hypotheses unlike the other categorizations associated with untruthful hypotheses, irreconcilable fallacies and contradictions. Without truthful framework and meaningful pattern-recognition of FHR decelerations, the CTG will not fulfil its true potential.

  11. Obstetrics at Decisive Crossroads Regarding Pattern-Recognition of Fetal Heart Rate Decelerations: Scientific Principles and Lessons From Memetics

    PubMed Central

    Sholapurkar, Shashikant L.

    2018-01-01

    The survival of cardiotocography (CTG) as a tool for intrapartum fetal monitoring seems threatened somewhat unjustifiably and unwittingly despite the absence of better alternatives. Fetal heart rate (FHR) decelerations are center-stage (most important) in the interpretation of CTG with maximum impact on three-tier classification. The pattern-discrimination of FHR decelerations is inexorably linked to their nomenclature. Unscientific or flawed nomenclature of decelerations can explain the dysfunctional CTG interpretation leading to errors in detection of acidemic fetuses. There are three contrasting concepts about categorization of FHR decelerations: 1) all rapid decelerations (the vast majority) should be grouped as “variable” because they are predominantly due to cord-compression, 2) all decelerations are due to chemoreflex from fetal hypoxemia hence their timing is not important, and 3) FHR decelerations should be categorized into “early/late/variable” based primarily on their time relationship to contractions. These theoretical concepts are like memes (ideas/beliefs). Lessons from “memetics” are that the most popular, attractive or established beliefs may not necessarily be true, scientific, beneficial or even without harm. Decelerations coincident with contractions with trough corresponding to the peak of contractions cannot be explained by cord-compression or increasing hypoxia (from compromised uteroplacental perfusion, cord-compression or even cerebral hypoperfusion/anoxia purportedly conceivable from head-compression). Decelerations due to hypoxemia would be associated with delayed recovery of decelerations (lag phase). It is a scientific imperative to cast away disproven/falsified theories. Practices based on unscientific theories lead to patient harm. Clinicians should urgently adopt the categorization of FHR decelerations based primarily of the time relationship to contractions as originally proposed by Hon and Caldeyro-Barcia. This analytical review shows it to be underpinned by most robust physiological and scientific hypotheses unlike the other categorizations associated with untruthful hypotheses, irreconcilable fallacies and contradictions. Without truthful framework and meaningful pattern-recognition of FHR decelerations, the CTG will not fulfil its true potential. PMID:29511418

  12. Simulation of kinematics of SS 433 radio jets that interact with the ambient medium

    NASA Astrophysics Data System (ADS)

    Panferov, A.

    2014-02-01

    Context. The mildly relativistic jets of SS 433 are believed to inflate the surrounding supernova remnant W 50, possibly depositing more than 99% of their kinetic energy in the remnant expansion. Where and how this transformation of the energy occurs is as yet unknown. We can learn from this that the jets decelerate and that this deceleration is non-dissipative. Aims: We uncover the deviation of the arcsecond-scale precessing radio jets of SS 433 from the ballistic locus described by the kinematic model as a signature of the dynamics issuing from the interaction of the jets with the ambient medium. Methods: To do this, we simulated the kinematics of these jets, taking into account the ram pressure on the jets, which we estimated from the profile of brightness of synchrotron radiation along the radio jets, assuming pressure balance in the jets. Results: We found that to fit an observable locus in all scales the radio jets need to be decelerated and twisted in addition to the precession torsion, mostly within the first one-fifth of the precession period, and subsequently they extend in a way that imitates ballistic jets. This jet kinematics implies a smaller distance to SS 433 than the currently accepted 5.5 kpc. The physical parameters of the jet model, which links jets dynamics with radiation, are physically reliable and characteristic for the SS 433 jets. The model proposes that beyond the radio-brightening zone, the jet clouds expand because they are in pressure balance with the intercloud medium, and heat up with distance according to the law T = 2 × 104(r/1015 cm)1.5 K. Conclusions: This model naturally explains and agrees with, the observed properties of the radio jets: a) the shock-pressed morphology; b) the brightness profile; c) the ~10% deflections of the jet kinematics from the standard kinematic model - a magnitude of the jet speed decrement in our simulation; d) the precession-phase deviations from the standard kinematic model predictions; e) the dichotomy of the distances to the object, 4.8 kpc vs. 5.5 kpc, which are determined on the basis of the jet kinematics on scales of sub-arcsecond and several arcseconds, respectively; and f) the reheating on arcsecond scales.

  13. Deceleration system for kinematic linkages of positioning

    NASA Astrophysics Data System (ADS)

    Stan, G.

    2017-08-01

    Flexible automation is used more and more in various production processes, so that both machining itself on CNC machine tools and workpiece handling means are performed through programming the needed working cycle. In order to obtain a successful precise positioning, each motion degree needs a certain deceleration before stopping at a programmed point. The increase of motion speed of moving elements within the manipulators structure depends directly on deceleration duty quality before the programmed stop. Proportional valves as well as servo-valves that can perform hydraulic decelerations are well known, but they feature several disadvantages, such as: high price, severe conditions for oil filtering and low reliability under industrial conditions. This work presents a new deceleration system that allows adjustment of deceleration slope according to actual conditions: inertial mass, speed etc. The new solution of hydraulic decelerator allows its integration to a position loop or its usage in case of positioning large elements that only perform fixed cycles. The results being obtained on the positioning accuracy of a linear axis using the new solution of the hydraulic decelerator are presented, too. The price of the new deceleration system is much lower compared to the price of proportional valves or servo-valves.

  14. Alp7/TACC recruits kinesin-8–PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement

    PubMed Central

    Tang, Ngang Heok; Toda, Takashi

    2015-01-01

    ABSTRACT Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A. PMID:25472718

  15. Principles and Design of a Zeeman–Sisyphus Decelerator for Molecular Beams

    PubMed Central

    Tarbutt, M. R.

    2016-01-01

    Abstract We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak‐field seeking state as they move towards each strong field region, and into a strong‐field seeking state as they move towards weak field. The method is time‐independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods. PMID:27629547

  16. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  17. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  18. ON THE IMPORTANCE OF VERY LIGHT INTERNALLY SUBSONIC AGN JETS IN RADIO-MODE AGN FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fulai, E-mail: fulai@shao.ac.cn

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light ( η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonicmore » jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.« less

  19. Inflation without inflaton: A model for dark energy

    NASA Astrophysics Data System (ADS)

    Falomir, H.; Gamboa, J.; Méndez, F.; Gondolo, P.

    2017-10-01

    The interaction between two initially causally disconnected regions of the Universe is studied using analogies of noncommutative quantum mechanics and the deformation of Poisson manifolds. These causally disconnect regions are governed by two independent Friedmann-Lemaître-Robertson-Walker (FLRW) metrics with scale factors a and b and cosmological constants Λa and Λb, respectively. The causality is turned on by positing a nontrivial Poisson bracket [Pα,Pβ]=ɛα βκ/G , where G is Newton's gravitational constant and κ is a dimensionless parameter. The posited deformed Poisson bracket has an interpretation in terms of 3-cocycles, anomalies, and Poissonian manifolds. The modified FLRW equations acquire an energy-momentum tensor from which we explicitly obtain the equation of state parameter. The modified FLRW equations are solved numerically and the solutions are inflationary or oscillating depending on the values of κ . In this model, the accelerating and decelerating regime may be periodic. The analysis of the equation of state clearly shows the presence of dark energy. By completeness, the perturbative solution for κ ≪1 is also studied.

  20. Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo

    2010-01-01

    The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.

  1. Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy

    2011-01-01

    Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.

  2. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.

  3. Caldera unrest detected with seawater temperature anomalies at Deception Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Berrocoso, M.; Prates, G.; Fernández-Ros, A.; Peci, L. M.; de Gil, A.; Rosado, B.; Páez, R.; Jigena, B.

    2018-04-01

    Increased thermal activity was detected to coincide with the onset of volcano inflation in the seawater-filled caldera at Deception Island. This thermal activity was manifested in pulses of high water temperature that coincided with ocean tide cycles. The seawater temperature anomalies were detected by a thermometric sensor attached to the tide gauge (bottom pressure sensor). This was installed where the seawater circulation and the locations of known thermal anomalies, fumaroles and thermal springs, together favor the detection of water warmed within the caldera. Detection of the increased thermal activity was also possible because sea ice, which covers the entire caldera during the austral winter months, insulates the water and thus reduces temperature exchange between seawater and atmosphere. In these conditions, the water temperature data has been shown to provide significant information about Deception volcano activity. The detected seawater temperature increase, also observed in soil temperature readings, suggests rapid and near-simultaneous increase in geothermal activity with onset of caldera inflation and an increased number of seismic events observed in the following austral summer.

  4. Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus.

    PubMed

    Ross, Michael G; Jessie, Marquis; Amaya, Kevin; Matushewski, Brad; Durosier, L Daniel; Frasch, Martin G; Richardson, Bryan S

    2013-04-01

    Recent guidelines classify variable decelerations without detail as to degree of depth. We hypothesized that variable deceleration severity is highly correlated with fetal base deficit accumulation. Seven near-term fetal sheep underwent a series of graded umbilical cord occlusions resulting in mild (30 bpm decrease), moderate (60 bpm decrease), or severe (decrease of 90 bpm to baseline <70 bpm) variable decelerations at 2.5 minute intervals. Mild, moderate, and severe variable decelerations increased fetal base deficit (0.21 ± 0.03, 0.27 ± 0.03, and 0.54 ± 0.09 mEq/L per minute) in direct proportion to severity. During recovery, fetal base deficit cleared at 0.12 mEq/L per minute. In this model, ovine fetuses can tolerate repetitive mild and moderate variable decelerations with minimal change in base deficit and lactate. In contrast, repetitive severe variable decelerations may result in significant base deficit increases, dependent on frequency. Modified guideline differentiation of mild/moderate vs severe variable decelerations may aid in the interpretation of fetal heart rate tracings and optimization of clinical management paradigms. Copyright © 2013 Mosby, Inc. All rights reserved.

  5. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    NASA Astrophysics Data System (ADS)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were carried out on the concrete floor of the LAMA to determine the stiffness of the landing gear based on the deceleration data measured with the accelerometer. Landings on fine-grained quartz sand and on a Mars soil simulant (brand names WF34 and MSS-D, respectively) allow quantifying the changes of the deceleration data due to interaction with the soil. The elastic moduli of the soils that were inverted from the accelerometer data agree well with data obtained by ultrasonic time-of-flight measurements, provided an effective contact area is used. To this end, the lander structure was viewed in a simplified way as a mass-spring-damper system coupled to the soil by a contact spring, whose stiffness is determined by elastic moduli of the soil and the contact radius. Analytical expressions allow a rapid inversion of the deceleration data to obtain elastic data. It is expected that the same procedure can be applied to the signal measured when landing on comet 67P.

  6. A study of the solar wind deceleration in the Earth's foreshock region

    NASA Technical Reports Server (NTRS)

    Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.

    1995-01-01

    Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.

  7. A Light-Weight Inflatable Hypersonic Drag Device for Planetary Entry

    NASA Technical Reports Server (NTRS)

    McRonald, Angus D.

    1995-01-01

    The author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, (balloon + parachute) for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include missions to Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto. Data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the peak heating by a factor of 10 for the spacecraft, and a factor of about 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are a smaller mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed computed to achieve the desired orbiter exit conditions. For a lander an accurate landing point could be achieved by providing the lander with a small gliding capacity, using the large potential energy available from being subsonic at high altitude. Alternatively the ballute can be retained to act as a parachute or soft-landing device, or to float the payload as a buoyant aerobot. As expected, the ballute has smaller size for relatively small entry speeds, such as for Mars, or for the extensive atmosphere of a low-gravity planet such as Pluto. The author will discuss presently available ballute materials and a development program of aerodynamic tests and materials that would be required for ballutes to achieve their full potential.

  8. Leptotene/Zygotene Chromosome Movement Via the SUN/KASH Protein Bridge in Caenorhabditis elegans

    PubMed Central

    Baudrimont, Antoine; Penkner, Alexandra; Woglar, Alexander; Machacek, Thomas; Wegrostek, Christina; Gloggnitzer, Jiradet; Fridkin, Alexandra; Klein, Franz; Gruenbaum, Yosef; Pasierbek, Pawel; Jantsch, Verena

    2010-01-01

    The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2–dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates. PMID:21124819

  9. Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.

    1999-01-01

    Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.

  10. Experimental Modeling of a Formula Student Carbon Composite Nose Cone

    PubMed Central

    Fellows, Neil A.

    2017-01-01

    A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982

  11. Earth’s Rotational Deceleration: Determination of Tidal Friction Independent of Timescales

    NASA Astrophysics Data System (ADS)

    Deines, Steven D.; Williams, Carol A.

    2016-04-01

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10-7 rad yr-2. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.

  12. Evaluation of the fetal state by automatic analysis of the heart rate. 2. Deceleration areas and umbilical artery blood pH.

    PubMed

    Tournaire, M; Sturbois, G; Ripoche, A; Le Houezec, R; Breart, G; Chavinie, J; Sureau, C

    1976-01-01

    Fetal heart rate (FHR) deceleration areas were studied to obtain by objective measurement of the FHR, their prognostic value of the new-born state. 1. There is a reasonably good correlation between FHR deceleration areas and UApH (Tab. II). Such a correlation was found by SHELLEY and TIPTON [6] for the whole deceleration area, and by TOURNAIRE et al. [10] for areas divided in a slightly different way. The correlation coefficients between FHR deceleration areas and Apgar score at 1 minute are within a close range of those of the FHR deceleration area and UApH (Tab. I and II). 2. According to the time relationship between deceleration areas and uterine contractions the best correlation coefficient was obtained surprisingly for total, followed by residual and then simultaneous areas. These results agree with those of SHELLEY and TIPTON [6] suggesting that in practice a simple measurement of the whole deceleration area, regardless of the uterine contractions is a sufficient method in evaluating FHR patterns. 3. The special purpose computer built by the BAUDELOCQUE research group can be used on-line, thus in clinical practice. It was not the case for the manual method [4] or the method using a large programmed computer [10]. 4 The evaluation of deceleration areas appears to have several advantages: 1. It provides objective measurements. 2. The unit used is independant of factors such as display speed or scale of the strip-chart. 3. The data is reduced: A few numbers replace the long descriptions of the usual clinical classifications.

  13. Effectiveness of restraint equipment in enclosed areas.

    DOT National Transportation Integrated Search

    1972-02-01

    A series of 20-g decelerations of a crash sled was conducted to determine the magnitude of head impact decelerations while wearing various types of restraint equipment in small confined areas. Restraint webbing loads and head impact decelerations are...

  14. Heart-rate deceleration predicting the determination of costly punishment: Implications for its involvement in cognitive effort expended in overriding self-interest.

    PubMed

    Osumi, Takahiro; Ohira, Hideki

    2016-11-01

    Previous studies have investigated which biological markers predict the decision to reject unfair monetary offers, termed costly punishment, in the ultimatum game (UG). One study showed that a phasic deceleratory response in heart rate (HR) is evoked in the responder more readily by offers that will be rejected than by offers that will be accepted. However, owing to the paucity of supporting evidence, it remains unclear whether and why HR deceleration can predict the decisions of UG responders. In this paper, we report two separate studies (Study 1 and Study 2) using modified versions of the UG to explore factors modulating HR deceleration. In Study 1, as well as unfair offers, fair offers induced greater HR deceleration when responders were forced to reject offers compared to when they were forced to accept offers. In Study 2, a high rejection rate for very unfair offers was sustained, regardless of the size of the offers, but HR deceleration was increased for unfair but large offers, relative to unfair, small offers. Moreover, HR deceleration was associated with the rejection of large offers. However, across the two studies, HR deceleration did not simply vary depending on unfairness. These findings support the possibility that HR decelerates as a function of cognitive load in determining costly punishment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Randomized trial of intermittent or continuous amnioinfusion for variable decelerations.

    PubMed

    Rinehart, B K; Terrone, D A; Barrow, J H; Isler, C M; Barrilleaux, P S; Roberts, W E

    2000-10-01

    To determine whether continuous or intermittent bolus amnioinfusion is more effective in relieving variable decelerations. Patients with repetitive variable decelerations were randomized to an intermittent bolus or continuous amnioinfusion. The intermittent bolus infusion group received boluses of 500 mL of normal saline, each over 30 minutes, with boluses repeated if variable decelerations recurred. The continuous infusion group received a bolus infusion of 500 mL of normal saline over 30 minutes and then 3 mL per minute until delivery occurred. The ability of the amnioinfusion to abolish variable decelerations was analyzed, as were maternal demographic and pregnancy outcome variables. Power analysis indicated that 64 patients would be required. Thirty-five patients were randomized to intermittent infusion and 30 to continuous infusion. There were no differences between groups in terms of maternal demographics, gestational age, delivery mode, neonatal outcome, median time to resolution of variable decelerations, or the number of times variable decelerations recurred. The median volume infused in the intermittent infusion group (500 mL) was significantly less than that in the continuous infusion group (905 mL, P =.003). Intermittent bolus amnioinfusion is as effective as continuous infusion in relieving variable decelerations in labor. Further investigation is necessary to determine whether either of these techniques is associated with increased occurrence of rare complications such as cord prolapse or uterine rupture.

  16. Inflationary universe in deformed phase space scenario

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Saba, Nasim; Farhoudi, Mehrdad; Marto, João; Moniz, P. V.

    2018-06-01

    We consider a noncommutative (NC) inflationary model with a homogeneous scalar field minimally coupled to gravity. The particular NC inflationary setting herein proposed, produces entirely new consequences as summarized in what follows. We first analyze the free field case and subsequently examine the situation where the scalar field is subjected to a polynomial and exponential potentials. We propose to use a canonical deformation between momenta, in a spatially flat Friedmann-Lemaî tre-Robertson-Walker (FLRW) universe, and while the Friedmann equation (Hamiltonian constraint) remains unaffected the Friedmann acceleration equation (and thus the Klein-Gordon equation) is modified by an extra term linear in the NC parameter. This concrete noncommutativity on the momenta allows interesting dynamics that other NC models seem not to allow. Let us be more precise. This extra term behaves as the sole explicit pressure that under the right circumstances implies a period of accelerated expansion of the universe. We find that in the absence of the scalar field potential, and in contrast with the commutative case, in which the scale factor always decelerates, we obtain an inflationary phase for small negative values of the NC parameter. Subsequently, the period of accelerated expansion is smoothly replaced by an appropriate deceleration phase providing an interesting model regarding the graceful exit problem in inflationary models. This last property is present either in the free field case or under the influence of the scalar field potentials considered here. Moreover, in the case of the free scalar field, we show that not only the horizon problem is solved but also there is some resemblance between the evolution equation of the scale factor associated to our model and that for the R2 (Starobinsky) inflationary model. Therefore, our herein NC model not only can be taken as an appropriate scenario to get a successful kinetic inflation, but also is a convenient setting to obtain inflationary universe possessing the graceful exit when scalar field potentials are present.

  17. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.

  18. Statistical Trajectory Estimation Program (STEP) implementation for BLDT post flight trajectory simulation

    NASA Technical Reports Server (NTRS)

    Shields, W. E.

    1973-01-01

    Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.

  19. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. Therefore, the HIAD projects experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m-class system will introduce many new structural and logistical challenges to an already complicated manufacturing process.Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to ac-count for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs.There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m HIAD.In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current 12m aeroshell manufacturing and testing that is addressing these challenges

  20. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15 Meter Class System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Cheatwood, F. M.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.

  1. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m Class System

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to 15m-class system. Two complications in working with handmade textiles structures are the non-linearity of the materials and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the materials out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m class HIAD. In this paper, the challenges and associated mitigation plans related to scaling up the HIAD stacked-torus aeroshell to a 15m class system will be discussed. In addition, the benefits of enlarging the structure will be further explored.

  2. EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deines, Steven D.; Williams, Carol A., E-mail: steven.deines@gmail.com, E-mail: cw@math.usf.edu

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, icemore » age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.« less

  3. Lightweight, variable solidity knitted parachute fabric. [for aerodynamic decelerators

    NASA Technical Reports Server (NTRS)

    Matthews, F. R., Jr.; White, E. C. (Inventor)

    1973-01-01

    A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection.

  4. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062 Section 56.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating...

  5. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 57.19062 Section 57.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating...

  6. Emergency Braking of a Mine Hoist in the Context of the Braking System Selection

    NASA Astrophysics Data System (ADS)

    Wolny, Stanisław

    2017-03-01

    The paper addresses the selected aspects of the dynamic behaviour of mine hoists during the emergency braking phase. Basing on the model of the hoist and supported by theoretical backgrounds provided by the author (Wolny, 2016), analytical formulas are derived to determine the parameters of the braking system such that during an emergency braking it should guarantee that: - the maximal loading of the hoisting ropes should not exceed the rope breaking force, - deceleration of the conveyances being stopped should not exceed the admissible levels Results of the dynamic analysis of the mine hoist behaviour during an emergency braking phase summarised in this study can be utilised to support the design of conveyance and rope attachments by the fatigue endurance methods, with an aim to adapt it to the specified operational parameters of the hoisting installation (Eurokod 3).

  7. Growth of sodium chlorate crystals in the presence of potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  8. The myths and physiology surrounding intrapartum decelerations: the critical role of the peripheral chemoreflex

    PubMed Central

    Lear, Christopher A.; Galinsky, Robert; Wassink, Guido; Yamaguchi, Kyohei; Davidson, Joanne O.; Westgate, Jenny A.; Bennet, Laura

    2016-01-01

    Abstract A distinctive pattern of recurrent rapid falls in fetal heart rate, called decelerations, are commonly associated with uterine contractions during labour. These brief decelerations are mediated by vagal activation. The reflex triggering this vagal response has been variably attributed to a mechanoreceptor response to fetal head compression, to baroreflex activation following increased blood pressure during umbilical cord compression, and/or a Bezold–Jarisch reflex response to reduced venous return from the placenta. Although these complex explanations are still widespread today, there is no consistent evidence that they are common during labour. Instead, the only mechanism that has been systematically investigated, proven to be reliably active during labour and, crucially, capable of producing rapid decelerations is the peripheral chemoreflex. The peripheral chemoreflex is triggered by transient periods of asphyxia that are a normal phenomenon associated with all uterine contractions. This should not cause concern as the healthy fetus has a remarkable ability to adapt to these repeated but short periods of asphyxia. This means that the healthy fetus is typically not at risk of hypotension and injury during uncomplicated labour even during repeated brief decelerations. The physiologically incorrect theories surrounding decelerations that ignore the natural occurrence of repeated asphyxia probably gained widespread support to help explain why many babies are born healthy despite repeated decelerations during labour. We propose that a unified and physiological understanding of intrapartum decelerations that accepts the true nature of labour is critical to improve interpretation of intrapartum fetal heart rate patterns. PMID:27328617

  9. Adhesion control by inflation: implications from biology to artificial attachment device

    NASA Astrophysics Data System (ADS)

    Dening, Kirstin; Heepe, Lars; Afferrante, Luciano; Carbone, Giuseppe; Gorb, Stanislav N.

    2014-08-01

    There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

  10. Damage Detection and Self-Repair in Inflatable/Deployable Structures

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy

    2009-01-01

    Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.

  11. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.

    PubMed

    Yu, Yi-Hsin; Lu, Shao-Wei; Chuang, Chun-Hsiang; King, Jung-Tai; Chang, Che-Lun; Chen, Shi-An; Chen, Sheng-Fu; Lin, Chin-Teng

    2016-07-01

    Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.

  12. Development of a super-pressure balloon with a diamond-shaped net --- result of a ground inflation test of a 2,000 cubic-meter balloon ---

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma

    2016-07-01

    A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.

  13. Modified hydraulic braking system limits angular deceleration to safe values

    NASA Technical Reports Server (NTRS)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  14. Qualification flight tests of the Viking decelerator system.

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bendura, R. J.; Timmons, J. D.; Lau, R. A.

    1973-01-01

    The Balloon Launched Decelerator Test (BLDT) series conducted at White Sands Missile Range (WSMR) during July and August of 1972 flight qualified the NASA Viking '75 decelerator system at conditions bracketing those expected for Mars. This paper discusses the decelerator system design requiremnts, compares the test results with prior work, and discusses significant considerations leading to successful qualification in earth's atmosphere. The Viking decelerator system consists of a single-stage mortar-deployed 53-foot nominal diameter disk-gap-band parachute. Full-scale parachutes were deployed behind a full-scale simulated Viking vehicle at Mach numbers from 0.47 to 2.18 and dynamic pressures from 6.9 to 14.6 psf. Analyses show that the system is qualified with sufficient margin to perform successfully for the Viking mission.

  15. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  16. Human Mars Entry, Descent and Landing Architectures Study Overview

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara T.; Dwyer Cianciolo, Alicia

    2016-01-01

    Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtainedmore » concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.« less

  18. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced...

  19. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced...

  20. Position-Specific Acceleration and Deceleration Profiles in Elite Youth and Senior Soccer Players.

    PubMed

    Vigh-Larsen, Jeppe F; Dalgas, Ulrik; Andersen, Thomas B

    2018-04-01

    Vigh-Larsen, JF, Dalgas, U, and Andersen, TB. Position-specific acceleration and deceleration profiles in elite youth and senior soccer players. J Strength Cond Res 32(4): 1114-1122, 2018-The purpose of the study was to characterize and compare the position-specific activity profiles of young and senior elite soccer players with special emphasis put on accelerations and decelerations. Eight professional senior matches were tracked using the ZXY tracking system and analyzed for the number of accelerations and decelerations and running distances within different speed zones. Likewise, 4 U19 and 5 U17 matches were analyzed for comparison between youth and senior players. In senior players, the total distance (TD) was 10,776 ± 107 m with 668 ± 28 and 143 ± 10 m being high-intensity running (HIR) and sprinting, respectively. Number of accelerations and decelerations were 81 ± 2 and 84 ± 3, respectively, with central defenders performing the lowest and wide players the highest number. Declines were found between first and second halves for accelerations and decelerations (11 ± 3%), HIR (6 ± 4%), and TD (5 ± 1%), whereas sprinting distance did not differ. U19 players performed a higher number of accelerations, decelerations, and TD compared with senior players. In conclusion, differences in the number and distribution of accelerations and decelerations appeared between player positions, which is of importance when monitoring training and match loads and when prescribing specific training exercises. Furthermore, youth players performed as much high-intensity activities as senior players, indicating that this is not a discriminating physiological parameter between these players.

  1. Responses to deceleration during car following: roles of optic flow, warnings, expectations, and interruptions.

    PubMed

    DeLucia, Patricia R; Tharanathan, Anand

    2009-12-01

    More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on responses to deceleration during car following. With computer simulations of car-following scenes, university students pressed a button when the lead car decelerated. Both classes of information affected responses. Observers relied on discrete warnings when optic flow information was relatively less effective as determined by the lead car's headway and deceleration rate. This is consistent with DeLucia's (2008) conceptual framework of space perception that emphasized the importance of viewing distance and motion (and task). In Experiment 2, we measured responses to deceleration after a visual interruption. Scenes were designed to tease apart the role of expectations and optic flow. Responses mostly were consistent with optic flow information presented after the interruption rather than with putative mental expectations that were set up by the lead car's motion prior to the interruption. The theoretical implication of the present results is that responses to deceleration are based on multiple sources of information, including optical size, optical expansion rate and tau, and discrete warnings that are independent of optic flow. The practical implication is that in-vehicle collision-avoidance warning systems may be more useful when optic flow is less effective (e.g., slow deceleration rates), implicating a role for adaptive collision-warning systems. Copyright 2009 APA

  2. Getting a grip on the transverse motion in a Zeeman decelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulitz, Katrin; Softley, Timothy P., E-mail: tim.softley@chem.ox.ac.uk; Motsch, Michael

    2014-03-14

    Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This ismore » achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.« less

  3. Correlation Tests of the Ditching Behavior of an Army B-24D Airplane and a 1/16-size Model

    NASA Technical Reports Server (NTRS)

    Jarvis, George A.; Fisher, Lloyd J.

    1946-01-01

    Behaviors of both model and full-scale airplanes were ascertained by making visual observations, by recording time histories of decelerations, and by taking motion picture records of ditchings. Results are presented in form of sequence photographs and time-history curves for attitudes, vertical and horizontal displacements, and longitudinal decelerations. Time-history curves for attitudes and horizontal and vertical displacements for model and full-scale tests were in agreement; maximum longitudinal decelerations for both ditchings did not occur at same part of run; full-scale maximum deceleration was 50 percent greater.

  4. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...

  5. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...

  6. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...

  7. Simulation evaluation of a speed-guidance law for Harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Merrick, Vernon K.; Moralez, Ernesto; Stortz, Michael W.; Hardy, Gordon H.; Gerdes, Ronald M.

    1991-01-01

    An exponential-deceleration speed guidance law is formulated which mimics the technique currently used by Harrier pilots to perform decelerating approaches to a hover. This guidance law was tested along with an existing two-step constant deceleration speed guidance law, using a fixed-base piloted simulator programmed to represent a YAV-8B Harrier. Decelerating approaches to a hover at a predetermined station-keeping point were performed along a straight (-3 deg glideslope) path in headwinds up to 40 knots and turbulence up to 6 ft./sec. Visibility was fixed at one-quarter nautical mile and 100 ft. cloud ceiling. Three Harrier pilots participated in the experiment. Handling qualities with the aircraft equipped with the standard YAV-8B rate damped attitude stability augmentation system were adequate (level 2) using either speed guidance law. However, the exponential deceleration speed guidance law was rated superior to the constant-deceleration speed guidance law by a Cooper-Harper handling qualities rating of about one unit independent of the level of wind and turbulence. Replacing the attitude control system of the YAV-8B with a high fidelity model following attitude flight controller increased the approach accuracy and reduced the pilot workload. With one minor exception, the handling qualities for the approach were rated satisfactory (level 1). It is concluded that the exponential deceleration speed guidance law is the most cost effective.

  8. Fetal heart rate deceleration detection using a discrete cosine transform implementation of singular spectrum analysis.

    PubMed

    Warrick, P A; Precup, D; Hamilton, E F; Kearney, R E

    2007-01-01

    To develop a singular-spectrum analysis (SSA) based change-point detection algorithm applicable to fetal heart rate (FHR) monitoring to improve the detection of deceleration events. We present a method for decomposing a signal into near-orthogonal components via the discrete cosine transform (DCT) and apply this in a novel online manner to change-point detection based on SSA. The SSA technique forms models of the underlying signal that can be compared over time; models that are sufficiently different indicate signal change points. To adapt the algorithm to deceleration detection where many successive similar change events can occur, we modify the standard SSA algorithm to hold the reference model constant under such conditions, an approach that we term "base-hold SSA". The algorithm is applied to a database of 15 FHR tracings that have been preprocessed to locate candidate decelerations and is compared to the markings of an expert obstetrician. Of the 528 true and 1285 false decelerations presented to the algorithm, the base-hold approach improved on standard SSA, reducing the number of missed decelerations from 64 to 49 (21.9%) while maintaining the same reduction in false-positives (278). The standard SSA assumption that changes are infrequent does not apply to FHR analysis where decelerations can occur successively and in close proximity; our base-hold SSA modification improves detection of these types of event series.

  9. Underway Recovery Test 6 (URT-6) - Day 2 Activites

    NASA Image and Video Library

    2018-01-18

    As part of Underway Recovery Test 6, the Orion test article is pulled in by a winch line at the rear of the USS Anchorage’s well deck that brings the capsule into the ship, along with four manned LLAMAs (Line Load Attenuation Mechanism Assembly) that control the capsule’s side-to-side movement and a tending line attached to a rigid hull inflatable boat for controlling Orion’s movement behind the ship. The testing with Kennedy Space Center's NASA Recovery Team and the U.S. Navy will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  10. A Light-Weight Inflatable Hypersonic Drag Device for Planetary Entry

    NASA Technical Reports Server (NTRS)

    McRonald, Angus D.

    2000-01-01

    The author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto, and data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero, deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the heating by a factor of 10 for the spacecraft and a factor of 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal. protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are less mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed computed to achieve the desired orbiter exit conditions. For a lander an accurate landing point could be achieved by providing the lander with a small gliding capacity, using the large potential energy available from being subsonic at high altitude. Alternatively the ballute can be retained to act as a parachute or soft-landing device, or to float the payload as a buoyant aerobot. As expected, the ballute has smaller size for relatively small entry speeds, such as for Mars and Titan, or for the extensive atmosphere of a low-gravity planet such as Pluto. Details of a ballute to place a small Mars orbiter and a small Pluto lander will be given to illustrate the concept. The author will discuss presently available ballute materials and a development program of aerodynamic tests and materials that would be required for ballutes to achieve their full potential.

  11. Design and Test Criteria for Increased Energy-Absorbing Seat Effectiveness

    DTIC Science & Technology

    1983-03-01

    condition . ........ 35 8 CAMI aled. . . . . . . . . . . 37 9 CAMI wire - bending decelerator mechanism.... 38 10 Typical baseline deceleration pulses for...8217. * A * (b) Sled and wires following test. "Fiigure 9. CAI wire - bending decelerator mechanism. 38 OF --. 9 O 9 ’ W W v v v v W ’W A𔃾 50 so- 40- 40

  12. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...

  13. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...

  14. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...

  15. The Development of a Thermally Enhanced Emergency Fire Shelter

    NASA Technical Reports Server (NTRS)

    Fody, Joshua M.; Calomino, Anthony M.; Daryabeigi, Kamran; Bruce III, Walter E.; Wells, John M.; Wusk, Mary E.; Miller, Stephen D.

    2017-01-01

    Since its founding in 1905, the U.S. Forest Service has been responsible for maintaining public lands. The Forest Service and other public lands agencies respond to an average of 73,000 wildfires per year, and responding firefighters are required to carry a number of safety gear items, including the M2002 emergency fire shelter. The emergency fire shelter is intended to serve as a last resort means of protection in case a firefighter's escape route has been compromised in the face of an approaching flame front. No fire shelter deployment tragedy has been more costly than the 2013 Yarnell Hill fire in Arizona, where 19 members of the Granite Mountain Hotshots perished. After the tragedy at Yarnell Hill, the Forest Service decided to expedite the next redesign cycle of the fire shelter in order to improve its ability to withstand direct contact with flames. Engineers at NASA Langley Research Center have spent the better part of a decade developing flexible thermal materials for use in inflatable aerodynamic decelerators and have demonstrated their performance in the IRVE-2 and IRVE-3 flight programs (Inflatable Reentry Vehicle Experiment). NASA engineers recognized an opportunity to leverage their experience and knowledge with flexible thermal protection systems to potentially improve the fire shelter's resistance to direct flame contact, and have been working directly with the U.S. Forest Service to achieve this goal. They launched the CHIEFS project (Convective Heating Improvement for Emergency Fire Shelters) in 2014. Over the past three years, CHIEFS has screened over 270 unique material layups, and tested over 30 unique full scale shelter concepts in an effort to achieve a game changing improvement to the thermal protection of the fire shelter, while maintaining minimal mass and volume. This paper will discuss CHIEFS' 1st and 2nd generation fire shelter development efforts and test results.

  16. Protective ocular mechanisms in woodpeckers.

    PubMed

    Wygnanski-Jaffe, T; Murphy, C J; Smith, C; Kubai, M; Christopherson, P; Ethier, C R; Levin, A V

    2007-01-01

    Woodpeckers possess mechanisms protecting the eye from shaking/impact. Mechanisms available to woodpeckers but not humans may help explain some eye injuries in Shaken Baby syndrome (SBS). Gross dissection and histologic examination of eyes and orbits of seven woodpeckers. All birds showed restricted axial globe movement due to the tight fit within the orbit and fascial connections between the orbital rim and sclera. The sclera was reinforced with cartilage and bone, the optic nerve lacked redundancy, and the vitreous lacked attachments to the posterior pole retina. Woodpecker eyes differ from human infants by an inability of the globe to move axially in the orbit, the sclera to deform, and the vitreous to shear the retina. These findings support current hypotheses that abusive acceleration-deceleration-induced ocular injury in human infants may be related to translation of vitreous within the globe and the globe within the orbit. The woodpecker presents a natural model resistant to mechanical forces that have some similarity to SBS.

  17. Collaboration and decision making tools for mobile groups

    NASA Astrophysics Data System (ADS)

    Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander

    2017-12-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  18. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Daniel Joseph; Mahaffey, David; Senkov, Oleg

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from anmore » analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.« less

  19. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...

  20. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...

  1. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...

  2. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  3. A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh–Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  4. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin

    2016-06-01

    Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

  5. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable buoyant...

  6. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable buoyant...

  7. SU-F-T-25: Design and Implementation of a Multi-Purpose Applicator for Pelvic Brachytherapy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogue, J; Parsai, E

    Purpose: The current generation of inflatable multichannel brachytherapy applicators, such as the Varian Capri, have limited implementation to only vaginal and rectal cancers. While there are similar designs utilizing rigid, non-inflatable applicators, these alternatives could cause increased dose to surrounding tissue due to air gaps. Modification of the Capri could allow for easier treatment planning by reducing the number of channels and increased versatility by modifying the applicator to include an attachable single tandem for cervical or multiple tandems for endometrial applications. Methods: A Varian Capri applicator was simulated in water to replicate a patient. Multiple plans were optimized tomore » deliver a prescribed dose of 100 cGy at 5mm away from the exterior of the applicator using six to thirteen existing channels. The current model was expanded upon to include a detachable tandem or multiple tandoms to increase its functionality to both cervical and endometrial cancers. Models were constructed in both threedimensional rendering software and Monte Carlo to allow prototyping and simulations. Results: Treatment plans utilizing six to thirteen channels produced limited dosimetric differences between channel arrangements, with a seven channel plan very closely approximating the thirteen channels. It was concluded that only seven channels would be necessary in future simulations to give an accurate representation of the applicator. Tandem attachments were prototyped for the applicator to demonstrate the ease of which they could be included. Future simulation in treatment planning software and Monte Carlo results will be presented to further define the ideal applicator geometry Conclusion: The current Capri applicator design could be easily modified to increase applicability to include cervical and endometrial treatments in addition to vaginal and rectal cancers. This new design helps in a more versatile single use applicator that can easily be inserted and to further reduce dose to critical structures during brachytherapy treatments.« less

  8. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of inflatable...

  9. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of inflatable...

  10. Development and Testing of a Drogue Parachute System for X-37 ALTV/B-52H Separation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Jacobson, Steven R.; Jensen, Steven C.; Hennings, Elsa J.

    2004-01-01

    Multiple scenarios were identified in which the X-37 approach and landing test vehicle (ALTV) catastrophically recontacts the B-52H carrier aircraft after separation. The most cost-effective recontact risk mitigation is the prelaunch deployment of a drogue parachute that is released after the X-37 ALTV has safely cleared the B-52H. After release, a fully-inflated drogue parachute takes 30 min to reach ground and results in a large footprint that excessively restricts the days available for flight. To reduce the footprint, a passive collapse mechanism consisting of an elastic reefing line attached to the parachute skirt was developed. At flight loads the elastic is stretched, allowing full parachute inflation. After release, drag loads drop dramatically and the elastic line contracts, reducing the frontal drag area. A 50-percent drag reduction results in an approximately 75-percent ground footprint reduction. Eleven individual parachute designs were evaluated at flight load dynamic pressures in the High Velocity Airflow System (HIVAS) at the Naval Air Warfare Center (NAWC), China Lake, California. Various options for the elastic reefing system were also evaluated at HIVAS. Two best parachute designs were selected from HIVAS to be carried forward to flight test. Detailed HIVAS test results are presented in this report.

  11. Development and Testing of a Drogue Parachute System for X-37 ALTV/B-52H Separation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Jacobson, Steven R.; Jensen, Steven C.; Hennings, Elsa J.

    2004-01-01

    Multiple scenarios were identified in which the X-37 approach and landing test vehicle (ALTV) catastrophically recontacts the B-52H carrier aircraft after separation. The most cost-effective recontact risk mitigation is the prelaunch deployment of a drogue parachute that is released after the X-37 ALTV has safely cleared the B-52H. After release, a fully-inflated drogue parachute takes 30 min to reach ground and results in a large footprint that excessively restricts the days available for flight. To reduce the footprint, a passive collapse mechanism consisting of an elastic reefing line attached to the parachute skirt was developed. At flight loads the elastic is stretched, allowing full parachute inflation. After release, drag loads drop dramatically and the elastic line contracts, reducing the frontal drag area. A 50 percent drag reduction results in an approximately 75 percent ground footprint reduction. Eleven individual parachute designs were evaluated at flight load dynamic pressures in the High Velocity Airflow System (HIVAS) at the Naval Air Warfare Center (NAWC), China Lake, California. Various options for the elastic reefing system were also evaluated at HIVAS. Two best parachute designs were selected from HIVAS to be carried forward to flight test. Detailed HIVAS test results are presented in this report.

  12. Continuous centrifuge decelerator for polar molecules.

    PubMed

    Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G

    2014-01-10

    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200  m s(-1) to obtain beams with velocities below 15  m s(-1) and intensities of several 10(9)  mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.

  13. State-of-the-Art Study for High-speed Deceleration and Stabilization Devices

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Lau, R. A.

    1966-01-01

    Documented aerodynamic deployable decelerator performance data above Mach 1. 0 is presented. The state of the art of drag and stability characteristics for reentry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology. The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.

  14. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.

  15. Deceleration-Limiting Roadway Barrier

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, P. James (Inventor)

    2006-01-01

    Roadway barrier system and method are disclosed for decelerating a moving vehicle in a controlled manner and for retaining the decelerated vehicle. A net or mesh of the roadway barrier system receives and captures the moving vehicle. The net or mesh is secured to anchors by energy absorbing straps. The energy absorbing straps deploy under a tensional load to decelerate the moving vehicle, the straps providing a controlled resistance to the tensional load over a predefined displacement or stroke to bring the moving vehicle to rest. Additional features include a sacrificial panel or sheet in front of the net that holds up the net or mesh while deflecting vehicles that collide only tangentially with the roadway barrier system.

  16. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    NASA Astrophysics Data System (ADS)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage of wall-attached structures is observed in the present case when compared with a similar investigation of a rapidly decelerating APG-TBL, suggesting that these wall-attached features could be the remanent from the lower pressure gradient domain upstream.

  17. Heart rate deceleration runs for postinfarction risk prediction.

    PubMed

    Guzik, Przemyslaw; Piskorski, Jaroslaw; Barthel, Petra; Bauer, Axel; Müller, Alexander; Junk, Nadine; Ulm, Kurt; Malik, Marek; Schmidt, Georg

    2012-01-01

    A method for counting episodes of uninterrupted beat-to-beat heart rate decelerations was developed. The method was set up and evaluated using 24-hour electrocardiogram Holter recordings of 1455 (training sample) and 946 (validation sample) postinfarction patients. During a median follow-up of 24 months, 70, 46, and 19 patients of the training sample suffered from total, cardiac, and sudden cardiac mortality, respectively. In the validation sample, these numbers were 39, 25, and 15. Episodes of consecutive beat-to-beat heart rate decelerations (deceleration runs [DRs]) were characterized by their length. Deceleration runs of 2 to 10 cycles were significantly less frequent in nonsurvivors. Multivariate model of DRs of 2, 4, and 8 cycles identified low-, intermediate-, and high-risk groups. In these groups of the training sample, the total mortalities were 1.8%, 6.1%, and 24%, respectively. In the validation sample, these numbers were 1.8%, 4.1%, and 21.9%. Infrequent DRs during 24-hour Holter indicate high risk of postinfarction mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Study of Car Acceleration and Deceleration Characteristics at Dangerous Route FT050

    NASA Astrophysics Data System (ADS)

    Omar, N.; Prasetijo, J.; Daniel, B. D.; Abdullah, M. A. E.; Ismail, I.

    2018-04-01

    Individual vehicle acceleration and deceleration are important to generate vehicles speed profile. This study covered acceleration and deceleration characteristics of passenger car in Federal Route FT050 Jalan Batu Pahat-Ayer Hitam that was the top ranking dangerous road. Global Positioning System was used to record 10 cars speed to develop speed profile with clustering zone. At the acceleration manoeuver, the acceleration rate becomes lower as the drivers get near to desired speed. While, at deceleration manoeuver, vehicles with high speed needs more time to stop compare to low speed vehicle. This is because, the drivers need to accelerate more from zero speed to achieve desired speed and drivers need more distance and time to stop their vehicles. However, it was found out that 30% to 50% are driving in dangerous condition that was proven in clustering acceleration and deceleration speed profile. As conclusion, this excessive drivers are the factor that creating high risk in rear-end collision that inline FT050 as dangerous road in Malaysia

  19. Orienting, emotion, and memory: phasic and tonic variation in heart rate predicts memory for emotional pictures in men.

    PubMed

    Abercrombie, Heather C; Chambers, Andrea S; Greischar, Lawrence; Monticelli, Roxanne M

    2008-11-01

    Arousal-related processes associated with heightened heart rate (HR) predict memory enhancement, especially for emotionally arousing stimuli. In addition, phasic HR deceleration reflects "orienting" and sensory receptivity during perception of stimuli. We hypothesized that both tonic elevations in HR as well as phasic HR deceleration during viewing of pictures would be associated with deeper encoding and better subsequent memory for stimuli. Emotional pictures are more memorable and cause greater HR deceleration than neutral pictures. Thus, we predicted that the relations between cardiac activity and memory enhancement would be most pronounced for emotionally-laden compared to neutral pictures. We measured HR in 53 males during viewing of unpleasant, neutral, and pleasant pictures, and tested memory for the pictures two days later. Phasic HR deceleration during viewing of individual pictures was greater for subsequently remembered than forgotten pictures across all three emotion categories. Elevated mean HR across the entire encoding epoch also predicted better memory performance, but only for emotionally arousing pictures. Elevated mean HR and phasic HR deceleration were associated, such that individuals with greater tonic HR also showed greater HR decelerations during picture viewing, but only for emotionally arousing pictures. Results suggest that tonic elevations in HR are associated both with greater orienting and heightened memory for emotionally arousing stimuli.

  20. Orienting, emotion, and memory: Phasic and tonic variation in heart rate predicts memory for emotional pictures in men

    PubMed Central

    Abercrombie, Heather C.; Chambers, Andrea S.; Greischar, Lawrence; Monticelli, Roxanne M.

    2008-01-01

    Arousal-related processes associated with heightened heart rate (HR) predict memory enhancement, especially for emotionally arousing stimuli. In addition, phasic HR deceleration reflects “orienting” and sensory receptivity during perception of stimuli. We hypothesized that both tonic elevations in HR as well as phasic HR deceleration during viewing of pictures would be associated with deeper encoding and better subsequent memory for stimuli. Emotional pictures are more memorable and cause greater HR deceleration than neutral pictures. Thus, we predicted that the relations between cardiac activity and memory enhancement would be most pronounced for emotionally-laden compared to neutral pictures. We measured HR in 53 males during viewing of unpleasant, neutral, and pleasant pictures, and tested memory for the pictures two days later. Phasic HR deceleration during viewing of individual pictures was greater for subsequently remembered than forgotten pictures across all three emotion categories. Elevated mean HR across the entire encoding epoch also predicted better memory performance, but only for emotionally arousing pictures. Elevated mean HR and phasic HR deceleration were associated, such that individuals with greater tonic HR also showed greater HR decelerations during picture viewing, but only for emotionally arousing pictures. Results suggest that tonic elevations in HR are associated both with greater orienting and heightened memory for emotionally arousing stimuli. PMID:18755284

  1. Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.

    PubMed

    Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian

    2016-02-06

    It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.

  2. Head assembly for multiposition borehole extensometer

    DOEpatents

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  3. Laser-Induced Fluorescence Photogrammetry for Dynamic Characterization of Transparent and Aluminized Membrane Structures

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2003-01-01

    Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.

  4. The Inflatable Poster

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.

    2004-12-01

    Inflatable devices are frequently used in advertising in order to grab the attention of consumers: one sees, for example, 20 foot tall inflatable drink containers, inflatable cell phones, inflatable bubble gum packets, as well as blimps wafting majestically over major sports events. More usefully, inflatable representations of scientifically-interesting items are widely available, including astronauts, space shuttles, dinosaurs and globes and can help to build and inspire the interest of the general public, and in particular children, in such ideas. How can such concepts be adapted to improve poster presentations? Possibility one is to use relevant existing commercially-available inflatables to dress the poster: skeletons, astronauts, globes and so forth. More exciting is to develop custom inflatables that represent three-dimensional renderings of objects that the poster is describing. Examples of individual objects might be an inflatable slab, inflatable avalanche, inflatable plume, or it's larger cousin, the 10 foot high inflatable superplume or 20 foot high inflatable megaplume. More elaborately, inflatables might represent isosurfaces in three-dimensional spherical convection, although other fabrication methods may be more suitable. More simply, inflatable spheres could be imprinted with the planform of convection, geoid, or other spherical fields of geophysical interest. Finally, it should be possible to put an entire poster on an inflatable object, possibly small ones (balloons) to hand out. A major concern, however, is that the presenter may use such techniques to inflate their scientific findings, or to present overblown ideas.

  5. Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules

    DTIC Science & Technology

    2017-02-07

    AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of

  6. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  7. Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Chakraborty, Subenoy

    2013-09-01

    In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.

  8. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  9. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD...

  10. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD...

  11. Static Performance of a Wing-Mounted Thrust Reverser Concept

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    1998-01-01

    An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.

  12. Earth Return Aerocapture for the TransHab/Ellipsled Vehicle

    NASA Technical Reports Server (NTRS)

    Muth, W. D.; Hoffmann, C.; Lyne, J. E.

    2000-01-01

    The current architecture being considered by NASA for a human Mars mission involves the use of an aerocapture procedure at Mars arrival and possibly upon Earth return. This technique would be used to decelerate the vehicles and insert them into their desired target orbits, thereby eliminating the need for propulsive orbital insertions. The crew may make the interplanetary journey in a large, inflatable habitat known as the TransHab. It has been proposed that upon Earth return, this habitat be captured into orbit for use on subsequent missions. In this case, the TransHab would be complimented with an aeroshell, which would protect it from heating during the atmospheric entry and provide the vehicle with aerodynamic lift. The aeroshell has been dubbed the "Ellipsled" because of its characteristic shape. This paper reports the results of a preliminary study of the aerocapture of the TransHab/Ellipsled vehicle upon Earth return. Undershoot and overshoot boundaries have been determined for a range of entry velocities, and the effects of variations in the atmospheric density profile, the vehicle deceleration limit, the maximum vehicle roll rate, the target orbit, and the vehicle ballistic coefficient have been examined. A simple, 180 degree roll maneuver was implemented in the undershoot trajectories to target the desired 407 km circular Earth orbit. A three-roll sequence was developed to target not only a specific orbital energy, but also a particular inclination, thereby decreasing propulsive inclination changes and post-aerocapture delta-V requirements. Results show that the TransHab/Ellipsled vehicle has a nominal corridor width of at least 0.7 degrees for entry speeds up to 14.0 km/s. Most trajectories were simulated using continuum flow aerodynamics, but the impact of high-altitude viscous effects was evaluated and found to be minimal. In addition, entry corridor comparisons have been made between the TransHab/Ellipsled and a modified Apollo capsule which is also being considered as the crew return vehicle; because of its slightly higher lift-to-drag ratio, the TransHab has a modest advantage with regard to corridor width. Stagnation-point heating rates and integrated heat loads were determined for a range of vehicle ballistic coefficients and entry velocities.

  13. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity can successfully realize each of the four cosmological epochs.

  14. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps.

  15. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  16. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  17. Critical Imperative for the Reform of British Interpretation of Fetal Heart Rate Decelerations: Analysis of FIGO and NICE Guidelines, Post-Truth Foundations, Cognitive Fallacies, Myths and Occam's Razor.

    PubMed

    Sholapurkar, Shashikant L

    2017-04-01

    Cardiotocography (CTG) has disappointingly failed to show good predictability for fetal acidemia or neonatal outcomes in several large studies. A complete rethink of CTG interpretation will not be out of place. Fetal heart rate (FHR) decelerations are the most common deviations, benign as well as manifestation of impending fetal hypoxemia/acidemia, much more commonly than FHR baseline or variability. Their specific nomenclature is important (center-stage) because it provides the basic concepts and framework on which the complex "pattern recognition" of CTG interpretation by clinicians depends. Unfortunately, the discrimination of FHR decelerations seems to be muddled since the British obstetrics adopted the concept of vast majority of FHR decelerations being "variable" (cord-compression). With proliferation of confusing waveform criteria, "atypical variables" became the commonest cause of suspicious/pathological CTG. However, National Institute for Health and Care Excellence (NICE) (2014) had to disband the "typical" and "atypical" terminology because of flawed classifying criteria. This analytical review makes a strong case that there are major and fundamental framing and confirmation fallacies (not just biases) in interpretation of FHR decelerations by NICE (2014) and International Federation of Gynecology and Obstetrics (FIGO) (2015), probably the biggest in modern medicine. This "post-truth" approach is incompatible with scientific practice. Moreover, it amounts to setting oneself for failure. The inertia to change could be best described as "backfire effect". There is abundant evidence that head-compression (and other non-hypoxic mediators) causes rapid rather than shallow/gradual decelerations. Currently, the vast majority of decelerations are attributed to unproven cord compression underpinned by flawed disproven pathophysiological hypotheses. Their further discrimination based on abstract, random, trial and error criteria remains unresolved suggesting a false premise to begin with. This is not surprising considering that the commonest pathophysiology of intrapartum hypoxemia is contraction-induced reduction in uteroplacental perfusion (sometimes already compromised) and not cord compression at all. This distorted categorization causes confusion, false-alarm fatigue and difficulty in focusing on real pathological decelerations making CTG interpretation dysfunctional ultimately compromising patient safety. Obstetricians/midwives should demand reverting to the previous more scientific British categorization of decelerations based solely on time relationship to contractions as advocated by the pioneers like Hon and Caldeyro-Barcia, rather than accepting the current "post-truth" scenario.

  18. Changes in Acceleration and Deceleration Capacity Throughout Professional Soccer Match-Play.

    PubMed

    Russell, Mark; Sparkes, William; Northeast, Jonny; Cook, Christian J; Love, Tom D; Bracken, Richard M; Kilduff, Liam P

    2016-10-01

    Russell, M, Sparkes, W, Northeast, J, Cook, CJ, Love, TD, Bracken, RM, and Kilduff, LP. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J Strength Cond Res 30(10): 2839-2844, 2016-As the acceleration and deceleration demands of soccer are currently not well understood, this study aimed to profile markers of acceleration and deceleration capacity during professional soccer match-play. This within-player observational study required reserve team players from a Premier League club to wear 10-Hz Global Positioning System units throughout competitive matches played in the 2013-14 competitive season. Data are presented for players who completed 4 or more games during the season (n = 11), and variables are presented according to six 15-minute intervals (I1-6: 00:00-14:59 minutes, 15:00-29:59 minutes, 30:00-44:59 minutes, 45:00-59:59 minutes, 60:00-74:59 minutes, and 75:00-89:59 minutes, respectively). During I6, the distance covered (total, per minute, and at high intensity), number of sprints, accelerations (total and high intensity), decelerations (total and high intensity), and impacts were reduced compared with I1 (all p ≤ 0.05). The number of high-intensity impacts remained unchanged throughout match-play (p > 0.05). These findings indicate that high-intensity actions and markers of acceleration and deceleration capacity are reduced in the last 15 minutes of the normal duration of match-play. Such information can be used to increase the specificity of training programs designed for soccer players while also giving further insight in to the effects of 90 minutes of soccer-specific exercise. Interventions that seek to maintain the acceleration and deceleration capacity of players throughout the full duration of a soccer match warrant investigation.

  19. Modeling and Demonstrating Regenerative Braking of a Squirrel Cage Induction Motor with Various Deceleration Rates Using V by F Control

    DTIC Science & Technology

    2010-06-01

    DEMONSTRATING REGENERATIVE BRAKING OF A SQUIRREL CAGE INDUCTION MOTOR WITH VARIOUS DECELERATION RATES USING V BY F CONTROL by Billy J. Nytko...Regenerative Braking of a Squirrel Cage Induction Motor with Various Deceleration Rates Using V by F Control 6. AUTHOR(S) Billy J. Nytko 5. FUNDING...Naval Postgraduate School (NPS) to model regenerative braking to support energy conservation technologies and to improve the efficiencies within the

  20. Exploratory field trial of motorcycle autonomous emergency braking (MAEB): Considerations on the acceptability of unexpected automatic decelerations.

    PubMed

    Savino, Giovanni; Pierini, Marco; Thompson, Jason; Fitzharris, Michael; Lenné, Michael G

    2016-11-16

    Autonomous emergency braking (AEB) acts to slow down a vehicle when an unavoidable impending collision is detected. In addition to documented benefits when applied to passenger cars, AEB has also shown potential when applied to motorcycles (MAEB). However, the feasibility of MAEB as practically applied to motorcycles in the real world is not well understood. In this study we performed a field trial involving 16 riders on a test motorcycle subjected to automatic decelerations, thus simulating MAEB activation. The tests were conducted along a rectilinear path at nominal speed of 40 km/h and with mean deceleration of 0.15 g (15% of full braking) deployed at random times. Riders were also exposed to one final undeclared brake activation with the aim of providing genuinely unexpected automatic braking events. Participants were consistently able to manage automatic decelerations of the vehicle with minor to moderate effort. Results of undeclared activations were consistent with those of standard runs. This study demonstrated the feasibility of a moderate automatic deceleration in a scenario of motorcycle travelling in a straight path, supporting the notion that the application of AEB on motorcycles is practicable. Furthermore, the proposed field trial can be used as a reference for future regulation or consumer tests in order to address safety and acceptability of unexpected automatic decelerations on a motorcycle.

  1. Preferential acceleration and magnetic field enhancement in plasmas with e{sup +}/e{sup −} beam injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Cong Tuan; Ryu, Chang-Mo, E-mail: ryu201@postech.ac.kr

    A theoretical model of current filaments predicting preferential acceleration/deceleration and magnetic field enhancement in a plasma with e{sup +}/e{sup −} beam injection is presented. When the e{sup +}/e{sup −} beams are injected into a plasma, current filaments are formed. The beam particles are accelerated or decelerated depending on the types of current filaments in which they are trapped. It is found that in the electron/ion ambient plasma, the e{sup +} beam particles are preferentially accelerated, while the e{sup −} beam particles are preferentially decelerated. The preferential particle acceleration/deceleration is absent when the ambient plasma is the e{sup +}/e{sup −} plasma.more » We also find that the particle momentum decrease can explain the magnetic field increase during the development of Weibel/filamentation instability. Supporting simulation results of particle acceleration/deceleration and magnetic field enhancement are presented. Our findings can be applied to a wide range of astrophysical plasmas with the e{sup +}/e{sup −} beam injection.« less

  2. Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin; Kumar, Suresh; Xu, Lixin

    2014-02-01

    The parametrizations q = q 0+ q 1 z and q = q 0+ q 1(1 - a/ a 0) (Chevallier-Polarski-Linder parametrization) of the deceleration parameter, which are linear in cosmic redshift z and scale factor a , have been frequently utilized in the literature to study the kinematics of the Universe. In this paper, we follow a strategy that leads to these two well-known parametrizations of the deceleration parameter as well as an additional new parametrization, q = q 0+ q 1(1 - t/ t 0), which is linear in cosmic time t. We study the features of this linearly time-varying deceleration parameter in contrast with the other two linear parametrizations. We investigate in detail the kinematics of the Universe by confronting the three models with the latest observational data. We further study the dynamics of the Universe by considering the linearly time-varying deceleration parameter model in comparison with the standard ΛCDM model. We also discuss the future of the Universe in the context of the models under consideration.

  3. Dynamic response of a poroelastic half-space to accelerating or decelerating trains

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Boström, Anders

    2013-05-01

    The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.

  4. Altitude-Limiting Airbrake System for Small to Medium Scale Rockets

    NASA Technical Reports Server (NTRS)

    Aaron, Robert F., III

    2013-01-01

    The goal of the overall internship opportunity this semester was to learn and practice the elements of engineering design through direct exposure to real engineering problems. The primary exposure was to design and manufacture an airbrake device for use with small-medium scale rocket applications. The idea was to take the presented concept of a solution and transform said concept into a reliable fully-functioning and reusable mechanism. The mechanism was to be designed as an insurance feature so that the overall altitude of a rocket with relatively undetermined engine capabilities does not unexpectedly exceed the imposed 10,000 foot ceiling, per range requirements. The airbrake concept was introduced to the Prototype Development Lab as a rotation-driven four tiered offset track pin mechanism, i.e. the airbrake was deployed by rotating a central shaft attached directly to the bottom plate. The individual airbrake fins were subsequently deployed using multiple plates with tracks of offset curvature. The fins were created with guide pins to follow the tracks in each of the offset plates, thus allowing the simultaneous rotational deployment of all fins by only rotating one plate. The concept of this solution was great; though it did not function in application. The rotating plates alone brought up problems like the entire back half of the rocket rotating according to the motion of the aforementioned base plate. Subsequently, the solution currently under development became a static linear actuator-driven spring-loaded fin release system. This solution is almost instantaneously triggered electronically when the avionics detect that the rocket has reached the calculated altitude of deceleration. This altitude will allow enough time remaining to the overall ceiling to adequately decelerate the rocket prior to reaching the ceiling.

  5. Viability of 3 D Woven Carbon Cloth and Advanced Carbon-Carbon Ribs for Adaptive Deployable Entry Placement Technology (ADEPT) for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Arnold, James O.; Peterson, K. H.; Blosser, M. L.

    2013-01-01

    This paper describes aerothermodynamic and thermal structural testing that demonstrate the viability of three dimensional woven carbon cloth and advanced carbon-carbon (ACC) ribs for use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle's shroud and deployed prior to reaching the atmeopheric interface. A key feature of the ADEPT concept is a lower ballistic coefficient for delivery of a given payload than seen with conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient incllude factor-of-ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth base lined for ADEPT has a dual use in that it serves as the thermal protection system and as the "skin" that transfers aerdynamic deceleration loads to its umbrella-like substructure. Arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. Recently completed the thermal structural testing of the cloth attached to a representative ACC rib design is also described. Finally, this paper describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future ADEPT missions and to predict carbon cloth performance in future arcjet tests.

  6. 5.0 Aerodynamic and Propulsive Decelerator Systems

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl

    2005-01-01

    Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.

  7. First-order inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.

  8. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  9. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Image and Video Library

    1989-09-11

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  10. Aerodynamic and Thermal Performance Characteristics of Supersonic-X Type Decelerators at Mach Number 8

    DTIC Science & Technology

    1977-02-01

    SUPERSONIC -X TYPE DECELERATORS AT MACH NUMBER 8 t’z.r I # I JJ’, o,. VON KARMAN GAS DYNAMICS FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...AERODYNAMIC AND THERMAL PERFORMANCE CHARACTERISTICS OF SUPERSONIC - X TYPE DECELERATORS AT MACH NUMBER 8 ’ 7 AU THORCs,: p ; J . D. Corce , ARO, Inc...pe r fo rmance cha rac t e r i s t i c s of model nylon, Kevlar 29, and Bisbenzimidazobenzophenanthroline Supersonic -X type parachutes behind a

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the gravitational-deceleration initiation of the phase transition of gas to a Bose condensate

    NASA Astrophysics Data System (ADS)

    Rivlin, L. A.

    2008-01-01

    A scenario of the experiment on the observation of the isothermal Bose condensation of cooled gas with increasing the concentration of atoms caused by the deceleration of a vertical atomic beam in the gravitational field resulting in a decrease in the phase transition critical temperature below the gas temperature is considered. Coherent phenomena accompanying the evolution of the Bose condensate during further beam deceleration are pointed out.

  12. Birth Weight by Gestational Age for 76,710 Twins Born in the United States as a Result of In Vitro Fertilization: 2006 to 2010.

    PubMed

    Dickey, Richard P; Pridjian, Gabriella; Xiong, Xu; Klempel, Monica C

    2017-01-01

    Objective  The objective of this study was to establish twin-specific birth weight percentiles by gestational age using U.S. twin births resulting from in vitro fertilization (IVF). Study Design  A retrospective analysis of birth weight by completed weeks of gestation for 76,710 twin IVF births reported to the Society for Assisted Reproductive Technologies from 2006 to 2010. Mean and median birth weights and 3rd, 5th, 10th, 25th, 50th, 75th, 90th, and 97th percentiles were calculated by completed week of gestation and infant sex. Results  IVF twin birth weight accelerates until term and then declines. The deceleration in twin birth weight occurs at 39 completed weeks of gestation for larger twins, those at or above the 50th percentile in weight. For smaller twins, the growth deceleration occurs earlier, at 38 weeks of gestation. IVF female and male twin birth weights for gestational age were similar to all IVF twins, showing similar decelerations near term. Conclusion  Using U.S. IVF twin-specific growth charts, with known date of conception, twins demonstrate a deceleration in birth weight near term. Larger twins demonstrate a deceleration in birth weight by 39 completed weeks of gestation; smaller twins show a deceleration at 38 weeks. These data may assist in the clinical management of twins near term. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure

    PubMed Central

    Lear, Christopher A.; Davidson, Joanne O.; Galinsky, Robert; Yuill, Caroline A.; Wassink, Guido; Booth, Lindsea C.; Drury, Paul P.; Bennet, Laura; Gunn, Alistair J.

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  14. 12 CFR 622.61 - Adjustment of civil money penalties by the rate of inflation under the Federal Civil Penalties...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of inflation under the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended. 622.61... civil money penalties by the rate of inflation under the Federal Civil Penalties Inflation Adjustment... is adjusted in accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990, as...

  15. Critical Imperative for the Reform of British Interpretation of Fetal Heart Rate Decelerations: Analysis of FIGO and NICE Guidelines, Post-Truth Foundations, Cognitive Fallacies, Myths and Occam’s Razor

    PubMed Central

    Sholapurkar, Shashikant L.

    2017-01-01

    Cardiotocography (CTG) has disappointingly failed to show good predictability for fetal acidemia or neonatal outcomes in several large studies. A complete rethink of CTG interpretation will not be out of place. Fetal heart rate (FHR) decelerations are the most common deviations, benign as well as manifestation of impending fetal hypoxemia/acidemia, much more commonly than FHR baseline or variability. Their specific nomenclature is important (center-stage) because it provides the basic concepts and framework on which the complex “pattern recognition” of CTG interpretation by clinicians depends. Unfortunately, the discrimination of FHR decelerations seems to be muddled since the British obstetrics adopted the concept of vast majority of FHR decelerations being “variable” (cord-compression). With proliferation of confusing waveform criteria, “atypical variables” became the commonest cause of suspicious/pathological CTG. However, National Institute for Health and Care Excellence (NICE) (2014) had to disband the “typical” and “atypical” terminology because of flawed classifying criteria. This analytical review makes a strong case that there are major and fundamental framing and confirmation fallacies (not just biases) in interpretation of FHR decelerations by NICE (2014) and International Federation of Gynecology and Obstetrics (FIGO) (2015), probably the biggest in modern medicine. This “post-truth” approach is incompatible with scientific practice. Moreover, it amounts to setting oneself for failure. The inertia to change could be best described as “backfire effect”. There is abundant evidence that head-compression (and other non-hypoxic mediators) causes rapid rather than shallow/gradual decelerations. Currently, the vast majority of decelerations are attributed to unproven cord compression underpinned by flawed disproven pathophysiological hypotheses. Their further discrimination based on abstract, random, trial and error criteria remains unresolved suggesting a false premise to begin with. This is not surprising considering that the commonest pathophysiology of intrapartum hypoxemia is contraction-induced reduction in uteroplacental perfusion (sometimes already compromised) and not cord compression at all. This distorted categorization causes confusion, false-alarm fatigue and difficulty in focusing on real pathological decelerations making CTG interpretation dysfunctional ultimately compromising patient safety. Obstetricians/midwives should demand reverting to the previous more scientific British categorization of decelerations based solely on time relationship to contractions as advocated by the pioneers like Hon and Caldeyro-Barcia, rather than accepting the current “post-truth” scenario. PMID:28270884

  16. Apparatus and method for suppressing vibration and displacement of a bellows

    DOEpatents

    Kuklo, T.C.

    1984-01-01

    Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems to separate them from each other, or to maintain the bellows in unsupported relationship between these systems. In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement, the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube in surrounding relationship about a bellows to suppress vibration and displacement thereof. A method for isolating first and second systems from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows between the systems, surrounding the bellows with an inflatable tube, and maintaining a predetermined pressure in the tube to urge the tube in flexible contact with at least some of the convolutions of the bellows.

  17. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  18. Flight Test of a 40-Foot Nominal Diameter Disk-Gap-Band Parachute Deployed at a Mach Number of 3.31 and a Dynamic Pressure of 10.6 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1969-01-01

    A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA supersonic high altitude parachute experiment (SHAPE) program. The test parachute (which included an experimental energy absorber in the attachment riser) was deployed from an instrumented payload by means of a deployment mortar when the payload was at a Mach number of 3.31 and a free-stream dynamic pressure of 10.6 pounds per square foot (508 newtons per square meter). The parachute deployed properly, the canopy inflating to a full-open condition at 1.03 seconds after mortar firing. The first full inflation of the canopy was immediately followed by a partial collapse with subsequent oscillations of the frontal area from about 30 to 75 percent of the full-open frontal area. After 1.07 seconds of operation, a large tear appeared in the cloth near the canopy apex. This tear was followed by two additional tears shortly thereafter. It was later determined that a section of the canopy cloth was severely weakened by the effects of aerodynamic heating. As a result of the damage to the disk area of the canopy, the parachute performance was significantly reduced; however, the parachute remained operationally intact throughout the flight test and the instrumented payload was recovered undamaged.

  19. Underway Recovery Test 6 (URT-6) - Day 2 Activites

    NASA Image and Video Library

    2018-01-18

    Off the rear of the USS Anchorage, the Orion test article is pulled in by a winch line at the rear of the USS Anchorage’s well deck that brings the capsule into the ship, along with four manned LLAMAs (Line Load Attenuation Mechanism Assembly) that control the capsule’s side-to-side movement and a tending line attached to a rigid hull inflatable boat for controlling Orion’s movement behind the ship. The Underway Recovery Test 6 (URT-6) is spearheaded by Kennedy Space Center's NASA Recovery Team. In partnership with the U.S. Navy, the testing will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  20. Comments on SUSY Inflation Models on the Brane

    NASA Astrophysics Data System (ADS)

    Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min

    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.

  1. Alchemical inflation: inflaton turns into Higgs

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu

    2012-11-01

    We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field.

  2. Safer Roadside Crash Walls Would Limit Deceleration

    NASA Technical Reports Server (NTRS)

    Schneider, William C.; Locke, James P.

    2003-01-01

    The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the disadvantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.

  3. Cardiac Deceleration in Newborns: Habituation, Dishabituation, and Offset Responses

    ERIC Educational Resources Information Center

    Adkinson, Cheryl D.; Berg, W. Keith

    1976-01-01

    A total of 20 neonates were presented with mild intensity blue or blue-green light during presentation of habituation and dishabituation stimuli. Orienting and defensive responses were measured by monitoring heart rate deceleration. (GO)

  4. Before the Drop: Engineers Ready Supersonic Decelerator

    NASA Image and Video Library

    2014-05-21

    A saucer-shaped vehicle part of NASA Low-Density Supersonic Decelerator LDSD project designed to test interplanetary landing devices hangs on a tower in preparation for launch at the Pacific Missile Range Facility in Kauai, Hawaii.

  5. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.

  6. Operator control systems and methods for swing-free gantry-style cranes

    DOEpatents

    Feddema, J.T.; Petterson, B.J.; Robinett, R.D. III

    1998-07-28

    A system and method are disclosed for eliminating swing motions in gantry-style cranes while subject to operator control. The present invention comprises an infinite impulse response (IIR) filter and a proportional-integral (PI) feedback controller. The IIR filter receives input signals (commanded velocity or acceleration) from an operator input device and transforms them into output signals in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder. The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor. The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload. 10 figs.

  7. Operator control systems and methods for swing-free gantry-style cranes

    DOEpatents

    Feddema, John T.; Petterson, Ben J.; Robinett, III, Rush D.

    1998-01-01

    A system and method for eliminating swing motions in gantry-style cranes while subject to operator control is presented. The present invention comprises an infinite impulse response ("IIR") filter and a proportional-integral ("PI") feedback controller (50). The IIR filter receives input signals (46) (commanded velocity or acceleration) from an operator input device (45) and transforms them into output signals (47) in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder (25). The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor (27). The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload.

  8. Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase

    PubMed Central

    Watanabe, Rikiya; Hayashi, Kumiko; Ueno, Hiroshi; Noji, Hiroyuki

    2013-01-01

    Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement. PMID:24268150

  9. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.

    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.

  10. Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces.

    PubMed

    Kwon, Hyuk-Min; Paxson, Adam T; Varanasi, Kripa K; Patankar, Neelesh A

    2011-01-21

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual "collision" where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  11. Rapid Deceleration-Driven Wetting Transition during Pendant Drop Deposition on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.; Patankar, Neelesh A.

    2011-01-01

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual “collision” where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  12. Influence of angular acceleration-deceleration pulse shapes on regional brain strains.

    PubMed

    Yoganandan, Narayan; Li, Jianrong; Zhang, Jiangyue; Pintar, Frank A; Gennarelli, Thomas A

    2008-07-19

    Recognizing the association of angular loading with brain injuries and inconsistency in previous studies in the application of the biphasic loads to animal, physical, and experimental models, the present study examined the role of the acceleration-deceleration pulse shapes on region-specific strains. An experimentally validated two-dimensional finite element model representing the adult male human head was used. The model simulated the skull and falx as a linear elastic material, cerebrospinal fluid as a hydrodynamic material, and cerebrum as a linear viscoelastic material. The angular loading matrix consisted coronal plane rotation about a center of rotation that was acceleration-only (4.5 ms duration, 7.8 krad/s/s peak), deceleration-only (20 ms, 1.4 krad/s/s peak), acceleration-deceleration, and deceleration-acceleration pulses. Both biphasic pulses had peaks separated by intervals ranging from 0 to 25 ms. Principal strains were determined at the corpus callosum, base of the postcentral sulcus, and cerebral cortex of the parietal lobe. The cerebrum was divided into 17 regions and peak values of average maximum principal strains were determined. In all simulations, the corpus callosum responded with the highest strains. Strains were the least under all simulations in the lower parietal lobes. In all regions peak strains were the same for both monophase pulses suggesting that the angular velocity may be a better metric than peak acceleration or deceleration. In contrast, for the biphasic pulse, peak strains were region- and pulse-shape specific. Peak values were lower in both biphasic pulses when there was no time separation between the pulses than the corresponding monophase pulse. Increasing separation time intervals increased strains, albeit non-uniformly. Acceleration followed by deceleration pulse produced greater strains in all regions than the other form of biphasic pulse. Thus, pulse shape appears to have an effect on regional strains in the brain.

  13. Health Sector Inflation Rate and its Determinants in Iran: A Longitudinal Study (1995–2008)

    PubMed Central

    TEIMOURIZAD, Abedin; HADIAN, Mohamad; REZAEI, Satar; HOMAIE RAD, Enayatollah

    2014-01-01

    Abstract Background Health price inflation rate is different from increasing in health expenditures. Health expenditures contain both quantity and prices but inflation rate contains prices. This study aimed to determine the factors that affect the Inflation Rate for Health Care Services (IRCPIHC) in Iran. Methods We used Central Bank of Iran data. We estimated the relationship between the inflation rate and its determinants using dynamic factor variable approach. For this purpose, we used STATA software. Results The study results revealed a positive relationship between the overall inflation as well as the number of dentists and health inflation. However, number of beds and physicians per 1000 people had a negative relationship with health inflation. Conclusion When the number of hospital beds and doctors increased, the competition between them increased, as well, thereby decreasing the inflation rate. Moreover, dentists and drug stores had the conditions of monopoly markets; therefore, they could change the prices easier compared to other health sectors. Health inflation is the subset of growth in health expenditures and the determinants of health expenditures are not similar to health inflation. PMID:26060721

  14. Health Sector Inflation Rate and its Determinants in Iran: A Longitudinal Study (1995-2008).

    PubMed

    Teimourizad, Abedin; Hadian, Mohamad; Rezaei, Satar; Homaie Rad, Enayatollah

    2014-11-01

    Health price inflation rate is different from increasing in health expenditures. Health expenditures contain both quantity and prices but inflation rate contains prices. This study aimed to determine the factors that affect the Inflation Rate for Health Care Services (IRCPIHC) in Iran. We used Central Bank of Iran data. We estimated the relationship between the inflation rate and its determinants using dynamic factor variable approach. For this purpose, we used STATA software. The study results revealed a positive relationship between the overall inflation as well as the number of dentists and health inflation. However, number of beds and physicians per 1000 people had a negative relationship with health inflation. When the number of hospital beds and doctors increased, the competition between them increased, as well, thereby decreasing the inflation rate. Moreover, dentists and drug stores had the conditions of monopoly markets; therefore, they could change the prices easier compared to other health sectors. Health inflation is the subset of growth in health expenditures and the determinants of health expenditures are not similar to health inflation.

  15. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  16. Experimental investigation of an accelerometer controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1972-01-01

    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.

  17. Shock sensing dual mode warhead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamblen, M.; Walchak, M.T.; Richmond, L.

    1980-12-31

    A shock sensing dual mode warhead is provided for use against both soft and hard targets and is capable of sensing which type of target has been struck. The warhead comprises a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze shock sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by dynamic pressure caused high impact deceleration and one initiated by low impact deceleration. Themore » firing train actuated by high impact deceleration senses dynamic pressure transmitted, during deformation of the warhead, through the explosive filler which is employed as a fuzing signature. The firing train actuated by low impact deceleration contains a pyrotechnic delay to allow penetration of soft targets.« less

  18. When Parents' Praise Inflates, Children's Self-Esteem Deflates.

    PubMed

    Brummelman, Eddie; Nelemans, Stefanie A; Thomaes, Sander; Orobio de Castro, Bram

    2017-11-01

    Western parents often give children overly positive, inflated praise. One perspective holds that inflated praise sets unattainable standards for children, eventually lowering children's self-esteem (self-deflation hypothesis). Another perspective holds that children internalize inflated praise to form narcissistic self-views (self-inflation hypothesis). These perspectives were tested in an observational-longitudinal study (120 parent-child dyads from the Netherlands) in late childhood (ages 7-11), when narcissism and self-esteem first emerge. Supporting the self-deflation hypothesis, parents' inflated praise predicted lower self-esteem in children. Partly supporting the self-inflation hypothesis, parents' inflated praise predicted higher narcissism-but only in children with high self-esteem. Noninflated praise predicted neither self-esteem nor narcissism. Thus, inflated praise may foster the self-views it seeks to prevent. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  19. Issues on generating primordial anisotropies at the end of inflation

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Firouzjahi, Hassan

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  20. 77 FR 65100 - Adjustment of Civil Monetary Penalties for Inflation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... Penalties for Inflation AGENCY: Commodity Futures Trading Commission ACTION: Final rule. SUMMARY: The... civil monetary penalties, to adjust for inflation. This rule sets forth the maximum, inflation-adjusted... Federal Civil Penalties Inflation Adjustment Act of 1990, as amended by the Debt Collection Improvement...

  1. Mechanism of reduction of newborn metabolic acidemia following application of a rule-based 5-category color-coded fetal heart rate management framework.

    PubMed

    Katsuragi, Shinji; Parer, Julian T; Noda, Shunichi; Onishi, Junji; Kikuchi, Hitomi; Ikeda, Tomoaki

    2015-09-01

    Abstracts Objective: We have reported a 7-fold reduction in newborn umbilical arterial (UA) metabolic acidemia after adoption of a rule-based 5-category color-coded fetal heart rate (FHR) management framework. We sought evidence for the relationship being causal by detailed analysis of FHR characteristics and acid-base status before and after training. Rates of UA pH and base excess (BE) were determined over a 5-year period in a single Japanese hospital, serving mainly low-risk patients, with 3907 deliveries. We compared results in the 2 years before and after a 6-month training period in the FHR management system. We used a previously published classification schema, which was linked to management guidelines. After the training period, there was an increase in the percentage of normal patterns (23%), and a decrease in variable decelerations (14%), late decelerations (8%) and prolonged decelerations (12%) in the last 60 min of labor compared to the pre-training period. There was also a significant reduction in mean UA pH and BE in the groups with decelerations after introduction of the FHR management framework. The adoption of this FHR management system was associated with a reduction of decelerations and metabolic acidemia, without a change in cesarean or vacuum delivery rates. These results suggest that the obstetrical providers were able to better select for intervention those patients destined to develop more severe acidemia, demonstrating a possible causal relationship between the management system and reduced decelerations and metabolic acidemia.

  2. Optimization of stent implantation using a high pressure inflation protocol.

    PubMed

    Vallurupalli, Srikanth; Bahia, Amit; Ruiz-Rodriguez, Ernesto; Ahmed, Zubair; Hakeem, Abdul; Uretsky, Barry F

    2016-01-01

    High-pressure inflation is the universal standard for stent deployment but a specific protocol for its use is lacking. We developed a standardized "pressure optimization protocol" (POP) using time to inflation pressure stability as an endpoint for determining the required duration of stent inflation. The primary study purpose was to determine the stent inflation time (IT) in a large patient cohort using the standardized inflation protocol, to correlate various patient and lesion characteristics with IT, and ascertain in an in vitro study the time for pressure accommodation within an inflation system. Six hundred fifteen stent implants in 435 patients were studied. Multivariate analysis was performed to determine predictors of longer ITs. In an in vitro study, various stents and balloons were inflated in air to determine the pressure accommodation time of the inflation system. The mean stent IT was 104 ± 41 sec (range 30-380 sec). Stent length was the only predictor of prolonged stent inflation. The "accommodation time" in vitro of the stent inflation system itself was 33 ± 24 sec. The protocol was safe requiring premature inflation termination in <3% of stent implants. No serious adverse events occurred. Achieving stable inflation pressure requires on average over 100 sec and may require several minutes in individual cases. Stent length increases IT. These results suggest that the widespread practice of rapid inflation/deflation may not be sufficient to fully expand the stent and that the use of a pressure stability protocol will allow for safe, predictable, and more complete stent deployment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. 33 CFR 175.23 - Serviceable condition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (d) of this section, a properly armed inflation mechanism, complete with a full inflation medium cartridge and all status indicators showing that the inflation mechanism is properly armed; (2) Inflatable chambers that are all capable of holding air; (3) Oral inflation tubes that are not blocked, detached, or...

  4. 26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the Treasury's...

  5. 26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the Treasury's...

  6. Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains

    NASA Astrophysics Data System (ADS)

    Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden

    2016-10-01

    Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe.This presentation will discuss each of these topic areas, showing that a sky rover like T-LEAF is an ideal option for exploration of both the surface and atmosphere of Titan.

  7. 33 CFR 150.507 - How must the operator service inflatable lifesaving appliances?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inflatable lifesaving appliances? 150.507 Section 150.507 Navigation and Navigable Waters COAST GUARD... Specialty Equipment Inflatable Lifesaving Appliances § 150.507 How must the operator service inflatable lifesaving appliances? (a) The operator must service each inflatable liferaft according to 46 CFR subpart 160...

  8. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the inflation...

  9. 26 CFR 1.1286-2 - Stripped inflation-indexed debt instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Stripped inflation-indexed debt instruments. 1....1286-2 Stripped inflation-indexed debt instruments. Stripped inflation-indexed debt instruments. If a Treasury Inflation-Indexed Security is stripped under the Department of the Treasury's Separate Trading of...

  10. A preliminary structural analysis of space-based inflatable tubular frame structures

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    The use of inflatable structures has often been proposed for aerospace and planetary applications. The advantages of such structures include low launch weight and easy assembly. The use of inflatables for applications requiring very large frame structures intended for aerospace use are proposed. In order to consider using an inflated truss, the structural behavior of the inflated frame must be examined. The statics of inflated tubes as beams was discussed in the literature, but the dynamics of these elements has not received much attention. In an effort to evaluate the vibration characteristics of the inflated beam a series of free vibration tests of an inflated fabric cantilevers were performed. Results of the tests are presented and models for system behavior posed.

  11. Orbital Transfer Vehicle (space taxi) with aerobraking at Earth and Mars

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report shall cover all major aspects of the design of an Aeroassisted Manned Transfer Vehicle (or TAXI) for use as part of advanced manned Mars missions based on a cycling ship concept. Along with the heliocentric orbiting Cycling Spacecraft, such a TAXI would be a primary component of a long-term transportation system for Mars exploration. The Aeroassisted Manned Transfer Vehicle (AMTV) design developed shall operate along transfer trajectories between Earth and a Cycling Spacecraft (designed by the University of Michigan) and Mars. All operations of the AMTV shall be done primarily within the sphere of influence of the two planets. Maximum delta-V's for the vehicle have been established near 9 km/sec, with transfer durations of about 3 days. Acceleration deltaV's will be accomplished using 3 SSME-based hydrogen-oxygen chemical rockets (l(sub sp) = 485 sec & Thrust greater than = 300,00 Ib(sub f)/engine) with a thrust vector directly opposite the aerobraking deceleration vector. The aerobraking deceleration portion of an AMTV mission would be accomplished in this design by a moderate L/D aeroshield of an ellipsoidally-blunt, raked-off, elliptic cone (EBROEC) shape. The reusable thermal protection material comprising the shield will consist of a flexible, multi-layer, ceramic fabric stretched over a lightweight, rigid, shape - defining truss structure. Behind this truss, other components, including the engine supports, would be attached and protected from heating during aerobraking passes. Among these other components would be 2 LOX tanks and 4 LH2 tanks (and their support frames) holding over 670,000 lbm of propellant necessary to impart the required delta-V to the 98,000 lbm burnout mass vehicle. A 20,000 lbm crew module with docking port (oriented parallel to the accel./decel. axis) will provide accommodations for 9 crew members (11 under extreme conditions) for durations up to seven days, thus allowing extra time for emergency situations. This AMTV will be equipped with complete guidance, navigation, control and communications systems modules attached near the crew module. Control of vehicle attitude will be provided by a set of small reaction control thrusters quite similar to those on the current Space Shuttle. All crew module and vehicle electrical functions will be powered via a set of H2/O2 fuel cells with radio-isotopic generators as backup supplies. Also included in the burnout mass of 98,000 lb is allowance for 10,000 lbm of miscellaneous payload (scientific equipment or other supplies).

  12. Analysis of Automobile Crash Test Data and Recommendations for Acquiring and Filtering Accelerometer Data

    DOT National Transportation Integrated Search

    1975-06-01

    An attempt is made to define the meaningful frequency content of occupant compartment deceleration data in order to establish effective filtering guidelines which will enhance the important features of the deceleration pulse. Acceleration and displac...

  13. Rotary Wing Deceleration Use on Titan

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Steiner, Ted J.

    2011-01-01

    Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.

  14. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  15. Turbulent pipe flows subjected to temporal decelerations

    NASA Astrophysics Data System (ADS)

    Jeong, Wongwan; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  16. Phasic heart rate responses and cardiac cycle time in auditory choice reaction time.

    PubMed

    van der Molen, M W; Somsen, R J; Orlebeke, J F

    1983-01-01

    This study investigated the cardiovascular-behavioral interaction under short and long stimulus interval conditions. In addition, the cardiovascular-behavioral interaction was studied as affected by cardiac cycle duration. Fourteen subjects performed a choice reaction time (RT) task employing a mixed speed-accuracy tradeoff design in which reactions were paced to coincide with a signal that occurs randomly at either 200 or 500 msec after the reaction stimulus. The preparatory interval between a warning stimulus and a lead-reaction stimulus complex was also varied (2 vs. 4.5 sec). Anticipatory deceleration occurred within the 4.5 sec interval but not in the 2 sec interval. The depth of anticipatory deceleration did not discriminate between fast and slow reactions; but an earlier shift from deceleration to acceleration was associated with fast reactions. The effect of stimulus timing relative to the R-wave of the electrocardiogram was also analysed. Meaningful stimuli tended to produce cardiac slowing as previously described in the literature. Early occurring stimuli prolong the cycle of their occurrence more than late occurring stimuli. The later prolong the subsequent cycle. Cardiac cycle time effects were absent for unattended stimuli. The results of anticipatory deceleration suggested that the depth of deceleration was regulated by time-uncertainty and speed-accuracy criterion.

  17. Inflation data clustering of some cities in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Adi; Susanto, Bambang; Mahatma, Tundjung

    2017-06-01

    In this paper, it is presented how to cluster inflation data of cities in Indonesia by using k-means cluster method and fuzzy c-means method. The data that are used is limited to the monthly inflation data from 15 cities across Indonesia which have highest weight of donations and is supplemented with 5 cities used in the calculation of inflation in Indonesia. When they are applied into two clusters with k = 2 for k-means cluster method and c = 2, w = 1.25 for fuzzy c-means cluster method, Ambon, Manado and Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). However, if they are applied into two clusters with c=2, w=1.5, Surabaya, Medan, Makasar, Samarinda, Makasar, Manado, Ambon dan Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). Furthermore, when we use two clusters with k=3 for k-means cluster method and c=3, w = 1.25 for fuzzy c-means cluster method, Ambon tends to become member of first cluster (high inflation), Manado and Jayapura tend to become member of second cluster (moderate inflation), other cities tend to become members of third cluster (low inflation). If it is applied c=3, w = 1.5, Ambon, Manado and Jayapura tend to become member of first cluster (high inflation), Surabaya, Bandung, Medan, Makasar, Banyuwangi, Denpasar, Samarinda dan Mataram tend to become members of second cluster (moderate inflation), meanwhile other cities tend to become members of third cluster (low inflation). Similarly, interpretation can be made to the results of applying 5 clusters.

  18. Fluorescence Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Alderfer, D. W.; Danehy, P. M.; Inma, J. A.; Berger, K. T.; Buck, G. M.; Schwartz, R J.

    2007-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Most of the models did not survive repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2-inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various configurations were studied including different sting placements relative to the models, different model orientations and attachment angles, and different NO seeding methods. The angle of attack of the models was also varied and the location of the laser sheet was scanned to provide three-dimensional flowfield information. Virtual Diagnostics Interface technology, developed at NASA Langley, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images. Lessons learned and recommendations for future experiments are discussed.

  19. 12 CFR 19.240 - Inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b) The...

  20. 77 FR 16907 - Special Conditions: Embraer S.A., Model EMB 505; Inflatable Side-Facing Seat Three-Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... inflatable portion of the restraint system will rely on sensors to electronically activate the inflator for... inflatable restraint system relies on sensors to electronically activate the inflator for deployment. These sensors could be susceptible to inadvertent activation, causing deployment in a potentially unsafe manner...

  1. Soft inflation

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  2. Soft inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  3. Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard

    2000-01-01

    The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.

  4. INFLATE: INFlate Landing Apparatus Technology

    NASA Astrophysics Data System (ADS)

    Koryanov, V. V. K.; Da-Poian, V. D. P.

    2018-02-01

    Our project, named INFLATE (INFlatable Landing Apparatus Technology), aims at reducing space landing risks and constraints and so optimizing space missions (reducing cost, mass, and risk and in the same time improving performance).

  5. BMS in cosmology

    NASA Astrophysics Data System (ADS)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  6. The Beginning and End of the Universe

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    Cosmology is the scientific study of how the Universe began more than 13 billion years ago, how its properties have changed, and what its future might be. The balance of forces and energy cause the Universe to expand, first accelerating, then decelerating and then accelerating again. Within this overall structure, the interplay of atoms and light with the mysterious dark matter and dark energy causes stars and galaxies to form and evolve, leading to galaxies like our own home, the Milky Way. Observational cosmology uses telescopes on Earth and in space to reach back in time to find the faint remaining echoes of the Big Bang and to trace the formation and evolution of the galaxies and structures that fill the Universe. In this lecture, Dr. Gardner will give an overview of cosmology, outlining the 13-billion year history of the Universe, and highlighting the very rapid progress this field has made in the last decade. He will discuss the role that NASA space telescopes have played in this progress and will continue to play in the years to come. He will give a time-based history of the Universe, discussing the successive processes that formed matter, particles, atoms, stars and galaxies. In particular, he will focus on cosmological inflation, the rapid accelerated expansion that marks the beginning of the Universe, and dark energy, a tenuous substance that overcomes gravity and whose properties will determine its final fate.

  7. The Beginning and End of the Universe

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2008-01-01

    Cosmology is the scientific study of how the Universe began more than 13 billion years ago, how its properties have changed, and what its future might be. The balance of forces and energy cause the Universe to expand, first accelerating, then decelerating and then accelerating again. Within this overall structure, the interplay of atoms and light with the mysterious dark matter and dark energy causes stars and galaxies to form and evolve, leading to galaxies like our own home, the Milky Way. Observational cosmology uses telescopes on Earth and in space to reach back in time to find the faint remaining echoes of the Big Bang and to trace the formation and evolution of the galaxies and structures that fill the Universe. In this lecture, Dr. Gradner will give an overview of cosmology, outlining the 13-billion year history of the Universe, and highlighting the very rapid progress this field has made i the last decade. He will discuss the role that NASA space telescopes have played in this progress and wil continue to play in the years to come. He will give a time-based history of the Universe, discussing the successive processes that formed matter, particles, atoms, stars and galaxies. In particular, he will focus on cosmological inflation, the rapid accelerated expansion that marks the beginning of the Universe, and dark energy, a tenuous substance that overcomes gravity and whose properties will determine its final fate.

  8. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  9. Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Green, David N.; Neuberg, Jürgen

    2006-05-01

    Low-frequency volcanic earthquakes are indicators of magma transport and activity within shallow conduit systems. At a number of volcanoes, these events exhibit a high degree of waveform similarity providing a criterion for classification. Using cross-correlation techniques to quantify the degree of similarity, we develop a method to sort events into families containing comparable waveforms. Events within a family have been triggered within one small source volume from which the seismic wave has then travelled along an identical path to the receiver. This method was applied to a series of 16 low-frequency earthquake swarms, well correlated with cyclic deformation recorded by tiltmeters, at Soufrière Hills Volcano, Montserrat, in June 1997. Nine waveform groups were identified containing more than 45 events each. The families are repeated across swarms with only small changes in waveform, indicating that the seismic source location is stable with time. The low-frequency seismic swarms begin prior to the point at which inflation starts to decelerate, suggesting that the seismicity indicates or even initiates a depressurisation process. A major dome collapse occurred within the time window considered, removing the top 100 m of the dome. This event caused activity within some families to pause for several cycles before reappearing. This shows that the collapse did not permanently disrupt the source mechanism or the path of the seismic waves.

  10. BMS in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, A.; Riotto, A.; Center for Astroparticle Physics

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformationsmore » which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.« less

  11. Validation of a computerized algorithm to quantify fetal heart rate deceleration area.

    PubMed

    Gyllencreutz, Erika; Lu, Ke; Lindecrantz, Kaj; Lindqvist, Pelle G; Nordstrom, Lennart; Holzmann, Malin; Abtahi, Farhad

    2018-05-16

    Reliability in visual cardiotocography interpretation is unsatisfying, which has led to development of computerized cardiotocography. Computerized analysis is well established for antenatal fetal surveillance, but has yet not performed sufficiently during labor. We aimed to investigate the capacity of a new computerized algorithm compared to visual assessment in identifying intrapartum fetal heart rate baseline and decelerations. Three-hundred-and-twelve intrapartum cardiotocography tracings with variable decelerations were analysed by the computerized algorithm and visually examined by two observers, blinded to each other and the computer analysis. The width, depth and area of each deceleration was measured. Four cases (>100 variable decelerations) were subject to in-depth detailed analysis. The outcome measures were bias in seconds (width), beats per minute (depth), and beats (area) between computer and observers by using Bland-Altman analysis. Interobserver reliability was determined by calculating intraclass correlation and Spearman rank analysis. The analysis (312 cases) showed excellent intraclass correlation (0.89-0.95) and very strong Spearman correlation (0.82-0.91). The detailed analysis of > 100 decelerations in 4 cases revealed low bias between the computer and the two observers; width 1.4 and 1.4 seconds, depth 5.1 and 0.7 beats per minute, and area 0.1 and -1.7 beats. This was comparable to the bias between the two observers; 0.3 seconds (width), 4.4 beats per minute (depth), and 1.7 beats (area). The intraclass correlation was excellent (0.90-0.98). A novel computerized algorithm for intrapartum cardiotocography analysis is as accurate as gold standard visual assessment with high correlation and low bias. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Older drivers and rapid deceleration events: Salisbury Eye Evaluation Driving Study.

    PubMed

    Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K

    2013-09-01

    Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers aged 67-87 were recruited from the Maryland Motor Vehicle Administration's rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created driving monitoring system (DMS) was used to capture rapid deceleration events (RDEs), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving<59 miles during the 5-day period of monitoring. However, older drivers with RDE's were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more "fit", with better measures of vision and cognition compared to those who do not have events of rapid deceleration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Older Drivers and Rapid Deceleration Events: Salisbury Eye Evaluation Driving Study

    PubMed Central

    Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K

    2012-01-01

    Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers ages 67 to 87 were recruited from the Maryland Motor Vehicle Administration’s rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created Driving Monitor System (DMS) was used to capture rapid deceleration events (RDE), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving <59 miles during the 5-day period of monitoring. However, older drivers with RDE’s were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more “fit”, with better measures of vision and cognition compared to those who do not have events of rapid deceleration. PMID:22742775

  14. Applicability of Newton's law of cooling in monetary economics

    NASA Astrophysics Data System (ADS)

    Todorović, Jadranka Đurović; Tomić, Zoran; Denić, Nebojša; Petković, Dalibor; Kojić, Nenad; Petrović, Jelena; Petković, Biljana

    2018-03-01

    Inflation is a phenomenon which attracts the attention of many researchers. Inflation is not a recent date phenomenon, but it has existed ever since money emerged in world's first economies. With the development of economy and market, inflation developed as well. Today, even though there is a considerable number of research papers on inflation, there is still not enough knowledge about all factors which might cause inflation, and influence its evolution and dynamics. Regression analysis is a powerful statistical tool which might help analyse a vast amount of data on inflation, and provide an answer to the question about the factors of inflation, as well as the way those factors influence it. In this article Newton's Law of Cooling was applied to determine the long-term dynamics of monetary aggregates and inflation in Serbia and Croatia.

  15. Kähler-driven tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David

    2012-11-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.

  16. All puffed out: do pufferfish hold their breath while inflated?

    PubMed Central

    McGee, Georgia Evelyn; Clark, Timothy Darren

    2014-01-01

    The inflation response of pufferfishes is one of the most iconic predator defence strategies in nature. Current dogma suggests that pufferfish inflation represents a breath-holding response, whereby gill oxygen uptake ceases for the duration of inflation and cutaneous respiration increases to compensate. Here, we show that the black-saddled pufferfish (Canthigaster valentini) has an excellent capacity for oxygen uptake while inflated, with uptake rates increasing to five-times that of resting levels. Moreover, we show that this species has negligible capacity for cutaneous respiration, concluding that the gills are the primary site of oxygen uptake while inflated. Despite this, post-deflation recovery of aerobic metabolism took an average of 5.6 h, suggesting a contribution of anaerobic metabolism during pre-inflation activity and during the act of ingesting water to achieve inflation. PMID:25472941

  17. Perioperative Internal Iliac Artery Balloon Occlusion, In the Setting of Placenta Accreta and Its Variants: The Role of the Interventional Radiologist.

    PubMed

    Petrov, David A; Karlberg, Benjamin; Singh, Kamalpreet; Hartman, Matthew; Mittal, Pardeep K

    2017-11-10

    Placenta accreta and its variants (increta and percreta) are conditions of abnormal placentation that are encountered with increasing frequency. The spectrum of placenta accreta (including placenta increta and percreta) involves an abnormal attachment of the placental chorionic villi to the uterine myometrium. This abnormal attachment leads to increased adherence of the placenta to the uterus and abnormal placental-uterine separation at the time of delivery. Placental invasion into, or through the myometrium is associated with increased postpartum morbidity and mortality as a result of uterine hemorrhage during and following cesarean section. A multidisciplinary clinical approach to the treatment of patients with placenta accreta is recommended by the American College of Obstetricians and Gynecologists. As potential members of an interdisciplinary team, interventional radiologists can perform prophylactic internal iliac arterial balloon occlusion as an adjunctive therapy for reducing potentially life-threatening postpartum hemorrhage. The procedure involves placement of a balloon catheter into the internal iliac or common iliac arteries bilaterally prior to cesarean section. Following delivery, and prior to placental separation, the catheter balloons are inflated with a pre-determined volume of saline leading to transient occlusion of the internal iliac arteries and reduced uterine blood flow. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Distinguishing between extra natural inflation and natural inflation after BICEP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp

    2014-08-01

    In this paper, we carefully calculated the tensor-to-scalar ratio, the running spectral index, and the running of running spectrum for (extra) natural inflation in order to compare with recent BICEP2 data, PLANCK satellite data and future 21 cm data. We discovered that the prediction for running spectral index and the running of running spectrum in natural inflation is different from that in the case of extra natural inflation. Near future observation for the running spectral index can only provide marginal accuracy which may not allow us distinguishing between extra natural inflation from natural inflation clearly unless the experimental accuracy canmore » be further improved.« less

  19. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  20. NOx profile around a signalized intersection of busy roadway

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam

    2014-11-01

    The NOx pollution profile around a signalized intersection of a busy roadway was investigated to understand the effect of traffic control on urban air pollution. Traffic flow patterns were classified into three categories of quasi-cruising, a combination of deceleration and acceleration, and a combination of deceleration, idling, and acceleration. The spatial distribution of air pollution levels around an intersection could be represented as a quasi-normal distribution, whose peak height was aggravated by increased emissions due to transient driving patterns. The peak concentration of NOx around the signalized intersection for the deceleration, idling, and acceleration category was five times higher than that for the quasi-cruising category. Severe levels of NOx pollution tailed off approximately 400 m from the center of the intersection. Approximately 200-1000 ppb of additional NOx was observed when traffic was decelerating, idling, and accelerating within the intersection zone, resulting in high exposure levels for pedestrians around the intersection. We propose a fluctuating horizontal distribution of motor vehicle-induced air pollutants as a function of time.

  1. Inhomogeneities in dusty universe — a possible alternative to dark energy?

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.

    2011-03-01

    There have been of late renewed debates on the role of inhomogeneities to explain the observed late acceleration of the universe. We have looked into the problem analytically with the help of the well known spherically symmetric but inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher dimensions. It is observed that in contrast to the claim made by Kolb et al. the presence of inhomogeneities as well as extra dimensions can not reverse the signature of the deceleration parameter if the matter field obeys the energy conditions. The well known Raychaudhuri equation also points to the same result. Without solving the field equations explicitly it can, however, be shown that although the total deceleration is positive everywhere nevertheless it does not exclude the possibility of having radial acceleration, even in the pure dust universe, if the angular scale factor is decelerating fast enough and vice versa. Moreover it is found that introduction of extra dimensions can not reverse the scenario. To the contrary it actually helps the decelerating process.

  2. Tunable inertia of chiral magnetic domain walls

    PubMed Central

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-01-01

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii–Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii–Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices. PMID:27882932

  3. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  4. Drag Characteristics of Several Towed Decelerator Models at Mach 3

    NASA Technical Reports Server (NTRS)

    Miserentino, Robert; Bohon, Herman L.

    1970-01-01

    An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end.

  5. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  6. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  7. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  8. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  9. Gravitational waves from warm inflation

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bin; Wang, He; Zhu, Jian-Yang

    2018-03-01

    A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about warm inflation. First, we discuss the stability property about warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during warm inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from cold inflation, warm inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from cold inflation.

  10. Cosmological perturbations and noncommutative tachyon inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Daojun; Li Xinzhou

    2004-12-15

    The motivation for studying the rolling tachyon and noncommutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbations of the metric and investigate the cosmological perturbations in the commutative and noncommutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian. Although at lowest order the predictions of tachyon inflation are no different than those from standard slow-roll inflation, due to the modified inflationary dynamics there exists modifications to the power spectra of fluctuations generated during inflation. Inmore » the noncommutative tachyon inflation scenario, the stringy noncommutativity of spacetime results in corrections to the primordial power spectrum that lead to a spectral index that is greater than 1 on large scales and less than 1 on small scales as the first-year results of the Wilkinson Microwave Anisotropy Probe indicate.« less

  11. Toward inflation models compatible with the no-boundary proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Dong-il; Yeom, Dong-han, E-mail: dongil.j.hwang@gmail.com, E-mail: innocent.yeom@gmail.com

    2014-06-01

    In this paper, we investigate various inflation models in the context of the no-boundary proposal. We propose that a good inflation model should satisfy three conditions: observational constraints, plausible initial conditions, and naturalness of the model. For various inflation models, we assign the probability to each initial condition using the no-boundary proposal and define a quantitative standard, typicality, to check whether the model satisfies the observational constraints with probable initial conditions. There are three possible ways to satisfy the typicality criterion: there was pre-inflation near the high energy scale, the potential is finely tuned or the inflationary field space ismore » unbounded, or there are sufficient number of fields that contribute to inflation. The no-boundary proposal rejects some of naive inflation models, explains some of traditional doubts on inflation, and possibly, can have observational consequences.« less

  12. Biodegradable Sonobuoy Decelerators

    DTIC Science & Technology

    2015-06-01

    material. Two materials studied were polyvinyl alcohol (PVOH) and polyhydroxyalkanoate (PHA). Single and multilayered PVOH films were evaluated as well...readiness point for technology transition. 15. SUBJECT TERMS biodegrade, decelerator, sonobuoy, polyvinyl alcohol, polyhydroxyalkanoate , marine...Center NGO non-governmental organizations NOAA National Oceanic and Atmospheric Administration PHA polyhydroxyalkanoate PIA Parachute Industry

  13. Application of energy derivative method to determine the structural components' contribution to deceleration in crashes.

    PubMed

    Nagasaka, Kei; Mizuno, Koji; Thomson, Robert

    2018-03-26

    For occupant protection, it is important to understand how a car's deceleration time history in crashes can be designed using efficient of energy absorption by a car body's structure. In a previous paper, the authors proposed an energy derivative method to determine each structural component's contribution to the longitudinal deceleration of a car passenger compartment in crashes. In this study, this method was extended to 2 dimensions in order to analyze various crash test conditions. The contribution of each structure estimated from the energy derivative method was compared to that from a conventional finite element (FE) analysis method using cross-sectional forces. A 2-dimensional energy derivative method was established. A simple FE model with a structural column connected to a rigid body was used to confirm the validity of this method and to compare with the result of cross-sectional forces determined using conventional analysis. Applying this method to a full-width frontal impact simulation of a car FE model, the contribution and the cross-sectional forces of the front rails were compared. In addition, this method was applied to a pedestrian headform FE simulation in order to determine the influence of the structural and inertia forces of the hood structures on the deceleration of the headform undergoing planar motion. In an oblique impact of the simple column and rigid body model, the sum of the contributions of each part agrees with the rigid body deceleration, which indicates the validity of the 2-dimensional energy derivative method. Using the energy derivative method, it was observed that each part of the column contributes to the deceleration of the rigid body by collapsing in the sequence from front to rear, whereas the cross-sectional force at the rear of the column cannot detect the continuous collapse. In the full-width impact of a car, the contributions of the front rails estimated in the energy derivative method was smaller than that using the cross-sectional forces at the rear end of the front rails due to the deformation of the passenger compartment. For a pedestrian headform impact, the inertial and structural forces of the hood contributed to peaks of the headform deceleration in the initial and latter phases, respectively. Using the 2-dimensional energy derivative method, it is possible to analyze an oblique impact or a pedestrian headform impact with large rotations. This method has advantages compared to the conventional approach using cross-sectional forces because the contribution of each component to system deceleration can be determined.

  14. The Influence of Bearing-Down Technique on the Fetal Heart Rate during the Second Stage of Labor.

    NASA Astrophysics Data System (ADS)

    Perlis, Deborah Woolley

    This experimental study contrasted the effects of sustained bearing-down efforts with short bearing-down efforts during the first twelve contractions of the second stage of labor. A single subject design with intrasubject replication was used to compare the incidence, duration, and amplitude of fetal heart rate decelerations, as well as the beat-to-beat variability of those decelerations. Neonatal outcome was evaluated with umbilical arterial cord blood pH values and the one- and five-minute APGAR scores. Thirty -two nulliparous women alternated the use of vigorous, sustained Valsalva-style bearing-down efforts with shorter efforts called minipushes every three contractions during the second stage of labor. Sixteen women began the second stage using the Valsalva-style bearing-down technique; sixteen began the second stage using the minipush. The fetal heart rate was recorded by an internal fetal scalp electrode. Uterine contractility was measured by an internal uterine pressure catheter. A repeated-measures MANOVA showed a significant interaction between the order of implementation of the bearing-down techniques and the amplitude of the fetal heart rate decelerations. A similar comparison of the duration of the decelerations showed no significant differences between the two bearing-down techniques. Likewise, analysis of the incidence of fetal heart rate decelerations and the magnitude of the beat-to-beat variability revealed no significant differences between the two techniques.

  15. On the electrostatic deceleration of argon atoms in high Rydberg states by time-dependent inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Merkt, F.

    2005-06-01

    Argon atoms in a pulsed supersonic expansion are prepared in selected Stark components of Rydberg states with effective principal quantum number in the range n* = 15-25. When traversing regions of inhomogeneous electric fields, these atoms get accelerated or decelerated depending on whether the Stark states are low- or high-field seeking states. Using a compact electrode design, which enables the application of highly inhomogeneous and time-dependent electric fields, the Rydberg atoms experience kinetic energy changes of up to 1.2 × 10-21 J (i.e. 60 cm-1 in spectroscopic units) in a single acceleration/deceleration stage of 3 mm length. The resulting differences in the velocities of the low- and high-field seeking states are large enough that the corresponding distributions of times of flight to the Rydberg particle detector are fully separated. As a result, efficient spectral searches of the Rydberg states best suited for acceleration/deceleration experiments are possible. Numerical simulations of the particle trajectories are used to analyse the time-of-flight distributions and to optimize the time dependence of the inhomogeneous electric fields. The decay of the Rydberg states by fluorescence, collisions and transitions induced by black-body radiation takes place on a timescale long enough not to interfere significantly with the deceleration during the first ~5 µs.

  16. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  17. Pseudosmooth tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur

    2012-08-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ``tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.

  18. Apparatus and method for suppressing vibration and displacement of a bellows

    DOEpatents

    Kuklo, Thomas C.

    1985-01-01

    Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems (FIG. 3B) to separate them from each other, or to maintain the bellows in unsupported relationship between these systems (FIG. 4B). In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement (FIG. 4B), the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube (20) in surrounding relationship about a bellows (14) to suppress vibration and displacement thereof. A method for isolating first and second systems (11,12) from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows (14) between the systems (11,12), surrounding the bellows with an inflatable tube (20), and maintaining a predetermined pressure in the tube (20) to urge the tube in flexible contact with at least some of the convolutions of the bellows (14).

  19. Time-dependent strains and stresses in a pumpkin balloon

    NASA Technical Reports Server (NTRS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  20. Inflatable antennas for microwave pwoer transmission

    NASA Technical Reports Server (NTRS)

    Williams, Geoff

    1989-01-01

    Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only.

  1. Seven lessons from manyfield inflation in random potentials

    NASA Astrophysics Data System (ADS)

    Dias, Mafalda; Frazer, Jonathan; Marsh, M. C. David

    2018-01-01

    We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the `transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of `approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2–100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the `generic predictions' of single-field inflation can be emergent features of complex inflation models.

  2. System and method of designing a load bearing layer of an inflatable vessel

    NASA Technical Reports Server (NTRS)

    Spexarth, Gary R. (Inventor)

    2007-01-01

    A computer-implemented method is provided for designing a restraint layer of an inflatable vessel. The restraint layer is inflatable from an initial uninflated configuration to an inflated configuration and is constructed from a plurality of interfacing longitudinal straps and hoop straps. The method involves providing computer processing means (e.g., to receive user inputs, perform calculations, and output results) and utilizing this computer processing means to implement a plurality of subsequent design steps. The computer processing means is utilized to input the load requirements of the inflated restraint layer and to specify an inflated configuration of the restraint layer. This includes specifying a desired design gap between pairs of adjacent longitudinal or hoop straps, whereby the adjacent straps interface with a plurality of transversely extending hoop or longitudinal straps at a plurality of intersections. Furthermore, an initial uninflated configuration of the restraint layer that is inflatable to achieve the specified inflated configuration is determined. This includes calculating a manufacturing gap between pairs of adjacent longitudinal or hoop straps that correspond to the specified desired gap in the inflated configuration of the restraint layer.

  3. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Inspections § 169.849 Posting placards containing instructions for launching and inflating inflatable... accessible to the ship's company and guests approved placards containing instructions for launching and... determined by the Officer in Charge, Marine Inspection. ...

  4. The Other Inflation

    ERIC Educational Resources Information Center

    Aristides

    1976-01-01

    The other inflation is grade inflation, the label affixed to the indisputable rise in the grade-point averages of undergraduates at public and private, elite and community colleges and universities across the country. The effects of grade inflation upon academic performance were assessed. (Author/RK)

  5. Constant-roll tachyon inflation and observational constraints

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  6. Inflatable Vehicles for In-Situ Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    2001-01-01

    Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats. Another branch of space inflatable technology has also considered developing ambient-filled, solar balloons for Mars as well as ambient-filled inflatable rovers. More recently, some of these inflatable technologies have been applied to the outer solar system bodies with the result that there are some rather unique and compelling inflatable mission capabilities for in situ explorations of Titan, Triton, Uranus, and Neptune. Additional information is contained in the original extended abstract.

  7. 77 FR 26948 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... sliding member cracks is high compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. Starting at deceleration stress levels somewhat below limit load, the high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at...

  8. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  9. Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs.

    PubMed

    Klingenberg, Claus; Sobotka, Kristina S; Ong, Tracey; Allison, Beth J; Schmölzer, Georg M; Moss, Timothy J M; Polglase, Graeme R; Dawson, Jennifer A; Davis, Peter G; Hooper, Stuart B

    2013-05-01

    The 2010 ILCOR neonatal resuscitation guidelines do not specify appropriate inflation times for the initial lung inflations in apnoeic newborn infants. The authors compared three ventilation strategies immediately after delivery in asphyxiated newborn lambs. Experimental animal study. Facility for animal research. Eighteen near-term lambs (weight 3.5-3.9 kg) delivered by caesarean section. Asphyxia was induced by occluding the umbilical cord and delaying ventilation onset (10-11 min) until mean carotid blood pressure (CBP) was ≤22 mm Hg. Animals were divided into three groups (n=6) and ventilation started with: (1) inflation times of 0.5 s at a ventilation rate 60/min, (2) five 3 s inflations or (3) a single 30 s inflation. Subsequent ventilation used inflations at 0.5 s at 60/min for all groups. Times to reach a heart rate (HR) of 120 bpm and a mean CBP of 40 mm Hg. Secondary outcome was change in lung compliance. Median time to reach HR 120 bpm and mean CBP 40 mm Hg was significantly shorter in the single 30 s inflation group (8 s and 74 s) versus the 5×3 s inflation group (38 s and 466 s) and the conventional ventilation group (64 s and 264 s). Lung compliance was significantly better in the single 30 s inflation group. A single sustained inflation of 30 s immediately after birth improved speed of circulatory recovery and lung compliance in near-term asphyxiated lambs. This approach for neonatal resuscitation merits further investigation.

  10. Inflatable nested toroid structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.

  11. Adiabatic regularization of the power spectrum in nonminimally coupled general single-field inflation

    NASA Astrophysics Data System (ADS)

    Alinea, Allan L.; Kubota, Takahiro

    2018-03-01

    We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.

  12. Structure analysis of tax revenue and inflation rate in Banda Aceh using vector error correction model with multiple alpha

    NASA Astrophysics Data System (ADS)

    Sofyan, Hizir; Maulia, Eva; Miftahuddin

    2017-11-01

    A country has several important parameters to achieve economic prosperity, such as tax revenue and inflation rate. One of the largest revenues of the State Budget in Indonesia comes from the tax sector. Meanwhile, the rate of inflation occurring in a country can be used as an indicator, to measure the good and bad economic problems faced by the country. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the structure of tax revenue relations and inflation rate. This study aims to produce the best VECM (Vector Error Correction Model) with optimal lag using various alpha and perform structural analysis using the Impulse Response Function (IRF) of the VECM models to examine the relationship of tax revenue, and inflation in Banda Aceh. The results showed that the best model for the data of tax revenue and inflation rate in Banda Aceh City using alpha 0.01 is VECM with optimal lag 2, while the best model for data of tax revenue and inflation rate in Banda Aceh City using alpha 0.05 and 0,1 VECM with optimal lag 3. However, the VECM model with alpha 0.01 yielded four significant models of income tax model, inflation rate of Banda Aceh, inflation rate of health and inflation rate of education in Banda Aceh. While the VECM model with alpha 0.05 and 0.1 yielded one significant model that is income tax model. Based on the VECM models, then there are two structural analysis IRF which is formed to look at the relationship of tax revenue, and inflation in Banda Aceh, the IRF with VECM (2) and IRF with VECM (3).

  13. Prolonged high-pressure is required for optimal stent deployment as assessed by optical coherence tomography.

    PubMed

    Cook, Jeffrey R; Mhatre, Ajay; Wang, Fen Wei; Uretsky, Barry F

    2014-03-01

    Optimizing stent deployment is important for both acute- and long-term outcomes. High-pressure balloon inflation is the standard for coronary stent implantation. However, there is no standardized inflation protocol. We hypothesized that prolonged high-pressure balloon inflation until stabilization of inflation pressure is superior to a rapid inflation/deflation sequence for both stent expansion and strut apposition. A high-pressure rapid inflation/deflation sequence was deployed followed by angiography to assure no residual stenosis. Optical coherence tomography (OCT) was then performed followed by prolonged inflation until balloon pressure was stabilized for 30 sec using the same balloon at the same pressure as the rapid sequence. A second OCT run was then done. Thirteen thousand nine hundred thirteen stent struts were evaluated by OCT in 12 patients undergoing successful stenting. Stent expansion improved with prolonged (206 ± 115 sec) vs. rapid (28 ± 17 sec) inflation for both minimal stent diameter (3.0 ± 0.5 vs. 2.75 ± 0.44 mm, P < 0.0001) and area (7.83 ± 2.45 vs. 6.63 ± 1.85 mm(2) , P = 0.0003). The number of malapposed struts decreased (45 ± 41 vs. 88 ± 75, P = 0.005) as did the maximal malapposed strut distance (0.31 ± 0.2 vs. 0.43 ± 0.2 mm, P = 0.0001). Factors related to strut malapposition after rapid inflation included localized asymmetry in 67%, stent underexpansion in 75%, and stent undersizing in 67%. These data demonstrate that prolonged inflation is superior to a rapid inflation/deflation technique for both stent expansion and strut apposition. We recommend for routine stent deployment a prolonged inflation protocol as described above to optimize stent deployment. Copyright © 2012 Wiley Periodicals, Inc.

  14. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  15. 76 FR 74625 - Civil Monetary Penalties Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ...-2011] RIN 1125-AA69 Civil Monetary Penalties Inflation Adjustment AGENCIES: U.S. Customs and Border... adjust for inflation certain civil monetary penalties assessed under the Immigration and Nationality Act... assessed under the INA. The Federal Civil Penalties Inflation Adjustment Act of 1990 (Adjustment Act...

  16. Grade Inflation in Higher Education: A Comparative Study.

    ERIC Educational Resources Information Center

    Kolevzon, Michael S.

    1981-01-01

    Ten departments with high grade inflation rates during a seven-year period were compared with 10 departments within the same university displaying lower grade inflation rates. Higher grade inflation rates were related to perceived increases in the demands placed upon the academicians' role. (Author/MLW)

  17. Nonthermal gravitino production in tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Dutta, Koushik

    2015-10-01

    We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.

  18. Attractors, universality, and inflation

    NASA Astrophysics Data System (ADS)

    Downes, Sean; Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.

  19. A smooth exit from eternal inflation?

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, Thomas

    2018-04-01

    The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

  20. Stochastic effects in hybrid inflation

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent

    2012-02-01

    Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of the instability point, the potential is very flat and the quantum fluctuations dominate over the classical motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution of the fields and compute the probability distributions of the total number of e-folds and of the inflation exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the quantum diffusion can affect the observable predictions of hybrid inflation.

  1. Deflation of the cosmological constant associated with inflation and dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: geng@phys.nthu.edu.tw, E-mail: chungchi@mx.nthu.edu.tw

    2016-06-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  2. Robustness of inflation to inhomogeneous initial conditions

    NASA Astrophysics Data System (ADS)

    Clough, Katy; Lim, Eugene A.; DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia

    2017-09-01

    We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K, such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.

  3. Topological inflation with graceful exit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marunović, Anja; Prokopec, Tomislav, E-mail: a.marunovic@uu.nl, E-mail: t.prokopec@uu.nl

    We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that themore » monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as n {sub s} ≅ 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.« less

  4. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  5. A picture for the coupling of unemployment and inflation

    NASA Astrophysics Data System (ADS)

    Safdari, H.; Hosseiny, A.; Vasheghani Farahani, S.; Jafari, G. R.

    2016-02-01

    The aim of this article is to illustrate the scaling features of two well heard characters in the media; unemployment and inflation. We carry out a scaling analysis on the coupling between unemployment and inflation. This work is based on the wavelet analysis as well as the detrended fluctuation analysis (DFA). Through our analysis we state that while unemployment is time scale invariant, inflation is bi-scale. We show that inflation possess a five year time scale where it experiences different behaviours before and after this scale period. This behaviour of inflation provides basis for the coupling to inherit the stated time interval. Although inflation is bi-scale, it is unemployment that shows a strong multifractality feature. Owing to the cross wavelet analysis we provide a picture that illustrates the dynamics of coupling between unemployment and inflation regarding intensity, direction, and scale. The fact of the matter is that the coupling between inflation and unemployment is not equal in one way compared to the opposite. Regarding the scaling; coupling exhibits different features in various scales. In a sense that although in one scale its correlation behaves in a positive/negative manner, at the same time it can be negative/positive for another scale.

  6. 46 CFR 160.051-9 - Equipment required for Coastal Service inflatable liferafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Equipment required for Coastal Service inflatable...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts for Domestic Service § 160.051-9 Equipment required for Coastal Service inflatable liferafts. In...

  7. 46 CFR 185.518 - Inflatable survival craft placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inflatable survival craft placards. 185.518 Section 185... 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other...

  8. Inflatable robotics for planetary applications

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2001-01-01

    Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats [1]. Another branch of space inflatable technology has also considered developing ambient gasfilled, solar balloons for Mars as well as ambient gasfilled inflatable rovers [2]. More recently, some other intriguing space-inflatable vehicles have been proposed for the gas planets and Pluto, as well as for Saturn's moon, Titan, Neptune's moon, Triton, and Jupiter's moon, Io [3].

  9. Hatch Integration Testing of a NASA TransHab Derivative Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Edgecombe, John; Valle, Gerald

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures are also perceived to carry additional risk because they are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. The use of inflatable structures for habitation will require large penetrations in the inflatable structure to accommodate hatches and/or windows The Hatch Integration Test is designed to study the structural integrity of an expandable structure with an integrated hatch, and to verify mathematical models of the structure. The TransHab project developed an experimental inflatable module at Johnson Space Center in the 1990's. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS).

  10. Low-Mass Inflation Systems for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Webster, Mark S.; Engelbrecht, Carl S.

    1995-01-01

    The use of inflatable space structures has often been proposed for aerospace and planetary applications. Communication, power generation, and very-long-baseline interferometry are just three potential applications of inflatable technology. The success of inflatable structures depends on the development of an applications of inflatable technology. This paper describes two design studies performed to develop a low mass inflation system. The first study takes advantage of existing onboard propulsion gases to reduce the overall system mass. The second study assumes that there is no onboard propulsion system. Both studies employ advanced components developed for the Pluto fast flyby spacecraft to further reduce mass. The study examined four different types of systems: hydrazine, nitrogen and water, nitrogen, and xenon. This study shows that all of these systems can be built for a small space structure with masses lower than 0.5 kilograms.

  11. Does Missing Classes Decelerate Student Exam Performance Progress? Empirical Evidence and Policy Implications

    ERIC Educational Resources Information Center

    Lin, Tin-Chun

    2014-01-01

    A total of 389 business students in undergraduate introductory microeconomics classes in spring 2007, 2009, and 2011, and fall 2012 participated in an exam performance progress study. Empirical evidence suggested that missing classes decelerates and hampers high-performing students' exam performance progress. Nevertheless, the evidence does…

  12. Slowing techniques for loading a magneto-optical trap of CaF molecules

    NASA Astrophysics Data System (ADS)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  13. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    NASA Astrophysics Data System (ADS)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  14. The influence of tyre characteristics on measures of rolling performance during cross-country mountain biking.

    PubMed

    Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R

    2015-01-01

    This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.

  15. Statistical analysis of dynamic fibrils observed from NST/BBSO observations

    NASA Astrophysics Data System (ADS)

    Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi

    2018-02-01

    We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.

  16. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.

    2015-07-15

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  17. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Woo, K. M.; Nora, R.

    2015-07-02

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  18. Item Response Modeling of Multivariate Count Data with Zero Inflation, Maximum Inflation, and Heaping

    ERIC Educational Resources Information Center

    Magnus, Brooke E.; Thissen, David

    2017-01-01

    Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…

  19. 33 CFR 150.506 - When must the operator service inflatable lifesaving appliances and marine evacuation systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inflatable lifesaving appliances and marine evacuation systems? 150.506 Section 150.506 Navigation and...: OPERATIONS Emergency and Specialty Equipment Inflatable Lifesaving Appliances § 150.506 When must the operator service inflatable lifesaving appliances and marine evacuation systems? (a) The operator must...

  20. 31 CFR 359.12 - What happens in deflationary conditions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deflationary situations, the semiannual inflation rate may be negative. Negative semiannual inflation rates will be used in the same way as positive semiannual inflation rates. However, if the semiannual inflation rate is negative to the extent that it completely offsets the fixed rate of return, the redemption...

  1. 5 CFR 2634.702 - Breaches by trust fiduciaries and interested parties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with the inflation adjustment procedures prescribed in the Federal Civil Penalties Inflation... such violation occurring on or after that date, in accordance with the inflation adjustment procedures prescribed in the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended. [57 FR 11824, Apr. 7...

  2. 17 CFR 143.8 - Inflation-adjusted civil monetary penalties.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Inflation-adjusted civil... JURISDICTION General Provisions § 143.8 Inflation-adjusted civil monetary penalties. (a) Unless otherwise amended by an act of Congress, the inflation-adjusted maximum civil monetary penalty for each violation of...

  3. 12 CFR 1780.80 - Inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Inflation adjustments. 1780.80 Section 1780.80... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Civil Money Penalty Inflation Adjustments § 1780.80 Inflation adjustments. The maximum amount of each civil money penalty within OFHEO's...

  4. 8 CFR 1280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Civil monetary penalties inflation... penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act of 1990, Pub. L. 101-410, 104 Stat. 890, as amended by the Debt...

  5. 8 CFR 280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Civil monetary penalties inflation... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.53 Civil monetary penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act of...

  6. 46 CFR 122.518 - Inflatable survival craft placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable survival craft placards. 122.518 Section 122... Preparations for Emergencies § 122.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other cards containing instructions for launching...

  7. 78 FR 5722 - Civil Monetary Penalty Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... our Class I penalties to account for inflation since 2004, we are making a second round of penalty... Class I civil penalties under the Clean Water Act and the National Fishing Enhancement Act to account for inflation. The adjustment of civil penalties to account for inflation is required by the Federal...

  8. 33 CFR 150.508 - What are the maintenance and repair requirements for inflatable rescue boats?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... repair requirements for inflatable rescue boats? 150.508 Section 150.508 Navigation and Navigable Waters... repair requirements for inflatable rescue boats? The operator must perform the maintenance and repair of inflatable rescue boats according to the manufacturer's instructions. Operational Tests and Inspections...

  9. 33 CFR 150.508 - What are the maintenance and repair requirements for inflatable rescue boats?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... repair requirements for inflatable rescue boats? 150.508 Section 150.508 Navigation and Navigable Waters... repair requirements for inflatable rescue boats? The operator must perform the maintenance and repair of inflatable rescue boats according to the manufacturer's instructions. Operational Tests and Inspections...

  10. 33 CFR 150.508 - What are the maintenance and repair requirements for inflatable rescue boats?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... repair requirements for inflatable rescue boats? 150.508 Section 150.508 Navigation and Navigable Waters... repair requirements for inflatable rescue boats? The operator must perform the maintenance and repair of inflatable rescue boats according to the manufacturer's instructions. Operational Tests and Inspections...

  11. 33 CFR 150.508 - What are the maintenance and repair requirements for inflatable rescue boats?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... repair requirements for inflatable rescue boats? 150.508 Section 150.508 Navigation and Navigable Waters... repair requirements for inflatable rescue boats? The operator must perform the maintenance and repair of inflatable rescue boats according to the manufacturer's instructions. Operational Tests and Inspections...

  12. 33 CFR 150.508 - What are the maintenance and repair requirements for inflatable rescue boats?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... repair requirements for inflatable rescue boats? 150.508 Section 150.508 Navigation and Navigable Waters... repair requirements for inflatable rescue boats? The operator must perform the maintenance and repair of inflatable rescue boats according to the manufacturer's instructions. Operational Tests and Inspections...

  13. 46 CFR 160.151-13 - Fabrication of prototype inflatable liferafts for approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Fabrication of prototype inflatable liferafts for... Liferafts (SOLAS) § 160.151-13 Fabrication of prototype inflatable liferafts for approval. If the... Commandant, fabrication of a prototype inflatable liferaft must proceed in the following sequence: (a) The...

  14. Predicting injury risk with "New Car Assessment Program" crashworthiness ratings.

    PubMed

    Jones, I S; Whitfield, R A

    1988-12-01

    The relationship between crashworthiness ratings produced by the National Highway Traffic Safety Administration's (NHTSA's) New Car Assessment Program (NCAP) and the risk of incapacitating injury or death for drivers who are involved in single-car, fixed-object, frontal collisions was examined. The results are based on 6,405 such crashes from the Motor Vehicle Traffic Accident file of the Texas Department of Highways and Public Transportation. The risk of injury was modeled using logistic regression taking into account the NCAP test results for each individual model of car and the intervening effects of car mass, age of the driver, restraint use, and crash severity. Three measures of anthropometric dummy response, Head Injury Criterion (HIC), Chest Deceleration (CD), and femur load were used to indicate vehicle crash test performance. The results show that there is a significant relationship between the results of the NCAP tests and the risk of serious injury or death in actual single-car frontal accidents. In terms of overall injury, chest deceleration was a better predictor than the Head Injury Criterion. For restrained drivers, crash severity, driver age, and chest deceleration were significant parameters for predicting risk of serious injury or death; the risk of injury decreased as chest deceleration decreased. The results were similar for unrestrained drivers although vehicle mass and femur load were also significant factors in the model. The risk of overall injury decreased as chest deceleration decreased but appeared to decrease as femur load increased.

  15. ISS-flation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel J.; /SLAC /Stanford U., ITP

    2008-02-06

    Inflation may occur while rolling into the metastable supersymmetry-breaking vacuum of massive supersymmetric QCD. We explore the range of parameters in which slow-roll inflation and long-lived metastable supersymmetry breaking may be simultaneously realized. The end of slow-roll inflation in this context coincides with the spontaneous breaking of a global symmetry, which may give rise to significant curvature perturbations via inhomogeneous preheating. Such spontaneous symmetry breaking at the end of inflation may give rise to observable non-gaussianities, distinguishing this scenario from more conventional models of supersymmetric hybrid inflation.

  16. Modulus D-term inflation

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  17. Development of an Inflatable Head/Neck Restraint System for Ejection Seats (Update)

    DTIC Science & Technology

    1978-12-19

    REPORT NO. NADC-78213-60 DEVELOPMENT OF AN INFLATABLE HEAD /NECK RESTRAINT SYSTEM FOR EJECTION SEATS (UPD ATE) Thomas J. Zenobi Aircraft and Crew...olde if necsesey anid dentlif hr bl0ck ma11,0s.) t Inflatable neck collar Inflatable neck ring Neck injury Head rotation ý2 .AeSSRACT (Continus on...toenes side It nec~essary mod identl)_* by block naob..) F1 A ring-shaped inflatable head /neck restraint system for ejection seats is be- ing developed at

  18. Clinical course of untreated tonic-clonic seizures in childhood: prospective, hospital based study.

    PubMed Central

    van Donselaar, C. A.; Brouwer, O. F.; Geerts, A. T.; Arts, W. F.; Stroink, H.; Peters, A. C.

    1997-01-01

    OBJECTIVE: To assess decleration and acceleration in the disease process in the initial phase of epilepsy in children with new onset tonic-clonic seizures. STUDY DESIGN: Hospital based follow up study. SETTING: Two university hospitals, a general hospital, and a children's hospital in the Netherlands. PATIENTS: 204 children aged 1 month to 16 years with idiopathic or remote symptomatic, newly diagnosed, tonic-clonic seizures, of whom 123 were enrolled at time of their first ever seizure; all children were followed until the start of drug treatment (78 children), the occurrence of the fourth untreated seizure (41 children), or the end of the follow up period of two years (85 untreated children). MAIN OUTCOME MEASURES: Analysis of disease pattern from first ever seizure. The pattern was categorised as decelerating if the child became free of seizures despite treatment being withheld. In cases with four seizures, the pattern was categorised as decelerating if successive intervals increased or as accelerating if intervals decreased. Patterns in the remaining children were classified as uncertain. RESULTS: A decelerating pattern was found in 83 of 85 children who became free of seizures without treatment. Three of the 41 children with four or more untreated seizures showed a decelerating pattern and eight an accelerating pattern. In 110 children the disease process could not be classified, mostly because drug treatment was started after the first, second, or third seizure. The proportion of children with a decelerating pattern (42%, 95% confidence interval 35% to 49%) may be a minimum estimate because of the large number of patients with an uncertain disease pattern. CONCLUSIONS: Though untreated epilepsy is commonly considered to be a progressive disorder with decreasing intervals between seizures, a large proportion of children with newly diagnosed, unprovoked tonic-clonic seizures have a decelerating disease process. The fear that tonic-clonic seizures commonly evolve into a progressive disease should not be used as an argument in favour of early drug treatment in children with epilepsy. PMID:9040384

  19. Autonomic nervous system activity as risk predictor in the medical emergency department: a prospective cohort study.

    PubMed

    Eick, Christian; Rizas, Konstantinos D; Meyer-Zürn, Christine S; Groga-Bada, Patrick; Hamm, Wolfgang; Kreth, Florian; Overkamp, Dietrich; Weyrich, Peter; Gawaz, Meinrad; Bauer, Axel

    2015-05-01

    To evaluate heart rate deceleration capacity, an electrocardiogram-based marker of autonomic nervous system activity, as risk predictor in a medical emergency department and to test its incremental predictive value to the modified early warning score. Prospective cohort study. Medical emergency department of a large university hospital. Five thousand seven hundred thirty consecutive patients of either sex in sinus rhythm, who were admitted to the medical emergency department of the University of Tübingen, Germany, between November 2010 and March 2012. None. Deceleration capacity of heart rate was calculated within the first minutes after emergency department admission. The modified early warning score was assessed from respiratory rate, heart rate, systolic blood pressure, body temperature, and level of consciousness as previously described. Primary endpoint was intrahospital mortality; secondary endpoints included transfer to the ICU as well as 30-day and 180-day mortality. One hundred forty-two patients (2.5%) reached the primary endpoint. Deceleration capacity was highly significantly lower in nonsurvivors than survivors (2.9 ± 2.1 ms vs 5.6 ± 2.9 ms; p < 0.001) and yielded an area under the receiver-operator characteristic curve of 0.780 (95% CI, 0.745-0.813). The modified early warning score model yielded an area under the receiver-operator characteristic curve of 0.706 (0.667-0.750). Implementing deceleration capacity into the modified early warning score model led to a highly significant increase of the area under the receiver-operator characteristic curve to 0.804 (0.770-0.835; p < 0.001 for difference). Deceleration capacity was also a highly significant predictor of 30-day and 180-day mortality as well as transfer to the ICU. Deceleration capacity is a strong and independent predictor of short-term mortality among patients admitted to a medical emergency department.

  20. Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games

    PubMed Central

    Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier

    2018-01-01

    The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles. Key points The number of decelerations and the total distance can be considered risk factors for injuries in professional basketball players. Unloaded players have greater risk of injury compared to players with higher accumulated external workload. Workload management should be considered a major factor in injury prevention programs. PMID:29769830

Top