Sample records for attachment welds modifies

  1. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...

  2. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...

  3. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...

  4. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...

  5. 46 CFR 52.05-30 - Minimum requirements for attachment welds (modifies PW-16).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Minimum requirements for attachment welds (modifies PW-16). 52.05-30 Section 52.05-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-30 Minimum...

  6. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.

  7. Fillet Weld Stress Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Lehnhoff, T. F.; Green, G. W.

    1985-01-01

    Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.

  8. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  9. 49 CFR 238.229 - Safety appliances-general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equipment. Specifically, FRA prohibits the use of welding as a method of attachment of any such safety... support that is attached to the equipment by welding may continue to be used in service provided all of... equipped with a safety appliance that is directly attached to the equipment by welding (i.e., no mechanical...

  10. Hermetic edge sealing of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Nowlan, M. J.

    1983-07-01

    The feasibility of using an electrostatic bonding (ESB) and ultrasonic welding process to produce hermetic edge seals on terrestrial solar cell modules was investigated. The fabrication sequence is to attach an aluminum foil "gasket' to the perimeter of a glass sheet. A cell circuit is next encapsulated inside the gasket, and its aluminum foil back cover is seam welded ultrasonically to the gasket. An ESB process for sealing aluminum to glass was developed in an ambient air atmosphere, which eliminates the requirement for a vacuum or pressure vessel. An ultrasonic seam welding process was also developed which did not degrade the quality of the ESB seal. Good quality welds with minimal deformation were produced. The effectiveness of the above described sealing techniques was tested by constructing 400 sq cm (8 x 8 s64 sq in) sample modules, and then subjecting them to nondestructive fine and gross leak tests. The gross leak tests identified several different causes of leaks which were then eliminated by modifying the assembly process.

  11. Hermetic edge sealing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.

    1983-01-01

    The feasibility of using an electrostatic bonding (ESB) and ultrasonic welding process to produce hermetic edge seals on terrestrial solar cell modules was investigated. The fabrication sequence is to attach an aluminum foil "gasket' to the perimeter of a glass sheet. A cell circuit is next encapsulated inside the gasket, and its aluminum foil back cover is seam welded ultrasonically to the gasket. An ESB process for sealing aluminum to glass was developed in an ambient air atmosphere, which eliminates the requirement for a vacuum or pressure vessel. An ultrasonic seam welding process was also developed which did not degrade the quality of the ESB seal. Good quality welds with minimal deformation were produced. The effectiveness of the above described sealing techniques was tested by constructing 400 sq cm (8 x 8 s64 sq in) sample modules, and then subjecting them to nondestructive fine and gross leak tests. The gross leak tests identified several different causes of leaks which were then eliminated by modifying the assembly process.

  12. 46 CFR 52.01-3 - Definitions of terms used in this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shells, attached by riveting, bolting, or welding. They generally consist of a cylindrical shell with one... plain furnace is a cylindrical shell usually made in sections joined by means of riveting or welding... longitudinal joint, the ends being attached by riveting or welding. Their purpose is to provide additional...

  13. 46 CFR 52.01-3 - Definitions of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shells, attached by riveting, bolting, or welding. They generally consist of a cylindrical shell with one... plain furnace is a cylindrical shell usually made in sections joined by means of riveting or welding... longitudinal joint, the ends being attached by riveting or welding. Their purpose is to provide additional...

  14. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see § 171...

  15. Alternate Welding Processes for In-Service Welding

    DOT National Transportation Integrated Search

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  16. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  17. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station.

  18. Post weld and epoxy anchorage variations for w-beam guardrail attached to low-rill culverts.

    DOT National Transportation Integrated Search

    2013-08-01

    The research effort consisted of two objectives for dealing with alterations to the W-beam guardrail system developed : for attachment to the top of low-fill culverts. This effort included: (1) investigation of an alternative weld detail to simplify ...

  19. Reed Valve Regulates Welding Back-Purge Pressure

    NASA Technical Reports Server (NTRS)

    Coby, J. Ben, Jr.; Weeks, Jack L.

    1991-01-01

    Simple modification yields welds of better quality. Reed valve halves fluctuations in pressure in back-purge chamber attached to workpiece undergoing keyhole plasma arc welding. Identical to one used in fuel system of two-cycle gasoline engine. Backbead smoother, and weld penetrates more uniformly.

  20. Gas-Diverting Cup For Welding At An Angle

    NASA Technical Reports Server (NTRS)

    Dyer, G. E.

    1988-01-01

    Attachment makes automatic arc welders more versatile. Stainless-steel diverting cup slips over standard torch cup. Bent electrode inserted in torch. Assembly reaches weld joints inaccessible to straight welding torch.

  1. Selenide isotope generators for the Galileo Mission: SIG hermetic bimetal weld transition joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, W.J.

    1979-08-01

    The successful development of the commercial 6061-T651/Silver/304L explosive clad plate material as a bimetal weld transition joint material, as described herein, satisfies all SIG Galileo design requirements for hermetic weld attachment of stainless steel subassemblies to aluminum alloy generator housing or end cover structures. The application of this type weld transition joint to the hermetic attachment of stainless steel shell connectors is well-developed and tested. Based on on-going life tests of stainless steel receptacle/bimetal ring attachment assemblies and metallurgical characterization studies of this transition joint material, it appears evident that this transition joint material has more than adequate capability tomore » meet the 250 to 300/sup 0/F and 50,000 hr. design life of the SIG/Galileo mission. Its extended life temperture capability may well approach 350 to 400/sup 0/F.« less

  2. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  3. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  4. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  5. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  6. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  7. Development of explosive welding procedures to fabricate channeled nozzle structures

    NASA Technical Reports Server (NTRS)

    Pattee, H. E.; Linse, V. D.

    1976-01-01

    Research was conducted to demonstrate the feasibility of fabricating a large contoured structure with complex internal channeling by explosive welding procedures. Structures or nozzles of this nature for wind tunnel applications were designed. Such nozzles vary widely in their complexity. However, in their simplest form, they consist of a grooved base section to which a cover sheet is attached to form a series of internal cooling passages. The cover sheet attachment can be accomplished in various ways: fusion welding, brazing, and diffusion welding. The cover sheet has also been electroformed in place. Of these fabrication methods, brazing has proved most successful in producing nozzles with complex contoured surfaces and a multiplicity of internal channels.

  8. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders, and...

  9. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders, and...

  10. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders, and...

  11. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders, and...

  12. 46 CFR 54.25-25 - Welding of quenched and tempered steels (modifies UHT-82).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Welding of quenched and tempered steels (modifies UHT-82... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-25 Welding of quenched and tempered steels (modifies UHT-82). (a) The qualification of welding procedures, welders, and...

  13. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  14. 49 CFR 178.337-4 - Joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there... material repaired as specified therein. (b) Welding procedure and welder performance must be in accordance... shall be properly fitted before attachment, and the welding sequence shall be such as to minimize...

  15. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  16. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...

  17. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...

  18. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...

  19. Inspection tool for butt-welded tubing

    NASA Technical Reports Server (NTRS)

    Horman, D. P.

    1977-01-01

    Inspection tool for tubing consists of metal casing housing elastic collar. Collar is clamped around weld site under test. Leakage through weld is contained within chamber and is bled to detector via tubing attached to fitting. Tool, originally designed to detect fluid leakage in tubing, can be used to detect gas leaks.

  20. 19. DETAIL VIEW OF A TYPICAL 'TSTIFFENER' WELDED TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL VIEW OF A TYPICAL 'T-STIFFENER' WELDED TO THE INSIDE OF THE MAIN GIRDER, SHOWING THE WELDED ATTACHMENT WITH A SWAY BRACE, PANEL 1, SOUTH GIRDER, LOOKING SOUTHEAST Harms & Ryan - Benton Street Bridge, Spanning Iowa River at Benton Street, Iowa City, Johnson County, IA

  1. Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.

    2017-12-01

    At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.

  2. Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor)

    2002-01-01

    A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.

  3. 49 CFR 179.100-7 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... welding and must comply with one of the following specifications (IBR, see § 171.7 of this subchapter... sensitizing treatment prior to testing. (d) All attachments welded to tank shell must be of approved material which is suitable for welding to the tank. [Amdt. 179-10, 36 FR 21344, Nov. 6, 1971, as amended by Amdt...

  4. Dual-shank attachment design for omega seals

    DOEpatents

    Sattinger, Stanley S.

    1978-01-01

    An improved apparatus and process for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface.

  5. Spot-weld bonding on the Blackhawk helicopter

    NASA Technical Reports Server (NTRS)

    Salking, M. J.

    1972-01-01

    The Sikorsky S-67 Blackhawk attack helicopter utilizes spot-weld bonding for stringer to skin attachment on more than 5 per cent of its surface area. It is the first American aircraft to utilize spot weld bonding, although the process has been used for some years in the U.S.S.R. The process consists of applying adhesive on the surfaces to be joined, spot welding through the adhesive, then curing the adhesive.

  6. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48). (a...

  7. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48). (a...

  8. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48). (a...

  9. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48). (a...

  10. 46 CFR 54.20-5 - Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Welding qualification tests and production testing... OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-5 Welding qualification tests and production testing (modifies UW-26, UW-28, UW-29, UW-47, and UW-48). (a...

  11. Workers Welding on ML

    NASA Image and Video Library

    2014-02-24

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A construction worker prepares a metal beam that will be attached to the ML. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission 1, in 2017. Photo credit: NASA/Dimitri Gerondidakis

  12. 49 CFR 179.300-14 - Attachments not otherwise specified.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... on the outside of the tank head for attaching the valve protective housing must be fusion-welded in place prior to postweld heat treatment. All other fixtures and appurtenances, except as specifically...

  13. 49 CFR 179.300-14 - Attachments not otherwise specified.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the outside of the tank head for attaching the valve protective housing must be fusion-welded in place prior to postweld heat treatment. All other fixtures and appurtenances, except as specifically provided...

  14. 49 CFR 179.300-14 - Attachments not otherwise specified.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the outside of the tank head for attaching the valve protective housing must be fusion-welded in place prior to postweld heat treatment. All other fixtures and appurtenances, except as specifically provided...

  15. 49 CFR 179.300-14 - Attachments not otherwise specified.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the outside of the tank head for attaching the valve protective housing must be fusion-welded in place prior to postweld heat treatment. All other fixtures and appurtenances, except as specifically provided...

  16. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  17. Multihole Arc-Welding Orifice

    NASA Technical Reports Server (NTRS)

    Swaim, Benji D.

    1989-01-01

    Modified orifice for variable-polarity plasma-arc welding directs welding plume so it creates clean, even welds on both Inconel(R) and aluminum alloys. Includes eight holes to relieve back pressure in plasma. Quality of welds on ferrous and nonferrous alloys improved as result.

  18. Spot-Welding Gun With Pivoting Twin-Collet Assembly

    NASA Technical Reports Server (NTRS)

    Nguyen, Francis; Simpson, Gareth; Hoult, William S.

    1996-01-01

    Modified spot-welding gun includes pivoting twin-collet assembly that holds two spot-welding electrodes. Designed to weld highly conductive (30 percent gold) brazing-alloy foils to thin nickel alloy workpieces; also suitable for other spot-welding applications compatible with two-electrode configuration.

  19. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  20. Alining Large Cylinders for Welding

    NASA Technical Reports Server (NTRS)

    Ehl, J. H.

    1985-01-01

    Special tooling alines and holds internally-stiffened large-diameter cylindrical parts for welding. Alinement brackets attached to strengthening fins on insides of cylindrical tank sections. Jackscrews on brackets raised or lowered to eliminate mismatches between adjacent sections. Tooling substantially reduces costs while allowing more precise control and improved quality.

  1. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be...

  2. Temperature Based Stress Analysis of Notched Members

    DTIC Science & Technology

    1979-03-01

    Strain Behavior 98 of Mild Steel 17 Percent Restoration vs. Residual Stress 99 18 Examples of a Good Weld and Three 100 Defective Welds vi LIST OF TABLES...measuring temperatures in deforming metals based on the use 27 of thermistor flakes. The system was used to show that more heating occurs near stress...thermocouples were welded to the specimen surface. This particular attachment method is quite suitable for stress analysis for the following reasons

  3. Investigation of residual stresses in tank car shells in the vicinity of weld ends

    DOT National Transportation Integrated Search

    1997-01-01

    A large number of cracks which develop in railroad tank car : shells form near the ends of skip welds which are used to attach : stiffeners to the tank. The development and growth of these cracks in : fatigue are affected by the presence of residual ...

  4. 46 CFR 54.20-3 - Design (modifies UW-9, UW-11(a), UW-13, and UW-16).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-3 Design (modifies UW-9, UW-11(a), UW-13, and UW-16). (a) Fabrication by welding shall be in accordance with the provisions of this part and with part 57 of this subchapter. (b) Welding subject to UW-11(a) of section VIII of the ASME Boiler and...

  5. 46 CFR 54.20-3 - Design (modifies UW-9, UW-11(a), UW-13, and UW-16).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-3 Design (modifies UW-9, UW-11(a), UW-13, and UW-16). (a) Fabrication by welding shall be in accordance with the provisions of this part and with part 57 of this subchapter. (b) Welding subject to UW-11(a) of section VIII of the ASME Boiler and...

  6. 46 CFR 54.20-3 - Design (modifies UW-9, UW-11(a), UW-13, and UW-16).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-3 Design (modifies UW-9, UW-11(a), UW-13, and UW-16). (a) Fabrication by welding shall be in accordance with the provisions of this part and with part 57 of this subchapter. (b) Welding subject to UW-11(a) of section VIII of the ASME Boiler and...

  7. 46 CFR 54.20-3 - Design (modifies UW-9, UW-11(a), UW-13, and UW-16).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-3 Design (modifies UW-9, UW-11(a), UW-13, and UW-16). (a) Fabrication by welding shall be in accordance with the provisions of this part and with part 57 of this subchapter. (b) Welding subject to UW-11(a) of section VIII of the ASME Boiler and...

  8. 46 CFR 54.20-3 - Design (modifies UW-9, UW-11(a), UW-13, and UW-16).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-3 Design (modifies UW-9, UW-11(a), UW-13, and UW-16). (a) Fabrication by welding shall be in accordance with the provisions of this part and with part 57 of this subchapter. (b) Welding subject to UW-11(a) of section VIII of the ASME Boiler and...

  9. Degradation phenomena of magnetic attachments used clinically in the oral environment

    NASA Astrophysics Data System (ADS)

    Chung, Chae-Heon; Choe, Han-Cheol; Kwak, Jong-Ha

    2006-08-01

    The purpose of this study was to investigate the mechanisms involved in the failure of magnetic attachments used to retain dental prostheses. Dyna magnets were retrieved from dentures that had failed after 34 months of clinical use. These magnetic attachments were prepared and sectioned so as to observe the corrosion surface and layer in order to analyze the corrosion behaviors of the attachments. The corroded surface was observed under a field emission scanning electron microscope (FE-SEM) (JSM 840A, JEOL, Japan). An X-ray diffractometer (XRD) was used to analyze the corrosion product formed due to corrosion in the oral environment. Erosion-corrosion started in the uneven portion of the stainless steel cover in the magnetic attachments composed with Nd-Fe-B alloy. Corrosion was initiated on the worn stainless steel surface, followed by spalling of magnetic material due to corrosive solution. The corrosion rate increased drastically after the corrosion product caused spalling in Nd-Fe-B alloy. Corrosion initiated in the uneven stainless steel surface as well as in the welded zone. In conclusion, the failure of magnetic attachments may occur by either welding failure or breakdown of the encapsulating material. Thus, we believe that treating the surface of magnetic attachments would resolve the corrosion problem seen in magnetic attachments to some extent.

  10. Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron

    NASA Astrophysics Data System (ADS)

    Tolvanen, Sakari; Pederson, Robert; Klement, Uta

    2018-03-01

    Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.

  11. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not over 500 psig. Closures made by the spinning process are not authorized. (1) Spherical type... using equipment and processes adequate to ensure that each cylinder produced conforms to the..., securely attached to container by brazing or by welding. (4) If threads are used, they must comply with the...

  12. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... not over 500 psig. Closures made by the spinning process are not authorized. (1) Spherical type... using equipment and processes adequate to ensure that each cylinder produced conforms to the..., securely attached to container by brazing or by welding. (4) If threads are used, they must comply with the...

  13. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in by spinning process are not authorized. (b) Steel. Open-hearth or electric steel of uniform and.... (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure that... fitting, boss, or pad, securely attached to the container by brazing or by welding or by threads. If...

  14. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in by spinning process are not authorized. (b) Steel. Open-hearth or electric steel of uniform and.... (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure that... fitting, boss, or pad, securely attached to the container by brazing or by welding or by threads. If...

  15. 49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in by spinning process are not authorized. (b) Steel. Open-hearth or electric steel of uniform and.... (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure that... fitting, boss, or pad, securely attached to the container by brazing or by welding or by threads. If...

  16. 49 CFR 178.51 - Specification 4BA welded or brazed steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... not over 500 psig. Closures made by the spinning process are not authorized. (1) Spherical type... using equipment and processes adequate to ensure that each cylinder produced conforms to the..., securely attached to container by brazing or by welding. (4) If threads are used, they must comply with the...

  17. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat treated...

  18. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat treated...

  19. Cold welding of ultrathin gold nanowires.

    PubMed

    Lu, Yang; Huang, Jian Yu; Wang, Chao; Sun, Shouheng; Lou, Jun

    2010-03-01

    The welding of metals at the nanoscale is likely to have an important role in the bottom-up fabrication of electrical and mechanical nanodevices. Existing welding techniques use local heating, requiring precise control of the heating mechanism and introducing the possibility of damage. The welding of metals without heating (or cold welding) has been demonstrated, but only at macroscopic length scales and under large applied pressures. Here, we demonstrate that single-crystalline gold nanowires with diameters between 3 and 10 nm can be cold-welded together within seconds by mechanical contact alone, and under relatively low applied pressures. High-resolution transmission electron microscopy and in situ measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast surface-atom diffusion. Welds are also demonstrated between gold and silver, and silver and silver, indicating that the technique may be generally applicable.

  20. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints.

    PubMed

    Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil

    2018-05-07

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.

  1. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints

    PubMed Central

    Quan, Gaofeng

    2018-01-01

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties. PMID:29735894

  2. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    NASA Technical Reports Server (NTRS)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  3. Finite Element and Analytical Analysis of Cracks in Thick Stiffened Plates Repaired with a Single Sided Composite Patch

    DTIC Science & Technology

    2014-06-01

    DC,Tech. Rep. CG-D-05–00, 2000. [16] S. Kou, Welding Metallurgy , 2nd edition, Hoboken: Wiley Interscience, 2003. [17] C. Poe, “Stress intensity...continuous aluminum superstructure welded to the deck. The shape of the superstructure created numerous stress concentration areas. Of the greatest concern...study as it will help provide a conservative estimate. In marine applications almost all stiffening members are attached by welding . Unlike a

  4. 46 CFR 52.05-1 - General (modifies PW-1 through PW-54).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS Requirements for Boilers Fabricated by Welding § 52.05-1 General (modifies PW-1 through PW-54). (a) Boilers and component parts, including piping, that are fabricated by welding shall be as indicated in PW...

  5. 46 CFR 52.05-1 - General (modifies PW-1 through PW-54).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS Requirements for Boilers Fabricated by Welding § 52.05-1 General (modifies PW-1 through PW-54). (a) Boilers and component parts, including piping, that are fabricated by welding shall be as indicated in PW...

  6. 46 CFR 52.05-1 - General (modifies PW-1 through PW-54).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS Requirements for Boilers Fabricated by Welding § 52.05-1 General (modifies PW-1 through PW-54). (a) Boilers and component parts, including piping, that are fabricated by welding shall be as indicated in PW...

  7. 46 CFR 52.05-1 - General (modifies PW-1 through PW-54).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS Requirements for Boilers Fabricated by Welding § 52.05-1 General (modifies PW-1 through PW-54). (a) Boilers and component parts, including piping, that are fabricated by welding shall be as indicated in PW...

  8. 46 CFR 52.05-1 - General (modifies PW-1 through PW-54).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS Requirements for Boilers Fabricated by Welding § 52.05-1 General (modifies PW-1 through PW-54). (a) Boilers and component parts, including piping, that are fabricated by welding shall be as indicated in PW...

  9. Structure and phase composition of welded joints modified by different welding techniques

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksander; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Eugeniy; Ababkov, Nikolay; Koneva, Nina

    2017-12-01

    The paper presents the results of transmission electron microscopy (TEM) during the study of structure and phase composition of heat-affected zone (HAZ) of welded joints modified via four welding techniques, namely: electrode welding and electropercussive welding both with and without artificial flaws. The artificial flows represent aluminum pieces. TEM studies are carried out within the heat-affected zone, i.e. between the deposited and base metal, at 0.5 mm distance to the former. The 0.09C-2Mn-1Si-Fe steel type is used for welding. It is shown how the type of welding affects steel morphology, phase composition, defect structure and its parameters. The type of carbide phase is detected as well as the shape and location of particles. Volume fractions are estimated for the structural steel components, alongside with such parameters as the size of α-phase fragments, scalar and excess dislocation densities, and bending-torsion amplitude of the crystal lattice. Based on these results, we determine the welding technique and the structural component thus launching a mechanism of microcrack nucleation.

  10. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    DOEpatents

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  11. 46 CFR 54.20-1 - Scope (modifies UW-1 through UW-65).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS Fabrication by Welding § 54.20-1 Scope (modifies UW-1 through UW-65). (a) Pressure vessels and vessel parts that are fabricated by welding shall be as required by paragraphs UW-1 through UW-65 of...

  12. 46 CFR 54.20-1 - Scope (modifies UW-1 through UW-65).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS Fabrication by Welding § 54.20-1 Scope (modifies UW-1 through UW-65). (a) Pressure vessels and vessel parts that are fabricated by welding shall be as required by paragraphs UW-1 through UW-65 of...

  13. 46 CFR 54.20-1 - Scope (modifies UW-1 through UW-65).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VESSELS Fabrication by Welding § 54.20-1 Scope (modifies UW-1 through UW-65). (a) Pressure vessels and vessel parts that are fabricated by welding shall be as required by paragraphs UW-1 through UW-65 of...

  14. 46 CFR 54.20-1 - Scope (modifies UW-1 through UW-65).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS Fabrication by Welding § 54.20-1 Scope (modifies UW-1 through UW-65). (a) Pressure vessels and vessel parts that are fabricated by welding shall be as required by paragraphs UW-1 through UW-65 of...

  15. 46 CFR 54.20-1 - Scope (modifies UW-1 through UW-65).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS Fabrication by Welding § 54.20-1 Scope (modifies UW-1 through UW-65). (a) Pressure vessels and vessel parts that are fabricated by welding shall be as required by paragraphs UW-1 through UW-65 of...

  16. Development of low-cost welding procedures for thick sections of HY-150 steel

    NASA Technical Reports Server (NTRS)

    Schmidt, P. M.; Snow, R. S.

    1972-01-01

    Low cost welding procedures were developed for welding 6-inch thick HY-150 steel to be used in the manufacture of large diameter motor case Y rings and nozzle attachment flanges. An extensive investigation was made of the mechanical and metallurgical properties and fracture toughness of HY-150 base plate and welds made with manual shielded metal arc process and semi-automatic gas metal arc process in the flat position. Transverse tensiles, all-weld metal tensiles, Charpy V-notch specimens and edge notched bend specimens were tested in the course of the program. In addition metallographic studies and hardness tests were performed on the weld, weld HAZ and base metal. The results of the work performed indicate that both the shielded metal arc and gas metal arc processes are capable of producing consistently sound welds as determined by radiographic and ultrasonic inspection. In addition, the weld metal, deposited by each process was found to exhibit a good combination of strength and toughness such that the selection of a rolled and welded procedure for fabricating rocket motor case components would appear to be technically feasible.

  17. 49 CFR 178.338-18 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Containers for Motor Vehicle Transportation § 178.338-18 Marking. (a) General. Each cargo tank certified... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left side near the front, in a place accessible for inspection. If the specification plate is attached...

  18. 49 CFR 178.338-18 - Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Containers for Motor Vehicle Transportation § 178.338-18 Marking. (a) General. Each cargo tank certified... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left side near the front, in a place accessible for inspection. If the specification plate is attached...

  19. 49 CFR 178.338-18 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Containers for Motor Vehicle Transportation § 178.338-18 Marking. (a) General. Each cargo tank certified... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left side near the front, in a place accessible for inspection. If the specification plate is attached...

  20. 49 CFR 178.338-18 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers for Motor Vehicle Transportation § 178.338-18 Marking. (a) General. Each cargo tank certified... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left side near the front, in a place accessible for inspection. If the specification plate is attached...

  1. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  2. 49 CFR 178.337-17 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-17 Marking. (a) General. Each cargo tank certified... inspection. If the specification plate is attached to the chassis rail, then the cargo tank serial number... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left...

  3. 49 CFR 178.337-17 - Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.337-17 Marking. (a) General. Each cargo tank... inspection. If the specification plate is attached to the chassis rail, then the cargo tank serial number... specification plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the...

  4. 49 CFR 178.337-17 - Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-17 Marking. (a) General. Each cargo tank certified... inspection. If the specification plate is attached to the chassis rail, then the cargo tank serial number... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left...

  5. 49 CFR 178.337-17 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-17 Marking. (a) General. Each cargo tank certified... inspection. If the specification plate is attached to the chassis rail, then the cargo tank serial number... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left...

  6. 49 CFR 178.337-17 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-17 Marking. (a) General. Each cargo tank certified... inspection. If the specification plate is attached to the chassis rail, then the cargo tank serial number... plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left...

  7. 49 CFR 178.338-18 - Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Containers for Motor Vehicle Transportation § 178.338-18 Marking. (a) General. Each cargo tank... specification plate permanently attached to the cargo tank by brazing, welding, or other suitable means on the left side near the front, in a place accessible for inspection. If the specification plate is attached...

  8. Fatigue evaluation of socket welded piping in nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchio, R.S.

    1996-12-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determinemore » the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date.« less

  9. Development of method to remove weld scallop and ceramic backing material of wedge type and its application

    NASA Astrophysics Data System (ADS)

    Kang, Sung-Koo; Yang, Jong-Soo; Kim, Ho-Kyung

    2015-06-01

    The weld scallop has been used for joining T-bars. There are a lot of weld scallops in shipbuilding. It is difficult to perform scallop welding due to the inconvenient welding position. This results in many problems such as porosity, slag inclusion, etc. In this study, a new method is devised to remove weld scallops by incorporating a Ceramic Backing Material (CBM). The weld scallop is removed by an elongation of the v groove. In order to insert a CBM into the groove without a weld scallop, a wedge-shaped CBM is developed. The top side of the developed CBM is similar to the shape of a general back bead. The bottom surface has a saw-toothed shape for cutting at a suitable length. This can be attached to the root side of a face plate using adhesive tape, just like a general CBM. Welding experiments in normal and abnormal conditions are carried out and the possibility of burn-through is examined. This CBM's applicability to shipbuilding is verified.

  10. Adaptive weld control for high-integrity welding applications

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.

    1993-01-01

    An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.

  11. Submerged arc welding of heavy plate

    NASA Technical Reports Server (NTRS)

    Wilson, R. A.

    1972-01-01

    The submerged arc process is particularly suitable for heavy plate welding because of its ability to combine very high deposit rates along with excellent quality. It does these things without the smoke and spatter often accompanying other processes. It is available today in several forms that are pointed to the fabricators of heavy sections with long, short or round about welds. Tandem arc full automatic equipment is particularly suitable for those long heavy welds where speed and deposit rate are of the first order. An attachment called long stick-out which makes use of the IR drop on long electrode extensions can be included on this equipment to increase deposition rates 50% or more.

  12. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  13. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  14. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  15. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  16. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  17. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  18. Effect of Pressure in Thermoplastic Ribbon Thermal Welding

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Messier, B. C.; Marchello, J. M.

    1996-01-01

    An inexpensive apparatus was designed to simulate some features of on-the-fly thermal welding in heated-head tow placement. Previous studies have shown how ply/ply weld strength depends on weld time/temperature history. The apparatus has been modified recently to apply higher contact forces. Welding at pressures up to 1.7MPa (250psi) produced more consistent welds and fewer intra-ply voids, This has permitted a study of the conditions required for achieving the limiting ply/ply cohesive strength in simulated tow placement of a polyimide oligomer.

  19. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    PubMed

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  20. 46 CFR 57.01-1 - Qualifications and production tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...

  1. 46 CFR 57.01-1 - Qualifications and production tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...

  2. 46 CFR 57.01-1 - Qualifications and production tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...

  3. 46 CFR 57.01-1 - Qualifications and production tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...

  4. 46 CFR 57.01-1 - Qualifications and production tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND... regulations in this part shall apply to the qualification of welding procedures, welders, and brazers, and to production tests for all types of manual and machine arc and gas welding and brazing processes. (b) (Modifies...

  5. Demonstration of a Large-Scale Tank Assembly Via Circumferential Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Jones, Chip; Adams, Glynn; Colligan, Kevin; McCool, A. (Technical Monitor)

    2000-01-01

    Five (5) each 14-foot diameter circumferential FSWelds were conducted on the modified CWT, two (2) each pathfinder and three (3) each assembly welds Tapered circumferential welds were successfully demonstrated The use of a closeout anvil was successfully demonstrated during one of the pathfinder welds Considerable difficulty maintaining joint f it-up during the weld process Anvil deflections Hardware dimensional tolerances Inadequate clamping Variations in the heat sink characteristics of the circumferential anvil as compared to the test panel anvil

  6. Development and fabrication of a diffusion welded Columbium alloy heat exchanger. [for space power generation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.

    1978-01-01

    A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.

  7. Improved Formula for the Stress Intensity Factor of Semi-Elliptical Surface Cracks in Welded Joints under Bending Stress

    PubMed Central

    Peng, Yang; Wu, Chao; Zheng, Yifu; Dong, Jun

    2017-01-01

    Welded joints are prone to fatigue cracking with the existence of welding defects and bending stress. Fracture mechanics is a useful approach in which the fatigue life of the welded joint can be predicted. The key challenge of such predictions using fracture mechanics is how to accurately calculate the stress intensity factor (SIF). An empirical formula for calculating the SIF of welded joints under bending stress was developed by Baik, Yamada and Ishikawa based on the hybrid method. However, when calculating the SIF of a semi-elliptical crack, this study found that the accuracy of the Baik-Yamada formula was poor when comparing the benchmark results, experimental data and numerical results. The reasons for the reduced accuracy of the Baik-Yamada formula were identified and discussed in this paper. Furthermore, a new correction factor was developed and added to the Baik-Yamada formula by using theoretical analysis and numerical regression. Finally, the predictions using the modified Baik-Yamada formula were compared with the benchmark results, experimental data and numerical results. It was found that the accuracy of the modified Baik-Yamada formula was greatly improved. Therefore, it is proposed that this modified formula is used to conveniently and accurately calculate the SIF of semi-elliptical cracks in welded joints under bending stress. PMID:28772527

  8. Vacuum Deposition From A Welding Torch

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.

    1993-01-01

    Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.

  9. Upgraded HFIR Fuel Element Welding System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. Inmore » recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.« less

  10. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Astrophysics Data System (ADS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  11. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  12. Fine-Scale Mechanical Properties of Sliding Solids.

    DTIC Science & Technology

    1987-02-28

    experiments to be described, the tip was prepared by chemical polishing or electropolishing and welded to a loop of wire that could be resistively heated in...attach the sample to a wire mesh that could be resistively heated itself to high temperatures. Where neither of these methods were appropriate...section welded to the tip wire . The reflected beam is focussed onto an optical detector (also outside the chamber) which is sensitive to small changes

  13. 46 CFR 56.97-40 - Installation tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... attached to boilers by welding without practical means of blanking off for testing, the piping shall be...) Fixed oxygen-acetylene system piping. (b) Installation testing requirements for refrigeration, fluid...

  14. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  15. Preliminary investigation of inertia friction welding B2 aluminides

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Moore, Thomas J.; Kuruzar, Daniel L.

    1987-01-01

    An attempt is made to achieve inertia friction-welding in FeAl and NiAl samples, taking into account their intermetallics' compositions, extrusion parameters, and microstructural data. The energy required for the weld is stored in a rotating flywheel mass attached to one of the two pieces to be joined; when enough energy is introduced, the flywheel is disconnected and an axial load is applied which forces the spinning piece against the stationary one, converting the energy into heat by means of friction. Due to the inherent brittleness of the aluminides, a step-load program was used in which an initial, low-pressure heat buildup increased the work pieces' ductility.

  16. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    NASA Astrophysics Data System (ADS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  17. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... systems and should be checked when designing for these systems. (c) Socket welds (Modifies 127.3.3A.). (1) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to... approximately one-sixteenth inch between the end of the pipe and the bottom of the socket must be provided...

  18. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... systems and should be checked when designing for these systems. (c) Socket welds (Modifies 127.3.3A.). (1) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to... approximately one-sixteenth inch between the end of the pipe and the bottom of the socket must be provided...

  19. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... systems and should be checked when designing for these systems. (c) Socket welds (Modifies 127.3.3A.). (1) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to... approximately one-sixteenth inch between the end of the pipe and the bottom of the socket must be provided...

  20. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... systems and should be checked when designing for these systems. (c) Socket welds (Modifies 127.3.3A.). (1) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to... approximately one-sixteenth inch between the end of the pipe and the bottom of the socket must be provided...

  1. 46 CFR 56.30-5 - Welded joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... systems and should be checked when designing for these systems. (c) Socket welds (Modifies 127.3.3A.). (1) Each socket weld must conform to ASME B16.11 (incorporated by reference; see 46 CFR 56.01-2), to... approximately one-sixteenth inch between the end of the pipe and the bottom of the socket must be provided...

  2. Nd:YAG laser welding of coated sheet steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, M.P.; Kerr, H.W.; Weckman, D.C.

    1994-12-31

    Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires ofmore » various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.« less

  3. Metal Cutting Theory and Friction Stir Welding Tool Design

    NASA Technical Reports Server (NTRS)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  4. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  5. Diode lasers for direct application by utilizing a trepanning optic for remote oscillation welding of aluminum and copper

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang

    2017-02-01

    We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP < 8 mm mrad at all power levels up to 1 kW, as well as free space collimated outputs with even lower BPP. The initial design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of <3.5 mm*mrad in the fast axis and <5 mm*mrad in the slow axis. Next, further power scaling is accomplished by polarization combining and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with over 500 W launched into a 100 μm fiber with 0.15 NA. The beam profile of the free space module remains rectangular, with a nearly flat top and conserves the beam parameter product of the original vertical stack without the power loss of fiber coupling. The 500 W building blocks feature a highly flexible emitting wavelength bandwidth. New wavelengths can be configured by simply exchanging parts and without modifying the production process. This design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.

  6. The CAP Approach to Modifying Vocational Programs for Handicapped Students. Vol. 5: Trades and Industry with an Example in Welding.

    ERIC Educational Resources Information Center

    Fessenden, Patricia K.; Mendini, Daniel

    This combination teaching guide and student workbook, fifth in a five-volume series (see note), presents an approach to teaching basic welding and welding terms for handicapped students. The teaching guide discusses a functional approach to teaching that can accomodate or alleviate the effects of disabilities. Discussion centers on categories to…

  7. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  8. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  9. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  10. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  11. Residual Stress Measurement and the Effect of Heat Treatment in Cladded Control Rod Drive Specimens

    NASA Astrophysics Data System (ADS)

    Bowman, Ashley; Kingston, Ed; Katsuyama, Jinya; Udagawa, Makoto; Onizawa, Kunio

    This paper presents results of residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states. Knowledge of the residual stresses present in CRD nozzles is critical when modelling the fracture mechanics of failures of nuclear power plant components to dictate inspections intervals and optimise plant downtime. The specimens comprised of ferritic steel blocks with 309L stainless steel cladding and a single J-groove weld attaching the 304 stainless steel nozzles. Multiple measurements were made through the thickness of the specimens in order to give biaxial residual stress profiles through all the different fusion boundaries. The results show the effect of PWHT in reducing residual stresses both in the weld and ferritic material. The beneficial use of measurements is highlighted to provide confidence in the modelled results and prevent over conservatism in integrity calculations, costing unnecessary time and money.

  12. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  13. Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.

    2017-10-01

    Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.

  14. Welding induced residual stress evaluation using laser-generated Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles

    2018-04-01

    Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.

  15. 49 CFR 179.220-23 - Test of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must not be in place when the test is made. (b) The inner container must be pressure tested before... container after its installation within outer shell must have their attachment welds thoroughly inspected by...

  16. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... strap attached by welding or bolting. (2) Two or more bolts that give metal to metal contact between the...

  17. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... attachments. (3) Each anode shall have at least two welded or bolted connections to the supporting structure.... (5) The recommended construction of the anode should utilize a mild steel core with necessary...

  18. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... attachments. (3) Each anode shall have at least two welded or bolted connections to the supporting structure.... (5) The recommended construction of the anode should utilize a mild steel core with necessary...

  19. More About Cutting Tool For Shaving Weld Beads

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A.; Davis, William M.

    1996-01-01

    Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.

  20. Comparison of joining processes for Haynes 230 nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Williston, David Hugh

    Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.

  1. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribemore » welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.« less

  2. SIMS depth profiling of working environment nanoparticles

    NASA Astrophysics Data System (ADS)

    Konarski, P.; Iwanejko, I.; Mierzejewska, A.

    2003-01-01

    Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.

  3. Counterrotating-Shoulder Mechanism for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2007-01-01

    A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the upper and lower bevel gears. The lower bevel gear would be attached to the upper shoulder and would slide and rotate freely over the spindle. The spindle would be fastened by its threaded upper end to an external submechanism that would exert axial tension on the spindle to load the workpiece in compression between the shoulders. By reducing or eliminating (relative to the use of a self reacting tool) the torque that must be reacted externally, the use of the proposed tool would reduce the tendency toward distortion or slippage of the workpiece. To begin a weld, the spindle would be inserted through a hole in the workpiece or run-on tab at the beginning of the seam and fastened to the loading submechanism. Rotation and axial loading would be increased gradually from zero and, after a time to be determined by trial and error, translation along the weld seam would be increased gradually from zero to a steady weld speed. The weld would be ended by running the mechanism off the workpiece or, if the lower shoulder were detachable, by detaching the lower shoulder from the spindle and pulling the pin tool out.

  4. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  5. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  6. 76 FR 18524 - Aluminum Extrusions From the People's Republic of China: Final Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    .... SUPPLEMENTARY INFORMATION: Case History The Department published its Preliminary Determination on November 12... are attached (e.g., by welding or fasteners) to form subassemblies, i.e., partially assembled...

  7. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  8. Modular Fixturing System

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)

    2017-01-01

    The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.

  9. Advanced Metalworking Solutions for Naval Systems that Go in Harm’s Way

    DTIC Science & Technology

    2010-11-10

    TECHNOLOGIES An NMC project team designed, built, and demonstrated at Concurrent Technologies Corporation a low-cost, transportable friction stir welding (LC...technologies for use in shipbuilding applications. For example, NMC and its team members are currently advancing friction stir welding (FSW...lower the cost of Navy ships and improve the quality of ship components. NMC is modifying its previously designed low-cost friction stir welding

  10. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-10 (b), Method 8. Welding neck flanges may be used on any piping provided the flanges are butt-welded..., refer to 46 CFR 56.30-5(b) for requirements. (9) Figure 56.30-10 (b), Method 9. Welding neck flanges may.... ER16DE08.002 Note to Fig. 56.30-10(b): “T” is the nominal pipe wall thickness used. Consult the text of...

  11. Modified Welding Technique of a Hypo-Eutectic Al-Cu Alloy for Higher Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Ghosh, B. R.; Gupta, R. K.; Biju, S.; Sinha, P. P.

    GTAW process is used for welding of pressure vessels made of hypo-eutectic Al-Cu alloy AA2219 containing 6.3% Cu. As welded Yield strength of the alloy was found to be in the range of 140-150 MPa, using conventional single pass GTAW technique on both AC and DCSP modes. Interestingly, it was also found that weld-strength decreased with increase in thickness of the weld coupons. Welding metallurgy of AA2219 Al alloy was critically reviewed and factors responsible for lower properties were identified. Multipass GTAW on DCSP mode was postulated to improve the weld strength of this alloy. A systematic experimentation using 12 mm thick plates was carried out and YS of 200 MPa has been achieved in the as welded condition. Thorough characterization including optical and electron microscopy was conducted to validate the metallurgical phenomena attributable to improvement in weld strength. This paper presents the conceptual understanding of welding metallurgy of AA2219 alloy and validation by experiments, which could lead to better weld properties using multipass GTAW on DCSP mode.

  12. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels resulted in damage to the equipment (concentrator) during welding. It is of note that the joint made showed the typical wavy bond microstructure associated with magnetic pulse/explosion bond joints. Joints were not possible between the T-111 tube and the MarM 247 bar stock. In this case, the MarM 247 shattered before sufficient impact forces could be developed for bonding.

  13. Evaluation in vitro of the tensile strength of crimpable hooks used for stabilization in orthognathic surgery.

    PubMed

    Andrade Gomes, Nascimento Leonard Euller; Melo, Pithon Matheus; Lacerda, Santos Rogério; D'Albuquerque, Medeiros Paulo Jose

    2012-03-01

    The aim of this study was to evaluate the tensile strength of crimpable hooks used for arch stabilization in orthognatic surgery. Ninety stainless steel wire (0.019" × 0.026") segments, each measuring 6 cm long, were used and attached to crimpable hooks of different commercial brands. Six groups were formed (n = 10) denominated as follows: control, in which the wire segments were perpendicularly welded by spot welding machine; and the hooks groups M (Morelli), MS (Morelli with weld), TP (TP Ortho), TPS (TP with weld), TPTg (TP-tungsten), TPTgS (TP-tungsten with weld), AO (American Orthodontics), and AOS (American Orthodontics with weld). The test specimen topography was evaluated by scanning electron microscopy before and after the tensile strength tests. After obtaining the results, the analysis of variance and Kruskal-Wallis multiple-comparison tests were applied. Compared with the control group, the AOS ball hooks and those from TPS required a greater amount of force to be displaced along the rectangular arch. The hooks in group M were significantly easier to displace, followed by those from AO. The best ball hooks for clinical application are those from AOS and TPS. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser.

    PubMed

    Ott, B; Züger, B J; Erni, D; Banic, A; Schaffner, T; Weber, H P; Frenz, M

    2001-01-01

    In vitro porcine arteries and veins have been welded end-to-end using either a 808 nm diode laser combined with an indocyanine green enhanced albumin solder, or with a continuous-wave (cw) Ho:YAG laser without biological solder. The vascular stumps were approached to each other over a coronary dilatation catheter in order to obtain a precise alignment and good coaptation. Standard histology revealed for both welding techniques lateral tissue damage between 2 and 3 mm caused by laser-induced heat. Good solder attachment to the tissue was observed by the use of a scanning electron microscope. The vessels soldered with the 808 nm diode laser using albumin solder showed considerably higher tensile strength (1 N compared to 0.3 N) than vessels welded exclusively by Ho:YAG laser radiation. In contrast, leaking pressure (350 +/- 200 mmHg) and bursting pressure (457 +/- 200 mmHg) were found to be independent of the welding technique used. This study demonstrates that fast (total welding time about 2-5 min), stable and tight microvascular anastomosis can be achieved with the use of a dye-enhanced albumin laser soldering technique and an ancillary coronary dilatation catheter.

  15. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    NASA Astrophysics Data System (ADS)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  16. 76 FR 30653 - Aluminum Extrusions From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Constitution Avenue, NW., Washington, DC 20230; telephone: 202/482-1009. Case History: On April 4, 2011, the... includes the aluminum extrusion components that are attached (e.g., by welding or fasteners) to form...

  17. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    PubMed

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  18. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  19. Welding. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a comprehensive and verified employer competency list for a welding program. It contains units (with or without subunits), competencies, and competency builders that identify the occupational, academic, and employability skills needed…

  20. Swirl Ring Improves Performance Of Welding Torch

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Plasma-arc welding torch modified to create vortex in plasma gas to focus arc into narrower and denser column. Swirl ring contains four channels with angled exit holes to force gas to swirl as it flows out of torch past tip of electrode. Degradation of electrode and orifice more uniform and need to rotate torch during operation to compensate for asymmetry in arc reduced or eliminated. Used in both keyhole and nonkeyhole welding modes.

  1. Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals.

    PubMed

    Antonini, James M; Afshari, Aliakbar A; Stone, Sam; Chen, Bean; Schwegler-Berry, Diane; Fletcher, W Gary; Goldsmith, W Travis; Vandestouwe, Kurt H; McKinney, Walter; Castranova, Vincent; Frazer, David G

    2006-04-01

    Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90-150 mg/m(3) in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 microm with a geometric standard deviation (sigma(g)) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using controlled welding exposures from automated gas metal arc and flux-cored arc welding processes to investigate how welding fumes affect health.

  2. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  3. Design and technology parameters influence on durability for heat exchangers tube to tubesheet joints

    NASA Astrophysics Data System (ADS)

    Ripeanu, R. G.

    2017-02-01

    The main failures of heat exchangers are: corrosion of tubes and jacket, tubes blockage and failures of tube to tubesheet joints also by corrosion. The most critical zone is tube to tubesheet joints. Depending on types of tube to tubesheet joints, in order to better respect conditions of tension and compression, this paper analyses the tubesheet holes shapes, smooth and with a grove, on corrosion behavior. In the case of welding tubes with tubesheet, welding parameters modify corrosion behavior. Were realized welded joints by three welding regimes and tested at corrosion in two media, tap water and industrial water. Were tested also samples made of smooth tubes, finned tubes and tubes coated with a passive product as applied by a heat exchanger manufacturer. For all samples, the roughness parameters were measured, before and after the corrosion tests. The obtained corrosion rates show that stress values and their distribution along the joint modify the corrosion behavior. The optimum welding parameters were established in order to increase the joint durability. The paper has shown that passive product used is not proper chosen and the technology of obtaining rolled thread pipes diminishes tubes’ durability by increasing the corrosion rate.

  4. Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape.

    PubMed

    Dell'Anna, Riccardo; Lionetto, Francesca; Montagna, Francesco; Maffezzoli, Alfonso

    2018-05-11

    In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties.

  5. Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape

    PubMed Central

    Dell’Anna, Riccardo; Montagna, Francesco

    2018-01-01

    In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties. PMID:29751693

  6. Experimental Investigation of Air-Cooled Turbine Blades in Turbojet Engine. 7: Rotor-Blade Fabrication Procedures

    NASA Technical Reports Server (NTRS)

    Long, Roger A.; Esgar, Jack B.

    1951-01-01

    An experimental investigation was conducted to determine the cooling effectiveness of a wide variety of air-cooled turbine-blade configurations. The blades, which were tested in the turbine of a - commercial turbojet engine that was modified for this investigation by replacing two of the original blades with air-cooled blades located diametrically opposite each other, are untwisted, have no aerodynamic taper, and have essentially the same external profile. The cooling-passage configuration is different for each blade, however. The fabrication procedures were varied and often unique. The blades were fabricated using methods most suitable for obtaining a small number of blades for use in the cooling investigations and therefore not all the fabrication procedures would be directly applicable to production processes, although some of the ideas and steps might be useful. Blade shells were obtained by both casting and forming. The cast shells were either welded to the blade base or cast integrally with the base. The formed shells were attached to the base by a brazing and two welding methods. Additional surface area was supplied in the coolant passages by the addition of fins or tubes that were S-brazed. to the shell. A number of blades with special leading- and trailing-edge designs that provided added cooling to these areas were fabricated. The cooling effectiveness and purposes of the various blade configurations are discussed briefly.

  7. Effect of joining the sectioned implant-supported prosthesis on the peri-implant strain generated in simulated mandibular model.

    PubMed

    Singh, Ipsha; Nair, K Chandrasekharan; Shetty, Jayakar

    2017-01-01

    The aim of this study is to evaluate the strain developed in simulated mandibular model before and after the joining of an implant-supported screw-retained prosthesis by different joining techniques, namely, arc welding, laser welding, and soldering. A specimen simulating a mandibular edentulous ridge was fabricated in heat-cured acrylic resin. 4-mm holes were drilled in the following tooth positions; 36, 33, 43, 46. Implant analogs were placed in the holes. University of California, Los Angeles, abutment was attached to the implant fixture. Eight strain gauges were attached to the acrylic resin model. Six similar models were made. Implant-supported screw-retained fixed prosthesis was fabricated in nickel-chromium alloy. A load of 400 N was applied on the prosthesis using universal testing machine. Resultant strain was measured in each strain gauge. All the prostheses were sectioned at the area between 36 and 33, 33 and 43, and 43 and 46 using 35 micrometer carborundum disc, and strain was measured in each strain gauge after applying a load of 400 N on the prosthesis. Specimens were joined by arc welding, soldering, and laser welding. After joining, a load of 400 N was applied on each prosthesis and the resultant strain was measured in each strain gauge. Highest mean strain values were recorded before sectioning of the prostheses (889.9 microstrains). Lowest mean strain values were recorded after sectioning the prosthesis and before reuniting it (225.0 microstrains). Sectioning and reuniting the long-span implant prosthesis was found to be a significant factor in influencing the peri-implant strain.

  8. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  9. The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar

    2006-01-01

    Peening techniques like laser peening and shot peening were used to modify the surface of friction stir welded 7075-T7351 Aluminum Alloy specimens. The tensile coupons were machined such as the loading was applied in a direction perpendicular to the weld direction. The peening effects on the global and local mechanical properties through the different regions of the weld were characterized and assessed. The surface hardness levels resulting from various peening techniques were also investigated for both sides of the welds. Shot peening resulted in an increase to surface hardness levels, but no improvement was noticed on the mechanical properties. In contrast, mechanical properties were improved by laser peening when compared to the unpeened material.

  10. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    NASA Astrophysics Data System (ADS)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  11. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  12. Heat-affected zone and phase composition of 0.09 C-2 Mn-1 Si-Fe steel depending on welding technique

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Smirnov, Aleksander; Koneva, Nina

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the heat-affected zone (HAZ) in welded joint modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within HAZ between the deposited and base metal at 1 mm distance to the latter. The type 0.09C-2Mn-1Si-Fe steel is used as weld material. It is shown that the welding process has an effect on the material morphology, phase composition, faulted structure and its parameters. Long-range stresses are divided into plastic and elastic components. It is demonstrated that the type of welding does not change the structural quality of welded joint represented by perlite and ferrite as contrasted with their volume fraction. According to observations, any type of welding with the introduction of artificial flaws results in the destruction of perlite. Polarization of the dislocation structure occurs. The amplitude of mean internal stresses does not practically depend on the welding type. It is shown that the introduction of artificial flaws both during electrode and electropercussive welding reduce the quantitative parameters of the faulted structure.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paillard, Pascal

    Two try-out campaigns of friction stir welding (FSW) were performed with different friction parameters to join S690QL high yield strength steel. The welds were investigated at macroscopic and microscopic scales using optical and electronic microscopy and microhardness mapping. Welds of the second campaign exhibit microstructures and mechanical properties in accordance with requirements for service use. Microtexture measurements were carried out in different zones of welds by electron backscattered diffraction (EBSD). It is shown that that texture of the bottom of the weld is similar to that of the base metal, suggesting a diffusion bonding mechanism. Finally, the mechanical properties (tensilemore » strength, resilience, bending) were established on the most promising welds. It is shown that it is possible to weld this high yield strength steel using FSW process with satisfactory geometric, microstructural and mechanical properties. - Highlights: •1000 mm ∗ 400 mm ∗ 8 mm S690QL steel plates are joined by friction stir welding (FSW). •Maximum hardness is reduced by optimization of process parameters. •Various microstructures are formed but no martensite after process optimization. •Texture is modified in mechanically affected zones of the weld. •Texture in the bottom of the weld is preserved, suggesting diffusion bonding.« less

  14. Automated GMA welding of austenitic stainless steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahash, G.J.

    1996-12-31

    The study focused on reducing weld cycle times of rotatable subassemblies (spools) using automated welding equipment. A unique automatic Gas Metal Arc Welding (GMAW) system was used to produce a series of pipe to pipe welds on 141 mm (5 in.) schedule 80 seamless stainless steel pipe. After manual tack welding, the adaptive control system welded the root pass of the argon gas backed open vee groove circumferential butt joints in the IG rotated position with short circuiting transfer GMAW. The fill and cover passes were welded automatically with spray transfer GMAW. Automatic welding cycle times were found to bemore » 50--80 percent shorter than the current techniques of roll welding with Shielded Metal Arc Welding and manual Gas Tungsten Arc Welding. Weld costs ({Brit_pounds}/m), including amortization, for the various systems were compared. The cost of automated GMA welds was virtually equivalent to the most competitive methods while depositing 75% more filler metal per year. Also investigated were metallurgical effects generated by weld thermal cycling, and the associated effects on mechanical properties of the weld joint. Mechanical properties of the welds met or exceeded those of the base metal. Sensitization of the pipe did not occur in the heat affected zone (HAZ), based on the absence of evidence of intergranular attack in modified Strauss corrosion tests and despite the fact of interpass temperatures well above recommended maximums. Cooling rates of 3--5 C/s in the heat affected zone of the four pass welds were measured by thermocouple technique and found to be within the non-sensitizing range for this alloy.« less

  15. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  16. Increase of reliability of contact networks of electric transport, due to increase of strength of the joint unit of pipes of different diameters

    NASA Astrophysics Data System (ADS)

    Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Gatiyatov, I. Z.; Kuznetsov, I. L.

    2017-09-01

    The feature of the stress state of the supports of the contact networks is the presence of a joint of pipes of different diameters, the ultimate state of which is determined, as a rule, the strength of the weld. The proposed unit allows to increase the reliability and strength of the connection and also exclude the presence of a weld bead on the outer surface of the pipe of smaller diameter in the place of its attachment to the upper end of the support ring.

  17. Copper Gas Diffusers For Purging Line-Focus Laser Welds

    NASA Technical Reports Server (NTRS)

    Fonteyne, Steve L.; Hosking, Timothy J.; Shelley, D. Mark

    1996-01-01

    Modified flow diffusers built for inert-gas purging of welds made with 5-kW CO(2) lasers operating with line-focus optics in conduction mode instead of with point-focus optics in customary keyhole mode. Diffusers made of copper components brazed together, robust enough to withstand strong reflections of line-focused laser energy.

  18. More About Arc-Welding Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  19. A simplified model for TIG-dressing numerical simulation

    NASA Astrophysics Data System (ADS)

    Ferro, P.; Berto, F.; James, M. N.

    2017-04-01

    Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.

  20. Mass-size distribution and concentration of metals from personal exposure to arc welding fume in pipeline construction: a case report.

    PubMed

    Yang, Show-Yi; Lin, Jia-Ming; Young, Li-Hao; Chang, Ching-Wen

    2018-04-07

    We investigate exposure to welding fume metals in pipeline construction, which are responsible for severe respiratory problems. We analyzed air samples obtained using size-fractioning cascade impactors that were attached to the welders performing shielded metal and gas tungsten arc welding outdoors. Iron, aluminum, zinc, chromium, manganese, copper, nickel, and lead concentrations in the water-soluble (WS) and water-insoluble (WI) portions were determined separately, using inductively coupled plasma mass spectrometry. The mass-size distribution of welding fume matches a log-normal distribution with two modes. The metal concentrations in the welding fume were ranked as follows: Fe > Al > Zn > Cr > Mn > Ni > Cu > Pb. In the WS portion, the capacities of metals dissolving in water are correlated with the metal species but particle sizes. Particularly, Zn, Mn, and Pb exhibit relatively higher capacities than Cu, Cr, Al, Fe, and Ni. Exposure of the gas-exchange region of the lungs to WS metals were in the range of 4.9% to 34.6% of the corresponding metals in air by considering the particle-size selection in lungs, metal composition by particle size, and the capacities of each metal dissolving in water.

  1. The effects of weld-repair and hot isostatic pressing on the fracture properties of Ti-5Al-2.5Sn ELI castings

    NASA Technical Reports Server (NTRS)

    Misra, M. S.; Lemeshewsky, S.; Bolstad, D.

    1982-01-01

    The Ti-5Al-2.5Sn extremely low interstitial alloy employed in the large castings which form the critical attachment fittings of the Space Shuttle External Tank was selected because of its high fracture resistance at cryogenic temperatures. Casting was selected over alternative fabrication methods because of its lower cost and adaptability to design changes, although it was found necessary to weld-repair surface and subsurface casting defects in order to reduce the scrap rate and maintain the inherent cost advantage of the castings. Hot Isostatic Pressing was experimentally found to heal the surface and internal defects of the castings, but did not improve tensile or fracture properties and was therefore rejected as a production technique. Production castings are instead weld-repaired, without any mechanical property degradation.

  2. Optical fiber sensors for harsh environments

    DOEpatents

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  3. Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.

    2014-10-01

    Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.

  4. Diffractive beam shaping for enhanced laser polymer welding

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  5. Characterization of a Hall Effect Thruster Using Thermal Imaging

    DTIC Science & Technology

    2007-03-01

    to physically attach the thermocouples to the object, which is destructive to the item being monitored if a strong adhesive or welding is used...by detecting incident thermal radiation and converting it to a temperature. A thermistor bolometer, for example, consists of a material, usually

  6. Sonar Transducer Reliability Improvement Program (STRIP) FY80.

    DTIC Science & Technology

    1980-07-01

    heating element powered by a temperature conLroller (YSI model 74) with a series 400 thermistor probe. Figure 3.1 shows the data and average curves...ATTACHMENT METHODS General Welded Receptacles Threaded or Bolted Receptacles Elastomeric Bonded Receptacles I I!11 " SECTION 12 - CABLE HARNESS TEST

  7. Grinding Away Microfissures

    NASA Technical Reports Server (NTRS)

    Booth, Gary N.; Malinzak, R. Michael

    1990-01-01

    Treatment similar to dental polishing used to remove microfissures from metal parts without reworking adjacent surfaces. Any variety of abrasive tips attached to small motor used to grind spot treated. Configuration of grinding head must be compatible with configurations of motor and workpiece. Devised to eliminate spurious marks on welded parts.

  8. Fully Coupled Thermomechanical Finite Element Analysis of Material Evolution During Friction-Stir Welding of AA5083

    DTIC Science & Technology

    2009-09-03

    coefficients are set to a value of 0.3. The stick/slip critical shear stress level is defined using a modified Coulomb friction law. Within this law, there...Modified Johnson Cook Model Equivalent Plastic Strain a P M,htgnert S d lei Y 1 2 3 4 5 6 7 420 440 460 480 500 520 540 560 Original Johnson Cook Model...Lett., 2005, 59, 3315–3318. 7 Thomas, W. M. and Nicholas, E. D. Friction stir welding for the transportation industries. Mater. Des ., 1997, 18, 269

  9. On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Spies, M.; Rieder, H.; Dillhöfer, A.

    2011-06-01

    This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.

  10. Plasma-Arc Torch For Welding Ducts In Place

    NASA Technical Reports Server (NTRS)

    Gangl, Kenneth J.; Bayless, Ernest; Looney, Alan

    1991-01-01

    Plasma-arc-welding torch redesigned, more suitable for applications in which moved in circular or other orbits about stationary cylindrical workpieces. Preserves elements of original design critical to performance and endurance, but modifies other elements to decrease overall size of torch. Electrode collet and collet nut installed and removed through hole in top; makes installation and removal easier.

  11. Cutting Tool For Shaving Weld Beads

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.; Mcferrin, David C.; Daniel, Ronald L., Jr.; Coby, John B., Jr.; Dawson, Sidney G.

    1995-01-01

    Cutting tool proposed for use in shaving weld beads flush with adjacent surfaces of weldments. Modified version of commercial pneumatically driven rotary cutting tool, cutting wheel of which turns at speeds sufficient for machining nickel alloys, titanium, and stainless steels. Equipped with forward-mounted handle and rear-mounted skid plate to maximize control and reduce dependence on skill of technician.

  12. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly thereto must be postweld heat treated as a unit at the proper temperature except as indicated below. Tanks...

  13. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  14. High Power High Efficiency Diode Laser Stack for Processing

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  15. Progress in developing ultrathin solar cell blanket technology

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.

    1984-01-01

    A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).

  16. Comprehensive optimization of friction stir weld parameters of lap joint AA1100 plates using artificial neural networks and modified NSGA-II

    NASA Astrophysics Data System (ADS)

    Khalkhali, Abolfazl; Ebrahimi-Nejad, Salman; Geran Malek, Nima

    2018-06-01

    Friction stir welding (FSW) process overcomes many difficulties arising in conventional fusion welding processes of aluminum alloys. The current paper presents a comprehensive investigation on the effects of rotational speed, traverse speed, tool tilt angle and tool pin profile on the longitudinal force, axial force, maximum temperature, tensile strength, percent elongation, grain size, micro-hardness of welded zone and welded zone thickness of AA1100 aluminum alloy sheets. Design of experiments (DOE) was applied using the Taguchi approach and subsequently, effects of the input parameter on process outputs were investigated using analysis of variance (ANOVA). A perceptron neural network model was developed to find a correlation between the inputs and outputs. Multi-objective optimization using modified NSGA-II was implemented followed by NIP and TOPSIS approaches to propose optimum points for each of the square, pentagon, hexagon, and circular pin profiles. Results indicate that the optimization process can reach horizontal and vertical forces as low as 1452 N and 2913 N, respectively and a grain size as low as 2 μm. This results in hardness values of up to 57.2 and tensile strength, elongation and joint thickness of 2126 N, 5.9% and 3.7 mm, respectively. The maximum operating temperature can also reach a sufficiently high value of 374 °C to provide adequate material flow.

  17. Study on factors affecting the droplet temperature in plasma MIG welding process

    NASA Astrophysics Data System (ADS)

    Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani

    2018-04-01

    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.

  18. A simple 2-d thermal model for GMA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteson, M.A.; Franke, G.L.; Vassilaros, M.G.

    1996-12-31

    The Rosenthal model of heat distribution from a moving source has been used in many applications to predict the temperature distribution during welding. The equation has performed well in its original form or as modified. The expression has a significant limitation for application to gas metal arc welds (GMAW) that have a papilla extending from the root of the weld bead. The shape of the fusion line between the papilla and the plate surface has a concave shape rather than the expected convex shape. However, at some distance from the fusion line the heat affected zone (HAZ) made visible bymore » etching has the expected convex shape predicted by the Rosenthal expression. This anomaly creates a limitation to the use of the Rosenthal expression for predicting GMAW bead shapes or HAZ temperature histories. Current research at the Naval Surface Warfare Center--Carderock Division (NSWC--CD) to develop a computer based model to predict the microstructure of multi-pass GMAW requires a simple expression to predict the fusion line and temperature history of the HAZ for each weld pass. The solution employed for the NSWC--CD research is a modified Rosenthal expression that has a dual heat source. One heat source is a disk source above the plate surface supplying the majority of the heat. The second heat source is smaller and below the surface of the plate. This second heat source helps simulate the penetration power of many GMAW welds that produces the papilla. The assumptions, strengths and limitations of the model are presented along with some applications.« less

  19. Custom-made laser-welded titanium implant prosthetic abutment.

    PubMed

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  20. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  1. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  2. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  3. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  4. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  5. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  6. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less

  7. On the non-proportionality between wheel/rail contact forces and speed during wheelset passage over specific welds

    NASA Astrophysics Data System (ADS)

    Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio

    2018-01-01

    This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.

  8. A study of mechanical properties for aluminum GMA weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluken, A.O.; Bjoerneklett, B.

    1997-02-01

    Medium- to high-strength aluminum alloys represent an attractive alternative to steel as a material for critical structural members. One area of great interest for their use is the transportation industry due to the increasing demands for less environmental impact through improved fuel efficiency, weight reductions, and increased load capacity. Fabrication of structural bodies involves, in most instances, the application of a joining process. Load-carrying members must be joined together or nonload-carrying parts attached to the primary structure. Although adhesive bonding, laser beam welding and friction stir welding are attractive processes for joining of aluminum, gas metal arc welding (GMAW) ismore » by far the most widely used process at present. Fusion welding of a heat-treatable aluminum alloy represents an additional local heat treatment of material that previously has been processed through tight temperature control to obtain the desired mechanical properties. Hence, great attention must be given to selection of alloy and temper condition, welding parameters, and postweld aging procedures for a given application. The objective of this investigation was to establish mechanical property data, i.e., tensile strength and impact toughness, for Al-Mg-Si and Al-Zn-Mg gas metal arc weldments applicable to the automotive and shipbuilding industries.« less

  9. The structure and properties of the modified nitrogenated high-chromium steel for welding the parts of oil and gas equipment

    NASA Astrophysics Data System (ADS)

    Sokolov, G. N.; Artem'ev, A. A.; Dubcov, Yu. N.; Eremin, E. N.; Litvinenko-Ar'kov, V. B.

    2017-08-01

    The influence of nitrogen and titanium carbonitride particles on the structure and properties of high-chromium steel, deposited by flux cored wire, has been studied. It has been shown that the quality formation of the weld metal and pore absence in it are achieved with nitrogen concentration in wire filler no more than 0.32 mass%. It has been found that in adding titanium carbonitride particles from 0.2 to 0.6 mass% to wire filler the effect of weld Fe-C-Cr-Mo-Ni-N system metal modification is implemented and its operational properties increase. The developed flux cored wire has been recommended for oil and gas equipment welding.

  10. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  11. 30 CFR 18.31 - Enclosures-joints and fastenings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... square inch (gage). Castings shall be free from blowholes. (2) Welded joints forming an enclosure shall... portion are acceptable in lieu of a head or shoulder, but cotter pins and similar devices shall not be... attaching hose conduit, unless energy carried by the cable is intrinsically safe. (c) No assembly will be...

  12. 30 CFR 18.31 - Enclosures-joints and fastenings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... square inch (gage). Castings shall be free from blowholes. (2) Welded joints forming an enclosure shall... portion are acceptable in lieu of a head or shoulder, but cotter pins and similar devices shall not be... attaching hose conduit, unless energy carried by the cable is intrinsically safe. (c) No assembly will be...

  13. 30 CFR 18.31 - Enclosures-joints and fastenings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... square inch (gage). Castings shall be free from blowholes. (2) Welded joints forming an enclosure shall... portion are acceptable in lieu of a head or shoulder, but cotter pins and similar devices shall not be... attaching hose conduit, unless energy carried by the cable is intrinsically safe. (c) No assembly will be...

  14. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  15. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  16. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  17. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  18. 46 CFR 151.50-10 - Alkylene oxides.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terminate in the liquid space and shall be attached to the shell by welding with the end of the fitting... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-10 Alkylene oxides. (a) For the... alkylene oxide in either the liquid or vapor state is present in any cargo tank. Alkylene oxide tanks shall...

  19. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... be attached before postweld heat treatment. Welds securing the following need not be postweld heat...

  20. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  1. Metallographic and fractographic observations of posttest creep-fatigue specimens of weld-deposited Type 308 CRE stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. W.

    Type 308 CRE stainless steel weld specimens were subjected to metallographic and fractographic analysis after failure in elevated-temperature (593/sup 0/C) creep-fatigue tests. The failure mode for specimens tested under continuous-cycle fatigue conditions was predominantly transgranular. When the test cycle was modified to include a hold time at the maximum tensile strain, the failure mode became predominantly interphase. Sigma phase was observed within the delta-ferrite regions in the weld. However, the presence of sigma phase did not appear to affect the failure mode.

  2. Graphite composite truss welding and cap section forming subsystems. Volume 1: Executive summary. [large space structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A rolltrusion process was developed for forming of a hybrid, single-ply woven graphite and glass fiber cloth, impregnated with a polysulfone resin and coated with TI02 pigmented P-1700 resin into strips for the on-orbit fabrication of triangular truss segments. Ultrasonic welding in vacuum showed no identifiable effects on weld strength or resin flow characteristics. An existing bench model cap roll forming machine was modified and used to roll form caps for the prototype test truss and for column test specimens in order to test local buckling and torsional instability characteristics.

  3. Improving fatigue performance of rail thermite welds

    NASA Astrophysics Data System (ADS)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  4. 46 CFR 54.10-15 - Pneumatic test (modifies UG-100).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pneumatic test (modifies UG-100). 54.10-15 Section 54.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-15 Pneumatic test (modifies UG-100). (a) Pneumatic testing of welded pressure vessels shall be...

  5. 46 CFR 54.10-15 - Pneumatic test (modifies UG-100).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pneumatic test (modifies UG-100). 54.10-15 Section 54.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-15 Pneumatic test (modifies UG-100). (a) Pneumatic testing of welded pressure vessels shall be...

  6. 46 CFR 54.10-15 - Pneumatic test (modifies UG-100).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pneumatic test (modifies UG-100). 54.10-15 Section 54.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-15 Pneumatic test (modifies UG-100). (a) Pneumatic testing of welded pressure vessels shall be...

  7. Stress analyses of flat plates with attached nozzles. Vol. 3. Experimental stress analyses of a flat plate with two closely spaced nozzles of equal diameter attached

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, J.W.; Swinson, W.F.

    1975-12-01

    The complete test results for a flat plate with two closely spaced nozzles attached are presented. Test loadings were 1:1, 1:2, and 2:1 biaxial planar tension loadings on the plate, axial thrust loadings applied separately to the nozzles, and bending moment loadings applied to the nozzles both within and normal to the plane of symmetry containing the nozzle axes. The test plate was 36 x 36 x 0.375 in., and the attached nozzles had outer diameters of 2.625 in. and wall thicknesses of 0.250 in. The nozzles were located in the center of the plate with their centers 3.0 in.more » apart and were considered to be free of weld distortions and irregularities in the junction region. 6 references. (auth)« less

  8. Recent Developments for Ultrasonic-Assisted Friction Stir Welding: Joining, Testing, Corrosion - an Overview

    NASA Astrophysics Data System (ADS)

    Thomä, M.; Wagner, G.; Straß, B.; Conrad, C.; Wolter, B.; Benfer, S.; Fürbeth, W.

    2016-03-01

    Due to the steadily increasing demand on innovative manufacturing processes, modern lightweight construction concepts become more and more important. Especially joints of dissimilar metals offer a variety of advantages due to their high potential for lightweight construction. The focus of the investigations was Al/Mg-joints. Friction Stir Welding (FSW) is an efficient process to realize high strength joints between these materials in ductile condition. Furthermore, for a simultaneous transmission of power ultrasound during the FSW-process (US-FSW) a positive effect on the achievable tensile strength of the Al/Mg-joints was proven. In the present work the industrial used die cast alloys EN AC-48000 (AlSi12CuNiMg) and AZ80 (MgAl8Zn) were joined by a machining center modified especially for Ultrasound Supported Friction Stir Welding. The appearing welding zone and the formation of intermetallic phases under the influence of power ultrasound were examined in particular. In order to identify optimal process parameters extensive preliminary process analyzes have been carried out. Following this, an ultrasound-induced more intensive stirring of the joining zone and as a result of this a considerably modified intermetallic zone was detected. At the same time an increase of the tensile strength of about 25% for US-FSW-joints and for fatigue an up to three times higher number of cycles to failure in comparison to a conventional welding process was observed. Moreover, detailed corrosion analyzes have shown that especially the welding zone was influenced by the corrosive attack. To expand and deepen the knowledge of the US-FSW-process further material combinations such as Ti/Steel and Al/Steel will be considered in future.

  9. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  11. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  12. SLI Complex Curvature Friction Stir Weld Risk Reduction Program

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn

    2003-01-01

    The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir weld process in conjunction with a universal weld system provides a low risk approach to the fabrication of aluminum tanks for future launch vehicle applications.

  13. Study on Welding Mechanism Based on Modification of Polypropylene for Improving the Laser Transmission Weldability to PA66

    PubMed Central

    Liu, Huixia; Jiang, Hairong; Guo, Dehui; Chen, Guochun; Yan, Zhang; Li, Pin; Zhu, Hejun; Chen, Jun; Wang, Xiao

    2015-01-01

    Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer. PMID:28793484

  14. The microstructure of aluminum A5083 butt joint by friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the platemore » form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.« less

  15. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    NASA Astrophysics Data System (ADS)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  16. 49 CFR 238.229 - Safety appliances-general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... support meets all of the conditions contained in § 238.230(b)(1) for being considered part of the car body... disassembly of a car is necessary to visually inspect the involved safety appliance bracket or support, the... for a final determination. No car with a defect in the weld of a safety appliance or its attachment...

  17. 49 CFR 238.229 - Safety appliances-general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... support meets all of the conditions contained in § 238.230(b)(1) for being considered part of the car body... disassembly of a car is necessary to visually inspect the involved safety appliance bracket or support, the... for a final determination. No car with a defect in the weld of a safety appliance or its attachment...

  18. 49 CFR 238.229 - Safety appliances-general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... support meets all of the conditions contained in § 238.230(b)(1) for being considered part of the car body... disassembly of a car is necessary to visually inspect the involved safety appliance bracket or support, the... for a final determination. No car with a defect in the weld of a safety appliance or its attachment...

  19. Hot foil transducer skin friction sensor

    NASA Technical Reports Server (NTRS)

    Vranas, T. (Inventor)

    1982-01-01

    The device utilizes foil transducers with only one edge exposed to the fluid flow. The surfaces are polished producing a foil transducer that does not generate turbulence while sufficiently thick to carry the required electrical current for high temperature fluid flow. The assembly utilizes a precut layered metal sandwich with attached electrodes eliminating a need for welding and individual sensor calibration.

  20. Flexible Interior-Impression-Molding Tray

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.

    1991-01-01

    Device used inside combustion chamber of complicated shape for nondestructive evaluation of qualities of welds, including such features as offset, warping, misalignment of parts, and dropthrough. Includes flexible polypropylene tray trimmed to fit desired interior surface contour. Two neodymium boron magnets and inflatable bladder attached to tray. Tray and putty inserted in cavity to make mold of interior surface.

  1. Automatic programming of arc welding robots

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Srikanth

    Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.

  2. Friction surfacing and linear friction welding

    NASA Astrophysics Data System (ADS)

    Nicholas, E. D.

    The paper describes the development of the friction-surfacing and linear-friction welding technologies, with particular attention given to the equipment evolution and the application of the processes and advanced materials (such as intermetallics, metal-matrix composites (MMCs), ODS alloys, and powder metallurgy alloys) for the aerospace industry. The use of friction surfacing to modify the surface material with MMCs, to repair defects by plugging, and manufacture/reprocess materials is described.

  3. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  4. Temperature Changes of Pulp Chamber during In Vitro Laser Welding of Orthodontic Attachments

    PubMed Central

    İşman, Eren; Okşayan, Rıdvan; Sökücü, Oral; Üşümez, Serdar

    2014-01-01

    The use of lasers has been suggested for orthodontists to fabricate or repair orthodontic appliances by welding metals directly in the mouth. This work aimed to evaluate the temperature changes in the pulp chamber during welding of an orthodontic wire to an orthodontic molar band using Nd : YAG laser in vitro. A freshly extracted human third molar with eliminated pulpal tissues was used. J-type thermocouple wire was positioned in the pulp chamber. A conductor gel was used in the transferring of outside temperature changes to the thermocouple wire. An orthodontic band was applied to the molar tooth and bonded using light cured orthodontic cement. Twenty five mm length of 0.6 mm diameter orthodontic stainless steel wires was welded to the orthodontic band using Nd : YAG laser operated at 9.4 watt. Temperature variation was determined as the change from baseline temperature to the highest temperature was recorded during welding. The recorded temperature changes were between 1.8 and 6.8°C (mean: 3.3 ± 1.1°C). The reported critical 5.5°C level was exceeded in only one sample. The results of this study suggest that intraoral use of lasers holds great potential for the future of orthodontics and does not present a thermal risk. Further studies with larger samples and structural analysis are required. PMID:24550714

  5. A comparison of LBW and GTAW processes in miniature closure welds

    NASA Astrophysics Data System (ADS)

    Knorovsky, G. A.; Fuerschbach, P. W.; Gianoulakis, S. E.; Burchett, S. N.

    When small electronic components with glass-to-metal seals are closure welded, the residual stresses that develop in the glass are of concern. If these stresses exceed allowable tensile levels' the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at a substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and so in that respect, Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding (GTAW), however, other concerns, such as weld fit-up, part variability, and material weldability, can modify the final choice of a welding process. In this paper, we compare the characteristic levels of heat input and the residual stresses generated in glass seals for two processes (as calculated by a 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made in choosing a production process. The geometry chosen is that of a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated from the resulting from continuous wave CO2 LBW are compared with those resulting from GTAW. The total energy required by the laser weld is significantly less than that needed for the equivalent size GTA weld. The energy input requirements for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/s to 50 mm/s were examined.

  6. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    PubMed

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  7. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods

    PubMed Central

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-01-01

    The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806

  8. Laser welding of balloon catheters

    NASA Astrophysics Data System (ADS)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  9. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    PubMed Central

    Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.

    2012-01-01

    The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665

  10. Modified Light Duty AM2 Capability Assessment

    DTIC Science & Technology

    The Modified Light -Duty AM2 matting was designed specifically for lightweight, remote-piloted aircraft (RPA) applications. An in- depth study was... Ratio (CBR) of 6. To understand the full potential of the Modified Light -Duty AM2, a full- scale evaluation was performed with contingency C-17 and...stir welding for use in fabrication of the lightweight RPA matting in conjunction with a full- scale test on the Modified Light -Duty AM2 matting system

  11. IMACS 󈨟: Proceedings of the IMACS World Congress on Computation and Applied Mathematics (13th) Held in Dublin, Ireland on July 22-26, 1991. Volume 4. Modelling and Simulation for Electrical, Electronic and Semiconductor Devices, Computation for Management Systems, Applications of Modelling and Simulation, Environmental Systems Simulation, Software Forum, Poster Sessions

    DTIC Science & Technology

    1991-07-01

    synchronous machine case study . IEEE T rons. on For the ease nd -nq -2, four time scales trust be used And the A.C, Vol. 36. nul 3, March 1989. damnper... studied . A spot welded(Csse 3) * ss s i* r 0. or a line welded( Case 4) reinforcement plate is attached on the colliding surface of box beams arnd their...phased armature, is given on Figure 1. analytical field calculation in the machine magnetic structure. Il - MAGNETIC STRUCTURE MODELLING: In the case

  12. 27 CFR 555.209 - Construction of type 3 magazines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Construction of type 3 magazines. A type 3 magazine is a “day-box” or other portable magazine. It must be fire...-type hardboard. Doors must overlap sides by at least one inch. Hinges and hasps are to be attached by welding, riveting or bolting (nuts on inside). One steel padlock (which need not be protected by a steel...

  13. 27 CFR 555.209 - Construction of type 3 magazines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Construction of type 3 magazines. A type 3 magazine is a “day-box” or other portable magazine. It must be fire...-type hardboard. Doors must overlap sides by at least one inch. Hinges and hasps are to be attached by welding, riveting or bolting (nuts on inside). One steel padlock (which need not be protected by a steel...

  14. Strain gage attachment by spot welding reduces the fatigue strength of Ti-6Al-4V, Rene 41, and Inconel X

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1972-01-01

    Fatigue tests were conducted with constant-amplitude axial stresses in the ratio of minimum to maximum stress of 0.05 (R=0.05). Specimens with and without strain gages were tested at 21 C, and superalloy specimens with and without strain gages were tested at 21 C and 815 C.

  15. Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds

    NASA Astrophysics Data System (ADS)

    Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.

    2015-05-01

    Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.

  16. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less

  17. Bilateral en-masse distalization of maxillary posterior teeth with skeletal anchorage: a case report

    PubMed Central

    Noorollahian, Saeed; Alavi, Shiva; Shirban, Farinaz

    2016-01-01

    ABSTRACT Objective: The aim of this study was to introduce a new method for bilateral distal movement of the entire maxillary posterior segment. Case report: A 17-year-old girl with Class I skeletal malocclusion (end-to-end molar relationships, deviated midline and space deficiency for left maxillary canine) was referred for orthodontic treatment. She did not accept maxillary first premolars extraction. A modified Hyrax appliance (Dentaurum Ispringen, Germany) was used for bilateral distalization of maxillary posterior teeth simultaneously. Expansion vector was set anteroposteriorly. Posterior legs of Hyrax were welded to first maxillary molar bands. All posterior teeth on each side consolidated with a segment of 0.017 × 0.025-in stainless steel wire from the buccal side. Anterior legs of Hyrax were bent into eyelet form and attached to the anterior palate with two mini-screws (2 × 10 mm) (Jeil Medical Corporation Seoul, South Korea). Hyrax opening rate was 0.8 mm per month. Lateral cephalometric radiographs were used to evaluate the extent of distal movement. 3.5-mm distalization of posterior maxillary teeth was achieved in five months. Results: A nearly bodily distal movement without anchorage loss was obtained. Conclusion: The mini-screw-supported modified Hyrax appliance was found to be helpful for achieving en-masse distal movement of maxillary posterior teeth. PMID:27409657

  18. Shunt attachment and method for interfacing current collection systems

    DOEpatents

    Denney, P.E.; Iyer, N.C.; Hannan, W.F. III.

    1992-12-08

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature. 6 figs.

  19. Shunt attachment and method for interfacing current collection systems

    DOEpatents

    Denney, Paul E.; Iyer, Natraj C.; Hannan, III, William F.

    1992-01-01

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature.

  20. Substrate effects on endothelial cell adherence rates.

    PubMed

    Scott, W J; Mann, P

    1990-01-01

    Endothelial cell attachment to a synthetic substrate was studied using an in vitro model system. Attachment rate was defined as the number of tritium-labeled endothelial cells attached to a synthetic substrate after 30 minutes. The surface of the synthetic substrate was chemically modified with either laminin or fibronectin. Labeled endothelial cells attached more rapidly to synthetic substrate, chemically modified with biomolecules, as compared with the untreated substrate controls. Unlabeled endothelial cells were grown to confluency on a second set of modified and untreated substrates. The cells were removed with 1% Triton, and the rate of re-endothelialization with tritium-labeled endothelial cells was determined. The rate was 11-13 times that of the same cells on untreated substrate. These data confirm that biomolecules increase the attachment rate of endothelial cells to synthetic substrate, and also suggest that endothelial cells may secrete a Triton-insoluble product (Sigma, St. Louis, MO) into subendothelial matrix that increases re-endothelialization.

  1. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes

    PubMed Central

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-01-01

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed. PMID:28335425

  2. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.

    PubMed

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-03-14

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.

  3. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    NASA Astrophysics Data System (ADS)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  4. Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser.

    PubMed

    Zhang, Mingjun; Chen, Genyu; Zhou, Yu; Li, Shichun

    2013-08-26

    Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified "sandwich" specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid "shelf" on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.

  5. Comparative study of the surface characteristics, microstructure, and magnetic retentive forces of laser-welded dowel-keepers and cast dowel-keepers for use with magnetic attachments.

    PubMed

    Chao, Yonglie; Du, Li; Yang, Ling

    2005-05-01

    Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the surface characteristics, the microstructure, and the magnetic retentive forces of keepers relative to techniques that incorporate a keeper at the time of cast dowel and coping fabrication.

  6. Biofouling-resistant ceragenin-modified materials and structures for water treatment

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  7. The Kinetics of TiAl3 Formation in Explosively Welded Ti-Al Multilayers During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Foadian, Farzad; Soltanieh, Mansour; Adeli, Mandana; Etminanbakhsh, Majid

    2016-10-01

    Metallic-intermetallic laminate (MIL) composites, including Ti/TiAl3 composite, are promising materials for many applications, namely, in the aerospace industry. One method to produce Ti/TiAl3 laminate composite is to provide close attachment between desired number of titanium and aluminum plates, so that by applying heat and/or pressure, the formation of intermetallic phases between the layers becomes possible. In this work, explosive welding was used to make a strong bond between six alternative Ti and Al layers. The welded samples were annealed at three different temperatures: 903 K, 873 K, and 843 K (630 °C, 600 °C, and 570 °C) in ambient atmosphere, and the variation of the intermetallic layer thickness was used to study the growth kinetics. Microstructural investigations were carried out on the welded and annealed samples using optical microscopy and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (EDS). X-ray diffraction (XRD) technique was used to identify the formed intermetallic phases. It was found that at each temperature, two different mechanisms govern the process: reaction controlled and diffusion controlled. The calculated values of activation energies for reaction-controlled and diffusion-controlled mechanisms are 232.1 and 17.4 kJ, respectively.

  8. Fatigue assessment for selected connections of structural steel bridge components using the finite elements method

    NASA Astrophysics Data System (ADS)

    Śledziewski, Krzysztof

    2018-01-01

    Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.

  9. Autism and Attachment: The Attachment Q-Sort

    ERIC Educational Resources Information Center

    Rutgers, Anna H.; Van Ijzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.; Swinkels, Sophie H. N.

    2007-01-01

    Children with autism are able to show secure attachment behaviours to their parents/caregivers. Most studies on attachment in children with autism used a (modified) Strange Situation Procedure (SSP) to examine attachment security. An advantage of the Attachment Q-Sort (AQS) over the SSP is that it can be attuned to the secure-base behaviour of…

  10. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  11. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  12. Gravitational effects on weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding on 304 stainless steel, nickel, and aluminum-4 wt.% copper alloy

    NASA Astrophysics Data System (ADS)

    Kang, Namhyun

    The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation than the case of 304 stainless steel, i.e., higher current boundary and no humping. Regardless of the gravitational level, the ferrite content and the distribution of the solutes (Cr and Ni) remained constant for GTAW on 304 stainless steel. However, for GTAW on Al-4 wt.% Cu alloys, the gravitational orientation changed the weld pool shape associated with convection flows. In summary, gravity influenced the weld pool shape that was associated with convection flows and weld surface deformation for specific welding conditions. The variation of convection flows and weld pool shape played a role in modifying VS and GL. Solidification orientation and morphology were affected because VS and GL were changed as a function of gravity. Studies of gravity on the welding process are expected to play a significant role in the space-station construction and circumferential pipe welding on the earth. (Abstract shortened by UMI.)

  13. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less

  14. Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klueh, Ronald L; Shingledecker, John P

    2006-04-01

    A modified 9Cr-1Mo feedwater (condensate) line at an Eastman Chemical Company plant failed in January 2005. The line was in continuous service since start-up December 2001 until failure. The Plant Superintendent estimated there were three thermal cycles since start-up, although there may have been as many as 25 thermal cycles during commissioning. Normal operating temperature was 325 F (163 C) and pressure was 1762 psig. The line was steam traced with the tracing activated only when ambient outdoor temperature dropped to 40 F (5 C). A modified 9Cr-1Mo steel (P91) pipe failure in a feedwater line in a chemical plantmore » was investigated. The failure occurred in the vicinity of an elbow produced with socket welds of the pipe to the elbow. Based on metallography and hardness measurements, it was concluded that failure occurred because of an improper post-weld heat treatment of the socket weldment.« less

  15. 46 CFR 52.05-20 - Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1). 52.05-20 Section 52.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-20...

  16. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  17. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  18. 46 CFR 52.05-20 - Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1). 52.05-20 Section 52.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-20...

  19. 46 CFR 52.05-20 - Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1). 52.05-20 Section 52.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-20...

  20. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  1. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  2. 46 CFR 52.05-20 - Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1). 52.05-20 Section 52.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-20...

  3. 46 CFR 52.05-45 - Circumferential joints in pipes, tubes and headers (modifies PW-41).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Circumferential joints in pipes, tubes and headers (modifies PW-41). 52.05-45 Section 52.05-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-45...

  4. 46 CFR 52.05-20 - Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1). 52.05-20 Section 52.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-20...

  5. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coniglio, N.; Mathieu, A., E-mail: alexandre.mathieu@u-bourgogne.fr; Aubreton, O.

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zonemore » induces a drop in ray intensity and a refraction of ray optical path.« less

  6. UPT scenarios: Implications for system reliability

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1992-01-01

    The objective of this project was to examine the corrosion resistance of 316L stainless steel in several urine pre-treat solutions. Four solutions were examined: untreated urine (control); urine pretreated with oxone (potassium peroxymonosulfate sulfate); urine pretreated with sodium hypochlorite (NaOCl); and urine pretreated with ozone (O3). In accordance with current procedures, all solutions but the control were acidified to a pH of 2.5 using sulfuric acid--this suppresses the generation of ammonia in the solutions and is intended to limit microbial growth. Welded and unwelded coupons were exposed to each solution. In addition, Titanium coupons (welded and unwelded) were exposed to biologically active environmental control and life support system (ECLSS) water. Microbial attachment and biofilm growth were monitored. Ozone was examined as a biocide/oxidizer/corrosion preventative (simultaneous addition) and as a remediation method (added one week after exposure). In an unrelated effort, HP 9-4-30 coupons were exposed to biologically active solutions. Corrosion rates for welded and unwelded samples were determined--results were correlated to the ongoing HP 9-4-30 weldment stress corrosion study.

  7. Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols

    NASA Astrophysics Data System (ADS)

    Barfoot, K. M.; Mitchell, I. V.; Verheyen, F.; Babeliowsky, T.

    1981-03-01

    Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance in industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed.

  8. 46 CFR 197.420 - Operations manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...

  9. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders: a nationwide follow-up study.

    PubMed

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni; Bonde, Jens Peter

    2015-08-01

    The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. A Danish national company-based historical cohort of 5,303 male ever-welders was followed from 1995 to 2011 in the Danish Medicinal Product Registry to identify the first-time redemption of asthma pharmaceuticals including beta-2-adrenoreceptor agonists, adrenergic drugs for obstructive airway diseases and inhalable glucocorticoids. Lifetime exposure to welding fume particulates was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using a Cox proportional hazards model adjusting for potential confounders and taking modifying effects of smoking into account. The average incidence of redemption of asthma pharmaceuticals in the cohort was 16 per 1,000 person year (95% CI 10-23 per 1,000 person year). A moderate nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95% CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95% CI 1.06-2.02). Mild steel welding was not associated with increased risk of use asthma pharmaceuticals. The present study indicates that long-term exposure to stainless steel welding is related to increased risk of asthma in non-smokers.

  10. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  11. 29 CFR (non - mandatory) Appendix A to Subpart L of Part 1926-Scaffold Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalent in strength to at least 1/2 inch (1.3 cm) diameter improved plow steel wire rope. (s) Float (ship... wire or synthetic rope, and shall be supported by angle irons attached to brackets welded to the steel... inch lumber; or 11/4 inch × 1/8 inch structural angle iron; or 1 inch × .070 inch wall steel tubing; or...

  12. 29 CFR (non - mandatory) appendix A to Subpart L of Part 1926-Scaffold Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalent in strength to at least 1/2 inch (1.3 cm) diameter improved plow steel wire rope. (s) Float (ship... wire or synthetic rope, and shall be supported by angle irons attached to brackets welded to the steel... inch lumber; or 11/4 inch × 1/8 inch structural angle iron; or 1 inch × .070 inch wall steel tubing; or...

  13. Making Sense of Voluntary Participation: A Theoretical Synthesis

    ERIC Educational Resources Information Center

    Ryan, Vernon D.; Agnitsch, Kerry A.; Zhao, Lijun; Mullick, Rehan

    2005-01-01

    This paper examines the influence of community attachment on voluntary citizen participation in rural community improvement projects. We do so by modifying the original systemic model of community attachment (Kasarda and Janowitz 1974) and combining it with tenets of rational choice and social embeddedness theories. The modified model is then…

  14. Hydrogen mitigation in submerged arc welding

    NASA Astrophysics Data System (ADS)

    Klimowicz, Steven

    With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process removes the moisture that is added by the water based binder. The second phase of the project was to modify the flux with fluoride additions to remove hydrogen from the arc while welding. The introduction of fluorine into the arc would lower the amount of hydrogen that may be absorbed as diffusible hydrogen by the weld metal. To select the fluorides a series of thermodynamic calculations were performed as well as simple tests to determine the fluorides behavior in a welding arc and flux. From these tests the following fluorides were selected to be used to be added to EM12K flux as oneweight percent additions: SrF 2, K2TiF6, K2SiF6, and LiF. Welds were then run with the experimental fluxes according to AWS A4.3 standard for diffusible hydrogen testing. From these tests it was found that none experimental fluxes were able to achieve a diffusible hydrogen content lower than the original EM12K flux. It was also found that fluoride reduction in a simple flux is a better predictor of fluoride effectiveness than decomposition temperature.

  15. Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process

    NASA Astrophysics Data System (ADS)

    Kesharwani, R. K.; Panda, S. K.; Pal, S. K.

    2015-02-01

    In the present work, tailor friction stir welded blanks (TFSWBs) were fabricated successfully using 2.0-mm-thick AA5754-H22 and AA5052-H32 sheet metals with optimized tool design and process parameters. Taguchi L9 orthogonal array has been used to design the friction stir welding experiments, and the Grey relational analysis has been applied for the multi objective optimization in order to maximize the weld strength and total elongation reducing the surface roughness and energy consumption. The formability of the TFSWBs and parent materials was evaluated and compared in terms of limiting drawing ratio (LDR) using a conventional circular die. It was found that the formability of the TFSWBs was comparable with that of both the parent materials without failure in the weldment. A modified conical tractrix die (MCTD) was proposed to enhance the LDR of the TFSWBs. It was found that the formability was improved by 27% using the MCTD.

  16. Springback evaluation of friction stir welded TWB automotive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Junehyung; Lee, Wonoh; Chung, Kyung-Hwan; Kim, Daeyong; Kim, Chongmin; Okamoto, Kazutaka; Wagoner, R. H.; Chung, Kwansoo

    2011-02-01

    Springback behavior of automotive friction stir welded TWB (tailor welded blank) sheets was experimentally investigated and the springback prediction capability of the constitutive law was numerically validated. Four automotive sheets, aluminum alloy 6111-T4, 5083-H18, 5083-O and dual-phase DP590 steel sheets, each having one or two different thicknesses, were considered. To represent mechanical properties, the modified Chaboche type combined isotropic-kinematic hardening law was utilized along with the non-quadratic orthogonal anisotropic yield function, Yld2000-2d, while the anisotropy of the weld zone was ignored for simplicity. For numerical simulations, mechanical properties previously characterized [1] were applied. For validation purposes, three springback tests including the unconstrained cylindrical bending, 2-D draw bending and OSU draw-bend tests were carried out. The numerical method performed reasonably well in analyzing all verification tests and it was confirmed that the springback of TWB as well as of base samples is significantly affected by the ratio of the yield stress with respect to Young's modulus and thickness.

  17. Methods for attaching polymerizable ceragenins to water treatment membranes using amine and amide linkages

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D.T.; Savage, Paul B.

    2013-10-15

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  18. Methods for attaching polymerizable ceragenins to water treatment membranes using silane linkages

    DOEpatents

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  19. Characterization of yttrium-rich precipitates in a titanium alloy weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolli, R. Prakash, E-mail: pkolli@umd.edu

    The yttrium-rich (Y-rich) precipitates that form in the fusion zone (FZ) of a Ti–5Al–1Sn–1Zr–1V–0.8Mo (wt.%) alloy, or Ti-5111, gas-tungsten arc welds (GTAW) were characterized. The filler metal was modified by a small concentration of Y in order to refine the microstructure and thus improve the FZ ductility. A high number density of nanoscale Y-rich precipitates were characterized in the weld FZ by atom probe tomography (APT) and scanning transmission electron microscopy (STEM). - Highlights: •A high number density of nanoscale precipitates were observed in the FZ matrix. •The nanoscale precipitates are enriched in yttrium. •Oxygen and sulfur are also presentmore » in the Y-rich precipitates and their interfaces.« less

  20. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    DOE PAGES

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-02-23

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M 23C 6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less

  1. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    NASA Astrophysics Data System (ADS)

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-05-01

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 K to 1173 K (700 °C to 900 °C), was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 °C). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 °C). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine-grained heat-affected zone region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard "normalization and tempering" processes. The steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room temperature toughness. The above data are also analyzed based on existing theories of creep deformation based on dislocation climb mechanism.

  2. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M 23C 6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less

  3. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1984-01-01

    A long duration test was conducted for comparing various methods of attaching electrical interconnects to solar cells for near Earth orbit spacecraft. Representative solar array modules were thermally cycled for 36,000 cycles between -80 and +80 C. The environmental stress of more than 6 years on a near Earth spacecraft as it cycles in and out of the earth's shadow was simulated. Evaluations of the integrity of these modules were made by visual and by electrical examinations before starting the cycling and then at periodic intervals during the cycling tests. Modules included examples of parallel gap and of ultrasonic welding, as well as soldering. The materials and fabrication processes are state of the art, suitable for forming large solar arrays of spacecraft quality. The modules survived this extensive cycling without detectable degradation in their ability to generate power under sunlight illumination.

  4. Behaviour of several fatigue prone bridge details

    NASA Astrophysics Data System (ADS)

    Kubiš, Petr; Ryjáček, Pavel

    2017-09-01

    Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.

  5. Laser-assisted fibrinogen bonding of umbilical vein grafts.

    PubMed

    Oz, M C; Williams, M R; Souza, J E; Dardik, H; Treat, M R; Bass, L S; Nowygrod, R

    1993-06-01

    Despite success with autologous tissue welding, laser welding of synthetic vascular prostheses has not been possible. The graft material appears inert and fails to allow the collagen breakdown and electrostatic bonding that results in tissue welding. To develop a laser welding system for graft material, we repaired glutaraldehyde-tanned human umbilical cord vein graft incisions using laser-assisted fibrinogen bonding (LAFB) technology. Modified umbilical vein graft was incised transversely (1.2 cm). Incisions were repaired using sutures, laser energy alone, or LAFB. For LAFB, indocyanine green dye was mixed with human fibrinogen and the compound applied with forceps onto the weld site prior to exposure to 808 nm diode laser energy (power density 4.8 W/cm 2). Bursting pressures for sutured repairs (126.6 +/- 23.4 mm Hg) were similar to LAFB anastomoses (111.6 +/- 55.0 mm Hg). No evidence of collateral thermal injury to the graft material was noted. In vivo evaluation of umbilical graft bonding with canine arteries demonstrates that LAFB can reliably reinforce sutured anastomoses. The described system for bonding graft material with laser exposed fibrinogen may allow creation or reinforcement of vascular anastomoses in procedures where use of autologous tissue is not feasible.

  6. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  7. High-precision and high-speed laser microjoining for electronics and microsystems

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri

    2006-02-01

    The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.

  8. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural evolution of heat treated steel was correlated with the differential scanning calorimetric study. The combination of microstructural studies with optical microscopy, scanning and transmission electron microscopy, microhardness profiles, and calorimetric plots helped in the understanding of the evolution of microstructure and precipitates in Grade 91 steel. The residual stresses were determined at the mid-thickness of the plate, 4.35 mm and 2.35 mm below the surface of the as-welded and post-weld heat treated plate. The residual stresses of the as-welded plate were compared with the post-weld heat treated plate. The post-weld heat treatment significantly reduced the residual stress in the base metal, heat affected zone, and the weld zone. Vickers microhardness profiles of the as-welded, and post-weld heat treated specimens were also determined and correlated with the observed residual stress profile and microstructure.

  9. 46 CFR 57.04-1 - Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202). 57.04-1 Section 57.04-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Procedure Qualification Range § 57.04...

  10. 46 CFR 57.04-1 - Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202). 57.04-1 Section 57.04-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Procedure Qualification Range § 57.04...

  11. 46 CFR 57.04-1 - Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202). 57.04-1 Section 57.04-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Procedure Qualification Range § 57.04...

  12. 46 CFR 57.04-1 - Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202). 57.04-1 Section 57.04-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Procedure Qualification Range § 57.04...

  13. 46 CFR 57.04-1 - Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Test specimen requirements and definition of ranges (modifies QW 202, QW 210, QW 451, and QB 202). 57.04-1 Section 57.04-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Procedure Qualification Range § 57.04...

  14. A study on the control of melting ratio to increase mechanical properties of laser welded joints between AISI 440C and AISI 430F

    NASA Astrophysics Data System (ADS)

    Romoli, L.; Rashed, C. A. A.; Lovicu, G.; Ishak, R.

    2015-05-01

    Laser beam welding of dissimilar AISI 440C and AISI 430F stainless steels was investigated in a circular constrained configuration. The beam incidence angle and the offset of the focusing position respect to the contact point between the two materials were used as main control parameters to vary the melting ratio inside the seam. The objective of the study is twofold: to avoid surface microcracks related to the high percentage of carbon of the martensitic steel and to enhance the shear strength of the weld by making it less brittle. To reach this scope the effects of incidence angle and offset on weld bead geometry and melting ratio were studied by means of metallographic analyses, microstructure and microhardness characterization. As last step, the weld mechanical strength was tested by tensile-shear stress test on the whole seam. Experiments demonstrated that varying incidence angle and offsetting the focal position is a reliable method to modify the melting ratio and maintaining the expected resistance length at the material interface, as well. It was found that increasing the percentage of ferritic steel into the joint has beneficial effects on the weld quality and on the shear resistance. The critical carbon content determining the mechanical properties in the fusion zone can be calculated by taking into account the melting ratio.

  15. Cleavage fracture in high strength low alloy weld metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructuralmore » analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.« less

  16. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    PubMed

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  17. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-07-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  18. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    PubMed

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  19. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    PubMed Central

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m3; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their ne counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. PMID:25549921

  20. 46 CFR 56.70-10 - Preparation (modifies 127.3).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are bored, such boring shall not result in the finished wall thickness after welding being less than... insure satisfactory fitting of rings. (iv) If the piping component ends are upset they may be bored to...

  1. 46 CFR 56.70-10 - Preparation (modifies 127.3).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... are bored, such boring shall not result in the finished wall thickness after welding being less than... insure satisfactory fitting of rings. (iv) If the piping component ends are upset they may be bored to...

  2. 46 CFR 56.70-10 - Preparation (modifies 127.3).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... are bored, such boring shall not result in the finished wall thickness after welding being less than... insure satisfactory fitting of rings. (iv) If the piping component ends are upset they may be bored to...

  3. 46 CFR 56.70-10 - Preparation (modifies 127.3).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... are bored, such boring shall not result in the finished wall thickness after welding being less than... insure satisfactory fitting of rings. (iv) If the piping component ends are upset they may be bored to...

  4. 46 CFR 56.70-10 - Preparation (modifies 127.3).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... are bored, such boring shall not result in the finished wall thickness after welding being less than... insure satisfactory fitting of rings. (iv) If the piping component ends are upset they may be bored to...

  5. Development of a Production Ready Automated Wire Delivery System

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The current development effort is a Phase 3 research study entitled "A Production Ready Automated Wire Delivery System", contract number NAS8-39933, awarded to Nichols Research Corporation (NRC). The goals of this research study were to production harden the existing Automated Wire Delivery (AWDS) motion and sensor hardware and test the modified AWDS in a range of welding applications. In addition, the prototype AWDS controller would be moved to the VME bus platform by designing, fabricating and testing a single board VME bus AWDS controller. This effort was to provide an AWDS that could transition from the laboratory environment to production operations. The project was performed in two development steps. Step 1 modified and tested an improved MWG. Step 2 developed and tested the AWDS single board VME bus controller. Step 3 installed the Wire Pilot in a Weld Controller with the imbedded VME bus controller.

  6. Influencing the arc and the mechanical properties of the weld metal in GMA-welding processes by additive elements on the wire electrode surface

    NASA Astrophysics Data System (ADS)

    Wesling, V.; Schram, A.; Müller, T.; Treutler, K.

    2016-03-01

    Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.

  7. Titanium honeycomb acoustic lining structural and thermal test report. [for acoustic tailpipe for JT8D engine

    NASA Technical Reports Server (NTRS)

    Joynes, D.; Balut, J. P.

    1974-01-01

    The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.

  8. Analysis of metal transfer in gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.S.; Eager, T.W.

    1993-06-01

    Droplet sizes produced in GMAW are predicted using both the static force balance theory and the pinch instability theory as a function of welding current, and the results are compared with experimental measurements. The causes for the deviation of predicted droplet size from measured size are discussed with suggestions for modification of the theories in order to more accurately model metal transfer in GMAW. The mechanism of repelled metal transfer is also discussed. The transition of metal transfer mode has been considered as a critical phenomenon which changes dramatically over a narrow range of welding current. This transition has beenmore » investigated experimentally using high-speed videography which shows that the transition is much more gradual than is generally believed. The mechanism of the transition is discussed using a modified static force balance theory.« less

  9. Urinary β2 microglobulin in workers exposed to arc welding fumes.

    PubMed

    Aminian, Omid; Eftekhari, Saeid; Mazaheri, Maria; Sharifian, Seyed Akbar; Sadeghniiat-Haghighi, Khosro

    2011-01-01

    Welding is a process in which two or more metals are attached by the use of heat and, in some cases, pressure. Direct exposure and inhalation of welding fumes causes acute and chronic side effects in humans. Kidney damage is one of these important side effects. β(2) microglobulin is an 11.8 kilodalton protein and levels increase in the case of some inflammatory and viral diseases, or kidney malfunction and autoimmune diseases. In this study measurements of β(2) microglobulin were used as a criterion for assessing effects on the kidneys of workers exposed to welding fumes. The study population were electric arc welders in an industrial plant in Tehran, Iran. For control we selected workers who did not have any exposure to welding fumes. Both groups were selected on the basis of a questionnaire and the consideration of criteria for inclusion and exclusion. In the end 50 cases and 50 controls were chosen. A urine sample was collected from all participants and urinary pH was set to between 6-8 using NaOH (1M). Sample transportation to the laboratory complied with the related standards. The samples were assessed using the ORG 5BM kit. For quantitative assessment of β(2) microglobulin we used the Enzyme-linked Immunosorbent Assay (ELISA) method. The ages of the welders ranged from 21 to 48 years (mean=30.5 ± 5.9 yrs) and of controls from 23 to 56 years (mean=31.8 ± 5.9 yrs). Mean employment duration was 7.86 ± 5.01 years (range 2 to 27 years) for welders. Mean β(2) microglobulin level was 0.10 ± 0.096 μg/ml in welders and 0.11 ± 0.06 in controls. This difference was not statistically significant (P=0.381). In conclusion we don't find that exposure to electric arc welding fumes cause a significant change in urinary β(2) microglobulin compared to the control group.

  10. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1984-01-01

    A long duration test has been conducted for comparing various methods of attaching electrical interconnects to solar cells for near Earth orbit spacecraft. Representative solar array modules have been thermally cycled for 36,000 cycles between -80 and +80 C on this JPL and NASA Lewis Research Center sponsored work. This test simulates the environmental stress of more than 6 years on a near Earth spacecraft as it cycles in and out of the Earth's shadow. Evaluations of the integrity of these modules were made by visual and by electrical examinations before starting the cycling and then at periodic intervals during the cycling tests. Modules included examples of parallel gap and of ultrasonic welding, as well as soldering. The materials and fabrication processes are state of the art, suitable for forming large solar arrays of spacecraft quality. The modules survived his extensive cycling without detectable degradation in their ability to generate power under sunlight illumination.

  11. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Daniel Joseph; Mahaffey, David; Senkov, Oleg

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from anmore » analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.« less

  12. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  13. Minimum line width of ion beam-modified polystyrene by negative carbon ions for nerve-cell attachment and neurite extension

    NASA Astrophysics Data System (ADS)

    Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.

    2007-04-01

    The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.

  14. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    DOEpatents

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  15. Modification of wool surface by liposomes for dyeing with weld.

    PubMed

    Montazer, Majid; Zolfaghari, Alireza; Toliat, Taibeh; Moghadam, Mohammad Bameni

    2009-01-01

    In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30 minutes and, finally, dyed with weld at 75, 85, and 95 degrees C for 30, 45, and 60 minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75 degrees C for 60 min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.

  16. Debris-less method and apparatus for forming apertures in hollow metallic articles

    DOEpatents

    Jordan, C.L.; Chodelka, E.J.

    1980-06-24

    This invention is a method for forming an aperture in a wall of a hollow metallic article without introducing metallic debris therein. In a typical operation, an annular groove is formed in an exterior portion of the wall. The groove defines an annular wall segment, and the bottom of the groove is shaped to slope downwardly away from the segment to form a tapered annular web which connects the segment to the wall. Any suitable coupling is attached to the outer face of the segment, as by welding. Pull then is applied to the coupling to effect circumferential breakage of the web, thus forming a removable single-piece wall fragment consisting of the web and segment. The fragment and the coupling member attached thereto then are removed from the wall.

  17. Antibacterial effect of silver nanofilm modified stainless steel surface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  18. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  19. Essais de fissuration a froid appliques aux metaux d'apport inoxydables martensitiques 410NiMo

    NASA Astrophysics Data System (ADS)

    Paquin, Mathieu

    Martensitic stainless steels have represented since few years a material of choice for the manufacture of mechanical parts such as hydroelectric turbines. The development of the alloy has led to grades with very low amount of carbon giving them a good weldability. The assembly of these parts, made by autogenous welding, requires the use of materials with low transformation temperature (LTT) such as 410NiMo. These filler metals are also used for assembly by heterogeneous welding of steel parts susceptible to cold cracking. The transformation of austenite to martensite occurring at low temperature, residual stresses from single-pass welding operation are different from those normally found and reduce the risk of cracking. By cons, industrial experience shows that in situation of multipass welding, the risks of cold cracking are still present. This project aimed to determine a cracking test for assessing susceptibility to cold cracking of 13%Cr-4%Ni stainless steel according to the welding procedure, in autogenous welding situation. Literature contains much information about cold cracking phenomena. That phenomena occurs under three conditions. These conditions are: a high diffusible hydrogen level, significant residual stresses and a brittle microstructure. It seems that despite the low mass ratio of carbon (0.022%C) and the low diffusible hydrogen level (< 3 ml/100g) risks of cold cracking remain present during multipass deposits. Use of cracking tests was necessary to assess the sensitivity to cracking of the martensitic stainless steel. Before the work preliminary tests have been made or tested Tekken GBOP and testing to determine that to obtain the most representative of the industrial reality results. Then they have been modified to reverse the compression stress in the seam test to tension by the addition of a second weld. This inversion occurs in multipass welding and has been targeted as an important factor in the occurrence of cold cracking phenomenon. The results of these tests show that Tekken test is not suitable for LTT testing. It was also demonstrated that GBOP test with two juxtaposed seams configuration gave results consistent with the industrial observations. The second stage of the project was to study the cracking test selected. Acoustic emission tests were done during welding and cooling of GBOP test. These tests were conducted in order to detect when the cracking of the test occurred and to validate the method of inspection. This inspection is done after separation of the specimen, by observation of the fracture surface. Usually, cliveage zone on the fracture surface can be associated with cold cracking and dimple zones can be associated with the specimen separation. Through these tests, it was possible to validate this assertion. Then the relevance of the addition of a second weld has been validated by studying the residual stress by the contour method. It was possible to observe an area of the first bead in tension, promoting cracking of the test. Finally, some test runs were made with various filler metals in order to confirm that the utilization of the modified GBOP test for 13%Cr-4%Ni was adequate. A fractographic study of some sample was also made.

  20. Use of modified cages attached to growing calves to measure the effect of stable flies on dry matter intake and digestibility, and defensive movements

    USDA-ARS?s Scientific Manuscript database

    The effect of stable flies on growing calves was examined using modified fly cages attached to the animals. Dry matter intake and digestibility as well as behavioral responses of the animals were monitored. Nine Holstein calves, individually housed in 3 x 3 m pens, were exposed to three levels of st...

  1. Mechanistic Models of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Stewart, Michael B.

    1998-01-01

    Friction stir welding is a welding process developed at The Welding Institute (TWI) in England. The method uses very large strain plastic deformation of the material to join two pieces of metal together. The material is deformed using a tool which is forced between the two pieces which rotates causing a bond. Beyond this, very little is actually known although many people working in the field are willing to speculate on the detailed mechanisms involved. Some measurements made using sacrificial thermocouples at the weld joint indicate that the maximum temperature during the weld process is on the order of 370C - well below the melting temperature of the material. However, at this temperature, the material properties are highly temperature dependent, and the yield stress is approximately an order of magnitude less at this temperature than it is at room temperature. As expected, there are many interpretations of the physical mechanisms occurring during the weld process. Although there is very little published concerned with FSW, some of the anecdotal theories will be described. One describes the primary mechanism as frictional heating at the front of the tool caused by slip between the tool and the material. At elevated temperatures, the weld material becomes soft and deforms around the tool but not essentially altered by the tool rotation, similar to an extrusion. As the material meets again at the rear of the tool, the temperatures and pressures are sufficient to cause the material to bond. All other structures seen are secondary and unimportant. Another theory examined last summer at NASA's Marshall Space Flight Center (MSFC) was that there was no slip between the tool and the material resulting in a rotating mass of plastic weld material traveling at a variety of angular velocities - the greatest at the tool surface diminishing to zero at the outer edge of the plastic mass surrounding the tool. This conceptual model was followed by simplified calculations which showed that the balance of moments through the weld plug was not possible under steady state conditions and realistic temperature profiles. This led to some consideration of a quasi-steady oscillating process. Later when force measurements became available some models were modified and new ones were proposed.

  2. Implant-supported overdenture with prefabricated bar attachment system in mandibular edentulous patient

    PubMed Central

    Ha, Seung-Ryong; Song, Seung-Il; Hong, Seong-Tae; Kim, Gy-Young

    2012-01-01

    Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar® is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar® was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar® system in a mandibular edentulous patient. PMID:23236580

  3. Magnetically modified bioсells in constant magnetic field

    NASA Astrophysics Data System (ADS)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  4. DEVELOPMENT OF FERRITIC STEELS FOR HIGH TEMPERATURE SODIUM SERVICE. PART II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.J.; Sheffield, G.S.; Birkle, A.J.

    1963-11-30

    The suitability of modified 2.25 Cr--1 Mo alloy steels for sodium service was investigated. Eleven modifications were examined to establish heat treatment behavior, mechanical properties, resistance to decarburization in liquid sodium, and weldability. Two of the alloys, 4S8 (2.25 Cr--1 Mo--0.6 V-- 0.1 Cb) and 4S4 (2.25 Cr--1 Mo-0.8 V), were found to have the best combination of properties. When heat treated by normalizing and tempering, their mechanical properties to 1200 deg F were found to be comparable to those of Type 304 stainless steel. A low chromium, nickel-base alloy was developed for welding the steels, to give either fullymore » heat treatable joints or to apply the butter-weld technique useful in field welding. It provides high joint efficiency without sacrifice in joint ductility. (auth)« less

  5. Effect of laser welding on the titanium ceramic tensile bond strength.

    PubMed

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; Mattos, Maria da Glória Chiarello de

    2011-08-01

    Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi) substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3) conditions was also studied. Forty CpTi cylindrical rods (3 mm x 60 mm) were cast and divided into 2 groups: with laser welding (L) and without laser welding (WL). Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm); B - Al2O3 (180 µm); C - Al2O3 (110 µm); D - Al2O3 (50 µm). Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05). Significant differences were found among all subgroups (p<0.05). The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa) and LD (24.02 MPa), respectively. Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  6. Metabolomic characterization of laborers exposed to welding fumes.

    PubMed

    Wang, Kuo-Ching; Kuo, Ching-Hua; Tian, Tze-Feng; Tsai, Mong-Hsun; Chiung, Yin-Mei; Hsiech, Chun-Ming; Tsai, Sung-Jeng; Wang, San-Yuan; Tsai, Dong-Ming; Huang, Chiang-Ching; Tseng, Y Jane

    2012-03-19

    The complex composition of welding fumes, multiplicity of molecular targets, diverse cellular effects, and lifestyles associated with laborers vastly complicate the assessment of welding fume exposure. The urinary metabolomic profiles of 35 male welders and 16 male office workers at a Taiwanese shipyard were characterized via (1)H NMR spectroscopy and pattern recognition methods. Blood samples for the same 51 individuals were also collected, and the expression levels of the cytokines and other inflammatory markers were examined. This study dichotomized the welding exposure variable into high (welders) versus low (office workers) exposures to examine the differences of continuous outcome markers-metabolites and inflammatory markers-between the two groups. Fume particle assessments showed that welders were exposed to different concentrations of chromium, nickel, and manganese particles. Multivariate statistical analysis of urinary metabolomic patterns showed higher levels of glycine, taurine, betaine/TMAO, serine, S-sulfocysteine, hippurate, gluconate, creatinine, and acetone and lower levels of creatine among welders, while only TNF-α was significantly associated with welding fume exposure among all cytokines and other inflammatory markers measured. Of the identified metabolites, the higher levels of glycine, taurine, and betaine among welders were suspected to play some roles in modulating inflammatory and oxidative tissue injury processes. In this metabolomics experiment, we also discovered that the association of the identified metabolites with welding exposure was confounded by smoking, but not with drinking, which is a finding consistent with known modified response of inflammatory markers among smokers. Our results correspond with prior studies that utilized nonmetabolomic analytical techniques and suggest that the metabolomic profiling is an efficient method to characterize the overall effect of welding fume exposure and other confounders. © 2012 American Chemical Society

  7. The APL-UW Multiport Acoustic Projector System

    DTIC Science & Technology

    2009-12-01

    delivered are shown in Figs. 18 and 19 . Concern regarding heat build-up in the device led APL-UW to provide two thermistors to Coiltron during the...winding process to be inserted deep inside the windings, near the core, for monitoring during operation. Leads from these thermistors can be seen in...using a chain bridle attached to the bolt eyes fixed into the top of the main tube. A tentative plan was devised to lift from a hard point welded onto

  8. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth{sup TM} technology to a PC.

  9. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    NASA Astrophysics Data System (ADS)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.

  10. Current status of synthetic epikeratoplasty.

    PubMed

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  11. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    NASA Astrophysics Data System (ADS)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.

  12. Counterdependence at Work: Relationships with Social Support, Control Beliefs, and Self-Monitoring

    ERIC Educational Resources Information Center

    Gianakos, Irene

    2013-01-01

    Although styles of self-reliance theoretically arise from early attachments, other research suggests the influence of attachment operates indirectly through internalized but modifiable beliefs about the self and others. The present study examined the relative contribution of parental attachment, social support perceptions, control beliefs, and…

  13. Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.

    PubMed

    Akin, Hakan

    2015-07-01

    The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p < 0.05). No significant differences were found between corrosive environments (p > 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.

  14. Cold work study on a 316LN modified alloy for the ITER TF coil conduit

    DOE PAGES

    Walsh, Robert; Toplosky, V. J.; McRae, D. M.; ...

    2012-06-01

    The primary structural component of the cable-in-conduit conductor (CICC) magnets, such as the ITER TF coils is the conduit. This function creates requirements for 4 K strength, toughness, fatigue crack resistance, and ductility after exposure to the superconductor's reaction heat treatment. The tensile ductility of a steel is a quality factor related to fatigue and fracture resistance that can be evaluated more economically with tensile tests rather than fatigue and fracture tests. We subject 316LN modified base metal and welds to a range of cold work from 0% to 20% and a subsequent Nb 3Sn reaction heat treatment to evaluatemore » the effects on the tensile properties. With the addition of cold work, the 4 K yield strength increases while tensile elongation decreases in both the base metal and weld. Our results are compared to previously published data on the same alloy to evaluate the use of tensile ductility parameters as a materials qualification specification in magnet design.« less

  15. Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition

    NASA Astrophysics Data System (ADS)

    Lee, H. T.; Jeng, S. L.; Yen, C. H.; Kuo, T. Y.

    2004-10-01

    This study investigates the effects of Ti addition on the weldability, microstructure and mechanical properties of a dissimilar weldment of Alloy 690 and SUS 304L. Shielding metal arc welding (SMAW) is employed to butt-weld two plates with three welding layers, where each layer is deposited in a single pass. To investigate the effects of Ti addition, the flux coatings of the electrodes used in the welding process are modified by varying additions of either a Ti-Fe compound or a Ti powder. The results indicate that the microstructure of the fusion zone (FZ) is primarily dendritic. With increasing Ti content, it is noted that the microstructure changes from a columnar dendritic to an equiaxed dendritic, in which the primary dendrite arm spacing (PDAS) becomes shorter. Furthermore, it is observed that the amount of Al-Ti oxide phase increases in the inter-dendritic region, while the amount of Nb-rich phase decreases. Moreover, the average hardness of the FZ increases slightly. The results indicate that Ti addition prompts a significant increase in the elongation of the weldment (i.e. 36.5%, Ti: 0.41 wt%), although the tensile strength remains relatively unchanged. However, at an increased Ti content of 0.91 wt%, an obvious reduction in the tensile strength is noted, which can be attributed to a general reduction in the weldability of the joint.

  16. Beginnings and Endings in Social Work Supervision: The Interaction between Attachment and Developmental Processes

    ERIC Educational Resources Information Center

    Bennett, Susanne; Deal, Kathleen Holtz

    2009-01-01

    This article discusses the interaction of attachment processes and stages of social work student development within the field supervisory relationship and suggests ways supervisors can modify interactions with students. Attachment theory and research provide a framework for understanding innate capacities of students and the relational dynamics of…

  17. Application of a modified harness design for attachment of radio transmitters to shorebirds

    USGS Publications Warehouse

    Sanzenbacher, Peter M.; Haig, Susan M.; Oring, Lewis W.

    2000-01-01

    Radio transmitter attachment methodology is important to the design of radio telemetry studies. In 1998, we attached 5 transmitters to a captive population of Western Sandpipers (Calidris mauri) and 7 transmitters to wild Killdeer (Charadriusv ociferus) using a modified version of the Rappole and Tipton (1991) figure-8 leg-loop harness. Captive birds fitted with harnesses did not exhibit quantifiable differences in behavior relative to control birds. Based on initial success in using the leg-loop harnesses, we used harnesses to attach transmitters in the wild to 30 Killdeer and 49 Dunlin (Calidris alpina) during the winters of 1998-1999 and 1999-2000. This was part of a study on movements of wintering shorebirds in the Willamette Valley of Oregon, USA. Wild birds showed no adverse effects of the harnesses.Thus, the described harness is a practical method for attachment of transmitters to shorebirds. Advantages of this harness method include a reduction in handling time at capture, elimination of the need to clip feathers for attachment, and increased transmitter retention time.

  18. Study on the special vision sensor for detecting position error in robot precise TIG welding of some key part of rocket engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng

    2005-01-01

    Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.

  19. Instruction manual for UTEP weld gas hydrogen detector

    NASA Technical Reports Server (NTRS)

    Mcclure, John; Pang, Tonghui

    1992-01-01

    The instrument described in this manual was developed at the University of Texas at El Paso under contract from the National Aeronautics and Space Administration Marshall Space Flight Center. The instrument has been used to detect hydrogen in the shielding gas of Variable Polarity Plasma Arc (VPPA) welds at concentrations of less than 100 ppm. The instrument makes measurements in real time during the welding operation and provides the operator with an easily readable graphic display of the present level of hydrogen in the arc as well as the level of hydrogen over the past approximately five minutes. In this way the welder can not only tell if the present level of hydrogen is excessive, but can see what changes in weld parameters have done to the level of hydrogen. The welder can set the level of hydrogen that is considered critical and the instrument display will indicate when that level has been exceeded. All detection is from the torch side. All needed equipment is supplied by the developer except for an IBM PC compatible computer which must be supplied by the user. Source code is supplied in this manual so that the user can modify the control program as desired.

  20. Sampling and analysis of hexavalent chromium during exposure to chromic acid mist and welding fumes.

    PubMed

    Blomquist, G; Nilsson, C A; Nygren, O

    1983-12-01

    Sampling and analysis of hexavalent chromium during exposure to chromic acid mist and welding fumes. Scand j work environ & health 9 (1983) 489-495. In view of the serious health effects of hexavalent chromium, the problems involved in its sampling and analysis in workroom air have been the subject of much concern. In this paper, the stability problems arising from the reduction of hexavalent to trivalent chromium during sampling, sample storage, and analysis are discussed. Replacement of sulfuric acid by a sodium acetate buffer (pH 4) as a leaching solution prior to analysis with the diphenylcarbazide (DPC) method is suggested and is demonstrated to be necessary in order to avoid reduction. Field samples were taken from two different industrial processes-manual metal arc welding on stainless steel without shield gas and chromium plating. A comparison was made of the DPC method, acidic dissolution with atomic absorption spectrophotometric (AAS) analysis, and the carbonate method. For chromic acid mist, the DPC method and AAS analysis were shown to give the same results. In the analysis of welding fumes, the modified DPC method gave the same results as the laborious and less sensitive carbonate method.

  1. Present state of applying diode laser in Toyota Motor Corp.

    NASA Astrophysics Data System (ADS)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  2. Modified approach for keratinized tissue augmentation in multiple teeth

    PubMed Central

    Terenzi, Mayara; Pigossi, Suzane Cristina; Pires, Luana Carla; Cirelli, Joni Augusto; Sampaio, José Eduardo

    2017-01-01

    This case report demonstrated a modified technique of free gingival graft (FGG) aiming to increase keratinized attached tissue in large recipient areas. A FGG to increase the amount of attached gingival tissue, facilitate oral hygiene, and prevent further clinical attachment loss was realized in two patients. Because the extensive recipient area, a modified technique was performed to obtain a smaller graft of the donor area. A template of the graft was made about 25%–30% smaller than the total recipient area. After graft removal, interspersed incisions were made in the upper and lower edges of it. After 9–24 months of follow-up, the final width of the keratinized tissue was 4.0–4.4 times larger in comparison to initial clinical condition. In conclusion, this FGG technique can be considered an alternative to gain sufficient amount of keratinized gingival tissue using a smaller graft. PMID:29551874

  3. Effect of modified pectin molecules on the growth of bone cells.

    PubMed

    Kokkonen, Hanna E; Ilvesaro, Joanna M; Morra, Marco; Schols, Henk A; Tuukkanen, Juha

    2007-02-01

    The aim of this study was to investigate molecular candidates for bone implant nanocoatings, which could improve biocompatibility of implant materials. Primary rat bone cells and murine preosteoblastic MC3T3-E1 cells were cultured on enzymatically modified hairy regions (MHR-A and MHR-B) of apple pectins. MHRs were covalently attached to tissue culture polystyrene (TCPS) or glass. Uncoated substrata or bone slices were used as controls. Cell attachment, proliferation, and differentiation were investigated with fluorescence and confocal microscopy. Bone cells seem to prefer MHR-B coating to MHR-A coating. On MHR-A samples, the overall numbers as well as proportions of active osteoclasts were diminished compared to those on MHR-B, TCPS, or bone. Focal adhesions indicating attachment of the osteoblastic cells were detected on MHR-B and uncoated controls but not on MHR-A. These results demonstrate the possibility to modify surfaces with pectin nanocoatings.

  4. Modified method for external attachment of transmitters to birds using two subcutaneous anchors

    USGS Publications Warehouse

    Lewis, T.L.; Flint, Paul L.

    2008-01-01

    Of the transmitter attachment techniques for birds, the subcutaneous anchor provides a secure attachment that yields relatively few secondary effects. However, the use of subcutaneous anchors has been limited by transmitter size and retention time. Using a modified method of attachment that utilized two subcutaneous anchors, we deployed 69 GPS transmitters, plus 13 VHF transmitters that were similar in size and weight to GPS models, on Pacific Black Brant (Branta bernicla nigricans). Prior to our study, only harnesses were used for attaching GPS transmitters on birds, mainly because GPS transmitters are too large for other external attachment techniques and implantation in the body cavity attenuates the GPS signal. Thus, to increase the size capacity of anchor attachment and to avoid the well-documented negative effects of harnesses on behavior and survival, we added a second anchor at the transmitter's posterior end. The double-anchor attachment technique was quickly and easily accomplished in the field, requiring bird handling times of <10 min. Incidental recoveries of tagged Brant indicate a high degree of transmitter retention. Five recaptured birds (4-6 weeks after deployment) and eight killed by hunters (3-6 mo after deployment) retained their GPS transmitters. For studies involving the use of relatively large transmitters, the double-anchor method appears to provide a viable alternative for external attachment. ?? 2008 Association of Field Ornithologists.

  5. Effect of C-implantation on Nerve-Cell Attachment to Polystyrene Films

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kitamura, Tsuyoshi; Hattori, Mitsutaka; Yamada, Tetsuya; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    The surfaces of the polystyrene films spin-coated on glass were modified by carbon negative-ion implantation with various ion doses from 1×1014 to 3×1016 ions/cm2 at 5 and 10 keV. The implantation conditions with and without a pattering mask were for investigation of the cell-attachment properties and for evaluation of surface physical properties of contact angle, respectively. The contact angles of modified surface were investigated by pure water drop and air bubble method. The lowest angle value of the implanted films at 5 and 10 keV were approximately 72° at 3×1015 ions/cm2 after dipping in the de-ionized water for 2 hours. The lowering of contact angles on C-implanted surfaces when increase the ion dose is due to formation of the OH and C-O bonds. Nerve-cell-attachment properties of modified surface were investigated by the nerve-like cell of rat adrenal pheochromocytoma (PC12h) in vitro. After 2 days culture of the PC12h cells, no cells attached on the polystyrene films implanted with low ion dose from 1×1014 to 3×1014 ions/cm2. On the polystyrene films implanted with the dose order of 1015 ions/cm2, the cells selectively attached only on the implanted region. Whereas on the surfaces implanted with high dose such as 1×1016 and 3×1016 ions/cm2 mostly cells attached on the implanted region, and some attached on the unimplanted region, as well as cells were abnormal in shape and large size. Therefore, the suitable dose implantation for the selective-attachment of nerve-cells on the polystyrene films implanted at 5 and 10 keV were obtained around the dose order of 1015 ions/cm2, and the best condition for the selective attachment properties was at 3×1015 ions/cm2 corresponding to the lowest contact angle.

  6. Getting Acquainted: Actor and Partner Effects of Attachment and Temperament on Young Children's Peer Behavior

    ERIC Educational Resources Information Center

    McElwain, Nancy L.; Holland, Ashley S.; Engle, Jennifer M.; Ogolsky, Brian G.

    2014-01-01

    Guided by a dyadic view of children's peer behavior, this study assessed actor and partner effects of attachment security and temperament on young children's behavior with an unfamiliar peer. At 33 months of age, child-mother attachment security was assessed via a modified Strange Situation procedure, and parents reported on child temperament…

  7. Electrochemical evaluation of the corrosion resistance of cup-yoke-type dental magnetic attachments.

    PubMed

    Takada, Yukyo; Takahashi, Masatoshi; Kikuchi, Akira; Tenkumo, Taichi

    2014-01-01

    The corrosion resistance of different magnetic assemblies—Magfit DX800 (Aichi Steel), Gigauss D800 (GC), Hyper Slim 4013, and Hicorex Slim 4013 (Hitachi Metals)—were electrochemically evaluated using anodic polarization curves obtained in 0.9% NaCl solution at 37°C. Stainless steels (444, XM27, 447J1, and 316L) composing the magnetic assemblies were also examined as controls. This revealed that all of the magnetic assemblies break down at 0.6-1.1 V; however, their breakdown potentials were all still significantly higher (p<0.05) than that of 316L. The distribution of elements in the laser welding zone between the yoke and shield ring was analyzed using EPMA; except with Magfit DX800, where the Cr content of the shield ring weld was greater than that of 316L. These magnetic assemblies are expected to have good corrosion resistance in the oral cavity, as their breakdown potentials are sufficiently higher than the 316L commonly used as a surgical implant material.

  8. Test experience, 490 N high performance (321 sec Isp) engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.; Rosenberg, S. D.; Jassowski, D. M.

    1992-01-01

    Engines with area ratios of 44:1 and 286:1 are tested by means of hot fire tests using the NTO/MMH bipropellant to maximize the performance of the combined technologies. The low-thrust engine systems are designed with oxidation resistant materials that can operate at temperatures of more than 2204 C for tens of hours. The chamber is attached to the injector in a configuration that prevents overheating of the injector, valve, and the spacecraft interface. Three injectors with 44:1 area ratios are capable of nominal specific impulse values of 309 sec, and a performance of 321 lbf-sec/lbm is noted for an all-welded engine assembly with area ratio of 286:1. The all-welded engine is shown to have an acceptable design margin for thermal characteristics. High-performance liquid apogee engines are shown to perform optimally when based on iridium/rhenium chamber technology, use of a special platelet injector, and the minimization of losses due to fuel-film cooling.

  9. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  10. Fracture mechanics evaluation of heavy welded structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprung, I.; Ericksson, C.W.; Zilberstein, V.A.

    1982-05-01

    This paper describes some applications of nondestructive examination (NDE) and engineering fracture mechanics to evaluation of flaws in heavy welded structures. The paper discusses not only widely recognized linear elastic fracture mechanics (LEFM) analysis, but also methods of the elastic-plastic fracture mechanics (EPFM), such as COD, J-integral, and Failure Assessment Diagram. Examples are given to highlight the importance of interaction between specialists providing input and the specialists performing the analysis. The paper points out that the critical parameters for as-welded structures when calculated by these methods are conservative since they are based on two pessimistic assumptions: that the magnitude ofmore » residual stress is always at the yield strength level, and that the residual stress always acts in the same direction as the applied (mechanical) stress. The suggestion is made that it would be prudent to use the COD or the FAD design curves for a conservative design. The appendix examines a J-design curve modified to include residual stresses.« less

  11. Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints

    NASA Astrophysics Data System (ADS)

    Kish, J. R.; Birbilis, N.; McNally, E. M.; Glover, C. F.; Zhang, X.; McDermid, J. R.; Williams, G.

    2017-11-01

    A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.

  12. Advanced Solid Rocket Motor case design status

    NASA Technical Reports Server (NTRS)

    Palmer, G. L.; Cash, S. F.; Beck, J. P.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) case design aimed at achieving a safer and more reliable solid rocket motor for the Space Shuttle system is considered. The ASRM case has a 150.0 inch diameter, three equal length segment, and 9Ni-4CO-0.3C steel alloy. The major design features include bolted casebolted case joints which close during pressurization, plasma arc welded factory joints, integral stiffener for splash down and recovery, and integral External Tank attachment rings. Each mechanical joint has redundant and verifiable o-ring seals.

  13. Strut fracture in a Bjork-Shiley aortic valve prosthesis.

    PubMed

    Lifschultz, B D; Donoghue, E R

    1985-10-01

    Strut fracture can be a life-threatening adverse effect of mechanical prosthetic heart valves. This complication has occurred in the DeBakey, the Beall, the Cooley-Cutter and, most recently, the Bjork-Shiley valves. We report the case of a 35-year-old man who died suddenly 16 months after a 60 degree Bjork-Shiley Convexo-Concave heart valve prosthesis was inserted in the aortic position. At autopsy, the two welded attachments of the valve's outlet strut had fractured. The valve's tilting disc was found in his abdominal aorta.

  14. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  15. Magnet-retained implant-supported overdentures: review and 1-year clinical report.

    PubMed

    Ceruti, Paola; Bryant, S Ross; Lee, Jun-Ho; MacEntee, Michael I

    2010-01-01

    Open-field aluminum-nickle-cobalt magnets have been used in prosthodontics for many years, but success has been limited because these magnets are susceptible to corrosion by the saliva and because their retentive force is weak relative to the initial retention offered by mechanical attachments. More recently, magnets have been made from alloys of the rare earth elements samarium and neodymium, which provide stronger magnetic force per unit size. In addition, a new generation of laser-welded containers has improved protection from salivary corrosion. The current resurgence of interest in this type of attachment appears justified because, unlike mechanical attachments, magnets have potential for unlimited durability and might therefore be superior to mechanical ball or bar attachments for the retention of removable prostheses on implants. To date, no long-term prospective trials have been conducted to confirm the clinical durability of this new generation of magnets for retaining dentures on either teeth or implants. The aim of this study was to document initial clinical experiences and levels of satisfaction among edentulous patients treated with mandibular implant-supported overdentures retained using a new generation of rare-earth magnetic attachments. At the outset, all but one of the 17 patients had had several years of experience with implant-supported overdentures. During the first year, the mean overall satisfaction among these 17 patients increased from less than 70 to over 90 out of 100 (standardized visual analogue scale). No unusual difficulties were encountered in rendering the treatment or maintaining the attachments. This report offers preliminary evidence of the excellent potential of these magnets for retaining mandibular implant-supported overdentures.

  16. Wind turbine tower for storing hydrogen and energy

    DOEpatents

    Fingersh, Lee Jay [Westminster, CO

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  17. KSC-2011-1449

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  18. KSC-2011-1446

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  19. KSC-2011-1450

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  20. KSC-2011-1448

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  1. KSC-2011-1447

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  2. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  3. Specific capture, recovery and culture of cancer cells using oriented antibody-modified polystyrene chips coated with agarose film.

    PubMed

    Jeong, Jiyun; Lee, Yeolin; Yoo, Yeongeun; Lee, Myung Kyu

    2018-02-01

    Agarose gel can be used for three dimensional (3D) cell culture because it prevents cell attachment. The dried agarose film coated on a culture plate also protected cell attachment and allowed 3D growth of cancer cells. We developed an efficient method for agarose film coating on an oxygen-plasma treated micropost polystyrene chip prepared by an injection molding process. The agarose film was modified to maleimide or Ni-NTA groups for covalent or cleavable attachment of photoactivatable Fc-specific antibody binding proteins (PFcBPs) via their N-terminal cysteine residues or 6xHis tag, respectively. The antibodies photocrosslinked onto the PFcBP-modified chips specifically captured the target cells without nonspecific binding, and the captured cells grew 3D modes on the chips. The captured cells on the cleavable antibody-modified chips were easily recovered by treatment of commercial trypsin-EDTA solution. Under fluidic conditions using an antibody-modified micropost chip, the cells were mainly captured on the micropost walls of the chip rather than on the bottom of it. The presented method will also be applicable for immobilization of oriented antibodies on various microfluidic chips with different structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun, E-mail

    Non-equilibrium microstructure of the heat-affected zone (HAZ) in the as-welded modified 9Cr–1Mo–V–Nb pipe steel (P91) weldment deposited by gas tungsten arc welding (GTAW) and flux core arc welding (FCAW) has been characterized by field-emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The heterogeneous structures in the sub-layers of the as-welded HAZ are attributable to phase transformations caused by the welding thermal cycles and the local structure variations in the as-received base metal. Coarse-grained heat-affected zone (CGHAZ) has a prior austenite grain (PAG) size of 20 μm. Fine uniformly-distributed precipitates and a higher fraction of MX carbonitrides are observedmore » in the CGHAZ. Fine-grained heat-affected zone (FGHAZ) consists of the finest grains (1.22 μm measured by EBSD, 5 μm PAG size), coarse undissolved M{sub 23}C{sub 6} carbides within the PAG boundaries and fine nucleated M{sub 23}C{sub 6} particles within the martensite laths. Inter-critical heat-affected zone (ICHAZ) consists of partially austenitized grains and over-tempered martensite laths. EBSD kernel average misorientation (KAM) map in the FGHAZ close to the ICHAZ illustrates the greatest local strain variations with a moderate normalized KAM value of 0.92°. The majority (88.1%) of the matrix grains in the CGHAZ are classified as deformed grains by EBSD grain average misorientation (GAM) evaluation. The FGHAZ close to the ICHAZ has the most recrystallized grains with an area fraction of 14.4%. The highest density variation of precipitates within grains in the FGHAZ originates from the inhomogeneous chemistry in the base metal. - Highlights: •A comprehensive characterization of the as-welded HAZ of P91 weldment is conducted. •Structural features in the each layer of the HAZ are quantified by EBSD. •Structural heterogenities in HAZ are due to welding cycle and base metal structure. •FGHAZ contains the finest grain structure and largest precipitate density variation.« less

  5. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  6. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiGmore » welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal.« less

  7. Experimental research on the dynamic behaviors of the keyhole and molten pool in laser deep-penetration welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan

    2018-04-01

    Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.

  8. Laser transmission welding of poly(ethylene terephthalate) and biodegradable poly(ethylene terephthalate) - Based blends

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Veniali, Francesco; Barletta, Massimiliano; Tagliaferri, Vincenzo; Vesco, Silvia

    2017-03-01

    Joining of Poly(Ethylene Terephthalate) PET and its biodegradable derivatives is of high relevance to ensure good productive rate, low cost and operational safety for fabrication of medical and electronic devices, sport equipments as well as for manufacturing of food and drug packaging solutions. In the present investigation, granules of PET and PETs modified by organic additives, which promote biodegradation of the polymeric chains, were prepared by extrusion compounding. The achieved granules were subsequently re-extruded to shape thin (330 μm) flat sheets. Substrates cut from these sheets were joined by Laser Transmission Welding (LTW) with a continuous wave High Power Diode Laser (cw-HPDL). First, based on a qualitative evaluation of the welded joints, the most suitable operational windows for PETs laser joining were identified. Second, characterization of the mechanical properties of the welded joints was performed by tensile tests. Accordingly, Young's modulus of PET and biodegradable PET blends was studied by Takayanagi's model and, based on the experimental results, a novel predicting analytical model derived from the mixture rule was developed. Lastly, material degradation of the polymeric joints was evaluated by FT-IR analysis, thus allowing to identify the main routes to thermal degradation of PET and, especially, of biodegradable PET blends during laser processing.

  9. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 104.5.1(a)). (a) Flanged or butt-welded joints are required for Classes I and I-L piping for nominal... Marine Safety Center. Pressure temperature ratings of the appropriate ANSI/ASME standard must not be... service pressure-temperature ratings for flanges of class 300 and lower, within the temperature...

  10. DNA origami metallized site specifically to form electrically conductive nanowires.

    PubMed

    Pearson, Anthony C; Liu, Jianfei; Pound, Elisabeth; Uprety, Bibek; Woolley, Adam T; Davis, Robert C; Harb, John N

    2012-09-06

    DNA origami is a promising tool for use as a template in the design and fabrication of nanoscale structures. The ability to engineer selected staple strands on a DNA origami structure provides a high density of addressable locations across the structure. Here we report a method using site-specific attachment of gold nanoparticles to modified staple strands and subsequent metallization to fabricate conductive wires from DNA origami templates. We have modified DNA origami structures by lengthening each staple strand in select regions with a 10-base nucleotide sequence and have attached DNA-modified gold nanoparticles to the lengthened staple strands via complementary base-pairing. The high density of extended staple strands allowed the gold nanoparticles to pack tightly in the modified regions of the DNA origami, where the measured median gap size between neighboring particles was 4.1 nm. Gold metallization processes were optimized so that the attached gold nanoparticles grew until gaps between particles were filled and uniform continuous nanowires were formed. Finally, electron beam lithography was used to pattern electrodes in order to measure the electrical conductivity of metallized DNA origami, which showed an average resistance of 2.4 kΩ per metallized structure.

  11. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron microscopy are used to characterize the composition, size, and phase fraction evolution for the automotive alloy strengthening precipitates. It is determined that the dominant precipitate at peak hardness is a metastable T' phase. The automotive alloy is friction stir processed and found to lose hardness in the heat affected zones surrounding the nugget. A post weld heat treatment nearly recovers the heat affected zones to base hardness. The post weld heat treatment is compatible with the current automotive paint bake step, showing design for processability. Tensile tests confirm the base alloy strength meets the automotive strength goal.

  12. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    PubMed

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  13. Moving beyond the mother-child dyad: exploring the link between maternal sensitivity and siblings' attachment styles.

    PubMed

    Kennedy, Mark; Betts, Lucy R; Underwood, Jean D M

    2014-01-01

    Attachment theory asserts that secure attachment representations are developed through sensitive and consistent caregiving. If sensitive caregiving is a constant characteristic of the parent, then siblings should have concordant attachment classifications. The authors explored maternal attachment quality assessed by the Attachment Q-Set, maternal sensitivity, and specific mother-child interactions between siblings. Hour-long observations took place in the homes of 9 preschool sibling pairs and their immediate caregivers. The interactions were analyzed using a modified version of Bales' Small Group Analysis. The results reveal attachment discordance in a third of sibling pairs. While maternal sensitivity was higher with older siblings and mothers displayed more positive emotions when interacting with their younger siblings, attachment quality was not associated with birth order. Therefore, a shift toward a more contextual, family-based perspective of attachment is recommended to further understand how attachment strategies are created and maintained within the child's everyday context.

  14. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  15. Subcutaneous anchor attachment increases retention of radio transmitters on Xantus' and marbled murrelets

    USGS Publications Warehouse

    Newman, Scott H.; Takekawa, John Y.; Whitworth, Darrell L.; Burkett, Esther E.

    1999-01-01

    We modified a subcutaneous anchor attachment and achieved transmitter reten- tion times that exceeded those reported previously for other attachments used on alcids. Traditional suture and epoxy attachment methods were used on Xantus' Murrelets in 1995 and 1996, while the modified attachment was used for Xantus' Murrelets in 1996 and 1997 and Marbled Murrelets in 1997. Modifications included use of an inhalant anesthetic, placing the anchor in a more cranial position on the back, application of marine epoxy, and place- ment of a single subcutaneous non-absorbable suture at the caudal end of the radio to hold the radio in place initially. We located 22 of 56 (39%) Xantus' Murrelets radio-marked using suture and epoxy during aerial surveys in 1995 and 1996. Of birds radio-marked using the subcutaneous anchor attachment, we located 92 of 113 (81%) Xantus' Murrelets marked in 1996 and 1997 and all 28 (100%) Marbled Murrelets marked in 1997 during aerial surveys. The maximum confirmed duration for the subcutaneous anchor transmitter attachment was 51 d for Xantus' Murrelets and 78 d for Marbled Murrelets versus 41 d for the suture and epoxy attachment used on Xantus' Murrelets. Recapture rates of radio-marked Xantus' Mur- relets were similar to recapture rates of unmarked Xantus' Murrelets. Our post-release ob- servations indicated negligible short-term physical effects from the attachment procedure, while telemetry data and examination of recaptured murrelets indicated no evidence of infection or other long-term physical effects. Breeding behavior of some murrelets was not disrupted; however, further evaluation of potential effects of this attachment technique on breeding and behavior is needed.

  16. [Comparative study of three bonding methods in attaching removable thermoplastic appliances].

    PubMed

    Chu, Kejia; Wang, Haihui; Zheng, Zhijun; Li, Qi

    2015-10-01

    To evaluate the operation time and clinical effect of three types of materials (i.e., total-etching adhesive, self-etching adhesive, resin-modified glass ionomer cement) that are used to bond removable thermoplastic appliances. Thirty malocclusion patients (156 attachments) with removable thermoplastic appliances were randomly divided into three groups, with 10 individuals each. Attachments of groups A and B were bonded using 3M Adper Single Bond 2 and 3M Adper Easy One, respectively; both adhesives utilized 3M Z350 nano composite resin. Attachments of group C was directly bonded using GC Fuji Ortho LC. The operation time of each attachment was recorded. Failure rates of adhesion were evaluated during adhesion, 1 month after treatment, and 6 months after treatment. The operation time of group C was shorter than those of groups A and B (P<0.01). Significant difference of adhesion failure rates was not found among the three groups (P>0.05). No significant difference of adhesion failure rates was also observed in different times of the same group (P>0.05). The attachment stability of the three types of materials achieved satisfactory effects. However, the operation method of resin-modified glass ionomer cement is more concise and suitable for clinical promotion.

  17. Attachment of alginate microcapsules onto plasma-treated PDMS sheet for retrieval after transplantation.

    PubMed

    Shin, Soojeong; Shin, Jeong Eun; Yoo, Young Je

    2013-01-01

    Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane (PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS sheets, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS sheets using a two-step oxygen plasma treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a monolayered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS sheet indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol. However, pressure drop increased much more rapidly in the welding fume test than the NaCl aerosol test. The data and images clearly show differences in performance trends between respirator models. Therefore, general correlations between NaCl and weld fume data could not be made. These findings suggest that respirators certified with a surrogate test aerosol such as NaCl are appropriate for filtering welding fume (based on penetration). However, some respirators may have a more rapid increase in pressure drop from the welding fume accumulating on the filter. Therefore, welders will need to choose which models are easier to breathe through for the duration of their use and replace respirators or filters according to the user instructions and local regulations.

  19. Robot welding process control development task

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1992-01-01

    The completion of, and improvements made to, the software developed during 1990 for program maintenance on the PC and HEURIKON and transfer to the CYRO, and integration of the Rocketdyne vision software with the CYRO is documented. The new programs were used successfully by NASA, Rocketdyne, and UAH technicians and engineers to create, modify, upload, download, and control CYRO NC programs.

  20. BLADED IMPELLER FOR TURBOBLOWERS

    DOEpatents

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  1. Wire Stripper Holds Insulation Debris

    NASA Technical Reports Server (NTRS)

    Cook, Allen D.; Morris, Henry S.; Bauer, Laverne

    1994-01-01

    Attachment to standard wire-stripping tool catches bits of insulation as they are removed from electrical wire and retains them for proper disposal. Prevents insulation particles from falling at random, contaminating electronic equipment and soiling workspace. Commercial tool modified by attaching small collection box to one of the jaws.

  2. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  3. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    PubMed Central

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  4. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.

    PubMed

    Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo

    2018-04-18

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.

  5. Ocular ultraviolet radiation exposure of welders.

    PubMed

    Tenkate, Thomas D

    2017-05-01

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm 2 (3×MPE) on the inside of the helmets to around 15 mJ/cm 2 (5×MPE) on the headband (a location to approximate ocular exposure). UVR exposures for non-welding workers were also quite substantial, with mean 8-hour doses on the outside of safety spectacles being around 36 mJ/cm2 (12×MPE) on the bridge and around 27 mJ/cm2 (9×MPE) on the sides. Exposures measured on the outside of clothing was substantial (eg, mean 8-hour UVR dose for welders was around 9795 mJ/cm 2 (3265 ×MPE), with mean ambient UVR levels of 16.4 mJ/cm 2 (5.5×MPE). The high ambient and "body" exposures measured in the study by Tenkate & Collins (3) are not unexpected, however, the levels measured within the welding helmets are of concern considering this represents UVR that has penetrated or by-passed standard protection measures. It has been shown that UVR is able to infiltrate welding helmets by entering from the back and through the sides and top (5). This type of infiltration is likely to occur when welders are in close proximity to each other and the welder is receiving exposure from other welder's emissions. In addition, facial/ocular exposure is also likely to occur when welders flip-up their welding helmet and undertake other work (eg, set-up, handle materials etc). For many welders, the proportion of their welding time per day compared to these other activities has been measured at around 20% (6), which means that if welders flip-up their helmet and leave it flipped-up, their eyes and faces are directly exposed to ambient UVR and that of nearby welders for a large part of the work day. Wearing safety spectacles underneath welding helmets is a recommended practice (7), however, workers report wearing safety spectacles, particularly underneath welding helmets, is uncomfortable, with visibility impacted due to fogging and sweat (8, 9). The use of auto-darkening helmets is one solution to eliminating the practice of flipping-up the helmet. The Slagor et al paper (1, p451) also states that "we do not know whether welders are more or less exposed to UVR than outdoor workers", with reference made to the average solar UVR exposure of a Danish outdoor worker being 22 400 J/m 2 per year (min-max 5400 - 66 900 J/m 2 per year) (10). For comparison, taking the mean 8-hour UVR dose within the welding helmets as 15 mJ/cm2 (3), this would equate to an annual ocular/facial UVR dose for welders of 37 500 J/m 2 (at 5 days/week, 50 weeks/year). Even though this value is weighted for the ACGIH action spectrum, and the value for the Danish outdoor workers is weighted for the erythema spectrum, it provides a reasonable comparison and indicates that welders are likely to receive comparable facial/ocular UVR doses to outdoor workers. Slagor et al also state that "it is inferred that welders are not exposed to large amounts of UVR during their work life, in spite of the photokeratoconjunctivitis incidents" (1, p451). I would propose that the UVR dosimetry studies described above (2, 3), taken together with studies on UVR emissions of welding arcs which show that the MPE for many welding arcs can be exceeded in a matter of seconds (11-13), indicate that welders do work in an extreme UVR environment. These studies also suggest that welders are regularly exposed to levels of UVR that exceed the occupational exposure limits at body sites which are thought to be protected (eg, face and eyes) (2, 3). When these exposures are further considered in light of the range of eye conditions reported to occur in welders (14-17), the importance of implementing a comprehensive eye safety strategy for welders and all workers in a welding environment is imperative. References 1. Slagor RM, La Cour M, Bonde JP. The risk of cataract in relation to metal arc welding. Scan J Work Environ Health. 2016;42(5):447-53. https://doi.org/10.5271/sjweh.3572.  2. Shehade SA, Roberts PJ, Diffey BF, Foulds IS. Photodermatitis due to spot welding. Br J Dermatol. 1987;117:117-9. https://doi.org/10.1111/j.1365-2133.1987.tb04100.x.  3. Tenkate TD, Collins MJ. Personal ultraviolet radiation exposure of workers in a welding environment. Am Indust Hyg Assoc J. 1997;58:33-8. https://doi.org/10.1080/15428119791013053.  4. ACGIH. Ultraviolet radiation in: TLVs and BEIs. American Conference of Governmental Industrial Hygienists. Cincinnati; 2016. p. 153-8.  5. Tenkate TSD and Collins MJ. Angles of entry of ultraviolet radiation into welding helmets. Am Indust Hyg Assoc J, 1997; 58:54-6. https://doi.org/10.1080/15428119791013099.  6. Tenkate T. Welding arc time and UV exposure: implications for worker safety. J Occup Health Safety-Aust NZ. 2008;24(2):161-6.  7. ANSI Z49.1:2012. Safety in Welding, Cutting, and Allied Processes. American Welding Society: Miami; 2012.  8. Lombardi DA, Verma SK, Brennan MJ, Perry MJ. Factors influencing worker use of personal protective eyewear. Accident Analysis and Prevention. 2009;41:755-62. https://doi.org/10.1016/j.aap.2009.03.017.  9. Tenkate TD. Optical radiation hazards of welding arcs. Rev Environ Health. 1998;13(3):131-46. https://doi.org/10.1515/REVEH.1998.13.3.131.  10. Thieden E, Philipsen PA, Heydenreich J, Wulf HC. UV radiation exposure related to age, sex, occupation, and sun behavior based on time-stamped personal dosimeter readings. Arch Dermatol. 2004;140:197-203. https://doi.org/10.1001/archderm.140.2.197.  11. Gourzoulidis GA, Achtipis A, Topalis FV, Kazasidis ME, Pantelis D, Markoulis A. Artificial optical radiation photobiological hazards in arc welding. Physica Medica. 2016;32:981-6. https://doi.org/10.1016/j.ejmp.2016.07.001.  12. Mariutti G, Matzeu M. Measurement of ultraviolet radiation emitted from welding arcs. Health Physics. 1988;54(5):529-32. https://doi.org/10.1097/00004032-198805000-00004.  13. Okuno T. Measurement of ultraviolet radiation from welding arcs. Industrial Health. 1987; 25:147-56. https://doi.org/10.2486/indhealth.25.147. 14. Zlateva V, Toncheva R, Andreev A. Epidemiological studies on occupational eye pathology. Eur. J. Ophthalmol. 1996;6(4):440-5.  15. Lombardi DA, Pannala R, Sorock GS, Wellman H, Courtney TK, Verma S, Smith GS. Welding related occupational eye injuries: a narrative analysis. Injury Prevention. 2005;1:174-9. https://doi.org/10.1136/ip.2004.007088.  16. Tenkate T, Collins MJ. A survey of symptoms and eye safety practices among welders. Clin Exp Optom. 1990;73(3):79-85. https://doi.org/10.1111/j.1444-0938.1990.tb03107.x.  17. Shah CP, Weis E, Lajous M, Shields JA, Shields CL. Intermittent and chronic ultraviolet light exposure and uveal melanoma: a meta-analysis. Opthalmology. 2005;112:1599-607. https://doi.org/10.1016/j.ophtha.2005.04.020.

  6. Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.

    2017-03-01

    Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.

  7. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  8. Maladaptive Perfectionism, Adult Attachment, and Self-Esteem in College Students

    ERIC Educational Resources Information Center

    Rice, Kenneth G.; Lopez, Frederick G.

    2004-01-01

    Extending an earlier study that found high self-esteem to modify the impact of otherwise maladaptive perfectionism on depression, the current study used adult attachment theory to explore the link between perfectionism, self-esteem, and depression in college students. Results indicated that self-esteem buffered the effects of maladaptive…

  9. 45 CFR 153.230 - Calculation of reinsurance payments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (d) of this section, the payment formula and values for the attachment point, reinsurance cap, and... attachment point and the reinsurance cap. (d) State modification of reinsurance payment formula. If a State establishes a reinsurance program, the State may modify the reinsurance payment formula in accordance with the...

  10. The Effect of Ti on Microstructural Characteristics and Reaction Mechanism in Bonding of Al-Ceramic Composite

    NASA Astrophysics Data System (ADS)

    Juan, Li; Kehong, Wang; Deku, Zhang

    2016-09-01

    The effect of Ti on microstructural characteristics and reaction mechanism in bonding of Al-Ceramic composite was studied. Ti and Al-Ceramic composite were diffusion welded at 550, 600, 700, 800, and 900 °C in a vacuum furnace. The microstructures and compositions of the interface layers were analyzed, and the mechanical properties and fracture morphology of the joints were examined. The results indicated that there was a systematic switch from Ti/Ti7Al5Si12/composite at 600 °C and Ti/TiAl3/Ti7Al5Si12/composite at 700 °C to Ti/Ti7Al5Si12/TiAl3/Ti7Al5Si12/composite at 800 °C and Ti/Ti7Al5Si12/TiAl3/composite at 900 °C. The formation of TiAl3 at 700 and 800 °C depended on Al segregation, which was an uphill diffusion driven by chemical potential. The maximum shear strength was 40.9 MPa, found in the joint welded at 700 °C. Most joints fractured between Ti7Al5Si12 and Al-Ceramic composite. In any case, Ti7Al5Si12 was favorable for Al-Ceramic composite welding, which attached to Al-Ceramic composite, reducing the differences in physiochemical properties between SiC and metal, improving the mechanical properties of the joints and increasing the surface wettability of Al-Ceramic composite.

  11. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.

  12. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  13. Orbiter utilization as an ACRV

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.

    1990-01-01

    Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.

  14. Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer.

    PubMed

    de Cassan, Dominik; Sydow, Steffen; Schmidt, Nadeschda; Behrens, Peter; Roger, Yvonne; Hoffmann, Andrea; Hoheisel, Anna Lena; Glasmacher, Birgit; Hänsch, Robert; Menzel, Henning

    2018-03-01

    Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems. The modification of the fiber mats and the attachment of the drug delivery systems are easy and scalable dip processes. The process is also versatile; it is possible to attach different polymeric and inorganic nanoparticulate drug-release systems of cationic or anionic nature. The modifications are verified using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As proof of principle, the release of ciprofloxacin from silica nanoparticles attached to the modified fiber mats is shown; however, the method is also suited for other biologically active substances including growth factors. The initial cellular attachment and proliferation as well as vitality of the cells is improved by the modification with CS-g-PCL and is further influenced by the type of the drug delivery system attached. Hence, this method can be used to transfer PCL fiber mats into bioactive implants for in-situ tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Low-Speed Flight Dynamic Tests and Analysis of the Orion Crew Module Drogue Parachute System

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Fremaux, C. Michael

    2008-01-01

    A test of a dynamically scaled model of the NASA Orion Crew Module (CM) with drogue parachutes was conducted in the NASA-Langley 20-Foot Vertical Spin Tunnel. The primary test objective was to assess the ability of the Orion Crew Module drogue parachute system to adequately stabilize the CM and reduce angular rates at low subsonic Mach numbers. Two attachment locations were tested: the current design nominal and an alternate. Experimental results indicated that the alternate attachment location showed a somewhat greater tendency to attenuate initial roll rate and reduce roll rate oscillations than the nominal location. Comparison of the experimental data to a Program To Optimize Simulated Trajectories (POST II) simulation of the experiment yielded results for the nominal attachment point that indicate differences between the low-speed pitch and yaw damping derivatives in the aerodynamic database and the physical model. Comparisons for the alternate attachment location indicate that riser twist plays a significant role in determining roll rate attenuation characteristics. Reevaluating the impact of the alternate attachment points using a simulation modified to account for these results showed significantly reduced roll rate attenuation tendencies when compared to the original simulation. Based on this modified simulation the alternate attachment point does not appear to offer a significant increase in allowable roll rate over the nominal configuration.

  16. Improved Mesenchymal Stem Cells Attachment and In Vitro Cartilage Tissue Formation on Chitosan-Modified Poly(l-Lactide-co-Epsilon-Caprolactone) Scaffold

    PubMed Central

    Wu, Yingnan; Li, Chao; Zhang, Tianting; Zou, Yu; Hui, James H.P.; Lee, Eng Hin

    2012-01-01

    Considering the load-bearing physiological requirement of articular cartilage, scaffold for cartilage tissue engineering should exhibit appropriate mechanical responses as natural cartilage undergoing temporary deformation on loading with little structural collapse, and recovering to the original geometry on unloading. A porous elastomeric poly l-lactide-co-ɛ-caprolactone (PLCL) was generated and crosslinked at the surface to chitosan to improve its wettability. Human bone marrow derived mesenchymal stem cells (MSC) attachment, morphological change, proliferation and in vitro cartilage tissue formation on the chitosan-modified PLCL scaffold were compared with the unmodified PLCL scaffold. Chitosan surface promoted more consistent and even distribution of the seeded MSC within the scaffold. MSC rapidly adopted a distinct spread-up morphology on attachment on the chitosan-modified PLCL scaffold with the formation of F-actin stress fiber which proceeded to cell aggregation; an event much delayed in the unmodified PLCL. Enhanced cartilage formation on the chitosan-modified PLCL was shown by real-time PCR analysis, histological and immunochemistry staining and biochemical assays of the cartilage extracellular matrix components. The Young's modulus of the derived cartilage tissues on the chitosan-modified PLCL scaffold was significantly increased and doubled that of the unmodified PLCL. Our results show that chitosan modification of the PLCL scaffold improved the cell compatibility of the PLCL scaffold without significant alteration of the physical elastomeric properties of PLCL and resulted in the formation of cartilage tissue of better quality. PMID:21902611

  17. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  18. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarero, J A; Cheung, C L; Lin, T

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groupsmore » at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.« less

  19. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...

  20. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...

  1. 46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... addition of a strength fillet weld of the size as shown, may be used in Class I systems not exceeding 750... buttwelding flanges must be provided. For Class II piping systems, the size of the strength fillet may be... void spaces is desirable. For systems of Class II, the size of the strength fillet may be limited to a...

  2. Influence of Ti addition on fracture behaviour of HSLA steel using TIG melting technique

    NASA Astrophysics Data System (ADS)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2017-03-01

    The welding process is a critical stage in the production of structural parts and the microstructure and mechanical properties of the welded joints must be appropriate in order to guarantee the reliability and durability of the components. The fracture toughness behaviour, which accounts for the residual strength of the component in the presence of flaws or cracks, is one of the most important properties to be evaluated in terms of microstructure and mechanical properties. In this present study, the surface of high strength low alloy (HSLA) steel was surface modified with the preplacement of pure Titanium (Ti) powder using a tungsten inert gas (TIG) arc heat source, at 100 ampere current with a voltage 30 V and a constant traversing speed of 1.0 mm/s using Argon shielded gas. The effect of preplaced Ti powder on the strength and toughness properties of the modified HSLA steel surface was investigated. The results indicated that the tensile and yield strength of HSLA steel decreased by ∼12% and ∼14%, respectively. While the impact toughness increased by ∼33% and the ductility decreased by ∼50%. The fractography analysis results by scanning electron microscopy (SEM) were also presented in this paper.

  3. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    PubMed Central

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  4. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    PubMed

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  5. Blue Whale Behavioral Response Study and Field Testing of the New Bioacoustic Probe

    DTIC Science & Technology

    2013-09-30

    sperm whale, and one fin whale, making a small contribution to our understanding of the movements of those species near the shipping lanes...griper head holding the tag. The attachment head was modified for 2012 and the two deployments in 2012 resulted in intermediate attachment durations of

  6. Protein attachment to silane-functionalized porous silicon: A comparison of electrostatic and covalent attachment.

    PubMed

    Baranowska, Malgorzata; Slota, Agata J; Eravuchira, Pinkie J; Alba, Maria; Formentin, Pilar; Pallarès, Josep; Ferré-Borrull, Josep; Marsal, Lluís F

    2015-08-15

    Porous silicon (pSi) is a prosperous biomaterial, biocompatible, and biodegradable. Obtaining regularly functionalized pSi surfaces is required in many biotechnology applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is useful for single-molecule studies due to its ability to attach to only one biomolecule. We investigate the functionalization of pSi with silane-PEG-NHS and compare it with two common grafting agents: APTMS (3-aminopropylotrimethoxysilane) as electrostatic linker, and APTMS modified with glutaraldehyde as covalent spacer. We show the arrangement of two proteins (collagen and bovine serum albumin) as a function of the functionalization and of the pore size. FTIR is used to demonstrate correct functionalization while fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more uniform protein distribution. Reflection interference spectroscopy (RIfS) is used to estimate the attachment of linker and proteins. The results open a way to obtain homogenous chemical modified silicon supports with a great value in biosensing, drug delivery and cell biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement.

    PubMed

    Mantoku, Akiko; Chatani, Masahiro; Aono, Kazushi; Inohaya, Keiji; Kudo, Akira

    2016-01-15

    Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Modified section method for laser-welding of ill-fitting cp Ti and Ni-Cr alloy one-piece cast implant-supported frameworks.

    PubMed

    Tiossi, R; Falcão-Filho, H; Aguiar Júnior, F A; Rodrigues, R C; Mattos, M da G; Ribeiro, R F

    2010-05-01

    This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P < 0.05). With both screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27.57 +/- 5.06 microm) than other groups (I: 11.19 +/- 2.54 microm, III: 12.88 +/- 2.93 microm, IV: 13.77 +/- 1.51 microm) (P < 0.05). In the single-screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58.66 +/- 14.30 microm) was significantly different from cp Ti group after diagonal section (IV: 27.51 +/- 8.28 microm) (P < 0.05). On the tightened side, no significant differences were found between groups (P > 0.05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.

  9. Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces.

    PubMed

    Voss, Alexandra; Wei, HongYing; Zhang, Yi; Turner, Stuart; Ceccone, Giacomo; Reithmaier, Johann Peter; Stengl, Monika; Popov, Cyril

    2016-07-01

    Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Video Intertank for the Core Stage for the first SLS Flight

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System interank, which recently completed assembly at NASA's Michoud Assembly Facility in New Orleans. This tank was bolted together with more than 7,000 bolts. It is the only part of the SLS core stage assembly with bolts rather than by welding. The rocket's interank is located between the core stage liquid oxygen and liquid hydrogen fuel tanks. It has to be strong because the two SLS solid rocket boosters attache to the sides of it. This flight article will be connected to four other parts to form the core stage for the first integrated flight of SLS and Orion.

  11. Surface Functionalization of Diamond Films by Photoreaction of Elemental Sulfur and Their Surface Properties

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori

    2012-08-01

    A useful method for direct sulfurization of diamond film surfaces by photoreaction of elemental sulfur was developed. The introduction of thiol groups onto the diamond films was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) analyses. The sulfur-modified diamond films attached to gold nanoparticles by self-assembly. The degrees of thiol group introduction and gold attachment were found to depend on photoirradiation time by monitoring by XPS. The gold-modified diamond film was observed to act as a surface-enhanced Raman scattering substrate for measurement of picric acid.

  12. Nutrient capture and recycling by periphyton attached to modified agrowaste carriers.

    PubMed

    Wan, Juanjuan; Liu, Xuemei; Wu, Chenxi; Wu, Yonghong

    2016-04-01

    The reuse of periphytic biofilm from traditional wastewater treatment (i.e., active sludge process) is inefficient to recycle nutrients due to low accumulation of nutrients. Then, in this study, peanut shell (PS), rice husk (RH), decomposed peanut shell (DPS), acidified rice husks (ARH), and a commonly used carrier-ceramsite (C, as the control)-were used to support the growth of periphyton. Results showed that DPS and ARH supported significantly higher periphyton biomass and metabolic versatility than PS and RH, respectively, due to the increased presence of positive groups. The total nitrogen (TN) and total phosphorus (TP) captured by periphyton were enhanced by 600-657 and 833-3255 % for DPS, and 461-1808 and 21-308 % for ARH, respectively. The removal of nutrients from simulated eutrophic surface waters using periphyton attached to DPS was improved by 24-47 % for TP, 12-048 % for TN, and 15-78 % for nitrate compared to the control. The results indicate that the periphyton attached to modified agrowaste was capable of efficiently entrapping and storing N and P from eutrophic water. This study also implies that the mixture of periphyton and the modified agrowaste carriers are promising raw materials of biofertilizer.

  13. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  14. Magnetic attachment for implant overdentures: influence of contact relationship with the denture base on stability and bending strain.

    PubMed

    Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Wada, Masahiro

    2013-01-01

    This study evaluated how the contact height between the magnetic attachment and denture base influences stability and bending strain. An implant modified with strain gauges and a magnetic attachment mounted in an acrylic resin block were used to characterize systems with varying degrees or heights of contact with the abutment. Bending strain under lateral loading increased significantly as the contact height decreased. In the no contact and resilient contact groups, magnetic assemblies separated at reduced bending strain in all loading conditions. The contact height of the magnetic attachment influenced the stability and the amount of bending strain on the implant.

  15. Evaluation of Dual Frequency Identification Sonar (DIDSON) for Monitoring Pacific Lamprey Passage Behavior at Fishways of Bonneville Dam, 2011

    DTIC Science & Technology

    2012-01-01

    Mundy’s Welding and the University of Idaho machine shop who went out of their way to manufacture and modify our sampling gear. We also thank R. Poulin, C...Columbia River: 2008 radiotelemetry and half- duplex PIT tag studies. Technical Report 2009-8 of Idaho Cooperative Fish and Wildlife Research Unit to U.S

  16. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn

  17. CRADA Final Report for CRADA Number NFE-08-01671 Materials for Advanced Turbocharger Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziasz, P. J.; Wilson, M.

    2014-11-28

    Results were obtained on residual stresses in the weld of the steel shaft to the Ni-based superalloy turbine wheel for turbochargers. Neutron diffraction studies at the HFIR Residual Stress Facility showed asymmetric tensile stresses after electron-beam welding of the wheel and shaft. A post-weld heat-treatment was found to relieve and reduce the residual stresses. Results were also obtained on cast CF8C-Plus steel as an upgrade alternative to cast irons (SiMo, Ni-resist) for higher temperature capability and performance for the turbocharger housing. CF8C-Plus steel has demonstrated creep-rupture resistance at 600-950oC, and is more creep-resistant than HK30Nb, but lacks oxidation-resistance at 800oCmore » and above in 10% water vapor. New modified CF8C-Plus Cu/W steels with Cr and Ni additions show better oxidation resistance at 800oC in 10% water vapor, and have capability to higher temperatures. For automotive gasoline engine turbocharger applications, higher temperatures are required, so at the end of this project, testing began at 1000oC and above.« less

  18. Electroslag Strip Cladding of Steam Generators With Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, M.; Maggioni, F.; Brioschi, F.

    2006-07-01

    The present paper details the results of electroslag cladding and tube-to-tubesheet welding qualification tests conducted by Ansaldo-Camozzi ESC with Alloy 690 (Alloy 52 filler metal) on steel for nuclear power stations' steam generators shell, tubesheet and head; the possibility of submerged arc cladding on first layer was also considered. Test results, in terms of chemical analysis, mechanical properties and microstructure are reproducible and confidently applicable to production cladding and show that electroslag process can be used for Alloy 52 cladding with exceptionally stable and regular operation and high productivity. The application of submerged arc cladding process to the first layermore » leads to a higher base metal dilution, which should be avoided. Moreover, though the heat affected zone is deeper with electroslag cladding, in both cases no coarsened grain zone is found due to recrystallization effect of second cladding layer. Finally, the application of electroslag process to cladding of Alloy 52 with modified chemical composition, was proved to be highly beneficial as it strongly reduces hot cracking sensitivity, which is typical of submerged arc cladded Alloy 52, both during tube-to-tubesheet welding and first re-welding. (authors)« less

  19. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model

    NASA Astrophysics Data System (ADS)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang

    2017-11-01

    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  20. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ,more » which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.« less

  1. Attachment stability and the emergence of unresolved representations during adolescence.

    PubMed

    Aikins, Julie Wargo; Howes, Carollee; Hamilton, Claire

    2009-09-01

    This 15-year longitudinal study examined the stability of attachment representations from infancy to adolescence and investigated the emergence of unresolved representations during adolescence in a sample of 47 16-year-olds. Attachment was assessed at 12 months using the Strange Situation Procedure, at 4 years using the modified Strange Situation Procedure, and again at 16 years with the Adult Attachment Projective (AAP). The emergence of unresolved classifications in adolescence (AAP) was associated with higher rates of negative life events, low levels of early mother-child relationship security (an aggregate measure of the 12-month and 4-year measures), negative teacher-child relationship experiences in middle childhood, and low early adolescent friendship quality. The results support the growing body of evidence suggesting that changes in attachment are lawful, while adding to the growing understanding of the emergence of unresolved attachment representations.

  2. Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brust, Frederick W.; Punch, Edward F.; Twombly, Elizabeth Kurth

    This report summarizes the final product developed for the US DOE Small Business Innovation Research (SBIR) Phase II grant made to Engineering Mechanics Corporation of Columbus (Emc 2) between April 16, 2014 and August 31, 2016 titled ‘Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures’. Many US companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more cost-efficient overall with higher quality. One significant advantage thatmore » has emerged in the US over the last two decades is the use of virtual design for fabrication of small and large structures in weld fabrication industries. Industries that use virtual design and analysis tools have reduced material part size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Emc 2’s DOE SBIR Phase II final results to extend an existing, state-of-the-art software code, Virtual Fabrication Technology (VFT®), currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT® helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT® uses material properties, consumable properties, etc. as inputs. Through VFT®, manufacturing companies can avoid costly design changes after fabrication. This leads to the concept of joint design/fabrication where these important disciplines are intimately linked to minimize fabrication costs. Finally service performance (such as fatigue, corrosion, and fracture/damage) can be improved using this product. Emc 2’s DOE SBIR Phase II effort successfully adapted VFT® to perform efficiently in an HPC environment independent of commercial software on a platform to permit easy and cost effective access to the code. This provides the key for SMEs to access this sophisticated and proven methodology that is quick, accurate, cost effective and available “on-demand” to address weld-simulation and fabrication problems prior to manufacture. In addition, other organizations, such as Government agencies and large companies, may have a need for spot use of such a tool. The open source code, WARP3D, a high performance finite element code used in fracture and damage assessment of structures, was significantly modified so computational weld problems can be solved efficiently on multiple processors and threads with VFT®. The thermal solver for VFT®, based on a series of closed form solution approximations, was extensively enhanced for solution on multiple processors greatly increasing overall speed. In addition, the graphical user interface (GUI) was re-written to permit SMEs access to an HPC environment at the Ohio Super Computer Center (OSC) to integrate these solutions with WARP3D. The GUI is used to define all weld pass descriptions, number of passes, material properties, consumable properties, weld speed, etc. for the structure to be modeled. The GUI was enhanced to make it more user-friendly so that non-experts can perform weld modeling. Finally, an extensive outreach program to market this capability to fabrication companies was performed. This access will permit SMEs to perform weld modeling to improve their competitiveness at a reasonable cost.« less

  3. Fix my child: The importance of including siblings in clinical assessments.

    PubMed

    Farnfield, Steve

    2017-07-01

    This study examined concordance in the attachment strategies of school-aged siblings with reference to environmental risk in terms of poverty and maltreatment. It also investigated the effect of child maltreatment and maternal mental illness on children's psychosocial functioning in terms of the Dynamic-Maturational Model of Attachment and Adaptation (DMM) including unresolved trauma and the DMM Depressed modifier. The attachment strategies of 30 sibling pairs, aged 5-14 years, were assessed using the School-age Assessment of Attachment (SAA). Unlike most previous studies, this study included siblings from large families of two to six children. The main finding was that as environmental risk increases, the diversity of sibling attachment strategies decreases with greater recourse to the DMM Type A3-6 and A/C strategies. Unlike previous studies, the highest level of concordance was found in sibling pairs with the opposite gender. Boys whose mothers had a history of mental illness were significantly more likely than girls to be assessed with the DMM-depression modifier. As danger increases, children in the same family experience more of the same childhood. Further research should focus on single case, intra-familial studies to build a systemic model of the shared environment. Research should also evaluate the effects of environmental risk compared with size of the sibling group on children's attachment strategies. The clinical implications point to the importance of assessing all children in the family using a model built around functional formulation rather than diagnosing the symptoms of a particular child.

  4. 46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...

  5. 46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...

  6. 46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...

  7. 46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...

  8. 46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...

  9. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  10. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  11. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  12. Apparatus for attaching a cleaning tool to a robotic manipulator

    DOEpatents

    Killian, M.A.; Zollinger, W.T.

    1991-01-01

    This invention is comprised of an apparatus for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the KELLY VACUUM SYSTEM but can be modified for use with any standard mobile robot and cleaning tool.

  13. Apparatus for attaching a cleaning tool to a robotic manipulator

    DOEpatents

    Killian, Mark A.; Zollinger, W. Thor

    1992-01-01

    An apparatus for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the KELLY VACUUM SYSTEM but can be modified for use with any standard mobile robot and cleaning tool.

  14. Apparatus for attaching a cleaning tool to a robotic manipulator

    DOEpatents

    Killian, M.A.; Zollinger, W.T.

    1992-09-22

    An apparatus is described for connecting a cleaning tool to a robotic manipulator so that the tool can be used in contaminated areas on horizontal, vertical and sloped surfaces. The apparatus comprises a frame and a handle, with casters on the frame to facilitate movement. The handle is pivotally and releasibly attached to the frame at a preselected position of a plurality of attachment positions. The apparatus is specifically configured for the Kelly Vacuum System but can be modified for use with any standard mobile robot and cleaning tool. 14 figs.

  15. 78 FR 35990 - All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0128] All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos. (As Shown In Attachment 1), License Nos. (As Shown In Attachment 1), EA-13-109; Order Modifying Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident...

  16. Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding.

    PubMed

    Yoon, Chung Sik; Paik, Nam Won; Kim, Jeong Han

    2003-11-01

    This study was performed to investigate the fume generation rates (FGRs) and the concentrations of total chromium and hexavalent chromium when stainless steel was welded using flux-cored arc welding (FCAW) with CO2 gas. FGRs and concentrations of total chromium and hexavalent chromium were quantified using a method recommended by the American Welding Society, inductively coupled plasma-atomic emission spectroscopy (NIOSH Method 7300) and ion chromatography (modified NIOSH Method 7604), respectively. The amount of total fume generated was significantly related to the level of input power. The ranges of FGR were 189-344, 389-698 and 682-1157 mg/min at low, optimal and high input power, respectively. It was found that the FGRs increased with input power by an exponent of 1.19, and increased with current by an exponent of 1.75. The ranges of total chromium fume generation rate (FGRCr) were 3.83-8.27, 12.75-37.25 and 38.79-76.46 mg/min at low, optimal and high input power, respectively. The ranges of hexavalent chromium fume generation rate (FGRCr6+) were 0.46-2.89, 0.76-6.28 and 1.70-11.21 mg/min at low, optimal and high input power, respectively. Thus, hexavalent chromium, which is known to be a carcinogen, generated 1.9 (1.0-2.7) times and 3.7 (2.4-5.0) times as the input power increased from low to optimal and low to high, respectively. As a function of input power, the concentration of total chromium in the fume increased from 1.57-2.65 to 5.45-8.13% while the concentration of hexavalent chromium ranged from 0.15 to 1.08%. The soluble fraction of hexavalent chromium produced by FCAW was approximately 80-90% of total hexavalent chromium. The concentration of total chromium and the solubility of hexavalent chromium were similar to those reported from other studies of shielded metal arc welding fumes, and the concentration of hexavalent chromium was similar to that obtained for metal inert gas-welding fumes.

  17. Inter-rater agreement for a retrospective exposure assessment of asbestos, chromium, nickel and welding fumes in a study of lung cancer and ionizing radiation.

    PubMed

    Seel, E A; Zaebst, D D; Hein, M J; Liu, J; Nowlin, S J; Chen, P

    2007-10-01

    A retrospective exposure assessment of asbestos, welding fumes, chromium and nickel (in welding fumes) was conducted at the Portsmouth Naval Shipyard for a nested case-control study of lung cancer risk from external ionizing radiation. These four contaminants were included because of their potential to confound or modify the effect of a lung cancer-radiation relationship. The exposure assessment included three experienced industrial hygienists from the shipyard who independently assessed exposures for 3519 shop/job/time period combinations. A consensus process was used to resolve estimates with large differences. Final exposure estimates were linked to employment histories of the 4388 study subjects to calculate their cumulative exposures. Inter-rater agreement analyses were performed on the original estimates to better understand the estimation process. Although concordance was good to excellent (78-99%) for intensity estimates and excellent (96-99%) for frequency estimates, overall simple kappa statistics indicated only slight agreement beyond chance (kappa < 0.2). Unbalanced distributions of exposure estimates partly contributed to the weak observed overall inter-rater agreement. Pairwise weighted kappa statistics revealed better agreement between two of the three panelists (kappa = 0.19-0.65). The final consensus estimates were similar to the estimates made by these same two panelists. Overall welding fume exposures were fairly stable across time at the shipyard while asbestos exposures were higher in the early years and fell in the mid-1970s. Mean cumulative exposure for all study subjects was 520 fiber-days cc(-1) for asbestos and 1000 mg-days m(-3) for welding fumes. Mean exposure was much lower for nickel (140 microg-days m(-3)) and chromium (45 microg-days m(-3)). Asbestos and welding fume exposure estimates were positively associated with lung cancer in the nested case-control study. The radiation-lung cancer relationship was attenuated by the inclusion of these two confounders. This exposure assessment provided exposure estimates that aided in understanding of the lung cancer-radiation relationship at the shipyard.

  18. Influence of layer-by-layer assembled electrospun poly (L-lactic acid) nanofiber mats on the bioactivity of endothelial cells

    NASA Astrophysics Data System (ADS)

    Wu, Keke; Zhang, Xiazhi; Yang, Wufeng; Liu, Xiaoyan; Jiao, Yanpeng; Zhou, Changren

    2016-12-01

    Electrospun poly(L-lactic acid) (PLLA) nanofiber mats were successfully modified by deposition of multilayers with chitosan (CS), heparin (Hep) and graphene oxide (GO) through electrostatic layer-by-layer (LBL) self-assembly method. In this study, the surface properties of PLLA nanofiber mats before and after modification were investigated via scanning electron microscope (SEM), atomic force microscopy (AFM), attenuated total reflectance fourier transformation infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. In addition, the cytocompatibility of the modified PLLA nanofiber mats were investigated by testing endothelial cells compatibility, including cell attachment, cell proliferation and cell cycle. The results revealed that the surfaces of modified PLLA nanofiber mats become much rougher, stifiness and the hydrophilicity of the LBL modified PLLA nanofiber mats were improved compared to original PLLA one. Moreover, the modified PLLA nanofiber mats had promoted the endothelial cells viability attachment significantly. Besides, we studied the PLLA nanofiber mats on the expression of necrosis factor (TNF-α), interleukine-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells. The results showed that modified PLLA nanofiber mats had inhibited the inflammatory response to some extent.

  19. The CrIIL reduction of [2Fe-2S] ferredoxins and site of attachment of CrIII using 1H NMR and site-directed mutagenesis.

    PubMed

    Im, S C; Worrall, J A; Liu, G; Aliverti, A; Zanetti, G; Luchinat, C; Bertini, I; Sykes, A G

    2000-04-17

    The recently reported NMR solution structure of FeIIIFeIII parsley FdI has made possible 2D NOESY NMR studies to determine the point of attachment of CrIIIL in FeIIIFeIII...CrIIIL. The latter Cr-modified product was obtained by reduction of FeIIIFeIII parsley and spinach FdI forms with [Cr(15-aneN4) (H2O)2]2+ (15-aneN4 = 1,4,8,12-tetraazacyclopentadecane), referred to here as CrIIL, followed by air oxidation and chromatographic purification. From a comparison of NMR cross-peak intensities of native and Cr-modified proteins, two surface sites designated A and B, giving large paramagnetic CrIIIL broadening of a number of amino acid peaks, have been identified. The effects at site A (residues 19-22, 27, and 30) are greater than those at site B (residues 92-94 and 96), which is on the opposite side of the protein. From metal (ICP-AES) and electrospray ionization mass spectrometry (EIMS) analyses on the Cr-modified protein, attachment of a single CrIIIL only is confirmed for both parsley and spinach FdI and FdII proteins. Electrostatic interaction of the 3+ CrIIIL center covalently attached to one protein molecule (charge approximately -18) with a second (like) molecule provides an explanation for the involvement of two regions. Thus for 3-4 mM FeIIIFeIII...CrIIIL solutions used in NMR studies (CrIIIL attached at A), broadening effects due to electrostatic interactions at B on a second molecule are observed. Experiments with the Cys18Ala spinach FdI variant have confirmed that the previously suggested Cys-18 at site A is not the site of CrIIIL attachment. Line broadening at Val-22 of A gives the largest effect, and CrIIIL attachment at one or more adjacent (conserved) acidic residues in this region is indicated. The ability of CrIIL to bind in some (parsley and spinach) but not all cases (Anabaena variabilis) suggests that intramolecular H-bonding of acidic residues at A is relevant. The parsley and spinach FeIIFeIII...CrIIIL products undergo a second stage of reduction with the formation of FeIIFeII...CrIIIL. However, the spinach Glu92Ala (site B) variant undergoes only the first stage of reduction, and it appears that Glu-92 is required for the second stage of reduction to occur. A sample of CrIIIL-modified parsley FeIIIFeIII Fd is fully active as an electron carrier in the NADPH-cytochrome c reductase reaction catalyzed by ferredoxin-NADP+ reductase.

  20. Attaching Thermocouples by Peening or Crimping

    NASA Technical Reports Server (NTRS)

    Murtland, Kevin; Cox, Robert; Immer, Christopher

    2006-01-01

    Two simple, effective techniques for attaching thermocouples to metal substrates have been devised for high-temperature applications in which attachment by such conventional means as welding, screws, epoxy, or tape would not be effective. The techniques have been used successfully to attach 0.005- in. (0.127-mm)-diameter type-S thermocouples to substrates of niobium alloy C-103 and stainless steel 416 for measuring temperatures up to 2,600 F (1,427 C). The techniques are equally applicable to other thermocouple and substrate materials. In the first technique, illustrated in the upper part of the figure, a hole slightly wider than twice the diameter of one thermocouple wire is drilled in the substrate. The thermocouple is placed in the hole, then the edge of the hole is peened in one or more places by use of a punch (see figure). The deformed material at the edge secures the thermocouple in the hole. In the second technique a hole is drilled as in the first technique, then an annular relief area is machined around the hole, resulting in structure reminiscent of a volcano in a crater. The thermocouple is placed in the hole as in the first technique, then the "volcano" material is either peened by use of a punch or crimped by use of sidecutters to secure the thermocouple in place. This second technique is preferable for very thin thermocouples [wire diameter .0.005 in. (.0.127 mm)] because standard peening poses a greater risk of clipping one or both of the thermocouple wires. These techniques offer the following advantages over prior thermocouple-attachment techniques: . Because these techniques involve drilling of very small holes, they are minimally invasive . an important advantage in that, to a first approximation, the thermal properties of surrounding areas are not appreciably affected. . These techniques do not involve introduction of any material, other than the substrate and thermocouple materials, that could cause contamination, could decompose, or oxidize at high measurement temperatures. . The simplicity of these techniques makes it possible to attach thermocouples quickly. . These techniques can be used to attach thermocouples at locations where access is somewhat restricted by the surrounding objects.

  1. Microstructural characterization and electron backscatter diffraction analysis across the welded interface of duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Gao, Zhanqi; Zhao, Lei; Zhang, Jianli

    2017-08-01

    The microstructural evolution, orientation relationships, boundary characteristics, grain type, local deformation, and microhardness across the welded interface of duplex stainless steel (DSS) were investigated. The DSS welded joint consisted of four typical zones: base metal (BM), low-temperature heat-affected zone (LTHAZ), high-temperature heat-affected zone (HTHAZ), and weld metal (WM). The apparent microstructural changes in the HTHAZ and LTHAZ were secondary austenite and Cr2N precipitation. A modified cooperative precipitation mechanism of secondary austenite and Cr2N at the interface was proposed. Furthermore, the ferrite in both the HTHAZ and LTHAZ maintained the same distribution as the ferrite texture in the BM, while this ferrite texture disappeared completely in the WM. Different austenite grains in the different zones exhibited different orientation relationships with the ferrite matrix. Special grain boundaries were mainly distributed between the austenite grains, while the ferrite grains primarily contained random grain boundaries. Austenite twins constituted the largest proportion of the special boundaries. The special austenite grain boundaries in the BM and LTHAZ were higher in relative frequency than those in the HTHAZ and WM. The ferrite grains in the HTHAZ and WM mainly consisted of substructured grains. In the BM, the recrystallization degree of ferrite was significantly lower than that of austenite grains. The local deformations were mainly generated in the grain boundaries and within the deformed grains. The HTHAZ exhibited the highest hardness, while the BM had the lowest hardness. The LTHAZ had a lower hardness than the HTHAZ and higher hardness than the BM.

  2. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.

    2016-11-15

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport.more » For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.« less

  3. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    NASA Astrophysics Data System (ADS)

    Granstedt, E. M.; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V.

    2016-11-01

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  4. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    NASA Astrophysics Data System (ADS)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  5. Spin test of turbine rotor

    NASA Technical Reports Server (NTRS)

    Vavra, M. H.; Hammer, J. E.; Bell, L. E.

    1972-01-01

    Experimental data are presented for the tangential and radial stresses in the disks of the 36,000 horsepower, 4000 rpm turbine for the M-1 engine oxidizer turbopump. The two-stage Curtis turbine is a special light-weight design utilizing thin conical disks with hollow sheet metal blades attached by electron-beam welding techniques. The turbine was fabricated from Inconel 718, a nickel-chromium alloy. The stresses were obtained by strain-gage measurements using a slip-ring assembly to transmit the electrical signals. Measurements were made at different rotative speeds and different thermal loads. In addition to presenting test data, the report describes test equipment, design of associated hardware, test procedures, instrumentation, and tests for the selection and calibration of strain gages.

  6. An improved apparatus for pressure-injecting fluid into trees

    Treesearch

    Garold F. Gregory; Thomas W. Jones

    1975-01-01

    Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.

  7. The attachment of collagenous ligament to stereom in primary spines of the sea-urchin, Eucidaris tribuloides.

    PubMed

    Smith, D S; Del Castillo, J; Morales, M; Luke, B

    1990-01-01

    The similar proximal and distal attachments to the stereom of primary spine ligament in the echinoid Eucidaris tribuloides are described, from thin sections and SEM studies on frozen and fractured spine articulations and ligaments from decalcified material. The orthogonal structure of the general stereom is modified on the attachment zones where bundles of collagen cylinders enter approximately hexagonally arranged channels. Straps of collagen extend in parallel series between adjacent bundles via regularly placed ports and collagen loops rather than non-striated 'tendons' pass over skeletal trabeculae. The regular pattern of collagen straps is most evident on the proximal and distal attachment zones. Mechanical features of the non-adhesive mode of attachment are considered, together with similarities and differences between insertion of muscle cells and mutable collagenous tissue (ligament) in echinoderms.

  8. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  9. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.

  10. Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi

    NASA Astrophysics Data System (ADS)

    Kryukova, Olga; Kolesnikova, Kseniya; Gal'chenko, Nina

    2016-07-01

    An experimental study of wear-resistant composite coatings based on titanium borides synthesized in the process of electron-beam welding of components thermo-reacting powders are composed of boron-containing mixture. A model of the process of electron beam coating with modifying particles of boron and titanium based on physical-chemical transformations is supposed. The dissolution process is described on the basis of formal kinetic approach. The result of numerical solution is the phase and chemical composition of the coating under nonequilibrium conditions, which is one of the important characteristics of the coating forming during electron beam processing. Qualitative agreement numerical calculations with experimental data was shown.

  11. Parameter optimization of flux-aided backing-submerged arc welding by using Taguchi method

    NASA Astrophysics Data System (ADS)

    Pu, Juan; Yu, Shengfu; Li, Yuanyuan

    2017-07-01

    Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current > welding speed > groove angle > welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40∘ and 34 V, respectively.

  12. Welding of Pyroclastic Deposits: Questions Arising from Experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Russell, K.; Quane, S.; Robert, G.; Andrews, G. D.; Kennedy, B. M.

    2009-12-01

    Ultimately, all natural magmas vesiculate near the Earth’s surface to produce bubble-rich melts, that commonly foam to the point of fragmentation producing pyroclastic deposits. Vesiculation processes increase porosity and create permeability thereby increasing the efficacy of fluid escape and suppressing explosivity. Conversely, processes that destroy porosity and permeability, including bubble collapse, compaction, and welding, inhibit the escape of fluids and can produce overpressures leading to explosive behavior. Compaction and welding processes are pervasive in volcanic deposits and pertinent to: i) formation of spatter-fed clastogenic lava flows, ii) sintering of fragmental material in volcanic conduits, and to iii) welding of pyroclastic flow and fall deposits. The rate at which porous pyroclastic deposits compact and sinter (i.e., welding; cf. Grunder and Russell, 2005) governs the efficacy with which porosity (and ultimately permeability) is lost (Sparks et al., 1999). Ultimately, rates of welding reflect the aggregate rheological properties of the deposit. Here, we present an ensemble of experimental results used to investigate the rheology of hot, porous, pyroclastic materials during compaction. We have used a GEOCOMP Loadtrac II device modified to perform constant displacement rate or constant load deformation experiments on large (7 x 4.5 cm) unconfined cores of pumice, lava, or sintered ash. The experiments are at temperatures (T ~ 800-900°C), load stresses (< 150 MPa), and strain rates (10-6 to -2 s-1) consistent with the emplacement of pyroclastic flows. The effects of fluid pressure have also been studied experimentally by using a steel cell and piston system that permits high-T deformation experiments at controlled PH2O (Robert et al. 2008). Our experiments simulate compaction of natural pyroclastic deposits and provide the data to parameterize a relationship between the effective viscosity of the hot, porous deposit of ash (η), the viscosity of the melt fragments (ηo) and porosity (Φ) of the deposit (Quane et al. 2009): log η = log ηo - 2.5Φ/(1-Φ). This relationship is used to model compaction and welding of processes in ignimbrites and in volcanic conduits as a function of load, temperature and porosity. Our analysis shows that compaction operates very rapidly at high-T such that welding in ignimbrites is fully decoupled from cooling history and may even rival the depositional timescales of pyroclastic density currents. Experiments performed at PH2O values of ~1-3 MPa recover lower values of effective viscosity (109.2 - 9.4 Pa s), despite being run at substantially lower temperature (640-665°C). The presence of the H2O fluid expands the window of viscous (vs. brittle) deformation and prevents the strain hardening that normally accompanies porosity reduction allowing for the continuous accumulation of strain. These results apply to welding of rheomorphic ignimbrites and the compaction, annealing and eventual sealing of volcanic conduits.

  13. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforcedmore » composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.« less

  14. Cytocompatibility of Direct Laser Interference-patterned Titanium Surfaces for Implants.

    PubMed

    Hartjen, Philip; Nada, Ola; Silva, Thiago Gundelwein; Precht, Clarissa; Henningsen, Anders; Holthaus, Marzellus GROßE; Gulow, Nikolai; Friedrich, Reinhard E; Hanken, Henning; Heiland, Max; Zwahr, Christoph; Smeets, Ralf; Jung, Ole

    2017-01-01

    In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates

    NASA Astrophysics Data System (ADS)

    Huang, ZunYue; Luo, Zhen; Ao, Sansan; Cai, YangChuan

    2018-10-01

    Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates are studied in the paper. The influence of underwater laser welding parameters (such as laser power, welding speed, defocusing distance and gas flow rate) on weld bowing distortion was investigated through central composite rotatable design and an orthogonal test. A quadratic response model was established to evaluate the underwater laser weld bowing distortion by central composite rotatable design and the order of the impacts of the welding parameters on weld bowing distortion was studied by an orthogonal test. The weld bowing distortion after welding was determined by the digital image correlation technique. The weld bowing distortion of in-air laser welding and underwater laser welding were compared and it revealed that the shape of the in-air and underwater laser welded specimens are the same, but the weld bowing distortion amount of in-air welding is larger than that of underwater welding. Weld bowing distortion mechanism was studied by the digital image correlation technique, and it was demonstrated that weld bowing distortion is associated with the welding plate temperature gradient during laser welding. The wider weld width also resulted in larger weld bowing distortion.

  16. Characterization of Biofouling Marine Caulobacters and Their Adhesive Holdfast

    DTIC Science & Technology

    1988-06-30

    SAD-A 197 211 _, 111 3 CEILL GJU JREPORT DOCUMENTATION PAGE la. REPORT SECURITY CLASSIFiCATION ’b RESTRICTIVE MARKIN6, S U 1 2a. SECURITY...what types of surfaces to which the Caulobacters will attach. This was approached by the preparation of glass surfaces covalently modified with a...finding that dimethyldichlorosilane treated glass (ie classical "silanizing") was reasonably effective in discouraging attachment, a convenience for many

  17. Technicians attach the tail cone to the Space Shuttle Atlantis in preparation for its return to NASA's Kennedy Space Center in Florida

    NASA Image and Video Library

    2007-06-28

    Technicians attach the tail cone, which helps reduce aerodynamic drag and turbulence during its ferry flight, to the Space Shuttle Atlantis in preparation for its return to NASA's Kennedy Space Center in Florida. After the tail-cone is installed, Discovery will be mounted on NASA's modified Boeing 747 Shuttle Carrier Aircraft, or SCA, for the return flight.

  18. Relationship of negative self-schemas and attachment styles with appearance schemas.

    PubMed

    Ledoux, Tracey; Winterowd, Carrie; Richardson, Tamara; Clark, Julie Dorton

    2010-06-01

    The purpose was to test, among women, the relationship between negative self-schemas and styles of attachment with men and women and two types of appearance investment (Self-evaluative and Motivational Salience). Predominantly Caucasian undergraduate women (N=194) completed a modified version of the Relationship Questionnaire, the Young Schema Questionnaire-Short Form, and the Appearance Schemas Inventory-Revised. Linear multiple regression analyses were conducted with Motivational Salience and Self-evaluative Salience of appearance serving as dependent variables and relevant demographic variables, negative self-schemas, and styles of attachment to men serving as independent variables. Styles of attachment to women were not entered into these regression models because Pearson correlations indicated they were not related to either dependent variable. Self-evaluative Salience of appearance was related to impaired autonomy and performance negative self-schema and the preoccupation style of attachment with men, while Motivational Salience of appearance was related only to the preoccupation style of attachment with men. 2010 Elsevier Ltd. All rights reserved.

  19. Oxidatively damaged guanosine in white blood cells and in urine of welders: associations with exposure to welding fumes and body iron stores.

    PubMed

    Pesch, Beate; Lotz, Anne; Koch, Holger M; Marczynski, Boleslaw; Casjens, Swaantje; Käfferlein, Heiko U; Welge, Peter; Lehnert, Martin; Heinze, Evelyn; Van Gelder, Rainer; Hahn, Jens-Uwe; Behrens, Thomas; Raulf, Monika; Hartwig, Andrea; Weiss, Tobias; Brüning, Thomas

    2015-08-01

    The International Agency for Research on Cancer considers the carcinogenicity of welding fume of priority for re-evaluation. Genotoxic effects in experimental animals are still inconclusive. Here, we investigated the association of personal exposure to metals in respirable welding fumes during a working shift with oxidatively damaged guanosine in DNA of white blood cells (WBC) and in postshift urine samples from 238 welders. Medians of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were 2.35/10(6) dGuo in DNA of WBC and 4.33 µg/g creatinine in urine. The median of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) was 7.03 µg/g creatinine in urine. The extent of both urinary parameters was higher in welders applying techniques with high particle emission rates to stainless steel than in tungsten inert gas welders (8-oxodGuo: 9.96 vs. 4.49 µg/L, 8-oxoGuo: 15.7 vs. 7.7 µg/L), but this apparent difference diminished after creatinine adjustment. We applied random intercept models to estimate the influence of airborne and systemic exposure to metals on oxidatively damaged guanosine in WBC and urine together with covariates. We observed a highly significant nonlinear association of urinary 8-oxoGuo with serum ferritin (P < 0.0001) and higher 8-oxoGuo concentrations for respirable iron >1,000 µg/m(3) compared to ≤57 µg/m(3). Similar effects were found for manganese. Airborne chromium but not nickel was associated with all oxidatively modified guanosine measures, whereas urinary chromium as well as nickel showed associations with urinary modified guanosines. In summary, oxidatively damaged urinary guanosine was associated with airborne and systemic exposure to metals in welders and showed a strong relation to body iron stores.

  20. Longitudinal study examining the neurotoxicity of occupational exposure to aluminium-containing welding fumes.

    PubMed

    Buchta, M; Kiesswetter, E; Otto, A; Schaller, K H; Seeber, A; Hilla, W; Windorfer, K; Stork, J; Kuhlmann, A; Gefeller, O; Letzel, S

    2003-09-01

    The neurotoxicity of occupational exposure to aluminium (Al)-containing welding fumes has been discussed with controversial results. The aim of the longitudinal study was to examine a group of Al welders for significant central nervous changes in comparison with a non-exposed cohort. A group of 98 Al welders (mean age 37 years) in the car-body construction industry, with a median of 6 years of occupational exposure to Al welding fumes, and an education-matched, gender-matched, age-matched control group of 50 car-production workers (mean age 36 years) at the same plant, were included in this longitudinal study. Two cross-sectional studies were done in 1999 and 2001. In the second cross-sectional study 97 welders and 50 controls could be examined. The examination programme consisted, for example, of a standardised anamnesis, focussing on occupational history, education, illnesses, medication, accidents and current alcohol consumption, a physical examination that included neurological status, and the assessment of Al concentration in plasma and urine. The neurobehavioral methods included a symptom questionnaire, modified Q16, and computerised and non-computerised tests: psychomotor performance (steadiness, line tracing, aiming, tapping), verbal intelligence (WST), simple reaction time, digit span, block design (HAWIE), symbol-digit substitution, digit span, switching attention (European neurobehavioral evaluation system, EURO-NES), and standard progressive matrices. The data were analysed by multivariate analysis of covariance (MANCOVA) for repeated measurements with covariates age, education, and carbohydrate-deficient transferrin in plasma (CDT). RESULTS. The median Al urine concentration (mean preshift/postshift) was 52.4 microg/g creatinine (2001) and 57.6 microg/g creatinine (1999). Median respirable air dust was 0.67 mg/m(3) (2001) and 0.47 mg/m(3) (1999). Welders and controls did not report significantly more symptoms in the modified Q16. Furthermore, no significant differences in psychomotor performance and other neurobehavioral tasks, except for reaction time, were seen between welders and non-welders. Regression analyses reveal a significant relationship between reaction time and Al excretion in urine that was confounded by other factors. At present the outcome for reaction time has to be interpreted as a single result. However, as the modified Q16 questionnaire and the rest of the psychomotor performance showed no significant changes, the next cross-sectional study, in 2003, will provide further information on which a final conclusion can be based.

Top