Simulation of Attacks for Security in Wireless Sensor Network.
Diaz, Alvaro; Sanchez, Pablo
2016-11-18
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.
Simulation of Attacks for Security in Wireless Sensor Network
Diaz, Alvaro; Sanchez, Pablo
2016-01-01
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710
Technosocial Modeling of IED Threat Scenarios and Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Paul D.; Brothers, Alan J.; Coles, Garill A.
2009-03-23
This paper describes an approach for integrating sociological and technical models to develop more complete threat assessment. Current approaches to analyzing and addressing threats tend to focus on the technical factors. This paper addresses development of predictive models that encompass behavioral as well as these technical factors. Using improvised explosive device (IED) attacks as motivation, this model supports identification of intervention activities 'left of boom' as well as prioritizing attack modalities. We show how Bayes nets integrate social factors associated with IED attacks into general threat model containing technical and organizational steps from planning through obtaining the IED to initiationmore » of the attack. The social models are computationally-based representations of relevant social science literature that describes human decision making and physical factors. When combined with technical models, the resulting model provides improved knowledge integration into threat assessment for monitoring. This paper discusses the construction of IED threat scenarios, integration of diverse factors into an analytical framework for threat assessment, indicator identification for future threats, and future research directions.« less
Correlated Attack Modeling (CAM)
2003-10-01
describing attack models to a scenario recognition engine, a prototype of such an engine was developed, using components of the EMERALD intrusion...content. Results – The attacker gains information enabling remote access to database (i.e., privileged login information, database layout to allow...engine that uses attack specifications written in CAML. The implementation integrates two advanced technologies devel- oped in the EMERALD program [27, 31
NASA Technical Reports Server (NTRS)
Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.
1991-01-01
Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.
Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack
NASA Technical Reports Server (NTRS)
Stoll, F.; Minter, E. A.
1981-01-01
A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.
Cyber Signal/Noise Characteristics and Sensor Models for Early Cyber Indications and Warning
2005-09-01
investigating and simulating attack scenarios. The sensors are, in effect , mathematical functions. These functions range from simple functions of...172 8.1.2 Examine each attack scenario or case to derive the cause- effect network for the attack scenario...threat profiles............................ 174 8.1.4 Develop attack profiles by enlarging the cause- effect network of each attack scenario with
NASA Astrophysics Data System (ADS)
Liu, Xuan
Power grid is one of the most critical infrastructures in a nation and could suffer a variety of cyber attacks. With the development of Smart Grid, false data injection attack has recently attracted wide research interest. This thesis proposes a false data attack model with incomplete network information and develops optimal attack strategies for attacking load measurements and the real-time topology of a power grid. The impacts of false data on the economic and reliable operations of power systems are quantitatively analyzed in this thesis. To mitigate the risk of cyber attacks, a distributed protection strategies are also developed. It has been shown that an attacker can design false data to avoid being detected by the control center if the network information of a power grid is known to the attacker. In practice, however, it is very hard or even impossible for an attacker to obtain all network information of a power grid. In this thesis, we propose a local load redistribution attacking model based on incomplete network information and show that an attacker only needs to obtain the network information of the local attacking region to inject false data into smart meters in the local region without being detected by the state estimator. A heuristic algorithm is developed to determine a feasible attacking region by obtaining reduced network information. This thesis investigates the impacts of false data on the operations of power systems. It has been shown that false data can be designed by an attacker to: 1) mask the real-time topology of a power grid; 2) overload a transmission line; 3) disturb the line outage detection based on PMU data. To mitigate the risk of cyber attacks, this thesis proposes a new protection strategy, which intends to mitigate the damage effects of false data injection attacks by protecting a small set of critical measurements. To further reduce the computation complexity, a mixed integer linear programming approach is also proposed to separate the power grid into several subnetworks, then distributed protection strategy is applied to each subnetwork.
Adaptive cyber-attack modeling system
NASA Astrophysics Data System (ADS)
Gonsalves, Paul G.; Dougherty, Edward T.
2006-05-01
The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.
A Comparative Study of Some Dynamic Stall Models
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Kaza, K. R. V.
1987-01-01
Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction to the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles and the time history effects are accounted through the Wagner function. In both models the life and moment coefficients for angle of attack below stall are obtained from tabular data for a given Mach number and angle of attack. In model C, referred to an the ONERA model, the life and moment coefficients are given in the form of two differential equations, one for angles below stall, and the other for angles above stall. The parameters of those equations are nonlinear functions of the angle of attack.
Robust allocation of a defensive budget considering an attacker's private information.
Nikoofal, Mohammad E; Zhuang, Jun
2012-05-01
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.
How moths escape bats: predicting outcomes of predator-prey interactions.
Corcoran, Aaron J; Conner, William E
2016-09-01
What determines whether fleeing prey escape from attacking predators? To answer this question, biologists have developed mathematical models that incorporate attack geometries, pursuit and escape trajectories, and kinematics of predator and prey. These models have rarely been tested using data from actual predator-prey encounters. To address this problem, we recorded multi-camera infrared videography of bat-insect interactions in a large outdoor enclosure. We documented 235 attacks by four Myotis volans bats on a variety of moths. Bat and moth flight trajectories from 50 high-quality attacks were reconstructed in 3-D. Despite having higher maximum velocity, deceleration and overall turning ability, bats only captured evasive prey in 69 of 184 attacks (37.5%); bats captured nearly all moths not evading attack (50 of 51; 98%). Logistic regression indicated that prey radial acceleration and escape angle were the most important predictors of escape success (44 of 50 attacks correctly classified; 88%). We found partial support for the turning gambit mathematical model; however, it underestimated the escape threshold by 25% of prey velocity and did not account for prey escape angle. Whereas most prey escaping strikes flee away from predators, moths typically escaped chasing bats by turning with high radial acceleration toward 'safety zones' that flank the predator. This strategy may be widespread in prey engaged in chases. Based on these findings, we developed a novel geometrical model of predation. We discuss implications of this model for the co-evolution of predator and prey kinematics and pursuit and escape strategies. © 2016. Published by The Company of Biologists Ltd.
Tortorici, Michael A.; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev
2018-01-01
Subcutaneous C1‐inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)‐approved, highly concentrated formulation of a plasma‐derived C1‐esterase inhibitor (C1‐INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low‐Volume Subcutaneous C1‐inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time‐to‐event model to characterize the timing and frequency of HAE attacks as a function of C1‐INH activity, and then develop an exposure–response model to assess the relationship between C1‐INH functional activity levels (C1‐INH(f)) and the risk of an attack. The C1‐INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1‐INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1‐INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. PMID:29316335
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.
Modeling Resources Allocation in Attacker-Defender Games with "Warm Up" CSF.
Guan, Peiqiu; Zhuang, Jun
2016-04-01
Like many other engineering investments, the attacker's and defender's investments may have limited impact without initial capital to "warm up" the systems. This article studies such "warm up" effects on both the attack and defense equilibrium strategies in a sequential-move game model by developing a class of novel and more realistic contest success functions. We first solve a single-target attacker-defender game analytically and provide numerical solutions to a multiple-target case. We compare the results of the models with and without consideration of the investment "warm up" effects, and find that the defender would suffer higher expected damage, and either underestimate the attacker effort or waste defense investment if the defender falsely believes that no investment "warm up" effects exist. We illustrate the model results with real data, and compare the results of the models with and without consideration of the correlation between the "warm up" threshold and the investment effectiveness. Interestingly, we find that the defender is suggested to give up defending all the targets when the attack or the defense "warm up" thresholds are sufficiently high. This article provides new insights and suggestions on policy implications for homeland security resource allocation. © 2015 Society for Risk Analysis.
Modeling Cyber Conflicts Using an Extended Petri Net Formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakrzewska, Anita N; Ferragut, Erik M
2011-01-01
When threatened by automated attacks, critical systems that require human-controlled responses have difficulty making optimal responses and adapting protections in real- time and may therefore be overwhelmed. Consequently, experts have called for the development of automatic real-time reaction capabilities. However, a technical gap exists in the modeling and analysis of cyber conflicts to automatically understand the repercussions of responses. There is a need for modeling cyber assets that accounts for concurrent behavior, incomplete information, and payoff functions. Furthermore, we address this need by extending the Petri net formalism to allow real-time cyber conflicts to be modeled in a way thatmore » is expressive and concise. This formalism includes transitions controlled by players as well as firing rates attached to transitions. This allows us to model both player actions and factors that are beyond the control of players in real-time. We show that our formalism is able to represent situational aware- ness, concurrent actions, incomplete information and objective functions. These factors make it well-suited to modeling cyber conflicts in a way that allows for useful analysis. MITRE has compiled the Common Attack Pattern Enumera- tion and Classification (CAPEC), an extensive list of cyber attacks at various levels of abstraction. CAPEC includes factors such as attack prerequisites, possible countermeasures, and attack goals. These elements are vital to understanding cyber attacks and to generating the corresponding real-time responses. We demonstrate that the formalism can be used to extract precise models of cyber attacks from CAPEC. Several case studies show that our Petri net formalism is more expressive than other models, such as attack graphs, for modeling cyber conflicts and that it is amenable to exploring cyber strategies.« less
NASA Astrophysics Data System (ADS)
Loginov, E. L.; Raikov, A. N.
2015-04-01
The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.
Houle, Timothy T; Turner, Dana P; Golding, Adrienne N; Porter, John A H; Martin, Vincent T; Penzien, Donald B; Tegeler, Charles H
2017-07-01
To develop and validate a prediction model that forecasts future migraine attacks for an individual headache sufferer. Many headache patients and physicians believe that precipitants of headache can be identified and avoided or managed to reduce the frequency of headache attacks. Of the numerous candidate triggers, perceived stress has received considerable attention for its association with the onset of headache in episodic and chronic headache sufferers. However, no evidence is available to support forecasting headache attacks within individuals using any of the candidate headache triggers. This longitudinal cohort with forecasting model development study enrolled 100 participants with episodic migraine with or without aura, and N = 95 contributed 4626 days of electronic diary data and were included in the analysis. Individual headache forecasts were derived from current headache state and current levels of stress using several aspects of the Daily Stress Inventory, a measure of daily hassles that is completed at the end of each day. The primary outcome measure was the presence/absence of any headache attack (head pain > 0 on a numerical rating scale of 0-10) over the next 24 h period. After removing missing data (n = 431 days), participants in the study experienced a headache attack on 1613/4195 (38.5%) days. A generalized linear mixed-effects forecast model using either the frequency of stressful events or the perceived intensity of these events fit the data well. This simple forecasting model possessed promising predictive utility with an AUC of 0.73 (95% CI 0.71-0.75) in the training sample and an AUC of 0.65 (95% CI 0.6-0.67) in a leave-one-out validation sample. This forecasting model had a Brier score of 0.202 and possessed good calibration between forecasted probabilities and observed frequencies but had only low levels of resolution (ie, sharpness). This study demonstrates that future headache attacks can be forecasted for a diverse group of individuals over time. Future work will enhance prediction through improvements in the assessment of stress as well as the development of other candidate domains to use in the models. © 2017 American Headache Society.
NASA Technical Reports Server (NTRS)
Paulson, John W.; Shanks, Robert E.
1961-01-01
An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.
Yu Wei; Michael Bevers; Erin Belval; Benjamin Bird
2015-01-01
This research developed a chance-constrained two-stage stochastic programming model to support wildfire initial attack resource acquisition and location on a planning unit for a fire season. Fire growth constraints account for the interaction between fire perimeter growth and construction to prevent overestimation of resource requirements. We used this model to examine...
Hodoh, Ofia; Dallas, Cham E; Williams, Paul; Jaine, Andrew M; Harris, Curt
2015-01-01
A predictive system was developed and tested in a series of exercises with the objective of evaluating the preparedness and effectiveness of the multiagency response to food terrorism attacks. A computerized simulation model, Risk Reduction Effectiveness and Capabilities Assessment Program (RRECAP), was developed to identify the key factors that influence the outcomes of an attack and quantify the relative reduction of such outcomes caused by each factor. The model was evaluated in a set of Tabletop and Full-Scale Exercises that simulate biological and chemical attacks on the food system. More than 300 participants representing more than 60 federal, state, local, and private sector agencies and organizations. The exercises showed that agencies could use RRECAP to identify and prioritize their advance preparation to mitigate such attacks with minimal expense. RRECAP also demonstrated the relative utility and limitations of the ability of medical resources to treat patients if responders do not recognize and mitigate the attack rapidly, and the exercise results showed that proper advance preparation would reduce these deficiencies. Using computer simulation prediction of the medical outcomes of food supply attacks to identify optimal remediation activities and quantify the benefits of various measures provides a significant tool to agencies in both the public and private sector as they seek to prepare for such an attack.
Stall flutter analysis of propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1988-01-01
Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.
Zhang, Ying; Tortorici, Michael A; Pawaskar, Dipti; Pragst, Ingo; Machnig, Thomas; Hutmacher, Matthew; Zuraw, Bruce; Cicardi, Marco; Craig, Timothy; Longhurst, Hilary; Sidhu, Jagdev
2018-03-01
Subcutaneous C1-inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)-approved, highly concentrated formulation of a plasma-derived C1-esterase inhibitor (C1-INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low-Volume Subcutaneous C1-inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time-to-event model to characterize the timing and frequency of HAE attacks as a function of C1-INH activity, and then develop an exposure-response model to assess the relationship between C1-INH functional activity levels (C1-INH(f)) and the risk of an attack. The C1-INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1-INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1-INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
False Positive and False Negative Effects on Network Attacks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2018-01-01
Robustness against attacks serves as evidence for complex network structures and failure mechanisms that lie behind them. Most often, due to detection capability limitation or good disguises, attacks on networks are subject to false positives and false negatives, meaning that functional nodes may be falsely regarded as compromised by the attacker and vice versa. In this work, we initiate a study of false positive/negative effects on network robustness against three fundamental types of attack strategies, namely, random attacks (RA), localized attacks (LA), and targeted attack (TA). By developing a general mathematical framework based upon the percolation model, we investigate analytically and by numerical simulations of attack robustness with false positive/negative rate (FPR/FNR) on three benchmark models including Erdős-Rényi (ER) networks, random regular (RR) networks, and scale-free (SF) networks. We show that ER networks are equivalently robust against RA and LA only when FPR equals zero or the initial network is intact. We find several interesting crossovers in RR and SF networks when FPR is taken into consideration. By defining the cost of attack, we observe diminishing marginal attack efficiency for RA, LA, and TA. Our finding highlights the potential risk of underestimating or ignoring FPR in understanding attack robustness. The results may provide insights into ways of enhancing robustness of network architecture and improve the level of protection of critical infrastructures.
Analytic barrage attack model. Final report, January 1986-January 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.
An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for themore » analytic model and for a numerical model used to check the analytic results.« less
Game Theory for Proactive Dynamic Defense and Attack Mitigation in Cyber-Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letchford, Joshua
While there has been a great deal of security research focused on preventing attacks, there has been less work on how one should balance security and resilience investments. In this work we developed and evaluated models that captured both explicit defenses and other mitigations that reduce the impact of attacks. We examined these issues both in more broadly applicable general Stackelberg models and in more specific network and power grid settings. Finally, we compared these solutions to existing work in terms of both solution quality and computational overhead.
Allocation model for air tanker initial attack in firefighting
Francis E. Greulich; William G. O' Regan
1975-01-01
Timely and appropriate use of air tankers in firefighting can bring high returns, but their misuse can be expensive when measured in operating and other costs. An allocation model has been developed for identifying superior strategies-for air tanker initial attack, and for choosing an optimum set of allocations among airbases. Data are presented for a representative...
A comprehensive Network Security Risk Model for process control networks.
Henry, Matthew H; Haimes, Yacov Y
2009-02-01
The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.
Analysis of brute-force break-ins of a palmprint authentication system.
Kong, Adams W K; Zhang, David; Kamel, Mohamed
2006-10-01
Biometric authentication systems are widely applied because they offer inherent advantages over classical knowledge-based and token-based personal-identification approaches. This has led to the development of products using palmprints as biometric traits and their use in several real applications. However, as biometric systems are vulnerable to replay, database, and brute-force attacks, such potential attacks must be analyzed before biometric systems are massively deployed in security systems. This correspondence proposes a projected multinomial distribution for studying the probability of successfully using brute-force attacks to break into a palmprint system. To validate the proposed model, we have conducted a simulation. Its results demonstrate that the proposed model can accurately estimate the probability. The proposed model indicates that it is computationally infeasible to break into the palmprint system using brute-force attacks.
NASA Technical Reports Server (NTRS)
Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.
2017-01-01
Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.
Impact of pine tip moth attack on loblolly pine
Roy Hedden
1999-01-01
Data on the impact of Nantucket pine tip moth, Rhyacionia frustrana, attack on the height of loblolly pine, Pinus taeda, in the first three growing seasons after planting from three locations in eastern North Carolina (U.S.A.) was used to develop multiple linear regression models relating tree height to tip moth infestation level in each growing season. These models...
In-blade angle of attack measurement and comparison with models
NASA Astrophysics Data System (ADS)
Gallant, T. E.; Johnson, D. A.
2016-09-01
The torque generated by a wind turbine blade is dependent on several parameters, one of which is the angle of attack. Several models for predicting the angle of attack in yawed conditions have been proposed in the literature, but there is a lack of experimental data to use for direct validation. To address this problem, experiments were conducted at the University of Waterloo Wind Generation Research Facility using a 3.4 m diameter test turbine. A five-hole pressure probe was installed in a modular 3D printed blade and was used to measure the angle of attack, a, as a function of several parameters. Measurements were conducted at radial positions of r/R = 0.55 and 0.72 at tip speed ratios of λ = 5.0, 3.6, and 3.1. The yaw offset of the turbine was varied from -15° to +15°. Experimental results were compared directly to angle of attack values calculated using a model proposed by Morote in 2015. Modeled values were found to be in close agreement with the experimental results. The angle of attack was shown to vary cyclically in the yawed case while remaining mostly constant when aligned with the flow, as expected. The quality of results indicates the potential of the developed instrument for wind turbine measurements.
Development of an Apparatus for Wind Tunnel Dynamic Experiments at High-alpha
NASA Technical Reports Server (NTRS)
Pedreiro, Nelson
1997-01-01
A unique experimental apparatus that allows a wind tunnel model two degrees of freedom has been designed and built. The apparatus was developed to investigate the use of new methods to augment aircraft control in the high angle of attack regime. The model support system provides a platform in which the roll-yaw coupling at high angles of attack can be studied in a controlled environment. Active cancellation of external effects is used to provide a system in which the dynamics are dominated by the aerodynamic loads acting on the wind tunnel model.
Coupled Inverted Pendula Model of Competition and Cooperation
NASA Astrophysics Data System (ADS)
Yoshida, Katsutoshi; Ohta, Hiroki
A coupled inverted pendula model of competition and cooperation is proposed to develop a purely mechanical implementation comparable to the Lotka-Volterra competition model. It is shown numerically that the proposed model can produce the four stable equilibriums analogous to ecological coexistence, two states of dominance, and scramble. The authors also propose two types of open-loop strategies to switch the equilibriums. The proposed strategies can be associated with an attack and a counter attack of agents through a metaphor of martial arts.
Good, Kevin; Winkel, David; VonNiederhausern, Michael; Hawkins, Brian; Cox, Jessica; Gooding, Rachel; Whitmire, Mark
2013-06-01
The Chemical Terrorism Risk Assessment (CTRA) and Chemical Infrastructure Risk Assessment (CIRA) are programs that estimate the risk of chemical terrorism attacks to help inform and improve the US defense posture against such events. One aspect of these programs is the development and advancement of a Medical Mitigation Model-a mathematical model that simulates the medical response to a chemical terrorism attack and estimates the resulting number of saved or benefited victims. At the foundation of the CTRA/CIRA Medical Mitigation Model is the concept of stock-and-flow modeling; "stocks" are states that individuals progress through during the event, while "flows" permit and govern movement from one stock to another. Using this approach, the model is able to simulate and track individual victims as they progress from exposure to an end state. Some of the considerations in the model include chemical used, type of attack, route and severity of exposure, response-related delays, detailed treatment regimens with efficacy defined as a function of time, medical system capacity, the influx of worried well individuals, and medical countermeasure availability. As will be demonstrated, the output of the CTRA/CIRA Medical Mitigation Model makes it possible to assess the effectiveness of the existing public health response system and develop and examine potential improvement strategies. Such a modeling and analysis capability can be used to inform first-responder actions/training, guide policy decisions, justify resource allocation, and direct knowledge-gap studies.
Toward more environmentally resistant gas turbines: Progress in NASA-Lewis programs
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Grisaffe, S. J.; Levine, S. R.
1976-01-01
A wide range of programs are being conducted for improving the environmental resistance to oxidation and hot corrosion of gas turbine and power system materials. They range from fundamental efforts to delineate attack mechanisms, allow attack modeling and permit life prediction, to more applied efforts to develop potentially more resistant alloys and coatings. Oxidation life prediction efforts have resulted in a computer program which provides an initial method for predicting long time metal loss using short time oxidation data by means of a paralinear attack model. Efforts in alloy development have centered on oxide-dispersion strengthened alloys based on the Ni-Cr-Al system. Compositions have been identified which are compromises between oxidation and thermal fatigue resistance. Fundamental studies of hot corrosion mechanisms include thermodynamic studies of sodium sulfate formation during turbine combustion. Information concerning species formed during the vaporization of Na2SO4 has been developed using high temperature mass spectrometry.
Miller, Brian; Biggins, Dean; Wemmer, Chris; Powell, Roger; Calvo, Lorena; Hanebury, Lou; Wharton, Tracy
1990-01-01
We exposed naive Siberain polecats (Mustela eversmanni) (aged 2, 3, and 4 months) to a swooping stuffed great horned owl (Buho virginianus) and a stuffed badger (Taxidae taxus) mounted on a remote control toy automobile frame. The first introduction to each was harmless, the second was accompanied by a mild aversive stimulus, the third (1 day after attack) was harmless, and the fourth (30 days after attack) was harmless. Alert behavior increased after a single attack by either predator model. Escape responses of naive polecats did not differ between ages when exposed to the badger, but 4 month old polecats reduced their escape times after a single badger attack. When exposed to the swooping owl, naive 4 month old polecats redponded more quickly than the other two age groups, and 3 and 4 month old polecats reduced escape times after a single owl attack. This indicates an innate escape response to the owl model at 4 months of age, and a short-tert ability to remember a single mild aversive encounter with the badger and owl models at 3 or 4 months of age.
Attacker-defender game from a network science perspective
NASA Astrophysics Data System (ADS)
Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun
2018-05-01
Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.
The non-trusty clown attack on model-based speaker recognition systems
NASA Astrophysics Data System (ADS)
Farrokh Baroughi, Alireza; Craver, Scott
2015-03-01
Biometric detectors for speaker identification commonly employ a statistical model for a subject's voice, such as a Gaussian Mixture Model, that combines multiple means to improve detector performance. This allows a malicious insider to amend or append a component of a subject's statistical model so that a detector behaves normally except under a carefully engineered circumstance. This allows an attacker to force a misclassification of his or her voice only when desired, by smuggling data into a database far in advance of an attack. Note that the attack is possible if attacker has access to database even for a limited time to modify victim's model. We exhibit such an attack on a speaker identification, in which an attacker can force a misclassification by speaking in an unusual voice, and replacing the least weighted component of victim's model by the most weighted competent of the unusual voice of the attacker's model. The reason attacker make his or her voice unusual during the attack is because his or her normal voice model can be in database, and by attacking with unusual voice, the attacker has the option to be recognized as himself or herself when talking normally or as the victim when talking in the unusual manner. By attaching an appropriately weighted vector to a victim's model, we can impersonate all users in our simulations, while avoiding unwanted false rejections.
NASA Astrophysics Data System (ADS)
Atta Yaseen, Amer; Bayart, Mireille
2017-01-01
In this work, a new approach will be introduced as a development for the attack-tolerant scheme in the Networked Control System (NCS). The objective is to be able to detect an attack such as the Stuxnet case where the controller is reprogrammed and hijacked. Besides the ability to detect the stealthy controller hijacking attack, the advantage of this approach is that there is no need for a priori mathematical model of the controller. In order to implement the proposed scheme, a specific detector for the controller hijacking attack is designed. The performance of this scheme is evaluated be connected the detector to NCS with basic security elements such as Data Encryption Standard (DES), Message Digest (MD5), and timestamp. The detector is tested along with networked PI controller under stealthy hijacking attack. The test results of the proposed method show that the hijacked controller can be significantly detected and recovered.
Development of a Flush Airdata Sensing System on a Sharp-Nosed Vehicle for Flight at Mach 3 to 8
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Pahle, Joseph W.; White, John Terry; Marshall, Laurie A.; Mashburn, Michael J.; Franks, Rick
2000-01-01
NASA Dryden Flight Research Center has developed a flush airdata sensing (FADS) system on a sharp-nosed, wedge-shaped vehicle. This paper details the design and calibration of a real-time angle-of-attack estimation scheme developed to meet the onboard airdata measurement requirements for a research vehicle equipped with a supersonic-combustion ramjet engine. The FADS system has been designed to perform in flights at Mach 3-8 and at -6 deg - 12 deg angle of attack. The description of the FADS architecture includes port layout, pneumatic design, and hardware integration. Predictive models of static and dynamic performance are compared with wind-tunnel results across the Mach and angle-of-attack range. Results indicate that static angle-of-attack accuracy and pneumatic lag can be adequately characterized and incorporated into a real-time algorithm.
Development of a Flush Airdata Sensing System on a Sharp-Nosed Vehicle for Flight at Mach 3 to 8
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Pahle, Joseph W.; White, John Terry; Marshall, Laurie A.; Mashburn, Michael J.; Franks, Rick
2000-01-01
NASA Dryden Flight Research Center has developed a flush airdata sensing (FADS) system on a sharp-nosed, wedge-shaped vehicle. This paper details the design and calibration of a real-time angle-of-attack estimation scheme developed to meet the onboard airdata measurement requirements for a research vehicle equipped with a supersonic-combustion ramjet engine. The FADS system has been designed to perform in flights at speeds between Mach 3 and Mach 8 and at angles of attack between -6 deg. and 12 deg. The description of the FADS architecture includes port layout, pneumatic design, and hardware integration. Predictive models of static and dynamic performance are compared with wind-tunnel results across the Mach and angle-of-attack range. Results indicate that static angle-of-attack accuracy and pneumatic lag can be adequately characterized and incorporated into a real-time algorithm.
Cyber threat impact assessment and analysis for space vehicle architectures
NASA Astrophysics Data System (ADS)
McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.
2014-06-01
This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.
Mathyssek, Christina M; Olino, Thomas M; Verhulst, Frank C; van Oort, Floor V A
2012-01-01
Panic attacks are a source of individual suffering and are an independent risk factor for later psychopathology. However, much less is known about risk factors for the development of panic attacks, particularly during adolescence when the incidence of panic attacks increases dramatically. We examined whether internalizing and externalizing problems in childhood predict the onset of panic attacks in adolescence. This study is part of the TRacking Adolescents' Individual Lives Survey (TRAILS), a Dutch longitudinal population cohort study (N = 1,584). Internalizing and Externalizing Problems were collected using the Youth Self-Report (YSR) and the parent-report Child Behavior Checklist (CBCL) at baseline (age 10-12). At age 18-20, DSM-IV defined panic attacks since baseline were assessed with the Composite International Diagnostic Interview (CIDI). We investigated whether early adolescent Internalizing and Externalizing Problems predicted panic attacks between ages 10-20 years, using survival analysis in univariate and multivariate models. There were N = 314 (19.8%) cases who experienced at least one DSM-IV defined panic attack during adolescence and N = 18 (1.2%) who developed panic disorder during adolescence. In univariate analyses, CBCL Total Problems, Internalizing Problems and three of the eight syndrome scales predicted panic attack onset, while on the YSR all broad-band problem scales and each narrow-band syndrome scale predicted panic attack onset. In multivariate analyses, CBCL Social Problems (HR 1.19, p<.05), and YSR Thought Problems (HR 1.15, p<.05) and Social Problems (HR 1.26, p<.01) predicted panic attack onset. Risk indicators of panic attack include the wide range of internalizing and externalizing problems. Yet, when adjusted for co-occurring problem behaviors, Social Problems were the most consistent risk factor for panic attack onsets in adolescence.
NASA Technical Reports Server (NTRS)
Zoby, E. V.
1981-01-01
An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.
Model of the Product Development Lifecycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Sunny L.; Roe, Natalie H.; Wood, Evan
2015-10-01
While the increased use of Commercial Off-The-Shelf information technology equipment has presented opportunities for improved cost effectiveness and flexibility, the corresponding loss of control over the product's development creates unique vulnerabilities and security concerns. Of particular interest is the possibility of a supply chain attack. A comprehensive model for the lifecycle of hardware and software products is proposed based on a survey of existing literature from academic, government, and industry sources. Seven major lifecycle stages are identified and defined: (1) Requirements, (2) Design, (3) Manufacturing for hardware and Development for software, (4) Testing, (5) Distribution, (6) Use and Maintenance, andmore » (7) Disposal. The model is then applied to examine the risk of attacks at various stages of the lifecycle.« less
Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.
2003-01-01
A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.
McFarland, Sam G
2005-03-01
In the week before the 2003 American attack on Iraq, the effects of authoritarianism and the social dominance orientation on support for the attack were examined. Based on prior research on the nature of these constructs, a structural model was developed and tested. As predicted, authoritarianism strengthened support for the attack by intensifying the perception that Iraq threatened America. Social dominance increased support by reducing concern for the likely human costs of the war. Both also increased blind patriotism, which in turn reduced concern for the war's human costs and was reciprocally related to the belief that Iraq threatened America.
Predicting postfire Douglas-fir beetle attacks and tree mortality in the northern Rocky Mountains
Sharon Hood; Barbara Bentz
2007-01-01
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) were monitored for 4 years following three wildfires. Logistic regression analyses were used to develop models predicting the probability of attack by Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins, 1905) and the probability of Douglas-fir mortality within 4 years following...
A comparative analysis between NACA 4412 airfoil and it's modified form with tubercles
NASA Astrophysics Data System (ADS)
Hasan, Md. Jonayed; Islam, Md. Tazul; Hassan, Md. Mehedi
2017-06-01
The effect of tubercles on the leading edge of an airfoil become more vivid at high angle of attacks. The effect of tubercles with large wavelength and small amplitude on the leading edge of a NACA 4412 airfoil section was investigated numerically and experimentally. The phenomena of improving the airfoil performance by modifying the contours drove our interest to do this analysis. The models were developed & numerical simulations were carried out with both NACA 4412 airfoil and modified airfoil model at Re=1.03×106 and angles of attack ranging from 0° to 20°. Flow separation was analyzed with vector profiles. CL, CD at different angle of attacks was developed and it gave down noticeable pre-stall & post-stall behavior. The airfoils were studied experimentally in a low speed wind tunnel. Pressure distribution over the two airfoils was obtained. It was evident from the pressure distributions that the modified airfoil exhibits significant aerodynamic performance at high angles of attack. We can infer that these effects will be advantageous for maneuverability and post-stall behavior.
NASA Astrophysics Data System (ADS)
Bassuoni, Mohamed Tamer F.
The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion tests, the combined sulfate attack tests captured performance risks and complex damage mechanisms associated with the SCC pore structure and constituent materials. Sodium sulfate attack with wetting-drying cycles and/or partial immersion under temperate-hot conditions synergistically caused significant damage to specimens, especially to quaternary cementitious systems having very fine pore structure, due to the build-up of salt crystals and sulfate reaction products. The deleterious effects of sulfate reaction products and salt crystallization on all cementitious systems were more severe under the combined sodium sulfate and freezing-thawing exposure, with a potential of sudden brittle failure. Laboratory experiments in the current work documented evidence for the occurrence of thaumasite sulfate attack (TSA) in cementitious systems containing limestone filler, not only under cold but also under temperate-hot conditions, which made specimens more vulnerable to damage in the combined sulfate attack tests. The field-like combined exposure of sodium sulfate, cyclic environments and flexural loading had synergistic effects on SCC specimens and caused the coexistence of multiple-complex degradation mechanisms (sulfate attack, TSA, stress-corrosion, salt crystallization, surface scaling and corrosion of surface steel fibres) depending on the mixture design variables. The current thesis demonstrates that relying only on sulfate immersion tests to evaluate the performance of cement-based materials can be risky. It also shows that linear and deterministic modeling of the performance of concrete structures under external sulfate attack is unrealistic. Fuzzy and adaptive-neuro fuzzy inference systems developed in the current thesis accurately and rationally predicted the serviceability, deterioration in engineering properties and time to failure of the SCC mixtures under the various sulfate attack exposure regimes adopted in the integrated testing approach. A durability evaluation factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.
Towards improved migraine management: Determining potential trigger factors in individual patients.
Peris, Francesc; Donoghue, Stephen; Torres, Ferran; Mian, Alec; Wöber, Christian
2017-04-01
Background Certain chronic diseases such as migraine result in episodic, debilitating attacks for which neither cause nor timing is well understood. Historically, possible triggers were identified through analysis of aggregated data from populations of patients. However, triggers common in populations may not be wholly responsible for an individual's attacks. To explore this hypothesis we developed a method to identify individual 'potential trigger' profiles and analysed the degree of inter-individual variation. Methods We applied N = 1 statistical analysis to a 326-migraine-patient database from a study in which patients used paper-based diaries for 90 days to track 33 factors (potential triggers or premonitory symptoms) associated with their migraine attacks. For each patient, univariate associations between factors and migraine events were analysed using Cox proportional hazards models. Results We generated individual factor-attack association profiles for 87% of the patients. The average number of factors associated with attacks was four per patient: Factor profiles were highly individual and were unique in 85% of patients with at least one identified association. Conclusion Accurate identification of individual factor-attack profiles is a prerequisite for testing which are true triggers and for development of trigger avoidance or desensitisation strategies. Our methodology represents a necessary development toward this goal.
Using Unix system auditing for detecting network intrusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, M.J.
1993-03-01
Intrusion Detection Systems (IDSs) are designed to detect actions of individuals who use computer resources without authorization as well as legitimate users who exceed their privileges. This paper describes a novel approach to IDS research, namely a decision aiding approach to intrusion detection. The introduction of a decision tree represents the logical steps necessary to distinguish and identify different types of attacks. This tool, the Intrusion Decision Aiding Tool (IDAT), utilizes IDS-based attack models and standard Unix audit data. Since attacks have certain characteristics and are based on already developed signature attack models, experienced and knowledgeable Unix system administrators knowmore » what to look for in system audit logs to determine if a system has been attacked. Others, however, are usually less able to recognize common signatures of unauthorized access. Users can traverse the tree using available audit data displayed by IDAT and general knowledge they possess to reach a conclusion regarding suspicious activity. IDAT is an easy-to-use window based application that gathers, analyzes, and displays pertinent system data according to Unix attack characteristics. IDAT offers a more practical approach and allows the user to make an informed decision regarding suspicious activity.« less
Three tenets for secure cyber-physical system design and assessment
NASA Astrophysics Data System (ADS)
Hughes, Jeff; Cybenko, George
2014-06-01
This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.
Detection of abnormal item based on time intervals for recommender systems.
Gao, Min; Yuan, Quan; Ling, Bin; Xiong, Qingyu
2014-01-01
With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from "shilling" attacks. In recent years, the research on shilling attacks has been greatly improved. However, the approaches suffer from serious problem in attack model dependency and high computational cost. To solve the problem, an approach for the detection of abnormal item is proposed in this paper. In the paper, two common features of all attack models are analyzed at first. A revised bottom-up discretized approach is then proposed based on time intervals and the features for the detection. The distributions of ratings in different time intervals are compared to detect anomaly based on the calculation of chi square distribution (χ(2)). We evaluated our approach on four types of items which are defined according to the life cycles of these items. The experimental results show that the proposed approach achieves a high detection rate with low computational cost when the number of attack profiles is more than 15. It improves the efficiency in shilling attacks detection by narrowing down the suspicious users.
Epidemics of panic during a bioterrorist attack--a mathematical model.
Radosavljevic, Vladan; Radunovic, Desanka; Belojevic, Goran
2009-09-01
A bioterrorist attacks usually cause epidemics of panic in a targeted population. We have presented epidemiologic aspect of this phenomenon as a three-component model--host, information on an attack and social network. We have proposed a mathematical model of panic and counter-measures as the function of time in a population exposed to a bioterrorist attack. The model comprises ordinary differential equations and graphically presented combinations of the equations parameters. Clinically, we have presented a model through a sequence of psychic conditions and disorders initiated by an act of bioterrorism. This model might be helpful for an attacked community to timely and properly apply counter-measures and to minimize human mental suffering during a bioterrorist attack.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
A likelihood ratio anomaly detector for identifying within-perimeter computer network attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grana, Justin; Wolpert, David; Neil, Joshua
The rapid detection of attackers within firewalls of enterprise computer networks is of paramount importance. Anomaly detectors address this problem by quantifying deviations from baseline statistical models of normal network behavior and signaling an intrusion when the observed data deviates significantly from the baseline model. But, many anomaly detectors do not take into account plausible attacker behavior. As a result, anomaly detectors are prone to a large number of false positives due to unusual but benign activity. Our paper first introduces a stochastic model of attacker behavior which is motivated by real world attacker traversal. Then, we develop a likelihoodmore » ratio detector that compares the probability of observed network behavior under normal conditions against the case when an attacker has possibly compromised a subset of hosts within the network. Since the likelihood ratio detector requires integrating over the time each host becomes compromised, we illustrate how to use Monte Carlo methods to compute the requisite integral. We then present Receiver Operating Characteristic (ROC) curves for various network parameterizations that show for any rate of true positives, the rate of false positives for the likelihood ratio detector is no higher than that of a simple anomaly detector and is often lower. Finally, we demonstrate the superiority of the proposed likelihood ratio detector when the network topologies and parameterizations are extracted from real-world networks.« less
A likelihood ratio anomaly detector for identifying within-perimeter computer network attacks
Grana, Justin; Wolpert, David; Neil, Joshua; ...
2016-03-11
The rapid detection of attackers within firewalls of enterprise computer networks is of paramount importance. Anomaly detectors address this problem by quantifying deviations from baseline statistical models of normal network behavior and signaling an intrusion when the observed data deviates significantly from the baseline model. But, many anomaly detectors do not take into account plausible attacker behavior. As a result, anomaly detectors are prone to a large number of false positives due to unusual but benign activity. Our paper first introduces a stochastic model of attacker behavior which is motivated by real world attacker traversal. Then, we develop a likelihoodmore » ratio detector that compares the probability of observed network behavior under normal conditions against the case when an attacker has possibly compromised a subset of hosts within the network. Since the likelihood ratio detector requires integrating over the time each host becomes compromised, we illustrate how to use Monte Carlo methods to compute the requisite integral. We then present Receiver Operating Characteristic (ROC) curves for various network parameterizations that show for any rate of true positives, the rate of false positives for the likelihood ratio detector is no higher than that of a simple anomaly detector and is often lower. Finally, we demonstrate the superiority of the proposed likelihood ratio detector when the network topologies and parameterizations are extracted from real-world networks.« less
Li, Shuying; Zhuang, Jun; Shen, Shifei
2017-07-01
In recent years, various types of terrorist attacks occurred, causing worldwide catastrophes. According to the Global Terrorism Database (GTD), among all attack tactics, bombing attacks happened most frequently, followed by armed assaults. In this article, a model for analyzing and forecasting the conditional probability of bombing attacks (CPBAs) based on time-series methods is developed. In addition, intervention analysis is used to analyze the sudden increase in the time-series process. The results show that the CPBA increased dramatically at the end of 2011. During that time, the CPBA increased by 16.0% in a two-month period to reach the peak value, but still stays 9.0% greater than the predicted level after the temporary effect gradually decays. By contrast, no significant fluctuation can be found in the conditional probability process of armed assault. It can be inferred that some social unrest, such as America's troop withdrawal from Afghanistan and Iraq, could have led to the increase of the CPBA in Afghanistan, Iraq, and Pakistan. The integrated time-series and intervention model is used to forecast the monthly CPBA in 2014 and through 2064. The average relative error compared with the real data in 2014 is 3.5%. The model is also applied to the total number of attacks recorded by the GTD between 2004 and 2014. © 2016 Society for Risk Analysis.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
Application distribution model and related security attacks in VANET
NASA Astrophysics Data System (ADS)
Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian
2013-03-01
In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.
Localized attacks on spatially embedded networks with dependencies.
Berezin, Yehiel; Bashan, Amir; Danziger, Michael M; Li, Daqing; Havlin, Shlomo
2015-03-11
Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures-even of finite fraction-if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems.
Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis
Zhou, Wei; Wen, Junhao; Koh, Yun Sing; Xiong, Qingyu; Gao, Min; Dobbie, Gillian; Alam, Shafiq
2015-01-01
Recommender systems are highly vulnerable to shilling attacks, both by individuals and groups. Attackers who introduce biased ratings in order to affect recommendations, have been shown to negatively affect collaborative filtering (CF) algorithms. Previous research focuses only on the differences between genuine profiles and attack profiles, ignoring the group characteristics in attack profiles. In this paper, we study the use of statistical metrics to detect rating patterns of attackers and group characteristics in attack profiles. Another question is that most existing detecting methods are model specific. Two metrics, Rating Deviation from Mean Agreement (RDMA) and Degree of Similarity with Top Neighbors (DegSim), are used for analyzing rating patterns between malicious profiles and genuine profiles in attack models. Building upon this, we also propose and evaluate a detection structure called RD-TIA for detecting shilling attacks in recommender systems using a statistical approach. In order to detect more complicated attack models, we propose a novel metric called DegSim’ based on DegSim. The experimental results show that our detection model based on target item analysis is an effective approach for detecting shilling attacks. PMID:26222882
NASA Technical Reports Server (NTRS)
Holleman, E. C.
1976-01-01
An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.
Hybrid attacks on model-based social recommender systems
NASA Astrophysics Data System (ADS)
Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao
2017-10-01
With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.
A Method of Synchrophasor Technology for Detecting and Analyzing Cyber-Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Roy; Al-Sarray, Muthanna
Studying cybersecurity events and analyzing their impacts encourage planners and operators to develop innovative approaches for preventing attacks in order to avoid outages and other disruptions. This work considers two parts in security studies; detecting an integrity attack and examining its effects on power system generators. The detection was conducted through employing synchrophasor technology to provide authentication of ACG commands based on observed system operating characteristics. The examination of an attack is completed via a detailed simulation of a modified IEEE 68-bus benchmark model to show the associated power system dynamic response. The results of the simulation are discussed formore » assessing the impacts of cyber threats.« less
NASA Astrophysics Data System (ADS)
Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Semenov, A. N.; Smorodsky, B. V.; Yatskikh, A. A.
2017-10-01
The paper is devoted to an experimental and theoretical study of effect of small angle of attack on disturbances evolution and laminar-turbulent transition in a supersonic boundary layer on swept wing at Mach number M=2. The experiments are conducted at the low nose supersonic wind tunnel T-325 of ITAM. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The transition location is determined using a hot-wire anemometer. Confirmed monotonous growth of the transition Reynolds numbers with increasing of angle of attack from -2° to 2.5°. The experimental data on the influence of the angle of attack on the disturbances evolution in the supersonic boundary layer on the swept wing model are obtained. Calculations on the effect of small angles of attack on the development of perturbations are made in the framework of the linear theory of stability. A good qualitative correspondence of theoretical and experimental data are obtained.
Hinton, Devon E; Hofmann, Stefan G; Pitman, Roger K; Pollack, Mark H; Barlow, David H
2008-01-01
This article examines the ability of the panic attack-posttraumatic stress disorder (PTSD) model to predict how panic attacks are generated and how panic attacks worsen PTSD. The article does so by determining the validity of the panic attack-PTSD model in respect to one type of panic attack among traumatized Cambodian refugees: orthostatic panic (OP) attacks (i.e. panic attacks generated by moving from lying or sitting to standing). Among Cambodian refugees attending a psychiatric clinic, the authors conducted two studies to explore the validity of the panic attack-PTSD model as applied to OP patients (i.e. patients with at least one episode of OP in the previous month). In Study 1, the panic attack-PTSD model accurately indicated how OP is seemingly generated: among OP patients (N = 58), orthostasis-associated flashbacks and catastrophic cognitions predicted OP severity beyond a measure of anxious-depressive distress (Symptom Checklist-90-R subscales), and OP severity significantly mediated the effect of anxious-depressive distress on Clinician-Administered PTSD Scale severity. In Study 2, as predicted by the panic attack-PTSD model, OP had a mediational role in respect to the effect of treatment on PTSD severity: among Cambodian refugees with PTSD and comorbid OP who participated in a cognitive behavioural therapy study (N = 56), improvement in PTSD severity was partially mediated by improvement in OP severity.
An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas
1996-01-01
The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.
Classification of HTTP Attacks: A Study on the ECML/PKDD 2007 Discovery Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, Brian; Eliassi-Rad, Tina
2009-07-08
As the world becomes more reliant on Web applications for commercial, financial, and medical transactions, cyber attacks on the World Wide Web are increasing in frequency and severity. Web applications provide an attractive alternative to traditional desktop applications due to their accessibility and ease of deployment. However, the accessibility of Web applications also makes them extremely vulnerable to attack. This inherent vulnerability is intensified by the distributed nature ofWeb applications and the complexity of configuring application servers. These factors have led to a proliferation of Web-based attacks, in which attackers surreptitiously inject code into HTTP requests, allowing them to executemore » arbitrary commands on remote systems and perform malicious activities such as reading, altering, or destroying sensitive data. One approach for dealing with HTTP-based attacks is to identify malicious code in incoming HTTP requests and eliminate bad requests before they are processed. Using machine learning techniques, we can build a classifier to automatically label requests as “Valid” or “Attack.” For this study, we develop a simple, but effective HTTP attack classifier, based on the vector space model used commonly for Information Retrieval. Our classifier not only separates attacks from valid requests, but can also identify specific attack types (e.g., “SQL Injection” or “Path Traversal”). We demonstrate the effectiveness of our approach through experiments on the ECML/PKDD 2007 Discovery Challenge data set. Specifically, we show that our approach achieves higher precision and recall than previous methods. In addition, our approach has a number of desirable characteristics, including robustness to missing contextual information, interpretability of models, and scalability.« less
Mathyssek, Christina M.; Olino, Thomas M.; Verhulst, Frank C.; van Oort, Floor V. A.
2012-01-01
Background Panic attacks are a source of individual suffering and are an independent risk factor for later psychopathology. However, much less is known about risk factors for the development of panic attacks, particularly during adolescence when the incidence of panic attacks increases dramatically. We examined whether internalizing and externalizing problems in childhood predict the onset of panic attacks in adolescence. Method This study is part of the TRacking Adolescents’ Individual Lives Survey (TRAILS), a Dutch longitudinal population cohort study (N = 1,584). Internalizing and Externalizing Problems were collected using the Youth Self-Report (YSR) and the parent-report Child Behavior Checklist (CBCL) at baseline (age 10–12). At age 18–20, DSM-IV defined panic attacks since baseline were assessed with the Composite International Diagnostic Interview (CIDI). We investigated whether early adolescent Internalizing and Externalizing Problems predicted panic attacks between ages 10–20 years, using survival analysis in univariate and multivariate models. Results There were N = 314 (19.8%) cases who experienced at least one DSM-IV defined panic attack during adolescence and N = 18 (1.2%) who developed panic disorder during adolescence. In univariate analyses, CBCL Total Problems, Internalizing Problems and three of the eight syndrome scales predicted panic attack onset, while on the YSR all broad-band problem scales and each narrow-band syndrome scale predicted panic attack onset. In multivariate analyses, CBCL Social Problems (HR 1.19, p<.05), and YSR Thought Problems (HR 1.15, p<.05) and Social Problems (HR 1.26, p<.01) predicted panic attack onset. Conclusion Risk indicators of panic attack include the wide range of internalizing and externalizing problems. Yet, when adjusted for co-occurring problem behaviors, Social Problems were the most consistent risk factor for panic attack onsets in adolescence. PMID:23251576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.; Jarman, Kenneth D.; Xu, Zhijie
This report describes our initial research to quantify uncertainties in the identification and characterization of possible attack states in a network. As a result, we should be able to estimate the current state in which the network is operating, based on a wide variety of network data, and attach a defensible measure of confidence to these state estimates. The output of this research will be new uncertainty quantification (UQ) methods to help develop a process for model development and apply UQ to characterize attacks/adversaries, create an understanding of the degree to which methods scale to "big" data, and offer methodsmore » for addressing model approaches with regard to validation and accuracy.« less
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.
NASA Astrophysics Data System (ADS)
Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong
2017-02-01
We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.
TSARINA: A computer model for assessing conventional and chemical attacks on air bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, D.E.; Wegner, L.H.
This Note describes the latest version of the TSARINA (TSAR INputs using AIDA) airbase damage assessment computer program that has been developed to estimate the on-base concentration of toxic agents that would be deposited by a chemical attack and to assess losses to various on-base resources from conventional attacks, as well as the physical damage to runways, taxiways, buildings, and other facilities. Although the model may be used as a general-purpose, complex-target damage assessment model, its primary role in intended to be in support of the TSAR (Theater Simulation of Airbase Resources) aircraft sortie generation simulation program. When used withmore » TSAR, multiple trials of a multibase airbase-attack campaign can be assessed with TSARINA, and the impact of those attacks on sortie generation can be derived using the TSAR simulation model. TSARINA, as currently configured, permits damage assessments of attacks on an airbase (or other) complex that is compassed of up to 1000 individual targets (buildings, taxiways, etc,), and 2500 packets of resources. TSARINA determines the actual impact points (pattern centroids for CBUs and container burst point for chemical weapons) by Monte Carlo procedures-i.e., by random selections from the appropriate error distributions. Uncertainties in wind velocity and heading are also considered for chemical weapons. Point-impact weapons that impact within a specified distance of each target type are classed as hits, and estimates of the damage to the structures and to the various classes of support resources are assessed using cookie-cutter weapon-effects approximations.« less
Modeling Adversaries in Counterterrorism Decisions Using Prospect Theory.
Merrick, Jason R W; Leclerc, Philip
2016-04-01
Counterterrorism decisions have been an intense area of research in recent years. Both decision analysis and game theory have been used to model such decisions, and more recently approaches have been developed that combine the techniques of the two disciplines. However, each of these approaches assumes that the attacker is maximizing its utility. Experimental research shows that human beings do not make decisions by maximizing expected utility without aid, but instead deviate in specific ways such as loss aversion or likelihood insensitivity. In this article, we modify existing methods for counterterrorism decisions. We keep expected utility as the defender's paradigm to seek for the rational decision, but we use prospect theory to solve for the attacker's decision to descriptively model the attacker's loss aversion and likelihood insensitivity. We study the effects of this approach in a critical decision, whether to screen containers entering the United States for radioactive materials. We find that the defender's optimal decision is sensitive to the attacker's levels of loss aversion and likelihood insensitivity, meaning that understanding such descriptive decision effects is important in making such decisions. © 2014 Society for Risk Analysis.
Implementation and Analysis of a Threat Model for IPv6 Host Autoconfiguration
2006-09-01
Collision Generator”, two Denial of Service attacks. The software was developed in NetBeans IDE 5.0, and the comments were converted to Javadoc with the...appropriate NetBeans function. A. ICMPV6 SUPPORT FOR JPCAP As the attack uses ICMPv6 messages, a means must be provided to generate these messages...ICMP packet. * * Developed in NetBeans IDE 5.0 * Makes use of Jpcap 0.5.1 library * (http://netresearch.ics.uci.edu/kfujii/jpcap/doc
Evaluation of Scaling Methods for Rotorcraft Icing
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Kreeger, Richard E.
2010-01-01
This paper reports result of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the current recommended scaling methods developed for fixed-wing unprotected surface icing applications might apply to representative rotor blades at finite angle of attack. Unlike the fixed-wing case, there is no single scaling method that has been systematically developed and evaluated for rotorcraft icing applications. In the present study, scaling was based on the modified Ruff method with scale velocity determined by maintaining constant Weber number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocities of 76 and 100 kt (39 and 52 m/s), droplet MVDs of 150 and 195 fun, and with stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 0deg and 5deg. It was shown that good ice shape scaling was achieved for NACA 0012 airfoils with angle of attack lip to 5deg.
Spatial, Temporal and Spatio-Temporal Patterns of Maritime Piracy.
Marchione, Elio; Johnson, Shane D
2013-11-01
To examine patterns in the timing and location of incidents of maritime piracy to see whether, like many urban crimes, attacks cluster in space and time. Data for all incidents of maritime piracy worldwide recorded by the National Geospatial Intelligence Agency are analyzed using time-series models and methods originally developed to detect disease contagion. At the macro level, analyses suggest that incidents of pirate attacks are concentrated in five subregions of the earth's oceans and that the time series for these different subregions differ. At the micro level, analyses suggest that for the last 16 years (or more), pirate attacks appear to cluster in space and time suggesting that patterns are not static but are also not random. Much like other types of crime, pirate attacks cluster in space, and following an attack at one location the risk of others at the same location or nearby is temporarily elevated. The identification of such regularities has implications for the understanding of maritime piracy and for predicting the future locations of attacks.
Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles
NASA Astrophysics Data System (ADS)
Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.
2017-07-01
In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Wenzinger, Carl J
1930-01-01
This investigation covers force tests through a large range of angle of attack on a series of monoplane and biplane wing models. The tests were conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. The models were arranged in such a manner as to make possible a determination of the effects of variations in tip shape, aspect ratio, flap setting, stagger, gap, decalage, sweep back, and airfoil profile. The arrangements represented most of the types of wing systems in use on modern airplanes. The effect of each variable is illustrated by means of groups of curves. In addition, there are included approximate autorotational characteristics in the form of calculated ranges of "rotary instability." a correction for blocking in this tunnel which applies to monoplanes at large angles of attack has been developed, and is given in an appendix. (author)
Forebody tangential blowing for control at high angles of attack
NASA Technical Reports Server (NTRS)
Kroo, I.; Rock, S.; Roberts, L.
1991-01-01
A feasibility study to determine if the use of tangential leading edge blowing over the forebody could produce effective and practical control of the F-18 HARV aircraft at high angles of attack was conducted. A simplified model of the F-18 configuration using a vortex-lattice model was developed to obtain a better understanding of basic aerodynamic coupling effects and the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing was estimated using existing wind tunnel data on normal forebody blowing and analytical studies of tangential blowing over conical forebodies. Incorporation of forebody blowing into the flight control system was investigated by adding this additional yaw control and sideforce generating actuator into the existing F-18 HARV simulation model. A control law was synthesized using LQG design methods that would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw rates.
Development of an Aotus nancymaae Model for Shigella Vaccine Immunogenicity and Efficacy Studies
Gregory, Michael; Lugo-Roman, Luis A.; Galvez Carrillo, Hugo; Tilley, Drake Hamilton; Baldeviano, Christian; Simons, Mark P.; Reynolds, Nathanael D.; Ranallo, Ryan T.; Suvarnapunya, Akamol E.; Venkatesan, Malabi M.; Oaks, Edwin V.
2014-01-01
Several animal models exist to evaluate the immunogenicity and protective efficacy of candidate Shigella vaccines. The two most widely used nonprimate models for vaccine development include a murine pulmonary challenge model and a guinea pig keratoconjunctivitis model. Nonhuman primate models exhibit clinical features and gross and microscopic colonic lesions that mimic those induced in human shigellosis. Challenge models for enterotoxigenic Escherichia coli (ETEC) and Campylobacter spp. have been successfully developed with Aotus nancymaae, and the addition of a Shigella-Aotus challenge model would facilitate the testing of combination vaccines. A series of experiments were designed to identify the dose of Shigella flexneri 2a strain 2457T that induces an attack rate of 75% in the Aotus monkey. After primary challenge, the dose required to induce an attack rate of 75% was calculated to be 1 × 1011 CFU. Shigella-specific immune responses were low after primary challenge and subsequently boosted upon rechallenge. However, preexisting immunity derived from the primary challenge was insufficient to protect against the homologous Shigella serotype. A successive study in A. nancymaae evaluated the ability of multiple oral immunizations with live-attenuated Shigella vaccine strain SC602 to protect against challenge. After three oral immunizations, animals were challenged with S. flexneri 2a 2457T. A 70% attack rate was demonstrated in control animals, whereas animals immunized with vaccine strain SC602 were protected from challenge (efficacy of 80%; P = 0.05). The overall study results indicate that the Shigella-Aotus nancymaae challenge model may be a valuable tool for evaluating vaccine efficacy and investigating immune correlates of protection. PMID:24595138
Prediction of first episode of panic attack among white-collar workers.
Watanabe, Akira; Nakao, Kazuhisa; Tokuyama, Madoka; Takeda, Masatoshi
2005-04-01
The purpose of the present study was to elucidate a longitudinal matrix of the etiology for first-episode panic attack among white-collar workers. A path model was designed for this purpose. A 5-year, open-cohort study was carried out in a Japanese company. To evaluate the risk factors associated with the onset of a first episode of panic attack, the odds ratios of a new episode of panic attack were calculated by logistic regression. The path model contained five predictor variables: gender difference, overprotection, neuroticism, lifetime history of major depression, and recent stressful life events. The logistic regression analysis indicated that a person with a lifetime history of major depression and recent stressful life events had a fivefold and a threefold higher risk of panic attacks at follow up, respectively. The path model for the prediction of a first episode of panic attack fitted the data well. However, this model presented low accountability for the variance in the ultimate dependent variables, the first episode of panic attack. Three predictors (neuroticism, lifetime history of major depression, and recent stressful life events) had a direct effect on the risk for a first episode of panic attack, whereas gender difference and overprotection had no direct effect. The present model could not fully predict first episodes of panic attack in white-collar workers. To make a path model for the prediction of the first episode of panic attack, other strong predictor variables, which were not surveyed in the present study, are needed. It is suggested that genetic variables are among the other strong predictor variables. A new path model containing genetic variables (e.g. family history etc.) will be needed to predict the first episode of panic attack.
Liftoff and Transition Aerodynamics of the Ares I (A106) Launch Vehicle
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Paulson, John W., Jr.; Erickson, Gary E.
2011-01-01
An investigation has been conducted in the NASA Langley Research Center 14- by 22- Foot Subsonic Wind Tunnel to obtain the liftoff and transition aerodynamics of the Ares I (A106) Crew Launch Vehicle. Data were obtained in free-air at angles of attack from 10 to 90 at various roll angles and at roll angles of 0 to 360 at various angles of attack. In addition, tower effects were assessed by testing with and without a mobile launcher/tower at all wind azimuth angles and at various model heights to simulate the rise of the vehicle as it clears the tower on launch. The free-air data will be used for low speed high angle of attack flight simulation and as a bridge to the low angle of attack ascent database (0.5 < Mach < 5.0) being developed with data from the Langley Unitary Plan Wind Tunnel and Boeing Polysonic Wind Tunnel. The Ares I Database Development Team will add incremental tower effects data to the free-air data to develop the database for tower clearance.
Technique Selectively Represses Immune System
... from attacking myelin in a mouse model of multiple sclerosis. Dr David Furness, Wellcome Images. All rights reserved ... devised a way to successfully treat symptoms resembling multiple sclerosis in a mouse model. With further development, the ...
Cost of equity in homeland security resource allocation in the face of a strategic attacker.
Shan, Xiaojun; Zhuang, Jun
2013-06-01
Hundreds of billions of dollars have been spent in homeland security since September 11, 2001. Many mathematical models have been developed to study strategic interactions between governments (defenders) and terrorists (attackers). However, few studies have considered the tradeoff between equity and efficiency in homeland security resource allocation. In this article, we fill this gap by developing a novel model in which a government allocates defensive resources among multiple potential targets, while reserving a portion of defensive resources (represented by the equity coefficient) for equal distribution (according to geographical areas, population, density, etc.). Such a way to model equity is one of many alternatives, but was directly inspired by homeland security resource allocation practice. The government is faced with a strategic terrorist (adaptive adversary) whose attack probabilities are endogenously determined in the model. We study the effect of the equity coefficient on the optimal defensive resource allocations and the corresponding expected loss. We find that the cost of equity (in terms of increased expected loss) increases convexly in the equity coefficient. Furthermore, such cost is lower when: (a) government uses per-valuation equity; (b) the cost-effectiveness coefficient of defense increases; and (c) the total defense budget increases. Our model, results, and insights could be used to assist policy making. © 2012 Society for Risk Analysis.
Risk assessment for physical and cyber attacks on critical infrastructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Bryan J.; Sholander, Peter E.; Phelan, James M.
2005-08-01
Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies. Existing risk assessment methodologies consider physical security and cyber security separately. As such, they do not accurately model attacks that involve defeating both physical protection and cyber protection elements (e.g., hackers turning off alarm systems prior to forced entry). This paper presents a risk assessment methodology that accounts for both physical and cyber security. It also preserves the traditional security paradigm of detect, delay and respond, while accounting for the possibility that a facility may be able to recover from or mitigate the results ofmore » a successful attack before serious consequences occur. The methodology provides a means for ranking those assets most at risk from malevolent attacks. Because the methodology is automated the analyst can also play 'what if with mitigation measures to gain a better understanding of how to best expend resources towards securing the facilities. It is simple enough to be applied to large infrastructure facilities without developing highly complicated models. Finally, it is applicable to facilities with extensive security as well as those that are less well-protected.« less
Cyber attack analysis on cyber-physical systems: Detectability, severity, and attenuation strategy
NASA Astrophysics Data System (ADS)
Kwon, Cheolhyeon
Security of Cyber-Physical Systems (CPS) against malicious cyber attacks is an important yet challenging problem. Since most cyber attacks happen in erratic ways, it is usually intractable to describe and diagnose them systematically. Motivated by such difficulties, this thesis presents a set of theories and algorithms for a cyber-secure architecture of the CPS within the control theoretic perspective. Here, instead of identifying a specific cyber attack model, we are focused on analyzing the system's response during cyber attacks. Firstly, we investigate the detectability of the cyber attacks from the system's behavior under cyber attacks. Specifically, we conduct a study on the vulnerabilities in the CPS's monitoring system against the stealthy cyber attack that is carefully designed to avoid being detected by its detection scheme. After classifying three kinds of cyber attacks according to the attacker's ability to compromise the system, we derive the necessary and sufficient conditions under which such stealthy cyber attacks can be designed to cause the unbounded estimation error while not being detected. Then, the analytical design method of the optimal stealthy cyber attack that maximizes the estimation error is developed. The proposed stealthy cyber attack analysis is demonstrated with illustrative examples on Air Traffic Control (ATC) system and Unmanned Aerial Vehicle (UAV) navigation system applications. Secondly, in an attempt to study the CPSs' vulnerabilities in more detail, we further discuss a methodology to identify potential cyber threats inherent in the given CPSs and quantify the attack severity accordingly. We then develop an analytical algorithm to test the behavior of the CPS under various cyber attack combinations. Compared to a numerical approach, the analytical algorithm enables the prediction of the most effective cyber attack combinations without computing the severity of all possible attack combinations, thereby greatly reducing the computational cost. The proposed algorithm is validated through a linearized longitudinal motion of a UAV example. Finally, we propose an attack attenuation strategy via the controller design for CPSs that are robust to various types of cyber attacks. While the previous studies have investigated a secure control by assuming a specific attack strategy, in this research we propose a hybrid robust control scheme that contains multiple sub-controllers, each matched to a specific type of cyber attacks. Then the system can be adapted to various cyber attacks (including those that are not assumed for sub-controller design) by switching its sub-controllers to achieve the best performance. Then, a method for designing a secure switching logic to counter all possible cyber attacks is proposed and it verifies mathematically the system's performance and stability as well. The performance of the proposed control scheme is demonstrated by an example with the hybrid H2 - H-infinity controller applied to a UAV example.
Ay, Hakan; Arsava, E Murat; Johnston, S Claiborne; Vangel, Mark; Schwamm, Lee H; Furie, Karen L; Koroshetz, Walter J; Sorensen, A Gregory
2009-01-01
Predictive instruments based on clinical features for early stroke risk after transient ischemic attack suffer from limited specificity. We sought to combine imaging and clinical features to improve predictions for 7-day stroke risk after transient ischemic attack. We studied 601 consecutive patients with transient ischemic attack who had MRI within 24 hours of symptom onset. A logistic regression model was developed using stroke within 7 days as the response criterion and diffusion-weighted imaging findings and dichotomized ABCD(2) score (ABCD(2) >/=4) as covariates. Subsequent stroke occurred in 25 patients (5.2%). Dichotomized ABCD(2) score and acute infarct on diffusion-weighted imaging were each independent predictors of stroke risk. The 7-day risk was 0.0% with no predictor, 2.0% with ABCD(2) score >/=4 alone, 4.9% with acute infarct on diffusion-weighted imaging alone, and 14.9% with both predictors (an automated calculator is available at http://cip.martinos.org). Adding imaging increased the area under the receiver operating characteristic curve from 0.66 (95% CI, 0.57 to 0.76) using the ABCD(2) score to 0.81 (95% CI, 0.74 to 0.88; P=0.003). The sensitivity of 80% on the receiver operating characteristic curve corresponded to a specificity of 73% for the CIP model and 47% for the ABCD(2) score. Combining acute imaging findings with clinical transient ischemic attack features causes a dramatic boost in the accuracy of predictions with clinical features alone for early risk of stroke after transient ischemic attack. If validated in relevant clinical settings, risk stratification by the CIP model may assist in early implementation of therapeutic measures and effective use of hospital resources.
Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.
1997-01-01
Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.
Agent-based simulation for human-induced hazard analysis.
Bulleit, William M; Drewek, Matthew W
2011-02-01
Terrorism could be treated as a hazard for design purposes. For instance, the terrorist hazard could be analyzed in a manner similar to the way that seismic hazard is handled. No matter how terrorism is dealt with in the design of systems, the need for predictions of the frequency and magnitude of the hazard will be required. And, if the human-induced hazard is to be designed for in a manner analogous to natural hazards, then the predictions should be probabilistic in nature. The model described in this article is a prototype model that used agent-based modeling (ABM) to analyze terrorist attacks. The basic approach in this article of using ABM to model human-induced hazards has been preliminarily validated in the sense that the attack magnitudes seem to be power-law distributed and attacks occur mostly in regions where high levels of wealth pass through, such as transit routes and markets. The model developed in this study indicates that ABM is a viable approach to modeling socioeconomic-based infrastructure systems for engineering design to deal with human-induced hazards. © 2010 Society for Risk Analysis.
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...
2015-04-06
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.
Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y
2016-04-01
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.
Robustness of networks formed from interdependent correlated networks under intentional attacks
NASA Astrophysics Data System (ADS)
Liu, Long; Meng, Ke; Dong, Zhaoyang
2018-02-01
We study the problem of intentional attacks targeting to interdependent networks generated with known degree distribution (in-degree oriented model) or distribution of interlinks (out-degree oriented model). In both models, each node's degree is correlated with the number of its links that connect to the other network. For both models, varying the correlation coefficient has a significant effect on the robustness of a system undergoing random attacks or attacks targeting nodes with low degree. For a system with an assortative relationship between in-degree and out-degree, reducing the broadness of networks' degree distributions can increase the resistance of systems against intentional attacks.
Use of Deception to Improve Client Honeypot Detection of Drive-by-Download Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovsky, Barbara; Narvaez Suarez, Julia F.; Seifert, Christian
2009-07-24
This paper presents the application of deception theory to improve the success of client honeypots at detecting malicious web page attacks from infected servers programmed by online criminals to launch drive-by-download attacks. The design of honeypots faces three main challenges: deception, how to design honeypots that seem real systems; counter-deception, techniques used to identify honeypots and hence defeating their deceiving nature; and counter counter-deception, how to design honeypots that deceive attackers. The authors propose the application of a deception model known as the deception planning loop to identify the current status on honeypot research, development and deployment. The analysis leadsmore » to a proposal to formulate a landscape of the honeypot research and planning of steps ahead.« less
Appliance of Independent Component Analysis to System Intrusion Analysis
NASA Astrophysics Data System (ADS)
Ishii, Yoshikazu; Takagi, Tarou; Nakai, Kouji
In order to analyze the output of the intrusion detection system and the firewall, we evaluated the applicability of ICA(independent component analysis). We developed a simulator for evaluation of intrusion analysis method. The simulator consists of the network model of an information system, the service model and the vulnerability model of each server, and the action model performed on client and intruder. We applied the ICA for analyzing the audit trail of simulated information system. We report the evaluation result of the ICA on intrusion analysis. In the simulated case, ICA separated two attacks correctly, and related an attack and the abnormalities of the normal application produced under the influence of the attach.
Information System Incidents: The Development of a Damage Assessment Model
1999-12-01
Cyber criminals use creativity, knowledge, software, and hardware to attack and infiltrate information systems (IS) in order to copy, delete, or...the Internet led to an increase in cyber criminals and a variety or cyber crimes such as attacks, intrusions, introduction of viruses, and data theft...organizations on information systems is contributing to the increased number of cyber criminals . Additionally, the growing sophistication and availability of
Numerical solutions of the complete Navier-Strokes equations. no. 27
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1996-01-01
This report describes the development of an enstrophy model capable of predicting turbulence separation and its application to two airfoils at various angles of attack and Mach numbers. In addition, a two equation kappa-xi model with a tensor eddy viscosity was developed. Plans call for this model to be used in calculating three dimensional turbulent flows.
NASA Technical Reports Server (NTRS)
Byrdsong, T. A.; Brooks, C. W., Jr.
1983-01-01
Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).
Detecting Payload Attacks on Programmable Logic Controllers (PLCs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan
Programmable logic controllers (PLCs) play critical roles in industrial control systems (ICS). Providing hardware peripherals and firmware support for control programs (i.e., a PLC’s “payload”) written in languages such as ladder logic, PLCs directly receive sensor readings and control ICS physical processes. An attacker with access to PLC development software (e.g., by compromising an engineering workstation) can modify the payload program and cause severe physical damages to the ICS. To protect critical ICS infrastructure, we propose to model runtime behaviors of legitimate PLC payload program and use runtime behavior monitoring in PLC firmware to detect payload attacks. By monitoring themore » I/O access patterns, network access patterns, as well as payload program timing characteristics, our proposed firmware-level detection mechanism can detect abnormal runtime behaviors of malicious PLC payload. Using our proof-of-concept implementation, we evaluate the memory and execution time overhead of implementing our proposed method and find that it is feasible to incorporate our method into existing PLC firmware. In addition, our evaluation results show that a wide variety of payload attacks can be effectively detected by our proposed approach. The proposed firmware-level payload attack detection scheme complements existing bumpin- the-wire solutions (e.g., external temporal-logic-based model checkers) in that it can detect payload attacks that violate realtime requirements of ICS operations and does not require any additional apparatus.« less
Hi-alpha forebody design. Part 1: Methodology base and initial parametrics
NASA Technical Reports Server (NTRS)
Mason, William H.; Ravi, R.
1992-01-01
The use of Computational Fluid Dynamics (CFD) has been investigated for the analysis and design of aircraft forebodies at high angle of attack combined with sideslip. The results of the investigation show that CFD has reached a level of development where computational methods can be used for high angle of attack aerodynamic design. The classic wind tunnel experiment for the F-5A forebody directional stability has been reproduced computationally over an angle of attack range from 10 degrees to 45 degrees, and good agreement with experimental data was obtained. Computations have also been made at combined angle of attack and sideslip over a chine forebody, demonstrating the qualitative features of the flow, although not producing good agreement with measured experimental pressure distributions. The computations were performed using the code known as cfl3D for both the Euler equations and the Reynolds equations using a form of the Baldwin-Lomax turbulence model. To study the relation between forebody shape and directional stability characteristics, a generic parametric forebody model has been defined which provides a simple analytic math model with flexibility to capture the key shape characteristics of the entire range of forebodies of interest, including chines.
Identifying and tracking attacks on networks: C3I displays and related technologies
NASA Astrophysics Data System (ADS)
Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.
2003-09-01
Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.
Drenckhan, I; Glöckner-Rist, A; Rist, F; Richter, J; Gloster, A T; Fehm, L; Lang, T; Alpers, G W; Hamm, A O; Fydrich, T; Kircher, T; Arolt, V; Deckert, J; Ströhle, A; Wittchen, H-U; Gerlach, A L
2015-06-01
Previous studies of the dimensional structure of panic attack symptoms have mostly identified a respiratory and a vestibular/mixed somatic dimension. Evidence for additional dimensions such as a cardiac dimension and the allocation of several of the panic attack symptom criteria is less consistent. Clarifying the dimensional structure of the panic attack symptoms should help to specify the relationship of potential risk factors like anxiety sensitivity and fear of suffocation to the experience of panic attacks and the development of panic disorder. In an outpatient multicentre study 350 panic patients with agoraphobia rated the intensity of each of the ten DSM-IV bodily symptoms during a typical panic attack. The factor structure of these data was investigated with nonlinear confirmatory factor analysis (CFA). The identified bodily symptom dimensions were related to panic cognitions, anxiety sensitivity and fear of suffocation by means of nonlinear structural equation modelling (SEM). CFA indicated a respiratory, a vestibular/mixed somatic and a cardiac dimension of the bodily symptom criteria. These three factors were differentially associated with specific panic cognitions, different anxiety sensitivity facets and suffocation fear. Taking into account the dimensional structure of panic attack symptoms may help to increase the specificity of the associations between the experience of panic attack symptoms and various panic related constructs.
High angle of attack flying qualities criteria for longitudinal rate command systems
NASA Technical Reports Server (NTRS)
Wilson, David J.; Citurs, Kevin D.; Davidson, John B.
1994-01-01
This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.
Emergency response to an anthrax attack
Wein, Lawrence M.; Craft, David L.; Kaplan, Edward H.
2003-01-01
We developed a mathematical model to compare various emergency responses in the event of an airborne anthrax attack. The system consists of an atmospheric dispersion model, an age-dependent dose–response model, a disease progression model, and a set of spatially distributed two-stage queueing systems consisting of antibiotic distribution and hospital care. Our results underscore the need for the extremely aggressive and timely use of oral antibiotics by all asymptomatics in the exposure region, distributed either preattack or by nonprofessionals postattack, and the creation of surge capacity for supportive hospital care via expanded training of nonemergency care workers at the local level and the use of federal and military resources and nationwide medical volunteers. The use of prioritization (based on disease stage and/or age) at both queues, and the development and deployment of modestly rapid and sensitive biosensors, while helpful, produce only second-order improvements. PMID:12651951
Spatial, Temporal and Spatio-Temporal Patterns of Maritime Piracy
Marchione, Elio
2013-01-01
Objectives: To examine patterns in the timing and location of incidents of maritime piracy to see whether, like many urban crimes, attacks cluster in space and time. Methods: Data for all incidents of maritime piracy worldwide recorded by the National Geospatial Intelligence Agency are analyzed using time-series models and methods originally developed to detect disease contagion. Results: At the macro level, analyses suggest that incidents of pirate attacks are concentrated in five subregions of the earth’s oceans and that the time series for these different subregions differ. At the micro level, analyses suggest that for the last 16 years (or more), pirate attacks appear to cluster in space and time suggesting that patterns are not static but are also not random. Conclusions: Much like other types of crime, pirate attacks cluster in space, and following an attack at one location the risk of others at the same location or nearby is temporarily elevated. The identification of such regularities has implications for the understanding of maritime piracy and for predicting the future locations of attacks. PMID:25076796
Depletion-of-Battery Attack: Specificity, Modelling and Analysis.
Shakhov, Vladimir; Koo, Insoo
2018-06-06
The emerging Internet of Things (IoT) has great potential; however, the societal costs of the IoT can outweigh its benefits. To unlock IoT potential, there needs to be improvement in the security of IoT applications. There are several standardization initiatives for sensor networks, which eventually converge with the Internet of Things. As sensor-based applications are deployed, security emerges as an essential requirement. One of the critical issues of wireless sensor technology is limited sensor resources, including sensor batteries. This creates a vulnerability to battery-exhausting attacks. Rapid exhaustion of sensor battery power is not only explained by intrusions, but can also be due to random failure of embedded sensor protocols. Thus, most wireless sensor applications, without tools to defend against rash battery exhausting, would be unable to function during prescribed times. In this paper, we consider a special type of threat, in which the harm is malicious depletion of sensor battery power. In contrast to the traditional denial-of-service attack, quality of service under the considered attack is not necessarily degraded. Moreover, the quality of service can increase up to the moment of the sensor set crashes. We argue that this is a distinguishing type of attack. Hence, the application of a traditional defense mechanism against this threat is not always possible. Therefore, effective methods should be developed to counter the threat. We first discuss the feasibility of rash depletion of battery power. Next, we propose a model for evaluation of energy consumption when under attack. Finally, a technique to counter the attack is discussed.
Behavioral Modeling of Adversaries with Multiple Objectives in Counterterrorism.
Mazicioglu, Dogucan; Merrick, Jason R W
2018-05-01
Attacker/defender models have primarily assumed that each decisionmaker optimizes the cost of the damage inflicted and its economic repercussions from their own perspective. Two streams of recent research have sought to extend such models. One stream suggests that it is more realistic to consider attackers with multiple objectives, but this research has not included the adaption of the terrorist with multiple objectives to defender actions. The other stream builds off experimental studies that show that decisionmakers deviate from optimal rational behavior. In this article, we extend attacker/defender models to incorporate multiple objectives that a terrorist might consider in planning an attack. This includes the tradeoffs that a terrorist might consider and their adaption to defender actions. However, we must also consider experimental evidence of deviations from the rationality assumed in the commonly used expected utility model in determining such adaption. Thus, we model the attacker's behavior using multiattribute prospect theory to account for the attacker's multiple objectives and deviations from rationality. We evaluate our approach by considering an attacker with multiple objectives who wishes to smuggle radioactive material into the United States and a defender who has the option to implement a screening process to hinder the attacker. We discuss the problems with implementing such an approach, but argue that research in this area must continue to avoid misrepresenting terrorist behavior in determining optimal defensive actions. © 2017 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Colonna-Romano, John; Eslami, Mohammed
2017-05-01
The United States increasingly relies on cyber-physical systems to conduct military and commercial operations. Attacks on these systems have increased dramatically around the globe. The attackers constantly change their methods, making state-of-the-art commercial and military intrusion detection systems ineffective. In this paper, we present a model to identify functional behavior of network devices from netflow traces. Our model includes two innovations. First, we define novel features for a host IP using detection of application graph patterns in IP's host graph constructed from 5-min aggregated packet flows. Second, we present the first application, to the best of our knowledge, of Graph Semi-Supervised Learning (GSSL) to the space of IP behavior classification. Using a cyber-attack dataset collected from NetFlow packet traces, we show that GSSL trained with only 20% of the data achieves higher attack detection rates than Support Vector Machines (SVM) and Naïve Bayes (NB) classifiers trained with 80% of data points. We also show how to improve detection quality by filtering out web browsing data, and conclude with discussion of future research directions.
Flow visualization study of the HiMAT RPRV
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1980-01-01
Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.
Flight test experience with high-alpha control system techniques on the F-14 airplane
NASA Technical Reports Server (NTRS)
Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.
1981-01-01
Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.
Enabling analytical and Modeling Tools for Enhanced Disease Surveillance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawn K. Manley
2003-04-01
Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on andmore » applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating between distributed data and analytical tools. This work included construction of interfaces to various commercial database products and to one of the data analysis algorithms developed through this LDRD.« less
Network traffic intelligence using a low interaction honeypot
NASA Astrophysics Data System (ADS)
Nyamugudza, Tendai; Rajasekar, Venkatesh; Sen, Prasad; Nirmala, M.; Madhu Viswanatham, V.
2017-11-01
Advancements in networking technology have seen more and more devices becoming connected day by day. This has given organizations capacity to extend their networks beyond their boundaries to remote offices and remote employees. However as the network grows security becomes a major challenge since the attack surface also increases. There is need to guard the network against different types of attacks like intrusion and malware through using different tools at different networking levels. This paper describes how network intelligence can be acquired through implementing a low-interaction honeypot which detects and track network intrusion. Honeypot allows an organization to interact and gather information about an attack earlier before it compromises the network. This process is important because it allows the organization to learn about future attacks of the same nature and allows them to develop counter measures. The paper further shows how honeypot-honey net based model for interruption detection system (IDS) can be used to get the best valuable information about the attacker and prevent unexpected harm to the network.
Evaluation of risk from acts of terrorism :the adversary/defender model using belief and fuzzy sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darby, John L.
Risk from an act of terrorism is a combination of the likelihood of an attack, the likelihood of success of the attack, and the consequences of the attack. The considerable epistemic uncertainty in each of these three factors can be addressed using the belief/plausibility measure of uncertainty from the Dempster/Shafer theory of evidence. The adversary determines the likelihood of the attack. The success of the attack and the consequences of the attack are determined by the security system and mitigation measures put in place by the defender. This report documents a process for evaluating risk of terrorist acts using anmore » adversary/defender model with belief/plausibility as the measure of uncertainty. Also, the adversary model is a linguistic model that applies belief/plausibility to fuzzy sets used in an approximate reasoning rule base.« less
Heavy-Ion Microbeam Fault Injection into SRAM-Based FPGA Implementations of Cryptographic Circuits
NASA Astrophysics Data System (ADS)
Li, Huiyun; Du, Guanghua; Shao, Cuiping; Dai, Liang; Xu, Guoqing; Guo, Jinlong
2015-06-01
Transistors hit by heavy ions may conduct transiently, thereby introducing transient logic errors. Attackers can exploit these abnormal behaviors and extract sensitive information from the electronic devices. This paper demonstrates an ion irradiation fault injection attack experiment into a cryptographic field-programmable gate-array (FPGA) circuit. The experiment proved that the commercial FPGA chip is vulnerable to low-linear energy transfer carbon irradiation, and the attack can cause the leakage of secret key bits. A statistical model is established to estimate the possibility of an effective fault injection attack on cryptographic integrated circuits. The model incorporates the effects from temporal, spatial, and logical probability of an effective attack on the cryptographic circuits. The rate of successful attack calculated from the model conforms well to the experimental results. This quantitative success rate model can help evaluate security risk for designers as well as for the third-party assessment organizations.
NASA Technical Reports Server (NTRS)
Hashemi-Kia, Mostafa; Toossi, Mostafa
1990-01-01
A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.
Using Machine Learning in Adversarial Environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren Leon Davis
Intrusion/anomaly detection systems are among the first lines of cyber defense. Commonly, they either use signatures or machine learning (ML) to identify threats, but fail to account for sophisticated attackers trying to circumvent them. We propose to embed machine learning within a game theoretic framework that performs adversarial modeling, develops methods for optimizing operational response based on ML, and integrates the resulting optimization codebase into the existing ML infrastructure developed by the Hybrid LDRD. Our approach addresses three key shortcomings of ML in adversarial settings: 1) resulting classifiers are typically deterministic and, therefore, easy to reverse engineer; 2) ML approachesmore » only address the prediction problem, but do not prescribe how one should operationalize predictions, nor account for operational costs and constraints; and 3) ML approaches do not model attackers’ response and can be circumvented by sophisticated adversaries. The principal novelty of our approach is to construct an optimization framework that blends ML, operational considerations, and a model predicting attackers reaction, with the goal of computing optimal moving target defense. One important challenge is to construct a realistic model of an adversary that is tractable, yet realistic. We aim to advance the science of attacker modeling by considering game-theoretic methods, and by engaging experimental subjects with red teaming experience in trying to actively circumvent an intrusion detection system, and learning a predictive model of such circumvention activities. In addition, we will generate metrics to test that a particular model of an adversary is consistent with available data.« less
Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility
David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan
2000-01-01
Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...
A phenology model for Sparganothis fruitworm in Cranberries
USDA-ARS?s Scientific Manuscript database
Larvae of Sparganothis sulfureana Clemens, frequently attack cranberries, often resulting in economic damage to the crop. Because temperature dictates insect growth rate, development can be accurately estimated based on daily temperature measurements. To better predict S. sulfureana development acro...
Notes on a Continuous-Variable Quantum Key Distribution Scheme
NASA Astrophysics Data System (ADS)
Ichikawa, Tsubasa; Hirano, Takuya; Matsubara, Takuto; Ono, Motoharu; Namiki, Ryo
2017-09-01
We develop a physical model to describe the signal transmission for a continuous-variable quantum key distribution scheme and investigate its security against a couple of eavesdropping attacks assuming that the eavesdropper's power is partly restricted owing to today's technological limitations. We consider an eavesdropper performing quantum optical homodyne measurement on the signal obtained by a type of beamsplitting attack. We also consider the case in which the eavesdropper Eve is unable to access a quantum memory and she performs heterodyne measurement on her signal without performing a delayed measurement. Our formulation includes a model in which the receiver's loss and noise are unaccessible by the eavesdropper. This setup enables us to investigate the condition that Eve uses a practical fiber differently from the usual beamsplitting attack where she can deploy a lossless transmission channel. The secret key rates are calculated in both the direct and reverse reconciliation scenarios.
Factors governing risk of cougar attacks on humans
Mattson, David; Logan, Kenneth; Sweanor, Linda
2011-01-01
Since the 1980s wildlife managers in the United States and Canada have expressed increasing concern about the physical threat posed by cougars (Puma concolor) to humans. We developed a conceptual framework and analyzed 386 human–cougar encounters (29 fatal attacks, 171 instances of nonfatal contact, and 186 close-threatening encounters) to provide information relevant to public safety. We conceived of human injury and death as the outcome of 4 transitions affected by different suites of factors: (1) a human encountering a cougar: (2) given an encounter, odds that the cougar would be aggressive; (3) given aggression, odds that the cougar would attack; and (4) given an attack, odds that the human would die. We developed multivariable logistic regression models to explain variation in odds at transitions three and four using variables pertaining to characteristics of involved people and cougars. Young (≤ 2.5 years) or unhealthy (by weight, condition, or disease) cougars were more likely than any others to be involved in close (typically <5 m) encounters that threatened the involved person. Of cougars in close encounters, females were more likely than males to attack, and of attacking animals, adults were more likely than juveniles to kill the victim (32% versus 9% fatality, respectively). During close encounters, victims who used a weapon killed the involved cougar in 82% of cases. Other mitigating behaviors (e.g., yelling, backing away, throwing objects, increasing stature) also substantially lessened odds of attack. People who were moving quickly or erratically when an encounter happened (running, playing, skiing, snowshoeing, biking, ATV-riding) were more likely to be attacked and killed compared to people who were less active (25% versus 8% fatality). Children (≤ 10 years) were more likely than single adults to be attacked, but intervention by people of any age reduced odds of a child’s death by 4.6×. Overall, cougar attacks on people in Canada and the United States were rare (currently 4 to 6/year) compared to attacks by large felids and wolves (Canis lupus) in Africa and Asia (hundreds to thousands/year).
Randomness determines practical security of BB84 quantum key distribution.
Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2015-11-10
Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.
Randomness determines practical security of BB84 quantum key distribution
Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2015-01-01
Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system. PMID:26552359
Randomness determines practical security of BB84 quantum key distribution
NASA Astrophysics Data System (ADS)
Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Qian, Yong-Jun; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2015-11-01
Unconditional security of the BB84 quantum key distribution protocol has been proved by exploiting the fundamental laws of quantum mechanics, but the practical quantum key distribution system maybe hacked by considering the imperfect state preparation and measurement respectively. Until now, different attacking schemes have been proposed by utilizing imperfect devices, but the general security analysis model against all of the practical attacking schemes has not been proposed. Here, we demonstrate that the general practical attacking schemes can be divided into the Trojan horse attack, strong randomness attack and weak randomness attack respectively. We prove security of BB84 protocol under randomness attacking models, and these results can be applied to guarantee the security of the practical quantum key distribution system.
Adversarial risk analysis with incomplete information: a level-k approach.
Rothschild, Casey; McLay, Laura; Guikema, Seth
2012-07-01
This article proposes, develops, and illustrates the application of level-k game theory to adversarial risk analysis. Level-k reasoning, which assumes that players play strategically but have bounded rationality, is useful for operationalizing a Bayesian approach to adversarial risk analysis. It can be applied in a broad class of settings, including settings with asynchronous play and partial but incomplete revelation of early moves. Its computational and elicitation requirements are modest. We illustrate the approach with an application to a simple defend-attack model in which the defender's countermeasures are revealed with a probability less than one to the attacker before he decides on how or whether to attack. © 2011 Society for Risk Analysis.
A reference model for model-based design of critical infrastructure protection systems
NASA Astrophysics Data System (ADS)
Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon
2015-05-01
Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits over the traditional design methodology of repeating requirements analysis and system design.
A data fusion approach to indications and warnings of terrorist attacks
NASA Astrophysics Data System (ADS)
McDaniel, David; Schaefer, Gregory
2014-05-01
Indications and Warning (I&W) of terrorist attacks, particularly IED attacks, require detection of networks of agents and patterns of behavior. Social Network Analysis tries to detect a network; activity analysis tries to detect anomalous activities. This work builds on both to detect elements of an activity model of terrorist attack activity - the agents, resources, networks, and behaviors. The activity model is expressed as RDF triples statements where the tuple positions are elements or subsets of a formal ontology for activity models. The advantage of a model is that elements are interdependent and evidence for or against one will influence others so that there is a multiplier effect. The advantage of the formality is that detection could occur hierarchically, that is, at different levels of abstraction. The model matching is expressed as a likelihood ratio between input text and the model triples. The likelihood ratio is designed to be analogous to track correlation likelihood ratios common in JDL fusion level 1. This required development of a semantic distance metric for positive and null hypotheses as well as for complex objects. The metric uses the Web 1Terabype database of one to five gram frequencies for priors. This size requires the use of big data technologies so a Hadoop cluster is used in conjunction with OpenNLP natural language and Mahout clustering software. Distributed data fusion Map Reduce jobs distribute parts of the data fusion problem to the Hadoop nodes. For the purposes of this initial testing, open source models and text inputs of similar complexity to terrorist events were used as surrogates for the intended counter-terrorist application.
Towards an Iterated Game Model with Multiple Adversaries in Smart-World Systems.
He, Xiaofei; Yang, Xinyu; Yu, Wei; Lin, Jie; Yang, Qingyu
2018-02-24
Diverse and varied cyber-attacks challenge the operation of the smart-world system that is supported by Internet-of-Things (IoT) (smart cities, smart grid, smart transportation, etc.) and must be carefully and thoughtfully addressed before widespread adoption of the smart-world system can be fully realized. Although a number of research efforts have been devoted to defending against these threats, a majority of existing schemes focus on the development of a specific defensive strategy to deal with specific, often singular threats. In this paper, we address the issue of coalitional attacks, which can be launched by multiple adversaries cooperatively against the smart-world system such as smart cities. Particularly, we propose a game-theory based model to capture the interaction among multiple adversaries, and quantify the capacity of the defender based on the extended Iterated Public Goods Game (IPGG) model. In the formalized game model, in each round of the attack, a participant can either cooperate by participating in the coalitional attack, or defect by standing aside. In our work, we consider the generic defensive strategy that has a probability to detect the coalitional attack. When the coalitional attack is detected, all participating adversaries are penalized. The expected payoff of each participant is derived through the equalizer strategy that provides participants with competitive benefits. The multiple adversaries with the collusive strategy are also considered. Via a combination of theoretical analysis and experimentation, our results show that no matter which strategies the adversaries choose (random strategy, win-stay-lose-shift strategy, or even the adaptive equalizer strategy), our formalized game model is capable of enabling the defender to greatly reduce the maximum value of the expected average payoff to the adversaries via provisioning sufficient defensive resources, which is reflected by setting a proper penalty factor against the adversaries. In addition, we extend our game model and analyze the extortion strategy, which can enable one participant to obtain more payoff by extorting his/her opponents. The evaluation results show that the defender can combat this strategy by encouraging competition among the adversaries, and significantly suppress the total payoff of the adversaries via setting the proper penalty factor.
Towards an Iterated Game Model with Multiple Adversaries in Smart-World Systems †
Yang, Xinyu; Yu, Wei; Lin, Jie; Yang, Qingyu
2018-01-01
Diverse and varied cyber-attacks challenge the operation of the smart-world system that is supported by Internet-of-Things (IoT) (smart cities, smart grid, smart transportation, etc.) and must be carefully and thoughtfully addressed before widespread adoption of the smart-world system can be fully realized. Although a number of research efforts have been devoted to defending against these threats, a majority of existing schemes focus on the development of a specific defensive strategy to deal with specific, often singular threats. In this paper, we address the issue of coalitional attacks, which can be launched by multiple adversaries cooperatively against the smart-world system such as smart cities. Particularly, we propose a game-theory based model to capture the interaction among multiple adversaries, and quantify the capacity of the defender based on the extended Iterated Public Goods Game (IPGG) model. In the formalized game model, in each round of the attack, a participant can either cooperate by participating in the coalitional attack, or defect by standing aside. In our work, we consider the generic defensive strategy that has a probability to detect the coalitional attack. When the coalitional attack is detected, all participating adversaries are penalized. The expected payoff of each participant is derived through the equalizer strategy that provides participants with competitive benefits. The multiple adversaries with the collusive strategy are also considered. Via a combination of theoretical analysis and experimentation, our results show that no matter which strategies the adversaries choose (random strategy, win-stay-lose-shift strategy, or even the adaptive equalizer strategy), our formalized game model is capable of enabling the defender to greatly reduce the maximum value of the expected average payoff to the adversaries via provisioning sufficient defensive resources, which is reflected by setting a proper penalty factor against the adversaries. In addition, we extend our game model and analyze the extortion strategy, which can enable one participant to obtain more payoff by extorting his/her opponents. The evaluation results show that the defender can combat this strategy by encouraging competition among the adversaries, and significantly suppress the total payoff of the adversaries via setting the proper penalty factor. PMID:29495291
Yasuda, Makiko; Gan, Lin; Chen, Brenden; Kadirvel, Senkottuvelan; Yu, Chunli; Phillips, John D; New, Maria I; Liebow, Abigail; Fitzgerald, Kevin; Querbes, William; Desnick, Robert J
2014-05-27
The acute hepatic porphyrias are inherited disorders of heme biosynthesis characterized by life-threatening acute neurovisceral attacks. Factors that induce the expression of hepatic 5-aminolevulinic acid synthase 1 (ALAS1) result in the accumulation of the neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), which recent studies indicate are primarily responsible for the acute attacks. Current treatment of these attacks involves i.v. administration of hemin, but a faster-acting, more effective, and safer therapy is needed. Here, we describe preclinical studies of liver-directed small interfering RNAs (siRNAs) targeting Alas1 (Alas1-siRNAs) in a mouse model of acute intermittent porphyria, the most common acute hepatic porphyria. A single i.v. dose of Alas1-siRNA prevented the phenobarbital-induced biochemical acute attacks for approximately 2 wk. Injection of Alas1-siRNA during an induced acute attack significantly decreased plasma ALA and PBG levels within 8 h, more rapidly and effectively than a single hemin infusion. Alas1-siRNA was well tolerated and a therapeutic dose did not cause hepatic heme deficiency. These studies provide proof-of-concept for the clinical development of RNA interference therapy for the prevention and treatment of the acute attacks of the acute hepatic porphyrias.
Cooperating attackers in neural cryptography.
Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang
2004-06-01
A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.
Rabbit and Nonhuman Primate Models of Toxin-Targeting Human Anthrax Vaccines
Phipps, Andrew J.; Premanandan, Christopher; Barnewall, Roy E.; Lairmore, Michael D.
2004-01-01
The intentional use of Bacillus anthracis, the etiological agent of anthrax, as a bioterrorist weapon in late 2001 made our society acutely aware of the importance of developing, testing, and stockpiling adequate countermeasures against biological attacks. Biodefense vaccines are an important component of our arsenal to be used during a biological attack. However, most of the agents considered significant threats either have been eradicated or rarely infect humans alive today. As such, vaccine efficacy cannot be determined in human clinical trials but must be extrapolated from experimental animal models. This article reviews the efficacy and immunogenicity of human anthrax vaccines in well-defined animal models and the progress toward developing a rugged immunologic correlate of protection. The ongoing evaluation of human anthrax vaccines will be dependent on animal efficacy data in the absence of human efficacy data for licensure by the U.S. Food and Drug Administration. PMID:15590776
Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Steven M
2012-01-01
Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both ofmore » these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.« less
Violent extremist group ecologies under stress
Cebrian, Manuel; Torres, Manuel R.; Huerta, Ramon; Fowler, James H.
2013-01-01
Violent extremist groups are currently making intensive use of Internet fora for recruitment to terrorism. These fora are under constant scrutiny by security agencies, private vigilante groups, and hackers, who sometimes shut them down with cybernetic attacks. However, there is a lack of experimental and formal understanding of the recruitment dynamics of online extremist fora and the effect of strategies to control them. Here, we utilize data on ten extremist fora that we collected for four years to develop a data-driven mathematical model that is the first attempt to measure whether (and how) these external attacks induce extremist fora to self-regulate. The results suggest that an increase in the number of groups targeted for attack causes an exponential increase in the cost of enforcement and an exponential decrease in its effectiveness. Thus, a policy to occasionally attack large groups can be very efficient for limiting violent output from these fora. PMID:23536118
Violent extremist group ecologies under stress.
Cebrian, Manuel; Torres, Manuel R; Huerta, Ramon; Fowler, James H
2013-01-01
Violent extremist groups are currently making intensive use of Internet fora for recruitment to terrorism. These fora are under constant scrutiny by security agencies, private vigilante groups, and hackers, who sometimes shut them down with cybernetic attacks. However, there is a lack of experimental and formal understanding of the recruitment dynamics of online extremist fora and the effect of strategies to control them. Here, we utilize data on ten extremist fora that we collected for four years to develop a data-driven mathematical model that is the first attempt to measure whether (and how) these external attacks induce extremist fora to self-regulate. The results suggest that an increase in the number of groups targeted for attack causes an exponential increase in the cost of enforcement and an exponential decrease in its effectiveness. Thus, a policy to occasionally attack large groups can be very efficient for limiting violent output from these fora.
The potential economic burden of Zika in the continental United States.
Lee, Bruce Y; Alfaro-Murillo, Jorge A; Parpia, Alyssa S; Asti, Lindsey; Wedlock, Patrick T; Hotez, Peter J; Galvani, Alison P
2017-04-01
As the Zika virus epidemic continues to spread internationally, countries such as the United States must determine how much to invest in prevention, control, and response. Fundamental to these decisions is quantifying the potential economic burden of Zika under different scenarios. To inform such decision making, our team developed a computational model to forecast the potential economic burden of Zika across six states in the US (Alabama, Florida, Georgia, Louisiana, Mississippi, and Texas) which are at greatest risk of Zika emergence, under a wide range of attack rates, scenarios and circumstances. In order to accommodate a wide range of possibilities, different scenarios explored the effects of varying the attack rate from 0.01% to 10%. Across the six states, an attack rate of 0.01% is estimated to cost $183.4 million to society ($117.1 million in direct medical costs and $66.3 million in productivity losses), 0.025% would result in $198.6 million ($119.4 million and $79.2 million), 0.10% would result in $274.6 million ($130.8 million and $143.8 million) and 1% would result in $1.2 billion ($268.0 million and $919.2 million). Our model and study show how direct medical costs, Medicaid costs, productivity losses, and total costs to society may vary with different attack rates across the six states and the circumstances at which they may exceed certain thresholds (e.g., Zika prevention and control funding allocations that are being debated by the US government). A Zika attack rate of 0.3% across the six states at greatest risk of Zika infection, would result in total costs that exceed $0.5 billion, an attack rate of 1% would exceed $1 billion, and an attack rate of 2% would exceed $2 billion.
Construction of a Cyber Attack Model for Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varuttamaseni, Athi; Bari, Robert A.; Youngblood, Robert
The consideration of how one compromised digital equipment can impact neighboring equipment is critical to understanding the progression of cyber attacks. The degree of influence that one component may have on another depends on a variety of factors, including the sharing of resources such as network bandwidth or processing power, the level of trust between components, and the inclusion of segmentation devices such as firewalls. The interactions among components via mechanisms that are unique to the digital world are not usually considered in traditional PRA. This means potential sequences of events that may occur during an attack may be missedmore » if one were to only look at conventional accident sequences. This paper presents a method where, starting from the initial attack vector, the progression of a cyber attack can be modeled. The propagation of the attack is modeled by considering certain attributes of the digital components in the system. These attributes determine the potential vulnerability of a component to a class of attack and the capability gained by the attackers once they are in control of the equipment. The use of attributes allows similar components (components with the same set of attributes) to be modeled in the same way, thereby reducing the computing resources required for analysis of large systems.« less
Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.
Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li
2018-06-01
State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.
Using a Prediction Model to Manage Cyber Security Threats.
Jaganathan, Venkatesh; Cherurveettil, Priyesh; Muthu Sivashanmugam, Premapriya
2015-01-01
Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization.
Using a Prediction Model to Manage Cyber Security Threats
Muthu Sivashanmugam, Premapriya
2015-01-01
Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization. PMID:26065024
Impact modeling and prediction of attacks on cyber targets
NASA Astrophysics Data System (ADS)
Khalili, Aram; Michalk, Brian; Alford, Lee; Henney, Chris; Gilbert, Logan
2010-04-01
In most organizations, IT (information technology) infrastructure exists to support the organization's mission. The threat of cyber attacks poses risks to this mission. Current network security research focuses on the threat of cyber attacks to the organization's IT infrastructure; however, the risks to the overall mission are rarely analyzed or formalized. This connection of IT infrastructure to the organization's mission is often neglected or carried out ad-hoc. Our work bridges this gap and introduces analyses and formalisms to help organizations understand the mission risks they face from cyber attacks. Modeling an organization's mission vulnerability to cyber attacks requires a description of the IT infrastructure (network model), the organization mission (business model), and how the mission relies on IT resources (correlation model). With this information, proper analysis can show which cyber resources are of tactical importance in a cyber attack, i.e., controlling them enables a large range of cyber attacks. Such analysis also reveals which IT resources contribute most to the organization's mission, i.e., lack of control over them gravely affects the mission. These results can then be used to formulate IT security strategies and explore their trade-offs, which leads to better incident response. This paper presents our methodology for encoding IT infrastructure, organization mission and correlations, our analysis framework, as well as initial experimental results and conclusions.
A Virtual Environment for Resilient Infrastructure Modeling and Design
2015-09-01
Security CI Critical Infrastructure CID Center for Infrastructure Defense CSV Comma Separated Value DAD Defender-Attacker-Defender DHS Department...responses to disruptive events (e.g., cascading failure behavior) in a context- rich , controlled environment for exercises, education, and training...The general attacker-defender (AD) and defender-attacker-defender ( DAD ) models for CI are defined in Brown et al. (2006). These models help
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.
Strohm, S; Tyson, R C; Powell, J A
2013-10-01
Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.
Features of flow around the flying wing model at various attack and slip angle
NASA Astrophysics Data System (ADS)
Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.
2017-10-01
Experimental study of flow features around aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicleswas carried out. Hot-wire anemometry and flow visualization techniques were used in the investigation to get quantitative data and streamlines pictures ofthe flow near the model surface. Evolution of vortex structures depending on the attack and slip angle was demonstrated. The possibility of flow control and reduction of flow separation zones on the wing surface by means of ledges in the form of cones was also investigated. It was shown, that the laminar-turbulent transition scenario on the flying wing model is identical to the one on a straight wing and occurs through the development of a package of unstable oscillations in the boundary layer separation.
NASA Technical Reports Server (NTRS)
Stoll, F.; Koenig, D. G.
1983-01-01
Data obtained through very high angles of attack from a large-scale, subsonic wind-tunnel test of a close-coupled canard-delta-wing fighter model are analyzed. The canard delays wing leading-edge vortex breakdown, even for angles of attack at which the canard is completely stalled. A vortex-lattice method was applied which gave good predictions of lift and pitching moment up to an angle of attack of about 20 deg, where vortex-breakdown effects on performance become significant. Pitch-control inputs generally retain full effectiveness up to the angle of attack of maximum lift, beyond which, effectiveness drops off rapidly. A high-angle-of-attack prediction method gives good estimates of lift and drag for the completely stalled aircraft. Roll asymmetry observed at zero sideslip is apparently caused by an asymmetry in the model support structure.
Command Disaggregation Attack and Mitigation in Industrial Internet of Things
Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan
2017-01-01
A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework. PMID:29065461
Command Disaggregation Attack and Mitigation in Industrial Internet of Things.
Xun, Peng; Zhu, Pei-Dong; Hu, Yi-Fan; Cui, Peng-Shuai; Zhang, Yan
2017-10-21
A cyber-physical attack in the industrial Internet of Things can cause severe damage to physical system. In this paper, we focus on the command disaggregation attack, wherein attackers modify disaggregated commands by intruding command aggregators like programmable logic controllers, and then maliciously manipulate the physical process. It is necessary to investigate these attacks, analyze their impact on the physical process, and seek effective detection mechanisms. We depict two different types of command disaggregation attack modes: (1) the command sequence is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe three attack models to implement these modes with going undetected by existing detection methods. A novel and effective framework is provided to detect command disaggregation attacks. The framework utilizes the correlations among two-tier command sequences, including commands from the output of central controller and sub-commands from the input of actuators, to detect attacks before disruptions occur. We have designed components of the framework and explain how to mine and use these correlations to detect attacks. We present two case studies to validate different levels of impact from various attack models and the effectiveness of the detection framework. Finally, we discuss how to enhance the detection framework.
Cannabinoids inhibit neurodegeneration in models of multiple sclerosis.
Pryce, Gareth; Ahmed, Zubair; Hankey, Deborah J R; Jackson, Samuel J; Croxford, J Ludovic; Pocock, Jennifer M; Ledent, Catherine; Petzold, Axel; Thompson, Alan J; Giovannoni, Gavin; Cuzner, M Louise; Baker, David
2003-10-01
Multiple sclerosis is increasingly being recognized as a neurodegenerative disease that is triggered by inflammatory attack of the CNS. As yet there is no satisfactory treatment. Using experimental allergic encephalo myelitis (EAE), an animal model of multiple sclerosis, we demonstrate that the cannabinoid system is neuroprotective during EAE. Mice deficient in the cannabinoid receptor CB1 tolerate inflammatory and excitotoxic insults poorly and develop substantial neurodegeneration following immune attack in EAE. In addition, exogenous CB1 agonists can provide significant neuroprotection from the consequences of inflammatory CNS disease in an experimental allergic uveitis model. Therefore, in addition to symptom management, cannabis may also slow the neurodegenerative processes that ultimately lead to chronic disability in multiple sclerosis and probably other diseases.
NASA Technical Reports Server (NTRS)
Peterson, John B., Jr.
1988-01-01
Two programs have been developed to calculate the pitch and roll angles of a wind-tunnel sting drive system that will position a model at the desired angle of attack and and angle of sideslip in the wind tunnel. These programs account for the effects of sting offset angles, sting bending angles and wind-tunnel stream flow angles. In addition, the second program incorporates inputs from on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented in the report and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.
Possibility of spoof attack against robustness of multibiometric authentication systems
NASA Astrophysics Data System (ADS)
Hariri, Mahdi; Shokouhi, Shahriar Baradaran
2011-07-01
Multibiometric systems have been recently developed in order to overcome some weaknesses of single biometric authentication systems, but security of these systems against spoofing has not received enough attention. In this paper, we propose a novel practical method for simulation of possibilities of spoof attacks against a biometric authentication system. Using this method, we model matching scores from standard to completely spoofed genuine samples. Sum, product, and Bayes fusion rules are applied for score level combination. The security of multimodal authentication systems are examined and compared with the single systems against various spoof possibilities. However, vulnerability of fused systems is considerably increased against spoofing, but their robustness is generally higher than single matcher systems. In this paper we show that robustness of a combined system is not always higher than a single system against spoof attack. We propose empirical methods for upgrading the security of multibiometric systems, which contain how to organize and select biometric traits and matchers against various possibilities of spoof attack. These methods provide considerable robustness and present an appropriate reason for using combined systems against spoof attacks.
A Cyber-Attack Detection Model Based on Multivariate Analyses
NASA Astrophysics Data System (ADS)
Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi
In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.
A Learning-Based Approach to Reactive Security
NASA Astrophysics Data System (ADS)
Barth, Adam; Rubinstein, Benjamin I. P.; Sundararajan, Mukund; Mitchell, John C.; Song, Dawn; Bartlett, Peter L.
Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender's strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker's incentives and knowledge.
Low Speed Analysis of Mission Adaptive Flaps on a High Speed Civil Transport Configuration
NASA Technical Reports Server (NTRS)
Lessard, Victor R.
1999-01-01
Thin-layer Navier-Stokes analyses were done on a high speed civil transport configuration with mission adaptive leading-edge flaps. The flow conditions simulated were Mach = 0.22 and Reynolds number of 4.27 million for angles-of-attack ranging from 0 to 18 degrees. Two turbulence closure models were used. Analyses were done exclusively with the Baldwin-Lomax turbulence model at low angle-of-attack conditions. At high angles-of-attack where considerable flow separation and vortices occurred the Spalart-Allmaras turbulence model was also considered. The effects of flow transition were studied. Predicted aerodynamic forces, moment, and pressure are compared to experimental data obtained in the 14- by 22-Foot Subsonic Tunnel at NASA Langley. The forces and moments correlated well with experimental data in terms of trends. Drag and pitching moment were consistently underpredicted. Predicted surface pressures compared well with experiment at low angles-of-attack. Above 10 angle-of-attack the pressure comparisons were not as favorable. The two turbulent models affected the pressures on the flap considerably and neither produced correct results at the high angles-of-attack.
Investigation of a supersonic cruise fighter model flow field
NASA Technical Reports Server (NTRS)
Reubush, D. E.; Bare, E. A.
1985-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.
Sustaining U.S. Nuclear Submarine Design Capabilities
2007-01-01
lost learning because there is an inherent novelty to each succeeding design effort, but on the other hand, higher 2 Note there is a unique “do...Nautilus 1 1954 Attack Seawolf 1 1957 Attack Skate 4 1958–1959 Attack Skipjack 6 1959–1961 Attack Triton 1 1959 Attack George Washington 5 1960–1962...development, electric motors and controls development, or equipment acoustic analysis (listed to the right of the pyramid). All of these skills have some
NASA Technical Reports Server (NTRS)
Letko, William
1949-01-01
An investigation has been made in the Langley stability tunnel to determine the low-speed static stability and control characteristics of a model of the Bell MX-776. The results show the model to be longitudinally unstable in the angle-of-attack range around zero angle of attack and to become stable at moderate angles of attack. The results of the present investigation agree reasonably well with results obtained in other facilities at low speed. The present pitching-moment results at low Mach numbers also agree reasonably well with unpublished results of tests of the model at supersonic Mach numbers (up to Mach number 1.86). Unpublished results at moderate and high subsonic speeds, however, indicate considerably greater instability at low angles of attack than is indicated by low-speed results. The results of the present tests also showed that the pitching-moment coefficients for angles of attack up to 12deg remained fairly constant with sideslip angle up to 12deg. The elevators tested produced relatively large pitching moments at zero angle of attack but, as the angle of attack was increased, the elevator effectiveness decreased. The rate of decrease of elevator effectiveness with angle of attack was less for 8deg than for 20deg elevator deflection. Therefore although 8deg deflection caused an appreciable change in longitudinal trim angle and trim lift coefficient a deflection of 20deg caused only a small additional increase in trim angle and trim lift coefficient.
NASA Technical Reports Server (NTRS)
Moul, T. M.
1979-01-01
A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.
Modeling and Managing Risk in Billing Infrastructures
NASA Astrophysics Data System (ADS)
Baiardi, Fabrizio; Telmon, Claudio; Sgandurra, Daniele
This paper discusses risk modeling and risk management in information and communications technology (ICT) systems for which the attack impact distribution is heavy tailed (e.g., power law distribution) and the average risk is unbounded. Systems with these properties include billing infrastructures used to charge customers for services they access. Attacks against billing infrastructures can be classified as peripheral attacks and backbone attacks. The goal of a peripheral attack is to tamper with user bills; a backbone attack seeks to seize control of the billing infrastructure. The probability distribution of the overall impact of an attack on a billing infrastructure also has a heavy-tailed curve. This implies that the probability of a massive impact cannot be ignored and that the average impact may be unbounded - thus, even the most expensive countermeasures would be cost effective. Consequently, the only strategy for managing risk is to increase the resilience of the infrastructure by employing redundant components.
NASA Technical Reports Server (NTRS)
Peterson, John B., Jr.
1991-01-01
Two programs were developed to calculate the pitch and roll position of the conventional sting drive and the pitch of a high angle articulated sting to position a wind tunnel model at the desired angle of attack and sideslip and position the model as near as possible to the centerline of the tunnel. These programs account for the effects of sting offset angles, sting bending angles, and wind-tunnel stream flow angles. In addition, the second program incorporates inputs form on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.
New rotation-balance apparatus for measuring airplane spin aerodynamics in the wind tunnel
NASA Technical Reports Server (NTRS)
Malcolm, G. N.
1978-01-01
An advanced rotation-balance apparatus has been developed for the Ames 12-ft pressure tunnel to study the effects of spin rate, angles of attack and sideslip, and, particularly, Reynolds number on the aerodynamics of fighter and general aviation aircraft in a steady spin. Angles of attack to 100 deg and angles of sideslip to 30 deg are possible with spin rates to 42 rad/sec (400 rpm) and Reynolds numbers to 30 million/m on fighter models with wing spans that are typically 0.7 m. A complete description of the new rotation-balance apparatus, the sting/balance/model assembly, and the operational capabilities is given.
Optimal response to attacks on the open science grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altunay, M.; Leyffer, S.; Linderoth, J. T.
2011-01-01
Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased openness may allow malicious attackers to spread more readily around the grid. We consider how to optimally respond to attacks in open grid environments. To show how and why attacks spread more readily around the grid, we first discuss how collaborations manifest themselves in themore » grids and form the collaboration network graph, and how this collaboration network graph affects the security threat levels of grid participants. We present two mixed-integer program (MIP) models to find the optimal response to attacks in open grid environments, and also calculate the threat level associated with each grid participant. Given an attack scenario, our optimal response model aims to minimize the threat levels at unaffected participants while maximizing the uninterrupted scientific production (continuing collaborations). By adopting some of the collaboration rules (e.g., suspending a collaboration or shutting down a site), the model finds optimal response to subvert an attack scenario.« less
Xia, Futing; Zhu, Hua
2011-09-01
The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP. Copyright © 2011 Wiley Periodicals, Inc.
SECURITY MODELING FOR MARITIME PORT DEFENSE RESOURCE ALLOCATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.; Dunn, D.
2010-09-07
Redeployment of existing law enforcement resources and optimal use of geographic terrain are examined for countering the threat of a maritime based small-vessel radiological or nuclear attack. The evaluation was based on modeling conducted by the Savannah River National Laboratory that involved the development of options for defensive resource allocation that can reduce the risk of a maritime based radiological or nuclear threat. A diverse range of potential attack scenarios has been assessed. As a result of identifying vulnerable pathways, effective countermeasures can be deployed using current resources. The modeling involved the use of the Automated Vulnerability Evaluation for Risksmore » of Terrorism (AVERT{reg_sign}) software to conduct computer based simulation modeling. The models provided estimates for the probability of encountering an adversary based on allocated resources including response boats, patrol boats and helicopters over various environmental conditions including day, night, rough seas and various traffic flow rates.« less
A foundation for initial attack simulation: the Fried and Fried fire containment model
Jeremy S. Fried; Burton D. Fried
2010-01-01
The Fried and Fried containment algorithm, which models the effect of suppression efforts on fire growth, allows simulation of any mathematically representable fire shape, provides for "head" and "tail" attack tactics as well as parallel attack (building fireline parallel to but at some offset distance from the free-burning fire perimeter, alone and...
Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks
NASA Astrophysics Data System (ADS)
Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai
2017-09-01
Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.
Fukuoka, Yoshimi; Lisha, Nadra E; Vittinghoff, Eric
2017-09-01
The aim of the study was to compare knowledge and awareness of heart attacks/heart disease and perceived risk for future heart attack in Asian/Pacific Islander women, compared to other racial and ethnic groups. In this cross-sectional study, 318 women enrolled in a mobile phone-based physical activity education trial were analyzed. Heart attack knowledge, self-efficacy for recognizing and responding to heart attack symptoms, and perceived risk for a future heart attack were measured. Analyses were conducted using logistic, proportional odds, and linear regression models, depending on the outcome and adjusting for age. Pairwise differences between Asian/Pacific Islanders and the other four groups were assessed using a Bonferroni correction (p < 0.0125). Asian/Pacific Islander women had significantly lower total scores for knowledge of heart attack and self-efficacy for heart attack recognition and care seeking behavior compared to the Caucasian women (p = 0.001 and p = 0.002, respectively). However, perceived risk did not differ among the groups. Forty-six percent of the Asian American women, compared to 25% of Caucasian women, falsely believed "breast cancer is the number one cause of death for women (p = 0.002)." In addition, Asian/Pacific Islander women were less likely to report "arm pain, numbness, tingling, or radiating" as one of the heart attack symptoms compared to the Caucasian and the multiracial group (34%, 63% [p < 0.001], and 66% [p = 0.004], respectively). These findings highlight the urgent need to develop effective, tailored campaigns to close the knowledge gap between Asian/Pacific Islander women and Caucasian women.
1981-09-01
and constrain the output of major energy- consuming sectors. Government stockpiles are most effectively used in a " pump -priming" role. They have to...11 - stockpile for " pump priming" are fuels and basic metals such as iron, steel, copper, and aluminum. The esoteric metals are of secondary...are released, the more impact they have in aiding recovery. Particularly if resource imports are interrupted, post-attack " pump priming" is the best
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaljevic, Miodrag J.
2007-05-15
It is shown that the security, against known-plaintext attacks, of the Yuen 2000 (Y00) quantum-encryption protocol can be considered via the wire-tap channel model assuming that the heterodyne measurement yields the sample for security evaluation. Employing the results reported on the wire-tap channel, a generic framework is proposed for developing secure Y00 instantiations. The proposed framework employs a dedicated encoding which together with inherent quantum noise at the attacker's side provides Y00 security.
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
Sabzi Khoshnami, Mohammad; Mohammadi, Elham; Addelyan Rasi, Hamideh; Khankeh, Hamid Reza; Arshi, Maliheh
2017-05-01
Acid attack, a worldwide phenomenon, has been increasing in recent years. In addition to severe injuries to the face and body, such violence leads to psychological and social problems that affect the survivors' quality of life. The present study provides a more in-depth understanding of this phenomenon and explores the nature and dimensions of acid attacks based on survivors' experiences. A grounded theory study using semi-structured, recorded interviews and applying purposeful theoretical sampling was conducted with 12 acid attack survivors in Iran. Data were analysed using constant comparison in open, axial and selective coding stages. A conceptual model was developed to explain the relationships among the main categories extracted through the grounded theory study. Physical and psychological wounds emerged as a core category. Traditional context and extreme beauty value in society acted as the context of the physical and psychological wounds experienced. Living with a drug abuser with behavioural disorders and lack of problem-solving skills in interpersonal conflict were found to be causal conditions. Action strategies to deal with this experience were found to be composed of individual, interpersonal and structural levels. Education, percentage and place of burning acted as intervening conditions that influenced survivors' strategies. Finally, adverse consequences of social deprivation and feeling helpless and hindered were found to have an important impact. Acid attack lead to physical and psychological wounds in survivors. This is a multi-dimensional phenomenon involving illness, disability, and victimization, and requires a wide range of strategies at different levels. The conceptual model derived through this study can serve as a good basis for intervention programs. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
Extracting Association Patterns in Network Communications
Portela, Javier; Villalba, Luis Javier García; Trujillo, Alejandra Guadalupe Silva; Orozco, Ana Lucila Sandoval; Kim, Tai-hoon
2015-01-01
In network communications, mixes provide protection against observers hiding the appearance of messages, patterns, length and links between senders and receivers. Statistical disclosure attacks aim to reveal the identity of senders and receivers in a communication network setting when it is protected by standard techniques based on mixes. This work aims to develop a global statistical disclosure attack to detect relationships between users. The only information used by the attacker is the number of messages sent and received by each user for each round, the batch of messages grouped by the anonymity system. A new modeling framework based on contingency tables is used. The assumptions are more flexible than those used in the literature, allowing to apply the method to multiple situations automatically, such as email data or social networks data. A classification scheme based on combinatoric solutions of the space of rounds retrieved is developed. Solutions about relationships between users are provided for all pairs of users simultaneously, since the dependence of the data retrieved needs to be addressed in a global sense. PMID:25679311
Extracting association patterns in network communications.
Portela, Javier; Villalba, Luis Javier García; Trujillo, Alejandra Guadalupe Silva; Orozco, Ana Lucila Sandoval; Kim, Tai-hoon
2015-02-11
In network communications, mixes provide protection against observers hiding the appearance of messages, patterns, length and links between senders and receivers. Statistical disclosure attacks aim to reveal the identity of senders and receivers in a communication network setting when it is protected by standard techniques based on mixes. This work aims to develop a global statistical disclosure attack to detect relationships between users. The only information used by the attacker is the number of messages sent and received by each user for each round, the batch of messages grouped by the anonymity system. A new modeling framework based on contingency tables is used. The assumptions are more flexible than those used in the literature, allowing to apply the method to multiple situations automatically, such as email data or social networks data. A classification scheme based on combinatoric solutions of the space of rounds retrieved is developed. Solutions about relationships between users are provided for all pairs of users simultaneously, since the dependence of the data retrieved needs to be addressed in a global sense.
Sequential defense against random and intentional attacks in complex networks.
Chen, Pin-Yu; Cheng, Shin-Ming
2015-02-01
Network robustness against attacks is one of the most fundamental researches in network science as it is closely associated with the reliability and functionality of various networking paradigms. However, despite the study on intrinsic topological vulnerabilities to node removals, little is known on the network robustness when network defense mechanisms are implemented, especially for networked engineering systems equipped with detection capabilities. In this paper, a sequential defense mechanism is first proposed in complex networks for attack inference and vulnerability assessment, where the data fusion center sequentially infers the presence of an attack based on the binary attack status reported from the nodes in the network. The network robustness is evaluated in terms of the ability to identify the attack prior to network disruption under two major attack schemes, i.e., random and intentional attacks. We provide a parametric plug-in model for performance evaluation on the proposed mechanism and validate its effectiveness and reliability via canonical complex network models and real-world large-scale network topology. The results show that the sequential defense mechanism greatly improves the network robustness and mitigates the possibility of network disruption by acquiring limited attack status information from a small subset of nodes in the network.
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Gilbert, W. P.
1983-01-01
An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.
NASA Technical Reports Server (NTRS)
Wittmer, Kenneth S.; Devenport, William J.
1996-01-01
The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.
Mapping and detecting bark beetle-caused tree mortality in the western United States
NASA Astrophysics Data System (ADS)
Meddens, Arjan J. H.
Recently, insect outbreaks across North America have dramatically increased and the forest area affected by bark beetles is similar to that affected by fire. Remote sensing offers the potential to detect insect outbreaks with high accuracy. Chapter one involved detection of insect-caused tree mortality on the tree level for a 90km2 area in northcentral Colorado. Classes of interest included green trees, multiple stages of post-insect attack tree mortality including dead trees with red needles ("red-attack") and dead trees without needles ("gray-attack"), and non-forest. The results illustrated that classification of an image with a spatial resolution similar to the area of a tree crown outperformed that from finer and coarser resolution imagery for mapping tree mortality and non-forest classes. I also demonstrated that multispectral imagery could be used to separate multiple postoutbreak attack stages (i.e., red-attack and gray-attack) from other classes in the image. In Chapter 2, I compared and improved methods for detecting bark beetle-caused tree mortality using medium-resolution satellite data. I found that overall classification accuracy was similar between single-date and multi-date classification methods. I developed regression models to predict percent red attack within a 30-m grid cell and these models explained >75% of the variance using three Landsat spectral explanatory variables. Results of the final product showed that approximately 24% of the forest within the Landsat scene was comprised of tree mortality caused by bark beetles. In Chapter 3, I developed a gridded data set with 1-km2 resolution using aerial survey data and improved estimates of tree mortality across the western US and British Columbia. In the US, I also produced an upper estimate by forcing the mortality area to match that from high-resolution imagery in Idaho, Colorado, and New Mexico. Cumulative mortality area from all bark beetles was 5.46 Mha in British Columbia in 2001-2010 and 0.47-5.37 Mha (lower and upper estimate) in the western conterminous US during 1997-2010. Improved methods for detection and mapping of insect outbreak areas will lead to improved assessments of the effects of these forest disturbances on the economy, carbon cycle (and feedback to climate change), fuel loads, hydrology and forest ecology.
Cyber situation awareness: modeling detection of cyber attacks with instance-based learning theory.
Dutt, Varun; Ahn, Young-Suk; Gonzalez, Cleotilde
2013-06-01
To determine the effects of an adversary's behavior on the defender's accurate and timely detection of network threats. Cyber attacks cause major work disruption. It is important to understand how a defender's behavior (experience and tolerance to threats), as well as adversarial behavior (attack strategy), might impact the detection of threats. In this article, we use cognitive modeling to make predictions regarding these factors. Different model types representing a defender, based on Instance-Based Learning Theory (IBLT), faced different adversarial behaviors. A defender's model was defined by experience of threats: threat-prone (90% threats and 10% nonthreats) and nonthreat-prone (10% threats and 90% nonthreats); and different tolerance levels to threats: risk-averse (model declares a cyber attack after perceiving one threat out of eight total) and risk-seeking (model declares a cyber attack after perceiving seven threats out of eight total). Adversarial behavior is simulated by considering different attack strategies: patient (threats occur late) and impatient (threats occur early). For an impatient strategy, risk-averse models with threat-prone experiences show improved detection compared with risk-seeking models with nonthreat-prone experiences; however, the same is not true for a patient strategy. Based upon model predictions, a defender's prior threat experiences and his or her tolerance to threats are likely to predict detection accuracy; but considering the nature of adversarial behavior is also important. Decision-support tools that consider the role of a defender's experience and tolerance to threats along with the nature of adversarial behavior are likely to improve a defender's overall threat detection.
Brown, K M; Middaugh, S J; Haythornthwaite, J A; Bielory, L
2001-04-01
It was expected that stress and anxiety would be related to Raynaud's phenomenon (RP) attack characteristics when mild outdoor temperatures produced partial or no digital vasoconstriction. Hypotheses were that in warmer temperature categories, compared to those below 40 degrees F, higher stress or anxiety would be associated with more frequent, severe, and painful attacks. The Raynaud's Treatment Study recruited 313 participants with primary RP. Outcomes were attack rate, severity, and pain. Predictors were average daily outdoor temperature, stress, anxiety, age, gender, and a stress-by-temperature or an anxiety-by-temperature interaction. Outcomes were tested separately in multiple linear regression models. Stress and anxiety were tested in separate models. Stress was not a significant predictor of RP attack characteristics. Higher anxiety was related to more frequent attacks above 60 degrees F. It was also related to greater attack severity at all temperatures, and to greater pain above 60 degrees F and between 40 degrees and 49.9 degrees F.
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.; Shafer, M. F.
1976-01-01
In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.
Modeling Teaching with a Computer-Based Concordancer in a TESL Preservice Teacher Education Program.
ERIC Educational Resources Information Center
Gan, Siowck-Lee; And Others
1996-01-01
This study modeled teaching with a computer-based concordancer in a Teaching English-as-a-Second-Language program. Preservice teachers were randomly assigned to work with computer concordancing software or vocabulary exercises to develop word attack skills. Pretesting and posttesting indicated that computer concordancing was more effective in…
A review of the latest concepts in molecular plant pathology and applications to potato breeding
USDA-ARS?s Scientific Manuscript database
Co-evolution between pathogens and plants has led to the development of a range of constitutive and inducible resistance mechanisms that help plants survive pathogen attack. Different models have been proposed to describe the plant immune system. The most popular current model indicates that plants ...
1977-06-01
defense missions in locations between the FEBA and the attackers’ targets; b) AAA can attack only aircraft attacking the guns them- selves or the targets...the guns are defending; c) SAM weapon systems can attack not only aircraft attack- ing them and the targets they defend but also, although possibly...Corporation), P.E. Louer (Department of the Army) and B.R. McEnany (Joint Chiefs of Staff/Studies, Analysis and Gaming Agency) for their help- ful
Norton, Peter J; Zvolensky, Michael J; Bonn-Miller, Marcel O; Cox, Brian J; Norton, G Ron
2008-10-01
Since its development in the mid-1980s, the Panic Attack Questionnaire (PAQ) has been one of the more, if not the most, commonly used self-report tools for assessing panic attacks. The usage of the instrument, however, has come amid potential concerns that instructions and descriptions may lead to an over-estimate of the prevalence of panic attacks. Furthermore, the instrument has not been revised since 1992, despite changes in DSM-IV criteria and more recent developments in the understanding of panic attacks. As a result, this paper describes a revision of the PAQ to improve the instruction and descriptive set, and to fully assess features of panic derived from recent conceptualizations. Students meeting DSM-IV panic attack criteria and those endorsing panic attacks, but not meeting criteria, showed few differences with the exception that those not meeting DSM-IV criteria typically reported a longer onset-to-peak intensity time than did Panickers. Results were cross-validated and extended using an independent Community Sample. A full descriptive phenomenology of panic attacks is described, and future directions for studying panic attacks using the PAQ are presented.
2017-06-01
maintenance times from the fleet are randomly resampled when running the model to enhance model realism. The use of a simulation model to represent the...helicopter regiment. 2. Attack Helicopter UH TIGER The EC665, or Airbus Helicopter TIGER, (Figure 3) is a four- bladed , twin- engine multi-role attack...migrated into the automated management system SAP Standard Product Family (SASPF), and the usage clock starts to run with the amount of the current
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... the stator and the rotor parts of the AoA [angle of attack] vane position resolvers. This oil residue... extent, it could lead to a late activation of the angle of attack protection, which in combination with light at high angle of attack would constitute an unsafe condition. The proposed AD would require...
Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.
2004-01-01
Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a problem. However, the proposed methodology can still be used with careful experiment design and carefully selected values of angle of attack, sideslip, amplitude, and frequency of the oscillatory data.
NASA Astrophysics Data System (ADS)
Liu, Peng
High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one-sided hydrogen exposure assembly; hydrogen attack mechanism and hydrogen attack limit modeling.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen R.; Moes, Timothy R.
1991-01-01
The accuracy of a prototype nonintrusive airdata system derived for high-angle-of-attack measurements was demonstrated for quasi-steady maneuvers as great as 55 degrees during phase one of the F-18 high alpha research vehicle flight test program. This system consists of a matrix of nine pressure ports arranged in annular rings on the aircraft nose, and estimates the complete airdata set utilizing flow modeling and nonlinear regression. Particular attention is paid to the effects of acoustical distortions within the individual pressure sensors of the HI-FADS pressure matrix. A dynamic model to quantify these effects which describes acoustical distortion is developed and solved in closed form for frequency response.
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
NASA Technical Reports Server (NTRS)
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
NASA Astrophysics Data System (ADS)
Zheng, Guiqiu; He, Lingfeng; Carpenter, David; Sridharan, Kumar
2016-12-01
The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15-180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo2C, Cr7C3 and Al4C3 particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNix) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberlein, L.T.; Dias, G.V.; Levitt, K.N.
1989-11-01
The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, ourmore » work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.« less
Logistics modelling: improving resource management and public information strategies in Florida.
Walsh, Daniel M; Van Groningen, Chuck; Craig, Brian
2011-10-01
One of the most time-sensitive and logistically-challenging emergency response operations today is to provide mass prophylaxis to every man, woman and child in a community within 48 hours of a bioterrorism attack. To meet this challenge, federal, state and local public health departments in the USA have joined forces to develop, test and execute large-scale bioterrorism response plans. This preparedness and response effort is funded through the US Centers for Disease Control and Prevention's Cities Readiness Initiative, a programme dedicated to providing oral antibiotics to an entire population within 48 hours of a weaponised inhalation anthrax attack. This paper will demonstrate how the State of Florida used a logistics modelling tool to improve its CRI mass prophylaxis plans. Special focus will be on how logistics modelling strengthened Florida's resource management policies and validated its public information strategies.
Machine Learning Methods for Attack Detection in the Smart Grid.
Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent
2016-08-01
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
Split-second escape decisions in blue tits (Parus caeruleus)
NASA Astrophysics Data System (ADS)
Lind, Johan; Kaby, Ulrika; Jakobsson, Sven
2002-07-01
Bird mortality is heavily affected by birds of prey. Under attack, take-off is crucial for survival and even minor mistakes in initial escape response can have devastating consequences. Birds may respond differently depending on the character of the predator's attack and these split-second decisions were studied using a model merlin (Falco columbarius) that attacked feeding blue tits (Parus caeruleus) from two different attack angles in two different speeds. When attacked from a low attack angle they took off more steeply than when attacked from a high angle. This is the first study to show that escape behaviour also depends on predator attack speed. The blue tits responded to a high-speed attack by dodging sideways more often than when attacked at a low speed. Escape speed was not significantly affected by the different treatments. Although they have only a split-second before escaping an attack, blue tits do adjust their escape strategy to the prevailing attack conditions.
Detecting Pulsing Denial-of-Service Attacks with Nondeterministic Attack Intervals
NASA Astrophysics Data System (ADS)
Luo, Xiapu; Chan, Edmond W. W.; Chang, Rocky K. C.
2009-12-01
This paper addresses the important problem of detecting pulsing denial of service (PDoS) attacks which send a sequence of attack pulses to reduce TCP throughput. Unlike previous works which focused on a restricted form of attacks, we consider a very broad class of attacks. In particular, our attack model admits any attack interval between two adjacent pulses, whether deterministic or not. It also includes the traditional flooding-based attacks as a limiting case (i.e., zero attack interval). Our main contribution is Vanguard, a new anomaly-based detection scheme for this class of PDoS attacks. The Vanguard detection is based on three traffic anomalies induced by the attacks, and it detects them using a CUSUM algorithm. We have prototyped Vanguard and evaluated it on a testbed. The experiment results show that Vanguard is more effective than the previous methods that are based on other traffic anomalies (after a transformation using wavelet transform, Fourier transform, and autocorrelation) and detection algorithms (e.g., dynamic time warping).
Decision Aids for Airborne Intercept Operations in Advanced Aircrafts
NASA Technical Reports Server (NTRS)
Madni, A.; Freedy, A.
1981-01-01
A tactical decision aid (TDA) for the F-14 aircrew, i.e., the naval flight officer and pilot, in conducting a multitarget attack during the performance of a Combat Air Patrol (CAP) role is presented. The TDA employs hierarchical multiattribute utility models for characterizing mission objectives in operationally measurable terms, rule based AI-models for tactical posture selection, and fast time simulation for maneuver consequence prediction. The TDA makes aspect maneuver recommendations, selects and displays the optimum mission posture, evaluates attackable and potentially attackable subsets, and recommends the 'best' attackable subset along with the required course perturbation.
NASA Astrophysics Data System (ADS)
Subagyo; Daryanto, Yanto; Risnawan, Novan
2018-04-01
The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.
ERIC Educational Resources Information Center
Zumbach, Joerg; Schrangl, Gerhard; Mortensen, Chad; Moser, Stephanie
2016-01-01
Considering xenophobic attacks against foreigners and ethnic or religious motivated wars, there is a need for educational concepts to extinguish xenophobia. A model describing the cognitive processes involved in Xenophobic cognition was developed. Instructional multimedia material that discussed various forms of alienation was developed and…
Scaling and saturation laws for the expansion of concrete exposed to sulfate attack.
Monteiro, Paulo J M
2006-08-01
Reinforced concrete structures exposed to aggressive environments often require repair or retrofit even though they were designed to last >50 years. This statement is especially true for structures subjected to sulfate attack. It is critical that fundamental models of life prediction be developed for durability of concrete. Based on experimental results obtained over a 40-year period, scaling and saturation laws were formulated for concrete exposed to sulfate solution. These features have not been considered in current models used to predict life cycle of concrete exposed to aggressive environment. The mathematical analysis shows that porous concrete made with high and moderate water-to-cement ratios develops a definite scaling law after an initiation time. The scaling coefficient depends on the cement composition but does not depend on the original water-to-cement ratio. Dense concrete made with low water-to-cement ratios develops a cyclic saturation curve. An index for "potential of damage" is created to allow engineers to design concrete structures with better precision and cement chemists to develop portland cements with optimized composition.
Deterrence and Risk Preferences in Sequential Attacker-Defender Games with Continuous Efforts.
Payyappalli, Vineet M; Zhuang, Jun; Jose, Victor Richmond R
2017-11-01
Most attacker-defender games consider players as risk neutral, whereas in reality attackers and defenders may be risk seeking or risk averse. This article studies the impact of players' risk preferences on their equilibrium behavior and its effect on the notion of deterrence. In particular, we study the effects of risk preferences in a single-period, sequential game where a defender has a continuous range of investment levels that could be strategically chosen to potentially deter an attack. This article presents analytic results related to the effect of attacker and defender risk preferences on the optimal defense effort level and their impact on the deterrence level. Numerical illustrations and some discussion of the effect of risk preferences on deterrence and the utility of using such a model are provided, as well as sensitivity analysis of continuous attack investment levels and uncertainty in the defender's beliefs about the attacker's risk preference. A key contribution of this article is the identification of specific scenarios in which the defender using a model that takes into account risk preferences would be better off than a defender using a traditional risk-neutral model. This study provides insights that could be used by policy analysts and decisionmakers involved in investment decisions in security and safety. © 2017 Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
Lamb, M.; Stallings, R. L., Jr.
1976-01-01
An experimental investigation was conducted in the Langley Unitary Plan wind tunnel to estimate the peak aerodynamic heating on the space shuttle solid rocket booster during the descent phase of its flight. Heat transfer measurements were obtained using 0.013 scale models instrumented with thermocouples at a Mach number of 3.70, Reynolds number per meter of 11.48 million, and angles of attack from 0 to 180 deg. At angles of attack of 0 and 180 deg, heat transfer measurements on the cylindrical section of the model between the conical nose and ring interaction region were in good agreement with flat plate strip theory for laminar and turbulent flow. At angles of attack up to 30 deg, measurements on this section of the model were in good agreement with laminar swept-cylinder theory, whereas at angles of attack from 120 to 180 deg, the measurements were in good agreement with turbulent swept-cylinder theory. The good agreement with turbulent theory indicated that large flow disturbances created by the nozzle and afterbody flare at these large angles of attack influenced the downstream heating primarily by promoting boundary layer transition. Measurements obtained at 90 deg angle of attack were indicative of laminar flow.
The Obesity Paradox in Recurrent Attacks of Gout in Observational Studies: Clarification and Remedy
Nguyen, Uyen-Sa D. T.; Zhang, Yuqing; Louie-Gao, Qiong; Niu, Jingbo; Felson, David T.; LaValley, Michael P.; Choi, Hyon K.
2016-01-01
Objective Obesity is strongly associated with incident gout risk; its association with risk of recurrent gout attacks has been null or weak, constituting an obesity paradox. We sought to demonstrate and overcome the methodologic issues associated with the obesity paradox for risk of recurrent gout attacks. Methods Using the MRFIT database, we decomposed the total effect of obesity into its direct and indirect (i.e., mediated) effects using marginal structural models. We also estimated the total effect of BMI change from baseline among incident gout patients. Results Of 11,816 gout-free subjects at baseline, we documented 408 incident gout cases, with 132 developing recurrent gout attacks over a 7-year follow-up. The adjusted odds ratio (OR) for incident gout among obese individuals was 2.6, while that for recurrent gout attacks among gout patients was 0.98 (i.e., the obesity paradox). These ORs correlated well with the ORs for the indirect and direct effects of obesity on risk of recurrent gout attacks (i.e., 2.83 and 0.98, respectively). Compared with no BMI change, the OR of losing vs. gaining >5% of baseline BMI was 0.61 and 1.60 for recurrent gout attacks, respectively (P for trend <0.01), suggesting a dose-response association. Conclusion The obesity paradox for risk of recurrent gout attacks is explained by the absence of the direct effect, which is often measured in conventional analyses and misinterpreted as the intended total effect of interest. In contrast, the BMI change analysis correctly estimated the intended total effect of BMI, and revealed a dose-response relationship. PMID:27331767
Guo, Pi; Zheng, Murui; Feng, Wenru; Wu, Jiagang; Deng, Changyu; Luo, Ganfeng; Wang, Li; Pan, Bingying; Liu, Huazhang
2017-02-15
Stroke is a main cause of death and public health burden in China. The evidence on the burden of different strokes attack attribute to ambient temperature in China is limited. This study aimed to show the characteristics of stroke attack and the attributable risk due to temperature based on hospital admission data in Guangzhou, one of the most developed cities in China. From January 1, 2013 to December 31, 2015, 104,432 stroke hospitalizations in Guangzhou residents from 67 hospitals for stroke sentinel surveillance were registered. Characteristics of hospital admissions by gender, age group, calendar year and stroke subtype were analyzed, and distributed lag non-linear models were applied to evaluate the effects of temperature on stroke attack admissions. Stroke attack admissions increased from 31,851 to 36,755 through 2013 to 2015, increasing by 15.4%. An increasing trend in the risk of stroke attack with age was observed, irrespectively of stroke subtype and calendar year. People with hypertension were more likely to have an associated stroke than people without that. The effects of cold temperature on attack admissions for CBI and ICH strokes were significant. Overall, the percentages of CBI and ICH attack admissions attribute to cold temperature were 9.06% (95% CI: 1.84, 15.00) and 15.09% (95% CI: 5.86, 21.96), respectively. Besides, elderly people were more vulnerable to cold temperature than the young. Measures should be taken to increase public awareness about the ill effects of cold temperature on stroke attack, and educate the public about self-protection. Copyright © 2016 Elsevier B.V. All rights reserved.
A decision framework for managing risk to airports from terrorist attack.
Shafieezadeh, Abdollah; Cha, Eun J; Ellingwood, Bruce R
2015-02-01
This article presents an asset-level security risk management framework to assist stakeholders of critical assets with allocating limited budgets for enhancing their safety and security against terrorist attack. The proposed framework models the security system of an asset, considers various threat scenarios, and models the sequential decision framework of attackers during the attack. Its novel contributions are the introduction of the notion of partial neutralization of attackers by defenders, estimation of total loss from successful, partially successful, and unsuccessful actions of attackers at various stages of an attack, and inclusion of the effects of these losses on the choices made by terrorists at various stages of the attack. The application of the proposed method is demonstrated in an example dealing with security risk management of a U.S. commercial airport, in which a set of plausible threat scenarios and risk mitigation options are considered. It is found that a combination of providing blast-resistant cargo containers and a video surveillance system on the airport perimeter fence is the best option based on minimum expected life-cycle cost considering a 10-year service period. © 2014 Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
Hewes, D. E.
1978-01-01
A mathematical modeling technique was developed for the lift characteristics of straight wings throughout a very wide angle of attack range. The technique employs a mathematical switching function that facilitates the representation of the nonlinear aerodynamic characteristics in the partially and fully stalled regions and permits matching empirical data within + or - 4 percent of maximum values. Although specifically developed for use in modeling the lift characteristics, the technique appears to have other applications in both aerodynamic and nonaerodynamic fields.
Defending Against Advanced Persistent Threats Using Game-Theory.
Rass, Stefan; König, Sandra; Schauer, Stefan
2017-01-01
Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker's incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system's protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest.
Reactive strategies for containing developing outbreaks of pandemic influenza
2011-01-01
Background In 2009 and the early part of 2010, the northern hemisphere had to cope with the first waves of the new influenza A (H1N1) pandemic. Despite high-profile vaccination campaigns in many countries, delays in administration of vaccination programs were common, and high vaccination coverage levels were not achieved. This experience suggests the need to explore the epidemiological and economic effectiveness of additional, reactive strategies for combating pandemic influenza. Methods We use a stochastic model of pandemic influenza to investigate realistic strategies that can be used in reaction to developing outbreaks. The model is calibrated to documented illness attack rates and basic reproductive number (R0) estimates, and constructed to represent a typical mid-sized North American city. Results Our model predicts an average illness attack rate of 34.1% in the absence of intervention, with total costs associated with morbidity and mortality of US$81 million for such a city. Attack rates and economic costs can be reduced to 5.4% and US$37 million, respectively, when low-coverage reactive vaccination and limited antiviral use are combined with practical, minimally disruptive social distancing strategies, including short-term, as-needed closure of individual schools, even when vaccine supply-chain-related delays occur. Results improve with increasing vaccination coverage and higher vaccine efficacy. Conclusions Such combination strategies can be substantially more effective than vaccination alone from epidemiological and economic standpoints, and warrant strong consideration by public health authorities when reacting to future outbreaks of pandemic influenza. PMID:21356128
Pugliese, Andrea; Gumel, Abba B; Milner, Fabio A; Velasco-Hernandez, Jorge X
2018-02-01
Three deterministic Kermack-McKendrick-type models for studying the transmission dynamics of an infection in a two-sex closed population are analyzed here. In each model it is assumed that infection can be transmitted through heterosexual contacts, and that there is a higher probability of transmission from one sex to the other than vice versa. The study is focused on understanding whether and how this bias in transmission reflects in sex differences in final attack ratios (i.e. the fraction of individuals of each sex that eventually gets infected). In the first model, where the other two transmission modes are not considered, the attack ratios (fractions of the population of each sex that will eventually be infected) can be obtained as solutions of a system of two nonlinear equations, that has a unique solution if the net reproduction number exceeds unity. It is also shown that the ratio of attack ratios depends solely on the ratio of gender-specific susceptibilities and on the basic reproductive number of the epidemic Ro, and that the gender-specific final attack-ratio is biased in the same direction as the gender-specific susceptibilities. The second model allows also for infection transmission through direct, non-sexual, contacts. In this case too, an analytical expression is derived from which the attack ratios can be obtained. The qualitative results are similar to those obtained for the previous model, but another important parameter for determining the value of the ratio between the attack ratios in the two sexes is obtained, the relative weight of direct vs. heterosexual transmission (namely, ρ). Quantitatively, the ratio of final attack ratios generally will not exceed 1.5, if non-sexual transmission accounts for most transmission events (ρ≥0.6) and the ratio of gender-specific susceptibilities is not too large (say, 5 at most). The third model considers vector-borne, instead of direct transmission. In this case, we were not able to find an analytical expression for the final attack ratios, but used instead numerical simulations. The results on final attack ratios are actually quite similar to those obtained with the second model. It is interesting to note that transient patterns can differ from final attack ratios, as new cases will tend to occur more often in the more susceptible sex, while later depletion of susceptibles may bias the ratio in the opposite direction. The analysis of these simple models, despite their lack of realism, can help in providing insight into, and assessment of, the potential role of gender-specific transmission in infections with multiple modes of transmission, such as Zika virus (ZIKV), by gauging what can be expected to be seen from epidemiological reports of new cases, disease incidence and seroprevalence surveys.
Jamming Attack in Wireless Sensor Network: From Time to Space
NASA Astrophysics Data System (ADS)
Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming
Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.
High angle-of-attack aerodynamic characteristics of crescent and elliptic wings
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1989-01-01
Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.
Development of mental health first aid guidelines for panic attacks: a Delphi study.
Kelly, Claire M; Jorm, Anthony F; Kitchener, Betty A
2009-08-10
Panic attacks are common, and while they are not life-threatening events, they can lead to the development of panic disorder and agoraphobia. Appropriate help at the time that a panic attack occurs may decrease the fear associated with the attack and reduce the risk of developing an anxiety disorder. However, few people have the knowledge and skills required to assist. Simple first aid guidelines may help members of the public to offer help to people who experience panic attacks. The Delphi method was used to reach consensus in a panel of experts. Experts included 50 professionals and 6 people who had experience of panic attacks and were active in mental health advocacy. Statements about how to assist someone who is having a panic attack were sourced through a systematic search of both professional and lay literature. These statements were rated for importance as first aid guidelines by the expert and consumer panels and guidelines were written using the items most consistently endorsed. Of 144 statements presented to the panels, 27 were accepted. These statements were used to develop the guidelines appended to this paper. There are a number of actions which are considered to be useful for members of the public to do if they encounter someone who is having a panic attack. These guidelines will be useful in revision of curricula of mental health first aid programs. They can also be used by members of the public who want immediate information about how to assist someone who is experiencing panic attacks.
Towards A Taxonomy Of Attacks Against Energy Control Systems
NASA Astrophysics Data System (ADS)
Fleury, Terry; Khurana, Himanshu; Welch, Von
Control systems in the energy sector (e.g., supervisory control and data acquisition (SCADA) systems) involve a hierarchy of sensing, monitoring and control devices connected to centralized control stations or centers. The incorporation of commercial off-the-shelf technologies in energy control systems makes them vulnerable to cyber attacks. A taxonomy of cyber attacks against control systems can assist the energy sector in managing the cyber threat. This paper takes the first step towards a taxonomy by presenting a comprehensive model of attacks, vulnerabilities and damage related to control systems. The model is populated based on a survey of the technical literature from industry, academia and national laboratories.
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
NASA Technical Reports Server (NTRS)
Larkin, Michael J.; Schweiger, Paul S.
1992-01-01
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.
Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting
NASA Astrophysics Data System (ADS)
Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein
2016-06-01
In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.
NASA Technical Reports Server (NTRS)
Brewer, E. B.
1975-01-01
A 0.013 scale model of the solid rocket booster (SRB) used to launch the space shuttle was tested at a Mach number of 3.7 and Reynolds numbers of 1,500,000 and 3,500,000 per foot. The objective of the test was to obtain aerodynamic heat transfer data on the surface of scaled models of the SRB at simulated full scale reentry flight conditions. Three separate models were utilized to measure film coefficients over an angle of attack range from 0 deg to 180 deg at 0 deg sideslip. All three models were representations of the MCR0200 baseline configuration and varied only by the way they were mounted in the tunnel. Model A, sting mounted thru the model base, was utilized for testing between 0 deg and 40 deg angle of attack. Model B was blade mounted from the top of the model and was tested between 60 deg and 120 deg angle of attack. Model C was sting mounted thru the model nose and utilized for testing between 140 deg and 180 deg angle of attack.
Boscarino, Joseph A.; Figley, Charles R.; Adams, Richard E.
2009-01-01
To examine the public’s response to future terrorist attacks, we surveyed 1,001 New Yorkers in the community one year after the September 11 attacks. Overall, New Yorkers were very concerned about future terrorist attacks and also concerned about attacks involving biological or nuclear weapons. In addition, while most New Yorkers reported that if a biological or nuclear attack occurred they would evaluate available information before evacuating, a significant number reported they would immediately evacuate, regardless of police or public health communications to the contrary. The level of public concern was significantly higher on all measures among New York City and Long Island residents (downstate) compared to the rest of the state. A model predicting higher fear of terrorism indicated that downstate residents, women, those 45 to 64 years old, African Americans and Hispanics, those with less education/income, and those more likely to flee, were more fearful of future attacks. In addition, making disaster preparations and carefully evaluating emergency information also predicted a higher level of fear as well. A second model predicting who would flee suggested that those more likely to evaluate available information were less likely to immediately evacuate, while those with a higher fear of future attacks were more likely to flee the area. Given these findings and the possibility of future attacks, mental health professionals need to be more involved in preparedness efforts, especially related to the psychological impact of attacks involving weapons of mass destruction. PMID:14730761
Boscarino, Joseph A; Figley, Charles R; Adams, Richard E
2003-01-01
To examine the public's response to future terrorist attacks, we surveyed 1,001 New Yorkers in the community one year after the September 11 attacks. Overall, New Yorkers were very concerned about future terrorist attacks and also concerned about attacks involving biological or nuclear weapons. In addition, while most New Yorkers reported that if a biological or nuclear attack occurred they would evaluate available information before evacuating, a significant number reported they would immediately evacuate, regardless of police or public health communications to the contrary. The level of public concern was significantly higher on all measures among New York City and Long Island residents (downstate) compared to the rest of the state. A model predicting higher fear of terrorism indicated that downstate residents, women, those 45 to 64 years old, African Americans and Hispanics, those with less education/income, and those more likely to flee, were more fearful of future attacks. In addition, making disaster preparations and carefully evaluating emergency information also predicted a higher level of fear as well. A second model predicting who would flee suggested that those more likely to evaluate available information were less likely to immediately evacuate, while those with a higher fear of future attacks were more likely to flee the area. Given these findings and the possibility of future attacks, mental health professionals need to be more involved in preparedness efforts, especially related to the psychological impact of attacks involving weapons of mass destruction.
Tracing Potential School Shooters in the Digital Sphere
NASA Astrophysics Data System (ADS)
Veijalainen, Jari; Semenov, Alexander; Kyppö, Jorma
There are over 300 known school shooting cases in the world and over ten known cases where the perpetrator(s) have been prohibited to perform the attack at the last moment or earlier. Interesting from our point of view is that in many cases the perpetrators have expressed their views in social media or on their web page well in advance, and often also left suicide messages in blogs and other forums before their attack, along the planned date and place. This has become more common towards the end of this decennium. In some cases this has made it possible to prevent the attack. In this paper we will look at the possibilities to find commonalities of the perpetrators, beyond the fact that they are all males from eleven to roughly 25 years old, and possibilities to follow their traces in the digital sphere in order to cut the dangerous development towards an attack. Should this not be possible, then an attack should be averted before it happens. We are especially interested in the multimedia data mining methods and social network mining and analysis that can be used to detect the possible perpetrators in time. We also present in this paper a probabilistic model that can be used to evaluate the success/failure rate of the detection of the possible perpetrators.
Global Persistent Attack: A Systems Architecture, Process Modeling, and Risk Analysis Approach
2008-06-01
develop an analysis process for quantifying risk associated with the limitations presented by a fiscally constrained environment. The second step...previous independent analysis of each force structure provided information for quantifying risk associated with the given force presentations, the
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric
2018-01-01
This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..
Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Qin, Hao; Kumar, Rupesh; Alléaume, Romain
2016-07-01
We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.
Attack Vulnerability of Network Controllability
2016-01-01
Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941
Attack Vulnerability of Network Controllability.
Lu, Zhe-Ming; Li, Xin-Feng
2016-01-01
Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability.
Huynh, Bich Tram; Tual, Séverine; Turbelin, Clément; Pelat, Camille; Cecchi, Lorenzo; D'Amato, Gennaro; Blanchon, Thierry; Annesi-Maesano, Isabella
2010-09-01
To investigate for the first time the short-term effects of airborne pollen counts on general practitioner (GP) consultations for asthma attacks in the Greater Paris area between 2003-2007. Counts were available for common pollens (Betula, Cupressa, Fraxinus and Poaceae). Weekly data on GP visits for asthma attacks were obtained from the French GP Sentinel Network. A quasi-Poisson regression with generalised additive models was implemented. Short-term effects of pollen counts were assessed using single and multi-pollen models after adjustment for air pollution and influenza. A mean weekly incidence rate of 25.4 cases of asthma attacks per 100,000 inhabitants was estimated during the study period. The strongest significant association between asthma attacks and pollen counts was registered for grass (Poaceae) in the same week of asthma attacks, with a slight reduction of the effect observed in the multi-pollen model. Adjusted relative risk for Poaceae was 1.54 (95% CI: 1.33-1.79) with an inter-quartile range increase of 17.6 grains/m3 during the pollen season. For the first time, a significant short-term association was observed between Poaceae pollen counts and consultations for asthma attacks as seen by GPs. These findings need to be confirmed by more consistent time-series and investigations on a daily basis.
Reentry vehicle aerodynamics and control at very high angle of attack
NASA Astrophysics Data System (ADS)
Merret, Jason Michael
In recent flight tests the X-38 reentry test vehicle spins during the deployment of the drogue parachute. An experimental aerodynamic study has been conducted at the University of Illinois using a scale model of the X-38 to explore the cause of this problem. A six-component sting balance was used to measure the forces and moments on the 4.7% wind tunnel model at angles of attack from -7° to 95°. In addition, surface pressure taps and flow visualization techniques were utilized to determine the forebody pressures and surface flowfield on the model. The effect of Reynolds number and boundary-layer state were also examined. The investigation suggests that the spinning under the drogue parachute was caused by asymmetric vortex formation. At angles of attack between 75° and 90° vortex asymmetry developed in all of the cases without separation geometrically fixed. This flow asymmetry produced large side forces and yawing moments. The Reynolds number effect and the effect of the boundary-layer state were noticeable, but did not greatly change the side force and yawing moment characteristics of the model. The micro-geometry of the model had a large effect on the side force generated by the vortex positioning. The effects of forced oscillations were also examined and it was determined that the side forces were still present during the oscillations. Control of the vortices and side forces was obtained by applying strakes to the side of the forebody of the model.
NASA Technical Reports Server (NTRS)
Mccain, W. E.
1984-01-01
The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.
Spatio-temporal synchrony of influenza in cities across Israel: the "Israel is one city" hypothesis.
Barnea, Oren; Huppert, Amit; Katriel, Guy; Stone, Lewi
2014-01-01
We analysed an 11-year dataset (1998-2009) of Influenza-Like Illness (ILI) that was based on surveillance of ∽23% of Israel's population. We examined whether the level of synchrony of ILI epidemics in Israel's 12 largest cities is high enough to view Israel as a single epidemiological unit. Two methods were developed to assess the synchrony: (1) City-specific attack rates were fitted to a simple model in order to estimate the temporal differences in attack rates and spatial differences in reporting rates of ILI. The model showed good fit to the data (R2 = 0.76) and revealed considerable differences in reporting rates of ILI in different cities (up to a factor of 2.2). (2) A statistical test was developed to examine the null hypothesis (H0) that ILI incidence curves in two cities are essentially identical, and was tested using ILI data. Upon examining all possible pairs of incidence curves, 77.4% of pairs were found not to be different (H0 was not rejected). It was concluded that all cities generally have the same attack rate and follow the same epidemic curve each season, although the attack rate changes from season to season, providing strong support for the "Israel is one city" hypothesis. The cities which were the most out of synchronization were Bnei Brak, Beersheba and Haifa, the latter two being geographically remote from all other cities in the dataset and the former geographically very close to several other cities but socially separate due to being populated almost exclusively by ultra-orthodox Jews. Further evidence of assortative mixing of the ultra-orthodox population can be found in the 2001-2002 season, when ultra-orthodox cities and neighborhoods showed distinctly different incidence curves compared to the general population.
Cyber Security Audit and Attack Detection Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Dale
2012-05-31
This goal of this project was to develop cyber security audit and attack detection tools for industrial control systems (ICS). Digital Bond developed and released a tool named Bandolier that audits ICS components commonly used in the energy sector against an optimal security configuration. The Portaledge Project developed a capability for the PI Historian, the most widely used Historian in the energy sector, to aggregate security events and detect cyber attacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek; El Hariri, Mohammad; Habib, Hani
Abstract— Secure high-speed communication is required to ensure proper operation of complex power grid systems and prevent malicious tampering activities. In this paper, artificial neural networks with temporal dependency are introduced for false data identification and mitigation for broadcasted IEC 61850 SMV messages. The fast responses of such intelligent modules in intrusion detection make them suitable for time- critical applications, such as protection. However, care must be taken in selecting the appropriate intelligence model and decision criteria. As such, this paper presents a customizable malware script to sniff and manipulate SMV messages and demonstrates the ability of the malware tomore » trigger false positives in the neural network’s response. The malware developed is intended to be as a vaccine to harden the intrusion detection system against data manipulation attacks by enhancing the neural network’s ability to learn and adapt to these attacks.« less
Development and validation of a blade-element mathematical model for the AH-64A Apache helicopter
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein
1995-01-01
A high-fidelity blade-element mathematical model for the AH-64A Apache Advanced Attack Helicopter has been developed by the Aeroflightdynamics Directorate of the U.S. Army's Aviation and Troop Command (ATCOM) at Ames Research Center. The model is based on the McDonnell Douglas Helicopter Systems' (MDHS) Fly Real Time (FLYRT) model of the AH-64A (acquired under contract) which was modified in-house and augmented with a blade-element-type main-rotor module. This report describes, in detail, the development of the rotor module, and presents some results of an extensive validation effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Qi; Al-Shaer, Ehab; Chatterjee, Samrat
The Infrastructure Distributed Denial of Service (IDDoS) attacks continue to be one of the most devastating challenges facing cyber systems. The new generation of IDDoS attacks exploit the inherent weakness of cyber infrastructure including deterministic nature of routes, skew distribution of flows, and Internet ossification to discover the network critical links and launch highly stealthy flooding attacks that are not observable at the victim end. In this paper, first, we propose a new metric to quantitatively measure the potential susceptibility of any arbitrary target server or domain to stealthy IDDoS attacks, and es- timate the impact of such susceptibility onmore » enterprises. Second, we develop a proactive route mutation technique to minimize the susceptibility to these attacks by dynamically changing the flow paths periodically to invalidate the adversary knowledge about the network and avoid targeted critical links. Our proposed approach actively changes these network paths while satisfying security and qualify of service requirements. We present an integrated approach of proactive route mutation that combines both infrastructure-based mutation that is based on reconfiguration of switches and routers, and middle-box approach that uses an overlay of end-point proxies to construct a virtual network path free of critical links to reach a destination. We implemented the proactive path mutation technique on a Software Defined Network using the OpendDaylight controller to demonstrate a feasible deployment of this approach. Our evaluation validates the correctness, effectiveness, and scalability of the proposed approaches.« less
Shock tubes and blast injury modeling.
Ning, Ya-Lei; Zhou, Yuan-Guo
2015-01-01
Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.
Predicting Attack-Prone Components with Source Code Static Analyzers
2009-05-01
models to determine if additional metrics are required to increase the accuracy of the model: non-security SCSA warnings, code churn and size, the count...code churn and size, the count of faults found manually during development, and the measure of coupling between components. The dependent variable...is the count of vulnerabilities reported by testing and those found in the field. We evaluated our model on three commercial telecommunications
Melo-Carrillo, Agustin; Lopez-Avila, Alberto
2013-10-01
Migraine is a chronic neurovascular disease characterized by recurrent unilateral headache, which induces incapacity. Despite all the progress that migraine research has provided, the neural mechanisms underlying the onset and maintenance of migraine attacks are poorly understood. Due to the complex characteristics of the disorder, it is difficult to develop a proper animal model that mimics all the clinical manifestations in humans. Taking into account the principal characteristics of the disease, the aim of this study is to develop a chronic animal model of migraine in which we can reproduce behavioral and pharmacological phenomena similar to those displayed by migraineurs. Our animal model displayed behavioral and pharmacological results similar to those experienced by migraineurs. Specifically, there was a decrease in routine physical activity and an increase in resting behavior. Also, the animals exhibited a novel behavior that we called ipsilateral facial grooming behavior provoked by the meningeal nociception. Moreover, one of the drugs used as treatment for migraine reduced the manifestations previously described. Our results determine that the model mimics many of the clinical features that patients exhibit during migraine attacks. This model can contribute to further understanding of the pathophysiology and the study of novel therapeutic approaches.
Micro air vehicle motion tracking and aerodynamic modeling
NASA Astrophysics Data System (ADS)
Uhlig, Daniel V.
Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight envelope.
BioWar: A City-Scale Multi-Agent Network Model of Weaponized Biological Attacks
2004-01-01
Simplex Encephalitis Hypertensive Heart Disease Hypovolemic Shock Immune Deficiency Syndrome Acquired Aids Infectious Mononucleosis Malaria...mitigation and recovery strategies. Models developed for the spread of infectious diseases in human populations can be harnessed for the predicting the...Restaurant s Eating location University Post secondary education institutions Military Military bases Indiv infectious idual a ) agents each tick
TANDI: threat assessment of network data and information
NASA Astrophysics Data System (ADS)
Holsopple, Jared; Yang, Shanchieh Jay; Sudit, Moises
2006-04-01
Current practice for combating cyber attacks typically use Intrusion Detection Sensors (IDSs) to passively detect and block multi-stage attacks. This work leverages Level-2 fusion that correlates IDS alerts belonging to the same attacker, and proposes a threat assessment algorithm to predict potential future attacker actions. The algorithm, TANDI, reduces the problem complexity by separating the models of the attacker's capability and opportunity, and fuse the two to determine the attacker's intent. Unlike traditional Bayesian-based approaches, which require assigning a large number of edge probabilities, the proposed Level-3 fusion procedure uses only 4 parameters. TANDI has been implemented and tested with randomly created attack sequences. The results demonstrate that TANDI predicts future attack actions accurately as long as the attack is not part of a coordinated attack and contains no insider threats. In the presence of abnormal attack events, TANDI will alarm the network analyst for further analysis. The attempt to evaluate a threat assessment algorithm via simulation is the first in the literature, and shall open up a new avenue in the area of high level fusion.
Formal Analysis of Key Integrity in PKCS#11
NASA Astrophysics Data System (ADS)
Falcone, Andrea; Focardi, Riccardo
PKCS#11 is a standard API to cryptographic devices such as smarcards, hardware security modules and usb crypto-tokens. Though widely adopted, this API has been shown to be prone to attacks in which a malicious user gains access to the sensitive keys stored in the devices. In 2008, Delaune, Kremer and Steel proposed a model to formally reason on this kind of attacks. We extend this model to also describe flaws that are based on integrity violations of the stored keys. In particular, we consider scenarios in which a malicious overwriting of keys might fool honest users into using attacker's own keys, while performing sensitive operations. We further enrich the model with a trusted key mechanism ensuring that only controlled, non-tampered keys are used in cryptographic operations, and we show how this modified API prevents the above mentioned key-replacement attacks.
Application of variable-gain output feedback for high-alpha control
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1990-01-01
A variable-gain, optimal, discrete, output feedback design approach that is applied to a nonlinear flight regime is described. The flight regime covers a wide angle-of-attack range that includes stall and post stall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analysis are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg. Linear and nonlinear simulations are compared for a single-point longitudinal design at 60 deg angle of attack. Nonlinear simulations for the four-model, multi-mode, variable-gain design include a longitudinal pitch-up and pitch-down maneuver and high angle-of-attack regulation during a lateral maneuver.
Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy.
Burgess, Christian R; Tse, Gavin; Gillis, Lauren; Peever, John H
2010-10-01
To determine if the dopaminergic system modulates cataplexy, sleep attacks and sleep-wake behavior in narcoleptic mice. Hypocretin/orexin knockout (i.e., narcoleptic) and wild-type mice were administered amphetamine and specific dopamine receptor modulators to determine their effects on sleep, cataplexy and sleep attacks. Hypocretin knockout (n = 17) and wild-type mice (n = 21). Cataplexy, sleep attacks and sleep-wake behavior were identified using electroencephalogram, electromyogram and videography. These behaviors were monitored for 4 hours after an i.p. injection of saline, amphetamine and specific dopamine receptor modulators (D1- and D2-like receptor modulators). Amphetamine (2 mg/kg), which increases brain dopamine levels, decreased sleep attacks and cataplexy by 61% and 67%, suggesting that dopamine transmission modulates such behaviors. Dopamine receptor modulation also had powerful effects on sleep attacks and cataplexy. Activation (SKF 38393; 20 mg/kg) and blockade (SCH 23390; 1 mg/kg) of D1-like receptors decreased and increased sleep attacks by 77% and 88%, without affecting cataplexy. Pharmacological activation of D2-like receptors (quinpirole; 0.5 mg/kg) increased cataplectic attacks by 172% and blockade of these receptors (eticlopride; 1 mg/kg) potently suppressed them by 97%. Manipulation of D2-like receptors did not affect sleep attacks. We show that the dopaminergic system plays a role in regulating both cataplexy and sleep attacks in narcoleptic mice. We found that cataplexy is modulated by a D2-like receptor mechanism, whereas dopamine modulates sleep attacks by a D1-like receptor mechanism. These results support a role for the dopamine system in regulating sleep attacks and cataplexy in a murine model of narcolepsy.
Olfactory-triggered panic attacks among Khmer refugees: a contextual approach.
Hinton, Devon; Pich, Vuth; Chhean, Dara; Pollack, Mark
2004-06-01
One hundred Khmer refugees attending a psychiatric clinic were surveyed to determine the prevalence of olfactory-triggered panic attacks as well as certain characteristics of the episodes, including trigger (i.e. type of odor), frequency, length, somatic symptoms, and the rate of associated flashbacks and catastrophic cognitions. Forty-five of the 100 patients had experienced an olfactory-triggered panic attack in the last month. Trauma associations and catastrophic cognitions (e.g. fears of a 'wind attack', 'weakness', and 'weak heart') were common during events of olfactory panic. Several case examples are presented. A multifactorial model of the generation of olfactory panic is adduced. The therapeutic implications of this model for the treatment of olfactory panic are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Michael M.; Marzouk, Youssef M.; Adams, Brian M.
2008-10-01
Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern since the anthrax attacks of 2001. The ability to characterize the parameters of such attacks, i.e., to estimate the number of people infected, the time of infection, the average dose received, and the rate of disease spread in contemporary American society (for contagious diseases), is important when planning a medical response. For non-contagious diseases, we address the characterization problem by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To keep the approach relevant for response planning, we limitmore » ourselves to 3.5 days of data. In computational tests performed for anthrax, we usually find these observation windows sufficient, especially if the outbreak model employed in the inverse problem is accurate. For contagious diseases, we formulated a Bayesian inversion technique to infer both pathogenic transmissibility and the social network from outbreak observations, ensuring that the two determinants of spreading are identified separately. We tested this technique on data collected from a 1967 smallpox epidemic in Abakaliki, Nigeria. We inferred, probabilistically, different transmissibilities in the structured Abakaliki population, the social network, and the chain of transmission. Finally, we developed an individual-based epidemic model to realistically simulate the spread of a rare (or eradicated) disease in a modern society. This model incorporates the mixing patterns observed in an (American) urban setting and accepts, as model input, pathogenic transmissibilities estimated from historical outbreaks that may have occurred in socio-economic environments with little resemblance to contemporary society. Techniques were also developed to simulate disease spread on static and sampled network reductions of the dynamic social networks originally in the individual-based model, yielding faster, though approximate, network-based epidemic models. These reduced-order models are useful in scenario analysis for medical response planning, as well as in computationally intensive inverse problems.« less
A Black Hole Attack Model for Reactive Ad-Hoc Protocols
2012-03-01
Technology Conference. IEEE, 2003. pp. 2286-2290. [BhS09] N. Bhalaji, and A. Shanmugam. "Association Between Nodes to Combat Blackhole Attack in DSR...2012. 102 [PSA09] A. Prathapani, L. Santhanam, and P. Agrawal. "Intelligent Honeypot Agent for Blackhole Attack Detection in Wireless Mesh
Password-only authenticated three-party key exchange with provable security in the standard model.
Nam, Junghyun; Choo, Kim-Kwang Raymond; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon; Won, Dongho
2014-01-01
Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.
A Scenario-Based Protocol Checker for Public-Key Authentication Scheme
NASA Astrophysics Data System (ADS)
Saito, Takamichi
Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).
Zheng, Yadong
2013-11-01
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases. © 2013.
NASA Astrophysics Data System (ADS)
Lyubimov, V. V.; Kurkina, E. V.
2018-05-01
The authors consider the problem of a dynamic system passing through a low-order resonance, describing an uncontrolled atmospheric descent of an asymmetric nanosatellite in the Earth's atmosphere. The authors perform mathematical and numerical modeling of the motion of the nanosatellite with a small mass-aerodynamic asymmetry relative to the center of mass. The aim of the study is to obtain new reliable approximate analytical estimates of perturbations of the angle of attack of a nanosatellite passing through resonance at angles of attack of not more than 0.5π. By using the stationary phase method, the authors were able to investigate a discontinuous perturbation in the angle of attack of a nanosatellite passing through a resonance with two different nanosatellite designs. Comparison of the results of the numerical modeling and new approximate analytical estimates of the perturbation of the angle of attack confirms the reliability of the said estimates.
Richards, Robert J; Hammitt, James K
2002-09-01
Although surgery is recommended after two or more attacks of uncomplicated diverticulitis, the optimal timing for surgery in terms of cost-effectiveness is unknown. A Markov model was used to compare the costs and outcomes of performing surgery after one, two, or three uncomplicated attacks in 60-year-old hypothetical cohorts. Transition state probabilities were assigned values using published data and expert opinion. Costs were estimated from Medicare reimbursement rates. Surgery after the third attack is cost saving, yielding more years of life and quality adjusted life years at a lower cost than the other two strategies. The results were not sensitive to many of the variables tested in the model or to changes made in the discount rate (0-5%). In conclusion, performing prophylactic resection after the third attack of diverticulitis is cost saving in comparison to resection performed after the first or second attacks and remains cost-effective during sensitivity analysis.
NASA Astrophysics Data System (ADS)
Wheelus, Jennifer; Lang, Amy
2009-11-01
The skin of fast-swimming sharks is proposed to have mechanisms to reduce drag and delay flow separation. The skin of fast-swimming sharks is covered with small denticles, on the order of 0.2 mm, that if bristled create cavities. It has been shown that for an angle of attack of 90 degrees, vortices form within these cavities and impose a partial slip condition at the surface of the cavity. This experiment focuses on smaller angles of attack for denticle bristling, closer to the range thought to be achieved on real shark skin. A 3-D bristled shark skin model with varying angle of attack, embedded below a boundary layer, was used to study the formation of cavity vortices through fluorescent dye visualization and Digital Particle Image Velocimetry (DPIV). The effect of varying angle of attack on vortex formation will be discussed.
VTAC: virtual terrain assisted impact assessment for cyber attacks
NASA Astrophysics Data System (ADS)
Argauer, Brian J.; Yang, Shanchieh J.
2008-03-01
Overwhelming intrusion alerts have made timely response to network security breaches a difficult task. Correlating alerts to produce a higher level view of intrusion state of a network, thus, becomes an essential element in network defense. This work proposes to analyze correlated or grouped alerts and determine their 'impact' to services and users of the network. A network is modeled as 'virtual terrain' where cyber attacks maneuver. Overlaying correlated attack tracks on virtual terrain exhibits the vulnerabilities exploited by each track and the relationships between them and different network entities. The proposed impact assessment algorithm utilizes the graph-based virtual terrain model and combines assessments of damages caused by the attacks. The combined impact scores allow to identify severely damaged network services and affected users. Several scenarios are examined to demonstrate the uses of the proposed Virtual Terrain Assisted Impact Assessment for Cyber Attacks (VTAC).
Towards a C2 Poly-Visualization Tool: Leveraging the Power of Social-Network Analysis and GIS
2011-06-01
from Magsino.14 AutoMap, a product of CASOS at Carnegie Mellon University, is a text-mining tool that enables the extraction of network data from...enables community leaders to prepare for biological attacks using computational models. BioWar is a CASOS package that combines many factors into a...models, demographically accurate agent modes, wind dispersion models, and an error-diagnostic model. Construct, also developed by CASOS , is a
Baaten, Gijs G; Sonder, Gerard J B; Van Der Loeff, Maarten F Schim; Coutinho, Roel A; Van Den Hoek, Anneke
2010-01-01
To evaluate whether changes in attack rates of fecal-orally transmitted diseases among travelers are related to changes in pretravel vaccination practices or better hygienic standards at travel destination. National surveillance data on all laboratory-confirmed cases of travel-related hepatitis A, shigellosis, and typhoid fever diagnosed in the Netherlands from 1995 to 2006 were matched with the number of Dutch travelers to developing countries to calculate region-specific annual attack rates. Trends in attack rates of non-vaccine-preventable shigellosis were compared with those of vaccine-preventable hepatitis A and typhoid fever. Trends were also compared with three markers for hygienic standards of the local population at travel destinations, drawn from the United Nations Development Programme database: the human development index, the sanitation index, and the water source index. Attack rates among Dutch travelers to developing regions declined for hepatitis A, shigellosis, and typhoid fever. Region-specific trends in attack rates of shigellosis resembled trends of hepatitis A and typhoid fever. Declining attack rates of the three fecal-orally transmitted diseases correlated with improvements in socioeconomic, sanitary, and water supply conditions of the local population at travel destination. These findings suggest that improved hygienic standards at travel destination strongly contributed to the overall decline in attack rates of fecal-orally transmitted diseases among visiting travelers. © 2010 International Society of Travel Medicine.
Perkins, Casey; Muller, George
2015-10-08
The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Casey; Muller, George
The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less
Bonner, Nicola; Abetz-Webb, Linda; Renault, Lydie; Caballero, Teresa; Longhurst, Hilary; Maurer, Marcus; Christiansen, Sandra; Zuraw, Bruce
2015-07-01
Hereditary Angioedema (HAE), a rare genetic disease, manifests as intermittent, painful attacks of angioedema. Attacks vary in frequency and severity and include skin, abdominal and life-threatening laryngeal swellings. This study aimed to develop a patient reported outcome (PRO) tool for the assessment of HAE attacks, including their management and impact on patients' lives, for use in clinical studies, or by physicians in general practice. The results of open-ended face to face concept elicitation interviews with HAE patients in Argentina (n = 10) and the US (n = 33) were used to develop the first draft questionnaire of the HAE patient reported outcomes questionnaire (HAE PRO). Subsequently, in-depth cognitive debriefing interviews were performed with HAE patients in the UK (n = 10), Brazil (n = 10), Germany (n = 11) and France (n = 12). Following input from eight multinational clinical experts further cognitive interviews were conducted in the US (n = 12) and Germany (n = 12). Patients who experienced abdominal, cutaneous or laryngeal attacks of varying severity levels were included in all rounds of interviews. Across the rounds of interviews patients discussed their HAE attack symptoms, impacts and treatments. Cognitive debriefing interviews explored patient understanding and relevance of questionnaire items. All interviews were conducted face to face following a pre-defined semi-structured interview guide in the patient's native language. Patients reported a variety of HAE symptoms, attack triggers, warning signs, attack impacts and treatment options which were used to develop the HAE PRO. The HAE PRO was revised and refined following input from patients and clinical experts. The final 18-item HAE PRO provides an assessment of the HAE attack experience including symptoms, impacts, treatment requirements, healthcare resource use and loss of productivity caused by HAE attacks. Patient and expert input has contributed to the development of a content valid questionnaire that assesses concepts important to HAE patients globally. HAE patients across cultures consider the HAE PRO a relevant and appropriate assessment of HAE attacks and treatment.
Temporal Cyber Attack Detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Joey Burton; Draelos, Timothy J.; Galiardi, Meghan
Rigorous characterization of the performance and generalization ability of cyber defense systems is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty largely stems from a lack of labeled attack data that fully explores the potential adversarial space. Currently, performance of cyber defense systems is typically evaluated in a qualitative manner by manually inspecting the results of the system on live data and adjusting as needed. Additionally, machine learning has shown promise in deriving models that automatically learn indicators of compromise that are more robust than analyst-derived detectors. However, to generate these models, most algorithms requiremore » large amounts of labeled data (i.e., examples of attacks). Algorithms that do not require annotated data to derive models are similarly at a disadvantage, because labeled data is still necessary when evaluating performance. In this work, we explore the use of temporal generative models to learn cyber attack graph representations and automatically generate data for experimentation and evaluation. Training and evaluating cyber systems and machine learning models requires significant, annotated data, which is typically collected and labeled by hand for one-off experiments. Automatically generating such data helps derive/evaluate detection models and ensures reproducibility of results. Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on learning the structure of attack graphs, based on a realistic example. These derived models can then be used to generate more data. Additionally, we provide a roadmap for future research efforts in this area.« less
Dynamic analysis using superelements for a large helicopter model
NASA Technical Reports Server (NTRS)
Patel, M. P.; Shah, L. C.
1978-01-01
Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.
Can Vitamins Help Prevent a Heart Attack?
... taking vitamins help prevent heart disease or a heart attack? Answers from Rekha Mankad, M.D. It's not yet clear ... risk of developing heart disease or having a heart attack. But, what is known is that no vitamin ...
Dynamic Stability Testing of the Genesis Sample Return Capsule
NASA Technical Reports Server (NTRS)
Cheatwood, F. McNeil; Winchenbach, Gerald L.; Hathaway, Wayne; Chapman, Gary
2000-01-01
This paper documents a series of free flight tests of a scale model of the Genesis Sample Return Capsule. These tests were conducted in the Aeroballistic Research Facility (ARF), located at Eglin AFB, FL, during April 1999 and were sponsored by NASA Langley Research Center. Because these blunt atmospheric entry shapes tend to experience small angle of attack dynamic instabilities (frequently leading to limit cycle motions), the primary purpose of the present tests was to determine the dynamic stability characteristics of the Genesis configuration. The tests were conducted over a Mach number range of 1.0 to 4.5. The results for this configuration indicate that the models were dynamically unstable at low angles of attack for all Mach numbers tested. At Mach numbers below 2.5, the models were also unstable at the higher angles of attack (above 15 deg), and motion amplitudes of up to 40 deg were experienced. Above Mach 2.5, the models were dynamically stable at the higher angles of attack.
Hofman, Zonne L M; Relan, Anurag; Zeerleder, Sacha; Drouet, Christian; Zuraw, Bruce; Hack, C Erik
2016-08-01
Hereditary angioedema (HAE) caused by a deficiency of functional C1-inhibitor (C1INH) becomes clinically manifest as attacks of angioedema. C1INH is the main inhibitor of the contact system. Poor control of a local activation process of this system at the site of the attack is believed to lead to the formation of bradykinin (BK), which increases local vasopermeability and mediates angioedema on interaction with BK receptor 2 on the endothelium. However, several observations in patients with HAE are difficult to explain from a pathogenic model claiming a local activation process at the site of the angioedema attack. Therefore we postulate an alternative model for angioedema attacks in patients with HAE, which assumes a systemic, fluid-phase activation of the contact system to generate BK and its breakdown products. Interaction of these peptides with endothelial receptors that are locally expressed in the affected tissues rather than with receptors constitutively expressed by the endothelium throughout the whole body explains that such a systemic activation process results in local manifestations of an attack. In particular, BK receptor 1, which is induced on the endothelium by inflammatory stimuli, such as kinins and cytokines, meets the specifications of the involved receptor. The pathogenic model discussed here also provides an explanation for why angioedema can occur at multiple sites during an attack and why HAE attacks respond well to modest increases of circulating C1INH activity levels because inhibition of fluid-phase Factor XIIa and kallikrein requires lower C1INH levels than inhibition of activator-bound factors. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Johnson, Philip L.; Shekhar, Anantha
2013-01-01
Panic disorder (PD) is a severe anxiety disorder characterized by susceptibility to induction of panic attacks by subthreshold interoceptive stimuli such as sodium lactate infusions or hypercapnia induction. Here we review a model of panic vulnerability in rats involving chronic inhibition of GABAergic tone in the dorsomedial/ perifornical hypothalamic (DMH/PeF) region that produces enhanced anxiety and freezing responses in fearful situations, as well as a vulnerability to displaying acute panic-like increases in cardioexcitation, respiration activity and “flight” associated behavior following subthreshold interoceptive stimuli that do not elicit panic responses in control rats. This model of panic vulnerability was developed over 15 years ago and has provided an excellent preclinical model with robust face, predictive and construct validity. The model recapitulates many of the phenotypics features of panic attacks associated with human panic disorder (face validity) including greater sensitivity to panicogenic stimuli demonstrated by sudden onset of anxiety and autonomic activation following an administration of a sub-threshold (i.e., do not usually induce panic in healthy subjects) stimulus such as sodium lactate, CO2, or yohimbine. The construct validity is supported by several key findings; DMH/PeF neurons regulate behavioral and autonomic components of a normal adaptive panic response, as well as being implicated in eliciting panic-like responses in humans. Additionally, Patients with PD have deficits in central GABA activity and pharmacological restoration of central GABA activity prevents panic attacks, consistent with this model. The model’s predictive validity is demonstrated by not only showing panic responses to several panic-inducing agents that elicit panic in patients with PD, but also by the positive therapeutic responses to clinically used agents such as alprazolam and antidepressants that attenuate panic attacks in patients. More importantly, this model has been utilized to discover novel drugs such as group II metabotropic glutamate agonists and a new class of translocator protein enhancers of GABA, both of which subsequently showed anti-panic properties in clinical trials. All of these data suggest that this preparation provides a strong preclinical model of some forms of human panic disorders. PMID:22484112
Differential Fault Analysis on CLEFIA with 128, 192, and 256-Bit Keys
NASA Astrophysics Data System (ADS)
Takahashi, Junko; Fukunaga, Toshinori
This paper describes a differential fault analysis (DFA) attack against CLEFIA. The proposed attack can be applied to CLEFIA with all supported keys: 128, 192, and 256-bit keys. DFA is a type of side-channel attack. This attack enables the recovery of secret keys by injecting faults into a secure device during its computation of the cryptographic algorithm and comparing the correct ciphertext with the faulty one. CLEFIA is a 128-bit blockcipher with 128, 192, and 256-bit keys developed by the Sony Corporation in 2007. CLEFIA employs a generalized Feistel structure with four data lines. We developed a new attack method that uses this characteristic structure of the CLEFIA algorithm. On the basis of the proposed attack, only 2 pairs of correct and faulty ciphertexts are needed to retrieve the 128-bit key, and 10.78 pairs on average are needed to retrieve the 192 and 256-bit keys. The proposed attack is more efficient than any previously reported. In order to verify the proposed attack and estimate the calculation time to recover the secret key, we conducted an attack simulation using a PC. The simulation results show that we can obtain each secret key within three minutes on average. This result shows that we can obtain the entire key within a feasible computational time.
Offense-Defense Balance in Cyberspace: A Proposed Model
2012-12-01
enable faster multitasking , the more computations per second can be accomplished. Increased processing speed will allow an attacker to send attacks...depend on what spam or DDoS needs to be accomplished with prices ranging from $30-$70 a day for DDoS to $10 for 1 million spam emails . 21 For...In addition to DDoS attacks on webservers, there were web defacements (using various tools such as SQL injections) and email flooding. The attacks
Counterterrorism Tactics: A Model of Cell Dynamics
2007-06-01
STUDIES...........................................................................................................5 A. MILLENNIAL BOMBING...conducts primary research into the following three thwarted terrorist attacks: 1) the Brooklyn Bridge attack by Iyman Faris, 2) the Millennial Bombings at...the end of this paper. A. MILLENNIAL BOMBING The attempted attack on the Los Angeles airport in 1999 was primarily carried out by Ahmad Ressam
Assisting Handlers Following Attacks on Dog Guides: Implications for Dog Guide Teams
ERIC Educational Resources Information Center
Godley, Cheryl A.; Gillard, Marc A.
2011-01-01
Attacks by dogs on dog guides are traumatic for dog guide teams. One variable that affects a team's recovery is how handlers cope with emotional responses to the attack. This article presents a three-stage model for assisting handlers that is useful for handlers and dog guide instructors.
Noise of the SR-6 propeller model at 2 deg and 4 deg angles of attack
NASA Technical Reports Server (NTRS)
Dittmar, J. H.; Stefko, G. L.
1983-01-01
The noise generated by supersonic-tip-speed propellers creates a cabin noise problem for future airplanes powered by these propellers. Noise of a number of propeller models were measured in the NASA Lewis 8- by 6-Foot Wind Tunnel with flow parallel to the propeller axis. In flight, as a result of the induced upwash from the airplane wing, the propeller is at an angle of attack with respect to the incoming flow. Therefore, the 10-blade SR-6 propeller was operated at angle of attack to determine its noise behavior. Higher blade passage tones were observed for the propeller operating at angle of attack in a 0.6 axial Mach number flow. The noise increase was not symmetrical, with one wall of the wind tunnel showing a larger noise increase than the other wall. No noise increase was observed at angle of attack in a 0.8 axial Mach number flow. For this propeller the dominance of thickness noise, which does not increase with angle of attack, explains the lack of noise increase at the higher 0.8 Mach number.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Newsom, W. A., Jr.
1974-01-01
An investigation was conducted to determine the low-speed yawing stability derivatives of a twin-jet fighter airplane model at high angles of attack. Tests were performed in a low-speed tunnel utilizing variable-curvature walls to simulate pure yawing motion. The results of the study showed that at angles of attack below the stall the yawing derivatives were essentially independent of the yawing velocity and sideslip angle. However, at angles of attack above the stall some nonlinear variations were present and the derivatives were strongly dependent upon sideslip angle. The results also showed that the rolling moment due to yawing was primarily due to the wing-fuselage combination, and that at angles of attack below the stall both the vertical and horizontal tails produced significant contributions to the damping in yaw. Additionally, the tests showed that the use of the forced-oscillation data to represent the yawing stability derivatives is questionable, at high angles of attack, due to large effects arising from the acceleration in sideslip derivatives.
NASA Astrophysics Data System (ADS)
Wang, Shuliang; Zhang, Jianhua; Zhao, Mingwei; Min, Xu
2017-05-01
This paper takes central China power grid (CCPG) as an example, and analyzes the vulnerability of the power systems under terrorist attacks. To simulate the intelligence of terrorist attacks, a method of critical attack area identification according to community structures is introduced. Meanwhile, three types of vulnerability models and the corresponding vulnerability metrics are given for comparative analysis. On this basis, influence of terrorist attacks on different critical areas is studied. Identifying the vulnerability of different critical areas will be conducted. At the same time, vulnerabilities of critical areas under different tolerance parameters and different vulnerability models are acquired and compared. Results show that only a few number of vertex disruptions may cause some critical areas collapse completely, they can generate great performance losses the whole systems. Further more, the variation of vulnerability values under different scenarios is very large. Critical areas which can cause greater damage under terrorist attacks should be given priority of protection to reduce vulnerability. The proposed method can be applied to analyze the vulnerability of other infrastructure systems, they can help decision makers search mitigation action and optimum protection strategy.
Fukuda, Yusuke; Manolis, Charlie; Saalfeld, Keith; Zuur, Alain
2015-01-01
Conflicts between humans and crocodilians are a widespread conservation challenge and the number of crocodile attacks is increasing worldwide. We identified the factors that most effectively decide whether a victim is injured or killed in a crocodile attack by fitting generalized linear models to a 42-year dataset of 87 attacks (27 fatal and 60 non-fatal) by saltwater crocodiles (Crocodylus porosus) in Australia. The models showed that the most influential factors were the difference in body mass between crocodile and victim, and the position of victim in relation to the water at the time of an attack. In-water position (for diving, swimming, and wading) had a higher risk than on-water (boating) or on-land (fishing, and hunting near the water's edge) positions. In the in-water position a 75 kg person would have a relatively high probability of survival (0.81) if attacked by a 300 cm crocodile, but the probability becomes much lower (0.17) with a 400 cm crocodile. If attacked by a crocodile larger than 450 cm, the survival probability would be extremely low (<0.05) regardless of the victim's size. These results indicate that the main cause of death during a crocodile attack is drowning and larger crocodiles can drag a victim more easily into deeper water. A higher risk associated with a larger crocodile in relation to victim's size is highlighted by children's vulnerability to fatal attacks. Since the first recently recorded fatal attack involving a child in 2006, six out of nine fatal attacks (66.7%) involved children, and the average body size of crocodiles responsible for these fatal attacks was considerably smaller (384 cm, 223 kg) than that of crocodiles that killed adults (450 cm, 324 kg) during the same period (2006-2014). These results suggest that culling programs targeting larger crocodiles may not be an effective management option to improve safety for children.
Fukuda, Yusuke
2015-01-01
Conflicts between humans and crocodilians are a widespread conservation challenge and the number of crocodile attacks is increasing worldwide. We identified the factors that most effectively decide whether a victim is injured or killed in a crocodile attack by fitting generalized linear models to a 42-year dataset of 87 attacks (27 fatal and 60 non-fatal) by saltwater crocodiles (Crocodylus porosus) in Australia. The models showed that the most influential factors were the difference in body mass between crocodile and victim, and the position of victim in relation to the water at the time of an attack. In-water position (for diving, swimming, and wading) had a higher risk than on-water (boating) or on-land (fishing, and hunting near the water's edge) positions. In the in-water position a 75 kg person would have a relatively high probability of survival (0.81) if attacked by a 300 cm crocodile, but the probability becomes much lower (0.17) with a 400 cm crocodile. If attacked by a crocodile larger than 450 cm, the survival probability would be extremely low (<0.05) regardless of the victim’s size. These results indicate that the main cause of death during a crocodile attack is drowning and larger crocodiles can drag a victim more easily into deeper water. A higher risk associated with a larger crocodile in relation to victim’s size is highlighted by children’s vulnerability to fatal attacks. Since the first recently recorded fatal attack involving a child in 2006, six out of nine fatal attacks (66.7%) involved children, and the average body size of crocodiles responsible for these fatal attacks was considerably smaller (384 cm, 223 kg) than that of crocodiles that killed adults (450 cm, 324 kg) during the same period (2006–2014). These results suggest that culling programs targeting larger crocodiles may not be an effective management option to improve safety for children. PMID:25961294
Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing.
Fredrikson, Matthew; Lantz, Eric; Jha, Somesh; Lin, Simon; Page, David; Ristenpart, Thomas
2014-08-01
We initiate the study of privacy in pharmacogenetics, wherein machine learning models are used to guide medical treatments based on a patient's genotype and background. Performing an in-depth case study on privacy in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular because attackers can perform what we call model inversion : an attacker, given the model and some demographic information about a patient, can predict the patient's genetic markers. As differential privacy (DP) is an oft-proposed solution for medical settings such as this, we evaluate its effectiveness for building private versions of pharmacogenetic models. We show that DP mechanisms prevent our model inversion attacks when the privacy budget is carefully selected . We go on to analyze the impact on utility by performing simulated clinical trials with DP dosing models. We find that for privacy budgets effective at preventing attacks, patients would be exposed to increased risk of stroke, bleeding events, and mortality . We conclude that current DP mechanisms do not simultaneously improve genomic privacy while retaining desirable clinical efficacy, highlighting the need for new mechanisms that should be evaluated in situ using the general methodology introduced by our work.
Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat
2018-01-01
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.
Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing
Fredrikson, Matthew; Lantz, Eric; Jha, Somesh; Lin, Simon; Page, David; Ristenpart, Thomas
2014-01-01
We initiate the study of privacy in pharmacogenetics, wherein machine learning models are used to guide medical treatments based on a patient’s genotype and background. Performing an in-depth case study on privacy in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular because attackers can perform what we call model inversion: an attacker, given the model and some demographic information about a patient, can predict the patient’s genetic markers. As differential privacy (DP) is an oft-proposed solution for medical settings such as this, we evaluate its effectiveness for building private versions of pharmacogenetic models. We show that DP mechanisms prevent our model inversion attacks when the privacy budget is carefully selected. We go on to analyze the impact on utility by performing simulated clinical trials with DP dosing models. We find that for privacy budgets effective at preventing attacks, patients would be exposed to increased risk of stroke, bleeding events, and mortality. We conclude that current DP mechanisms do not simultaneously improve genomic privacy while retaining desirable clinical efficacy, highlighting the need for new mechanisms that should be evaluated in situ using the general methodology introduced by our work. PMID:27077138
LDV Surveys Over a Fighter Model at Moderate to High Angles of Attack
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Meyers, James F.; Hepner, Timothy E.
2004-01-01
The vortex flowfield over an advanced twin-tailed fighter configuration was measured in a low-speed wind tunnel at two angles of attack. The primary test data consisted of 3-component velocity surveys obtained using a Laser Doppler Velocimeter. Laser light sheet and surface flow visualization were also obtained to provide insight into the flowfield structure. Time-averaged velocities and the root mean square of the velocity fluctuations were obtained at two cross-sections above the model. At 15 degrees angle of attack, the vortices generated by the wing leading edge extension (LEX) were unburst over the model and passed outboard of the vertical tail. At 25 degrees angle of attack, the vortices burst in the vicinity of the wing-LEX intersection and impact directly on the vertical tails. The RMS levels of the velocity fluctuations reach values of approximately 30% in the region of the vertical tails.
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
Model mount system for testing flutter
NASA Technical Reports Server (NTRS)
Farmer, M. G. (Inventor)
1984-01-01
A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.
Navier-Stokes computations with finite-rate chemistry for LO2/LH2 rocket engine plume flow studies
NASA Technical Reports Server (NTRS)
Dougherty, N. Sam; Liu, Baw-Lin
1991-01-01
Computational fluid dynamics methods have been developed and applied to Space Shuttle Main Engine LO2/LH2 plume flow simulation/analysis of airloading and convective base heating effects on the vehicle at high flight velocities and altitudes. New methods are described which were applied to the simulation of a Return-to-Launch-Site abort where the vehicle would fly briefly at negative angles of attack into its own plume. A simplified two-perfect-gases-mixing approach is used where one gas is the plume and the other is air at 180-deg and 135-deg flight angle of attack. Related research has resulted in real gas multiple-plume interaction methods with finite-rate chemistry described herein which are applied to the same high-altitude-flight conditions of 0 deg angle of attack. Continuing research plans are to study Orbiter wake/plume flows at several Mach numbers and altitudes during ascent and then to merge this model with the Shuttle 'nose-to-tail' aerodynamic and SRB plume models for an overall 'nose-to-plume' capability. These new methods are also applicable to future launch vehicles using clustered-engine LO2/LH2 propulsion.
Houston biosecurity: building a national model.
Casscells, Ward; Mirhaji, Parsa; Lillibridge, Scott; Madjid, Mohammad
2004-01-01
On September 11, 2001, Al Qaeda terrorists committed an atrocity when they used domestic jetliners to crash into buildings in New York City and Washington, DC, killing thousands of people. In October 2001, another act of savagery occurred, this time using anthrax, not airplanes, to take innocent lives. Each incident demonstrates the vulnerability of an open society, and Americans are left to wonder how such acts can be prevented. Two years later, Al Qaeda operatives are reportedly regrouping, recruiting, and changing their tactics to distribute money and messages to operatives around the world. Many experts believe that terrorist attacks are inevitable. Every city is vulnerable to an attack, and none are fully prepared to handle the residual impact of a biological or chemical attack. A survey conducted by the Cable News Network (CNN) in January 2002, studied 30 major US cities, ranking them based on 6 statistical indices of vulnerability. Thirteen cities were deemed better prepared than Houston, 10 were in a similar state of preparedness, and only 6 were less prepared than Houston. We will discuss the protective measures that have been put in place in Houston, and future steps to take. Other cities can model Houston's experience to develop similar plans nation-wide. PMID:17060983
Fuel clad chemical interactions in fast reactor MOX fuels
NASA Astrophysics Data System (ADS)
Viswanathan, R.
2014-01-01
Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel-Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ṡ [B/(at.% fission)] ṡ (T/K-705) ṡ [(O/M)i-1.935]} + 20.5) for (O/M)i ⩽ 1.98. A new model is proposed for (O/M)i ⩾ 1.98: d/μm = [B/(at.% fission)] ṡ (T/K-800)0.5 ṡ [(O/M)i-1.94] ṡ [P/(W cm-1)]0.5. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M)i is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.
Houston biosecurity: building a national model.
Casscells, Ward; Mirhaji, Parsa; Lillibridge, Scott; Madjid, Mohammad
2004-01-01
On September 11, 2001, Al Qaeda terrorists committed an atrocity when they used domestic jetliners to crash into buildings in New York City and Washington, DC, killing thousands of people. In October 2001, another act of savagery occurred, this time using anthrax, not airplanes, to take innocent lives. Each incident demonstrates the vulnerability of an open society, and Americans are left to wonder how such acts can be prevented. Two years later, Al Qaeda operatives are reportedly regrouping, recruiting, and changing their tactics to distribute money and messages to operatives around the world. Many experts believe that terrorist attacks are inevitable. Every city is vulnerable to an attack, and none are fully prepared to handle the residual impact of a biological or chemical attack. A survey conducted by the Cable News Network (CNN) in January 2002, studied 30 major US cities, ranking them based on 6 statistical indices of vulnerability. Thirteen cities were deemed better prepared than Houston, 10 were in a similar state of preparedness, and only 6 were less prepared than Houston. We will discuss the protective measures that have been put in place in Houston, and future steps to take. Other cities can model Houston's experience to develop similar plans nation-wide.
J. Keith Gilless; Jeremy S. Fried
1998-01-01
A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...
A Model of Biological Attacks on a Realistic Population
NASA Astrophysics Data System (ADS)
Carley, Kathleen M.; Fridsma, Douglas; Casman, Elizabeth; Altman, Neal; Chen, Li-Chiou; Kaminsky, Boris; Nave, Demian; Yahja, Alex
The capability to assess the impacts of large-scale biological attacks and the efficacy of containment policies is critical and requires knowledge-intensive reasoning about social response and disease transmission within a complex social system. There is a close linkage among social networks, transportation networks, disease spread, and early detection. Spatial dimensions related to public gathering places such as hospitals, nursing homes, and restaurants, can play a major role in epidemics [Klovdahl et. al. 2001]. Like natural epidemics, bioterrorist attacks unfold within spatially defined, complex social systems, and the societal and networked response can have profound effects on their outcome. This paper focuses on bioterrorist attacks, but the model has been applied to emergent and familiar diseases as well.
Olfactory-Triggered Panic Attacks Among Khmer Refugees: A Contextual Approach
Hinton, Devon; Pich, Vuth; Chhean, Dara; Pollack, Mark
2009-01-01
One hundred Khmer refugees attending a psychiatric clinic were surveyed to determine the prevalence of olfactory-triggered panic attacks as well as certain characteristics of the episodes, including trigger (i.e. type of odor), frequency, length, somatic symptoms, and the rate of associated flashbacks and catastrophic cognitions. Forty-five of the 100 patients had experienced an olfactory-triggered panic attack in the last month. Trauma associations and catastrophic cognitions (e.g. fears of a ‘wind attack,’ ‘weakness,’ and ‘weak heart’) were common during events of olfactory panic. Several case examples are presented. A multifactorial model of the generation of olfactory panic is adduced. The therapeutic implications of this model for the treatment of olfactory panic are discussed. PMID:15446720
Laboratory Observations of Dune Erosion
NASA Astrophysics Data System (ADS)
Maddux, T. B.; Ruggiero, P.; Palmsten, M.; Holman, R.; Cox, D. T.
2006-12-01
Coastal dunes are an important feature along many coastlines, owing to their input to the sediment supply, use as habitat, and ability to protect onshore resources from wave attack. Correct predictions of the erosion and overtopping rates of these features are needed to develop improved responses to coastal dune damage events, and to determining the likelihood and magnitude of future erosion and overtopping on different beaches. We have conducted a large-scale laboratory study at Oregon State University's O.H. Hinsdale Wave Research Laboratory (HWRL) with the goal of producing a comprehensive, near prototype-scale, physical model data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The two goals of this work are (1) to develop a better understanding of swash/dune dynamics and (2) to evaluate and guide further development of dune erosion models. We present initial results from the first phase of the experimental program. An initial beach and dune profile was selected based on field LIDAR-based observations of various U.S. east coast and Gulf coast dune systems. The laboratory beach was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water level and offshore wave heights. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Future work will include studies of fluid overtopping of the dune and sediment overwash and assessment of the resilience of man-made "push-up" dunes to wave attack in comparison with their more-compacted "natural" cousins.
Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information.
Wang, Chundong; Zhu, Likun; Gong, Liangyi; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun
2018-03-15
With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.
Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information
Wang, Chundong; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun
2018-01-01
With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks. PMID:29543773
A Novel Centrality Measure for Network-wide Cyber Vulnerability Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathanur, Arun V.; Haglin, David J.
In this work we propose a novel formulation that models the attack and compromise on a cyber network as a combination of two parts - direct compromise of a host and the compromise occurring through the spread of the attack on the network from a compromised host. The model parameters for the nodes are a concise representation of the host profiles that can include the risky behaviors of the associated human users while the model parameters for the edges are based on the existence of vulnerabilities between each pair of connected hosts. The edge models relate to the summary representationsmore » of the corresponding attack-graphs. This results in a formulation based on Random Walk with Restart (RWR) and the resulting centrality metric can be solved for in an efficient manner through the use of sparse linear solvers. Thus the formulation goes beyond mere topological considerations in centrality computations by summarizing the host profiles and the attack graphs into the model parameters. The computational efficiency of the method also allows us to also quantify the uncertainty in the centrality measure through Monte Carlo analysis.« less
A Probabilistic Approach to Mitigate Composition Attacks on Privacy in Non-Coordinated Environments
Sarowar Sattar, A.H.M.; Li, Jiuyong; Liu, Jixue; Heatherly, Raymond; Malin, Bradley
2014-01-01
Organizations share data about individuals to drive business and comply with law and regulation. However, an adversary may expose confidential information by tracking an individual across disparate data publications using quasi-identifying attributes (e.g., age, geocode and sex) associated with the records. Various studies have shown that well-established privacy protection models (e.g., k-anonymity and its extensions) fail to protect an individual’s privacy against this “composition attack”. This type of attack can be thwarted when organizations coordinate prior to data publication, but such a practice is not always feasible. In this paper, we introduce a probabilistic model called (d, α)-linkable, which mitigates composition attack without coordination. The model ensures that d confidential values are associated with a quasi-identifying group with a likelihood of α. We realize this model through an efficient extension to k-anonymization and use extensive experiments to show our strategy significantly reduces the likelihood of a successful composition attack and can preserve more utility than alternative privacy models, such as differential privacy. PMID:25598581
Lentz, Ashley K; Burgess, George H; Perrin, Karen; Brown, Jennifer A; Mozingo, David W; Lottenberg, Lawrence
2010-01-01
Humans share a fascination and fear of sharks. We predict that most shark attacks are nonfatal but require skilled, timely medical intervention. The development of a shark bite severity scoring scale will assist communication and understanding of such an injury. We retrospectively reviewed records of the prospectively maintained International Shark Attack File (ISAF) at the University of Florida. The ISAF contains 4409 investigations, including 2979 documented attacks, 96 of which have complete medical records. We developed a Shark-Induced Trauma (SIT) Scale and calculated the level of injury for each attack. Medical records were reviewed for the 96 documented shark attack victims since 1921. Calculated levels of injury in the SIT Scale reveal 40 Level 1 injuries (41.7%), 16 Level 2 injuries (16.7%), 18 Level 3 injuries (18.8%), 14 Level 4 injuries (14.6%), and eight Level 5 injuries (8.3%). The overall mortality of shark attacks was 8.3 per cent. However, SIT Scale Level 1 injuries comprised the greatest percentage of cases at 41.7 per cent. Injury to major vascular structures increases mortality and necessitates immediate medical attention and definitive care by a surgeon. Shark bites deserve recognition with prompt resuscitation, washout, débridement, and follow up for prevention of infection and closure of more complex wounds.
Zhu, Zhengqiu; Chen, Bin; Qiu, Sihang; Wang, Rongxiao; Chen, Feiran; Wang, Yiping; Qiu, Xiaogang
2018-03-27
Chemical production activities in industrial districts pose great threats to the surrounding atmospheric environment and human health. Therefore, developing appropriate and intelligent pollution controlling strategies for the management team to monitor chemical production processes is significantly essential in a chemical industrial district. The literature shows that playing a chemical plant environmental protection (CPEP) game can force the chemical plants to be more compliant with environmental protection authorities and reduce the potential risks of hazardous gas dispersion accidents. However, results of the current literature strictly rely on several perfect assumptions which rarely hold in real-world domains, especially when dealing with human adversaries. To address bounded rationality and limited observability in human cognition, the CPEP game is extended to generate robust schedules of inspection resources for inspection agencies. The present paper is innovative on the following contributions: (i) The CPEP model is extended by taking observation frequency and observation cost of adversaries into account, and thus better reflects the industrial reality; (ii) Uncertainties such as attackers with bounded rationality, attackers with limited observation and incomplete information (i.e., the attacker's parameters) are integrated into the extended CPEP model; (iii) Learning curve theory is employed to determine the attacker's observability in the game solver. Results in the case study imply that this work improves the decision-making process for environmental protection authorities in practical fields by bringing more rewards to the inspection agencies and by acquiring more compliance from chemical plants.
NASA Technical Reports Server (NTRS)
Brandon, J. M.; Murri, D. G.; Nguyen, L. T.
1986-01-01
A series of low-speed wind tunnel tests on a generic airplane model with a cylindrical fuselage were made to investigate the effects of forebody shape and fitness ratio, and fuselage/wing proximity on static and dynamic lateral/directional stability. In addition, some preliminary testing to determine the effectiveness of deflectable forebody strakes for high angle of attack yaw control was conducted. During the stability investigation, 11 forebodies were tested including three different cross-sectional shapes with fineness ratios of 2, 3, and 4. In addition, the wing was tested at two longitudinal positions to provide a substantial variation in forebody/wing proximity. Conventional force tests were conducted to determine static stability characteristics, and single-degree-of-freedom free-to-roll tests were conducted to study the wing rock characteristics of the model with the various forebodies. Flow visualization data were obtained to aid in the analysis of the complex flow phenomena involved. The results show that the forebody cross-sectional shape and fineness ratio and forebody/wing proximity can strongly affect both static and dynamic (roll) stability at high angles of attack. These characteristics result from the impact of these factors on forebody vortex development, the behavior of the vortices in sideslip, and their interaction with the wing flow field. Preliminary results from the deflectable strake investigation indicated that forebody flow control using this concept can provide very large yaw control moments at stall and post-stall angles of attack.
Development and Application of a Model of Fallout Shelter Stay Times.
1978-12-29
post-attack environment is a disaster, and that human response to a nuclear disaster is an extropolation of human response to natural disasters...Soviet reaction to a nuclear disaster . This technique is not limited to fallout shelter studies. If an appropriate data base exists, subjects such as
SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET
NASA Astrophysics Data System (ADS)
KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya
2013-02-01
Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.
Network Security Risk Assessment System Based on Attack Graph and Markov Chain
NASA Astrophysics Data System (ADS)
Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian
2017-10-01
Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.
THE PANIC ATTACK–PTSD MODEL: APPLICABILITY TO ORTHOSTATIC PANIC AMONG CAMBODIAN REFUGEES
Hinton, Devon E.; Hofmann, Stefan G.; Pitman, Roger K.; Pollack, Mark H.; Barlow, David H.
2009-01-01
This article examines the ability of the “Panic Attack–PTSD Model” to predict how panic attacks are generated and how panic attacks worsen posttraumatic stress disorder (PTSD). The article does so by determining the validity of the Panic Attack–PTSD Model in respect to one type of panic attacks among traumatized Cambodian refugees: orthostatic panic (OP) attacks, that is, panic attacks generated by moving from lying or sitting to standing. Among Cambodian refugees attending a psychiatric clinic, we conducted two studies to explore the validity of the Panic Attack–PTSD Model as applied to OP patients, meaning patients with at least one episode of OP in the previous month. In Study 1, the “Panic Attack–PTSD Model” accurately indicated how OP is seemingly generated: among OP patients (N = 58), orthostasis-associated flashbacks and catastrophic cognitions predicted OP severity beyond a measure of anxious–depressive distress (SCL subscales), and OP severity significantly mediated the effect of anxious–depressive distress on CAPS severity. In Study 2, as predicted by the Panic Attack–PTSD Model, OP had a mediational role in respect to the effect of treatment on PTSD severity: among Cambodian refugees with PTSD and comorbid OP who participated in a CBT study (N = 56), improvement in PTSD severity was partially mediated by improvement in OP severity. PMID:18470741
Novel Method For Low-Rate Ddos Attack Detection
NASA Astrophysics Data System (ADS)
Chistokhodova, A. A.; Sidorov, I. D.
2018-05-01
The relevance of the work is associated with an increasing number of advanced types of DDoS attacks, in particular, low-rate HTTP-flood. Last year, the power and complexity of such attacks increased significantly. The article is devoted to the analysis of DDoS attacks detecting methods and their modifications with the purpose of increasing the accuracy of DDoS attack detection. The article details low-rate attacks features in comparison with conventional DDoS attacks. During the analysis, significant shortcomings of the available method for detecting low-rate DDoS attacks were found. Thus, the result of the study is an informal description of a new method for detecting low-rate denial-of-service attacks. The architecture of the stand for approbation of the method is developed. At the current stage of the study, it is possible to improve the efficiency of an already existing method by using a classifier with memory, as well as additional information.
2016-09-01
par. 4) Based on a RED projected size of 22.16 m, a sample calculation for the unadjusted single shot probability of kill for HELLFIRE missiles is...framework based on intelligent objects (SIMIO) environment to model a fast attack craft/fast inshore attack craft anti-surface warfare expanded kill chain...concept of operation efficiency. Based on the operational environment, low cost and less capable unmanned aircraft provide an alternative to the
Data modeling of network dynamics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad
2004-01-01
This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.
Explanatory Models of Illness: A Study of Within-Culture Variation
ERIC Educational Resources Information Center
Lynch, Elizabeth; Medin, Douglas
2006-01-01
The current studies explore causal models of heart attack and depression generated from American healers whom use distinct explanatory frameworks. Causal chains leading to two illnesses, heart attack and depression, were elicited from participant groups: registered nurses (RNs), energy healers, RN energy healers, and undergraduates. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... Countermeasures Following a Biological Attack By the authority vested in me as President by the Constitution and... countermeasures to the American people in the event of a biological attack in the United States through a rapid.... Postal Service medical countermeasures dispensing model to respond to a large-scale biological attack. (b...
Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model
Nam, Junghyun; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon
2014-01-01
Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks. PMID:24977229
Game Theory and Uncertainty Quantification for Cyber Defense Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Samrat; Halappanavar, Mahantesh; Tipireddy, Ramakrishna
Cyber-system defenders face the challenging task of protecting critical assets and information continually against multiple types of malicious attackers. Defenders typically operate within resource constraints while attackers operate at relatively low costs. As a result, design and development of resilient cyber-systems that can support mission goals under attack while accounting for the dynamics between attackers and defenders is an important research problem.
Insecurity of Wireless Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo
Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA,more » allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.« less
Hale, Brent; Knackmuhs, Eric; Mackert, Michael
2018-01-01
Background Anonymous verbal attacks against overweight individuals on social media are common and widespread. These comments often use negative, misogynist, or derogatory words, which stigmatize the targeted individuals with obesity. These verbal attacks may cause depression in overweight individuals, which could subsequently promote unhealthy eating behavior (ie, binge eating) and further weight gain. To develop an intervention policy and strategies that tackle the anonymous, Web-based verbal attacks, a thorough understanding of the comments is necessary. Objective This study aimed to examine how anonymous users verbally attack or defend overweight individuals in terms of 3 themes: (1) topic of verbal attack (ie, what aspects of overweight individuals are verbally attacked), (2) gender of commenters and targeted overweight individuals, and (3) intensity of derogation depending on the targeted gender (ie, the number of swear words used within comments). Methods This study analyzed the content of YouTube comments that discuss overweight individuals or groups from 2 viral videos, titled “Fat Girl Tinder Date” and “Fat Guy Tinder Date.” The twin videos provide an avenue through which to analyze discussions of obesity as they organically occurred in a contemporary setting. We randomly sampled and analyzed 320 comments based on a coding instrument developed for this study. Results First, there were twice as many comments verbally attacking overweight individuals (n=174) than comments defending them (n=89). Second, overweight women are attacked for their capacities (eg, laziness, maturity; 14/51, 28%), whereas overweight men are attacked for their heterosocial skills (eg, rudeness, annoyance; 24/29, 83%). Third, the majority of commenters who attacked overweight women are male (42/52, 81%). Fourth, attacking comments generated toward overweight women included more swear words (mean 0.44, SD 0.77) than those targeting men (mean 0.23, SD 0.48). Conclusions Our data elucidate a worrying situation of frequent disinhibited aggressive messages against overweight individuals online. Importantly, the patterns of verbal aggression differ depending on the gender of the targeted overweight individuals. Thus, gender-tailored intervention strategies that specifically tackle Internet users’ verbal aggression against overweight individuals need to be developed. PMID:29559426
LiPISC: A Lightweight and Flexible Method for Privacy-Aware Intersection Set Computation
Huang, Shiyong; Ren, Yi; Choo, Kim-Kwang Raymond
2016-01-01
Privacy-aware intersection set computation (PISC) can be modeled as secure multi-party computation. The basic idea is to compute the intersection of input sets without leaking privacy. Furthermore, PISC should be sufficiently flexible to recommend approximate intersection items. In this paper, we reveal two previously unpublished attacks against PISC, which can be used to reveal and link one input set to another input set, resulting in privacy leakage. We coin these as Set Linkage Attack and Set Reveal Attack. We then present a lightweight and flexible PISC scheme (LiPISC) and prove its security (including against Set Linkage Attack and Set Reveal Attack). PMID:27326763
NASA Astrophysics Data System (ADS)
Hu, Haibin
2017-05-01
Among numerous WEB security issues, SQL injection is the most notable and dangerous. In this study, characteristics and procedures of SQL injection are analyzed, and the method for detecting the SQL injection attack is illustrated. The defense resistance and remedy model of SQL injection attack is established from the perspective of non-intrusive SQL injection attack and defense. Moreover, the ability of resisting the SQL injection attack of the server has been comprehensively improved through the security strategies on operation system, IIS and database, etc.. Corresponding codes are realized. The method is well applied in the actual projects.
LiPISC: A Lightweight and Flexible Method for Privacy-Aware Intersection Set Computation.
Ren, Wei; Huang, Shiyong; Ren, Yi; Choo, Kim-Kwang Raymond
2016-01-01
Privacy-aware intersection set computation (PISC) can be modeled as secure multi-party computation. The basic idea is to compute the intersection of input sets without leaking privacy. Furthermore, PISC should be sufficiently flexible to recommend approximate intersection items. In this paper, we reveal two previously unpublished attacks against PISC, which can be used to reveal and link one input set to another input set, resulting in privacy leakage. We coin these as Set Linkage Attack and Set Reveal Attack. We then present a lightweight and flexible PISC scheme (LiPISC) and prove its security (including against Set Linkage Attack and Set Reveal Attack).
Methods, media, and systems for detecting attack on a digital processing device
Stolfo, Salvatore J.; Li, Wei-Jen; Keromylis, Angelos D.; Androulaki, Elli
2014-07-22
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.
Methods, media, and systems for detecting attack on a digital processing device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolfo, Salvatore J.; Li, Wei-Jen; Keromytis, Angelos D.
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document tomore » the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.« less
"Dateline NBC"'s Persuasive Attack on Wal-Mart.
ERIC Educational Resources Information Center
Benoit, William L.; Dorries, Bruce
1996-01-01
Develops a typology of persuasive attack strategies. Identifies two key components of persuasive attack: responsibility and offensiveness. Describes several strategies for intensifying each of these elements. Applies this analysis to "Dateline NBC"'s allegations that Wal-Mart's "Buy American" campaign was deceptive. Concludes…
Percolation of localized attack on complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo
2015-02-01
The robustness of complex networks against node failure and malicious attack has been of interest for decades, while most of the research has focused on random attack or hub-targeted attack. In many real-world scenarios, however, attacks are neither random nor hub-targeted, but localized, where a group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation framework to analytically and numerically study the robustness of complex networks against such localized attack. In particular, we investigate this robustness in Erdős-Rényi networks, random-regular networks, and scale-free networks. Our results provide insight into how to better protect networks, enhance cybersecurity, and facilitate the design of more robust infrastructures.
Atypical familial Mediterranean fever developed in a long-term hemodialysis patient.
Makino, Toshiyuki; Ohara, Yoshitatsu; Kobayashi, Namiko; Kono, Yohei; Nomizu, Ayumu; Ichijo, Mariko; Mori, Yutaro; Matsui, Noriaki; Kishida, Dai; Toda, Takayuki
2018-04-01
Familial Mediterranean Fever (FMF) is usually an autosomal recessive autoinflammatory disease characterized by recurrent attacks of fever and serositis. FMF develops before the age of 20 years in 90% of patients. It has intervals of 1 week to several years between attacks, which leads to renal dysfunction-amyloidosis. We report a case of atypical FMF that developed in a long-term hemodialysis patient. A 65-year-old Japanese female undergoing hemodialysis for 32 years was referred to our hospital with a fever of unknown origin (FUO) following cervical laminoplasty. The fever occurred as recurrent attacks accompanied by oligoarthralgia of the left hip and knee. We suspected FMF because of recurrent self-limited febrile attacks, although the patient showed atypical clinical features such as late-onset and highly frequent attacks. After receiving treatment, she achieved a complete response to colchicine. Therefore, a diagnosis of FMF was made based on the Tel-Hashomer criteria, which was confirmed by genetic testing. The case suggests that FMF may be of note in long-term hemodialysis patients developing FUO. © 2017 International Society for Hemodialysis.
5m RPV for Exploring Joined Wing Gust Response
2009-12-01
an outer layer of light glass scrim used as the first layer. Varying layers of carbon cloth are used and then the core material is added. In this...for various angles of attack and sideslip angles. A parametric model is developed using Phoenix Integration’s Model Center Software (MC). This model...by the ground control software and finally a piece of real-time footage taken from the on-board, gimbaled camera. 2009 Progress Report 27
An analysis of influenza outbreaks in institutions and enclosed societies.
Finnie, T J R; Copley, V R; Hall, I M; Leach, S
2014-01-01
This paper considers the reported attack ratio arising from outbreaks of influenza in enclosed societies. These societies are isolated from the wider community and have greater opportunities for contact between members which would aid the spread of disease. While the particular kind of society (prison, care home, school, barracks, etc.) was not a significant factor in an adjusted model of attack ratio, a person's occupation within the society was. In particular, children and military personnel suffer a greater attack ratio than other occupational types (staff, prisoners, etc.). There was no temporal trend in final attack ratio nor, with the exception of 1918, do pandemic years show abnormal attack ratios. We also observed that as community size increases, the attack ratio undergoes steep nonlinear decline. This statistical analysis draws attention to how the organization of such societies, their size and the occupations of individuals within them affect the final attack ratio.
Adams, Richard E; Boscarino, Joseph A
2011-01-01
Research suggests that perievent panic attacks--panic attacks in temporal proximity to traumatic events--are predictive of later mental health status, including the onset of depression. Using a community sample of New York City residents interviewed 1 year and 2 years after the World Trade Center Disaster, we estimated a structural equation model (SEM) using pre-disaster psychological status and post-disaster life events, together with psychosocial resources, to assess the relationship between perievent panic and later onset depression. Bivariate results revealed a significant association between perievent panic and both year-1 and year-2 depression. Results for the SEM, however showed that perievent panic was predictive of year-1 depression, but not year-2 depression, once potential confounders were controlled Year-2 stressors and year-2 psychosocial resources were the best predictors of year-2 depression onset. Pre-disaster psychological problems were directly implicated in year-1 depression, but not year-2 depression. We conclude that a conceptual model that includes pre- and post-disaster variables best explains the complex causal pathways between psychological status, stressor exposure, perievent panic attacks, and depression onset two years after the World Trade Center attacks.
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Ricketts, R. H.
1980-01-01
Root mean square (rms) bending moments for a dynamically scaled, aeroelastic wing of a proposed forward swept wing, flight demonstrator airplane are presented for angles of attack up to 15 deg at a Mach number of 0.8 The 0.6 size semispan model had a leading edge forward sweep of 44 deg and was constructed of composite material. In addition to broad band responses, individual rms responses and total damping ratios are presented for the first two natural modes. The results show that the rms response increases with angle of attack and has a peak value at an angle of attack near 13 deg. In general, the response was characteristic of buffeting and similar to results often observed for aft swept wings. At an angle of attack near 13 deg, however, the response had characteristics associated with approaching a dynamic instability, although no instability was observed over the range of parameters investigated.
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1975-01-01
Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
Sleep Deprivation Attack Detection in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata
2012-02-01
Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.
Economics of Employer-Sponsored Workplace Vaccination to Prevent Pandemic and Seasonal Influenza
Lee, Bruce Y.; Bailey, Rachel R.; Wiringa, Ann E.; Afriyie, Abena; Wateska, Angela R.; Smith, Kenneth J.; Zimmerman, Richard K.
2010-01-01
Employers may be loath to fund vaccination programs without understanding the economic consequences. We developed a decision analytic computational simulation model including dynamic transmission elements that determined the cost-benefit of employer-sponsored workplace vaccination from the employer's perspective. Implementing such programs was relatively inexpensive (<$35/vaccinated employee) and, in many cases, cost saving across diverse occupational groups in all seasonal influenza scenarios. Such programs were cost-saving for a 20% serologic attack rate pandemic scenario (−$15 to −$995) per vaccinated employee) and a 30% serologic attack rate pandemic scenario (range −$39 to −$1,494 per vaccinated employee) across all age and major occupational groups. PMID:20620168
Relative Risk Appraisal, the September 11 Attacks, and Terrorism-Related Fears
Marshall, Randall D.; Bryant, Richard A.; Amsel, Lawrence; Suh, Eun Jung; Cook, Joan M.; Neria, Yuval
2013-01-01
There are now replicated findings that posttraumatic stress disorder (PTSD) symptoms related to the September 11, 2001, attacks occurred in large numbers of persons who did not fit the traditional definition of exposure to a traumatic event. These data are not explained by traditional epidemiologic “bull’s eye” disaster models, which assume the psychological effects are narrowly, geographically circumscribed, or by existing models of PTSD onset. In this article, the authors develop a researchable model to explain these and other terrorism-related phenomena by synthesizing research and concepts from the cognitive science, risk appraisal, traumatic stress, and anxiety disorders literatures. They propose the new term relative risk appraisal to capture the psychological function that is the missing link between the event and subjective response in these and other terrorism-related studies to date. Relative risk appraisal highlights the core notion from cognitive science that human perception is an active, multidimensional process, such that for unpredictable societal threats, proximity to the event is only one of several factors that influence behavioral responses. Addressing distortions in relative risk appraisal effectively could reduce individual and societal vulnerability to a wide range of adverse economic and ethnopolitical consequences to terrorist attacks. The authors present ways in which these concepts and related techniques can be helpful in treating persons with September 11– or terrorism-related distress or psychopathology. PMID:17516775
Marshall, Randall D; Bryant, Richard A; Amsel, Lawrence; Suh, Eun Jung; Cook, Joan M; Neria, Yuval
2007-01-01
There are now replicated findings that posttraumatic stress disorder (PTSD) symptoms related to the September 11, 2001, attacks occurred in large numbers of persons who did not fit the traditional definition of exposure to a traumatic event. These data are not explained by traditional epidemiologic "bull's eye" disaster models, which assume the psychological effects are narrowly, geographically circumscribed, or by existing models of PTSD onset. In this article, the authors develop a researchable model to explain these and other terrorism-related phenomena by synthesizing research and concepts from the cognitive science, risk appraisal, traumatic stress, and anxiety disorders literatures. They propose the new term relative risk appraisal to capture the psychological function that is the missing link between the event and subjective response in these and other terrorism-related studies to date. Relative risk appraisal highlights the core notion from cognitive science that human perception is an active, multidimensional process, such that for unpredictable societal threats, proximity to the event is only one of several factors that influence behavioral responses. Addressing distortions in relative risk appraisal effectively could reduce individual and societal vulnerability to a wide range of adverse economic and ethnopolitical consequences to terrorist attacks. The authors present ways in which these concepts and related techniques can be helpful in treating persons with September 11- or terrorism-related distress or psychopathology. ((c) 2007 APA, all rights reserved).
Blaisdell, G. Kai; Roy, Bitty A.; Pfeifer-Meister, Laurel; Bridgham, Scott D.
2015-01-01
Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack. PMID:25699672
High-Alpha Handling Qualities Flight Research on the NASA F/A-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Wichman, Keith D.; Pahle, Joseph W.; Bahm, Catherine; Davidson, John B.; Bacon, Barton J.; Murphy, Patrick C.; Ostroff, Aaron J.; Hoffler, Keith D.
1996-01-01
A flight research study of high-angle-of-attack handling qualities has been conducted at the NASA Dryden Flight Research Center using the F/A-18 High Alpha Research Vehicle (HARV). The objectives were to create a high-angle-of-attack handling qualities flight database, develop appropriate research evaluation maneuvers, and evaluate high-angle-of-attack handling qualities guidelines and criteria. Using linear and nonlinear simulations and flight research data, the predictions from each criterion were compared with the pilot ratings and comments. Proposed high-angle-of-attack nonlinear design guidelines and proposed handling qualities criteria and guidelines developed using piloted simulation were considered. Recently formulated time-domain Neal-Smith guidelines were also considered for application to high-angle-of-attack maneuvering. Conventional envelope criteria were evaluated for possible extension to the high-angle-of-attack regime. Additionally, the maneuvers were studied as potential evaluation techniques, including a limited validation of the proposed standard evaluation maneuver set. This paper gives an overview of these research objectives through examples and summarizes result highlights. The maneuver development is described briefly, the criteria evaluation is emphasized with example results given, and a brief discussion of the database form and content is presented.
Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems
NASA Astrophysics Data System (ADS)
Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.
2017-01-01
The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.
Quantitative patterns in drone wars
NASA Astrophysics Data System (ADS)
Garcia-Bernardo, Javier; Dodds, Peter Sheridan; Johnson, Neil F.
2016-02-01
Attacks by drones (i.e., unmanned combat air vehicles) continue to generate heated political and ethical debates. Here we examine the quantitative nature of drone attacks, focusing on how their intensity and frequency compare with that of other forms of human conflict. Instead of the power-law distribution found recently for insurgent and terrorist attacks, the severity of attacks is more akin to lognormal and exponential distributions, suggesting that the dynamics underlying drone attacks lie beyond these other forms of human conflict. We find that the pattern in the timing of attacks is consistent with one side having almost complete control, an important if expected result. We show that these novel features can be reproduced and understood using a generative mathematical model in which resource allocation to the dominant side is regulated through a feedback loop.
High Assurance Control of Cyber-Physical Systems with Application to Unmanned Aircraft Systems
NASA Astrophysics Data System (ADS)
Kwon, Cheolhyeon
With recent progress in the networked embedded control technology, cyber attacks have become one of the major threats to Cyber-Physical Systems (CPSs) due to their close integration of physical processes, computational resources, and communication capabilities. While CPSs have various applications in both military and civilian uses, their on-board automation and communication afford significant advantages over a system without such abilities, but these benefits come at the cost of possible vulnerability to cyber attacks. Traditionally, most cyber security studies in CPSs are mainly based on the computer security perspective, focusing on issues such as the trustworthiness of data flow, without rigorously considering the system's physical processes such as real-time dynamic behaviors. While computer security components are key elements in the hardware/software layer, these methods alone are not sufficient for diagnosing the healthiness of the CPSs' physical behavior. In seeking to address this problem, this research work proposes a control theoretic perspective approach which can accurately represent the interactions between the physical behavior and the logical behavior (computing resources) of the CPS. Then a controls domain aspect is explored extending beyond just the logical process of the CPS to include the underlying physical behavior. This approach will allow the CPS whose physical operations are robust/resilient to the damage caused by cyber attacks, successfully complementing the existing CPS security architecture. It is important to note that traditional fault-tolerant/robust control methods could not be directly applicable to achieve resiliency against malicious cyber attacks which can be designed sophisticatedly to spoof the security/safety monitoring system (note this is different from common faults). Thus, security issues at this layer require different risk management to detect cyber attacks and mitigate their impact within the context of a unified physical and logical process model of the CPS. Specifically, three main tasks are discussed in this presentation: (i) we first investigate diverse granularity of the interactions inside the CPS and propose feasible cyber attack models to characterize the compromised behavior of the CPS with various measures, from its severity to detectability; (ii) based on this risk information, our approach to securing the CPS addresses both monitoring of and high assurance control design against cyber attacks by developing on-line safety assessment and mitigation algorithms; and (iii) by extending the developed theories and methods from a single CPS to multiple CPSs, we examine the security and safety of multi-CPS network that are strongly dependent on the network topology, cooperation protocols between individual CPSs, etc. The effectiveness of the analytical findings is demonstrated and validated with illustrative examples, especially unmanned aircraft system (UAS) applications.
A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.
Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue
2017-03-09
With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1974-01-01
A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.
A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks
Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue
2017-01-01
With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962
Mathematical modeling of Avian Influenza epidemic with bird vaccination in constant population
NASA Astrophysics Data System (ADS)
Kharis, M.; Amidi
2018-03-01
The development of the industrial world and human life is increasingly modern and less attention to environmental sustainability causes the virus causes the epidemic has a high tendency to mutate so that the virus that initially only attack animals, is also found to have the ability to attack humans. The epidemics that lasted some time were bird flu epidemics and swine flu epidemics. The flu epidemic led to several deaths and many people admitted to the hospital. Strain (derivatives) of H5N1 virus was identified as the cause of the bird flu epidemic while the H1N1 strain of the virus was identified as the cause of the swine flu epidemic. The symptoms are similar to seasonal flu caused by H3N2 strain of the virus. Outbreaks of bird flu and swine flu initially only attacked animals, but over time some people were found to be infected with the virus.
Veksler, Vladislav D.; Buchler, Norbou; Hoffman, Blaine E.; Cassenti, Daniel N.; Sample, Char; Sugrim, Shridat
2018-01-01
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting. PMID:29867661
Yu Wei; Michael Bevers; Erin J. Belval
2015-01-01
Initial attack dispatch rules can help shorten fire suppression response times by providing easy-to-follow recommendations based on fire weather, discovery time, location, and other factors that may influence fire behavior and the appropriate response. A new procedure is combined with a stochastic programming model and tested in this study for designing initial attack...
Multi-Step Attack Detection via Bayesian Modeling under Model Parameter Uncertainty
ERIC Educational Resources Information Center
Cole, Robert
2013-01-01
Organizations in all sectors of business have become highly dependent upon information systems for the conduct of business operations. Of necessity, these information systems are designed with many points of ingress, points of exposure that can be leveraged by a motivated attacker seeking to compromise the confidentiality, integrity or…
NASA Astrophysics Data System (ADS)
Mathews, J. R.; Peake, N.
2018-05-01
This paper considers the interaction of turbulence with a serrated leading edge. We investigate the noise produced by an aerofoil moving through a turbulent perturbation to uniform flow by considering the scattered pressure from the leading edge. We model the aerofoil as an infinite half plane with a leading edge serration, and develop an analytical model using a Green's function based upon the work of Howe. This allows us to consider both deterministic eddies and synthetic turbulence interacting with the leading edge. We show that it is possible to reduce the noise by using a serrated leading edge compared with a straight edge, but the optimal noise-reducing choice of serration is hard to predict due to the complex interaction. We also consider the effect of angle of attack, and find that in general the serrations are less effective at higher angles of attack.
Duijts, Saskia F A; van der Beek, Allard J; Bleiker, Eveline M A; Smith, Lee; Wardle, Jane
2017-08-07
Sociodemographic, health- and work-related factors have been found to influence return to work in cancer survivors. It is feasible though that behavioural factors, such as expectation of being at work, could also affect work-related outcomes. Therefore, the effect of earlier identified factors and expectation of being at work on future employment status in cancer survivors was explored. To assess the degree to which these factors specifically concern cancer survivors, a comparison with heart attack survivors was made. Data from the English Longitudinal Study of Ageing were used. Cancer and heart attack survivors of working age in the UK were included and followed up for 2 years. Baseline characteristics of both cancer and heart attack survivors were compared regarding employment status. Univariate and multivariate regression analyses were performed in survivors at work, and the interaction between independent variables and diagnose group was assessed. In cancer survivors at work (N = 159), alcohol consumption, participating in moderate or vigorous sport activities, general health and participation were univariate associated with employment status at two-year follow-up. Only fair general health (compared to very good general health) remained statistically significant in the multivariate model (OR 0.31; 95% CI 0.13-0.76; p = 0.010). In heart attack survivors at work (N = 78), gender, general health and expectation of being at work were univariate associated with employment status at follow-up. Female gender (OR 0.03; 95% CI 0.00-0.57; p = 0.018) and high expectation of being at work (OR 10.68; 95% CI 1.23-93.92; p = 0.033) remained significant in the multivariate model. The influence of gender (p = 0.066) and general health (p = 0.020) regarding employment status was found to differ significantly between cancer and heart attack survivors. When predicting future employment status in cancer survivors in the UK, general health is the most relevant factor to consider. While expectation of being at work did not show any significant influence in cancer survivors, in heart attack survivors, it should not be disregarded though, when developing interventions to affect their employment status. Future research should focus on more specific measures for expectation, and additional behavioural factors, such as self-efficacy, and their effect on employment status.
Lethality of sea lamprey attacks on lake trout in relation to location on the body surface
Bergstedt, Roger A.; Schneider, Clifford P.; O'Gorman, Robert
2001-01-01
We compared the locations of healed attack marks of the sea lamprey Petromyzon marinus on live lake trout Salvelinus namaycush with those of unhealed attack marks on dead lake trout to determine if the lethality of a sea lamprey attack was related to attack location. Lake trout were collected from Lake Ontario, live fish with gill nets in September 1985 and dead fish with trawls in October 1983−1986. Attack location was characterized by the percent distances from snout to tail and from the ventral to the dorsal midline. Kolmogorov−Smirnov two-sample tests did not detect significant differences in the distribution of attack location along either the anteroposterior axis or the dorsoventral axis. When attack locations were grouped into six anatomical regions historically used to record sea lamprey attacks, dead fish did not exhibit a significantly higher proportion of attacks in the more anterior regions. Even if the differences in attack location on live and dead fish were significant, they were too small to imply substantial spatial differences in attack lethality that should be accounted for when modeling the effects of sea lampreys feeding on lake trout. We suggest that the tendency for sea lamprey attacks to occur on the anterior half of the fish is related to the lower amplitude of lateral body movement there during swimming and thus the lower likelihood of being dislodged.
Khyâl attacks: a key idiom of distress among traumatized cambodia refugees.
Hinton, Devon E; Pich, Vuth; Marques, Luana; Nickerson, Angela; Pollack, Mark H
2010-06-01
Traumatized Cambodian refugees with PTSD often complain of khyâl attacks. The current study investigates khyâl attacks from multiple perspectives and examines the validity of a model of how khyâl attacks are generated. The study found that khyâl attacks had commonly been experienced in the previous 4 weeks and that their severity was strongly correlated with the severity of PTSD (PTSD Checklist). It was found that khyâl attacks were triggered by various processes--such as worry, trauma recall, standing up, going to a mall--and that khyâl attacks almost always met panic attack criteria. It was also found that during a khyâl attack there was great fear that death might occur from bodily dysfunction. It was likewise found that a complex nosology of khyâl attacks exists that rates the attacks on a scale of severity, that the severity determines how the khyâl attacks should be treated and that those treatments are often complex. As illustrated by the article, khyâl attacks constitute a key aspect of trauma ontology in this group, a culturally specific experiencing of anxiety and trauma-related disorder. The article also contributes to the study of trauma somatics, that is, to the study of how trauma results in specific symptoms in a specific cultural context, showing that a key part of the trauma-somatic reticulum is often a cultural syndrome.
Kurt W. Gottschalk; Philip M. Wargo
1997-01-01
Oak (Quercus spp.) decline is a malady related to the consequences of stress and successful attack of stressed trees by opportunistic (secondary) organisms (Wargo et al. 1983). It is a progressive process where trees decline in health for several years before they die. Houston (1981) developed a model of declines that is presented in Figure 1. So...
Mark Spencer; Kevin O' Hara
2007-01-01
Phytophthora ramorum attacks tanoak (Lithocarpus densiflorus) in California and Oregon. We present a stand-level study examining the presence of disease symptoms in individual stems. Working with data from four plots in redwood (Sequoia sempervirens)/tanoak forests in Marin County, and three plots in Mendocino...
Development of Weeds Density Evaluation System Based on RGB Sensor
NASA Astrophysics Data System (ADS)
Solahudin, M.; Slamet, W.; Wahyu, W.
2018-05-01
Weeds are plant competitors which potentially reduce the yields due to competition for sunlight, water and soil nutrients. Recently, for chemical-based weed control, site-specific weed management that accommodates spatial and temporal diversity of weeds attack in determining the appropriate dose of herbicide based on Variable Rate Technology (VRT) is preferable than traditional approach with single dose herbicide application. In such application, determination of the level of weed density is an important task. Several methods have been studied to evaluate the density of weed attack. The objective of this study is to develop a system that is able to evaluate weed density based on RGB (Red, Green, and Blue) sensors. RGB sensor was used to acquire the RGB values of the surface of the field. An artificial neural network (ANN) model was then used for determining the weed density. In this study the ANN model was trained with 280 training data (70%), 60 validation data (15%), and 60 testing data (15%). Based on the field test, using the proposed method the weed density could be evaluated with an accuracy of 83.75%.
NASA Technical Reports Server (NTRS)
Hinton, David A.
1988-01-01
An effort is underway by NASA, FAA, and industry to reduce the threat of convective microburst wind shear phenomena to aircraft. The goal is to develop and test a candidate set of strategies for recovery from inadvertent microburst encounters during takeoff. Candidate strategies were developed and evaluated using a fast-time simulation consisting of a simple point-mass performance model of a transport-category airplane and an analytical microburst model. The results indicate that the recovery strategy characteristics that best utilize available airplane energy include an initial reduction in pitch attitude to reduce the climb rate, followed by an increase in pitch up to the stick shaker angle of attack. The stick shaker angle of attack should be reached just as the airplane is exiting the microburst. The shallowest angle of climb necessary for obstacle clearance should be used. If the altitude is higher than necessary, an intentional descent to reduce the airspeed deceleration should be used. Of the strategies tested, two flight-path-angle based strategies had the highest recovery altitudes and the least sensitivity to variations in the encounter scenarios.
Progress towards extreme attitude testing with Magnetic Suspension and Balance Systems
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Parker, David H.
1988-01-01
Progress is reported in a research effort aimed towards demonstration of the feasibility of suspension and aerodynamic testing of models at high angles of attack in wind tunnel Magnetic Suspension and Balance Systems. Extensive modifications, described in this paper, have been made to the Southampton University suspension system in order to facilitate this work. They include revision of electromagnet configuration, installation of all-new position sensors and expansion of control system programs. An angle of attack range of 0 to 90 deg is expected for axisymmetric models. To date, suspension up to 80 deg angle of attack has been achieved.
Wein, Lawrence M; Craft, David L
2005-01-01
To aid in understanding how best to respond to a bioterror anthrax attack, we analyze a system of differential equations that includes a disease progression model, a set of spatially distributed queues for distributing antibiotics, and vaccination (pre-event and/or post-event). We derive approximate expressions for the number of casualties as a function of key parameters and management levers, including the time at which the attack is detected, the number of days to distribute antibiotics, the adherence to prophylactic antibiotics, and the fraction of the population that is preimmunized. We compare a variety of public health intervention policies in the event of a hypothetical anthrax attack in a large metropolitan area. Modeling assumptions were decided by the Anthrax Modeling Working Group of the Secretary's Council on Public Health Preparedness. Our results highlight the primary importance of rapid antibiotic distribution and lead us to argue for ensuring post-attack surge capacity to rapidly produce enough anthrax vaccine for an additional 100 million people.
Noise of the SR-3 propeller model at 2 deg and 4 deg angle of attack
NASA Technical Reports Server (NTRS)
Dittmar, J. H.; Jeracki, R. J.
1981-01-01
The noise effect of operating supersonic tip speed propellers at angle of attack with respect to the incoming flow was determined. Increases in the maximum blade passage noise were observed for the propeller operating at angle of attack. The noise increase was not symmetrical with one wall of the wind tunnel having significantly more noise increase than the other wall. This was apparently the result of the rotational direction of the propeller. The lack of symmetry of the noise at angle of attack to the use of oppositely rotating propellers on opposite sides of an airplane fuselage as a way of minimizing the noise due to operation at angle of attack.
An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence
NASA Technical Reports Server (NTRS)
Mish, Patrick F.; Devenport, William J.
2003-01-01
Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative to the airfoil chord. This scheme utilizes Rapid Distortion Theory to account for the distortion of the inflow with the distortion field modeled using a circular cylinder.
Human behaviour can trigger large carnivore attacks in developed countries
Penteriani, Vincenzo; Delgado, María del Mar; Pinchera, Francesco; Naves, Javier; Fernández-Gil, Alberto; Kojola, Ilpo; Härkönen, Sauli; Norberg, Harri; Frank, Jens; Fedriani, José María; Sahlén, Veronica; Støen, Ole-Gunnar; Swenson, Jon E.; Wabakken, Petter; Pellegrini, Mario; Herrero, Stephen; López-Bao, José Vicente
2016-01-01
The media and scientific literature are increasingly reporting an escalation of large carnivore attacks on humans in North America and Europe. Although rare compared to human fatalities by other wildlife, the media often overplay large carnivore attacks on humans, causing increased fear and negative attitudes towards coexisting with and conserving these species. Although large carnivore populations are generally increasing in developed countries, increased numbers are not solely responsible for the observed rise in the number of attacks by large carnivores. Here we show that an increasing number of people are involved in outdoor activities and, when doing so, some people engage in risk-enhancing behaviour that can increase the probability of a risky encounter and a potential attack. About half of the well-documented reported attacks have involved risk-enhancing human behaviours, the most common of which is leaving children unattended. Our study provides unique insight into the causes, and as a result the prevention, of large carnivore attacks on people. Prevention and information that can encourage appropriate human behaviour when sharing the landscape with large carnivores are of paramount importance to reduce both potentially fatal human-carnivore encounters and their consequences to large carnivores. PMID:26838467
Human behaviour can trigger large carnivore attacks in developed countries.
Penteriani, Vincenzo; Delgado, María del Mar; Pinchera, Francesco; Naves, Javier; Fernández-Gil, Alberto; Kojola, Ilpo; Härkönen, Sauli; Norberg, Harri; Frank, Jens; Fedriani, José María; Sahlén, Veronica; Støen, Ole-Gunnar; Swenson, Jon E; Wabakken, Petter; Pellegrini, Mario; Herrero, Stephen; López-Bao, José Vicente
2016-02-03
The media and scientific literature are increasingly reporting an escalation of large carnivore attacks on humans in North America and Europe. Although rare compared to human fatalities by other wildlife, the media often overplay large carnivore attacks on humans, causing increased fear and negative attitudes towards coexisting with and conserving these species. Although large carnivore populations are generally increasing in developed countries, increased numbers are not solely responsible for the observed rise in the number of attacks by large carnivores. Here we show that an increasing number of people are involved in outdoor activities and, when doing so, some people engage in risk-enhancing behaviour that can increase the probability of a risky encounter and a potential attack. About half of the well-documented reported attacks have involved risk-enhancing human behaviours, the most common of which is leaving children unattended. Our study provides unique insight into the causes, and as a result the prevention, of large carnivore attacks on people. Prevention and information that can encourage appropriate human behaviour when sharing the landscape with large carnivores are of paramount importance to reduce both potentially fatal human-carnivore encounters and their consequences to large carnivores.
1982-02-01
should also convey an understanding of the differ- ences in learning behavior between initial learning activity and later skill maintenance and...refinement might then be, ATTACK MANEUVERS * Pop-up attack # Loft/ LADO type attack * Level/laydown attack Figure 5-4 showe diagrammatically the...sensitive to differ- ences in performance. Severai criteria should be used to guide the selection/development of performance measures, i.e., measure validity
Go Ahead of Malware’s Infections and Controls: Towards New Techniques for Proactive Cyber Defense
2016-12-08
in SDN (such as topology poisoning attacks and data-to-control plan saturation attacks) and developed new defense for SDN (such as TopoGuard and... Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures As part of our research on discovering new vulnerabilities...future network- ing paradigm. We demonstrate that this new attacks can effectively poison the network topology information, then further successfully
Design of Bi-Directional Hydrofoils for Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2015-11-01
Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.
Spatio-Temporal Synchrony of Influenza in Cities across Israel: The “Israel Is One City” Hypothesis
Barnea, Oren; Huppert, Amit; Katriel, Guy; Stone, Lewi
2014-01-01
We analysed an 11-year dataset (1998–2009) of Influenza-Like Illness (ILI) that was based on surveillance of ∽23% of Israel's population. We examined whether the level of synchrony of ILI epidemics in Israel's 12 largest cities is high enough to view Israel as a single epidemiological unit. Two methods were developed to assess the synchrony: (1) City-specific attack rates were fitted to a simple model in order to estimate the temporal differences in attack rates and spatial differences in reporting rates of ILI. The model showed good fit to the data (R2 = 0.76) and revealed considerable differences in reporting rates of ILI in different cities (up to a factor of 2.2). (2) A statistical test was developed to examine the null hypothesis (H0) that ILI incidence curves in two cities are essentially identical, and was tested using ILI data. Upon examining all possible pairs of incidence curves, 77.4% of pairs were found not to be different (H0 was not rejected). It was concluded that all cities generally have the same attack rate and follow the same epidemic curve each season, although the attack rate changes from season to season, providing strong support for the “Israel is one city” hypothesis. The cities which were the most out of synchronization were Bnei Brak, Beersheba and Haifa, the latter two being geographically remote from all other cities in the dataset and the former geographically very close to several other cities but socially separate due to being populated almost exclusively by ultra-orthodox Jews. Further evidence of assortative mixing of the ultra-orthodox population can be found in the 2001–2002 season, when ultra-orthodox cities and neighborhoods showed distinctly different incidence curves compared to the general population. PMID:24622820
Hereditary Angioedema Attacks Resolve Faster and Are Shorter after Early Icatibant Treatment
Maurer, Marcus; Kaplan, Allen; Investigators, on behalf of I. O. S.
2013-01-01
Background Attacks of hereditary angioedema (HAE) are unpredictable and, if affecting the upper airway, can be lethal. Icatibant is used for physician- or patient self-administered symptomatic treatment of HAE attacks in adults. Its mode of action includes disruption of the bradykinin pathway via blockade of the bradykinin B2 receptor. Early treatment is believed to shorten attack duration and prevent severe outcomes; however, evidence to support these benefits is lacking. Objective To examine the impact of timing of icatibant administration on the duration and resolution of HAE type I and II attacks. Methods The Icatibant Outcome Survey is an international, prospective, observational study for patients treated with icatibant. Data on timings and outcomes of icatibant treatment for HAE attacks were collected between July 2009–February 2012. A mixed-model of repeated measures was performed for 426 attacks in 136 HAE type I and II patients. Results Attack duration was significantly shorter in patients treated <1 hour of attack onset compared with those treated ≥1 hour (6.1 hours versus 16.8 hours [p<0.001]). Similar significant effects were observed for <2 hours versus ≥2 hours (7.2 hours versus 20.2 hours [p<0.001]) and <5 hours versus ≥5 hours (8.0 hours versus 23.5 hours [p<0.001]). Treatment within 1 hour of attack onset also significantly reduced time to attack resolution (5.8 hours versus 8.8 hours [p<0.05]). Self-administrators were more likely to treat early and experience shorter attacks than those treated by a healthcare professional. Conclusion Early blockade of the bradykinin B2 receptor with icatibant, particularly within the first hour of attack onset, significantly reduced attack duration and time to attack resolution. PMID:23390491
Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey.
Abdalzaher, Mohamed S; Seddik, Karim; Elsabrouty, Maha; Muta, Osamu; Furukawa, Hiroshi; Abdel-Rahman, Adel
2016-06-29
We present a study of using game theory for protecting wireless sensor networks (WSNs) from selfish behavior or malicious nodes. Due to scalability, low complexity and disseminated nature of WSNs, malicious attacks can be modeled effectively using game theory. In this study, we survey the different game-theoretic defense strategies for WSNs. We present a taxonomy of the game theory approaches based on the nature of the attack, whether it is caused by an external attacker or it is the result of an internal node acting selfishly or maliciously. We also present a general trust model using game theory for decision making. We, finally, identify the significant role of evolutionary games for WSNs security against intelligent attacks; then, we list several prospect applications of game theory to enhance the data trustworthiness and node cooperation in different WSNs.
Invisible Trojan-horse attack.
Sajeed, Shihan; Minshull, Carter; Jain, Nitin; Makarov, Vadim
2017-08-21
We demonstrate the experimental feasibility of a Trojan-horse attack that remains nearly invisible to the single-photon detectors employed in practical quantum key distribution (QKD) systems, such as Clavis2 from ID Quantique. We perform a detailed numerical comparison of the attack performance against Scarani-Ac´ın-Ribordy-Gisin (SARG04) QKD protocol at 1924 nm versus that at 1536 nm. The attack strategy was proposed earlier but found to be unsuccessful at the latter wavelength, as reported in N. Jain et al., New J. Phys. 16, 123030 (2014). However at 1924 nm, we show experimentally that the noise response of the detectors to bright pulses is greatly reduced, and show by modeling that the same attack will succeed. The invisible nature of the attack poses a threat to the security of practical QKD if proper countermeasures are not adopted.
Modeling, Evaluation and Detection of Jamming Attacks in Time-Critical Wireless Applications
2014-08-01
computing, modeling and analysis of wireless networks , network topol- ogy, and architecture design. Dr. Wang has been a Member of the Association for...important, yet open research question is how to model and detect jamming attacks in such wireless networks , where communication traffic is more time...against time-critical wireless networks with applications to the smart grid. In contrast to communication networks where packets-oriented metrics
Counteracting Power Analysis Attacks by Masking
NASA Astrophysics Data System (ADS)
Oswald, Elisabeth; Mangard, Stefan
The publication of power analysis attacks [12] has triggered a lot of research activities. On the one hand these activities have been dedicated toward the development of secure and efficient countermeasures. On the other hand also new and improved attacks have been developed. In fact, there has been a continuous arms race between designers of countermeasures and attackers. This chapter provides a brief overview of the state-of-the art in the arms race in the context of a countermeasure called masking. Masking is a popular countermeasure that has been extensively discussed in the scientific community. Numerous articles have been published that explain different types of masking and that analyze weaknesses of this countermeasure.
Characteristics of a wind-actuated aerodynamic braking device for high-speed trains
NASA Astrophysics Data System (ADS)
Takami, H.; Maekawa, H.
2017-04-01
To shorten the stopping distance of the high speed trains in case of emergency, we developed a small-sized aerodynamic braking unit without use of the friction between a rail and a wheel. The developed device could actuate a pair of two drag panels with a travelling wind. However, after the drag panel fully opened, vibrational movements of the drag panel characterized by its slight flutter were repeated. In this study, to stabilize the opened panel, matters pertaining to the angle of attack with respect to the drag panel and pertaining to the arrangement of the two panels were examined by a wind tunnel experiment using a scale model. As a result, to stabilize the opened panel and to keep the good performance of the braking device, it is found out that an angle of attack of 75 to 80 degrees is suitable provided that the interval of the two panels is narrow enough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Homer; Ashok Varikuti; Xinming Ou
Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Sun, Fuchun; Liu, Huaping
2016-07-01
This paper is concerned with the resilient control under denial-of-service attack launched by the intelligent attacker. The resilient control system is modelled as a multi-stage hierarchical game with a corresponding hierarchy of decisions made at cyber and physical layer, respectively. Specifically, the interaction in the cyber layer between different security agents is modelled as a static infinite Stackelberg game, while in the underlying physical layer the full-information H∞ minimax control with package drops is modelled as a different Stackelberg game. Both games are solved sequentially, which is consistent with the actual situations. Finally, the proposed method is applied to the load frequency control of the power system, which demonstrates its effectiveness.
A Probabilistic Risk Mitigation Model for Cyber-Attacks to PMU Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousavian, Seyedamirabbas; Valenzuela, Jorge; Wang, Jianhui
The power grid is becoming more dependent on information and communication technologies. Complex networks of advanced sensors such as phasor measurement units (PMUs) are used to collect real time data to improve the observability of the power system. Recent studies have shown that the power grid has significant cyber vulnerabilities which could increase when PMUs are used extensively. Therefore, recognizing and responding to vulnerabilities are critical to the security of the power grid. This paper proposes a risk mitigation model for optimal response to cyber-attacks to PMU networks. We model the optimal response action as a mixed integer linear programmingmore » (MILP) problem to prevent propagation of the cyber-attacks and maintain the observability of the power system.« less
Ambient ozone concentration and emergency department visits for panic attacks.
Cho, Jaelim; Choi, Yoon Jung; Sohn, Jungwoo; Suh, Mina; Cho, Seong-Kyung; Ha, Kyoung Hwa; Kim, Changsoo; Shin, Dong Chun
2015-03-01
The effect of ambient air pollution on panic disorder in the general population has not yet been thoroughly elucidated, although the occurrence of panic disorder in workers exposed to organic solvents has been reported previously. We investigated the association of ambient air pollution with the risk of panic attack-related emergency department visits. Using health insurance claims, we collected data from emergency department visits for panic attacks in Seoul, Republic of Korea (2005-2009). Daily air pollutant concentrations were obtained using automatic monitoring system data. We conducted a time-series study using a generalized additive model with Poisson distribution, which included spline variables (date of visit, daily mean temperature, and relative humidity) and parametric variables (daily mean air pollutant concentration, national holiday, and day of the week). In addition to single lag models (lag1 to lag3), cumulative lag models (lag0-1 to lag0-3) were constructed using moving-average concentrations on the days leading up to the visit. The risk was expressed as relative risk (RR) per one standard deviation of each air pollutant and its 95% confidence interval (95% CI). A total of 2320 emergency department visits for panic attacks were observed during the study period. The adjusted RR of panic attack-related emergency department visits was 1.051 (95% CI, 1.014-1.090) for same-day exposure to ozone. In cumulative models, adjusted RRs were 1.068 (1.029-1.107) in lag0-2 and 1.074 (1.035-1.114) in lag0-3. The ambient ozone concentration was significantly associated with emergency department visits for panic attacks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jeon, Yongwoog Andrew; Hale, Brent; Knackmuhs, Eric; Mackert, Michael
2018-03-20
Anonymous verbal attacks against overweight individuals on social media are common and widespread. These comments often use negative, misogynist, or derogatory words, which stigmatize the targeted individuals with obesity. These verbal attacks may cause depression in overweight individuals, which could subsequently promote unhealthy eating behavior (ie, binge eating) and further weight gain. To develop an intervention policy and strategies that tackle the anonymous, Web-based verbal attacks, a thorough understanding of the comments is necessary. This study aimed to examine how anonymous users verbally attack or defend overweight individuals in terms of 3 themes: (1) topic of verbal attack (ie, what aspects of overweight individuals are verbally attacked), (2) gender of commenters and targeted overweight individuals, and (3) intensity of derogation depending on the targeted gender (ie, the number of swear words used within comments). This study analyzed the content of YouTube comments that discuss overweight individuals or groups from 2 viral videos, titled "Fat Girl Tinder Date" and "Fat Guy Tinder Date." The twin videos provide an avenue through which to analyze discussions of obesity as they organically occurred in a contemporary setting. We randomly sampled and analyzed 320 comments based on a coding instrument developed for this study. First, there were twice as many comments verbally attacking overweight individuals (n=174) than comments defending them (n=89). Second, overweight women are attacked for their capacities (eg, laziness, maturity; 14/51, 28%), whereas overweight men are attacked for their heterosocial skills (eg, rudeness, annoyance; 24/29, 83%). Third, the majority of commenters who attacked overweight women are male (42/52, 81%). Fourth, attacking comments generated toward overweight women included more swear words (mean 0.44, SD 0.77) than those targeting men (mean 0.23, SD 0.48). Our data elucidate a worrying situation of frequent disinhibited aggressive messages against overweight individuals online. Importantly, the patterns of verbal aggression differ depending on the gender of the targeted overweight individuals. Thus, gender-tailored intervention strategies that specifically tackle Internet users' verbal aggression against overweight individuals need to be developed. ©Yongwoog Andrew Jeon, Brent Hale, Eric Knackmuhs, Michael Mackert. Originally published in the Interactive Journal of Medical Research (http://www.i-jmr.org/), 20.03.2018.
A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.
1994-01-01
A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.
Simulating cyber warfare and cyber defenses: information value considerations
NASA Astrophysics Data System (ADS)
Stytz, Martin R.; Banks, Sheila B.
2011-06-01
Simulating cyber warfare is critical to the preparation of decision-makers for the challenges posed by cyber attacks. Simulation is the only means we have to prepare decision-makers for the inevitable cyber attacks upon the information they will need for decision-making and to develop cyber warfare strategies and tactics. Currently, there is no theory regarding the strategies that should be used to achieve objectives in offensive or defensive cyber warfare, and cyber warfare occurs too rarely to use real-world experience to develop effective strategies. To simulate cyber warfare by affecting the information used for decision-making, we modify the information content of the rings that are compromised during in a decision-making context. The number of rings affected and value of the information that is altered (i.e., the closeness of the ring to the center) is determined by the expertise of the decision-maker and the learning outcome(s) for the simulation exercise. We determine which information rings are compromised using the probability that the simulated cyber defenses that protect each ring can be compromised. These probabilities are based upon prior cyber attack activity in the simulation exercise as well as similar real-world cyber attacks. To determine which information in a compromised "ring" to alter, the simulation environment maintains a record of the cyber attacks that have succeeded in the simulation environment as well as the decision-making context. These two pieces of information are used to compute an estimate of the likelihood that the cyber attack can alter, destroy, or falsify each piece of information in a compromised ring. The unpredictability of information alteration in our approach adds greater realism to the cyber event. This paper suggests a new technique that can be used for cyber warfare simulation, the ring approach for modeling context-dependent information value, and our means for considering information value when assigning cyber resources to information protection tasks. The first section of the paper introduces the cyber warfare simulation challenge and the reasons for its importance. The second section contains background information related to our research. The third section contains a discussion of the information ring technique and its use for simulating cyber attacks. The fourth section contains a summary and suggestions for research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Consuelo Juanita
Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or datamore » to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.« less
A computational examination of directional stability for smooth and chined forebodies at high-alpha
NASA Technical Reports Server (NTRS)
Ravi, Ramakrishnan; Mason, William H.
1992-01-01
Computational Fluid Dynamics (CFD) has been used to study aircraft forebody flowfields at low-speed, angle-of-attack conditions with sideslip. The purpose is to define forebody geometries which provide good directional stability characteristics under these conditions. The flows over the experimentally investigated F-5A forebody and chine type configuration, previously computed by the authors, were recomputed with better grid topology and resolution. The results were obtained using a modified version of CFL3D (developed at NASA Langley) to solve either the Euler equations or the Reynolds equations employing the Baldwin-Lomax turbulence model with the Degani-Schiff modification to account for massive crossflow separation. Based on the results, it is concluded that current CFD methods can be used to investigate the aerodynamic characteristics of forebodies to achieve desirable high angle-of-attack characteristics. An analytically defined generic forebody model is described, and a parametric study of various forebody shapes was then conducted to determine which shapes promote a positive contribution to directional stability at high angle-of-attack. An unconventional approach for presenting the results is used to illustrate how the positive contribution arises. Based on the results of this initial parametric study, some guidelines for aerodynamic design to promote positive directional stability are presented.
Navier-Stokes analysis of airfoils with leading edge ice accretions
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.
1993-01-01
A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1991-01-01
The accuracy of a nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was verified for quasi-steady flight conditions up to 55 deg angle of attack during the F-18 High Alpha Research Vehicle (HARV) Program. The system is a matrix of nine pressure ports arranged in annular rings on the aircraft nose. The complete airdata set is estimated using nonlinear regression. Satisfactory frequency response was verified to the system Nyquist frequency (12.5 Hz). The effects of acoustical distortions within the individual pressure sensors of the nonintrusive pressure matrix on overall system performance are addressed. To quantify these effects, a frequency-response model describing the dynamics of acoustical distortion is developed and simple design criteria are derived. The model adjusts measured HI-FADS pressure data for the acoustical distortion and quantifies the effects of internal sensor geometries on system performance. Analysis results indicate that sensor frequency response characteristics very greatly with altitude, thus it is difficult to select satisfactory sensor geometry for all altitudes. The solution used presample filtering to eliminate resonance effects, and short pneumatic tubing sections to reduce lag effects. Without presample signal conditioning the system designer must use the pneumatic transmission line to attenuate the resonances and accept the resulting altitude variability.
Simulated Tank Anti-Armor Gunnery System (STAGS-TOW).
1983-05-01
to train TOW gunners. It is derived from a model previously developed for DRAGON. The system employs a terrain board with model enemy armored vehicles ...gunnery training. TOW is a crew-portable, heavy anti-tank weapon designed to attack and defeat armored vehicles and field fortifications. The missile is...a target area, converts the infrared energy to electrical signals and then to visible light and displays the visible light as a real-time scene for
1980-01-15
Code B364078464 V99QAXNH30303 H2590D. IS KEY WORDS fCo.. e.1 Odn Od It -C.eWV WHO Idnlif b 61-k n 0ber) Strategic Targeting Copper Industry INDATAK 20...develop, debug and test an industrial simulation model (INDATAK) using the LOGATAK model as a point of departure. The copper processing industry is...significant processes in the copper industry, including the transportation network connecting the processing elements, have been formatted for use in
F/A-18 forebody vortex control. Volume 1: Static tests
NASA Technical Reports Server (NTRS)
Kramer, Brian R.; Suarez, Carlos J.; Malcolm, Gerald N.; Ayers, Bert F.
1994-01-01
A wind tunnel test was conducted on a six percent model of the F/A-18 at the NASA Ames 7 X 10-Foot Low Speed Wind Tunnel. The primary objective of the test was to evaluate several forebody vortex control configurations at high angles of attack in order to determine the most effective method of obtaining well behaved yawing moments, in preparation for the rotary balance test. Both mechanical and pneumatic systems were tested. Single and dual rotating nose tip strakes and a vertical nose strake were tested at different sizes and deflections. A series of jet blowing configurations were located at various fuselage stations, azimuth angles, and pointing angles ranging from straight aft to 60 deg canted inboard. Slot blowing was investigated for several slot lengths and fuselage stations. The effect of blowing rate was tested for both of these pneumatic systems. The most effective configurations were then further tested with a variation of both sideslip angle and Reynolds number over a range of angles of attack from 0 to 60 deg. It was found that a very robust system can be developed that provides yawing moments at angles of attack up to 60 deg that significantly exceeds that available from 30 deg of rudder deflection (F/A-18 maximum) at 0 deg angle of attack.
Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩
Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar
2014-01-01
In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415
Human Capital Development - Resilient Cyber Physical Systems
2017-09-29
Human Capital Development – Resilient Cyber Physical Systems Technical Report SERC-2017-TR-113 September 29, 2017 Principal Investigator...4.2.2 Cyber Attack Taxonomy for Cyber Physical Systems .............................................................................. 43 4.2.3...Cyber- physical System Attack Taxonomy ................................................................................................ 44 4.2.4
NASA Technical Reports Server (NTRS)
Doggett, Glen P.; Chokani, Ndaona
1996-01-01
An experimental investigation of the effects of angle of attack on hypersonic boundary-layer stability on a flared-cone model was conducted in the low-disturbance Mach-6 Nozzle-Test Chamber Facility at NASA Langley Research Center. This unique facility provided a 'quiet' flow test environment which is well suited for stability experiments because the low levels of freestream 'noise' minimize artificial stimulation of flow-disturbance growth. Surface pressure and temperature measurements documented the adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics were applied to identify the instability mechanisms which lead to transition. In addition, the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes computations. Results show that the boundary layer becomes more stable on the windward ray and less stable on the leeward ray relative to the zero-degree angle-of-attack case. The second-mode instability dominates the transition process at a zero-degree angle of attack, however, on the windward ray at an angle of attack this mode was completely stabilized. The less-dominant first-mode instability was slightly destabilized on the windward ray. Non-linear mechanisms such as saturation and harmonic generation are identified from the flow-disturbance bispectra.
NASA Astrophysics Data System (ADS)
Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin
2016-10-01
Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
How bumps on whale flippers delay stall: an aerodynamic model.
van Nierop, Ernst A; Alben, Silas; Brenner, Michael P
2008-02-08
Wind tunnel experiments have shown that bumps on the leading edge of model humpback whale flippers cause them to "stall" (i.e., lose lift dramatically) more gradually and at a higher angle of attack. Here we develop an aerodynamic model which explains the observed increase in stall angle. The model predicts that as the amplitude of the bumps is increased, the lift curve flattens out, leading to potentially desirable control properties. We find that stall delay is insensitive to the wavelength of the bumps, in accordance with experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Spencer, Benjamin W.; Cai, Guowei
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document themore » progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.« less
Population biology of the European woodwasp, Sirex noctilio, in Galicia, Spain.
Lombardero, M J; Ayres, M P; Krivak-Tetley, F E; Fitza, K N E
2016-10-01
Sirex noctilio Fabricius (Hymenoptera, Siricidae) is rare and rarely studied where it is native in Eurasia, but is a widespread pest of pines in the Southern Hemisphere. Here we report on the abundance, basic biology, host use patterns and natural enemies of native S. noctilio in Galicia, Spain. Most trees attacked by S. noctilio failed to produce any adult progeny: >90% of emergences came from <20% of the attacked trees. The highest reproduction was in Pinus pinaster, followed by Pinus sylvestris and Pinus radiata. The proportions of S. noctilio requiring 1, 2 or 3 years for development were 0.72: 0.24: 0.04. Delayed development could be an adaptation to avoid parasitic nematodes, which sterilized 41.5% adults with one year generation time but only 19% of adults with 2 years generation time. Hymenoptera parasitoids accounted for 20% mortality. Sex ratios were male biased at 1: 2.9. Body size and fecundity were highly variable and lower than previously reported from the Southern Hemisphere. On attacked trees, there were 5-20 attacks per standard log (18 dm2), with usually 1-3 drills per attack. Attack densities and drills per attack were higher in trees that subsequently died. The production of S. noctilio per log was positively related to total attacks, and negatively related to: (1) attack density, (2) incidence of blue stain from Ophiostoma fungi and (3) frequency of lesions in plant tissue around points of attack. A preliminary life table for S. noctilio in Galicia estimated effects on potential population growth rate from (in decreasing order of importance) host suitability, unequal sex ratio, parasitic nematodes and Hymenoptera parasitoids.
Distributed Secure Coordinated Control for Multiagent Systems Under Strategic Attacks.
Feng, Zhi; Wen, Guanghui; Hu, Guoqiang
2017-05-01
This paper studies a distributed secure consensus tracking control problem for multiagent systems subject to strategic cyber attacks modeled by a random Markov process. A hybrid stochastic secure control framework is established for designing a distributed secure control law such that mean-square exponential consensus tracking is achieved. A connectivity restoration mechanism is considered and the properties on attack frequency and attack length rate are investigated, respectively. Based on the solutions of an algebraic Riccati equation and an algebraic Riccati inequality, a procedure to select the control gains is provided and stability analysis is studied by using Lyapunov's method.. The effect of strategic attacks on discrete-time systems is also investigated. Finally, numerical examples are provided to illustrate the effectiveness of theoretical analysis.
Using agility to combat cyber attacks.
Anderson, Kerry
2017-06-01
Some incident response practitioners feel that they have been locked in a battle with cyber criminals since the popular adoption of the internet. Initially, organisations made great inroads in preventing and containing cyber attacks. In the last few years, however, cyber criminals have become adept at eluding defence security technologies and rapidly modifying their exploit strategies for financial or political gains. Similar to changes in military combat tactics, cyber criminals utilise distributed attack cells, real-time communications, and rapidly mutating exploits to minimise the potential for detection. Cyber criminals have changed their attack paradigm. This paper describes a new incident response paradigm aimed at combating the new model of cyber attacks with an emphasis on agility to increase the organisation's ability to respond rapidly to these new challenges.
Improvement of maneuver aerodynamics by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
Spanwise blowing was used to test a generalized wind-tunnel model to investigate component concepts in order to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on performance, stability, and control at high angles of attack and subsonic speeds. Test data were obtained in the Langley high speed 7 by 10 foot tunnel at free stream Mach numbers up to 0.50 for a range of model angles of attack, jet momentum coefficients, and leading and trailing edge flap deflection angles. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack.
TSARINA: A Computer Model for Assessing Conventional and Chemical Attacks on Airbases
1990-09-01
IV, and has been updated to FORTRAN 77; it has been adapted to various computer systems, as was the widely used AIDA model and the previous versions of...conventional and chemical attacks on sortie generation. In the first version of TSARINA [1 2], several key additions were made to the AIDA model so that (1...various on-base resources, in addition to the estimates of hits and facility damage that are generated by the original AIDA model . The second version
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
Madenjian, C.P.; Chipman, B.D.; Marsden, J.E.
2008-01-01
Sea lamprey (Petromyzon marinus) control in North America costs millions of dollars each year, and control measures are guided by assessment of lamprey-induced damage to fisheries. The favored prey of sea lamprey in freshwater ecosystems has been lake trout (Salvelinus namaycush). A key parameter in assessing sea lamprey damage, as well as managing lake trout fisheries, is the probability of an adult lake trout surviving a lamprey attack. The conventional value for this parameter has been 0.55, based on laboratory experiments. In contrast, based on catch curve analysis, mark-recapture techniques, and observed wounding rates, we estimated that adult lake trout in Lake Champlain have a 0.74 probability of surviving a lamprey attack. Although sea lamprey growth in Lake Champlain was lower than that observed in Lake Huron, application of an individual-based model to both lakes indicated that the probability of surviving an attack in Lake Champlain was only 1.1 times higher than that in Lake Huron. Thus, we estimated that lake trout survive a lamprey attack in Lake Huron with a probability of 0.66. Therefore, our results suggested that lethality of a sea lamprey attack on lake trout has been overestimated in previous model applications used in fisheries management. ?? 2008 NRC.
Shorov, Andrey; Kotenko, Igor
2014-01-01
The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.
A quantum optical firewall based on simple quantum devices
NASA Astrophysics Data System (ADS)
Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.
2015-07-01
In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."
Unsteady Airfoil Flow Solutions on Moving Zonal Grids
1992-12-17
for the angle-of-attack of 15.5’, the comparisons diverge. This happens because of the different turbulence models used . At this angle- of attack, the...downstream in the wake . This vortex shedding phenomenon alters the chordwise pressure distribution on the upper surface of the airfoil resulting in higher...in- terest, turbulence modeling is used . Turbulence models are implemented with the time-averaged forms of the Navier-Stokes equations. Two widely
Bridges and Ladders: Building the Logic and Structure for Cyberspace
2012-06-01
control model defends and attacks from the GIG . By comparing and contrasting the three models, the author makes a recommendation for a hybrid model to...operations in cyberspace. The directive was clear in its direction for USCYBERCOM, through USSTRATCOM, to secure the DoD global information grid ( GIG ) and...capabilities and potential breakthroughs. The GIG is comprised of 7 million devices spread across 15,000 networks that are attacked “hundreds of
Randomized Prediction Games for Adversarial Machine Learning.
Rota Bulo, Samuel; Biggio, Battista; Pillai, Ignazio; Pelillo, Marcello; Roli, Fabio
In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time, e.g., malware code is typically obfuscated using random strings or byte sequences to hide known exploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this paper, we overcome this limitation by proposing a randomized prediction game, namely, a noncooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the tradeoff between attack detection and false alarms with respect to the state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam, and malware detection.
2014-06-13
September 2013, fifteen gunmen associated with the terrorist group Al- Shabaab conducted an attack in the Westgate Shopping Mall in Nairobi, Kenya. The... theory , current U.S. Army doctrine, and the lessons learned from the police development efforts in Iraq, a foreign police development model is...civilian police enablers and an understanding of police theory and the lessons learned from previous police reform efforts. 15. SUBJECT TERMS
Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey
Abdalzaher, Mohamed S.; Seddik, Karim; Elsabrouty, Maha; Muta, Osamu; Furukawa, Hiroshi; Abdel-Rahman, Adel
2016-01-01
We present a study of using game theory for protecting wireless sensor networks (WSNs) from selfish behavior or malicious nodes. Due to scalability, low complexity and disseminated nature of WSNs, malicious attacks can be modeled effectively using game theory. In this study, we survey the different game-theoretic defense strategies for WSNs. We present a taxonomy of the game theory approaches based on the nature of the attack, whether it is caused by an external attacker or it is the result of an internal node acting selfishly or maliciously. We also present a general trust model using game theory for decision making. We, finally, identify the significant role of evolutionary games for WSNs security against intelligent attacks; then, we list several prospect applications of game theory to enhance the data trustworthiness and node cooperation in different WSNs. PMID:27367700
NASA Technical Reports Server (NTRS)
Jordan, Frank L., Jr.; Hahne, David E.
1992-01-01
An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.
Effects of Angle of Attack and Velocity on Trailing Edge Noise
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.
2006-01-01
Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.
Avalappampatty Sivasamy, Aneetha; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668
Sivasamy, Aneetha Avalappampatty; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.
Finite Energy and Bounded Attacks on Control System Sensor Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M
Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) has been in securing the networks using information security techniques and protection and reliability concerns at the control system level against random hardware and software failures. However, besides these failures the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis and detection methods need to be developed. In this paper, sensor signalmore » attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop system under optimal signal attacks are provided. Illustrative numerical examples are provided together with an application to a power network with distributed LQ controllers.« less
Yohan Lee; Jeremy S. Fried; Heidi J. Albers; Robert G. Haight
2013-01-01
We combine a scenario-based, standard-response optimization model with stochastic simulation to improve the efficiency of resource deployment for initial attack on wildland fires in three planning units in California. The optimization model minimizes the expected number of fires that do not receive a standard response--defined as the number of resources by type that...
Investigation of High-Angle-of-Attack Maneuver-Limiting Factors. Part 1. Analysis and Simulation
1980-12-01
useful, are not so satisfying or in- structive as the more positive identification of causal factors offered by the methods developed in Reference 5...same methods be applied to additional high-performance fighter aircraft having widely differing high AOA handling characteristics to see if further...predictions and the nonlinear model results were resolved. The second task involved development of methods , criteria, and an associated pilot rating scale, for
Multicultural Leader Behaviors in Ethnically Mixed Task Groups.
1980-03-15
identification of develop- mental patterns and identity types among multicultural persons. Development of the Inventory. Initial extensive interviews...York: Academic Press, 1974. Ramirez, M. III and Cox, B. G. Rural mental health : a Mexican-American model, in preparation. 47 -#~-,~.y~77~~ T7...34You talk about improving their health ...well, isn’t cancer related to stress ? And heart attacks? How many people die each year from these illnesses
Fuzzy-information-based robustness of interconnected networks against attacks and failures
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai
2016-09-01
Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.
Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing
NASA Technical Reports Server (NTRS)
Pedreiro, Nelson
1997-01-01
Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains the model to two degrees-of-freedom, roll and yaw, was designed and built. The apparatus was used to conduct dynamic experiments which showed that the system was unstable, its natural motion divergent. A model for the unsteady aerodynamic loads was developed based on the basic physics of the flow and results from flow visualization experiments. Parameters of the aerodynamic model were identified from experimental data. The model was validated using data from dynamic experiments. The aerodynamic model completes the equations of motion of the system which were used in the design of control laws using blowing as the only actuator. The unsteady aerodynamic model was implemented as part of the real-time vehicle control system. A control strategy using asymmetric blowing was demonstrated experimentally. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, and roll and yaw angles on the flow structure were determined. It is shown that superimposing symmetric and asymmetric blowing has a linearizing effect on the actuator characteristics. Transient responses of roll and yaw moments to step input blowing were characterized, and their differences were explained based on the physical mechanisms through which these loads are generated.
Integrated situational awareness for cyber attack detection, analysis, and mitigation
NASA Astrophysics Data System (ADS)
Cheng, Yi; Sagduyu, Yalin; Deng, Julia; Li, Jason; Liu, Peng
2012-06-01
Real-time cyberspace situational awareness is critical for securing and protecting today's enterprise networks from various cyber threats. When a security incident occurs, network administrators and security analysts need to know what exactly has happened in the network, why it happened, and what actions or countermeasures should be taken to quickly mitigate the potential impacts. In this paper, we propose an integrated cyberspace situational awareness system for efficient cyber attack detection, analysis and mitigation in large-scale enterprise networks. Essentially, a cyberspace common operational picture will be developed, which is a multi-layer graphical model and can efficiently capture and represent the statuses, relationships, and interdependencies of various entities and elements within and among different levels of a network. Once shared among authorized users, this cyberspace common operational picture can provide an integrated view of the logical, physical, and cyber domains, and a unique visualization of disparate data sets to support decision makers. In addition, advanced analyses, such as Bayesian Network analysis, will be explored to address the information uncertainty, dynamic and complex cyber attack detection, and optimal impact mitigation issues. All the developed technologies will be further integrated into an automatic software toolkit to achieve near real-time cyberspace situational awareness and impact mitigation in large-scale computer networks.
Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Gazzaniga, John A.
1989-01-01
The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.
Defending Against Advanced Persistent Threats Using Game-Theory
König, Sandra; Schauer, Stefan
2017-01-01
Advanced persistent threats (APT) combine a variety of different attack forms ranging from social engineering to technical exploits. The diversity and usual stealthiness of APT turns them into a central problem of contemporary practical system security, since information on attacks, the current system status or the attacker’s incentives is often vague, uncertain and in many cases even unavailable. Game theory is a natural approach to model the conflict between the attacker and the defender, and this work investigates a generalized class of matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense. Unlike standard game and decision theory, our model is tailored to capture and handle the full uncertainty that is immanent to APTs, such as disagreement among qualitative expert risk assessments, unknown adversarial incentives and uncertainty about the current system state (in terms of how deeply the attacker may have penetrated into the system’s protective shells already). Practically, game-theoretic APT models can be derived straightforwardly from topological vulnerability analysis, together with risk assessments as they are done in common risk management standards like the ISO 31000 family. Theoretically, these models come with different properties than classical game theoretic models, whose technical solution presented in this work may be of independent interest. PMID:28045922
Exploring resting-state EEG complexity before migraine attacks.
Cao, Zehong; Lai, Kuan-Lin; Lin, Chin-Teng; Chuang, Chun-Hsiang; Chou, Chien-Chen; Wang, Shuu-Jiun
2018-06-01
Objective Entropy-based approaches to understanding the temporal dynamics of complexity have revealed novel insights into various brain activities. Herein, electroencephalogram complexity before migraine attacks was examined using an inherent fuzzy entropy approach, allowing the development of an electroencephalogram-based classification model to recognize the difference between interictal and preictal phases. Methods Forty patients with migraine without aura and 40 age-matched normal control subjects were recruited, and the resting-state electroencephalogram signals of their prefrontal and occipital areas were prospectively collected. The migraine phases were defined based on the headache diary, and the preictal phase was defined as within 72 hours before a migraine attack. Results The electroencephalogram complexity of patients in the preictal phase, which resembled that of normal control subjects, was significantly higher than that of patients in the interictal phase in the prefrontal area (FDR-adjusted p < 0.05) but not in the occipital area. The measurement of test-retest reliability (n = 8) using the intra-class correlation coefficient was good with r1 = 0.73 ( p = 0.01). Furthermore, the classification model, support vector machine, showed the highest accuracy (76 ± 4%) for classifying interictal and preictal phases using the prefrontal electroencephalogram complexity. Conclusion Entropy-based analytical methods identified enhancement or "normalization" of frontal electroencephalogram complexity during the preictal phase compared with the interictal phase. This classification model, using this complexity feature, may have the potential to provide a preictal alert to migraine without aura patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bri Rolston
2005-06-01
Threat characterization is a key component in evaluating the threat faced by control systems. Without a thorough understanding of the threat faced by critical infrastructure networks, adequate resources cannot be allocated or directed effectively to the defense of these systems. Traditional methods of threat analysis focus on identifying the capabilities and motivations of a specific attacker, assessing the value the adversary would place on targeted systems, and deploying defenses according to the threat posed by the potential adversary. Too many effective exploits and tools exist and are easily accessible to anyone with access to an Internet connection, minimal technical skills,more » and a significantly reduced motivational threshold to be able to narrow the field of potential adversaries effectively. Understanding how hackers evaluate new IT security research and incorporate significant new ideas into their own tools provides a means of anticipating how IT systems are most likely to be attacked in the future. This research, Attack Methodology Analysis (AMA), could supply pertinent information on how to detect and stop new types of attacks. Since the exploit methodologies and attack vectors developed in the general Information Technology (IT) arena can be converted for use against control system environments, assessing areas in which cutting edge exploit development and remediation techniques are occurring can provide significance intelligence for control system network exploitation, defense, and a means of assessing threat without identifying specific capabilities of individual opponents. Attack Methodology Analysis begins with the study of what exploit technology and attack methodologies are being developed in the Information Technology (IT) security research community within the black and white hat community. Once a solid understanding of the cutting edge security research is established, emerging trends in attack methodology can be identified and the gap between those threats and the defensive capabilities of control systems can be analyzed. The results of the gap analysis drive changes in the cyber security of critical infrastructure networks to close the gap between current exploits and existing defenses. The analysis also provides defenders with an idea of how threat technology is evolving and how defenses will need to be modified to address these emerging trends.« less
Fuzzy Expert System for Heart Attack Diagnosis
NASA Astrophysics Data System (ADS)
Hassan, Norlida; Arbaiy, Nureize; Shah, Noor Aziyan Ahmad; Afizah Afif@Afip, Zehan
2017-08-01
Heart attack is one of the serious illnesses and reported as the main killer disease. Early prevention is significant to reduce the risk of having the disease. The prevention efforts can be strengthen through awareness and education about risk factor and healthy lifestyle. Therefore the knowledge dissemination is needed to play role in order to distribute and educate public in health care management and disease prevention. Since the knowledge dissemination in medical is important, there is a need to develop a knowledge based system that can emulate human intelligence to assist decision making process. Thereby, this study utilized hybrid artificial intelligence (AI) techniques to develop a Fuzzy Expert System for Diagnosing Heart Attack Disease (HAD). This system integrates fuzzy logic with expert system, which helps the medical practitioner and people to predict the risk and as well as diagnosing heart attack based on given symptom. The development of HAD is expected not only providing expert knowledge but potentially become one of learning resources to help citizens to develop awareness about heart-healthy lifestyle.
Wright, J; Harrison, S; McGeorge, M; Patterson, C; Russell, I; Russell, D; Small, N; Taylor, M; Walsh, M; Warren, E; Young, J
2006-01-01
Problem Rapid referral and management of patients with transient ischaemic attacks is a key component in the national strategy for stroke prevention. However, patients with transient ischaemic attacks are poorly identified and undertreated. Design and setting Before and after evaluation of quality improvement programme with controlled comparison in three primary care trusts reflecting diverse populations and organisational structures in an urban district in the North of England. Key measures for improvement The proportion of patients receiving antiplatelet drugs and safe driving advice on referral to a speciality clinic, and the numbers of referrals, adjusted for age, to the specialist clinic before and after the improvement programme. Strategies for change Interviews with patient and professionals to identify gaps and barriers to good practice; development of evidence based guidelines for the management of patients with transient ischaemic attacks; interactive multidisciplinary workshops for each primary care trust with feedback of individual audit results of referral practice; outreach visits to teams who were unable to attend the workshops; referral templates and desktop summaries to provide reminders of the guidelines to clinicians; incorporation of standards into professional contracts. Effects of change A significant improvement occurred in identification and referral of patients with transient ischaemic attacks to specialist clinics, with a 41% increase in referrals from trained practices compared with control practices. There were also significant improvements in the early treatment and safety advice provided to patients before referral. Lessons learnt A strategic approach to effective quality improvement across a diverse health community is feasible and achievable. Careful planning with patient and professional involvement to develop a tailored and multifaceted quality improvement programme to implement evidence based practice can work in very different primary care settings. Key components of the effectiveness of the model include contextual analysis, strong professional support, clear recommendations based on robust evidence, simplicity of adoption, good communication, and use of established networks and opinion leaders. PMID:16456203
Wright, J; Harrison, S; McGeorge, M; Patterson, C; Russell, I; Russell, D; Small, N; Taylor, M; Walsh, M; Warren, E; Young, J
2006-02-01
Rapid referral and management of patients with transient ischaemic attacks is a key component in the national strategy for stroke prevention. However, patients with transient ischaemic attacks are poorly identified and undertreated. Before and after evaluation of quality improvement programme with controlled comparison in three primary care trusts reflecting diverse populations and organisational structures in an urban district in the North of England. The proportion of patients receiving antiplatelet drugs and safe driving advice on referral to a specialty clinic, and the numbers of referrals, adjusted for age, to the specialist clinic before and after the improvement programme. Interviews with patient and professionals to identify gaps and barriers to good practice; development of evidence based guidelines for the management of patients with transient ischaemic attacks; interactive multidisciplinary workshops for each primary care trust with feedback of individual audit results of referral practice; outreach visits to teams who were unable to attend the workshops; referral templates and desktop summaries to provide reminders of the guidelines to clinicians; incorporation of standards into professional contracts. A significant improvement occurred in identification and referral of patients with transient ischaemic attacks to specialist clinics, with a 41% increase in referrals from trained practices compared with control practices. There were also significant improvements in the early treatment and safety advice provided to patients before referral. A strategic approach to effective quality improvement across a diverse health community is feasible and achievable. Careful planning with patient and professional involvement to develop a tailored and multifaceted quality improvement programme to implement evidence based practice can work in very different primary care settings. Key components of the effectiveness of the model include contextual analysis, strong professional support, clear recommendations based on robust evidence, simplicity of adoption, good communication, and use of established networks and opinion leaders.
Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design
NASA Technical Reports Server (NTRS)
Wu, Fen; Gopalarathnam, Ashok; Kim, Sungwan
2005-01-01
A multidisciplinary research e.ort that combines aerodynamic modeling and gain-scheduled control design for aircraft flight at post-stall conditions is described. The aerodynamic modeling uses a decambering approach for rapid prediction of post-stall aerodynamic characteristics of multiple-wing con.gurations using known section data. The approach is successful in bringing to light multiple solutions at post-stall angles of attack right during the iteration process. The predictions agree fairly well with experimental results from wind tunnel tests. The control research was focused on actuator saturation and .ight transition between low and high angles of attack regions for near- and post-stall aircraft using advanced LPV control techniques. The new control approaches maintain adequate control capability to handle high angle of attack aircraft control with stability and performance guarantee.
Modelling conflicts with cluster dynamics in networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Rodgers, G. J.
2010-12-01
We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.
Top-attack modeling and automatic target detection using synthetic FLIR scenery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Penn, Joseph A.
2004-09-01
A series of experiments have been performed to verify the utility of algorithmic tools for the modeling and analysis of cold-target signatures in synthetic, top-attack, FLIR video sequences. The tools include: MuSES/CREATION for the creation of synthetic imagery with targets, an ARL target detection algorithm to detect imbedded synthetic targets in scenes, and an ARL scoring algorithm, using Receiver-Operating-Characteristic (ROC) curve analysis, to evaluate detector performance. Cold-target detection variability was examined as a function of target emissivity, surrounding clutter type, and target placement in non-obscuring clutter locations. Detector metrics were also individually scored so as to characterize the effect of signature/clutter variations. Results show that using these tools, a detailed, physically meaningful, target detection analysis is possible and that scenario specific target detectors may be developed by selective choice and/or weighting of detector metrics. However, developing these tools into a reliable predictive capability will require the extension of these results to the modeling and analysis of a large number of data sets configured for a wide range of target and clutter conditions. Finally, these tools should also be useful for the comparison of competitive detection algorithms by providing well defined, and controllable target detection scenarios, as well as for the training and testing of expert human observers.
NASA Technical Reports Server (NTRS)
Shu, J. Y.
1983-01-01
Two different singularity methods have been utilized to calculate the potential flow past a three dimensional non-lifting body. Two separate FORTRAN computer programs have been developed to implement these theoretical models, which will in the future allow inclusion of the fuselage effect in a pair of existing subcritical wing design computer programs. The first method uses higher order axial singularity distributions to model axisymmetric bodies of revolution in an either axial or inclined uniform potential flow. Use of inset of the singularity line away from the body for blunt noses, and cosine-type element distributions have been applied to obtain the optimal results. Excellent agreement to five significant figures with the exact solution pressure coefficient value has been found for a series of ellipsoids at different angles of attack. Solutions obtained for other axisymmetric bodies compare well with available experimental data. The second method utilizes distributions of singularities on the body surface, in the form of a discrete vortex lattice. This program is capable of modeling arbitrary three dimensional non-lifting bodies. Much effort has been devoted to finding the optimal method of calculating the tangential velocity on the body surface, extending techniques previously developed by other workers.
Flow around a slotted circular cylinder at various angles of attack
NASA Astrophysics Data System (ADS)
Gao, Dong-Lai; Chen, Wen-Li; Li, Hui; Hu, Hui
2017-10-01
We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D ( D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.
The 12-foot pressure wind tunnel restoration project model support systems
NASA Technical Reports Server (NTRS)
Sasaki, Glen E.
1992-01-01
The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.
Development and Analysis of Security Policies in Security Enhanced Android
2012-12-01
Privilege - Escalation Attacks on Android ,” Proc. 19th Annual...Services, Bethesda, MD, 2011, pp. 239–252. 98 [43] L. Davi, et al. “ Privilege Escalation Attacks on Android ,” Proc. 13th Int. Conf. on Information...TaintDroid. XManDroid dynamically analyzes applications’ transitive permission usage in order to prevent application-level privilege escalation attacks
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Ashbury, Scott C.; Deere, Karen A.
1996-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine induced aerodynamic effects from jet reaction controls of an advanced air-to-air missile concept. The 75-percent scale model featured independently controlled reaction jets located near the nose and tail of the model. Aerodynamic control was provided by four fins located near the tail of the model. This investigation was conducted at Mach numbers of 0.35 and 0.60, at angles of attack up to 75 deg and at nozzle pressure ratios up to 90. Jet-reaction thrust forces were not measured by the force balance but jet-induced forces were. In addition, a multiblock three-dimensional Navier-Stokes method was used to calculate the flowfield of the missile at angles of attack up to 40 deg. Results indicate that large interference effects on pitching moment were induced from operating the nose jets with the the off. Excellent correlation between experimental and computational pressure distributions and pitching moment were obtained a a Mach number of 0.35 and at angles of attack up to 40 deg.
Zhang, Liping; Zhu, Shaohui
2015-05-01
To protect the transmission of the sensitive medical data, a secure and efficient authenticated key agreement scheme should be deployed when the healthcare delivery session is established via Telecare Medicine Information Systems (TMIS) over the unsecure public network. Recently, Islam and Khan proposed an authenticated key agreement scheme using elliptic curve cryptography for TMIS. They claimed that their proposed scheme is provably secure against various attacks in random oracle model and enjoys some good properties such as user anonymity. In this paper, however, we point out that any legal but malicious patient can reveal other user's identity. Consequently, their scheme suffers from server spoofing attack and off-line password guessing attack. Moreover, if the malicious patient performs the same time of the registration as other users, she can further launch the impersonation attack, man-in-the-middle attack, modification attack, replay attack, and strong replay attack successfully. To eliminate these weaknesses, we propose an improved ECC-based authenticated key agreement scheme. Security analysis demonstrates that the proposed scheme can resist various attacks and enables the patient to enjoy the remote healthcare services with privacy protection. Through the performance evaluation, we show that the proposed scheme achieves a desired balance between security and performance in comparisons with other related schemes.
Hash Functions and Information Theoretic Security
NASA Astrophysics Data System (ADS)
Bagheri, Nasour; Knudsen, Lars R.; Naderi, Majid; Thomsen, Søren S.
Information theoretic security is an important security notion in cryptography as it provides a true lower bound for attack complexities. However, in practice attacks often have a higher cost than the information theoretic bound. In this paper we study the relationship between information theoretic attack costs and real costs. We show that in the information theoretic model, many well-known and commonly used hash functions such as MD5 and SHA-256 fail to be preimage resistant.
Side Channel Attacks on STTRAM and Low Overhead Countermeasures
2017-03-20
introduce security vulnerabilities and expose the cache memory to side channel attacks. In this paper, we propose a side channel attack (SCA) model...where the adversary can monitor the supply current of the memory array to partially identify the sensi- tive cache data that is being read or written. We...propose solutions such as short retention STTRAM, obfuscation of SCA using 1-bit parity, multi-bit random write, and, neutral- izing the SCA using
Towards a Multiscale Approach to Cybersecurity Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay
2013-11-12
We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; York, Darrin M., E-mail: york@biomaps.rutgers.edu
2014-02-07
The nucleophilic attack of a chloride ion on methyl chloride is an important prototype S{sub N}2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resultingmore » free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.« less
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.; York, Darrin M.
2014-02-01
The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.
Kuechler, Erich R; York, Darrin M
2014-02-07
The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.
Optimizing a tandem disk model
NASA Astrophysics Data System (ADS)
Healey, J. V.
1983-08-01
The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.
ERIC Educational Resources Information Center
REECE, THOMAS E.; AND OTHERS
A GUIDE FOR PLANNING SPECIFIC INSTRUCTION FOR DEVELOPING INDEPENDENT WORD ATTACK PRESENTS THE SKILLS NECESSARY FOR MASTERING SIGHT VOCABULARY, WORD RECOGNITION, AND THE USE OF THE DICTIONARY. SPECIFIC DEFINITIONS OF TERMS AND EXAMPLES OF TEACHING TECHNIQUES WITH THE SEQUENCE OF INSTRUCTION FOR THE DEVELOPMENT OF PHONETIC AND STRUCTURAL ANALYSIS…
Risk factors for hypertensive attack during pheochromocytoma resection
Kwon, Se Yun; Lee, Kyung Seop; Lee, Jun Nyung; Ha, Yun-Sok; Choi, Seock Hwan; Kim, Hyun Tae; Kim, Tae-Hwan; Yoo, Eun Sang
2016-01-01
Purpose We aimed to retrospectively evaluate the risk factors for hypertensive attack during adrenalectomy in patients with pheochromocytoma. Despite the development of newer surgical and anesthetic techniques for the management of pheochromocytoma, intraoperative hypertensive attack continues to present a challenge. Materials and Methods Data from 53 patients diagnosed with pheochromocytoma at Kyungpook National Uriversity Medical Center between January 2000 and June 2012 were retrospectively analyzed. The subjects were divided into 2 groups depending on the presence or absence of hypertensive attack at the time of surgery. Patient demographic characteristics and preoperative evaluations were assessed for their prognostic relevance with respect to hypertensive attack. A univariate analysis was conducted, and a multivariate logistic regression analysis was also performed. Results In the univariate analysis, systolic blood pressure at presentation, preoperative hormonal status (including epinephrine, norepinephrine, vanillylmandelic acid, and metanephrine levels in a 24-hour urine sample), tumor size, and postoperative systolic blood pressure were significantly associated with the development of hypertensive attack. In the multivariate analysis, preoperative epinephrine level and tumor size were independent factors that predicted hypertensive attack. The highest odds ratio for tumor size (2.169) was obtained at a cutoff value of 4.25 cm and the highest odds ratio for preoperative epinephrine (1.020) was obtained at a cutoff value of 166.3 µg/d. Conclusions In this study, a large tumor size and an elevated preoperative urinary epinephrine level were risk factors for intraoperative hypertensive attack in patients with pheochromocytoma. PMID:27194549
Fallout risk following a major nuclear attack on the United States.
Harvey, T F; Shapiro, C S; Wittler, R F
1992-01-01
Fallout distributions are calculated for nuclear attacks on the contiguous United States. Four attack scenarios are treated, including counterforce and counterforce-countervalue attacks, for meteorological conditions associated with a typical day in summer and one in winter. The countervalue attacks contain mostly airbursts. To determine fallout effects, the population surviving the prompt effects is first calculated. For the prompt effects, a "conflagration-type" model is used. The counterforce attack produces about 8 million prompt deaths, and the counterforce-countervalue case projects 98 million prompt deaths. Partial relocation before attack to low-risk fallout areas at least 15 km from potential strategic targets would result in a decrease in projections of deaths by tens of millions. For fallout risk calculations, only the dose received in the first 48 h (the early or local fallout) is considered. Populations are assumed to be sheltered, with a shelter protection factor profile that varies for a large urban area, a small urban area, or a rural area. With these profiles, without relocation, the fallout fatalities for all four attack scenarios are calculated to be less than one million people. This can be compared to fallout fatalities of about 10 million for a hypothetical unsheltered "phantom" population.
Hybrid Intrusion Forecasting Framework for Early Warning System
NASA Astrophysics Data System (ADS)
Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo
Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.
NASA Astrophysics Data System (ADS)
Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Youn, Chun Ju
2018-01-01
Even though unconditional security of B92 quantum key distribution (QKD) system is based on the assumption of perfect positive-operator-valued measures, practical B92 systems only utilize two projective measurements. Unfortunately, such implementation may degrade the security of the B92 QKD system due to Eve's potential attack exploiting the imperfection of system. In this paper, we propose an advanced attack strategy with an unambiguous state discrimination (USD) measurement which makes practical B92 QKD systems insecure even under a lossless channel. In addition, we propose an effective countermeasure against the advanced USD attack model by monitoring double-click events. We further address a fundamental approach to make the B92 QKD system tolerable to attack strategies with USD measurements using a multi-qubit scheme.
Pandemic influenza-implications for critical care resources in Australia and New Zealand.
Anderson, Therese A; Hart, Graeme K; Kainer, Marion A
2003-09-01
To quantify resource requirements (additional beds and ventilator capacity), for critical care services in the event of pandemic influenza. Cross-sectional survey about existing and potential critical care resources. Participants comprised 156 of the 176 Australasian (Australia and New Zealand) critical care units on the database of the Australian and New Zealand Intensive Care Society (ANZICS) Research Centre for Critical Care Resources. The Meltzer, Cox and Fukuda model was adapted to map a range of influenza attack rate estimates for hospitalisation and episodes likely to require intensive care and to predict critical care admission rates and bed day requirements. Estimations of ventilation rates were based on those for community-acquired pneumonia. The estimated extra number of persons requiring hospitalisation ranged from 8,455 (10% attack rate) to 150,087 (45% attack rate). The estimated number of additional admissions to critical care units ranged from 423 (5% admission rate, 10% attack rate) to 37,522 (25% admission rate, 45% attack rate). The potential number of required intensive care bed days ranged from 846 bed days (2 day length of stay, 10% attack rate) to 375,220 bed days (10 day length of stay, 45% attack rate). The number of persons likely to require mechanical ventilation ranged from 106 (25% of projected critical care admissions, 10% attack rate) to 28,142 (75% of projected critical care admissions, 45% attack rate). An additional 1,195 emergency ventilator beds were identified in public sector and 248 in private sector hospitals. Cancellation of elective surgery could release a potential 76,402 intensive care bed days (per annum), but in the event of pandemic influenza, 31,150 bed days could be required over an 8- to 12-week period. Australasian critical care services would be overwhelmed in the event of pandemic influenza. More work is required in relation to modelling, contingency plans, and resource allocation.
Hypersonic shock wave interaction and impingement
NASA Technical Reports Server (NTRS)
Kessler, W. C.; Reilly, J. F.; Sampatacos, E.
1971-01-01
An experimental investigation was conducted on space shuttle type, body-wing configurations. The purpose of the investigation was to determine the effects of body and wing geometry on the hypersonic shock structure about these vehicles and on the resulting surface impingement of interior flow field shock and expansion waves. Schlieren photographs and thermographic phosphor paint data were obtained on three body cross sections with three wing planforms at 40, 50 and 60 degree angles of attack. Specific configuration data were obtained at 0 and 30 degree angles of attack to develop trends. These data were obtained at a nominal Mach number of 13.5 and a freestream unit Reynolds number of 0.7 million per foot. For comparison with these straight wing configurations, data were also obtained on a model of a point design, high cross-range, delta wing orbiter at 40, 50 and 60 degree angles of attack. As expected, the data on this delta wing orbiter indicated that the shock intersection/impingement phenomena associated with straight wing vehicles are considerably more complex than, and result in both windward and leeward surface heating regions not present on, the delta configuration.
Identification of an unsteady aerodynamic model up to high angle of attack regime
NASA Astrophysics Data System (ADS)
Fan, Yigang
1997-12-01
The harmonic oscillatory tests for a fighter aircraft configuration using the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount at Virginia Tech Stability Wind Tunnel are described and analyzed. The corresponding data reduction methods are developed on the basis of multirate digital signal processing techniques. Since the model is sting-mounted to the support system of DyPPiR, the Discrete Fourier Transform (DFT) is first used to identify the frequencies of the elastic modes of sting. Then the sampling rate conversion systems are built up in digital domain to resample the data at a lower rate without introducing distortions to the signals of interest. Finally linear-phase Finite Impulse Response (FIR) filters are designed by Remez exchange algorithm to extract the aerodynamic characteristics responses to the programmed motions from the resampled measurements. These data reduction procedures are also illustrated through examples. The results obtained from the harmonic oscillatory tests are then illustrated and the associated flow mechanisms are discussed. Since no significant hysteresis loops are observed for the lift and the drag coefficients for the current angle of attack range and the tested reduced frequencies, the dynamic lags of separated and vortex flow effects are small in the current oscillatory tests. However, large hysteresis loops are observed for pitch moment coefficient in the current tests. This observation suggests that at current flow conditions, pitch moment has large pitch rate dotalpha dependencies. Then the nondimensional maximum pitch rate \\ qsb{max} is introduced to characterize these harmonic oscillatory motions. It is found that at current flow conditions, all the hysteresis loops of pitch moment coefficient with same \\ qsb{max} are tangential to one another at both top and bottom of the loops, implying approximately same maximum offset of these loops from static values. Several cases are also illustrated. Based on the results obtained and those from references, a state-space model is developed to describe the unsteady aerodynamic characteristics up to the high angle of attack regime. A nondimensional coordinate is introduced as the state variable describing the flow separation or vortex burst. First-order differential equation is used to govern the dynamics of flow separation or vortex bursting through this state variable. To be valid for general configurations, Taylor series expansions in terms of the input variables are used in the determination of aerodynamic characteristics, resembling the current approach of the stability derivatives. However, these derivatives are longer constant. They are dependent on the state variable of flow separation or vortex burst. In this way, the changes in stability derivatives with the angle of attack are included dynamically. The performance of the model is then validated by the wind-tunnel measurements of an NACA 0015 airfoil, a 70sp° delta wing and, finally two F-18 aircraft configurations. The results obtained show that within the framework of the proposed model, it is possible to obtain good agreement with different unsteady wind tunnel data in high angle-of-attack regime.
Waddington, Claire S.; Darton, Thomas C.; Jones, Claire; Haworth, Kathryn; Peters, Anna; John, Tessa; Thompson, Ben A. V.; Kerridge, Simon A.; Kingsley, Robert A.; Zhou, Liqing; Holt, Kathryn E.; Yu, Ly-Mee; Lockhart, Stephen; Farrar, Jeremy J.; Sztein, Marcelo B.; Dougan, Gordon; Angus, Brian; Levine, Myron M.; Pollard, Andrew J.
2014-01-01
Background. Typhoid fever is a major global health problem, the control of which is hindered by lack of a suitable animal model in which to study Salmonella Typhi infection. Until 1974, a human challenge model advanced understanding of typhoid and was used in vaccine development. We set out to establish a new human challenge model and ascertain the S. Typhi (Quailes strain) inoculum required for an attack rate of 60%–75% in typhoid-naive volunteers when ingested with sodium bicarbonate solution. Methods. Groups of healthy consenting adults ingested escalating dose levels of S. Typhi and were closely monitored in an outpatient setting for 2 weeks. Antibiotic treatment was initiated if typhoid diagnosis occurred (temperature ≥38°C sustained ≥12 hours or bacteremia) or at day 14 in those remaining untreated. Results. Two dose levels (103 or 104 colony-forming units) were required to achieve the primary objective, resulting in attack rates of 55% (11/20) or 65% (13/20), respectively. Challenge was well tolerated; 4 of 40 participants fulfilled prespecified criteria for severe infection. Most diagnoses (87.5%) were confirmed by blood culture, and asymptomatic bacteremia and stool shedding of S. Typhi was also observed. Participants who developed typhoid infection demonstrated serological responses to flagellin and lipopolysaccharide antigens by day 14; however, no anti-Vi antibody responses were detected. Conclusions. Human challenge with a small inoculum of virulent S. Typhi administered in bicarbonate solution can be performed safely using an ambulant-model design to advance understanding of host–pathogen interactions and immunity. This model should expedite development of diagnostics, vaccines, and therapeutics for typhoid control. PMID:24519873
Experimental study of UTM-LST generic half model transport aircraft
NASA Astrophysics Data System (ADS)
Ujang, M. I.; Mat, S.; Perumal, K.; Mohd. Nasir, M. N.
2016-10-01
This paper presents the experimental results from the investigation carried out at the UTM Low Speed wind tunnel facility (UTM-LST) on a half model generic transport aircraft at several configurations of primary control surfaces (flap, aileron and elevator). The objective is to measure the aerodynamic forces and moments due to the configuration changes. The study is carried out at two different speeds of 26.1 m/s and 43.1 m/s at corresponding Reynolds number of 1 × 106 and 2 × 106, respectively. Angle of attack of the model is varied between -2o to 20o. For the flaps, the deflection applied is 0o, 5o and 10o. Meanwhile, for aileron and elevator, the deflection applied is between -10o and 10o. The results show the differences in aerodynamic characteristics of the aircraft at different control surfaces configurations. The results obtained indicate that a laminar separation bubble developed on the surface of the wing at lower angles of attack and show that the separation process is delayed when the Reynolds number is increased.
NASA Astrophysics Data System (ADS)
Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.
2013-02-01
We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.
NASA Technical Reports Server (NTRS)
Crabill, Norman L.
1956-01-01
The National Advisory Committee for Aeronautics has conducted a flight test of a model approximating the McDonnell F3H-lN airplane configuration to determine its pitch-up and buffet boundaries, as well as the usual longitudinal stability derivatives obtainable from the pulsed- tail technique. The test was conducted by the freely flying rocket- boosted model technique developed at the Langley Laboratory; results were obtained at Mach numbers from 0.40 to 1.27 at corresponding Reynolds numbers of 2.6 x 10(exp 6) and 9.0 x 10(exp 6). The phenomena of pitch-up, buffet, and maximum lift were encountered at Mach numbers between 0.42 and 0.85. The lift-curve slope and wing-root bending-moment slope increased with increasing angle of attack, whereas the static stability decreased with angle of attack at subsonic speeds and increased at transonic speeds. There was little change in trim at low lift at transonic speeds.
Kotenko, Igor
2014-01-01
The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described. PMID:25254229
Jeerakathil, Thomas; Shuaib, Ashfaq; Majumdar, Sumit R; Demchuk, Andrew M; Butcher, Kenneth S; Watson, Tim J; Dean, Naeem; Gordon, Deb; Edmond, Cathy; Coutts, Shelagh B
2014-10-01
Stroke risk after transient ischaemic attack is high and, it is a challenge worldwide to provide urgent assessment and preventive services to entire populations. To determine whether a province-wide transient ischaemic attack Triaging algorithm and transient ischaemic attack hotline (the Alberta Stroke Prevention in transient ischaemic attacks and mild strokes intervention) can reduce the rate of stroke recurrence following transient ischaemic attack across the population of Alberta, Canada (population 3·7 million, 90-day rate of post-stroke transient ischaemic attack currently 9·5%). It also seeks to improve upon current transient ischaemic attack triaging rules by incorporating time from symptom onset as a predictive variable. The transient ischaemic attack algorithm and hotline were developed with a broad consensus of clinicians, patients, policy-makers, and researchers and based on local adaptation of the work of others and research and insights developed within the province. Because neither patient-level nor region-level randomization was possible, we conducted a quasi-experimental design examining changes in the post-transient ischaemic attack rate of stroke recurrence before and after the 15-month implementation period using an interrupted time-series regression analysis. The design controls for changes in case-mix, co-interventions, and secular trends. A prospective transient ischaemic attack cohort will also be concurrently created with telephone follow-up at seven-days and 90 days as well as passive follow-up over the longer term using linkages to provincial healthcare administrative databases. The primary outcome measure is the change in recurrence rate of stroke following transient ischaemic attack at seven-days and 90 days, comparing a period of two-years before vs. two-years after the intervention is implemented. All cases of recurrent stroke will be validated. Secondary outcomes include functional status, hospitalizations, morbidity, and mortality. We are undertaking a rigorous evaluation of a population-based approach to improving quality of transient ischaemic attack care. Whether positive or negative, our work should provide important insights for all potential stakeholders. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Security Events and Vulnerability Data for Cybersecurity Risk Estimation.
Allodi, Luca; Massacci, Fabio
2017-08-01
Current industry standards for estimating cybersecurity risk are based on qualitative risk matrices as opposed to quantitative risk estimates. In contrast, risk assessment in most other industry sectors aims at deriving quantitative risk estimations (e.g., Basel II in Finance). This article presents a model and methodology to leverage on the large amount of data available from the IT infrastructure of an organization's security operation center to quantitatively estimate the probability of attack. Our methodology specifically addresses untargeted attacks delivered by automatic tools that make up the vast majority of attacks in the wild against users and organizations. We consider two-stage attacks whereby the attacker first breaches an Internet-facing system, and then escalates the attack to internal systems by exploiting local vulnerabilities in the target. Our methodology factors in the power of the attacker as the number of "weaponized" vulnerabilities he/she can exploit, and can be adjusted to match the risk appetite of the organization. We illustrate our methodology by using data from a large financial institution, and discuss the significant mismatch between traditional qualitative risk assessments and our quantitative approach. © 2017 Society for Risk Analysis.
Uniqueness of Nash equilibrium in vaccination games.
Bai, Fan
2016-12-01
One crucial condition for the uniqueness of Nash equilibrium set in vaccination games is that the attack ratio monotonically decreases as the vaccine coverage level increasing. We consider several deterministic vaccination models in homogeneous mixing population and in heterogeneous mixing population. Based on the final size relations obtained from the deterministic epidemic models, we prove that the attack ratios can be expressed in terms of the vaccine coverage levels, and also prove that the attack ratios are decreasing functions of vaccine coverage levels. Some thresholds are presented, which depend on the vaccine efficacy. It is proved that for vaccination games in homogeneous mixing population, there is a unique Nash equilibrium for each game.
Economic cost of initial attack and large-fire suppression
Armando González-Cabán
1983-01-01
A procedure has been developed for estimating the economic cost of initial attack and large-fire suppression. The procedure uses a per-unit approach to estimate total attack and suppression costs on an input-by-input basis. Fire management inputs (FMIs) are the production units used. All direct and indirect costs are charged to the FMIs. With the unit approach, all...
The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits
2017-03-23
The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom- Programmable Circuits Raza Shafiq Hamid Mahmoodi Houman Homayoun Hassan... programmable circuits. While functionality of programmable cells are only known to trusted parties, effective techniques for activation and propagation...of the cells are introduced. The ATPG attack carefully studies dependency of programmable cells to develop their (partial) truth tables. Results
Frank, Steven D; Ranger, Christopher M
2016-08-01
Exotic ambrosia beetles are among the most damaging pests of trees grown in nurseries. The primary pests Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford use ethanol to locate vulnerable trees. Research, primarily with X. germanus, has shown that flood-stressed trees emit ethanol and are preferentially attacked by ambrosia beetles. Our goal was to develop a media (also called potting soil) moisture threshold as an integrated pest management (IPM) tactic and assess grower practices that lead to ambrosia beetle attacks. Flooded Cornus florida L., Cornus kousa Burg., and Magnolia grandiflora L. trees incurred more attacks than unflooded trees that were not attacked. To determine optimal media moisture levels, we grew flood-tolerant Acer rubrum L. and flood-intolerant C. florida in containers with 10, 30, 50, 70, or 90% media moisture. No flooded or unflooded A. rubrum were attacked. However, C. florida grown in 70 or 90% moisture were attacked and died, whereas trees at 30 and 50% moisture were not attacked. Thus, we suggest an upper moisture threshold of 50% when growing C. florida and other flood-intolerant trees. However, during peak ambrosia beetle flight activity in spring 2013 and 2014, we found that media moisture levels in commercial nurseries were often between 50 and 90%. Implementing a media moisture threshold, as a new IPM tool, could reduce ambrosia beetle attacks and the need for insecticide applications, which is currently the only available management tactic. Future research should focus on how changes in substrates, irrigation, and other practices could help growers meet this threshold. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On resilience studies of system detection and recovery techniques against stealthy insider attacks
NASA Astrophysics Data System (ADS)
Wei, Sixiao; Zhang, Hanlin; Chen, Genshe; Shen, Dan; Yu, Wei; Pham, Khanh D.; Blasch, Erik P.; Cruz, Jose B.
2016-05-01
With the explosive growth of network technologies, insider attacks have become a major concern to business operations that largely rely on computer networks. To better detect insider attacks that marginally manipulate network traffic over time, and to recover the system from attacks, in this paper we implement a temporal-based detection scheme using the sequential hypothesis testing technique. Two hypothetical states are considered: the null hypothesis that the collected information is from benign historical traffic and the alternative hypothesis that the network is under attack. The objective of such a detection scheme is to recognize the change within the shortest time by comparing the two defined hypotheses. In addition, once the attack is detected, a server migration-based system recovery scheme can be triggered to recover the system to the state prior to the attack. To understand mitigation of insider attacks, a multi-functional web display of the detection analysis was developed for real-time analytic. Experiments using real-world traffic traces evaluate the effectiveness of Detection System and Recovery (DeSyAR) scheme. The evaluation data validates the detection scheme based on sequential hypothesis testing and the server migration-based system recovery scheme can perform well in effectively detecting insider attacks and recovering the system under attack.
Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Tobak, M.; Malcolm, G. N.
1980-01-01
This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.
Mills, Robin; Hildenbrandt, Hanno; Taylor, Graham K; Hemelrijk, Charlotte K
2018-04-01
The peregrine falcon Falco peregrinus is renowned for attacking its prey from high altitude in a fast controlled dive called a stoop. Many other raptors employ a similar mode of attack, but the functional benefits of stooping remain obscure. Here we investigate whether, when, and why stooping promotes catch success, using a three-dimensional, agent-based modeling approach to simulate attacks of falcons on aerial prey. We simulate avian flapping and gliding flight using an analytical quasi-steady model of the aerodynamic forces and moments, parametrized by empirical measurements of flight morphology. The model-birds' flight control inputs are commanded by their guidance system, comprising a phenomenological model of its vision, guidance, and control. To intercept its prey, model-falcons use the same guidance law as missiles (pure proportional navigation); this assumption is corroborated by empirical data on peregrine falcons hunting lures. We parametrically vary the falcon's starting position relative to its prey, together with the feedback gain of its guidance loop, under differing assumptions regarding its errors and delay in vision and control, and for three different patterns of prey motion. We find that, when the prey maneuvers erratically, high-altitude stoops increase catch success compared to low-altitude attacks, but only if the falcon's guidance law is appropriately tuned, and only given a high degree of precision in vision and control. Remarkably, the optimal tuning of the guidance law in our simulations coincides closely with what has been observed empirically in peregrines. High-altitude stoops are shown to be beneficial because their high airspeed enables production of higher aerodynamic forces for maneuvering, and facilitates higher roll agility as the wings are tucked, each of which is essential to catching maneuvering prey at realistic response delays.
2014-09-01
exercise conducted in the Chicago metropolitan area revealed that the initiation of PEP on Day 5 after an attack, as opposed to on Day 2, resulted in an...Scale Anthrax Attack on the Chicago Metropolitan Area: Impact of Timing and Surge Capacity,” Biosecurity and Bioterrorism: Biodefense Strategy, Practice... Chicago Metropolitan Area, also concluded that the optimal cost effective response strategy is to provide antibiotic prophylaxis and vaccination for all
Lead exposure potentiates predatory attack behavior in the cat.
Li, Wenjie; Han, Shenggao; Gregg, Thomas R; Kemp, Francis W; Davidow, Amy L; Louria, Donald B; Siegel, Allan; Bogden, John D
2003-07-01
Epidemiologic studies have demonstrated that environmental lead exposure is associated with aggressive behavior in children; however, numerous confounding variables limit the ability of these studies to establish a causal relationship. The study of aggressive behavior using a validated animal model was used to test the hypothesis that there is a causal relationship between lead exposure and aggression in the absence of confounding variables. We studied the effects of lead exposure on a feline model of aggression: predatory (quiet biting) attack of an anesthetized rat. Five cats were stimulated with a precisely controlled electrical current via electrodes inserted into the lateral hypothalamus. The response measure was the predatory attack threshold current (i.e., the current required to elicit an attack response on 50% of the trials). Blocks of trials were administered in which predatory attack threshold currents were measured three times a week for a total of 6-10 weeks, including before, during, and after lead exposure. Lead was incorporated into cat food "treats" at doses of 50-150 mg/kg/day. Two of the five cats received a second period of lead exposure. Blood lead concentrations were measured twice a week and were <1, 21-77, and <20 micro g/dL prior to, during, and after lead exposure, respectively. The predatory attack threshold decreased significantly during initial lead exposure in three of five cats and increased after the cessation of lead exposure in four of the five cats (P<0.01). The predatory attack thresholds and blood lead concentrations for each cat were inversely correlated (r=-0.35 to -0.74). A random-effects mixed model demonstrated a significant (P=0.0019) negative association between threshold current and blood lead concentration. The data of this study demonstrate that lead exposure enhances predatory aggression in the cat and provide experimental support for a causal relationship between lead exposure and aggressive behavior in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Tsong-Lun; Varuttamaseni, Athi; Baek, Joo-Seok
This paper provides an approach for developing potential attacks on I and C systems of NPPs and assessing their consequences. An important concept is that the NPPs were not designed to cope with Stuxnet-type of attacks (and any other cyber attacks). That is, the plants were only designed for design basis accidents. The safety margins and redundancies built in the design are all based on design basis accidents. They may be helpful in mitigating cyberattacks, but may not be adequate.
Homeland Security Research Improves the Nation's Ability to ...
Technical Brief Homeland Security (HS) Research develops data, tools, and technologies to minimize the impact of accidents, natural disasters, terrorist attacks, and other incidents that can result in toxic chemical, biological or radiological (CBR) contamination. HS Research develops ways to detect contamination, sampling strategies, sampling and analytical methods, cleanup methods, waste management approaches, exposure assessment methods, and decision support tools (including water system models). These contributions improve EPA’s response to a broad range of environmental disasters.
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Erickson, Gary E.; Fox, Charles H., Jr.; Banks, Daniel W.; Fisher, David F.
1998-01-01
A subsonic study of high-angle-of-attack gritting strategies was undertaken with a 0.06-scale model of the F/A-18, which was assumed to be typical of airplanes with smooth-sided forebodies. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel and was intended to more accurately simulate flight boundary layer characteristics on the model in the wind tunnel than would be possible by using classical, low-angle-of-attack gritting on the fuselage. Six-component force and moment data were taken with an internally mounted strain-gauge balance, while pressure data were acquired by using electronically scanned pressure transducers. Data were taken at zero sideslip over an angle-of-attack range from 0 deg to 40 deg and, at selected angles of attack, over sideslip angles from -10 deg to 10 deg. Free-stream Mach number was fixed at 0.30, which resulted in a Reynolds number, based on mean aerodynamic chord, of 1.4 x 10(exp 6). Pressure data measured over the forebody and leading-edge extensions are compared to similar pressure data taken by a related NASA flight research program by using a specially instrumented F/A-18, the High-Alpha Research Vehicle (HARV). Preliminary guidelines for high-angle-of-attack gritting strategies are given.
Flow Environment Study Near the Empennage of a 15-Percent Scale Helicopter Model
NASA Technical Reports Server (NTRS)
Gorton, Susan Althoff; Berry, John D.; Hodges, W. Todd; Reis, Deane G.
2000-01-01
Development of advanced rotorcraft configurations has highlighted a need for high-quality experimental data to support the development of flexible and accurate analytical design tools. To provide this type of data, a test program was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to measure the flow near the empennage of a 15-percent scale powered helicopter model with an operating tail fan. Three-component velocity profiles were measured with laser velocimetry (LV) one chord forward of the horizontal tail for four advance ratios to evaluate the effect of the rotor wake impingement on the horizontal tail angle of attack. These velocity data indicate the horizontal tail can experience unsteady angle of attack variations of over 30 degrees due to the rotor wake influence. The horizontal tail is most affected by the rotor wake above advance ratios of 0.10. Velocity measurements of the flow on the inlet side of the tail fan were made for a low-speed flight condition using conventional LV techniques. The velocity data show an accelerated flow near the tail fan duct, and vorticity calculations track the passage of main rotor wake vortices through the measurement plane.
Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane
NASA Technical Reports Server (NTRS)
Smith, Charles C., Jr.
1959-01-01
The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.
Analysis of flight data from a High-Incidence Research Model by system identification methods
NASA Technical Reports Server (NTRS)
Batterson, James G.; Klein, Vladislav
1989-01-01
Data partitioning and modified stepwise regression were applied to recorded flight data from a Royal Aerospace Establishment high incidence research model. An aerodynamic model structure and corresponding stability and control derivatives were determined for angles of attack between 18 and 30 deg. Several nonlinearities in angles of attack and sideslip as well as a unique roll-dominated set of lateral modes were found. All flight estimated values were compared to available wind tunnel measurements.
Farris, Samantha G.; Zvolensky, Michael J.; Blalock, Janice A.; Schmidt, Norman B.
2018-01-01
Introduction Empirical work has documented a robust and consistent relation between panic attacks and smoking behavior. Theoretical models posit smokers with panic attacks may rely on smoking to help them manage chronically elevated negative affect due to uncomfortable bodily states, which may explain higher levels of nicotine dependence and quit problems. Methods The current study examined the effects of panic attack history on nicotine dependence, perceived barriers for quitting, smoking inflexibility when emotionally distressed, and expired carbon monoxide among 461 treatment-seeking smokers. A multiple mediator path model was evaluated to examine the indirect effects of negative affect and negative affect reduction motives as mediators of the panic attack-smoking relations. Results Panic attack history was indirectly related to greater levels of nicotine dependence (b=0.039, CI95%=0.008, 0.097), perceived barriers to smoking cessation (b=0.195, CI95%=0.043, 0.479), smoking inflexibility/avoidance when emotionally distressed (b=0.188, CI95%=0.041, 0.445), and higher levels of expired carbon monoxide (b=0.071, CI95%=0.010, 0.230) through the sequential effects of negative affect and negative affect smoking motives. Conclusions The present results provide empirical support for the sequential mediating role of negative affect and smoking motives for negative affect reduction in the relation between panic attacks and a variety of smoking variables in treatment-seeking smokers. These mediating variables are likely important processes to address in smoking cessation treatment, especially in panic-vulnerable smokers. PMID:24720260
Farris, Samantha G; Zvolensky, Michael J; Blalock, Janice A; Schmidt, Norman B
2014-05-01
Empirical work has documented a robust and consistent relation between panic attacks and smoking behavior. Theoretical models posit smokers with panic attacks may rely on smoking to help them manage chronically elevated negative affect due to uncomfortable bodily states, which may explain higher levels of nicotine dependence and quit problems. The current study examined the effects of panic attack history on nicotine dependence, perceived barriers for quitting, smoking inflexibility when emotionally distressed, and expired carbon monoxide among 461 treatment-seeking smokers. A multiple mediator path model was evaluated to examine the indirect effects of negative affect and negative affect reduction motives as mediators of the panic attack-smoking relations. Panic attack history was indirectly related to greater levels of nicotine dependence (b = 0.039, CI95% = 0.008, 0.097), perceived barriers to smoking cessation (b = 0.195, CI95% = 0.043, 0.479), smoking inflexibility/avoidance when emotionally distressed (b = 0.188, CI95% = 0.041, 0.445), and higher levels of expired carbon monoxide (b = 0.071, CI95% = 0.010, 0.230) through the sequential effects of negative affect and negative affect smoking motives. The present results provide empirical support for the sequential mediating role of negative affect and smoking motives for negative affect reduction in the relation between panic attacks and a variety of smoking variables in treatment-seeking smokers. These mediating variables are likely important processes to address in smoking cessation treatment, especially in panic-vulnerable smokers.
Influence of polymer additive on flow past a hydrofoil: A numerical study
NASA Astrophysics Data System (ADS)
Xiong, Yongliang; Peng, Sai; Yang, Dan; Duan, Juan; Wang, Limin
2018-01-01
Flows of dilute polymer solutions past a hydrofoil (NACA0012) are examined by direct numerical simulation to investigate the modification of the wake pattern due to the addition of polymer. The influence of polymer additive is modeled by the FENE-P model in order to simulate a non-linear modulus of elasticity and a finite extendibility of the polymer macromolecules. Simulations were carried out at a Reynolds number of 1000 with the angle of attack varying from 0° to 20°. The results show that the influence of polymer on the flow behavior of the flow past a hydrofoil exhibits different flow regimes. In general, the addition of polymer modifies the wake patterns for all angles of attack in this study. Consequently, both drag and lift forces are changed as the Weissenberg number increases while the drag of the hydrofoil is enhanced at small angles of attack and reduced at large angles of attack. As the Weissenberg number increases, two attached recirculation bubbles or two columns of shedding vortices downstream tend to be symmetric, and the polymer tends to make the flow less sensitive to the variation of the angle of attack.
Barbhuiya, F A; Agarwal, Mayank; Purwar, Sanketh; Biswas, Santosh; Nandi, Sukumar
2015-09-01
TCP is the most widely accepted transport layer protocol. The major emphasis during the development of TCP was its functionality and efficiency. However, not much consideration was given on studying the possibility of attackers exploiting the protocol, which has lead to several attacks on TCP. This paper deals with the induced low rate TCP attack. Since the attack is relatively new, only a few schemes have been proposed to mitigate it. However, the main issues with these schemes are scalability, change in TCP header, lack of formal frameworks, etc. In this paper, we have adapted the stochastic DES framework for detecting the attack, which addresses most of these issues. We have successfully deployed and tested the proposed DES based IDS on a test bed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Ding, Fangyu; Ge, Quansheng; Fu, Jingying; Hao, Mengmeng
2017-01-01
Terror events can cause profound consequences for the whole society. Finding out the regularity of terrorist attacks has important meaning for the global counter-terrorism strategy. In the present study, we demonstrate a novel method using relatively popular and robust machine learning methods to simulate the risk of terrorist attacks at a global scale based on multiple resources, long time series and globally distributed datasets. Historical data from 1970 to 2015 was adopted to train and evaluate machine learning models. The model performed fairly well in predicting the places where terror events might occur in 2015, with a success rate of 96.6%. Moreover, it is noteworthy that the model with optimized tuning parameter values successfully predicted 2,037 terrorism event locations where a terrorist attack had never happened before. PMID:28591138
Ding, Fangyu; Ge, Quansheng; Jiang, Dong; Fu, Jingying; Hao, Mengmeng
2017-01-01
Terror events can cause profound consequences for the whole society. Finding out the regularity of terrorist attacks has important meaning for the global counter-terrorism strategy. In the present study, we demonstrate a novel method using relatively popular and robust machine learning methods to simulate the risk of terrorist attacks at a global scale based on multiple resources, long time series and globally distributed datasets. Historical data from 1970 to 2015 was adopted to train and evaluate machine learning models. The model performed fairly well in predicting the places where terror events might occur in 2015, with a success rate of 96.6%. Moreover, it is noteworthy that the model with optimized tuning parameter values successfully predicted 2,037 terrorism event locations where a terrorist attack had never happened before.
NASA Technical Reports Server (NTRS)
Bradley, D.; Buchholz, R. E.
1971-01-01
A 0.015 scale model of a modified version of the MDAC space shuttle booster was tested in the Naval Ship Research and Development Center 7 x 10 foot transonic wind tunnel, to obtain force, static stability, and control effectiveness data. Data were obtained for a cruise Mach Number of 0.38, altitude of 10,000 ft, and Reynolds Number per foot of approximately 2 x one million. The model was tested through an angle of attack range of -4 deg to 15 deg at zero degree angle of sideslip, and at an angle of sideslip range of -6 deg to 6 deg at fixed angles of attack of 0 deg, 6 deg, and 15 deg. Other test variables were elevon deflections, canard deflections, aileron deflections, rudder deflections, wing dihedral angle, canard incidence angle, wing incidence angle, canard position, wing position, wing and canard control flap size and dorsal fin size.
NASA Technical Reports Server (NTRS)
Gillis, Clarence L; Mitchell, Jesse L
1957-01-01
A test technique and data analysis method has been developed for determining the longitudinal aerodynamic characteristics from free-flight tests of rocket-propelled models. The technique makes use of accelerometers and an angle-of-attack indicator to permit instantaneous measurements of lift, drag, and pitching moments. The data, obtained during transient oscillations resulting from control-surface disturbances, are analyzed by essentially nonlinear direct methods (such as cross plots of the variation of lift coefficient with angle of attack) and by linear indirect methods by using the equations of motion for a transient oscillation. The analysis procedure has been set forth in some detail and the feasibility of the method has been demonstrated by data measured through the transonic speed range on several airplane configurations. It was shown that the flight conditions and dynamic similitude factors for the tests described were reasonably close to typical full-scale airplane conditions.
Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks
Portela, Javier; García Villalba, Luis Javier; Silva Trujillo, Alejandra Guadalupe; Sandoval Orozco, Ana Lucila; Kim, Tai-Hoon
2016-01-01
Social network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users’ network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders’ or receivers’ identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks. PMID:27809275
Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks.
Portela, Javier; García Villalba, Luis Javier; Silva Trujillo, Alejandra Guadalupe; Sandoval Orozco, Ana Lucila; Kim, Tai-Hoon
2016-11-01
Social network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users' network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders' or receivers' identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks.
Tsunami response system for ports in Korea
NASA Astrophysics Data System (ADS)
Cho, H.-R.; Cho, J.-S.; Cho, Y.-S.
2015-09-01
The tsunamis that have occurred in many places around the world over the past decade have taken a heavy toll on human lives and property. The eastern coast of the Korean Peninsula is not safe from tsunamis, particularly the eastern coastal areas, which have long sustained tsunami damage. The eastern coast had been attacked by 1983 and 1993 tsunami events. The aim of this study was to mitigate the casualties and property damage against unexpected tsunami attacks along the eastern coast of the Korean Peninsula by developing a proper tsunami response system for important ports and harbors with high population densities and high concentrations of key national industries. The system is made based on numerical and physical modelings of 3 historical and 11 virtual tsunamis events, field surveys, and extensive interviews with related people.
NASA cancels carbon monitoring research program
NASA Astrophysics Data System (ADS)
Voosen, Paul
2018-05-01
The administration of President Donald Trump has waged a broad attack on climate science conducted by NASA, including proposals to cut the budget of earth science research and kill off the Orbiting Carbon Observatory 3 mission. Congress has fended these attacks off—with one exception. NASA has moved ahead with plans to end the Carbon Monitoring System, a $10-million-a-year research line that has helped stitch together observations of sources and sinks of methane and carbon dioxide into high-resolution models of the planet's flows of carbon, the agency confirmed to Science. The program, begun in 2010, has developed tools to improve estimates of carbon stocks in forests, especially, from Alaska to Indonesia. Ending it, researchers say, will complicate future efforts to monitor and verify national emission cuts stemming from the Paris climate deal.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1954-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
Develop a solution for protecting and securing enterprise networks from malicious attacks
NASA Astrophysics Data System (ADS)
Kamuru, Harshitha; Nijim, Mais
2014-05-01
In the world of computer and network security, there are myriad ways to launch an attack, which, from the perspective of a network, can usually be defined as "traffic that has huge malicious intent." Firewall acts as one of the measure in order to secure the device from incoming unauthorized data. There are infinite number of computer attacks that no firewall can prevent, such as those executed locally on the machine by a malicious user. From the network's perspective, there are numerous types of attack. All the attacks that degrade the effectiveness of data can be grouped into two types: brute force and precision. The Firewall that belongs to Juniper has the capability to protect against both types of attack. Denial of Service (DoS) attacks are one of the most well-known network security threats under brute force attacks, which is largely due to the high-profile way in which they can affect networks. Over the years, some of the largest, most respected Internet sites have been effectively taken offline by Denial of Service (DOS) attacks. A DoS attack typically has a singular focus, namely, to cause the services running on a particular host or network to become unavailable. Some DoS attacks exploit vulnerabilities in an operating system and cause it to crash, such as the infamous Win nuke attack. Others submerge a network or device with traffic so that there are no more resources to handle legitimate traffic. Precision attacks typically involve multiple phases and often involves a bit more thought than brute force attacks, all the way from reconnaissance to machine ownership. Before a precision attack is launched, information about the victim needs to be gathered. This information gathering typically takes the form of various types of scans to determine available hosts, networks, and ports. The hosts available on a network can be determined by ping sweeps. The available ports on a machine can be located by port scans. Screens cover a wide variety of attack traffic as they are configured on a per-zone basis. Depending on the type of screen being configured, there may be additional settings beyond simply blocking the traffic. Attack prevention is also a native function of any firewall. Juniper Firewall handles traffic on a per-flow basis. We can use flows or sessions as a way to determine whether traffic attempting to traverse the firewall is legitimate. We control the state-checking components resident in Juniper Firewall by configuring "flow" settings. These settings allow you to configure state checking for various conditions on the device. You can use flow settings to protect against TCP hijacking, and to generally ensure that the fire-wall is performing full state processing when desired. We take a case study of attack on a network and perform study of the detection of the malicious packets on a Net screen Firewall. A new solution for securing enterprise networks will be developed here.
Rayne, Sierra
2005-12-09
Concentrations of tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in exterior window films from Manhattan and Brooklyn in New York City (NYC), USA, 6 weeks after the World Trade Center (WTC) attacks of 11 September 2001. High concentrations of the 2,3,7,8-substituted congeners (P(2378)CDD/Fs) were observed, at levels up to 6600 pg-TEQ g(-1) nearest the WTC site. An equilibrium partitioning model was developed to reconstruct total gas + particle-phase atmospheric concentrations of P(2378)CDD/Fs at each site. The reconstructed atmospheric and window film concentrations were subsequently used in a preliminary human health risk assessment to estimate the potential cancer and non-cancer risks posed to residents of lower Manhattan from these contaminants over the 6 week exposure period between the WTC attacks and sampling dates. Residents of lower Manhattan appear to have a slightly elevated cancer risk (up to 1.6% increase over background) and increased P(2378)CDD/F body burden (up to 8.0% increase over background) because of above-background exposure to high concentrations of P(2378)CDD/Fs produced from the WTC attacks during the short period between 11 September 2001, and window film sampling 6 weeks later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, R. E.
This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while themore » GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)« less
Aftermath of bustamante attack on genomic beacon service.
Aziz, Md Momin Al; Ghasemi, Reza; Waliullah, Md; Mohammed, Noman
2017-07-26
With the enormous need for federated eco-system for holding global genomic and clinical data, Global Alliance for Genomic and Health (GA4GH) has created an international website called beacon service which allows a researcher to find out whether a specific dataset can be utilized to his or her research beforehand. This simple webservice is quite useful as it allows queries like whether a certain position of a target chromosome has a specific nucleotide. However, the increased integration of individuals genomic data into clinical practice and research raised serious privacy concern. Though the answer of such queries are yes or no in Bacon network, it results in serious privacy implication as demonstrated in a recent work from Shringarpure and Bustamante. In their attack model, the authors demonstrated that with a limited number of queries, presence of an individual in any dataset can be determined. We propose two lightweight algorithms (based on randomized response) which captures the efficacy while preserving the privacy of the participants in a genomic beacon service. We also elaborate the strength and weakness of the attack by explaining some of their statistical and mathematical models using real world genomic database. We extend their experimental simulations for different adversarial assumptions and parameters. We experimentally evaluated the solutions on the original attack model with different parameters for better understanding of the privacy and utility tradeoffs provided by these two methods. Also, the statistical analysis further elaborates the different aspects of the prior attack which leads to a better risk management for the participants in a beacon service. The differentially private and lightweight solutions discussed here will make the attack much difficult to succeed while maintaining the fundamental motivation of beacon database network.
Cao, Yuan; Ye, Wenbin; Han, Qingbang; Pan, Xiaofang
2018-01-01
Authentication is a crucial security service for the wireless sensor networks (WSNs) in versatile domains. The deployment of WSN devices in the untrusted open environment and the resource-constrained nature make the on-chip authentication an open challenge. The strong physical unclonable function (PUF) came in handy as light-weight authentication security primitive. In this paper, we present the first ring oscillator (RO) based strong physical unclonable function (PUF) with high resilience to both the electromagnetic (EM) side-channel attack and the support vector machine (SVM) modelling attack. By employing an RO based PUF architecture with the current starved inverter as the delay cell, the oscillation power is significantly reduced to minimize the emitted EM signal, leading to greatly enhanced immunity to the EM side-channel analysis attack. In addition, featuring superior reconfigurability due to the conspicuously simplified circuitries, the proposed implementation is capable of withstanding the SVM modelling attack by generating and comparing a large number of RO frequency pairs. The reported experimental results validate the prototype of a 9-stage RO PUF fabricated using standard 65 nm complementary-metal-oxide-semiconductor (CMOS) process. Operating at the supply voltage of 1.2 V and the frequency of 100 KHz, the fabricated RO PUF occupies a compact silicon area of 250 μm2 and consumes a power as low as 5.16 μW per challenge-response pair (CRP). Furthermore, the uniqueness and the worst-case reliability are measured to be 50.17% and 98.30% for the working temperature range of −40∼120 ∘C and the supply voltage variation of ±2%, respectively. Thus, the proposed PUF is applicable for the low power, low cost and secure WSN communications. PMID:29360790
Cao, Yuan; Zhao, Xiaojin; Ye, Wenbin; Han, Qingbang; Pan, Xiaofang
2018-01-23
Authentication is a crucial security service for the wireless sensor networks (WSNs) in versatile domains. The deployment of WSN devices in the untrusted open environment and the resource-constrained nature make the on-chip authentication an open challenge. The strong physical unclonable function (PUF) came in handy as light-weight authentication security primitive. In this paper, we present the first ring oscillator (RO) based strong physical unclonable function (PUF) with high resilience to both the electromagnetic (EM) side-channel attack and the support vector machine (SVM) modelling attack. By employing an RO based PUF architecture with the current starved inverter as the delay cell, the oscillation power is significantly reduced to minimize the emitted EM signal, leading to greatly enhanced immunity to the EM side-channel analysis attack. In addition, featuring superior reconfigurability due to the conspicuously simplified circuitries, the proposed implementation is capable of withstanding the SVM modelling attack by generating and comparing a large number of RO frequency pairs. The reported experimental results validate the prototype of a 9-stage RO PUF fabricated using standard 65 nm complementary-metal-oxide-semiconductor (CMOS) process. Operating at the supply voltage of 1.2 V and the frequency of 100 KHz, the fabricated RO PUF occupies a compact silicon area of 250 μ m 2 and consumes a power as low as 5.16 μ W per challenge-response pair (CRP). Furthermore, the uniqueness and the worst-case reliability are measured to be 50.17% and 98.30% for the working temperature range of -40∼120 ∘ C and the supply voltage variation of ±2%, respectively. Thus, the proposed PUF is applicable for the low power, low cost and secure WSN communications.
Extending AADL for Security Design Assurance of Cyber Physical Systems
2015-12-16
a detailed system architecture design of a CPS can be analyzed using AADL to prevent such types of CWEs. We divided the work into two tasks as...security modeling to CPSs, and develop a case study to show how formal modeling using AADL could be applied to a CPS to improve the security design of the... CPS . These examples of recent attacks against automobiles have been reported: A wireless device used by Progressive Insurance to gather information
Solving Defender-Attacker-Defender Models for Infrastructure Defense
2011-01-01
PRA,” also 28 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215... REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Solving Defender-Attacker-Defender Models for
Security of a kind of quantum secret sharing with entangled states.
Wang, Tian-Yin; Liu, Ying-Zhao; Wei, Chun-Yan; Cai, Xiao-Qiu; Ma, Jian-Feng
2017-05-30
We present a new collusion attack to a kind of quantum secret sharing schemes with entangled states. Using this attack, an unauthorized set of agents can gain access to the shared secret without the others' cooperation. Furthermore, we establish a general model for this kind of quantum secret sharing schemes and then give some necessary conditions to design a secure quantum secret sharing scheme under this model.
Modeling Network Interdiction Tasks
2015-09-17
they may attack the flaw to cause widespread chaos. Attacks such as these are considered a form of network interdiction. Assessing the networks over...and forms a foundation for the techniques of the measures and models approaches of the research framework, which is depicted in Figure 2. The...ensures the distance of the shortest (i, j) path is computed. This insight is attributed to Warshall [62]. The algorithm’s present form is attributed
da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre
2012-08-13
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.
Defender-Attacker Decision Tree Analysis to Combat Terrorism.
Garcia, Ryan J B; von Winterfeldt, Detlof
2016-12-01
We propose a methodology, called defender-attacker decision tree analysis, to evaluate defensive actions against terrorist attacks in a dynamic and hostile environment. Like most game-theoretic formulations of this problem, we assume that the defenders act rationally by maximizing their expected utility or minimizing their expected costs. However, we do not assume that attackers maximize their expected utilities. Instead, we encode the defender's limited knowledge about the attacker's motivations and capabilities as a conditional probability distribution over the attacker's decisions. We apply this methodology to the problem of defending against possible terrorist attacks on commercial airplanes, using one of three weapons: infrared-guided MANPADS (man-portable air defense systems), laser-guided MANPADS, or visually targeted RPGs (rocket propelled grenades). We also evaluate three countermeasures against these weapons: DIRCMs (directional infrared countermeasures), perimeter control around the airport, and hardening airplanes. The model includes deterrence effects, the effectiveness of the countermeasures, and the substitution of weapons and targets once a specific countermeasure is selected. It also includes a second stage of defensive decisions after an attack occurs. Key findings are: (1) due to the high cost of the countermeasures, not implementing countermeasures is the preferred defensive alternative for a large range of parameters; (2) if the probability of an attack and the associated consequences are large, a combination of DIRCMs and ground perimeter control are preferred over any single countermeasure. © 2016 Society for Risk Analysis.
A model for warfare in stratified small-scale societies: The effect of within-group inequality.
Pandit, Sagar; Pradhan, Gauri; van Schaik, Carel
2017-01-01
In order to predict the features of non-raiding human warfare in small-scale, socially stratified societies, we study a coalitionary model of war that assumes that individuals participate voluntarily because their decisions serve to maximize fitness. Individual males join the coalition if war results in a net economic and thus fitness benefit. Within the model, viable offensive war ensues if the attacking coalition of males can overpower the defending coalition. We assume that the two groups will eventually fuse after a victory, with ranks arranged according to the fighting abilities of all males and that the new group will adopt the winning group's skew in fitness payoffs. We ask whether asymmetries in skew, group size and the amount of resources controlled by a group affect the likelihood of successful war. The model shows, other things being equal, that (i) egalitarian groups are more likely to defeat their more despotic enemies, even when these are stronger, (ii) defection to enemy groups will be rare, unless the attacked group is far more despotic than the attacking one, and (iii) genocidal war is likely under a variety of conditions, in particular when the group under attack is more egalitarian. This simple optimality model accords with several empirically observed correlations in human warfare. Its success underlines the important role of egalitarianism in warfare.
A model for warfare in stratified small-scale societies: The effect of within-group inequality
Pandit, Sagar; van Schaik, Carel
2017-01-01
In order to predict the features of non-raiding human warfare in small-scale, socially stratified societies, we study a coalitionary model of war that assumes that individuals participate voluntarily because their decisions serve to maximize fitness. Individual males join the coalition if war results in a net economic and thus fitness benefit. Within the model, viable offensive war ensues if the attacking coalition of males can overpower the defending coalition. We assume that the two groups will eventually fuse after a victory, with ranks arranged according to the fighting abilities of all males and that the new group will adopt the winning group’s skew in fitness payoffs. We ask whether asymmetries in skew, group size and the amount of resources controlled by a group affect the likelihood of successful war. The model shows, other things being equal, that (i) egalitarian groups are more likely to defeat their more despotic enemies, even when these are stronger, (ii) defection to enemy groups will be rare, unless the attacked group is far more despotic than the attacking one, and (iii) genocidal war is likely under a variety of conditions, in particular when the group under attack is more egalitarian. This simple optimality model accords with several empirically observed correlations in human warfare. Its success underlines the important role of egalitarianism in warfare. PMID:29228014
Development of a pneumatic high-angle-of-attack Flush Airdata Sensing (HI-FADS) system
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
The HI-FADS system design is an evolution of the FADS systems (e.g., Larson et al., 1980, 1987), which emphasizes the entire airdata system development. This paper describes the HI-FADS measurement system, with particular consideration given to the basic measurement hardware and the development of the HI-FADS aerodynamic model and the basic nonlinear regression algorithm. Algorithm initialization techniques are developed, and potential algorithm divergence problems are discussed. Data derived from HI-FADS flight tests are used to demonstrate the system accuracies and to illustrate the developed concepts and methods.
A Wild Weasel Penetration Model.
1982-03-01
event 13, and node WM. Global variable XX(48) counts the WWs as they reach the home point. The network logic for WWI and WW2 is identical. Each WW...the same no matter if the aircraft is WWI or WW2 . Radar-Attack Profile In the radar-attack po. tion of the network threat radars engage both attack...Systems Dispersion on LOC XX(52) *State Variable--see text. * 94 variable. (The entry positions of WW1 and WW2 are changed with state variables SS(25) and
Danger Comes from All Fronts: Predator-Dependent Escape Tactics of Túngara Frogs
Bulbert, Matthew W.; Page, Rachel A.; Bernal, Ximena E.
2015-01-01
The escape response of an organism is generally its last line of defense against a predator. Because the effectiveness of an escape varies with the approach behaviour of the predator, it should be advantageous for prey to alter their escape trajectories depending on the mode of predator attack. To test this hypothesis we examined the escape responses of a single prey species, the ground-dwelling túngara frog (Engystomops pustulosus), to disparate predators approaching from different spatial planes: a terrestrial predator (snake) and an aerial predator (bat). Túngara frogs showed consistently distinct escape responses when attacked by terrestrial versus aerial predators. The frogs fled away from the snake models (Median: 131°). In stark contrast, the frogs moved toward the bat models (Median: 27°); effectively undercutting the bat’s flight path. Our results reveal that prey escape trajectories reflect the specificity of their predators’ attacks. This study emphasizes the flexibility of strategies performed by prey to outcompete predators with diverse modes of attack. PMID:25874798
NASA Technical Reports Server (NTRS)
Hanson, R. L.; Obrien, R. G.; Oiye, M. Y.; Vanderleest, S.
1972-01-01
Experimental aerodynamic investigations were carried out in the Boeing transonic and supersonic wind tunnels on a 0.008899-scale model of a proposed pressure-fed ballistic recoverable booster (BRB) configuration. The purpose of the test program was to determine the stability and control effectiveness of the basic configuration at high and low angles of attack, and to conduct parametric studies of various engine shroud, fin, and drag petal configurations. Six-component force data and base pressure data were obtained over a Mach number range of 0.35 to 4.0 at angles of attack of -5 to 25 and 55 to 85 at zero degrees sideslip and over a sideslip range of -10 to +10 at angles of attack ranging from -10 to 72.5. Two-component force data were also obtained with a fin balance on selected runs.
NASA Astrophysics Data System (ADS)
Barabanov, A. V.; Markov, A. S.; Tsirlov, V. L.
2018-05-01
This paper presents statistical results and their consolidation, which were received in the study into security of various web-application against cross-site request forgery attacks. Some of the results were received in the study carried out within the framework of certification for compliance with information security requirements. The paper provides the results of consolidating information about the attack and protection measures, which are currently used by the developers of web-applications. It specifies results of the study, which demonstrate various distribution types: distribution of identified vulnerabilities as per the developer type (Russian and foreign), distribution of the security measures used in web-applications, distribution of the identified vulnerabilities as per the programming languages, data on the number of security measures that are used in the studied web-applications. The results of the study show that in most cases the developers of web-applications do not pay due attention to protection against cross-site request forgery attacks. The authors give recommendations to the developers that are planning to undergo a certification process for their software applications.
NASA Technical Reports Server (NTRS)
Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.
1976-01-01
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.
Fallout risk following a major nuclear attack on the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, T.F.; Shapiro, C.S.; Wittler, R.F.
Fallout distributions are calculated for nuclear attacks on the contiguous United States. Four attack scenarios are treated, including counterforce and counterforce-countervalue attacks, for meteorological conditions associated with a typical day in summer and one in winter. The countervalue attacks contain mostly airbursts. To determine fallout effects, the population surviving the prompt effects is first calculated. For the prompt effects, a 'conflagration-type' model is used. The counterforce attack produces about 8 million prompt deaths, and the counterforce-countervalue case projects 98 million prompt deaths. Partial relocation before attack to low-risk fallout areas at least 15 km from potential strategic targets would resultmore » in a decrease in projections of deaths by tens of millions. For fallout risk calculations, only the dose received in the first 48 h (the early or local fallout) is considered. Populations are assumed to be sheltered, with a shelter protection factor profile that varies for a large urban area, a small urban area, or a rural area. With these profiles, without relocation, the fallout fatalities for all four attack scenarios are calculated to be less than one million people. This can be compared to fallout fatalities of about 10 million for a hypothetical unsheltered 'phantom' population.« less
Nam, Junghyun; Choo, Kim-Kwang Raymond; Paik, Juryon; Won, Dongho
2014-01-01
While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol and a 3-party key distribution protocol.
A Bayesian Belief Network of Threat Anticipation and Terrorist Motivations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Allgood, Glenn O; Davenport, Kristen M
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) asmore » well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.« less
Sico, Jason J; Yaggi, H Klar; Ofner, Susan; Concato, John; Austin, Charles; Ferguson, Jared; Qin, Li; Tobias, Lauren; Taylor, Stanley; Vaz Fragoso, Carlos A; McLain, Vincent; Williams, Linda S; Bravata, Dawn M
2017-08-01
Screening instruments for obstructive sleep apnea (OSA), as used routinely to guide clinicians regarding patient referral for polysomnography (PSG), rely heavily on symptomatology. We sought to develop and validate a cerebrovascular disease-specific OSA prediction model less reliant on symptomatology, and to compare its performance with commonly used screening instruments within a population with ischemic stroke or transient ischemic attack (TIA). Using data on demographic factors, anthropometric measurements, medical history, stroke severity, sleep questionnaires, and PSG from 2 independently derived, multisite, randomized trials that enrolled patients with stroke or TIA, we developed and validated a model to predict the presence of OSA (i.e., Apnea-Hypopnea Index ≥5 events per hour). Model performance was compared with that of the Berlin Questionnaire, Epworth Sleepiness Scale (ESS), the Snoring, Tiredness, Observed apnea, high blood Pressure, Body mass index, Age, Neck circumference, and Gender instrument, and the Sleep Apnea Clinical Score. The new SLEEP Inventory (Sex, Left heart failure, ESS, Enlarged neck, weight [in Pounds], Insulin resistance/diabetes, and National Institutes of Health Stroke Scale) performed modestly better than other instruments in identifying patients with OSA, showing reasonable discrimination in the development (c-statistic .732) and validation (c-statistic .731) study populations, and having the highest negative predictive value of all in struments. Clinicians should be aware of these limitations in OSA screening instruments when making decisions about referral for PSG. The high negative predictive value of the SLEEP INventory may be useful in determining and prioritizing patients with stroke or TIA least in need of overnight PSG. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Houser, J.; Johnson, L. J.; Oiye, M.; Runciman, W.
1972-01-01
Experimental aerodynamic investigations were made in a transonic wind tunnel on a 1/150-scale model of the Boeing H-32 space shuttle booster configuration. The purpose of the test was: (1) to verify the transonic reentry corridor at high angles of attack; (2) to determine the transonic aerodynamic characteristics; and (3) to determine the subsonic aerodynamic characteristics at low angles of attack. Test variables included configuration buildup, horizontal stabilizer settings of 0 and -20 deg, elevator deflections of 0 and -30 deg, and wing spoiler settings of 60 deg.