Science.gov

Sample records for attenuated dengue vaccine

  1. DENGUE VACCINES.

    PubMed

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  2. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine.

    PubMed

    Precioso, Alexander Roberto; Palacios, Ricardo; Thomé, Beatriz; Mondini, Gabriella; Braga, Patrícia; Kalil, Jorge

    2015-12-10

    Butantan Institute is a public Brazilian biomedical research-manufacturer center affiliated to the São Paulo State Secretary of Health. Currently, Butantan is one of the main public producers of vaccines, antivenoms, and antitoxins in Latin America. The partnership between Butantan and the National Institutes of Health (NIH) of the United Sates has been one of the longest and most successful partnerships in the development and manufacturing of new vaccines. Recently, Butantan Institute has developed and manufactured a lyophilized tetravalent live attenuated dengue vaccine with the four dengue viruses attenuated and licensed from the Laboratory of Infectious Diseases at The National Institutes of Allergy and Infectious Diseases (LID/NIAID/NIH). The objective of this paper is to describe the clinical evaluation strategies of a live attenuated tetravalent dengue vaccine (Butantan-DV) developed and manufactured by Butantan Institute. These clinical strategies will be used to evaluate the Butantan-DV Phase III trial to support the Butantan-DV licensure for protection against any symptomatic dengue caused by any serotype in people aged 2 to 59 years.

  3. Genetically modified, live attenuated dengue virus type 3 vaccine candidates.

    PubMed

    Blaney, Joseph E; Hanson, Christopher T; Firestone, Cai-Yen; Hanley, Kathryn A; Murphy, Brian R; Whitehead, Stephen S

    2004-12-01

    Three novel recombinant dengue type 3 (DEN3) virus vaccine candidates have been generated from a DEN3 virus isolated from a mild outbreak of dengue fever in the Sleman area of central Java in Indonesia in 1978. Antigenic chimeric viruses were prepared by replacing the membrane precursor and envelope (ME) proteins of recombinant DEN4 (rDEN4) virus with those from DEN3 Sleman/78 in the presence (rDEN3/4Delta30(ME)) and the absence (rDEN3/4(ME)) of the Delta30 mutation, a previously described 30-nucleotide deletion in the 3' untranslated region. In addition, a full-length infectious cDNA clone was generated from the DEN3 isolate and used to produce rDEN3 virus and the vaccine candidate rDEN3Delta30. The chimeric viruses rDEN3/4(ME) and rDEN3/4Delta30(ME) appear to be acceptable vaccine candidates since they were restricted in replication in severe combined immune deficiency mice transplanted with human hepatoma cells, in rhesus monkeys, and in Aedes and Toxorynchites mosquitoes, and each was protective in rhesus monkeys against DEN3 virus challenge. The rDEN3/4(ME) and rDEN3/4Delta30(ME) viruses were comparable in all parameters evaluated, indicating that antigenic chimerization resulted in the observed high level of attenuation. Surprisingly, rDEN3Delta30 was not attenuated in any model tested when compared with wild-type rDEN3 and therefore, is not a vaccine candidate at present. Thus, the rDEN3/4(ME) and rDEN3/4Delta30(ME) antigenic chimeric viruses can be considered for evaluation in humans and for inclusion in a tetravalent dengue vaccine.

  4. Protection Against Dengue Virus by Non-Replicating and Live Attenuated Vaccines Used Together in a Prime Boost Vaccination Strategy

    DTIC Science & Technology

    2010-01-01

    Protection against dengue virus by non-replicating and live attenuated vaccines used together in a prime boost vaccination strategy Monika Simmons a...Dengue DNA Punfied inacdvared virus Uvc artenuatcd virus Jlnmc boost A new vaccination strategy for dengue virus (DENV) was eval uated in rhesus...region (TDNA) then boosting 2 months l,ltcr with a tetravalent live aucnuated virus (TLAV) vaccine . Both vaccine combinations elicited virus

  5. Using recombinant DNA technology for the development of live-attenuated dengue vaccines.

    PubMed

    Lee, Hsiang-Chi; Butler, Michael; Wu, Suh-Chin

    2012-07-15

    Dramatic increases in dengue (DEN) incidence and disease severity have been reported, in great part due to the geographic expansion of Aedes aegypti and Aedes albopictus mosquitoes. One result is the expanded co-circulation of all dengue 1-4 serotype viruses (DENV) in urban areas worldwide, especially in South and South-East Asia, and South America. DEN disease severity ranges from asymptomatic infections to febrile dengue fevers (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There is an urgent need for a safe and effective tetravalent DEN vaccine. Several live attenuated, tetravalent DEN vaccine candidates have been generated by recombinant DNA technology; these candidates are capable of providing immunity to all four DENV serotypes. In this paper we review (a) recombinant live-attenuated DEN vaccine candidates in terms of deletion, antigen chimerization, and the introduction of adaptive mutations; (b) strategies for improving tetravalent vaccine attenuation; and (c) live-attenuated DENV vaccine development.

  6. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model.

    PubMed

    Kirkpatrick, Beth D; Whitehead, Stephen S; Pierce, Kristen K; Tibery, Cecilia M; Grier, Palmtama L; Hynes, Noreen A; Larsson, Catherine J; Sabundayo, Beulah P; Talaat, Kawsar R; Janiak, Anna; Carmolli, Marya P; Luke, Catherine J; Diehl, Sean A; Durbin, Anna P

    2016-03-16

    A dengue human challenge model can be an important tool to identify candidate dengue vaccines that should be further evaluated in large efficacy trials in endemic areas. Dengue is responsible for about 390 million infections annually. Protective efficacy results for the most advanced dengue vaccine candidate (CYD) were disappointing despite its ability to induce neutralizing antibodies against all four dengue virus (DENV) serotypes. TV003 is a live attenuated tetravalent DENV vaccine currently in phase 2 evaluation. To better assess the protective efficacy of TV003, a randomized double-blind, placebo-controlled trial in which recipients of TV003 or placebo were challenged 6 months later with a DENV-2 strain, rDEN2Δ30, was conducted. The primary endpoint of the trial was protection against dengue infection, defined as rDEN2Δ30 viremia. Secondary endpoints were protection against rash and neutropenia. All 21 recipients of TV003 who were challenged with rDEN2Δ30 were protected from infection with rDEN2Δ30. None developed viremia, rash, or neutropenia after challenge. In contrast, 100% of the 20 placebo recipients who were challenged with rDEN2Δ30 developed viremia, 80% developed rash, and 20% developed neutropenia. TV003 induced complete protection against challenge with rDEN2Δ30 administered 6 months after vaccination. TV003 will be further evaluated in dengue-endemic areas. The controlled dengue human challenge model can accelerate vaccine development by evaluating the protection afforded by the vaccine, thereby eliminating poor candidates from further consideration before the initiation of large efficacy trials.

  7. Dengue virus vaccine development.

    PubMed

    Yauch, Lauren E; Shresta, Sujan

    2014-01-01

    Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.

  8. Dengue 4 Vaccine Development

    DTIC Science & Technology

    1987-09-01

    CopU~1C FftE 0~AD( ) DENGUE 4 VACCINE DEVELOPMENT Lf 0, to ANNUAL AND FINAL REPORT0 by 0Nyven J. Marchette, Ph.D. September 1, 1987 (For the period 1... Dengue 4 Vaccine Development 12. PERSONAL AUTHOR(S) Nyven Marchette. Ph.D. 13a. TYPE OF REPORT T COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE...necessary and identi’fy by block number) FIELD GROUP SUB-GROUP Key words: Virus, arbovirus, dengue , dengue -4, vaccinej attenuation, immunity, RAI

  9. 78 FR 43219 - Prospective Grant of Exclusive License: Live Attenuated Dengue Tetravalent Vaccine Containing a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... et al., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses... Antigenic Chimeric Dengue Viruses 1,2,3, And 4'', United States Patent Application Number 10/970,640 (now...., ``Mutations which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus...

  10. Progress towards a dengue vaccine.

    PubMed

    Webster, Daniel P; Farrar, Jeremy; Rowland-Jones, Sarah

    2009-11-01

    The spread of dengue virus throughout the tropics represents a major, rapidly growing public health problem with an estimated 2.5 billion people at risk of dengue fever and the life-threatening disease, severe dengue. A safe and effective vaccine for dengue is urgently needed. The pathogenesis of severe dengue results from a complex interaction between the virus, the host, and, at least in part, immune-mediated mechanisms. Vaccine development has been slowed by fears that immunisation might predispose individuals to the severe form of dengue infection. A pipeline of candidate vaccines now exists, including live attenuated, inactivated, chimeric, DNA, and viral-vector vaccines, some of which are at the stage of clinical testing. In this Review, we present what is understood about dengue pathogenesis and its implications for vaccine design, the progress that is being made in the development of a vaccine, and the future challenges.

  11. Long-term safety assessment of live attenuated tetravalent dengue vaccines: deliberations from a WHO technical consultation.

    PubMed

    Bentsi-Enchill, Adwoa D; Schmitz, Julia; Edelman, Robert; Durbin, Anna; Roehrig, John T; Smith, Peter G; Hombach, Joachim; Farrar, Jeremy

    2013-05-28

    Dengue is a rapidly growing public health threat with approximately 2.5 billion people estimated to be at risk. Several vaccine candidates are at various stages of pre-clinical and clinical development. Thus far, live dengue vaccine candidates have been administered to several thousands of volunteers and were well-tolerated, with minimal short-term safety effects reported in Phase I and Phase II clinical trials. Based on the natural history of dengue, a theoretical possibility of an increased risk of severe dengue as a consequence of vaccination has been hypothesized but not yet observed. In October 2011, the World Health Organization (WHO) convened a consultation of experts in dengue, vaccine regulation and vaccine safety to review the current scientific evidence regarding safety concerns associated with live attenuated dengue vaccines and, in particular, to consider methodological approaches for their long-term evaluation. In this paper we summarize the scientific background and methodological considerations relevant to the safety assessment of these vaccines. Careful planning and a coordinated approach to safety assessment are recommended to ensure adequate long-term evaluation of dengue vaccines that will support their introduction and continued use.

  12. Outlook for a dengue vaccine.

    PubMed

    Norrby, R

    2014-05-01

    Dengue is an increasing medical problem in subtropical and tropical countries. The search for a safe and effective vaccine is complicated by the fact that there are four types of dengue virus and that, if a vaccine is live attenuated, it should be proven not to cause the life-threatening form of dengue, dengue haemorrhagic fever. So far one vaccine candidate, a four-valent chimeric vaccine constructed from a yellow fever vaccine strain, has reached large clinical trials and has been shown to offer protection against dengue types 1, 3 and 54 but not against dengue type 2. It is highly likely that an effective vaccine will be available in the next decade.

  13. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine?

    PubMed

    Whitehead, Stephen S

    2016-01-01

    Dengue is caused by four serotype-distinct dengue viruses (DENVs), and developing a multivalent vaccine against dengue has not been straightforward since partial immunity to DENV may predispose to more severe disease upon subsequent DENV infection. The vaccine that is furthest along in development is CYD™, a live attenuated tetravalent vaccine (LATV) produced by Sanofi Pasteur. Although the multi-dose vaccine demonstrated protection against severe dengue, its overall efficacy was limited by DENV serotype, serostatus at vaccination, region and age. The National Institute of Allergy and Infectious Diseases has developed the LATV dengue vaccines TV003/TV005. A single dose of either TV003 or TV005 induced seroconversion to four DENV serotypes in 74-92% (TV003) and 90% (TV005) of flavivirus seronegative adults and elicited near-sterilizing immunity to a second dose of vaccine administered 6-12 months later. The important differences in the structure, infectivity and immune responses to TV003/TV005 are compared with CYD™.

  14. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines.

    PubMed

    Capeding, Rosario Z; Luna, Imelda A; Bomasang, Emily; Lupisan, Socorro; Lang, Jean; Forrat, Remi; Wartel, Anh; Crevat, Denis

    2011-05-17

    A recombinant live attenuated tetravalent dengue vaccine (TDV) is safe and immunogenic in adults and children in dengue-naïve populations. Data are needed in dengue endemic populations. In a phase I, randomized, controlled, blind-observer study in the Philippines, groups of participants aged 2-5, 6-11, 12-17, and 18-45 years received either three TDV vaccinations at months 0, 3.5, and 12 (TDV-TDV-TDV group) or licensed typhoid vaccination at month 0 and TDV at months 3.5 and 12 (TyVi-TDV-TDV group) and were followed for safety (including biological safety and vaccine virus viremia) and immunogenicity. No serious adverse vaccine related events and no significant trends in biological safety parameters were reported. Injection site pain, headache, malaise, myalgia, fever, and asthenia were reported most frequently, as mild to moderate in most cases and transient. Reactogenicity did not increase with successive vaccinations and was no higher in children than in adults and adolescents. Low levels of vaccinal viremia were detected in both groups after each TDV vaccination. After three TDV vaccinations, the seropositivity rates against serotypes 1-4 were: 91%, 100%, 96%, 100%, respectively, in 2-5 year-olds; 88%, 96% 96%, 92% in 6-11 year-olds; 88%, 83%, 92%, 96% in adolescents; and 100% for all serotypes in adults. A similar response was observed after two doses for the TyVi-TDV-TDV group. The safety profile of TDV in a flavivirus endemic population was consistent with previous reports from flavivirus naïve populations. A vaccine regimen of either three TDV vaccinations administered over a year or two TDV vaccinations given more than 8 months apart resulted in a balanced antibody response to all four dengue serotypes in this flavivirus-exposed population, including children.

  15. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study

    PubMed Central

    Longini, Ira; Lourenco, Jose; Pearson, Carl A. B.; Reiner, Robert C.; Mier-y-Terán-Romero, Luis; Vannice, Kirsten

    2016-01-01

    Background Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. Methods and Findings The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%–25% (all simulations: –3%–34%) and in high-transmission settings (SP9 ≥ 70%) by 13%–25% (all simulations: 10%– 34%). These endemicity levels are

  16. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials

    PubMed Central

    Gailhardou, Sophia; Skipetrova, Anna; Dayan, Gustavo H.; Jezorwski, John; Saville, Melanie; Van der Vliet, Diane; Wartel, T. Anh

    2016-01-01

    A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2–16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2–60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2–60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for

  17. Dengue vaccines for travelers.

    PubMed

    Wilder-Smith, Annelies; Deen, Jacqueline L

    2008-07-01

    Dengue is an arthropod-borne infection caused by a flavivirus and spread by the Aedes mosquitoes. Many of the countries where dengue is endemic are popular tourist destinations and the disease is an increasingly important problem encountered by international travelers. Personal protection against the day-feeding dengue vectors is problematic, indicating the urgent need for a dengue vaccine. This review discusses the challenges of vaccine development, current vaccine strategies and the prospects for the availability of a vaccine for travelers in the future. Cost-effectiveness studies will need to take into account many factors, including the attack rate of dengue in travelers, the proportion of travelers who will need hospitalization, the cost of altered travel itineraries, the cost of the vaccine, duration of travel, destination and season. To be licensed as a travelers' vaccine, vaccine trials must address safety, immunogenicity, duration of protection, schedules and boosters in adults (in particular in immunologically naive adults), trials that may differ from those conducted in endemic countries. Vaccine schedules with long intervals would be a major obstacle to the uptake of the vaccine by travelers. Enhanced reactogenicity or interference with immunization must be effectively excluded for travelers with prior or concurrent vaccination against other flaviviruses, such as yellow fever or Japanese encephalitis. Licensing dengue as a travelers' vaccine poses unique challenges beyond the development of a vaccine for the endemic population.

  18. Dengue virus-specific human CD4+ T-lymphocyte responses in a recipient of an experimental live-attenuated dengue virus type 1 vaccine: bulk culture proliferation, clonal analysis, and precursor frequency determination.

    PubMed Central

    Green, S; Kurane, I; Edelman, R; Tacket, C O; Eckels, K H; Vaughn, D W; Hoke, C H; Ennis, F A

    1993-01-01

    We analyzed the CD4+ T-lymphocyte responses to dengue, West Nile, and yellow fever viruses 4 months after immunization of a volunteer with an experimental live-attenuated dengue virus type 1 vaccine (DEN-1 45AZ5). We examined bulk culture proliferation to noninfectious antigens, determined the precursor frequency of specific CD4+ T cells by limiting dilution, and established and analyzed CD4+ T-cell clones. Bulk culture proliferation was predominantly dengue virus type 1 specific with a lesser degree of cross-reactive responses to other dengue virus serotypes, West Nile virus, and yellow fever virus. Precursor frequency determination by limiting dilution in the presence of noninfectious dengue virus antigens revealed a frequency of antigen-reactive cells of 1 in 1,686 peripheral blood mononuclear cells (PBMC) for dengue virus type 1, 1 in 9,870 PBMC for dengue virus type 3, 1 in 14,053 PBMC for dengue virus type 2, and 1 in 17,690 PBMC for dengue virus type 4. Seventeen CD4+ T-cell clones were then established by using infectious dengue virus type 1 as antigen. Two patterns of dengue virus specificity were found in these clones. Thirteen clones were dengue virus type 1 specific, and four clones recognized both dengue virus types 1 and 3. Analysis of human leukocyte antigen (HLA) restriction revealed that five clones are HLA-DRw52 restricted, one clone is HLA-DP3 restricted, and one clone is HLA-DP4 restricted. These results indicate that in this individual, the CD4+ T-lymphocyte responses to immunization with live-attenuated dengue virus type 1 vaccine are predominantly serotype specific and suggest that a multivalent vaccine may be necessary to elicit strong serotype-cross-reactive CD4+ T-lymphocyte responses in such individuals. PMID:8371350

  19. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    PubMed

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response.

  20. Human CD4(+) T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    PubMed

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8(+) T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4(+) T cell responses after live vaccination is important because CD4(+) T cells are known contributors to host immunity, including cytokine production, help for CD8(+) T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4(+) T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4(+) T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4(+) cell responses closely mirroring those observed in a population associated with natural immunity.IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4(+) responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against

  1. A Dengue Vaccine.

    PubMed

    Durbin, Anna P

    2016-06-30

    Denvaxia is the first licensed vaccine for the prevention of dengue. It is a live vaccine developed using recombinant DNA technology. The vaccine is given as three doses over the course of a year and has the potential to prevent hundreds of thousands of hospitalizations each year.

  2. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  3. Vaccines and immunization strategies for dengue prevention.

    PubMed

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-07-20

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future.

  4. Dengue Type 4 Live-Attenuated Vaccine Viruses Passaged in Vero Cells Affect Genetic Stability and Dengue-Induced Hemorrhaging in Mice

    PubMed Central

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A.; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3′ NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q438H, E-V463L, NS2B-Q78H, and NS2B-A113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development. PMID:22053180

  5. Dengue type 4 live-attenuated vaccine viruses passaged in vero cells affect genetic stability and dengue-induced hemorrhaging in mice.

    PubMed

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438)H, E-V(463)L, NS2B-Q(78)H, and NS2B-A(113)T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development.

  6. Dengue human infection models to advance dengue vaccine development.

    PubMed

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics.

  7. Dengue Fever: Causes, Complications, and Vaccine Strategies.

    PubMed

    Khetarpal, Niyati; Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals.

  8. Dengue Fever: Causes, Complications, and Vaccine Strategies

    PubMed Central

    Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals. PMID:27525287

  9. CD8+ T-cell Responses in Flavivirus-Naive Individuals Following Immunization with a Live-Attenuated Tetravalent Dengue Vaccine Candidate.

    PubMed

    Chu, Haiyan; George, Sarah L; Stinchcomb, Dan T; Osorio, Jorge E; Partidos, Charalambos D

    2015-11-15

    We are developing a live-attenuated tetravalent dengue vaccine (TDV) candidate based on an attenuated dengue 2 virus (TDV-2) and 3 chimeric viruses containing the premembrane and envelope genes of dengue viruses (DENVs) -1, -3, and -4 expressed in the context of the attenuated TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively). In this study, we analyzed and characterized the CD8(+) T-cell response in flavivirus-naive human volunteers vaccinated with 2 doses of TDV 90 days apart via the subcutaneous or intradermal routes. Using peptide arrays and intracellular cytokine staining, we demonstrated that TDV elicits CD8(+) T cells targeting the nonstructural NS1, NS3, and NS5 proteins of TDV-2. The cells were characterized by the production of interferon-γ, tumor necrosis factor-α, and to a lesser extent interleukin-2. Responses were highest on day 90 after the first dose and were still detectable on 180 days after the second dose. In addition, CD8(+) T cells were multifunctional, producing ≥2 cytokines simultaneously, and cross-reactive to NS proteins of the other 3 DENV serotypes. Overall, these findings describe the capacity of our candidate dengue vaccine to elicit cellular immune responses and support the further evaluation of T-cell responses in samples from future TDV clinical trials.

  10. Robust and Balanced Immune Responses to All 4 Dengue Virus Serotypes Following Administration of a Single Dose of a Live Attenuated Tetravalent Dengue Vaccine to Healthy, Flavivirus-Naive Adults

    PubMed Central

    Kirkpatrick, Beth D.; Durbin, Anna P.; Pierce, Kristen K.; Carmolli, Marya P.; Tibery, Cecilia M.; Grier, Palmtama L.; Hynes, Noreen; Diehl, Sean A.; Elwood, Dan; Jarvis, Adrienne P.; Sabundayo, Beulah P.; Lyon, Caroline E.; Larsson, Catherine J.; Jo, Matthew; Lovchik, Janece M.; Luke, Catherine J.; Walsh, Mary C.; Fraser, Ellen A.; Subbarao, Kanta; Whitehead, Steven S.

    2015-01-01

    Background. The 4 serotypes of dengue virus, DENV-1–4, are the leading cause of arboviral disease globally. The ideal dengue vaccine would provide protection against all serotypes after a single dose. Methods. Two randomized, placebo-controlled trials were performed with 168 flavivirus-naive adults to demonstrate the safety and immunogenicity of a live attenuated tetravalent dengue vaccine (TV003), compared with those of a second tetravalent vaccine with an enhanced DENV-2 component (TV005), and to evaluate the benefit of a booster dose at 6 months. Safety data, viremia, and neutralizing antibody titers were evaluated. Results. A single dose of TV005 elicited a tetravalent response in 90% of vaccinees by 3 months after vaccination and a trivalent response in 98%. Compared with TV003, the higher-dose DENV-2 component increased the observed frequency of immunogenicity to DENV-2 in the TV005 trial. Both the first and second doses were well tolerated. Neither vaccine viremia, rash, nor a significant antibody boost were observed following a second dose. Conclusions. A single subcutaneous dose of TV005 dengue vaccine is safe and induces a tetravalent antibody response at an unprecedented frequency among vaccinees. A second dose has limited benefit and appears to be unnecessary. Studies to confirm these findings and assess vaccine efficacy will now move to populations in regions where DENV transmission is endemic. Clinical Trials Registration. NCT01072786 and NCT01436422. PMID:25801652

  11. Dengue vaccine development: strategies and challenges.

    PubMed

    Ramakrishnan, Lakshmy; Pillai, Madhavan Radhakrishna; Nair, Radhakrishnan R

    2015-03-01

    Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine.

  12. Safety and immunogenicity of a rederived, live-attenuated dengue virus vaccine in healthy adults living in Thailand: a randomized trial.

    PubMed

    Watanaveeradej, Veerachai; Gibbons, Robert V; Simasathien, Sriluck; Nisalak, Ananda; Jarman, Richard G; Kerdpanich, Angkool; Tournay, Elodie; De La Barrerra, Rafael; Dessy, Francis; Toussaint, Jean-François; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2014-07-01

    Safety and immunogenicity of two formulations of a live-attenuated tetravalent dengue virus (TDEN) vaccine produced using rederived master seeds from a precursor vaccine were tested against a placebo control in a phase II, randomized, double blind trial (NCT00370682). Two doses were administered 6 months apart to 120 healthy, predominantly flavivirus-primed adults (87.5% and 97.5% in the two vaccine groups and 92.5% in the placebo group). Symptoms and signs reported after vaccination were mild to moderate and transient. There were no vaccine-related serious adverse events or dengue cases reported. Asymptomatic, low-level viremia (dengue virus type 2 [DENV-2], DENV-3, or DENV-4) was detected in 5 of 80 vaccine recipients. One placebo recipient developed a subclinical natural DENV-1 infection. All flavivirus-unprimed subjects and at least 97.1% of flavivirus-primed subjects were seropositive to antibodies against all four DENV types 1 and 3 months post-TDEN dose 2. The TDEN vaccine was immunogenic with an acceptable safety profile in flavivirus-primed adults.

  13. Dengue vaccines: challenges, development, current status and prospects.

    PubMed

    Ghosh, A; Dar, L

    2015-01-01

    Infection with dengue virus (DENV) is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  14. Dengue vaccine: local decisions, global consequences.

    PubMed

    López-Gatell, Hugo; Alpuche-Aranda, Celia M; Santos-Preciado, José I; Hernández-Ávila, Mauricio

    2016-11-01

    As new vaccines against diseases that are prevalent in low- and middle-income countries gradually become available, national health authorities are presented with new regulatory and policy challenges. The use of CYD-TDV - a chimeric tetravalent, live-attenuated dengue vaccine - was recently approved in five countries. Although promising for public health, this vaccine has only partial and heterogeneous efficacy and may have substantial adverse effects. In trials, children who were aged 2-5 years when first given CYD-TDV were seven times more likely to be hospitalized for dengue, in the third year post-vaccination, than their counterparts in the control group. As it has not been clarified whether this adverse effect is only a function of age or is determined by dengue serostatus, doubts have been cast over the long-term safety of this vaccine in seronegative individuals of any age. Any deployment of the vaccine, which should be very cautious and only considered after a rigorous evaluation of the vaccine's risk-benefit ratio in explicit national and subnational scenarios, needs to be followed by a long-term assessment of the vaccine's effects. Furthermore, any implementation of dengue vaccines must not weaken the political and financial support of preventive measures that can simultaneously limit the impacts of dengue and several other mosquito-borne pathogens.

  15. Dengue vaccine: a valuable asset for the future.

    PubMed

    Jindal, Harashish; Bhatt, Bhumika; Malik, Jagbir Singh; S K, Shashikantha

    2014-01-01

    Dengue has emerged as one of the major global public health problems. The disease has broken out of its shell and has spread due to increased international travel and climatic changes. Globally, over 2.5 billion people accounting for >40% of the world's population are at risk from dengue. Since the 1940s, dengue vaccines have been under investigation. A live-attenuated tetravalent vaccine based on chimeric yellow fever-dengue virus (CYD-TDV) has progressed to phase III efficacy studies. Dengue vaccine has been found to be a cost-effective intervention to reduce morbidity and mortality. Current dengue vaccine candidates aim to protect against the 4 dengue serotypes, but the recent discovery of a fifth serotype could complicate vaccine development. In recent years, an urgent need has been felt for a vaccine to prevent the morbidity and mortality from this disease in a cost-effective way.

  16. The Human CD8+ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes

    PubMed Central

    Angelo, Michael A.; Bangs, Derek J.; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D.; Lindow, Janet C.; Diehl, Sean A.; Whitehead, Stephen; Durbin, Anna; Kirkpatrick, Beth; Sette, Alessandro

    2014-01-01

    ABSTRACT The incidence of infection with any of the four dengue virus serotypes (DENV1 to -4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an human lymphocyte antigen (HLA)-linked protective role for CD8+ T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. Peripheral blood mononuclear cells from these donors were screened in gamma interferon enzyme-linked immunosorbent spot assays with pools of predicted, HLA-matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8+ T cell responses after live attenuated dengue vaccination and show that CD8+ T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, whereas broad responses to structural and nonstructural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused toward the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV. IMPORTANCE The development of effective vaccination strategies against dengue virus (DENV) infection and clinically significant disease is a task of high global public health value and significance, while also being a challenge of significant complexity. A recent efficacy trial of the most advanced dengue vaccine candidate, demonstrated only partial protection against all four DENV

  17. Development of dengue DNA vaccines.

    PubMed

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed.

  18. Dengue vaccine: local decisions, global consequences

    PubMed Central

    López-Gatell, Hugo; Alpuche-Aranda, Celia M; Santos-Preciado, José I

    2016-01-01

    Abstract As new vaccines against diseases that are prevalent in low- and middle-income countries gradually become available, national health authorities are presented with new regulatory and policy challenges. The use of CYD-TDV – a chimeric tetravalent, live-attenuated dengue vaccine – was recently approved in five countries. Although promising for public health, this vaccine has only partial and heterogeneous efficacy and may have substantial adverse effects. In trials, children who were aged 2–5 years when first given CYD-TDV were seven times more likely to be hospitalized for dengue, in the third year post-vaccination, than their counterparts in the control group. As it has not been clarified whether this adverse effect is only a function of age or is determined by dengue serostatus, doubts have been cast over the long-term safety of this vaccine in seronegative individuals of any age. Any deployment of the vaccine, which should be very cautious and only considered after a rigorous evaluation of the vaccine’s risk–benefit ratio in explicit national and subnational scenarios, needs to be followed by a long-term assessment of the vaccine’s effects. Furthermore, any implementation of dengue vaccines must not weaken the political and financial support of preventive measures that can simultaneously limit the impacts of dengue and several other mosquito-borne pathogens. PMID:27821888

  19. A Phase 1/2 Trial of a Tetravalent Live-Attenuated Dengue Vaccine in Flavivirus-Naive Thai Infants

    DTIC Science & Technology

    2006-11-01

    dengue vaccine at study months 0 and 6; Group II (N=17) received control vaccines (varicella at study month 0; Hemophilus influenza B at study month 6...sequencing: Virus detection for DENV was performed by nested PCR using TaqMan probe and real time PCR. Virus RNA was extracted from serum using...amplified in the same tube. The nested PCR was done in the second round PCR by using TaqMan probe and real time PCR machine. All primers and

  20. A Phase 1/2 Trial of a Tetravalent Live-Attenuated Dengue Vaccine in Flavivirus-Native Thai Infants

    DTIC Science & Technology

    2006-11-01

    dengue vaccine at study months 0 and 6; Group II (N=17) received control vaccines (varicella at study month 0; Hemophilus influenza B at study month 6...sequencing: Virus detection for DENV was performed by nested PCR using TaqMan probe and real time PCR. Virus RNA was extracted from serum using...amplified in the same tube. The nested PCR was done in the second round PCR by using TaqMan probe and real time PCR machine. All primers and

  1. Latest developments and future directions in dengue vaccines

    PubMed Central

    Thisyakorn, Chule

    2014-01-01

    Dengue is a mosquito-borne disease which is currently an expanding global health problem. The disease is caused by four closely related viruses, the dengue virus. There are no specific dengue therapeutics and prevention is currently limited to vector control measures. Development of an effective tetravalent dengue vaccine would therefore represent a major advance in the control of the disease and is considered a high public health priority. While a licensed dengue vaccine is not yet available, the scope and intensity of dengue vaccine development has increased dramatically in the last decade. The uniqueness of the dengue viruses and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on chimeric yellow fever dengue virus, has progressed to phase III efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA and purified inactivated vaccine candidates, are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and virus-like particle-based vaccines, are under evaluation in preclinical studies. PMID:24757522

  2. Vaccination of Volunteers with Low-Dose, Live-Attenuated, Dengue Viruses Leads to Serotype-specific Immunologic and Virologic Profiles

    PubMed Central

    Lindow, Janet C.; Durbin, Anna P.; Whitehead, Stephen S.; Pierce, Kristen K.; Carmolli, Marya P.; Kirkpatrick, Beth D.

    2013-01-01

    There are currently no vaccines or therapeutics to prevent dengue disease which ranges in severity from asymptomatic infections to life-threatening illness. The National Institute of Allergy and Infectious Diseases (NIAID) Division of Intramural Research has developed live, attenuated vaccines to each of the four dengue serotypes (DENV-1 – DENV-4). Two doses (10 PFU and 1000 PFU) of three monovalent vaccines were tested in human clinical trials to compare safety and immunogenicity profiles. DEN4Δ30 had been tested previously at multiple doses. The three dengue vaccine candidates tested (DEN1Δ30, DEN2/4Δ30, and DEN3Δ30/31) were very infectious, each with a Human Infectious Dose 50% ≤ 10 PFU. Further, infectivity rates ranged from 90 −100% regardless of dose, excepting DEN2/4Δ30 which dropped from 100% at the 1000 PFU dose to 60% at the 10 PFU dose. Mean geometric peak antibody titers did not differ significantly between doses for DEN1Δ30 (92 ± 19 vs. 214 ± 97, p = 0.08); however, significant differences were observed between the 10 PFU and 1000 PFU doses for DEN2/4Δ30, 19 ± 9 vs. 102 ± 25 (p = 0.001), and DEN3Δ30/31, 119 ± 135 vs. 50 ± 50 (p=0.046). No differences in the incidences of rash, neutropenia, or viremia were observed between doses for any vaccines, though the mean peak titer of viremia for DEN1Δ30 was higher at the 1000 PFU dose (0.5 ± 0 vs. 1.1 ± 0.1, p = 0.007). These data demonstrate that atarget dose of 1000 PFU for inclusion of each dengue serotype into a tetravalent vaccine is likely to be safe and generate a balanced immune response for all serotypes. PMID:23735680

  3. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study

    PubMed Central

    Osorio, Jorge E; Velez, Ivan D; Thomson, Cynthia; Lopez, Liliana; Jimenez, Alejandra; Haller, Aurelia A; Silengo, Shawn; Scott, Jaclyn; Boroughs, Karen L; Stovall, Janae L; Luy, Betty E; Arguello, John; Beatty, Mark E; Santangelo, Joseph; Gordon, Gilad S; Huang, Claire Y-H; Stinchcomb, Dan T

    2015-01-01

    Summary Background Dengue virus is the most serious mosquito-borne viral threat to public health and no vaccines or antiviral therapies are approved for dengue fever. The tetravalent DENVax vaccine contains a molecularly characterised live attenuated dengue serotype-2 virus (DENVax-2) and three recombinant vaccine viruses expressing the prM and E structural genes for serotypes 1, 3, and 4 in the DENVax-2 genetic backbone. We aimed to assess the safety and immunogenicity of tetravalent DENVax formulations. Methods We undertook a randomised, double-blind, phase 1, dose-escalation trial between Oct 11, 2011, and Nov 9, 2011, in the Rionegro, Antioquia, Colombia. The first cohort of participants (aged 18–45 years) were randomly assigned centrally, via block randomisation, to receive a low-dose formulation of DENvax, or placebo, by either subcutaneous or intradermal administration. After a safety assessment, participants were randomly assigned to receive a high-dose DENVax formulation, or placebo, by subcutaneous or intradermal administration. Group assignment was not masked from study pharmacists, but allocation was concealed from participants, nurses, and investigators. Primary endpoints were frequency and severity of injection-site and systemic reactions within 28 days of each vaccination. Secondary endpoints were the immunogenicity of DENVax against all four dengue virus serotypes, and the viraemia due to each of the four vaccine components after immunisation. Analysis was by intention to treat for safety and per protocol for immunogenicity. Because of the small sample size, no detailed comparison of adverse event rates were warranted. The trial is registered with ClinicalTrials.gov, number NCT01224639. Findings We randomly assigned 96 patients to one of the four study groups: 40 participants (42%) received low-dose vaccine and eight participants (8%) received placebo in the low-dose groups; 39 participants (41%) received high-dose vaccine, with nine (9

  4. A Phase II, Randomized, Safety and Immunogenicity Trial of a Re-Derived, Live-Attenuated Dengue Virus Vaccine in Healthy Children and Adults Living in Puerto Rico

    PubMed Central

    Bauer, Kristen; Esquilin, Ines O.; Cornier, Alberto Santiago; Thomas, Stephen J.; Quintero del Rio, Ana I.; Bertran-Pasarell, Jorge; Morales Ramirez, Javier O.; Diaz, Clemente; Carlo, Simon; Eckels, Kenneth H.; Tournay, Elodie; Toussaint, Jean-Francois; De La Barrera, Rafael; Fernandez, Stefan; Lyons, Arthur; Sun, Wellington; Innis, Bruce L.

    2015-01-01

    This was a double-blind, randomized, controlled, phase II clinical trial, two dose study of re-derived, live-attenuated, tetravalent dengue virus (TDEN) vaccine (two formulations) or placebo in subjects 1–50 years of age. Among the 636 subjects enrolled, 331 (52%) were primed, that is, baseline seropositive to at least one dengue virus (DENV) type. Baseline seropositivity prevalence increased with age (10% [< 2 years], 26% [2–4 years], 60% [5–20 years], and 93% [21–50 years]). Safety profiles of TDEN vaccines were similar to placebo regardless of priming status. No vaccine-related serious adverse events (SAEs) were reported. Among unprimed subjects, immunogenicity (geometric mean antibody titers [GMT] and seropositivity rates) for each DENV increased substantially in both TDEN vaccine groups with at least 74.6% seropositive for four DENV types. The TDEN vaccine candidate showed an acceptable safety and immunogenicity profile in children and adults ranging from 1 to 50 years of age, regardless of priming status. ClinicalTrials.gov: NCT00468858. PMID:26175027

  5. A Phase II, Randomized, Safety and Immunogenicity Trial of a Re-Derived, Live-Attenuated Dengue Virus Vaccine in Healthy Children and Adults Living in Puerto Rico.

    PubMed

    Bauer, Kristen; Esquilin, Ines O; Cornier, Alberto Santiago; Thomas, Stephen J; Quintero Del Rio, Ana I; Bertran-Pasarell, Jorge; Morales Ramirez, Javier O; Diaz, Clemente; Carlo, Simon; Eckels, Kenneth H; Tournay, Elodie; Toussaint, Jean-Francois; De La Barrera, Rafael; Fernandez, Stefan; Lyons, Arthur; Sun, Wellington; Innis, Bruce L

    2015-09-01

    This was a double-blind, randomized, controlled, phase II clinical trial, two dose study of re-derived, live-attenuated, tetravalent dengue virus (TDEN) vaccine (two formulations) or placebo in subjects 1-50 years of age. Among the 636 subjects enrolled, 331 (52%) were primed, that is, baseline seropositive to at least one dengue virus (DENV) type. Baseline seropositivity prevalence increased with age (10% [< 2 years], 26% [2-4 years], 60% [5-20 years], and 93% [21-50 years]). Safety profiles of TDEN vaccines were similar to placebo regardless of priming status. No vaccine-related serious adverse events (SAEs) were reported. Among unprimed subjects, immunogenicity (geometric mean antibody titers [GMT] and seropositivity rates) for each DENV increased substantially in both TDEN vaccine groups with at least 74.6% seropositive for four DENV types. The TDEN vaccine candidate showed an acceptable safety and immunogenicity profile in children and adults ranging from 1 to 50 years of age, regardless of priming status. ClinicalTrials.gov: NCT00468858.

  6. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    PubMed

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-01-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever.

  7. Dengue vaccines: problems and prospects.

    PubMed

    Chaturvedi, U C; Shrivastava, Richa; Nagar, Rachna

    2005-05-01

    The extent of cumulative disease burden caused by dengue virus has attained an unprecedented level in recent times with sharp increase in the size of human population at risk. Dengue disease presents highly complex medical, economic and ecologic problems. The surge in publications on the development of dengue vaccines, taking advantage of new generation of biotechnology techniques indicates the profound interest and urgency in the scientific and medical communities in combating this disease. This review summarizes the importance of critical subjects like pathogenesis of dengue haemorrhagic fever and inadequacy of animal model that have adversely affected dengue vaccine development. Further, the remarkable progresses so far made in dengue vaccine research not only employing a diverse range of new strategies but also re-using old techniques to improve the existing vaccines, have been presented. The efficacy and safety of some of the new vaccine candidates have been evaluated and proven in human preclinical/clinical trials. Besides the technical advancement in vaccine development, vaccine safety and vaccine formulation have been examined.

  8. Safety and Immunogenicity of a Live Attenuated Tetravalent Dengue Vaccine Candidate in Flavivirus-Naive Adults: A Randomized, Double-Blinded Phase 1 Clinical Trial

    PubMed Central

    George, Sarah L.; Wong, Mimi A.; Dube, Tina J. T.; Boroughs, Karen L.; Stovall, Janae L.; Luy, Betty E.; Haller, Aurelia A.; Osorio, Jorge E.; Eggemeyer, Linda M.; Irby-Moore, Sharon; Frey, Sharon E.; Huang, Claire Y.-H.; Stinchcomb, Dan T.

    2015-01-01

    Background. Dengue viruses (DENVs) infect >300 million people annually, causing 96 million cases of dengue disease and 22 000 deaths [1]. A safe vaccine that protects against DENV disease is a global health priority [2]. Methods. We enrolled 72 flavivirus-naive healthy adults in a phase 1 double-blinded, randomized, placebo-controlled dose-escalation trial (low and high dose) of a live attenuated recombinant tetravalent dengue vaccine candidate (TDV) given in 2 doses 90 days apart. Volunteers were followed for safety, vaccine component viremia, and development of neutralizing antibodies to the 4 DENV serotypes. Results. The majority of adverse events were mild, with no vaccine-related serious adverse events. Vaccinees reported injection site pain (52% vs 17%) and erythema (73% vs 25%) more frequently than placebo recipients. Low levels of TDV-serotype 2 (TDV-2), TDV-3, and TDV-4 viremia were observed after the first but not second administration of vaccine. Overall seroconversion rates and geometric mean neutralization titers after 2 doses were 84.2% and 54.1, respectively, for DENV serotype 1 (DENV-1); 92.1% and 292.8, respectively, for DENV-2; 86.8% and 32.3, respectively, for DENV-3; and 71.1% and 15.0, respectively, for DENV-4. More than 90.0% of high-dose recipients had trivalent or broader responses. Conclusions. TDV was generally well tolerated, induced trivalent or broader neutralizing antibodies to DENV in most flavivirus-naive vaccinees, and is undergoing further development. Clinical Trials Registration. NCT01110551. PMID:25791116

  9. Next-generation dengue vaccines: novel strategies currently under development.

    PubMed

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  10. Points for Consideration for dengue vaccine introduction - recommendations by the Dengue Vaccine Initiative.

    PubMed

    Lim, Jacqueline Kyungah; Lee, Yong-Seok; Wilder-Smith, Annelies; Thiry, Georges; Mahoney, Richard; Yoon, In-Kyu

    2016-01-01

    Dengue is a public health problem in the tropics and subtropics. There are several vaccine candidates in clinical development. However, there may be gaps in the new vaccine introduction after vaccine licensure before it becomes available in developing countries. In anticipation of the first dengue vaccine candidate to be licensed, Dengue Vaccine Initiative (DVI) and, its predecessor, Pediatric Dengue Vaccine Initiative (PDVI) have been working on points for consideration to accelerate evidence-based dengue vaccine introduction, once a vaccine becomes available. In this paper, we review the history of PDVI and its successor, the DVI, and elaborate on the points of consideration for dengue vaccine introduction.

  11. Prospects for dengue vaccines for travelers

    PubMed Central

    2016-01-01

    Travel-acquired dengue cases have been increasing as the overall global dengue burden has expanded. In Korea, imported dengue cases have been reported since 2000 when it first became a notifiable disease. During the first four months of 2016, three times more dengue cases were reported in Korea than during the same period the previous year. A safe and efficacious vaccine for travelers would be beneficial to prevent dengue disease in individual travelers and potentially decrease the risk of virus spread to non-endemic areas. Here, we summarize the characteristics of dengue vaccines for travelers and review dengue vaccines currently licensed or in clinical development. PMID:27489798

  12. Licensed Dengue Vaccine: Public Health Conundrum and Scientific Challenge

    PubMed Central

    Halstead, Scott B.

    2016-01-01

    A tetravalent live attenuated vaccine composed of chimeras of yellow fever 17D and the four dengue viruses (chimeric yellow fever dengue [CYD]) manufactured by Sanofi Pasteur has completed phase III clinical testing in over 35,000 children 2–16 years of age. The vaccine was recently licensed in four countries. During the first 2 years of observation, CYD vaccine efficacy ranged between 30% and 79% in 10 different countries with an overall efficacy of 56.8%. During year 3, there was an overall efficacy against hospitalization of 16.7%, but a relative risk of hospitalization of 1.6 among children younger than 9 years and 4.95 in children 5 years of age and younger. Vaccination of seronegative children resulted in universal broad dengue neutralizing antibody responses, but poor protection against breakthrough dengue cases. Unless proven otherwise, such breakthrough cases in vaccinated subjects should be regarded as vaccine antibody-enhanced (ADE). The provenance of these cases can be studied serologically using original antigenic sin immune responses in convalescent sera. In conventional dengue vaccine efficacy clinical trials, persons vaccinated as seronegatives may be hospitalized with breakthrough ADE infections, whereas in the placebo group, dengue infection of monotypic immunes results in hospitalization. Vaccine efficacy trial design must identify dengue disease etiology by separately measuring efficacy in seronegatives and seropositives. The reason(s) why CYD vaccine failed to raise protective dengue virus immunity are unknown. To achieve a safe and protective dengue vaccine, careful studies of monotypic CYD vaccines in humans should precede field trials of tetravalent formulations. PMID:27352870

  13. Identifying protective dengue vaccines: guide to mastering an empirical process.

    PubMed

    Halstead, Scott B

    2013-09-23

    A recent clinical trial of a live-attenuated tetravalent chimeric yellow fever-dengue vaccine afforded no protection against disease caused by dengue 2 (DENV-2). This outcome was unexpected as two or more doses of this vaccine had raised broad neutralizing antibody responses. Data from pre-clinical subhuman primate studies revealed that vaccination with the monotypic DENV-2 component failed to meet established criteria for solid protection to homotypic live virus challenge. Accordingly, it is suggested that preclinical testing adopt more rigorous criteria for protection and that Phase I testing be extended to require evidence of solid monotypic protective immunity for each component of a dengue vaccine by direct challenge with live-attenuated DENV. Because live-attenuated tetravalent DENV vaccines exhibit evidence of immunological interference phenomena, during Phase II, volunteers given mixtures of DENV 1-4 vaccines should be separately challenged with monotypic live-attenuated DENV. Immune responses to live-attenuated challenge viruses and vaccine strains should be studied in an attempt to develop useful in vitro correlates of in vivo protection. Finally, it will be important to learn if DENV non-structural protein 1 (NS1) contributes to pathogenesis of the vascular permeability syndrome in humans. If so, immunity to dengue 1-4 NS1 may be crucial to prevent severe disease.

  14. Innate and adaptive cellular immunity in flavivirus-naïve human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3).

    PubMed

    Sanchez, Violette; Gimenez, Sophie; Tomlinson, Brian; Chan, Paul K S; Thomas, G Neil; Forrat, Remi; Chambonneau, Laurent; Deauvieau, Florence; Lang, Jean; Guy, Bruno

    2006-06-05

    VDV3, a clonal derivative of the Mahidol live-attenuated dengue 3 vaccine was prepared in Vero cells. Despite satisfactory preclinical evaluation, VDV3 was reactogenic in humans. We explored whether immunological mechanisms contributed to this outcome by monitoring innate and adaptive cellular immune responses for 28 days after vaccination. While no variations were seen in serum IL12 or TNFalpha levels, a high IFNgamma secretion was detected from Day 8, concomitant to IFNalpha, followed by IL10. Specific Th1 and CD8 responses were detected on Day 28, with high IFNgamma/TNFalpha ratios. Vaccinees exhibited very homogeneous class I HLA profiles, and a new HLA B60-restricted CD8 epitope was identified in NS3. We propose that, among other factors, adaptive immunity may have contributed to reactogenicity, even after this primary vaccination. In addition, the unexpected discordance observed between preclinical results and clinical outcome in humans led us to reconsider some of our preclinical acceptance criteria. Lessons learned from these results will help us to pursue the development of safe and immunogenic vaccines.

  15. [Dengue fever: from disease to vaccination].

    PubMed

    Teyssou, R

    2009-08-01

    Dengue is a tropical disease affecting 110 countries throughout the world and placing over 3 billion people at risk of infection. According the World Health Organization 70 to 500 million persons are infected every year including 2 million who develop hemorrhagic form and 20,000 who die. Children are at highest risk for death. Due to the absence of specialized laboratories in most endemic regions and to the lack of specifici clinical presentation, the incidence of dengue and its economic costs are certainly underestimated. Dengue iscaused by an arbovirus belonging to the Flavivirus genus of the family Flaviviridae. There are four dengue virus serotypes and no cross protection between them. The disease is transmitted through the bites of mosquitoes belonging to the Aedes genus, mainly Aedes aegypti. However A. albopictus has played an important role in the spread of the disease and other species may be involved in specific locations (e.g., A. polynesiensis in the South Pacific). There is no specific treatment for dengue. Management of severe forms depends on symptomatic treatment of hemorrhagic complications and hypovolemic shock. Prevention requires control of vector mosquitoes that is difficult to implement and maintain. Dengue is a major emerging infectious disease with a heavy impact on public health. The high human and economic costs as well as the absence of specific preventive measures underscore the need to develop a vaccine. However finding and distributing such a vaccine to populations at risk is hampered by numerous obstacles. The most notable challenges standing in the way of development of a candidate vaccine are as follows: absence of an animal model, which has important implications for the preclinical development strategy; need to develop a live attenuated vaccine; existence of 4 antigenically distinct serotypes with the resulting risk of competition between vaccine strains; immunologic risks related to antibody-dependent enhancement that has been

  16. Trends in clinical trials of dengue vaccine

    PubMed Central

    Marimuthu, Priya; Ravinder, Jamuna Rani

    2016-01-01

    Dengue is one of the most important vector-borne disease and an increasing problem worldwide because of current globalization trends. Roughly, half the world's population lives in dengue endemic countries, and nearly 100 million people are infected annually with dengue. India has the highest burden of the disease with 34% of the global cases. In the context of an expanding and potentially fatal infectious disease without effective prevention or specific treatment, the public health value of a protective vaccine is clear. There is no licensed dengue vaccine is available still, but several vaccines are under development. Keeping in view the rise in dengue prevalence globally, there is a need to increase clinical drug and vaccine research on dengue. This paper briefly reviews on the development and current status of dengue vaccine to provide information to policymakers, researchers, and public health experts to design and implement appropriate vaccine for prophylactic intervention. PMID:27843790

  17. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area

    PubMed Central

    Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M.; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Background Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. Trial Registration clinicaltrials.gov (NCT01656200) PMID:28135273

  18. Vaccines licensed and in clinical trials for the prevention of dengue.

    PubMed

    Torresi, J; Ebert, G; Pellegrini, M

    2017-02-14

    Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.

  19. Designing a vaccination strategy against dengue.

    PubMed

    Amaku, Marcos; Coudeville, Laurent; Massad, Eduardo

    2012-10-01

    In this work we propose a mathematical approach to estimate the dengue force of infection, the average age of dengue first infection, the optimum age to vaccinate children against dengue in a routine fashion and the optimum age interval to introduce the dengue vaccine in a mass vaccination campaign. The model is based on previously published models for vaccination against other childhood infections, which resulted in actual vaccination programmes in Brazil. The model was applied for three areas of distinct levels of endemicity of the city of Recife in Northeastern State of Pernambuco, Brazil. Our results point to an optimal age to introduce the dengue vaccine in the routine immunization programme at two years of age and an age interval to introduce a mass vaccination between three and 14 years of age.

  20. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1984-01-01

    IW AV wWW W N A A~~ Nq .. mcFILE COPY 0)0 AD PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES Annual Report Barry J. Beaty, Ph.D. D T IC ELECTE...TYPE OF REPORT & PERIOD COVERED Anhual Progress Report PATHOGENESIS OF DENGUE VACCINE VIRUSES 1/1/83 to 1/1/84 IN MOSQUITOES &. PERFORMING O1G. REPORT...19. KEY WORDS (Continue on reverse side if nec.eary nd Identify by block number) Dengue -i candidate vaccines; TP-56; 45AZ5; Dengue -i parent virus

  1. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1980-01-01

    AD-A138 518 PATHOGENESIS OF DENGUE VACCINE YIRUSES IN MOSQUITOES 1/ (U) YALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 9i JAN 80 DRND7...34 ’ UNCLASSIFIED 0{) AD 0Pathogenesis of dengue vaccine viruses in mosquitoes -First Annual Report Barry I. Beaty, Ph.D. Thomas H. G...PATHOGENESIS OF DENGUE VACCINE VIRUSES ’ z Progress Report IN MOSQUITOES July 1, 1979-Jan 1, 1980 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT

  2. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1982-07-01

    r AD Af29 019 PA I4OGENESIS OF DENGUE VACCINE VIRUSES IN MOSQITOES U) YALE UNIV NEW YIAVEN CONN SCHOOL OF MEDICINE B JBEAT ET AL 01 JUL 82 DAMD1779...1963-A ’UNCLASS IFIET) .AD.- PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES FINAL REPORT Barry J. Beaty, Ph.D. Thomas H. G. Aitken, Ph.D. July 1...NUMBER 4. TITLE (mid Subdl.) S. KVPE OF REPORT & PERIOD COVERED PATHOGENESIS OF DENGUE VACCINE VIRUSES Final Scientific Report IN MOSQUITOES 6/1/79 to 6

  3. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1982-01-01

    AD-R38 519 PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES i/i (U) YALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 81 JAN 82 DAMDI...NATIONAL BUREAU OF STANDARDS 1963-A i UNCLASSIFIED ":’:" AD 2 0. PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES Third Annual Report Barry J. Beaty...SUPPLEMENTARY NOTES 1 7 Y NORDS (rontinue on reverq , side if necessary and identify by hlock numb-) Dengue -2 S-1 vaccine, PR-159 parent; IDenque-1

  4. International Dengue Vaccine Communication and Advocacy: Challenges and Way Forward.

    PubMed

    Carvalho, Ana; Van Roy, Rebecca; Andrus, Jon

    2016-01-01

    Dengue vaccine introduction will likely occur soon. However, little has been published on international dengue vaccine communication and advocacy. More effort at the international level is required to review, unify and strategically disseminate dengue vaccine knowledge to endemic countries' decision makers and potential donors. Waiting to plan for the introduction of new vaccines until licensure may delay access in developing countries. Concerted efforts to communicate and advocate for vaccines prior to licensure are likely challenged by unknowns of the use of dengue vaccines and the disease, including uncertainties of vaccine impact, vaccine access and dengue's complex pathogenesis and epidemiology. Nevertheless, the international community has the opportunity to apply previous best practices for vaccine communication and advocacy. The following key strategies will strengthen international dengue vaccine communication and advocacy: consolidating existing coalitions under one strategic umbrella, urgently convening stakeholders to formulate the roadmap for integrated dengue prevention and control, and improving the dissemination of dengue scientific knowledge.

  5. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1981-01-01

    AD-AI30 52S PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES i/I (U) VALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 81 JAN 81 DAMDi...UNCLASSIFIED PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES Second Annual Report Barry J. Beaty, Ph.D. D T IC ; Thomas H.G. Aitken, Ph.D...REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED PATHOMMSIS CF DENGUE

  6. Development of Dengue Vaccine, Phase 1

    DTIC Science & Technology

    1987-07-01

    AD-A260 281 AD____ CONTRACT NO: DAMD17-87-C-7061 D TIC([%ELECTE TITLE: DEVELOPMENT OF DENGUE VACCINE, PHASE I S 6 PRINCIPAL INVESTIGATOR: John M. Ivy...Phase I (12/15/86-6/15/871 J- " , : T.5 5 JNDOZG :;UMBERS Contract No. Development of Dengue Vaccine, Phase I DAMD17-87-C-7061 65502A 13P665502M802.AA...distribution unlimited Dengue virus is a mosquito borne, positive strand RNA virus responsi- ble for hundreds of thousands of illnesses annually. No

  7. Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses.

    PubMed

    Brandler, Samantha; Ruffie, Claude; Najburg, Valérie; Frenkiel, Marie-Pascale; Bedouelle, Hughes; Desprès, Philippe; Tangy, Frédéric

    2010-09-24

    Dengue disease is an increasing global health problem that threatens one-third of the world's population. To control this emerging arbovirus, an efficient preventive vaccine is still needed. Because four serotypes of dengue virus (DV) coexist and antibody-dependent enhanced infection may occur, most strategies developed so far rely on the administration of tetravalent formulations of four live attenuated or chimeric viruses. Here, we evaluated a new strategy based on the expression of a single minimal tetravalent DV antigen by a single replicating viral vector derived from pediatric live-attenuated measles vaccine (MV). We generated a recombinant MV vector expressing a DV construct composed of the four envelope domain III (EDIII) from the four DV serotypes fused with the ectodomain of the membrane protein (ectoM). After two injections in mice susceptible to MV infection, the recombinant vector induced neutralizing antibodies against the four serotypes of dengue virus. When immunized mice were further inoculated with live DV from each serotype, a strong memory neutralizing response was raised against all four serotypes. A combined measles-dengue vaccine might be attractive to immunize infants against both diseases where they co-exist.

  8. Country- and age-specific optimal allocation of dengue vaccines.

    PubMed

    Ndeffo Mbah, Martial L; Durham, David P; Medlock, Jan; Galvani, Alison P

    2014-02-07

    Several dengue vaccines are under development, and some are expected to become available imminently. Concomitant with the anticipated release of these vaccines, vaccine allocation strategies for dengue-endemic countries in Southeast Asia and Latin America are currently under development. We developed a model of dengue transmission that incorporates the age-specific distributions of dengue burden corresponding to those in Thailand and Brazil, respectively, to determine vaccine allocations that minimize the incidence of dengue hemorrhagic fever, taking into account limited availability of vaccine doses in the initial phase of production. We showed that optimal vaccine allocation strategies vary significantly with the demographic burden of dengue hemorrhagic fever. Consequently, the strategy that is optimal for one country may be sub-optimal for another country. More specifically, we showed that, during the first years following introduction of a dengue vaccine, it is optimal to target children for dengue mass vaccination in Thailand, whereas young adults should be targeted in Brazil.

  9. Current issues in the economics of vaccination against dengue.

    PubMed

    Tozan, Yesim

    2016-01-01

    Dengue is a major public health concern in tropical and subtropical areas of the world. The prospects for dengue prevention have recently improved with the results of efficacy trials of a tetravalent dengue vaccine. Although partially effective, once licensed, its introduction can be a public health priority in heavily affected countries because of the perceived public health importance of dengue. This review explores the most immediate economic considerations of introducing a new dengue vaccine and evaluates the published economic analyses of dengue vaccination. Findings indicate that the current economic evidence base is of limited utility to support country-level decisions on dengue vaccine introduction. There are a handful of published cost-effectiveness studies and no country-specific costing studies to project the full resource requirements of dengue vaccine introduction. Country-level analytical expertise in economic analyses, another gap identified, needs to be strengthened to facilitate evidence-based decision-making on dengue vaccine introduction in endemic countries.

  10. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    PubMed

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  11. Introduction of mutations into the non-structural genes or 3' untranslated region of an attenuated dengue virus type 4 vaccine candidate further decreases replication in rhesus monkeys while retaining protective immunity.

    PubMed

    Hanley, Kathryn A; Manlucu, Luella R; Manipon, Gracielle G; Hanson, Christopher T; Whitehead, Stephen S; Murphy, Brian R; Blaney, Joseph E

    2004-09-03

    A dengue virus vaccine candidate, rDEN4Delta30, has been previously reported to be safe and immunogenic in humans, but a subset of vaccinees developed asymptomatic rash, elevation of liver enzymes and/or mild neutropenia. In the current study, mutations that had previously been shown to reduce replication of DEN4 virus in suckling mice and/or in SCID mice engrafted with human liver cells (SCID-HuH-7 mice) were introduced into rDEN4Delta30 in an attempt to further attenuate this virus. Three of the five resulting modified rDEN4Delta30 viruses showed decreased replication in SCID-HuH-7 mice relative to rDEN4Delta30. Moreover, in rhesus monkeys, two of the modified rDEN4Delta30 viruses showed a decrease in replication relative to rDEN4Delta30 while generating levels of neutralizing antibody similar to rDEN4Delta30 virus. All of the modified rDEN4Delta30 viruses completely protected immunized rhesus monkeys from challenge with wild-type DEN4 virus. Based on their attenuation for both human liver cells and rhesus monkeys, two of the modified rDEN4Delta30 vaccine candidates are currently being prepared for use in clinical trials. The application of these attenuating mutations to flavivirus vaccine development is discussed.

  12. Dengue vaccine: come let's fight the menace.

    PubMed

    Chawla, Sumit; Sahoo, Soumya Swaroop; Singh, Inderjeet; Verma, Madhur; Gupta, Vikas; Kumari, Sneh

    2015-01-01

    Although dengue has a global distribution, the World Health Organization (WHO) South-East Asia region together with Western Pacific region bears nearly 75% of the current global disease burden. Globally, the societal burden has been estimated to be approximately 528 to 1300 disability-adjusted life years (DALY) per million to populations in endemic regions Dengue is believed to infect 50 to 100 million people worldwide a year with half a million life-threatening infections requiring hospitalization, resulting in approximately 12,500 to 25,000 deaths. Despite being known for decades and nearly half the world's population is at risk for infection with as many as 100 million cases occurring annually, the pitiable state is that we still have no antiviral drugs to treat it and no vaccines to prevent it. In recent years, however, the development of dengue vaccines has accelerated dramatically in tandem with the burgeoning dengue problem with a rejuvenated vigour. However, recent progress in molecular-based vaccine strategies, as well as a renewed commitment by the World Health Organization (WHO) to co-ordinate global efforts on vaccine development, finally provides hope that control of this serious disease may be at hand. Today, several vaccines are in various stages of advanced development, with clinical trials currently underway on 5 candidate vaccines. Trials in the most advanced stages are showing encouraging preliminary data, and the leading candidate could be licensed as early as 2015.

  13. Understanding dengue pathogenesis: implications for vaccine design.

    PubMed Central

    Stephenson, John R.

    2005-01-01

    In the second half of the twentieth century dengue spread throughout the tropics, threatening the health of a third of the world's population. Dengue viruses cause 50-100 million cases of acute febrile disease every year, including more than 500,000 reported cases of the severe forms of the disease--dengue haemorrhagic fever and dengue shock syndrome. Attempts to create conventional vaccines have been hampered by the lack of suitable experimental models, the need to provide protection against all four serotypes simultaneously and the possible involvement of virus-specific immune responses in severe disease. The current understanding of dengue pathogenesis is outlined in this review, with special emphasis on the role of the immune response. The suspected involvement of the immune system in increased disease severity and vascular damage has raised concerns about every vaccine design strategy proposed so far. Clearly more research is needed on understanding the correlates of protection and mechanisms of pathogenesis. There is, however, an urgent need to provide a solution to the escalating global public health problems caused by dengue infections. Better disease management, vector control and improved public health measures will help reduce the current disease burden, but a safe and effective vaccine is probably the only long-term solution. Although concerns have been raised about the possible safety and efficacy of both conventional and novel vaccine technologies, the situation is now so acute that it is not possible to wait for the perfect vaccine. Consequently the careful and thorough evaluation of several of the current candidate vaccines may be the best approach to halting the spread of disease. PMID:15868023

  14. [Dengue vaccines. A reality for Argentina?].

    PubMed

    Orellano, Pablo W; Salomón, Oscar D

    2016-01-01

    Dengue outbreaks have occurred yearly in Argentina since 1998. A number of candidate vaccines have been tested in endemic countries. The most advanced one was licensed in three countries of Latin America for children over 9 years of age. In the present article the benefits and drawbacks of these vaccines as well as the challenges for the implementation of a vaccination strategy in Argentina are discussed. Furthermore, a risk stratification strategy with new criteria and a multidisciplinary vision is suggested as a possible path for the assessment of the pertinence of a vaccination program in areas showing the highest risk of dengue transmission and/or for people at the greatest risk of developing severe dengue. It is also suggested that the definition regarding the status of endemicity should take into account the local realities. Finally, this paper proposes a broad discussion on the evidences, the expected impact and instrumental aspects that would be involved in the incorporation of a dengue vaccine, marketed or in development, into the national immunization program, and especially which subpopulation should be targeted for the immunization strategy to be cost-effective.

  15. The dengue vaccine pipeline: Implications for the future of dengue control.

    PubMed

    Schwartz, Lauren M; Halloran, M Elizabeth; Durbin, Anna P; Longini, Ira M

    2015-06-26

    Dengue has become the most rapidly expanding mosquito-borne infectious disease on the planet, surpassing malaria and infecting at least 390 million people per year. There is no effective treatment for dengue illness other than supportive care, especially for severe cases. Symptoms can be mild or life-threatening as in dengue hemorrhagic fever and dengue shock syndrome. Vector control has been only partially successful in decreasing dengue transmission. The potential use of safe and effective tetravalent dengue vaccines is an attractive addition to prevent disease or minimize the possibility of epidemics. There are currently no licensed dengue vaccines. This review summarizes the current status of all dengue vaccine candidates in clinical evaluation. Currently five candidate vaccines are in human clinical trials. One has completed two Phase III trials, two are in Phase II trials, and three are in Phase I testing.

  16. The Dengue Vaccine Pipeline: Implications for the Future of Dengue Control

    PubMed Central

    Schwartz, Lauren M.; Halloran, M. Elizabeth; Durbin, Anna P.; Longini, Ira M.

    2015-01-01

    Dengue has become the most rapidly expanding mosquito-borne infectious disease on the planet, surpassing malaria and infecting at least 390 million people per year. There is no effective treatment for dengue illness other than supportive care, especially for severe cases. Symptoms can be mild or life-threatening as in dengue hemorrhagic fever and dengue shock syndrome. Vector control has been only partially successful in decreasing dengue transmission. The potential use of safe and effective tetravalent dengue vaccines is an attractive addition to prevent disease or minimize the possibility of epidemics. There are currently no licensed dengue vaccines. This review summarizes the current status of all dengue vaccine candidates in clinical evaluation. Currently five candidate vaccines are in human clinical trials. One has completed two Phase III trials, two are in Phase II trials, and three are in Phase I testing. PMID:25989449

  17. Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus.

    PubMed

    Brandler, Samantha; Lucas-Hourani, Marianne; Moris, Arnaud; Frenkiel, Marie-Pascale; Combredet, Chantal; Février, Michèle; Bedouelle, Hugues; Schwartz, Olivier; Desprès, Philippe; Tangy, Frédéric

    2007-12-12

    Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles-dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist.

  18. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-15-2-0029 TITLE: Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine PRINCIPAL INVESTIGATOR: Maya...TITLE AND SUBTITLE Enhancing the Immunogenicity of a Tetravalent Dengue DNA 5a. CONTRACT NUMBER Vaccine 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...the top infectious diseases that afflict US Military personnel deployed overseas. Developing a successful vaccine to prevent dengue fever in DoD

  19. Genetic and Phenotypic Characterization of Manufacturing Seeds for a Tetravalent Dengue Vaccine (DENVax)

    PubMed Central

    Huang, Claire Y.-H.; Kinney, Richard M.; Livengood, Jill A.; Bolling, Bethany; Arguello, John J.; Luy, Betty E.; Silengo, Shawn J.; Boroughs, Karen L.; Stovall, Janae L.; Kalanidhi, Akundi P.; Brault, Aaron C.; Osorio, Jorge E.; Stinchcomb, Dan T.

    2013-01-01

    Background We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1–4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. Methodology/Principal Findings After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors. Conclusion/Significance All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia. PMID:23738026

  20. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection.

    PubMed

    Guy, Bruno; Jackson, Nicholas

    2016-01-01

    Dengue virus (DENV) is a human pathogen with a large impact on public health. Although no vaccine against DENV is currently licensed, a recombinant vaccine - chimeric yellow fever virus-DENV tetravalent dengue vaccine (CYD-TDV) - has shown efficacy against symptomatic dengue disease in two recent Phase III clinical trials. Safety observations were also recently reported for these trials. In this Opinion article, we review the data from recent vaccine clinical trials and discuss the putative mechanisms behind the observed efficacy of the vaccine against different forms of the disease, focusing on the interactions between the infecting virus, pre-existing host immunity and vaccine-induced immune responses.

  1. Policymakers' views on dengue fever/dengue haemorrhagic fever and the need for dengue vaccines in four southeast Asian countries.

    PubMed

    DeRoeck, Denise; Deen, Jacqueline; Clemens, John D

    2003-12-08

    A survey of policymakers and other influential professionals in four southeast Asian countries (Cambodia, Indonesia, Philippines and Vietnam) was conducted to determine policymakers' views on the public health importance of dengue fever and dengue haemorrhagic fever (DHF), the need for a vaccine and the determinants influencing its potential introduction. The survey, which involved face-to-face interviews with policymakers, health programme managers, researchers, opinion leaders and other key informants, revealed an almost uniformly high level of concern about dengue fever/DHF and a high perceived need for a dengue vaccine. Several characteristics of the disease contribute to this high sense of priority, including its geographic spread, occurrence in outbreaks, the recurrent risk of infection each dengue season, its severity and the difficulty in diagnosis and management, its urban predominance, its burden on hospitals, and its economic toll on governments and families. Research felt to be key to future decision-making regarding dengue vaccine introduction include: disease surveillance studies, in-country vaccine trials or pilot projects, and studies on the economic burden of dengue and the cost-effectiveness of dengue vaccines. The results suggest favourable conditions for public and private sector markets for dengue vaccines and the need for creative financing strategies to ensure their accessibility to poor children in dengue-endemic countries.

  2. Vaccines for the prevention of dengue: development update.

    PubMed

    Thomas, Stephen J; Endy, Timothy P

    2011-06-01

    The dengue viruses (DENV) are mosquito-borne flaviviruses which cause a spectrum of clinical disease known as "dengue," and have emerged and re-emerged as a significant global health problem. It is estimated more than 120 countries currently have endemic DENV transmission, 55% of the world's population is at risk of infection, and there are between 70-500 million infections of which 2.1 million are clinically severe resulting in 21,000 deaths annually. By all estimates the global dengue problem will continue to worsen due to the increasing mobility of the population, ecological changes, and the inability to effectively sustain vector control. There are no licensed antivirals or vaccines to treat or prevent dengue. The development and widespread use of a safe and efficacious dengue vaccine is required to significantly reduce the global dengue burden. In this review the authors discuss dengue vaccines currently in the pre-clinical and clinical development pipeline.

  3. A novel live-attenuated vaccine candidate for mayaro Fever.

    PubMed

    Weise, William J; Hermance, Meghan E; Forrester, Naomi; Adams, A Paige; Langsjoen, Rose; Gorchakov, Rodion; Wang, Eryu; Alcorn, Maria D H; Tsetsarkin, Konstantin; Weaver, Scott C

    2014-08-01

    Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  4. A Novel Live-Attenuated Vaccine Candidate for Mayaro Fever

    PubMed Central

    Weise, William J.; Hermance, Meghan E.; Forrester, Naomi; Adams, A. Paige; Langsjoen, Rose; Gorchakov, Rodion; Wang, Eryu; Alcorn, Maria D. H.; Tsetsarkin, Konstantin; Weaver, Scott C.

    2014-01-01

    Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease. PMID:25101995

  5. Dengue vaccine: an update on recombinant subunit strategies.

    PubMed

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines.

  6. Dengue dynamics and vaccine cost-effectiveness in Brazil.

    PubMed

    Durham, David P; Ndeffo Mbah, Martial L; Medlock, Jan; Luz, Paula M; Meyers, Lauren A; Paltiel, A David; Galvani, Alison P

    2013-08-20

    Recent Phase 2b dengue vaccine trials have demonstrated the safety of the vaccine and estimated the vaccine efficacy with further trials underway. In anticipation of vaccine roll-out, cost-effectiveness analysis of potential vaccination policies that quantify the dynamics of disease transmission are fundamental to the optimal allocation of available doses. We developed a dengue transmission and vaccination model and calculated, for a range of vaccination costs and willingness-to-pay thresholds, the level of vaccination coverage necessary to sustain herd-immunity, the price at which vaccination is cost-effective and is cost-saving, and the sensitivity of our results to parameter uncertainty. We compared two vaccine efficacy scenarios, one a more optimistic scenario and another based on the recent lower-than-expected efficacy from the latest clinical trials. We found that herd-immunity may be achieved by vaccinating 82% (95% CI 58-100%) of the population at a vaccine efficacy of 70%. At this efficacy, vaccination may be cost-effective for vaccination costs up to US$ 534 (95% CI $369-1008) per vaccinated individual and cost-saving up to $204 (95% CI $39-678). At the latest clinical trial estimates of an average of 30% vaccine efficacy, vaccination may be cost-effective and cost-saving at costs of up to $237 (95% CI $159-512) and $93 (95% CI $15-368), respectively. Our model provides an assessment of the cost-effectiveness of dengue vaccination in Brazil and incorporates the effect of herd immunity into dengue vaccination cost-effectiveness. Our results demonstrate that at the relatively low vaccine efficacy from the recent Phase 2b dengue vaccine trials, age-targeted vaccination may still be cost-effective provided the total vaccination cost is sufficiently low.

  7. Immune correlates for dengue vaccine development.

    PubMed

    Srikiatkhachorn, Anon; Yoon, In-Kyu

    2016-01-01

    Dengue virus is the leading cause of vector-borne viral disease with four serotypes in circulation. Vaccine development has been complicated by the potential for both protection and disease enhancement during heterologous infection. Secondary infection triggers cross-reactive immune memory responses that have varying functional and epitope specificities that determine protection or risk. Strongly neutralizing antibodies to quaternary epitopes may be especially important for virus neutralization. Cell-mediated immunity dominated by Th1 functions may also play an important role. Determining an immune correlate of protection or risk would be highly beneficial for vaccine development but is hampered by mechanistic uncertainties and assay limitations. Clinical efficacy trials and human infection models along with a systems approach may provide future opportunities to elucidate such correlates.

  8. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  9. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  10. Optimization model of vaccination strategy for dengue transmission

    NASA Astrophysics Data System (ADS)

    Widayani, H.; Kallista, M.; Nuraini, N.; Sari, M. Y.

    2014-02-01

    Dengue fever is emerging tropical and subtropical disease caused by dengue virus infection. The vaccination should be done as a prevention of epidemic in population. The host-vector model are modified with consider a vaccination factor to prevent the occurrence of epidemic dengue in a population. An optimal vaccination strategy using non-linear objective function was proposed. The genetic algorithm programming techniques are combined with fourth-order Runge-Kutta method to construct the optimal vaccination. In this paper, the appropriate vaccination strategy by using the optimal minimum cost function which can reduce the number of epidemic was analyzed. The numerical simulation for some specific cases of vaccination strategy is shown.

  11. Dengue vaccine: WHO position paper, July 2016 - recommendations.

    PubMed

    World Health Organization

    2017-03-01

    This article presents the World Health Organization's (WHO) recommendations on the use of dengue vaccine excerpted from the WHO position paper on dengue vaccine published in the Weekly epidemiological Record in July 2016 (Dengue vaccine: WHO position paper, 2016) [1]. The current document is the first WHO position paper on dengue vaccination and focuses primarily on the available evidence concerning the only dengue vaccine to have been registered by National Regulatory Authorities. The position paper gives consideration to the epidemiological features of the disease and assesses the potential use of the vaccine for public health benefits. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence, and to the evidence-to-recommendation table. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the recommendations of the WHO's Strategic Advisory Group of Experts (SAGE) on immunization. Recommendations on the use of this dengue vaccine were discussed by SAGE in April 2016; evidence presented at that SAGE meeting can be accessed at: http://www.who.int/immunization/sage/previous/en/index.html.

  12. Molecular determinants of plaque size as an indicator of dengue virus attenuation

    PubMed Central

    Goh, Kenneth Choon Meng; Tang, Choon Kit; Norton, Diana Catherine; Gan, Esther Shuyi; Tan, Hwee Cheng; Sun, Bo; Syenina, Ayesa; Yousuf, Amjad; Ong, Xin Mei; Kamaraj, Uma Sangumathi; Cheung, Yin Bun; Gubler, Duane J; Davidson, Andrew; St John, Ashley Lauren; Sessions, October Michael; Ooi, Eng Eong

    2016-01-01

    The development of live viral vaccines relies on empirically derived phenotypic criteria, especially small plaque sizes, to indicate attenuation. However, while some candidate vaccines successfully translated into licensed applications, others have failed safety trials, placing vaccine development on a hit-or-miss trajectory. We examined the determinants of small plaque phenotype in two dengue virus (DENV) vaccine candidates, DENV-3 PGMK30FRhL3, which produced acute febrile illness in vaccine recipients, and DENV-2 PDK53, which has a good clinical safety profile. The reasons behind the failure of PGMK30FRhL3 during phase 1 clinical trial, despite meeting the empirically derived criteria of attenuation, have never been systematically investigated. Using in vitro, in vivo and functional genomics approaches, we examined infections by the vaccine and wild-type DENVs, in order to ascertain the different determinants of plaque size. We show that PGMK30FRhL3 produces small plaques on BHK-21 cells due to its slow in vitro growth rate. In contrast, PDK53 replicates rapidly, but is unable to evade antiviral responses that constrain its spread hence also giving rise to small plaques. Therefore, at least two different molecular mechanisms govern the plaque phenotype; determining which mechanism operates to constrain plaque size may be more informative on the safety of live-attenuated vaccines. PMID:27185466

  13. Prevention and control of influenza and dengue through vaccine development.

    PubMed

    Greenberg, David P; Robertson, Corwin A; Gordon, Daniel M

    2013-08-01

    Influenza and dengue are viral illnesses of global public health importance, especially among children. Accordingly, these diseases have been the focus of efforts to improve their prevention and control. Influenza vaccination offers the best protection against clinical disease caused by strains contained within the specific year's formulation. It is not uncommon for there to be a mismatch between vaccine strains and circulating strains, particularly with regards to the B lineages. For more than a decade, two distinct lineages of influenza B (Yamagata and Victoria) have co-circulated in the US with varying frequencies, but trivalent influenza vaccines contain only one B-lineage strain and do not offer adequate protection against the alternate B-lineage. Quadrivalent influenza vaccines (QIVs), containing two A strains (H1N1 and H3N2) and two B strains (one from each lineage) have been developed to help protect against the four strains predicted to be the most likely to be circulating. The QIV section of this article discusses epidemiology of pediatric influenza, importance of influenza B in children, potential benefits of QIV, and new quadrivalent vaccines. In contrast to influenza, a vaccine against dengue is not yet available in spite of many decades of research and development. A global increase in reports of dengue fever (DF) and its more severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), suggest that US physicians will increasingly encounter patients with this disease. Similarities of the early signs and symptoms of influenza and dengue and the differences in disease management necessitates a better understanding of the epidemiology, clinical presentation, management, and prevention of DF by US physicians, including pediatricians. The article also provides a brief overview of dengue and discusses dengue vaccine development.

  14. Challenges for the formulation of a universal vaccine against dengue.

    PubMed

    Chokephaibulkit, Kulkanya; Perng, Guey Chuen

    2013-05-01

    Dengue is rapidly becoming a disease of an escalating global public health concern. The disease is a vector-borne disease, transmitted by the bite of an Aedes spp. mosquito. Dynamic clinical manifestations, ranging from asymptomatic, flu-like febrile illness, dengue fever (DF) to dengue hemorrhagic fever (DHF) with or without dengue shock syndrome (DSS), make the disease one of the most challenging to diagnose and treat. DF is a self-limited illness, while DHF/DSS, characterized by plasma leakage resulting from an increased vascular permeability, can have severe consequences, including death. The pathogenesis of dengue virus infection remains poorly understood, mainly due to the lack of a suitable animal model that can recapitulate the cardinal features of human dengue diseases. Currently, there is no specific treatment or antiviral therapy available for dengue virus infection and supportive care with vigilant monitoring is the principle course of treatment. Since vector control programs have been largely unsuccessful in preventing outbreaks, vaccination seems to be the most viable option for prevention. There are four dengue viral serotypes and each one of them is capable of causing severe dengue. Although immunity induced by infection by one serotype is effective in protection against the homologous viral serotype, it only has a transient protective effect against infection with the other three serotypes. The meager cross protective immunity generated wanes over time and may even induce a harmful effect at the time of subsequent secondary infection. Thus, it is imperative to have a vaccine that can elicit equal and long-lasting immunity to all four serotypes simultaneously. Numerous tetravalent vaccines are currently either in the pipeline for clinical trials or under development. For those frontrunner tetravalent vaccines in clinical trials, despite good safety and immunogenicity profiles registered, issues such as imbalanced immune responses between serotypes

  15. Dengue vaccines: recent developments, ongoing challenges and current candidates

    PubMed Central

    McArthur, Monica A.; Sztein, Marcelo B.; Edelman, Robert

    2013-01-01

    Summary Dengue is among the most prevalent and important arbovirus diseases of humans. In order to effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in pre-clinical and clinical development. Here we review the recent advances in dengue virus vaccine development and briefly discuss the challenges associated with the use of these vaccines as a public health tool. PMID:23984962

  16. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine.

    PubMed

    Guy, Bruno; Barrere, Beatrice; Malinowski, Claire; Saville, Melanie; Teyssou, Remy; Lang, Jean

    2011-09-23

    Dengue vaccine development has reached a major milestone with the initiation, in 2010, of the first phase III clinical trial to investigate the Sanofi Pasteur CYD tetravalent dengue vaccine (TDV). The CYD TDV candidate is composed of four recombinant, live, attenuated vaccines (CYD-1-4) based on a yellow fever vaccine 17D (YFV 17D) backbone, each expressing the pre-membrane and envelope genes of one of the four dengue virus serotypes. The vaccine is genetically and phenotypically stable, non-hepatotropic, less neurovirulent than YFV 17D, and does not infect mosquitoes by the oral route. In vitro and in vivo preclinical studies showed that CYD TDV induces controlled stimulation of human dendritic cells, and significant immune responses in monkeys. Scale up and industrialization are being conducted in parallel with preclinical and clinical development to fulfill the needs of phase II/III trials, and to anticipate and facilitate supply and access to vaccine in the countries where the dengue disease burden makes it an urgent public health priority. The vaccine has now been administered to more than 6000 children and adults from dengue endemic and non-endemic areas and no safety concerns have arisen in any of the completed or ongoing trials. A three-dose vaccination regimen induces an immune response against all four serotypes in the large majority of vaccinees. Preexisting flavivirus immunity favors quicker and higher immune responses to CYD TDV, without adversely effecting clinical safety or increasing vaccine viremia. The observed level and nature of the cellular immune responses in humans are consistent with the good safety and immunogenicity profile of the vaccine. Preliminary results of an ongoing, proof-of-concept efficacy and large scale safety study in Thai children are expected by the end of 2012. Here we discuss the different steps and challenges of developing CYD TDV, from research to industrialization, and summarize some of the challenges to the successful

  17. Vaccination models and optimal control strategies to dengue.

    PubMed

    Rodrigues, Helena Sofia; Monteiro, M Teresa T; Torres, Delfim F M

    2014-01-01

    As the development of a dengue vaccine is ongoing, we simulate an hypothetical vaccine as an extra protection to the population. In a first phase, the vaccination process is studied as a new compartment in the model, and different ways of distributing the vaccines investigated: pediatric and random mass vaccines, with distinct levels of efficacy and durability. In a second step, the vaccination is seen as a control variable in the epidemiological process. In both cases, epidemic and endemic scenarios are included in order to analyze distinct outbreak realities.

  18. Financing dengue vaccine introduction in the Americas: challenges and opportunities.

    PubMed

    Constenla, Dagna; Clark, Samantha

    2016-01-01

    Dengue has escalated in the region of the Americas unabated despite major investments in integrated vector control and prevention strategies. An effective and affordable dengue vaccine can play a critical role in reducing the human and economic costs of the disease by preventing millions around the world from getting sick. However, there are considerable challenges on the path towards vaccine introduction. These include lack of sufficient financing tools, absence of capacity within national level decision-making bodies, and demands that new vaccines place on stressed health systems. Various financing models can be used to overcome these challenges including setting up procurement mechanisms, integrating regional and domestic taxes, and setting up low interest multilateral loans. In this paper we review these challenges and opportunities of financing dengue vaccine introduction in the Americas.

  19. Preparing for introduction of a dengue vaccine: recommendations from the 1st Dengue v2V Asia-Pacific Meeting.

    PubMed

    Lam, Sai Kit; Burke, Donald; Capeding, Maria Rosario; Chong, Chee Keong; Coudeville, Laurent; Farrar, Jeremy; Gubler, Duane; Hadinegoro, Sri Rezeki; Hanna, Jeffrey; Lang, Jean; Lee, Han Lim; Leo, Yee Sin; Luong, Chan Quang; Mahoney, Richard; McBride, John; Mendez-Galvan, Jorge; Ng, Lee Ching; Nimmannitya, Suchitra; Ooi, Eng Eong; Shepard, Donald; Smit, Jaco; Teyssou, Rémy; Thomas, Laurent; Torresi, Joseph; Vasconcelos, Pedro; Wirawan, Dewa Nyoman; Yoksan, Sutee

    2011-11-28

    Infection with dengue virus is a major public health problem in the Asia-Pacific region and throughout tropical and sub-tropical regions of the world. Vaccination represents a major opportunity to control dengue and several candidate vaccines are in development. Experts in dengue and in vaccine introduction gathered for a two day meeting during which they examined the challenges inherent to the introduction of a dengue vaccine into the national immunisation programmes of countries of the Asia-Pacific. The aim was to develop a series of recommendations to reduce the delay between vaccine licensure and vaccine introduction. Major recommendations arising from the meeting included: ascertaining and publicising the full burden and cost of dengue; changing the perception of dengue in non-endemic countries to help generate global support for dengue vaccination; ensuring high quality active surveillance systems and diagnostics; and identifying sustainable sources of funding, both to support vaccine introduction and to maintain the vaccination programme. The attendees at the meeting were in agreement that with the introduction of an effective vaccine, dengue is a disease that could be controlled, and that in order to ensure a vaccine is introduced as rapidly as possible, there is a need to start preparing now.

  20. Live attenuated vaccines for invasive Salmonella infections

    PubMed Central

    Tennant, Sharon M.; Levine, Myron M.

    2015-01-01

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed S. Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: S. Typhi, S. Paratyphi A, S. Paratyphi B (currently uncommon but may become dominant again), S. Typhimurium, S. Enteritidis and S. Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines. PMID:25902362

  1. Live attenuated vaccines for invasive Salmonella infections.

    PubMed

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  2. Dengue Dynamics and Vaccine Cost-Effectiveness Analysis in the Philippines

    PubMed Central

    Shim, Eunha

    2016-01-01

    Dengue is one of the most problematic vector-borne diseases in the Philippines, with an estimated 842,867 cases resulting in medical costs of $345 million U.S. dollars annually. In December 2015, the first dengue vaccine, known as chimeric yellow fever virus–dengue virus tetravalent dengue vaccine, was approved for use in the Philippines and is given to children 9 years of age. To estimate the cost-effectiveness of dengue vaccination in the Philippines, we developed an age-structured model of dengue transmission and vaccination. Using our model, we compared two vaccination scenarios entailing routine vaccination programs both with and without catch-up vaccination. Our results indicate that the higher the cost of vaccination, the less cost-effective the dengue vaccination program. With the current dengue vaccination program that vaccinates children 9 years of age, dengue vaccination is cost-effective for vaccination costs up to $70 from a health-care perspective and up to $75 from a societal perspective. Under a favorable scenario consisting of 1 year of catch-up vaccinations that target children 9–15 years of age, followed by regular vaccination of 9-year-old children, vaccination is cost-effective at costs up to $72 from a health-care perspective and up to $78 from a societal perspective. In general, dengue vaccination is expected to reduce the incidence of both dengue fever and dengue hemorrhagic fever /dengue shock syndrome. Our results demonstrate that even at relatively low vaccine efficacies, age-targeted vaccination may still be cost-effective provided the vaccination cost is sufficiently low. PMID:27601519

  3. Sculpting humoral immunity through dengue vaccination to enhance protective immunity

    PubMed Central

    Crill, Wayne D.; Hughes, Holly R.; Trainor, Nicole B.; Davis, Brent S.; Whitney, Matt T.; Chang, Gwong-Jen J.

    2012-01-01

    Dengue viruses (DENV) are the most important mosquito transmitted viral pathogens infecting humans. DENV infection produces a spectrum of disease, most commonly causing a self-limiting flu-like illness known as dengue fever; yet with increased frequency, manifesting as life-threatening dengue hemorrhagic fever (DHF). Waning cross-protective immunity from any of the four dengue serotypes may enhance subsequent infection with another heterologous serotype to increase the probability of DHF. Decades of effort to develop dengue vaccines are reaching the finishing line with multiple candidates in clinical trials. Nevertheless, concerns remain that imbalanced immunity, due to the prolonged prime-boost schedules currently used in clinical trials, could leave some vaccinees temporarily unprotected or with increased susceptibility to enhanced disease. Here we develop a DENV serotype 1 (DENV-1) DNA vaccine with the immunodominant cross-reactive B cell epitopes associated with immune enhancement removed. We compare wild-type (WT) with this cross-reactivity reduced (CRR) vaccine and demonstrate that both vaccines are equally protective against lethal homologous DENV-1 challenge. Under conditions mimicking natural exposure prior to acquiring protective immunity, WT vaccinated mice enhanced a normally sub-lethal heterologous DENV-2 infection resulting in DHF-like disease and 95% mortality in AG129 mice. However, CRR vaccinated mice exhibited redirected serotype-specific and protective immunity, and significantly reduced morbidity and mortality not differing from naїve mice. Thus, we demonstrate in an in vivo DENV disease model, that non-protective vaccine-induced immunity can prime vaccinees for enhanced DHF-like disease and that CRR DNA immunization significantly reduces this potential vaccine safety concern. The sculpting of immune memory by the modified vaccine and resulting redirection of humoral immunity provide insight into DENV vaccine-induced immune responses. PMID

  4. Symptomatic Dengue Disease in Five Southeast Asian Countries: Epidemiological Evidence from a Dengue Vaccine Trial.

    PubMed

    Nealon, Joshua; Taurel, Anne-Frieda; Capeding, Maria Rosario; Tran, Ngoc Huu; Hadinegoro, Sri Rezeki; Chotpitayasunondh, Tawee; Chong, Chee Kheong; Wartel, T Anh; Beucher, Sophie; Frago, Carina; Moureau, Annick; Simmerman, Mark; Laot, Thelma; L'Azou, Maïna; Bouckenooghe, Alain

    2016-08-01

    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2-14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14's active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions.

  5. Symptomatic Dengue Disease in Five Southeast Asian Countries: Epidemiological Evidence from a Dengue Vaccine Trial

    PubMed Central

    Taurel, Anne-Frieda; Capeding, Maria Rosario; Tran, Ngoc Huu; Hadinegoro, Sri Rezeki; Chotpitayasunondh, Tawee; Chong, Chee Kheong; Wartel, T. Anh; Beucher, Sophie; Frago, Carina; Moureau, Annick; Simmerman, Mark; Laot, Thelma; L’Azou, Maïna; Bouckenooghe, Alain

    2016-01-01

    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2–14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14’s active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions. PMID:27532617

  6. [Reasons to recommend vaccination against dengue in Easter Island: Immunization Advisory Committee of Sociedad Chilena de Infectología].

    PubMed

    Fica, Alberto; Potin, Marcela; Moreno, Gabriela; Véliz, Liliana; Cerda, Jaime; Escobar, Carola; Wilhelm, Jan

    2016-08-01

    Dengue was first diagnosed on Easter Island on year 2002 and thereafter recurrent outbreaks have occurred involving different serotypes of dengue virus. Its vector, Aedes aegypti has not been eliminated despite the small size of the island. Conditions at the local hospital preclude adequate management of severe and hemorrhagic cases due to the absence of a Critical Care Unit as well as no availability of platelets, or plasma units for transfusion. Besides, transfer, of severely affected patients to continental Chile is cumbersome, slow and expensive. In this scenario, it is advisable to implement selective vaccination of Easter Island habitants with an available quadrivalent attenuated dengue vaccine with the aim to reduce hemorrhagic and severe dengue cases. This strategy should not replace permanent efforts to control waste disposal sites, water sources, maintain vector surveillance and increase education of the population.

  7. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.

  8. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects.

    PubMed

    Guy, Bruno; Nougarede, Nolwenn; Begue, Sarah; Sanchez, Violette; Souag, Nadia; Carre, Murielle; Chambonneau, Laurent; Morrisson, Dennis N; Shaw, David; Qiao, Ming; Dumas, Rafaele; Lang, Jean; Forrat, Remi

    2008-10-23

    Three independent, phase 1 clinical trials were conducted in Australia and in USA to assess the safety and immunogenicity of sanofi pasteur dengue vaccine candidates. In this context, Dengue 1-4 and Yellow Fever 17D-204 (YF 17D)-specific CD4 and CD8 cellular responses induced by tetravalent chimeric dengue vaccines (CYD) were analyzed in flavivirus-naive or flavivirus-immune patients. Tetravalent CYD vaccine did not trigger detectable changes in serum pro-inflammatory cytokines, whatever the vaccinees immune status, while inducing significant YF 17D NS3-specific CD8 responses and dengue serotype-specific T helper responses. These responses were dominated by serotype 4 in naive individuals, but a booster vaccination (dose #2) performed 4 months following dose #1 broadened serotype-specific responses. A similar, broader response was seen after primary tetravalent immunization in subjects with pre-existing dengue 1 or 2 immunity caused by prior monovalent live-attenuated dengue vaccination. In all three trials, the profile of induced response was similar, whatever the subjects' immune status, i.e. an absence of Th2 response, and an IFN-gamma/TNF-alpha ratio dominated by IFN-gamma, for both CD4 and CD8 responses. Our results also showed an absence of cross-reactivity between YF 17D or Dengue NS3-specific CD8 responses, and allowed the identification of 3 new CD8 epitopes in the YF 17D NS3 antigen. These data are consistent with the previously demonstrated excellent safety of these dengue vaccines in flavivirus-naive and primed individuals.

  9. Immunogenicity and safety of tetravalent dengue vaccine in 2-11 year-olds previously vaccinated against yellow fever: randomized, controlled, phase II study in Piura, Peru.

    PubMed

    Lanata, Claudio F; Andrade, Teresa; Gil, Ana I; Terrones, Cynthia; Valladolid, Omar; Zambrano, Betzana; Saville, Melanie; Crevat, Denis

    2012-09-07

    In a randomized, placebo-controlled, monocenter, observer blinded study conducted in an area where dengue is endemic, we assessed the safety and immunogenicity of a recombinant, live, attenuated, tetravalent dengue vaccine candidate (CYD-TDV) in 2-11 year-olds with varying levels of pre-existing yellow-fever immunity due to vaccination 1-7 years previously. 199 children received 3 injections of CYD-TDV (months 0, 6 and 12) and 99 received placebo (months 0 and 6) or pneumococcal polysaccharide vaccine (month 12). One month after the third dengue vaccination, serotype specific neutralizing antibody GMTs were in the range of 178-190 (1/dil) (versus 16.7-38.1 in the control group), a 10-20 fold-increase from baseline, and 94% of vaccines were seropositive to all four serotypes (versus 39% in the control group). There were no vaccine-related SAEs. The observed reactogenicity profile was consistent with phase I studies, with severity grade 1-2 injection site pain, headache, malaise and fever most frequently reported and no increase after subsequent vaccinations. Virologically confirmed dengue cases were seen after completion of the 3 doses: 1 in the CYD-TDV group (N=199), and 3 in the control group (N=99). A 3-dose regimen of CYD-TDV had a good safety profile in 2-11 year olds with a history of YF vaccination and elicited robust antibody responses that were balanced against the four serotypes.

  10. Assessing the interest to participate in a dengue vaccine efficacy trial among residents of Puerto Rico.

    PubMed

    Pérez-Guerra, Carmen L; Rodríguez-Acosta, Rosa L; Soto-Gómez, Eunice; Zielinski-Gutierrez, Emily; Peña-Orellana, Marisol; Santiago, Luis M; Rivera, Reinaldo; Cruz, R Rhode; Ramírez, Viani; Tomashek, Kay M; Dayan, Gustavo

    2012-07-01

    Dengue, endemic in Puerto Rico, is a major public health problem. Vaccines are thought the best means to prevent dengue because vector control alone has been largely ineffective. We implemented qualitative studies in 2006 and 2010 to determine the acceptability of conducting placebo-controlled dengue vaccine efficacy trials in Puerto Rican children. Key informant interviews and focus groups with parents and children were conducted in municipalities with high dengue incidence. We used structured open-ended questions to determine motivators and attitudes regarding vaccine trial participation. Knowledge about dengue risk and prevention, and knowledge, attitudes, and beliefs regarding vaccines and vaccine trials were assessed. Using grounded theory, we conducted content analysis and established categories and sub-categories of participant responses. All participants were knowledgeable about dengue prevention and perceived children as most affected age groups. Participants were aware of vaccines benefits and they thought a vaccine could prevent dengue. However, most would not allow their children to participate in a placebo-controlled vaccine trial. Barriers included lack of trust in new vaccines and vaccine trial procedures; fear of developing dengue or side effects from the vaccine and lack of information about candidate dengue vaccines. Participants thought information, including results of previous trials might overcome barriers to participation. Motivators for participation were altruism, protection from dengue, free medical attention, and compensation for transportation and participation. Parents would consider children participation if accurate vaccine trial information is provided.

  11. Transmission dynamics of two dengue serotypes with vaccination scenarios.

    PubMed

    González Morales, N L; Núñez-López, M; Ramos-Castañeda, J; Velasco-Hernández, J X

    2016-10-20

    In this work we present a mathematical model that incorporates two Dengue serotypes. The model has been constructed to study both the epidemiological trends of the disease and conditions that allow coexistence in competing strains under vaccination. We consider two viral strains and temporary cross-immunity with one vector mosquito population. Results suggest that vaccination scenarios will not only reduce disease incidence but will also modify the transmission dynamics. Indeed, vaccination and cross immunity period are seen to decrease the frequency and magnitude of outbreaks but in a differentiated manner with specific effects depending upon the interaction vaccine and strain type.

  12. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    PubMed

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  13. Safety Testing of Dengue-1 and Dengue-3 Seeds for Human Challenges, Unattenuated

    DTIC Science & Technology

    1987-03-16

    62770A870 AC 029 11. TITL.E (Include Security Classiftcation) (U) Safety Testing of Dengue -1 and Dengue -𔃽 Seeds for Human Challenges, Unatteuad 12...safety testing of a lot of dengue virus type 3 designated as: Dengue Virus Type 3 (Non-Attenuated) Strain CH-53489 Utilizing the testing procedures...Virus Strain: Dengue Virus *rype 3 (Non-Attenuated) Strain: CH-53489 B. Live Virus Vaccine Pool Designation: MFG Date: April J.984, LOT No. 1 C

  14. Optimal Control of a Dengue Epidemic Model with Vaccination

    NASA Astrophysics Data System (ADS)

    Rodrigues, Helena Sofia; Teresa, M.; Monteiro, T.; Torres, Delfim F. M.

    2011-09-01

    We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.

  15. Physical Theory of Vaccine Design for Influenza and Dengue Fever

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2009-03-01

    The immune system normally protects the human host against death by infection. I will introduce a physical theory of the evolutionary dynamics that occurs in the antibody-mediated and T cell-mediated immune responses. The theory will be used to provide a mechanism for original antigenic sin, wherein an initial exposure to antigen can degrade the response of the immune system upon subsequent exposure to related, but different, antigens. A new order parameter to characterize antigenic distance will be introduced from the theory. This order parameter predicts effectiveness of the influenza vaccine more reliably than do results from animal model studies currently used by world health authorities. I will discuss how this order parameter might be a valuable new tool for making vaccine-related public health policy decisions. Next, I will briefly discuss dengue fever. Infection with, or vaccination against, one of the four serotypes of dengue fever typically increases susceptibility to dengue hemorrhagic fever from one of the other three serotypes. I will present a physical theory of this immunodominance and use this theory to quantify the predicted mitigation of immunodominance in a novel formulation of the dengue vaccine.

  16. Potential opportunities and perils of imperfect dengue vaccines.

    PubMed

    Rodriguez-Barraquer, Isabel; Mier-y-Teran-Romero, Luis; Schwartz, Ira B; Burke, Donald S; Cummings, Derek A T

    2014-01-16

    Dengue vaccine development efforts have focused on the development of tetravalent vaccines. However, a recent Phase IIb trial of a tetravalent vaccine indicates a protective effect against only 3 of the 4 serotypes. While vaccines effective against a subset of serotypes may reduce morbidity and mortality, particular profiles could result in an increased number of cases due to immune enhancement and other peculiarities of dengue epidemiology. Here, we use a compartmental transmission model to assess the impact of partially effective vaccines in a hyperendemic Thai population. Crucially, we evaluate the effects that certain serotype heterogeneities may have in the presence of mass-vaccination campaigns. In the majority of scenarios explored, partially effective vaccines lead to 50% or greater reductions in the number of cases. This is true even of vaccines that we would not expect to proceed to licensure due to poor or incomplete immune responses. Our results show that a partially effective vaccine can have significant impacts on serotype distribution and mean age of cases.

  17. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination.

    PubMed

    Nivarthi, Usha K; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M; Doranz, Benjamin J; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P; Whitehead, Steve S; Baric, Ralph; Crowe, James E; de Silva, Aravinda M

    2017-03-01

    The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination.IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses

  18. Immunogenicity and efficacy of chimeric dengue vaccine (DENVax) formulations in interferon-deficient AG129 mice.

    PubMed

    Brewoo, Joseph N; Kinney, Richard M; Powell, Tim D; Arguello, John J; Silengo, Shawn J; Partidos, Charalambos D; Huang, Claire Y-H; Stinchcomb, Dan T; Osorio, Jorge E

    2012-02-14

    Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.

  19. Next generation dengue vaccines: A review of the preclinical development pipeline.

    PubMed

    Vannice, Kirsten S; Roehrig, John T; Hombach, Joachim

    2015-12-10

    Dengue represents a significant and growing public health problem across the globe, with approximately half of the world's population at risk. The increasing and expanding burden of dengue has highlighted the need for new tools to prevent dengue, including development of dengue vaccines. Recently, the first dengue vaccine candidate was evaluated in Phase 3 clinical trials, and other vaccine candidates are under clinical evaluation. There are also a number of candidates in preclinical development, based on diverse technologies, with promising results in animal models and likely to move into clinical trials and could eventually be next-generation dengue vaccines. This review provides an overview of the various technological approaches to dengue vaccine development with specific focus on candidates in preclinical development and with evaluation in non-human primates.

  20. Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine.

    PubMed

    Durbin, Anna P; Kirkpatrick, Beth D; Pierce, Kristen K; Schmidt, Alexander C; Whitehead, Stephen S

    2011-09-23

    The Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases, National Institutes of Health has been engaged in an effort to develop a safe, efficacious, and affordable live attenuated tetravalent dengue vaccine (LATV) for more than ten years. Numerous recombinant monovalent DENV vaccine candidates have been evaluated in the SCID-HuH-7 mouse and in rhesus macaques to identify those candidates with a suitable attenuation phenotype. In addition, the ability of these candidates to infect and disseminate in Aedes mosquitoes had also been determined. Those candidates that were suitably attenuated in SCID-HuH-7 mice, rhesus macaques, and mosquitoes were selected for further evaluation in humans. This review will describe the generation of multiple candidate vaccines directed against each DENV serotype, the preclinical and clinical evaluation of these candidates, and the process of selecting suitable candidates for inclusion in a LATV dengue vaccine.

  1. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection

    PubMed Central

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-01-01

    ABSTRACT Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  2. WITHDRAWN: Dengue Human Infection Models to Advance Dengue Vaccine Development.

    PubMed

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-10-27

    The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.vaccine.2015.09.052. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

  3. Consultation on dengue vaccines: progress in understanding protection, 26-28 June 2013, Rockville, Maryland.

    PubMed

    Cassetti, M Cristina; Halstead, Scott B

    2014-05-30

    There is an unmet need for a dengue vaccine to further prevent the spread of this disease and contain the growing pandemic. To this end several vaccine companies and academic groups are actively pursuing the development of a tetravalent vaccine to prevent dengue. In the last few years progress has been made in this area, including the first results of a vaccine efficacy trial and improved understanding of the immune responses to the infection. Despite this progress, development of dengue vaccines faces important challenges including the need for a vaccine that induces balanced immune responses against all dengue strains and an incomplete understanding of the mechanism(s) of protection against infection and disease. This is a summary of a Consultation on dengue vaccines held in June 26-28, 2013 by the National Institute of Allergy and Infectious Diseases (part of the US National Institutes of Health) and the Dengue Vaccine Initiative (part of the International Vaccine Institute). The primary goal of this consultation was to review the progress in dengue vaccine development, evaluate the known mechanism of protection of dengue vaccines and discuss avenues for future research.

  4. A role for vector control in dengue vaccine programs.

    PubMed

    Christofferson, Rebecca C; Mores, Christopher N

    2015-12-10

    Development and deployment of a successful dengue virus (DENV) vaccine has confounded research and pharmaceutical entities owing to the complex nature of DENV immunity and concerns over exacerbating the risk of DENV hemorrhagic fever (DHF) as a consequence of vaccination. Thus, consensus is growing that a combination of mitigation strategies will be needed for DENV to be successfully controlled, likely involving some form of vector control to enhance a vaccine program. We present here a deterministic compartmental model to illustrate that vector control may enhance vaccination campaigns with imperfect coverage and efficacy. Though we recognize the costs and challenges associated with continuous control programs, simultaneous application of vector control methods coincident with vaccine roll out can have a positive effect by further reducing the number of human cases. The success of such an integrative strategy is predicated on closing gaps in our understanding of the DENV transmission cycle in hyperedemic locations.

  5. Trials and tribulations on the path to developing a dengue vaccine.

    PubMed

    Thomas, Stephen J; Rothman, Alan L

    2015-11-27

    Dengue is a rapidly expanding global health problem. Development of a safe and efficacious tetravalent vaccine along with strategic application of vector control activities represents a promising approach to reducing the global disease burden. Although many vaccine development challenges exist, numerous candidates are in clinical development and one has been tested in three clinical endpoint studies. The results of these studies have raised numerous questions about how we measure vaccine immunogenicity and how these readouts are associated with clinical outcomes in vaccine recipients who experience natural infection. In this review the authors discuss the dengue vaccine pipeline, development challenges, the dengue vaccine-immunologic profiling intersection, and research gaps.

  6. Trials and Tribulations on the Path to Developing a Dengue Vaccine.

    PubMed

    Thomas, Stephen J; Rothman, Alan L

    2015-12-01

    Dengue is a rapidly expanding global health problem. Development of a safe and efficacious tetravalent vaccine along with strategic application of vector control activities represents a promising approach to reducing the global disease burden. Although many vaccine development challenges exist, numerous candidates are in clinical development and one has been tested in three clinical endpoint studies. The results of these studies have raised numerous questions about how we measure vaccine immunogenicity and how these readouts are associated with clinical outcomes in vaccine recipients who experience natural infection. In this review the authors discuss the dengue vaccine pipeline, development challenges, the dengue vaccine-immunologic profiling intersection, and research gaps.

  7. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response.

    PubMed

    Flipse, Jacky; Smit, Jolanda M

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.

  8. Dengue and Severe Dengue

    MedlinePlus

    ... can significantly reduce mortality rates from severe dengue. Global Strategy for dengue prevention and control, 2012–2020, Chapter ... vaccine: WHO position paper – July 2016 pdf, 437kb Global Strategy for dengue prevention and control, 2012–2020 Global ...

  9. A tetravalent alphavirus-vector based dengue vaccine provides effective immunity in an early life mouse model.

    PubMed

    Khalil, Syed Muaz; Tonkin, Daniel R; Mattocks, Melissa D; Snead, Andrew T; Johnston, Robert E; White, Laura J

    2014-07-07

    Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life.

  10. The Impact of the Newly Licensed Dengue Vaccine in Endemic Countries

    PubMed Central

    Stollenwerk, Nico; Halstead, Scott B.

    2016-01-01

    Background With approximately 3 billion people at risk of acquiring the infection, dengue fever is now considered the most important mosquito-borne viral disease in the world, with 390 million dengue infections occurring every year, of which 96 million manifest symptoms with any level of disease severity. Treatment of uncomplicated dengue cases is only supportive and severe dengue cases require hospital intensive care. A vaccine now licensed in several countries and developed by Sanofi Pasteur (CYD-TDV, named Dengvaxia), was able to protect, in the first 25 months of the two Phase III, 66% of a subset of 9–16 year old participants. However, a significantly lower efficacy (including negative vaccine efficacy) was noted for children younger than 9 years of age. Methodology/Principal Findings Analysis of year 3 results of phase III trials of Dengvaxia suggest high rates of protection of vaccinated partial dengue immunes but high rates of hospitalizations during breakthrough dengue infections of persons who were vaccinated when seronegative, with vaccine appearing to induce enhancing antibodies (ADE). An age structured model was developed based on Sanofi’s recommendation to vaccinate persons age 945 years in dengue endemic countries. The model was used to explore the clinical burden of two vaccination strategies: 1) Vaccinate 4 or 20% of individuals, ages 9–45 years, seropositives and seronegatives, and 2) vaccinate 4 or 20% of individuals, ages 9–45 years, who are dengue immune only. Conclusions/Significance Our results show that vaccinating dengue monotypic immune individuals prevents dengue hospitalizations, but at the same time dengue infections of vaccine-sensitized persons increases hospitalizations. When the vaccine is given only to partial immune individuals, after immunological screening of the population, disease burden decreases considerably. PMID:28002420

  11. Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward.

    PubMed

    Guy, Bruno; Briand, Olivier; Lang, Jean; Saville, Melanie; Jackson, Nicholas

    2015-12-10

    Sanofi Pasteur has developed a recombinant, live-attenuated, tetravalent dengue vaccine (CYD-TDV) that is in late-stage development. The present review summarizes the different steps in the development of this dengue vaccine, with a particular focus on the clinical data from three efficacy trials, which includes one proof-of-concept phase IIb (NCT00842530) and two pivotal phase III efficacy trials (NCT01373281 and NCT01374516). Earlier studies showed that the CYD-TDV candidate had a satisfactory safety profile and was immunogenic across the four vaccine serotypes in both in vitro and in vivo preclinical tests, as well as in initial phase I to phase II clinical trials in both flavivirus-naïve and seropositive individuals. Data from the 25 months (after the first injection) active phase of the two pivotal phase III efficacy studies shows that CYD-TDV (administered at 0, 6, and 12 months) is efficacious against virologically-confirmed disease (primary endpoint) and has a good safety profile. Secondary analyses also showed efficacy against all four dengue serotypes and protection against severe disease and hospitalization. The end of the active phases in these studies completes more than a decade of development of CYD-TDV, but considerable activities and efforts remain to address outstanding scientific, clinical, and immunological questions, while preparing for the introduction and use of CYD-TDV. Additional safety observations were recently reported from the first complete year of hospital phase longer term surveillance for two phase 3 studies and the first and second completed years for one phase 2b study, demonstrating the optimal age for intervention from 9 years. Dengue is a complex disease, and both short-term and long-term safety and efficacy will continue to be addressed by ongoing long-term follow-up and future post-licensure studies.

  12. Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice.

    PubMed

    Fuchs, Jeremy; Chu, Haiyan; O'Day, Peter; Pyles, Richard; Bourne, Nigel; Das, Subash C; Milligan, Gregg N; Barrett, Alan D T; Partidos, Charalambos D; Osorio, Jorge E

    2014-11-12

    Dengue (DEN) is the most important mosquito-borne viral disease, with a major impact on global health and economics, caused by four serologically and distinct viruses termed DENV-1 to DENV-4. Currently, there is no licensed vaccine to prevent DEN. We have developed a live attenuated tetravalent DENV vaccine candidate (TDV) (formally known as DENVax) that has shown promise in preclinical and clinical studies and elicits neutralizing antibody responses to all four DENVs. As these responses are lowest to DENV-4 we have used the AG129 mouse model to investigate the immunogenicity of monovalent TDV-4 or tetravalent TDV vaccines, and their efficacy against lethal DENV-4 challenge. Since the common backbone of TDV is based on an attenuated DENV-2 strain (TDV-2) we also tested the efficacy of TDV-2 against DENV-4 challenge. Single doses of the tetravalent or monovalent vaccines elicited neutralizing antibodies, anti-NS1 antibodies, and cellular responses to both envelope and nonstructural proteins. All vaccinated animals were protected against challenge at 60 days post-immunization, whereas all control animals died. Investigation of DENV-4 viremias post-challenge showed that only the control animals had high viremias on day 3 post-challenge, whereas vaccinated mice had no detectable viremia. Overall, these data highlight the excellent immunogenicity and efficacy profile of our candidate dengue vaccine in AG129 mice.

  13. Absolute quantification of dengue virus serotype 4 chimera vaccine candidate in Vero cell culture by targeted mass spectrometry.

    PubMed

    Rougemont, Blandine; Simon, Romain; Carrière, Romain; Biarc, Jordane; Fonbonne, Catherine; Salvador, Arnaud; Huillet, Céline; Berard, Yves; Adam, Olivier; Manin, Catherine; Lemoine, Jérôme

    2015-10-01

    Infection by dengue flavivirus is transmitted by mosquitoes and affects tens to hundreds of millions people around the world each year. Four serotypes have been described, all of which cause similar disease. Currently, there no approved vaccines or specific therapeutics for dengue, although several vaccine prototypes are in different stages of clinical development. Among them, a chimeric vaccine, built from the replication machinery of the yellow fever 17D virus, has shown promising results in phase III trials. Accurate quantitation of expressed viral particles in alive attenuated viral antigen vaccine is essential and determination of infectious titer is usually the method of choice. The current paper describes an alternative or orthogonal strategy, namely, a multiplexed and absolute assay of four proteins of the chimera yellow fever/dengue serotype 4 virus using targeted MS in SRM mode. Over 1 month, variability of the assay using a partially purified Vero cell extract was between 8 and 17%, and accuracy was between 80 and 120%. In addition, the assay was linear between 6.25 and 200 nmol/L and could therefore be used in the near future to quantify dengue virus type 4 during production and purification from Vero cells.

  14. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice.

    PubMed

    Li, Jieqiong; Gao, Na; Fan, Dongying; Chen, Hui; Sheng, Ziyang; Fu, Shihong; Liang, Guodong; An, Jing

    2016-01-28

    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) are closely related mosquito-borne flaviviruses that cause very high global disease burdens. Although cross-reactivity and cross-protection within flaviviruses have been demonstrated, the effect of JEV vaccination on susceptibility to DENV infection has not been well elucidated. In this study, we found that vaccination with the JEV inactivated vaccine (INV) and live attenuated vaccine (LAV) could induce cross-immune responses and cross-protection against DENV1-4 in mice. Despite the theoretical risk of immune enhancement, no increased mortality was observed in our mouse model. Additionally, low but consistently detectable cross-neutralizing antibodies against DENV2 and DENV3 were also observed in the sera of JEV vaccine-immunized human donors. The results suggested that both JEV-LAV and JEV-INV could elicit strong cross-immunity and protection against DENVs, indicating that inoculation with JEV vaccines may influence the distribution of DENVs in co-circulated areas and that the cross-protection induced by JEV vaccines against DENVs might provide important information in terms of DENV prevention.

  15. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice

    PubMed Central

    Li, Jieqiong; Gao, Na; Fan, Dongying; Chen, Hui; Sheng, Ziyang; Fu, Shihong; Liang, Guodong; An, Jing

    2016-01-01

    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) are closely related mosquito-borne flaviviruses that cause very high global disease burdens. Although cross-reactivity and cross-protection within flaviviruses have been demonstrated, the effect of JEV vaccination on susceptibility to DENV infection has not been well elucidated. In this study, we found that vaccination with the JEV inactivated vaccine (INV) and live attenuated vaccine (LAV) could induce cross-immune responses and cross-protection against DENV1-4 in mice. Despite the theoretical risk of immune enhancement, no increased mortality was observed in our mouse model. Additionally, low but consistently detectable cross-neutralizing antibodies against DENV2 and DENV3 were also observed in the sera of JEV vaccine-immunized human donors. The results suggested that both JEV-LAV and JEV-INV could elicit strong cross-immunity and protection against DENVs, indicating that inoculation with JEV vaccines may influence the distribution of DENVs in co-circulated areas and that the cross-protection induced by JEV vaccines against DENVs might provide important information in terms of DENV prevention. PMID:26818736

  16. Valuing the broader benefits of dengue vaccination, with a preliminary application to Brazil.

    PubMed

    Bärnighausen, Till; Bloom, David E; Cafiero, Elizabeth T; O'Brien, Jennifer C

    2013-04-01

    The incidence of dengue has been on the rise since at least the 1960s, bringing greater urgency to the need for a vaccine to prevent the disease. Recent advances suggest that the scientific world is moving closer to an effective dengue vaccine. However, there are concerns that the price of a future vaccine could limit its uptake. High prices, in addition to other challenges, have already weighed negatively in government decisions to include other new vaccines in national immunization programs, e.g., the pneumococcal, rotavirus, and human papillomavirus vaccines. Recent research on the value of vaccination, however, suggests that vaccination confers benefits that are often neglected by traditional economic evaluations. In the case of dengue, commonly overlooked benefits are likely to include reduced spending on outbreak control, averted losses in tourism flows, and avoided productivity losses due to long-term dengue sequelae. Accounting for these and other broader benefits of dengue vaccination could reveal significantly greater economic value and strengthen the case for inclusion of dengue vaccination in national immunization programs. In this article we discuss a framework for the broader value of vaccination and review its application in the context of dengue vaccination for Brazil.

  17. WHO Working Group on technical specifications for manufacture and evaluation of dengue vaccines, Geneva, Switzerland, 11-12 May 2009.

    PubMed

    Trent, Dennis; Shin, Jinho; Hombach, Joachim; Knezevic, Ivana; Minor, Philip

    2010-12-06

    In May 2009, a group of international experts on dengue, vaccine quality and clinical evaluation met together (i) to review disease, vaccine pipeline, quality issues in manufacturing, issues of environmental risk assessment, nonclinical and clinical evaluation of live recombinant dengue vaccines and (ii) to initiate revising WHO guidelines for the production and quality control of candidate tetravalent dengue vaccines (live). This report summarizes an exchange of views on scientific and technical issues related to the quality, safety and efficacy of candidate dengue vaccines. Recognizing live dengue vaccines are the major vaccines in the clinical pipeline, the Working Group agreed (i) to focus on live dengue vaccines in the revision of the WHO guidelines and (ii) to add new guidelines on nonclinical and clinical evaluation, and environmental risk assessment for live dengue vaccines in the revision.

  18. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts.

    PubMed

    Rothman, Alan L; Currier, Jeffrey R; Friberg, Heather L; Mathew, Anuja

    2015-12-10

    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.

  19. Mouse models of dengue virus infection for vaccine testing.

    PubMed

    Sarathy, Vanessa V; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-12-10

    Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple

  20. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine.

    PubMed

    Porter, Kevin R; Ewing, Daniel; Chen, Lan; Wu, Shuenn-Jue; Hayes, Curtis G; Ferrari, Marilyn; Teneza-Mora, Nimfa; Raviprakash, Kanakatte

    2012-01-05

    A prototype dengue-1 DNA vaccine was shown to be safe and immunogenic in a previous Phase 1 clinical trial. Anti-dengue-1 neutralizing antibody responses were detectable only in the group of volunteers receiving the high dose of nonadjuvanted vaccine and the antibody titers were low. Vaxfectin(®), a lipid-based adjuvant, enhances the immunogenicity of DNA vaccines. We conducted a nonhuman primate study to evaluate the effect of Vaxfectin(®) on the immunogenicity of a tetravalent dengue DNA vaccine. Animals were immunized on days 0, 28 and 84, with each immunization consisting of 3mg of Vaxfectin(®)-adjuvanted tetravalent dengue DNA vaccine. The use of Vaxfectin(®) resulted in a significant increase in anti-dengue neutralizing antibody responses against dengue-1, -3 and -4. There was little to no effect on T cell responses as measured by interferon gamma ELISPOT assay. Animals immunized with the Vaxfectin(®)-formulated tetravalent DNA vaccine showed significant protection against live dengue-2 virus challenge compared to control animals (0.75 mean days of viremia vs 3.3 days). Animals vaccinated with nonadjuvanted DNA had a mean 2.0 days of viremia. These results support further evaluation of the Vaxfectin(®)-adjuvanted tetravalent dengue DNA vaccine in a Phase 1 clinical trial.

  1. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    PubMed

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  2. Mycoplasma gallisepticum: Control by live attenuated vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...

  3. Attenuation of Dengue Virus Infection by Adeno-Associated Virus-Mediated siRNA Delivery

    DTIC Science & Technology

    2004-08-09

    Pharmingen) for 7 days prior to infection with DEN. Blocking dengue virus infection in vitro 1 × 105 Vero cells or DCs were seeded into six-well tissue...essential for dengue pathogenesis in the human host. In this study, we also utilized peripheral blood iDCs as a cell model to test our AAV system. Similar to...attenu- ate DEN infection. List of abbreviations AAV, adeno-associated virus; DCs, dendritic cells ; DEN, dengue virus; DHF/DSS, dengue hemorrhagic fever

  4. Evaluation in mice of the immunogenicity and protective efficacy of a tetravalent subunit vaccine candidate against dengue virus.

    PubMed

    Lazo, Laura; Izquierdo, Alienys; Suzarte, Edith; Gil, Lázaro; Valdés, Iris; Marcos, Ernesto; Álvarez, Mayling; Romero, Yaremis; Guzmán, María Guadalupe; Guillén, Gerardo; Hermida Cruz, Lisset

    2014-04-01

    A dengue vaccine must induce protective immunity against the four serotypes of the virus. Our group has developed chimeric proteins consisting of the protein P64k from Neisseria meningitidis and the domain III from the four viral envelope proteins. In this study, the immunogenicity of a tetravalent vaccine formulation using aluminum hydroxide as adjuvant was evaluated in mice. After three doses, neutralizing antibody titers were detected against the four viral serotypes, the lowest seroconversion rate being against dengue virus serotype 4. One month after the last dose, immunized animals were challenged with infective virus, and partial but statistically significant protection was found to have been achieved. Based on these results, further studies in mice and non-human primates using this tetravalent formulation in a prime-boost strategy with attenuated viruses are strongly recommended.

  5. Immunogenicity and safety of a recombinant tetravalent dengue vaccine in children and adolescents ages 9-16 years in Brazil.

    PubMed

    Dayan, Gustavo H; Garbes, Pedro; Noriega, Fernando; Izoton de Sadovsky, Ana Daniela; Rodrigues, Patricia Marques; Giuberti, Camila; Dietze, Reynaldo

    2013-12-01

    Immunogenicity and safety of a recombinant, live-attenuated, tetravalent dengue disease vaccine (CYD-TDV) was evaluated in children/adolescents in Brazil. In this observer-blind, placebo-controlled, phase II single-center study, children/adolescents (ages 9-16 years) were randomized to receive CYD-TDV or placebo at 0, 6, and 12 months. Immunogenicity was assessed using a 50% plaque neutralization test. Overall, 150 participants were enrolled (CYD-TDV: N = 100; placebo: N = 50). Injection site pain and headache were the most common solicited injection site and systemic reactions. Unsolicited adverse events (AEs) and serious AEs were similar between groups. No serious AEs were vaccine-related. Geometric mean titers against all dengue virus serotypes increased with CYD-TDV vaccination and were 267, 544, 741, and 432 1/dil for serotypes 1-4, respectively, after dose 3, representing a mean fold increase from baseline of 5, 6, 6, and 20, respectively. CYD-TDV vaccination elicited a neutralizing antibody response against serotypes 1-4 and was well-tolerated in children/adolescents in a dengue-endemic region.

  6. New vaccines for neglected parasitic diseases and dengue.

    PubMed

    Beaumier, Coreen M; Gillespie, Portia M; Hotez, Peter J; Bottazzi, Maria Elena

    2013-09-01

    Neglected tropical diseases (NTDs) are a significant source of morbidity and socioeconomic burden among the world's poor. Virtually all of the 2.4 billion people who live on less than $2 per d, more than a third of the world's population, are at risk for these debilitating NTDs. Although chemotherapeutic measures exist for many of these pathogens, they are not sustainable countermeasures on their own because of rates of reinfection, risk of drug resistance, and inconsistent maintenance of drug treatment programs. Preventative and therapeutic NTD vaccines are needed as long-term solutions. Because there is no market in the for-profit sector of vaccine development for these pathogens, much of the effort to develop vaccines is driven by nonprofit entities, mostly through product development partnerships. This review describes the progress of vaccines under development for many of the NTDs, with a specific focus on those about to enter or that are currently in human clinical trials. Specifically, we report on the progress on dengue, hookworm, leishmaniasis, schistosomiasis, Chagas disease, and onchocerciasis vaccines. These products will be some of the first with specific objectives to aid the world's poorest populations.

  7. New Mouse Model for Dengue Virus Vaccine Testing

    PubMed Central

    Johnson, Alison J.; Roehrig, John T.

    1999-01-01

    Several dengue (DEN) virus vaccines are in development; however, the lack of a reliable small animal model in which to test them is a major obstacle. Because evidence suggests that interferon (IFN) is involved in the human anti-DEN virus response, we tested mice deficient in their IFN functions as potential models. Intraperitoneally administered mouse-adapted DEN 2 virus was uniformly lethal in AG129 mice (which lack alpha/beta IFN and gamma IFN receptor genes), regardless of age. Immunized mice were protected from virus challenge, and survival times increased following passive transfer of anti-DEN polyclonal antibody. These results demonstrate that AG129 mice are a promising small animal model for DEN virus vaccine trials. PMID:9847388

  8. Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore

    PubMed Central

    Carrasco, Luis R.; Lee, Linda K.; Lee, Vernon J.; Ooi, Eng Eong; Shepard, Donald S.; Thein, Tun L.; Gan, Victor; Cook, Alex R.; Lye, David; Ng, Lee Ching; Leo, Yee Sin

    2011-01-01

    Background Dengue illness causes 50–100 million infections worldwide and threatens 2.5 billion people in the tropical and subtropical regions. Little is known about the disease burden and economic impact of dengue in higher resourced countries or the cost-effectiveness of potential dengue vaccines in such settings. Methods and Findings We estimate the direct and indirect costs of dengue from hospitalized and ambulatory cases in Singapore. We consider inter alia the impacts of dengue on the economy using the human-capital and the friction cost methods. Disease burden was estimated using disability-adjusted life years (DALYs) and the cost-effectiveness of a potential vaccine program was evaluated. The average economic impact of dengue illness in Singapore from 2000 to 2009 in constant 2010 US$ ranged between $0.85 billion and $1.15 billion, of which control costs constitute 42%–59%. Using empirically derived disability weights, we estimated an annual average disease burden of 9–14 DALYs per 100 000 habitants, making it comparable to diseases such as hepatitis B or syphilis. The proportion of symptomatic dengue cases detected by the national surveillance system was estimated to be low, and to decrease with age. Under population projections by the United Nations, the price per dose threshold for which vaccines stop being more cost-effective than the current vector control program ranged from $50 for mass vaccination requiring 3 doses and only conferring 10 years of immunity to $300 for vaccination requiring 2 doses and conferring lifetime immunity. The thresholds for these vaccine programs to not be cost-effective for Singapore were $100 and $500 per dose respectively. Conclusions Dengue illness presents a serious economic and disease burden in Singapore. Dengue vaccines are expected to be cost-effective if reasonably low prices are adopted and will help to reduce the economic and disease burden of dengue in Singapore substantially. PMID:22206028

  9. The relevance of dengue virus genotypes surveillance at country level before vaccine approval.

    PubMed

    Usme-Ciro, José A; Méndez, Jairo A; Laiton, Katherine D; Páez, Andrés

    2014-01-01

    Dengue is a major threat for public health in tropical and subtropical countries around the world. In the absence of a licensed vaccine and effective antiviral therapies, control measures have been based on education activities and vector elimination. Current efforts for developing a vaccine are both promising and troubling. At the advent of the introduction of a tetravalent dengue vaccine, molecular surveillance of the circulating genotypes in different geographical regions has gained considerable importance. A growing body of in vitro, preclinical, and clinical phase studies suggest that vaccine conferred protection in a geographical area could depends on the coincidence of the dengue virus genotypes included in the vaccine and those circulating. In this review we present the state-of-the-art in this field, highlighting the need of deeper knowledge on neutralizing immune response for making decisions about future vaccine approval and the potential need for different vaccine composition for regional administration.

  10. The relevance of dengue virus genotypes surveillance at country level before vaccine approval

    PubMed Central

    Usme-Ciro, José A; Méndez, Jairo A; Laiton, Katherine D; Páez, Andrés

    2014-01-01

    Dengue is a major threat for public health in tropical and subtropical countries around the world. In the absence of a licensed vaccine and effective antiviral therapies, control measures have been based on education activities and vector elimination. Current efforts for developing a vaccine are both promising and troubling. At the advent of the introduction of a tetravalent dengue vaccine, molecular surveillance of the circulating genotypes in different geographical regions has gained considerable importance. A growing body of in vitro, preclinical, and clinical phase studies suggest that vaccine conferred protection in a geographical area could depends on the coincidence of the dengue virus genotypes included in the vaccine and those circulating. In this review we present the state-of-the-art in this field, highlighting the need of deeper knowledge on neutralizing immune response for making decisions about future vaccine approval and the potential need for different vaccine composition for regional administration. PMID:25483495

  11. The introduction of dengue vaccine may temporarily cause large spikes in prevalence.

    PubMed

    Pandey, A; Medlock, J

    2015-04-01

    A dengue vaccine is expected to be available within a few years. Once vaccine is available, policy-makers will need to develop suitable policies to allocate the vaccine. Mathematical models of dengue transmission predict complex temporal patterns in prevalence, driven by seasonal oscillations in mosquito abundance. In particular, vaccine introduction may induce a transient period immediately after vaccine introduction where prevalence can spike higher than in the pre-vaccination period. These spikes in prevalence could lead to doubts about the vaccination programme among the public and even among decision-makers, possibly impeding the vaccination programme. Using simple dengue transmission models, we found that large transient spikes in prevalence are robust phenomena that occur when vaccine coverage and vaccine efficacy are not either both very high or both very low. Despite the presence of transient spikes in prevalence, the models predict that vaccination does always reduce the total number of infections in the 15 years after vaccine introduction. We conclude that policy-makers should prepare for spikes in prevalence after vaccine introduction to mitigate the burden of these spikes and to accurately measure the effectiveness of the vaccine programme.

  12. Comparative Infectivity Determinations of Dengue Virus Vaccine Candidates in Rhesus Monkeys, Mosquitoes, and Cell Cultures

    DTIC Science & Technology

    1993-01-28

    AD-A261 892 CONTRACT NO: DAMD17-89-C-9 175 \\II\\IllI\\I\\I1\\\\~il\\ TITLE: COMPARATIVE INFECTIVITY DETERMINATIONS OF DENGUE VIRUS VACCINE CANDIDATES IN...28, 1993 Final 1 Sep 89 - 31 Dec 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Comparative Infectivity Determinations of Dengue DAMD17-89-C-9175 Virus...release; distribution unlimited 13. ABSTRACT (Maximum 200 words) 14. SUBJECT TERMS 1S. NUMBER OF PAGES RA 1; Dengue virus; Vaccines; Infectivity 16

  13. Tetravalent Dengue Vaccine Reduces Symptomatic and Asymptomatic Dengue Virus Infections in Healthy Children and Adolescents Aged 2–16 Years in Asia and Latin America

    PubMed Central

    Olivera-Botello, Gustavo; Coudeville, Laurent; Fanouillere, Karen; Guy, Bruno; Chambonneau, Laurent; Noriega, Fernando; Jackson, Nicholas

    2016-01-01

    Background. Asymptomatic dengue virus–infected individuals are thought to play a major role in dengue virus transmission. The efficacy of the recently approved quadrivalent CYD-TDV dengue vaccine against asymptomatic dengue virus infection has not been previously assessed. Methods. We pooled data for 3 736 individuals who received either CYD-TDV or placebo at 0, 6, and 12 months in the immunogenicity subsets of 2 phase 3 trials (clinical trials registration NCT01373281 and NCT01374516). We defined a seroconversion algorithm (ie, a ≥4-fold increase in the neutralizing antibody titer and a titer of ≥40 from month 13 to month 25) as a surrogate marker of asymptomatic infection in the vaccine and placebo groups. Results. The algorithm detected seroconversion in 94% of individuals with a diagnosis of virologically confirmed dengue between months 13 and 25, validating its discriminatory power. Among those without virologically confirmed dengue (n = 3 669), 219 of 2 485 in the vaccine group and 157 of 1 184 in the placebo group seroconverted between months 13 and 25, giving a vaccine efficacy of 33.5% (95% confidence interval [CI], 17.9%–46.1%) against asymptomatic infection. Vaccine efficacy was marginally higher in subjects aged 9–16 years (38.6%; 95% CI, 22.1%–51.5%). The annual incidence of asymptomatic dengue virus infection in this age group was 14.8%, which was 4.4 times higher than the incidence for symptomatic dengue (3.4%). Conclusions. The observed vaccine efficacy against asymptomatic dengue virus infections is expected to translate into reduced dengue virus transmission if sufficient individuals are vaccinated in dengue-endemic areas. PMID:27418050

  14. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    PubMed Central

    Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  15. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    PubMed

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  16. Nucleic acid (DNA) immunization as a platform for dengue vaccine development.

    PubMed

    Porter, Kevin R; Raviprakash, Kanakatte

    2015-12-10

    Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods.

  17. Forecasting dengue vaccine demand in disease endemic and non-endemic countries

    PubMed Central

    Wichmann, Ole; Margolis, Harold S; Mahoney, Richard T

    2010-01-01

    Background A dengue vaccine in large-scale clinical trials could be licensed in several years. We estimated the potential vaccine demand for different introduction strategies in 54 dengue-endemic countries and for travelers from non-endemic countries to enable vaccine producers and public health agencies to better prepare for timely utilization of the vaccine. Results Under our assumptions, 2.4–3.5 billion dengue vaccine doses would be needed in the first five years after introduction with >75% delivered in the public sector. Among 20 potential ‘early-adopter’ countries, an estimated 0.9–1.4 billion doses would be needed for the same introduction approach. For the private sector, covering 10% of children and 30% of adults an estimated 443–664 million doses would be required. In non-endemic countries, travelers could use an estimated 59–89 million vaccine doses, although the present product profile would make it unlikely to be able to administer vaccine in a timely manner. Methods Calculations were based on 2015–2020 population projections for endemic countries in Asia and the Americas with populations >100,000. For dengue-endemic countries we assumed country-wide routine 12–23 month-old vaccination and catch-up vaccination among 2–14 year-old children employing a 2 or 3-dose schedule. Assumptions on expected vaccination coverage were based on country-specific public, private and travelers' sectors immunization performance. Conclusions Our results project an upper-limit estimate of vaccine demand, with actual demand depending on country priorities, cost and product profile. Given the potential for a dengue vaccine, policymakers in endemic and non-endemic countries should consider appropriate implementation strategies in advance of licensure. PMID:20930501

  18. Development of a novel DNA SynCon tetravalent dengue vaccine that elicits immune responses against four serotypes.

    PubMed

    Ramanathan, Mathura P; Kuo, Yuan-Chia; Selling, Bernard H; Li, Qianjun; Sardesai, Niranjan Y; Kim, J Joseph; Weiner, David B

    2009-10-30

    The increased transmission and geographic spread of dengue fever (DF) and its most severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), make it one of the most important mosquito-borne viral disease of humans. Four distinct serotypes of dengue viruses are transmitted to humans through the bites of the mosquitoes. Currently there is no vaccine or antiviral drug against DV infections. Cross-protection between dengue virus serotypes is limited and antibody dependent enhancement (ADE) contributes significantly to the severity of the disease. The major challenge is to induce a broad durable immune response against all four serotypes of dengue virus simultaneously while avoiding the possible exacerbation of risk of developing the severe forms of disease through incomplete or modified responses. In order to address this worldwide concern, we present a synthetic consensus (SynCon) human codon optimized DNA vaccine that elicits immunity against all four dengue serotypes. We cloned consensus DIII domain of E protein from all serotypes and expressed them as a single open reading frame in a mammalian expression vector, called pDV-U-DIII (dengue-vaccine universal). In mice, this dengue-universal construct elicits significant level of anti-DIII antibody that neutralizes all four dengue subtypes and prevents cell death induced by dengue infection. This is the first SynCon DNA vaccine that provides tetravalent immunity against all four serotypes of dengue virus.

  19. "Guidelines for the clinical evaluation of dengue vaccines in endemic areas": summary of a World Health Organization Technical Consultation.

    PubMed

    Edelman, Robert; Hombach, Joachim

    2008-08-05

    There is a pressing need for guidelines focused on the clinical evaluation of dengue vaccines in exposed populations, because Phase 1 and 2 clinical trials of dengue vaccines have begun, and Phase 3 field trials may be warranted soon. In response to this need, the WHO Initiative for Vaccine Research (IVR) has conducted a series of expert consultations resulting in guidelines published as a WHO; 2008[Report No.: WHO/IVB/08.12]. This document, directed toward national regulatory authorities (NRAs), vaccine developers and the scientific community at large, provides guidance for the evaluation and registration of dengue vaccines in dengue-endemic countries. The new document builds on a previous guidance document published in 2002 [WHO. Guidelines for the evaluation of dengue vaccines in populations exposed to natural infection. Geneva, Switzerland: WHO; 2002 [Report No.: TDR/IVR/DEN/02.1

  20. Preclinical and clinical development of a dengue recombinant subunit vaccine.

    PubMed

    Manoff, Susan B; George, Sarah L; Bett, Andrew J; Yelmene, Michele L; Dhanasekaran, Govindarajan; Eggemeyer, Linda; Sausser, Michele L; Dubey, Sheri A; Casimiro, Danilo R; Clements, David E; Martyak, Timothy; Pai, Vidya; Parks, D Elliot; Coller, Beth-Ann G

    2015-12-10

    This review focuses on a dengue virus (DENV) vaccine candidate based on a recombinant subunit approach which targets the DENV envelope glycoprotein (E). Truncated versions of E consisting of the N-terminal portion of E (DEN-80E) have been expressed recombinantly in the Drosophila S2 expression system and shown to have native-like conformation. Preclinical studies demonstrate that formulations containing tetravalent DEN-80E adjuvanted with ISCOMATRIX™ adjuvant induce high titer virus neutralizing antibodies and IFN-γ producing T cells in flavivirus-naïve non-human primates. The preclinical data further suggest that administration of such formulations on a 0, 1, 6 month schedule may result in higher maximum virus neutralizing antibody titers and better durability of those titers compared to administration on a 0, 1, 2 month schedule. In addition, the virus neutralizing antibody titers induced by adjuvanted tetravalent DEN-80E compare favorably to the titers induced by a tetravalent live virus comparator. Furthermore, DEN-80E was demonstrated to be able to boost virus neutralizing antibody titers in macaques that have had a prior DENV exposure. A monovalent version of the vaccine candidate, DEN1-80E, was formulated with Alhydrogel™ and studied in a proof-of-principle Phase I clinical trial by Hawaii Biotech, Inc. (NCT00936429). The clinical trial results demonstrate that both the 10 μg and 50 μg formulations of DEN1-80E with 1.25 mg of elemental aluminum were immunogenic when administered in a 3-injection series (0, 1, 2 months) to healthy, flavivirus-naïve adults. The vaccine formulations induced DENV-1 neutralizing antibodies in the majority of subjects, although the titers in most subjects were modest and waned over time. Both the 10 μg DEN1-80E and the 50 μg DEN1-80E formulations with Alhydrogel™ were generally well tolerated.

  1. A dengue DNA vaccine formulated with Vaxfectin® is well tolerated, and elicits strong neutralizing antibody responses to all four dengue serotypes in New Zealand white rabbits.

    PubMed

    Raviprakash, Kanakatte; Luke, Thomas; Doukas, John; Danko, Janine; Porter, Kevin; Burgess, Timothy; Kochel, Tadeusz

    2012-12-01

    A tetravalent DNA vaccine formulated with Vaxfectin adjuvant was shown to elicit high levels of neutralizing antibody against all four dengue virus serotypes (Porter et al., ( 16) ), warranting further testing in humans. In preparation for a phase 1 clinical testing, the vaccine and the adjuvant were manufactured under current good manufacturing practice guidelines. The formulated vaccine and the adjuvant were tested for safety and/or immunogenicity in New Zealand white rabbits using a repeat dose toxicology study. The formulated vaccine and the adjuvant were found to be well tolerated by the animals. Animals injected with formulated vaccine produced strong neutralizing antibody response to all four dengue serotypes.

  2. Projected Impact of Dengue Vaccination in Yucatán, Mexico

    PubMed Central

    Pearson, Carl A. B.; Chao, Dennis L.; Rojas, Diana Patricia; Recchia, Gabriel L.; Gómez-Dantés, Héctor; Halloran, M. Elizabeth; Pulliam, Juliet R. C.; Longini, Ira M.

    2016-01-01

    Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.8 million people between 375,000 households and 100,000 workplaces and schools. Where possible, we designed the model to use data sources with international coverage, to simplify re-parameterization for other regions. The simulation and analysis integrate 35 years of mild and severe case data (including dengue serotype when available), results of a seroprevalence survey, satellite imagery, and climatological, census, and economic data. To fit model parameters that are not directly informed by available data, such as disease reporting rates and dengue transmission parameters, we developed a parameter estimation toolkit called AbcSmc, which we have made publicly available. After fitting the simulation model to dengue case data, we forecasted transmission and assessed the relative effectiveness of several vaccination strategies over a 20 year period. Vaccine efficacy is based on phase III trial results for the Sanofi-Pasteur vaccine, Dengvaxia. We consider routine vaccination of 2, 9, or 16 year-olds, with and without a one-time catch-up campaign to age 30. Because the durability of Dengvaxia is not yet established, we consider hypothetical vaccines that confer either durable or waning immunity, and we evaluate the use of booster doses to counter waning. We find that plausible vaccination scenarios with a durable vaccine reduce annual dengue incidence by as much as 80% within five years. However, if vaccine efficacy wanes after administration, we find that there

  3. [Analysis of the evidence on the efficacy and safety of CYD-TDV dengue vaccine and its potential licensing and implementation through Mexico's Universal Vaccination Program].

    PubMed

    Hernández-Ávila, Mauricio; Lazcano-Ponce, Eduardo; Hernández-Ávila, Juan Eugenio; Alpuche-Aranda, Celia M; Rodríguez-López, Mario Henry; García-García, Lourdes; Madrid-Marina, Vicente; López Gatell-Ramírez, Hugo; Lanz-Mendoza, Humberto; Martínez-Barnetche, Jesús; Díaz-Ortega, José Luis; Ángeles-Llerenas, Angélica; Barrientos-Gutiérrez, Tonatiuh; Bautista-Arredondo, Sergio; Santos-Preciado, José Ignacio

    2016-01-01

    Dengue is a major global public health problem affecting Latin America and Mexico Prevention and control measures, focusing on epidemiological surveillance and vector control, have been partially effective and costly, thus, the development of a vaccine against dengue has created great expectations among health authorities and scientific communities worldwide. The CYD-TDV dengue vaccine produced by Sanofi-Pasteur is the only dengue vaccine evaluated in phase 3 controlled clinical trials. Notwithstanding the significant contribution to the development of a vaccine against dengue, the three phase 3 clinical studies of CYD-TDV and the meta-analysis of the long-term follow up of those studies, have provided evidence that this vaccine exhibited partial vaccine efficacy to protect against virologically confirmed dengue and lead to four considerations: a) adequate vaccine efficacy against dengue virus (DENV) infections 3 and 4, less vaccine efficacy against DENV 1 and no protection against infection by DENV 2; b) decreased vaccine efficacy in dengue seronegative individuals at the beginning of the vaccination; c) 83% and 90% protection against hospitalizations and severe forms of dengue, respectively, at 25 months follow-up; and d) increased hospitalization for dengue in the vaccinated group, in children under nine years of age at the time of vaccination, detected since the third year of follow-up. The benefit of the CYD-TDV vaccine can be summarized in the protection against infection by DENV 3 and 4, as well as protection for hospitalizations and severe cases in people over nine years, who have had previous dengue infection, working mainly as a booster. In this review we identified elements on efficacy and safety of this vaccine that must be taken into account in the licensing process and potential inclusion in the national vaccination program of Mexico. The available scientific evidence on the CYD-TDV vaccine shows merits, but also leads to relevant questions that

  4. Antibody Recognition of the Dengue Virus Proteome and Implications for Development of Vaccines

    DTIC Science & Technology

    2011-04-01

    CLINICAL AND VACCINE IMMU~OLOGY, Apr. 2011, p. 523-532 1556-6811/11/$12.00 doi: 10.1128/CVI.00016-ll Vol. 18, No.4 Copyright © 2011, American...of dengue virus, each appearing t’Yclically in the tropics and subtropics along the equator. Although vaccines are currently under development, none...are available to the general population. One of the main impediments to the successful advancement of these vaccines is the lack of well-defined

  5. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine

  6. Immunogenicity of a Psoralen-Inactivated Dengue Virus Type 1 Vaccine Candidate in Mice

    DTIC Science & Technology

    2010-02-01

    Psoralen-Inactivated Dengue Virus Type 1 Vaccine Candidate in Mice ’V Ryan C. Maves,h Roger M. Castillo Ore,1 Kevin R. Porter,2 and Tadeusz J. Kochel1...ceiv!!t.l 2 Sept!!mber 2009/RI!turned for modification 20 Octobl!r 2009/Accepted 2 D!!cembl!r 2009 We evaluated a novel psoralen-inactivated dengue ...neutralizing antibody was detectable in 10/11 mice receiving a 10-ng dose at 90 days. Psoralen-inactivated DENV-1 is immunogenic in mice. Dengue

  7. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  8. The introduction of new vaccines into developing countries. V: Will we lose a decade or more in the introduction of dengue vaccines to developing countries?

    PubMed

    Mahoney, Richard

    2014-02-12

    Dengue results in as many as 390 million infections annually and causes significant morbidity. A number of efforts are underway to develop vaccines against dengue. The public sector is undertaking efforts to create an enabling environment for vaccine introduction. Recent work by Brooks et al. provides a framework for analyzing which efforts should be undertaken before licensure. They conclude that actions before licensure are required to eliminate the decade or more it normally takes to introduce new vaccines into developing countries. We apply their methodology to dengue and identify a number of critical areas where public sector actions before licensure can greatly accelerate vaccine uptake.

  9. Immunogenicity and safety of a tetravalent dengue vaccine in healthy adults in India: A randomized, observer-blind, placebo-controlled phase II trial.

    PubMed

    Dubey, Anand Prakash; Agarkhedkar, Sharad; Chhatwal, Jugesh; Narayan, Arun; Ganguly, Satyabrata; Wartel, T Anh; Bouckenooghe, Alain; Menezes, Josemund

    2016-01-01

    Dengue is a mosquito-borne viral disease that is endemic in India. We evaluated the immunogenicity and safety of recombinant, live-attenuated, tetravalent dengue vaccine (CYD-TDV) in Indian adults. In this observer-blind, randomized, placebo-controlled, Phase II study, adults aged 18-45 years were randomized 2:1 to receive CYD-TDV or placebo at 0, 6 and 12 months in sub-cutaneous administration. Immunogenicity was assessed using a 50% plaque reduction neutralization test (PRNT50) at baseline and 28 days after each study injection. 189 participants were enrolled (CYD-TDV [n = 128]; placebo, [n = 61]). At baseline, seropositivity rates for dengue serotypes 1, 2, 3 and 4 ranged from 77.0% to 86.9%. Seropositivity rates for each serotype increased after each CYD-TDV injection with a more pronounced increase after the first injection. In the CYD-TDV group, geometric mean titres (GMTs) were 2.38 to 6.11-fold higher after the third injection compared with baseline but remained similar to baseline in the placebo group. In the CYD-TDV group, the GMTs were 1.66 to 4.95-fold higher and 9.23 to 24.6-fold higher after the third injection compared with baseline in those who were dengue seropositive and dengue seronegative, respectively. Pain was the most commonly reported solicited injection site reaction after the first injection in both the CYD-TDV (6.3%) and placebo groups (4.9%), but occurred less frequently after subsequent injections. No serious adverse events were vaccine-related, no immediate unsolicited adverse events, and no virologically-confirmed cases of dengue, were reported during the study. The immunogenicity and safety of CYD-TDV was satisfactory in both dengue seropositive and seronegative Indian adults.

  10. Research progress in live attenuated Brucella vaccine development.

    PubMed

    Wang, Zhen; Wu, Qingmin

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause brucellosis, which is a globally occurring zoonotic disease that is characterized by abortion in domestic animals and undulant fever, arthritis, endocarditis, and meningitis in humans. There are currently no licensed vaccines against brucellosis for human use, and only a few licensed live Brucella vaccines are available for use in animals. However, the available animal vaccines may cause abortion and are associated with lower protection rates in animals and higher virulence in humans. Much research has been performed recently to develop novel Brucella vaccines for the prevention and control of animal brucellosis. This article discusses the approaches and strategies for novel live attenuated vaccine development.

  11. Comment on "Forecasting dengue vaccine demand in disease endemic and non-endemic countries" Amarasinghe et al; Human Vaccines 2010; 6:9, 745-753.

    PubMed

    Miller, Nicholas

    2011-01-01

    Recent forecasts of dengue travel vaccine demand, while worthy, might be improved by modelling future travel flows, and by accounting for incremental reductions in demand at the different points in the sequence of events leading to travel vaccine purchase. In particular, we suggest that an alternative method of projecting dengue travel vaccine uptake would account for (1) future flows of travellers from all non-endemic source to all endemic destination countries, based on data that are comparable between countries, and corrected for double-counting and other sources of error; (2) the proportion of such travellers that seek premedical travel advice within a timescale compatible with the probable dengue vaccine schedule; (3) the proportion of these travellers that will present with a combination of risk factors (above and beyond destination country) sufficient to prompt a physician to prescribe a dengue vaccine; and (4) the proportion of these travellers that actually purchase a vaccine when advised to do so.

  12. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial.

    PubMed

    Beckett, Charmagne G; Tjaden, Jeffrey; Burgess, Timothy; Danko, Janine R; Tamminga, Cindy; Simmons, Monika; Wu, Shuenn-Jue; Sun, Peifang; Kochel, Tadeusz; Raviprakash, Kanakatte; Hayes, Curtis G; Porter, Kevin R

    2011-01-29

    Candidate dengue DNA vaccine constructs for each dengue serotype were developed by incorporating pre-membrane and envelope genes into a plasmid vector. A Phase 1 clinical trial was performed using the dengue virus serotype-1 (DENV-1) vaccine construct (D1ME(100)). The study was an open-label, dose-escalation, safety and immunogenicity trial involving 22 healthy flavivirus-naïve adults assigned to one of two groups. Each group received three intramuscular injections (0, 1, and 5 months) of either a high dose (5.0mg, n=12) or a low dose (1.0mg, n=10) DNA vaccine using the needle-free Biojector(®) 2000. The most commonly reported solicited signs and symptoms were local mild pain or tenderness (10/22, 45%), local mild swelling (6/22, 27%), muscle pain (6/22, 27%) and fatigue (6/22, 27%). Five subjects (41.6%) in the high dose group and none in the low dose group developed detectable anti-dengue neutralizing antibodies. T-cell IFN gamma responses were detected in 50% (4/8) and 83.3% (10/12) of subjects in the low and high dose groups, respectively. The safety profile of the DENV-1 DNA vaccine is acceptable at both doses administered in the study. These results demonstrate a favorable reactogenicity and safety profile of the first in human evaluation of a DENV-1 DNA vaccine.

  13. An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques.

    PubMed

    Fernandez, Stefan; Thomas, Stephen J; De La Barrera, Rafael; Im-Erbsin, Rawiwan; Jarman, Richard G; Baras, Benoît; Toussaint, Jean-François; Mossman, Sally; Innis, Bruce L; Schmidt, Alexander; Malice, Marie-Pierre; Festraets, Pascale; Warter, Lucile; Putnak, J Robert; Eckels, Kenneth H

    2015-04-01

    The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented viremia after challenge, with the dengue serotype 1 and 2 virus strains administered at 40 and 32 weeks post-dose 2, respectively. This study shows that inactivated dengue vaccines, when formulated with alum or an Adjuvant System, are candidates for further development.

  14. Dengue

    MedlinePlus

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  15. Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine.

    PubMed

    Tretyakova, Irina; Lukashevich, Igor S; Glass, Pamela; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2013-02-04

    DNA vaccines combine remarkable genetic and chemical stability with proven safety and efficacy in animal models, while remaining less immunogenic in humans. In contrast, live-attenuated vaccines have the advantage of inducing rapid, robust, long-term immunity after a single-dose vaccination. Here we describe novel iDNA vaccine technology that is based on an infectious DNA platform and combines advantages of DNA and live attenuated vaccines. We applied this technology for vaccination against infection with Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The iDNA vaccine is based on transcription of the full-length genomic RNA of the TC-83 live-attenuated virus from plasmid DNA in vivo. The in vivo-generated viral RNA initiates limited replication of the vaccine virus, which in turn leads to efficient immunization. This technology allows the plasmid DNA to launch a live-attenuated vaccine in vitro or in vivo. Less than 10 ng of pTC83 iDNA encoding the full-length genomic RNA of the TC-83 vaccine strain initiated replication of the vaccine virus in vitro. In order to evaluate this approach in vivo, BALB/c mice were vaccinated with a single dose of pTC83 iDNA. After vaccination, all mice seroconverted with no adverse reactions. Four weeks after immunization, animals were challenged with the lethal epidemic strain of VEEV. All iDNA-vaccinated mice were protected from fatal disease, while all unvaccinated controls succumbed to infection and died. To our knowledge, this is the first example of launching a clinical live-attenuated vaccine from recombinant plasmid DNA in vivo.

  16. Genetic engineering of attenuated malaria parasites for vaccination.

    PubMed

    Khan, Shahid M; Janse, Chris J; Kappe, Stefan H I; Mikolajczak, Sebastian A

    2012-12-01

    Vaccination with live-attenuated Plasmodium sporozoites that arrest in the liver can completely protect against a malaria infection both in animal models and in humans; this has provided the conceptual basis for the most promising, but also challenging, approach to develop an efficacious malaria vaccine. Advances in genetic manipulation of Plasmodium in conjunction with improved genomic and biological information has enabled new approaches to design genetically attenuated parasites (GAPs). In this review we discuss the principles in discovery and development of GAPs in preclinical models that are important in selecting GAP parasites for first-in-human clinical studies. Finally, we highlight the challenges in manufacture, formulation and delivery of a live-attenuated whole parasite malaria vaccine, as well as the further refinements that may be implemented in the next generation GAP vaccines.

  17. T cell immunity to dengue virus and implications for vaccine design.

    PubMed

    Rivino, Laura

    2016-01-01

    Dengue virus infections are increasing at an alarming rate in many tropical and subtropical countries and represent, in some of these areas, a leading cause of hospitalization and death among children. The lack of a clear definition of the correlates of protection from severe dengue disease represents a major hurdle for vaccine development. In particular, the role of T lymphocytes during dengue infection remains unclear and there is evidence suggesting that these cells may be important for both protective immunity and/or immunopathology. In this review we discuss the findings that support a protective role of T cells versus those supporting their involvement in pathogenesis. A better understanding of T cell immunity is urgently needed for the development of safe and efficacious vaccines.

  18. Promises and pitfalls of live attenuated pneumococcal vaccines.

    PubMed

    Rosch, Jason W

    2014-01-01

    The pneumococcus is a remarkably adaptable pathogen whose disease manifestations range from mucosal surface infections such as acute otitis media and pneumonia to invasive infections such as sepsis and meningitis. Currently approved vaccines target the polysaccharide capsule, of which there are over 90 distinct serotypes, leading to rapid serotype replacement in vaccinated populations. Substantial progress has been made in the development of a universal pneumococcal vaccine, with efforts focused on broadly conserved and protective protein antigens. An area attracting considerable attention is the potential application of live attenuated vaccines to confer serotype-independent protection against mucosal and systemic infection. On the basis of recent work to understand the mucosal and systemic responses to nasal administration of pneumococci and to develop novel attenuation strategies, the prospect of a practical and protective live vaccine remains promising.

  19. Immunogenicity of a psoralen-inactivated dengue virus type 1 vaccine candidate in mice.

    PubMed

    Maves, Ryan C; Castillo Oré, Roger M; Porter, Kevin R; Kochel, Tadeusz J

    2010-02-01

    We evaluated a novel psoralen-inactivated dengue virus type 1 (DENV-1) vaccine candidate in Mus musculus mice. Mice received intradermal alum or 5 to 10 ng of psoralen-inactivated virus. Anti-DENV-1 neutralizing antibody was detectable in 10/11 mice receiving a 10-ng dose at 90 days. Psoralen-inactivated DENV-1 is immunogenic in mice.

  20. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant

    PubMed Central

    Ruggieri, Alessia; Acosta, Eliana Gisela; Bartenschlager, Marie; Reuter, Antje; Fischl, Wolfgang; Harder, Nathalie; Bergeest, Jan-Philip; Flossdorf, Michael; Rohr, Karl; Höfer, Thomas; Bartenschlager, Ralf

    2015-01-01

    Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells. PMID:26720415

  1. Prolonging morbidity in rabid dogs by intrathecal injection of attenuated rabies vaccine.

    PubMed Central

    Baer, G M; Shaddock, J H; Williams, L W

    1975-01-01

    Dogs vaccinated intrathecally with attenuated rabies vaccine developed antibodies that were detected in the cerebrospinal fluid, blood, and brain; dogs similarly vaccinated but with an inactivated vaccine developed no antibodies in the brain. When the attenuated vaccine was administered to rabid dogs, a prolongation of the morbidity period was noted and, in some dogs, recovery from the disease. Rhesus monkeys died when administered any of the available attenuated vaccines intrathecally, and further studies with that species could not be undertaken. PMID:1095494

  2. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    PubMed

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  3. Influenza vaccination with live-attenuated and inactivated virus-vaccines during an outbreak of disease.

    PubMed Central

    Rocchi, G.; Ragona, G.; Piga, C.; Pelosio, A.; Volpi, A.; Vella, S.; Legniti, N.; de Felici, A.

    1979-01-01

    Immunization procedures with live attenuated and inactivated vaccines were carried out on a group of young recruits at the beginning of an outbreak of infection due to an A/Victoria/3/75-related virus strain, which occurred in February 1977 in a military camp. A retrospective investigation on protection from clinical influenza was then performed in order to investigate whether immunization with live virus vaccines, administered at the beginning of an epidemic, could provide early protection from the disease. In the course of the two weeks following vaccination, laboratory-confirmed clinical influenza cases occurred in 4 subjects among the 110 volunteers of the control group which received placebo, and in 8, 7 and 4 subjects respectively of the 3 groups of about 125 individuals, each of which received one of the following vaccine preparations: (a), live attenuated A/Victoria/3/75 influenza virus oral vaccine, grown on chick embryo kidney culture; (b), live attenuated nasal vaccine, a recombinant of A/Puerto Rico/8/34 with A/Victoria/3/75 virus; and (c), inactivated A/Victoria/3/75 virus intramuscular vaccine. These data do not support the hypothesis that, during an epidemic of infection, early protection from clinical influenza can be achieved through immunization with live attenuated or inactivated influenza virus vaccines, in spite of the high immunizing capability of the vaccine preparations. PMID:512351

  4. Dengue

    MedlinePlus

    ... Epidemiology Transmission, information on epidemics and stats... Entomology & Ecology Mosquito that spreads dengue and its ecology... Clinical & Laboratory Guidance Tools for clinicians and laboratorians... ...

  5. Age specific differences in efficacy and safety for the CYD-tetravalent dengue vaccine.

    PubMed

    Wilder-Smith, Annelies; Massad, Eduardo

    2016-01-01

    CYD-TDV is the first dengue vaccine to have completed Phase 3 efficacy trials. Efficacy was consistently higher in those aged 9 and above for all variables studied: efficacy against virologically confirmed dengue of any severity and serotype, serotype specific efficacy, efficacy dependent on baseline seropositivity, efficacy against hospitalizations and efficacy against severe disease. Because of the higher efficacy and the absence of a safety signal, the age group with the best benefit of the use of CYD-TDV is individuals aged 9 and above - the age group for which licensure is now being sought.

  6. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    PubMed

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  7. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  8. Dengue Vaccines: A Perspective from the Point of View of Intellectual Property

    PubMed Central

    Pereira da Veiga, Claudimar; Pereira da Veiga, Cássia Rita; Del Corso, Jansen Maia; Vieira da Silva, Wesley

    2015-01-01

    Dengue is a serious infectious disease and a growing public health problem in many tropical and sub-tropical countries. To control this neglected tropical disease (NTD), vaccines are likely to be the most cost-effective solution. This study analyzed dengue vaccines from both a historical and longitudinal perspective by using patent data, evaluating the geographic and time coverage of innovations, the primary patent holders, the network of cooperation and partnership for vaccine research and development (R & D), the flow of knowledge and the technological domain involved. This study can be seen as an example of the use of patent information to inform policy discussions, strategic research planning, and technology transfer. The results show that 93% of patents were granted since 2000, the majority belonging to the United States and Europe, although the share of patents from developing countries has increased. Unlike another NTDs, there is great participation of private companies in R & D of dengue vaccines and partnerships and collaboration between public and private companies. Finally, in this study, the main holders showed high knowledge absorption and generated capabilities. Therefore, this issue suggests that to overcome the difficulty of translational R & D it is necessary to stimulate the generation of knowledge and relevant scientific research, to enable the productive sector to have the capacity to absorb knowledge, to turn it into innovation, and to articulate partnerships and collaboration. PMID:26274968

  9. Dengue Vaccines: A Perspective from the Point of View of Intellectual Property.

    PubMed

    da Veiga, Claudimar Pereira; da Veiga, Cássia Rita Pereira; Del Corso, Jansen Maia; da Silva, Wesley Vieira

    2015-08-12

    Dengue is a serious infectious disease and a growing public health problem in many tropical and sub-tropical countries. To control this neglected tropical disease (NTD), vaccines are likely to be the most cost-effective solution. This study analyzed dengue vaccines from both a historical and longitudinal perspective by using patent data, evaluating the geographic and time coverage of innovations, the primary patent holders, the network of cooperation and partnership for vaccine research and development (R & D), the flow of knowledge and the technological domain involved. This study can be seen as an example of the use of patent information to inform policy discussions, strategic research planning, and technology transfer. The results show that 93% of patents were granted since 2000, the majority belonging to the United States and Europe, although the share of patents from developing countries has increased. Unlike another NTDs, there is great participation of private companies in R & D of dengue vaccines and partnerships and collaboration between public and private companies. Finally, in this study, the main holders showed high knowledge absorption and generated capabilities. Therefore, this issue suggests that to overcome the difficulty of translational R & D it is necessary to stimulate the generation of knowledge and relevant scientific research, to enable the productive sector to have the capacity to absorb knowledge, to turn it into innovation, and to articulate partnerships and collaboration.

  10. Live attenuated hepatitis A vaccines developed in China.

    PubMed

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H 2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H 2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of the H 2 strain or for marmoset-to-marmoset transmission of LA-1 strain, by close contact. H 2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in China for 14 years following introduction of the H 2 live vaccine into the Expanded Immunization Program (EPI) in 1992.

  11. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys.

    PubMed

    Clements, David E; Coller, Beth-Ann G; Lieberman, Michael M; Ogata, Steven; Wang, Gordon; Harada, Kent E; Putnak, J Robert; Ivy, John M; McDonell, Michael; Bignami, Gary S; Peters, Iain D; Leung, Julia; Weeks-Levy, Carolyn; Nakano, Eileen T; Humphreys, Tom

    2010-03-24

    Truncated recombinant dengue virus envelope protein subunits (80E) are efficiently expressed using the Drosophila Schneider-2 (S2) cell expression system. Binding of conformationally sensitive antibodies as well as X-ray crystal structural studies indicate that the recombinant 80E subunits are properly folded native-like proteins. Combining the 80E subunits from each of the four dengue serotypes with ISCOMATRIX adjuvant, an adjuvant selected from a set of adjuvants tested for maximal and long lasting immune responses, results in high titer virus neutralizing antibody responses. Immunization of mice with a mixture of all four 80E subunits and ISCOMATRIX adjuvant resulted in potent virus neutralizing antibody responses to each of the four serotypes. The responses to the components of the tetravalent mixture were equivalent to the responses to each of the subunits administered individually. In an effort to evaluate the potential protective efficacy of the Drosophila expressed 80E, the dengue serotype 2 (DEN2-80E) subunit was tested in both the mouse and monkey challenge models. In both models protection against viral challenge was achieved with low doses of antigen in the vaccine formulation. In non-human primates, low doses of the tetravalent formulation induced good virus neutralizing antibody titers to all four serotypes and protection against challenge with the two dengue virus serotypes tested. In contrast to previous reports, where subunit vaccine candidates have generally failed to induce potent, protective responses, native-like soluble 80E proteins expressed in the Drosophila S2 cells and administered with appropriate adjuvants are highly immunogenic and capable of eliciting protective responses in both mice and monkeys. These results support the development of a dengue virus tetravalent vaccine based on the four 80E subunits produced in the Drosophila S2 cell expression system.

  12. Development of a Recombinant Tetravalent Dengue Virus Vaccine: Immunogenicity and Efficacy Studies in Mice and Monkeys♦

    PubMed Central

    Clements, David E.; Coller, Beth-Ann G.; Lieberman, Michael M.; Ogata, Steven; Wang, Gordon; Harada, Kent E.; Putnak, J. Robert; Ivy, John M.; McDonell, Michael; Bignami, Gary S.; Peters, Iain D.; Leung, Julia; Weeks-Levy, Carolyn; Nakano, Eileen T.; Humphreys, Tom

    2010-01-01

    Truncated recombinant dengue virus envelope protein subunits (80E) are efficiently expressed using the Drosophila Schneider-2 (S2) cell expression system. Binding of conformationally sensitive antibodies as well as x-ray crystal structural studies indicate that the recombinant 80E subunits are properly folded native-like proteins. Combining the 80E subunits from each of the four dengue serotypes with ISCOMATRIX® adjuvant, an adjuvant selected from a set of adjuvants tested for maximal and long lasting immune responses, results in high titer virus neutralizing antibody responses. Immunization of mice with a mixture of all four 80E subunits and ISCOMATRIX® adjuvant resulted in potent virus neutralizing antibody responses to each of the four serotypes. The responses to the components of the tetravalent mixture were equivalent to the responses to each of the subunits administered individually. In an effort to evaluate the potential protective efficacy of the Drosophila expressed 80E, the dengue serotype 2 (DEN2-80E) subunit was tested in both the mouse and monkey challenge models. In both models protection against viral challenge was achieved with low doses of antigen in the vaccine formulation. In non-human primates, low doses of the tetravalent formulation induced good virus neutralizing antibody titers to all four serotypes and protection against challenge with the two dengue virus serotypes tested. In contrast to previous reports, where subunit vaccine candidates have generally failed to induce potent, protective responses, native-like soluble 80E proteins expressed in the Drosophila S2 cells and administered with appropriate adjuvants are highly immunogenic and capable of eliciting protective responses in both mice and monkeys. These results support the development of a dengue virus tetravalent vaccine based on the four 80E subunits produced in the Drosophila S2 cell expression system. PMID:20097152

  13. Safety of a live attenuated Erysipelothrix rhusiopathiae vaccine for swine.

    PubMed

    Neumann, Eric J; Grinberg, Alex; Bonistalli, Kathryn N; Mack, Hamish J; Lehrbach, Philip R; Gibson, Nicole

    2009-03-30

    Infection with Erysipelothrix rhusiopathiae has a significant economic impact on pig production systems worldwide. Both inactivated and attenuated vaccines are available to prevent development of clinical signs of swine erysipelas. The ability of a live attenuated E. rhusiopathiae strain to become persistently established in pigs after intranasal exposure and its potential to cause clinical signs consistent with swine erysipelas after being administered directly into the nasopharynx of healthy pigs was evaluated. Five, E. rhusiopathiae-negative pigs were vaccinated by deep intranasal inoculation then followed for 14 days. Nasal swabs were collected daily for 5 days and clinical observations were made daily for 14 days post-vaccination. Nasal swabs were cultured for E. rhusiopathiae with the intent of back-passaging any recovered organisms into subsequent replicates. No organism was recovered from nasal swabs in the first vaccination replicate. A second replicate including 10 pigs was initiated and followed in an identical manner to that described above. Again, no E. rhusiopathiae was recovered from any pigs. No pigs in either replicate showed any signs of clinical swine erysipelas. The live attenuated E. rhusiopathiae strain evaluated in this study did not appear to become persistently established in pigs post-vaccination, did not cause any local or systemic signs consistent with swine erysipelas, and was therefore unlikely to revert to a virulent state when used in a field setting.

  14. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections.

    PubMed

    Stanfield, Brent; Kousoulas, Konstantin Gus

    2015-09-01

    Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections.

  15. Identification of Mutations in a Candidate Dengue 4 Vaccine Strain 341750 PDK20 and Construction of a Full-Length eDNA Clone of the PDK20 Vaccine Candidate

    DTIC Science & Technology

    2010-01-01

    Identification of mutations in a candidate dengue 4 vaccine strain 341750 PDIង and construction of a full-length eDNA clone of the PDIង vaccine...history: Received 19 May 2009 Received in revised form 2 October 2009 Accepted IS October 2009 Available online 27 October 2009 Keywords: Dengue ...virus Vaccine virus mutat ion analysis Infectious clone Dengue 4 virus strain 34 1750 serially passaged 20 t imes in primary dog kidney ( PDK) cells

  16. Multiple antigenic peptides as vaccine platform for the induction of humoral responses against dengue-2 virus.

    PubMed

    Amexis, Georgios; Young, Neal S

    2007-12-01

    Dengue is an important agent of human disease for which no licensed vaccine is available to the public. We used multiple antigenic peptides (MAPs) as an antigen carrier for the development of subunit vaccines against dengue-2 virus (DEN-2). Commercially available software (MacVector 7.0) was used to identify potential antigenic B-cell epitopes of E-glycoprotein. A total of 60 BALB/c mice were immunized with 12 recombinant DEN-2-specific MAPs and the humoral immune response was assessed by anti-DEN-2 ELISA and PRNT50 assays. Anti-DEN-2 ELISA showed high levels of anti-DEN-2 antibodies and post-immune sera reduced viral infectivity and prevented infection of monkey kidney cells (LLC-MK2) with live DEN-2 virus. Seven neutralizing DEN-2 epitopes were identified that generated PRNT50 titers of up to 1:160. Our findings show that the MAP platform can be used as an antigen-presenting platform for dengue vaccine development.

  17. Immunity and protection by live attenuated HIV/SIV vaccines

    PubMed Central

    Wodarz, Dominik

    2008-01-01

    Live attenuated virus vaccines have shown the greatest potential to protect against simian immunodeficiency virus (SIV) infection, a model for human immunodeficiency virus (HIV). Immunity against the vaccine virus is thought to mediate protection. However, it is shown computationally that the opposite might be true. According to the model, the initial growth of the challenge strain, its peak load, and its potential to be pathogenic is higher if immunity against the vaccine virus is stronger. This is because the initial growth of the challenge strain is mainly determined by virus competition rather than immune suppression. The stronger the immunity against the vaccine strain, the weaker its competitive ability relative to the challenge strain, and the lower the level of protection. If the vaccine virus does protect the host against a challenge, it is because the competitive interactions between the viruses inhibit the initial growth of the challenge strain. According to these arguments, an inverse correlation between the level of attenuation and the level of protection is expected, and this has indeed been observed in experimental data. PMID:18586297

  18. Safety and immunogenicity of a live attenuated mumps vaccine

    PubMed Central

    Liang, Yan; Ma, Jingchen; Li, Changgui; Chen, Yuguo; Liu, Longding; Liao, Yun; Zhang, Ying; Jiang, Li; Wang, Xuan-Yi; Che, Yanchun; Deng, Wei; Li, Hong; Cui, Xiaoyu; Ma, Na; Ding, Dong; Xie, Zhongping; Cui, Pingfang; Ji, Qiuyan; Wang, Jingjing; Zhao, Yuliang; Wang, Junzhi; Li, Qihan

    2014-01-01

    Background: Mumps, a communicable, acute and previously well-controlled disease, has had recent and occasional resurgences in some areas. Methods: A randomized, double-blind, controlled and multistep phase I study of an F-genotype attenuated mumps vaccine produced in human diploid cells was conducted. A total of 300 subjects were enrolled and divided into 4 age groups: 16–60 years, 5–16 years, 2–5 years and 8–24 months. The groups were immunized with one injection per subject. Three different doses of the F-genotype attenuated mumps vaccine, A (3.5 ± 0.25 logCCID50), B (4.25 ± 0.25 logCCID50) and C (5.0 ± 0.25 logCCID50), as well as a placebo control and a positive control of a licensed A-genotype vaccine (S79 strain) were used. The safety and immunogenicity of this vaccine were compared with those of the controls. Results: The safety evaluation suggested that mild adverse reactions were observed in all groups. No serious adverse event (SAE) was reported throughout the trial. The immunogenicity test showed a similar seroconversion rate of the neutralizing and ELISA antibody in the 2- to 5-year-old and 8- to 24-month-old groups compared with the seroconversion rate in the positive control. The GMT of the neutralizing anti-F-genotype virus antibodies in the vaccine groups was slightly higher than that in the positive control group. Conclusions: The F-genotype attenuated mumps vaccine evaluated in this clinical trial was demonstrated to be safe and have effective immunogenicity vs. control. PMID:24614759

  19. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response.

    PubMed

    van Der Most, R G; Murali-Krishna, K; Ahmed, R; Strauss, J H

    2000-09-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.

  20. Development of live attenuated influenza vaccines against pandemic influenza strains.

    PubMed

    Coelingh, Kathleen L; Luke, Catherine J; Jin, Hong; Talaat, Kawsar R

    2014-07-01

    Avian and animal influenza viruses can sporadically transmit to humans, causing outbreaks of varying severity. In some cases, further human-to-human virus transmission does not occur, and the outbreak in humans is limited. In other cases, sustained human-to-human transmission occurs, resulting in worldwide influenza pandemics. Preparation for future pandemics is an important global public health goal. A key objective of preparedness is to gain an understanding of how to design, test, and manufacture effective vaccines that could be stockpiled for use in a pandemic. This review summarizes results of an ongoing collaboration to produce, characterize, and clinically test a library of live attenuated influenza vaccine strains (based on Ann Arbor attenuated Type A strain) containing protective antigens from influenza viruses considered to be of high pandemic potential.

  1. A candidate live inactivatable attenuated vaccine for AIDS.

    PubMed Central

    Chakrabarti, B K; Maitra, R K; Ma, X Z; Kestler, H W

    1996-01-01

    The recent discovery of long term AIDS nonprogressors who harbor nef-attenuated HIV suggests that a naturally occurring live vaccine for AIDS may already exist. Animal models have shown that a live vaccine for AIDS, attenuated in nef, is the best candidate vaccine. There are considerable risks, real and perceived, with the use of live HIV vaccines. We have introduced a conditional lethal genetic element into HIV-1 and simian immunodeficiency virus (SIV) molecular clones deleted in nef. The antiviral strategy we employed targets both virus replication and the survival of the infected cell. The suicide gene, herpes simplex virus thymidine kinase (tk), was expressed and maintained in HIV over long periods of time. Herpes simplex virus tk confers sensitivity to the antiviral activity of acyclic nucleosides such as ganciclovir (GCV). HIV-tk and SIV-tk replication were sensitive to GCV at subtoxic concentrations, and virus-infected cells were eliminated from tumor cell lines as well as primary cell cultures. We found the HIV-tk virus to be remarkably stable even after being cultured in media containing a low concentration of GCV and then challenged with the higher dose and that while GCV resistant escape mutants did arise, a significant fraction of the virus remained sensitive to GCV. Images Fig. 1 Fig. 5 PMID:8790413

  2. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus

    PubMed Central

    Ljungberg, Karl; Kümmerer, Beate M.; Gosse, Leslie; Dereuddre-Bosquet, Nathalie; Tchitchek, Nicolas; Hallengärd, David; García-Arriaza, Juan; Meinke, Andreas; Esteban, Mariano; Merits, Andres

    2017-01-01

    Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory. PMID:28352649

  3. Antibody Response to Live Attenuated Vaccines in Adults in Japan

    PubMed Central

    Uchiyama-Nakamura, Fukumi; Sugata-Tsubaki, Aiko; Yamada, Yutaka; Uno, Kenji; Kasahara, Kei; Maeda, Koichi; Konishi, Mitsuru; Mikasa, Keiichi

    2016-01-01

    Abstract The purpose of this study was to examine the efficacy rendered with a single dose of live attenuated measles, rubella, mumps, and varicella containing vaccine. We inoculated healthcare workers (HCWs) with a single dose of vaccine to a disease lacking in antibody titer for those not meeting the criteria of our hospital (measles: <16.0 (IgG enzyme immunoassay (EIA)), rubella: ≤1:32 (hemagglutination-inhibition), mumps: <4.0 (IgG EIA), and varicella: <4.0 (IgG EIA)). At 28–60 days after vaccination, the antibody titer was tested again. We included 48 HCWs. A total of 32, 15, 31, and 10 individuals were inoculated with a single dose of measles-containing, rubella-containing, mumps, or varicella vaccine, respectively, and showed significant antibody elevation (9.2 ± 12.3 to 27.6 ± 215.6, p<0.001; 8 ± 1.2 to 32 ± 65.5, p<0.001; 3.0 ± 1.0 to 13.1 ± 8.6, p<0.05; and 2.6 ± 1.3 to 11.8 ± 8.1, p<0.001, respectively). Major side effects were not observed. In a limited population, a single dose of live attenuated vaccine showed elevation of antibody titer without any severe adverse reactions. However, whether the post-vaccination response rate criteria of our university was fulfilled could not be determined owing to limited sample size. PMID:28352840

  4. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    PubMed

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  5. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development.

    PubMed

    Acosta, Eliana G; Bartenschlager, Ralf

    2016-01-01

    Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions.

  6. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    DTIC Science & Technology

    2006-10-01

    considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication -competent vaccine against...MARV infections, we recently described the development of a promising new replication -competent vaccine against MARV based on recombinant vesicular...reported the development of a promising attenuated, replication -competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV

  7. Stable Salmonella live vaccine strains with two or more attenuating mutations and any desired level of attenuation.

    PubMed

    Linde, K; Beer, J; Bondarenko, V

    1990-06-01

    Mutants optimally attenuated for highly susceptible hosts and protecting after a single oral vaccination are often overattenuated for host species being less susceptible. Therefore, to select vaccine strains optimally attenuated for the particular host species it is essential that a range of mutants with graded levels of attenuation be provided so as to permit lesser susceptibility to be compensated for by a correspondingly lower level of attenuation. This, while guaranteeing the stability through two-marker or multi-marker attenuation, can be suitably accomplished by slightly to moderately virulence-reducing mutations. Aspartic acid auxotrophy and, in particular, 'metabolic drift' mutations, possibly by additionally incorporating antiepidemic markers, are adopted for the mouse model to demonstrate stepwise production of S. typhimurium and S. typhi vaccine candidate strains with graded attenuation or any level of attenuation desirable. It is emphasized that this basic approach is relevant to practice.

  8. Consumer Willingness to Pay for Dengue Vaccine (CYD-TDV, Dengvaxia(®)) in Brazil; Implications for Future Pricing Considerations.

    PubMed

    Godói, Isabella P; Santos, André S; Reis, Edna A; Lemos, Livia L P; Brandão, Cristina M R; Alvares, Juliana; Acurcio, Francisco A; Godman, Brian; Guerra Júnior, Augusto A

    2017-01-01

    Introduction and Objective: Dengue virus is a serious global health problem with an estimated 3.97 billion people at risk for infection worldwide. In December 2015, the first vaccine (CYD-TDV) for dengue prevention was approved in Brazil, developed by Sanofi Pasteur. However, given that the vaccine will potentially be paid via the public health system, information is need regarding consumers' willingness to pay for the dengue vaccine in the country as well as discussions related to the possible inclusion of this vaccine into the public health system. This was the objective of this research. Methods: We conducted a cross-sectional study with residents of Greater Belo Horizonte, Minas Gerais, about their willingness to pay for the CYD-TDV vaccine. Results: 507 individuals were interviewed. These were mostly female (62.4%) had completed high school (62.17%), were working (74.4%), had private health insurance (64.5%) and did not have dengue (67.4%). The maximum median value of consumers' willingness to pay for CYD-TDV vaccine is US$33.61 (120.00BRL) for the complete schedule and US$11.20 (40.00BRL) per dose. At the price determined by the Brazil's regulatory chamber of pharmaceutical products market for the commercialization of Dengvaxia(®) for three doses, only 17% of the population expressed willingness to pay for this vaccine. Conclusion: Brazil is currently one of the largest markets for dengue vaccine and the price established is a key issue. We believe the manufacturer should asses the possibility of lower prices to reach a larger audience among the Brazilian population.

  9. Consumer Willingness to Pay for Dengue Vaccine (CYD-TDV, Dengvaxia®) in Brazil; Implications for Future Pricing Considerations

    PubMed Central

    Godói, Isabella P.; Santos, André S.; Reis, Edna A.; Lemos, Livia L. P.; Brandão, Cristina M. R.; Alvares, Juliana; Acurcio, Francisco A.; Godman, Brian; Guerra Júnior, Augusto A.

    2017-01-01

    Introduction and Objective: Dengue virus is a serious global health problem with an estimated 3.97 billion people at risk for infection worldwide. In December 2015, the first vaccine (CYD-TDV) for dengue prevention was approved in Brazil, developed by Sanofi Pasteur. However, given that the vaccine will potentially be paid via the public health system, information is need regarding consumers’ willingness to pay for the dengue vaccine in the country as well as discussions related to the possible inclusion of this vaccine into the public health system. This was the objective of this research. Methods: We conducted a cross-sectional study with residents of Greater Belo Horizonte, Minas Gerais, about their willingness to pay for the CYD-TDV vaccine. Results: 507 individuals were interviewed. These were mostly female (62.4%) had completed high school (62.17%), were working (74.4%), had private health insurance (64.5%) and did not have dengue (67.4%). The maximum median value of consumers’ willingness to pay for CYD-TDV vaccine is US$33.61 (120.00BRL) for the complete schedule and US$11.20 (40.00BRL) per dose. At the price determined by the Brazil’s regulatory chamber of pharmaceutical products market for the commercialization of Dengvaxia® for three doses, only 17% of the population expressed willingness to pay for this vaccine. Conclusion: Brazil is currently one of the largest markets for dengue vaccine and the price established is a key issue. We believe the manufacturer should asses the possibility of lower prices to reach a larger audience among the Brazilian population. PMID:28210223

  10. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    PubMed

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection.

  11. Immunogenicity and efficacy of flagellin-envelope fusion dengue vaccines in mice and monkeys.

    PubMed

    Liu, Ge; Song, Langzhou; Beasley, David W C; Putnak, Robert; Parent, Jason; Misczak, John; Li, Hong; Reiserova, Lucia; Liu, Xiangyu; Tian, Haijun; Liu, Wenzhe; Labonte, Darlene; Duan, Lihua; Kim, Youngsun; Travalent, Linda; Wigington, Devin; Weaver, Bruce; Tussey, Lynda

    2015-05-01

    The envelope (E) protein of flaviviruses includes three domains, EI, EII, and EIII, and is the major protective antigen. Because EIII is rich in type-specific and subcomplex-specific neutralizing epitopes and is easy to express, it is particularly attractive as a recombinant vaccine antigen. VaxInnate has developed a vaccine platform that genetically links vaccine antigens to bacterial flagellin, a Toll-like receptor 5 ligand. Here we report that tetravalent dengue vaccines (TDVs) consisting of four constructs, each containing two copies of EIII fused to flagellin (R3.2x format), elicited robust and long-lived neutralizing antibodies (geometric mean titers of 200 to 3,000), as measured with a 50% focus reduction neutralization test (FRNT50). In an immunogenicity study, rhesus macaques (n = 2) immunized subcutaneously with 10 μg or 90 μg of TDV three or four times, at 4- to 6-week intervals, developed neutralizing antibodies to four dengue virus (DENV) serotypes (mean post-dose 3 FRNT50 titers of 102 to 601). In an efficacy study, rhesus macaques (n = 4) were immunized intramuscularly with 16 μg or 48 μg of TDV or a placebo control three times, at 1-month intervals. The animals that received 48-μg doses of TDV developed neutralizing antibodies against the four serotypes (geometric mean titers of 49 to 258) and exhibited reduced viremia after DENV-2 challenge, with a group mean viremia duration of 1.25 days and 2 of 4 animals being completely protected, compared to the placebo-treated animals, which all developed viremia, with a mean duration of 4 days. In conclusion, flagellin-EIII fusion vaccines are immunogenic and partially protective in a nonhuman primate model.

  12. Immunogenicity and Efficacy of Flagellin-Envelope Fusion Dengue Vaccines in Mice and Monkeys

    PubMed Central

    Song, Langzhou; Beasley, David W. C.; Putnak, Robert; Parent, Jason; Misczak, John; Li, Hong; Reiserova, Lucia; Liu, Xiangyu; Tian, Haijun; Liu, Wenzhe; Labonte, Darlene; Duan, Lihua; Kim, Youngsun; Travalent, Linda; Wigington, Devin; Weaver, Bruce; Tussey, Lynda

    2015-01-01

    The envelope (E) protein of flaviviruses includes three domains, EI, EII, and EIII, and is the major protective antigen. Because EIII is rich in type-specific and subcomplex-specific neutralizing epitopes and is easy to express, it is particularly attractive as a recombinant vaccine antigen. VaxInnate has developed a vaccine platform that genetically links vaccine antigens to bacterial flagellin, a Toll-like receptor 5 ligand. Here we report that tetravalent dengue vaccines (TDVs) consisting of four constructs, each containing two copies of EIII fused to flagellin (R3.2x format), elicited robust and long-lived neutralizing antibodies (geometric mean titers of 200 to 3,000), as measured with a 50% focus reduction neutralization test (FRNT50). In an immunogenicity study, rhesus macaques (n = 2) immunized subcutaneously with 10 μg or 90 μg of TDV three or four times, at 4- to 6-week intervals, developed neutralizing antibodies to four dengue virus (DENV) serotypes (mean post-dose 3 FRNT50 titers of 102 to 601). In an efficacy study, rhesus macaques (n = 4) were immunized intramuscularly with 16 μg or 48 μg of TDV or a placebo control three times, at 1-month intervals. The animals that received 48-μg doses of TDV developed neutralizing antibodies against the four serotypes (geometric mean titers of 49 to 258) and exhibited reduced viremia after DENV-2 challenge, with a group mean viremia duration of 1.25 days and 2 of 4 animals being completely protected, compared to the placebo-treated animals, which all developed viremia, with a mean duration of 4 days. In conclusion, flagellin-EIII fusion vaccines are immunogenic and partially protective in a nonhuman primate model. PMID:25761459

  13. A West Nile virus CD4 T cell epitope improves the immunogenicity of dengue virus serotype 2 vaccines.

    PubMed

    Hughes, Holly R; Crill, Wayne D; Davis, Brent S; Chang, Gwong-Jen J

    2012-03-15

    Flaviviruses, such as dengue virus (DENV) and West Nile virus (WNV), are among the most prevalent human disease-causing arboviruses world-wide. As they continue to expand their geographic range, multivalent flavivirus vaccines may become an important public health tool. Here we describe the immune kinetics of WNV DNA vaccination and the identification of a CD4 epitope that increases heterologous flavivirus vaccine immunogenicity. Lethal WNV challenge two days post-vaccination resulted in 90% protection with complete protection by four days, and was temporally associated with a rapid influx of activated CD4 T cells. CD4 T cells from WNV vaccinated mice could be stimulated from epitopic regions in the envelope protein transmembrane domain. Incorporation of this WNV epitope into DENV-2 DNA and virus-like particle vaccines significantly increased neutralizing antibody titers. Incorporating such potent epitopes into multivalent flavivirus vaccines could improve their immunogenicity and may help alleviate concerns of imbalanced immunity in multivalent vaccine approaches.

  14. Willingness to pay for a dengue vaccine and its associated determinants in Indonesia: A community-based, cross-sectional survey in Aceh.

    PubMed

    Harapan, Harapan; Anwar, Samsul; Bustamam, Aslam; Radiansyah, Arsil; Angraini, Pradiba; Fasli, Riny; Salwiyadi, Salwiyadi; Bastian, Reza Akbar; Oktiviyari, Ade; Akmal, Imaduddin; Iqbalamin, Muhammad; Adil, Jamalul; Henrizal, Fenni; Darmayanti, Darmayanti; Mahmuda, Mahmuda; Mudatsir, Mudatsir; Imrie, Allison; Sasmono, R Tedjo; Kuch, Ulrich; Shkedy, Ziv; Pramana, Setia

    2017-02-01

    Vaccination strategies are being considered as a part of dengue prevention programs in endemic countries. To accelerate the introduction of dengue vaccine into the public sector program and private markets, understanding the private economic benefits of a dengue vaccine is therefore essential. The aim of this study was to assess the willingness to pay (WTP) for a dengue vaccine among community members in Indonesia and its associated explanatory variables. A community-based, cross-sectional survey was conducted in nine regencies of Aceh province, Indonesia, from November 2014 to March 2015. A pre-tested validated questionnaire was used to facilitate the interviews. To assess the explanatory variables influencing participants' WTP for a dengue vaccine, a linear regression analysis was employed. We interviewed 677 healthy community members; 476 participants (87.5% of the total) were included in the final analysis. An average individual was willing to pay around US-$ 4 (mean: US-$ 4.04; median: US-$ 3.97) for a dengue vaccine. Our final multivariate model revealed that working as a civil servant, living in the city, and having good knowledge on dengue viruses, a good attitude towards dengue, and good preventive practice against dengue virus infection were associated with a higher WTP (P<0.05). Our model suggests that marketing efforts should be directed to community members who are working in the suburbs especially as farmers. In addition, the results of our study underscore the need for low-cost quality vaccines, public sector subsidies for vaccinations, and intensifying efforts to further educate and encourage households regarding other dengue preventive measures, using trusted individuals as facilitators.

  15. Seasonal Effectiveness of Live Attenuated and Inactivated Influenza Vaccine

    PubMed Central

    Flannery, Brendan; Thompson, Mark G.; Gaglani, Manjusha; Jackson, Michael L.; Monto, Arnold S.; Nowalk, Mary Patricia; Talbot, H. Keipp; Treanor, John J.; Belongia, Edward A.; Murthy, Kempapura; Jackson, Lisa A.; Petrie, Joshua G.; Zimmerman, Richard K.; Griffin, Marie R.; McLean, Huong Q.; Fry, Alicia M.

    2016-01-01

    BACKGROUND: Few observational studies have evaluated the relative effectiveness of live attenuated (LAIV) and inactivated (IIV) influenza vaccines against medically attended laboratory-confirmed influenza. METHODS: We analyzed US Influenza Vaccine Effectiveness Network data from participants aged 2 to 17 years during 4 seasons (2010–2011 through 2013–2014) to compare relative effectiveness of LAIV and IIV against influenza-associated illness. Vaccine receipt was confirmed via provider/electronic medical records or immunization registry. We calculated the ratio (odds) of influenza-positive to influenza-negative participants among those age-appropriately vaccinated with either LAIV or IIV for the corresponding season. We examined relative effectiveness of LAIV and IIV by using adjusted odds ratios (ORs) and 95% confidence intervals (CIs) from logistic regression. RESULTS: Of 6819 participants aged 2 to 17 years, 2703 were age-appropriately vaccinated with LAIV (n = 637) or IIV (n = 2066). Odds of influenza were similar for LAIV and IIV recipients during 3 seasons (2010–2011 through 2012–2013). In 2013–2014, odds of influenza were significantly higher among LAIV recipients compared with IIV recipients 2 to 8 years old (OR 5.36; 95% CI, 2.37 to 12.13). Participants vaccinated with LAIV or IIV had similar odds of illness associated with influenza A/H3N2 or B. LAIV recipients had greater odds of illness due to influenza A/H1N1pdm09 in 2010–2011 and 2013–2014. CONCLUSIONS: We observed lower effectiveness of LAIV compared with IIV against influenza A/H1N1pdm09 but not A(H3N2) or B among children and adolescents, suggesting poor performance related to the LAIV A/H1N1pdm09 viral construct. PMID:26738884

  16. DIVERGENCE, NOT DIVERSITY OF AN ATTENUATED EQUINE LENTIVIRUS VACCINE STRAIN CORRELATES WITH PROTECTION FROM DISEASE

    PubMed Central

    Craigo, Jodi K.; Barnes, Shannon; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2010-01-01

    We recently reported an attenuated EIAV vaccine study that directly examined the effect of lentiviral envelope sequence variation on vaccine efficacy. The study [1] demonstrated for the first time the failure of an ancestral vaccine to protect and revealed a significant, inverse, linear relationship between envelope divergence and protection from disease. In the current study we examine in detail the evolution of the attenuated vaccine strain utilized in this previous study. We demonstrate here that the attenuated strain progressively evolved during the six-month pre-challenge period and that the observed protection from disease was significantly associated with divergence from the original vaccine strain. PMID:20955830

  17. Live attenuated vaccines: Historical successes and current challenges

    SciTech Connect

    Minor, Philip D.

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  18. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates.

    PubMed

    Govindarajan, Dhanasekaran; Meschino, Steven; Guan, Liming; Clements, David E; ter Meulen, Jan H; Casimiro, Danilo R; Coller, Beth-Ann G; Bett, Andrew J

    2015-08-07

    We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies. We first evaluated monomeric (DEN4-80E) and dimeric (DEN4-80EZip) versions of DEN4-80E, the latter generated in an attempt to improve immunogenicity. The two antigens, evaluated at 6, 20 and 100 μg/dose formulated with ISCOMATRIX™ adjuvant, were equally immunogenic. A group immunized with 20 μg DEN4-80E and Alhydrogel™ induced much weaker responses. When challenged with wild-type dengue type 4 virus, all animals in the 6 and 20 μg groups and all but one in the DEN4-80EZip 100 μg group were protected from viremia. Two out of three monkeys in the Alhydrogel™ group had breakthrough viremia. A similar study was conducted to evaluate tetravalent formulations at low (3, 3, 3, 6 μg of DEN1-80E, DEN2-80E, DEN3-80E and DEN4-80E respectively), medium (10, 10, 10, 20 μg) and high (50, 50, 50, 100 μg) doses. All doses were comparably immunogenic and induced high titer, balanced neutralizing antibodies against all four DENV. Upon challenge with the four wild-type DENV, all animals in the low and medium dose groups were protected against viremia while two animals in the high-dose group exhibited breakthrough viremia. Our studies also indicated that a 0, 1, 2 and 6 month vaccination schedule is superior to the 0, 1, and 2 month schedule in terms of durability. Overall, the subunit vaccine was demonstrated to induce strong neutralization titers resulting in protection against viremia following challenge even 8-12 months after the last vaccine dose.

  19. 75 FR 6211 - Prospective Grant of Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Viruses and Chimeric Dengue Viruses''-- European Patent Application Number 02739358.6, filed May 22, 2002... Deletion in the 3'-UTR of Dengue Types 1,2,3, and 4, or Antigenic Chimeric Dengue Viruses 1,2,3, and 4... which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus type...

  20. Immunogenic Properties of a BCG Adjuvanted Chitosan Nanoparticle-Based Dengue Vaccine in Human Dendritic Cells

    PubMed Central

    Hunsawong, Taweewun; Sunintaboon, Panya; Warit, Saradee; Thaisomboonsuk, Butsaya; Jarman, Richard G.; Yoon, In-Kyu; Ubol, Sukathida; Fernandez, Stefan

    2015-01-01

    Dengue viruses (DENVs) are among the most rapidly and efficiently spreading arboviruses. WHO recently estimated that about half of the world’s population is now at risk for DENV infection. There is no specific treatment or vaccine available to treat or prevent DENV infections. Here, we report the development of a novel dengue nanovaccine (DNV) composed of UV-inactivated DENV-2 (UVI-DENV) and Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (BCG-CWCs) loaded into chitosan nanoparticles (CS-NPs). CS-NPs were prepared by an emulsion polymerization method prior to loading of the BCG-CWCs and UVI-DENV components. Using a scanning electron microscope and a zetasizer, DNV was determined to be of spherical shape with a diameter of 372.0 ± 11.2 nm in average and cationic surface properties. The loading efficacies of BCG-CWCs and UVI-DENV into the CS-NPs and BCG-CS-NPs were up to 97.2 and 98.4%, respectively. THP-1 cellular uptake of UVI-DENV present in the DNV was higher than soluble UVI-DENV alone. DNV stimulation of immature dendritic cells (iDCs) resulted in a significantly higher expression of DCs maturation markers (CD80, CD86 and HLA-DR) and induction of various cytokine and chemokine productions than in UVI-DENV-treated iDCs, suggesting a potential use of BCG- CS-NPs as adjuvant and delivery system for dengue vaccines. PMID:26394138

  1. [Live attenuated and inactivated influenza vaccines: data from direct comparative studies].

    PubMed

    Kashirina, O S; Vasil'ev, Iu M

    2014-01-01

    Comparative evaluation of live attenuated and inactivated influenza vaccines based on data from direct comparative studies is necessary for ensuring the most effective and safe vaccination against influenza. Analysis of direct comparative preclinical and clinical studies of inactivated and live cold-adapted (ca) influenza vaccines showed that published data are inconsistent and limited for some population groups. Live ca vaccines may be promising as an alternative or addition to inactivated vaccines especially for mass vaccination against influenza in children as well as in the elderly when combined with inactivated vaccines. Further studies of inactivated and live ca influenza vaccines in direct comparative studies that control the administration route and vaccine strain production as well as development and confirmation of objective criteria of live attenuated influenza vaccine effectiveness evaluation are necessary.

  2. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design

    SciTech Connect

    Yamshchikov, Vladimir Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-15

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E{sub 138}K and K{sub 279}M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use. - Highlights: • Further attenuation of a WN vaccine precursor is outlined. • Effect of SA14-14-2 attenuating mutations is tested. • Mechanism of attenuation is proposed and illustrated. • The need for additional attenuating mutations is justified.

  3. The Type-Specific Neutralizing Antibody Response Elicited by a Dengue Vaccine Candidate Is Focused on Two Amino Acids of the Envelope Protein

    PubMed Central

    VanBlargan, Laura A.; Mukherjee, Swati; Dowd, Kimberly A.; Durbin, Anna P.; Whitehead, Stephen S.; Pierson, Theodore C.

    2013-01-01

    Dengue viruses are mosquito-borne flaviviruses that circulate in nature as four distinct serotypes (DENV1-4). These emerging pathogens are responsible for more than 100 million human infections annually. Severe clinical manifestations of disease are predominantly associated with a secondary infection by a heterotypic DENV serotype. The increased risk of severe disease in DENV-sensitized populations significantly complicates vaccine development, as a vaccine must simultaneously confer protection against all four DENV serotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of ongoing vaccine development efforts. However, a recent large clinical trial of a candidate live-attenuated DENV vaccine revealed low protective efficacy despite eliciting a neutralizing antibody response, highlighting the need for a better understanding of the humoral immune response against dengue infection. In this study, we sought to identify epitopes recognized by serotype-specific neutralizing antibodies elicited by monovalent DENV1 vaccination. We constructed a panel of over 50 DENV1 structural gene variants containing substitutions at surface-accessible residues of the envelope (E) protein to match the corresponding DENV2 sequence. Amino acids that contribute to recognition by serotype-specific neutralizing antibodies were identified as DENV mutants with reduced sensitivity to neutralization by DENV1 immune sera, but not cross-reactive neutralizing antibodies elicited by DENV2 vaccination. We identified two mutations (E126K and E157K) that contribute significantly to type-specific recognition by polyclonal DENV1 immune sera. Longitudinal and cross-sectional analysis of sera from 24 participants of a phase I clinical study revealed a markedly reduced capacity to neutralize a E126K/E157K DENV1 variant. Sera from 77% of subjects recognized the E126K/E157K DENV1 variant and DENV2 equivalently (<3-fold difference). These data indicate the type

  4. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    SciTech Connect

    Engel, Amber R.; Rumyantsev, Alexander A.; Maximova, Olga A.; Speicher, James M.; Heiss, Brian; Murphy, Brian R.; Pletnev, Alexander G.

    2010-09-15

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E{sub 315}) and NS5 (NS5{sub 654,655}) proteins, and into the 3' non-coding region ({Delta}30) of TBEV/DEN4. The variant that contained all three mutations (v{Delta}30/E{sub 315}/NS5{sub 654,655}) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that v{Delta}30/E{sub 315}/NS5{sub 654,655} should be further evaluated as a TBEV vaccine.

  5. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded-Antigens for Rapid Diagnosis and Vaccine Development

    DTIC Science & Technology

    1990-12-12

    Della-Porta and Westaway, 1977; Kitano et al., 1974; Heinz et al., 1981). In order to develop a subunit vaccine against dengue virus, it is important to...Antigens for Rapid Diagnosis and Vaccine Development DPC TAB 0 A .. asin]o ANNUAL PROGRESS REPORT ’Q;-10.v&,,,d 0 by By SAv.ailability Caote# Radha Krishnan...Type 2 Encoded Antigens for Rapid Diagnosis and Vaccine Development 12. PERSONAL AUTHOR(S) Radha K. Padmanabhan 13a. TYPE OF REPORT 13b. TIME COVERED

  6. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    DTIC Science & Technology

    2005-06-05

    Marburg virus (MARV). Here, we developed replication -competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis...No evidence of EBOV or MARV replication was detected in any of the protected animals after challenge. Our data suggest that these vaccine...number of efforts have focused on developing vaccines against MARV. Alphavirus replicons expressing MARV proteins protected cynomolgus monkeys from

  7. A novel dengue virus serotype 1 vaccine candidate based on Japanese encephalitis virus vaccine strain SA14-14-2 as the backbone.

    PubMed

    Yang, Huiqiang; Li, Zhushi; Lin, Hua; Wang, Wei; Yang, Jian; Liu, Lina; Zeng, Xianwu; Wu, Yonglin; Yu, Yongxin; Li, Yuhua

    2016-06-01

    To develop a potential dengue vaccine candidate, a full-length cDNA clone of a novel chimeric virus was constructed using recombinant DNA technology, with Japanese encephalitis virus (JEV) vaccine strain SA14-14-2 as the backbone, with its premembrane (prM) and envelope (E) genes substituted by their counterparts from dengue virus type 1 (DENV1). The chimeric virus (JEV/DENV1) was successfully recovered from primary hamster kidney (PHK) cells by transfection with the in vitro transcription products of JEV/DENV1 cDNA and was identified by complete genome sequencing and immunofluorescent staining. No neuroinvasiveness of this chimeric virus was observed in mice inoculated by the subcutaneous route (s.c.) or by the intraperitoneal route (i.p.), while some neurovirulence was displayed in mice that were inoculated directly by the intracerebral route (i.c.). The chimeric virus was able to stimulate high-titer production of antibodies against DENV1 and provided protection against lethal challenge with neuroadapted dengue virus in mice. These results suggest that the chimeric virus is a promising dengue vaccine candidate.

  8. DNA Vaccines against Dengue Virus Type 2 Based on Truncate Envelope Protein or Its Domain III

    PubMed Central

    Azevedo, Adriana S.; Yamamura, Anna M. Y.; Freire, Marcos S.; Trindade, Gisela F.; Bonaldo, Myrna; Galler, Ricardo; Alves, Ada M. B.

    2011-01-01

    Two DNA vaccines were constructed encoding the ectodomain (domains I, II and III) of the DENV2 envelope protein (pE1D2) or only its domain III (pE2D2), fused to the human tissue plasminogen activator signal peptide (t-PA). The expression and secretion of recombinant proteins was confirmed in vitro in BHK cells transfected with the two plasmids, detected by immunofluorescence or immunoprecipitation of metabolically labeled gene products, using polyclonal and monoclonal antibodies against DENV2. Besides, results reveal that the ectodomain of the E protein can be efficiently expressed in vivo, in a mammalian system, without the prM protein that is hypothesized to act as a chaperonin during dengue infection. Balb/c mice were immunized with the DNA vaccines and challenged with a lethal dose of DENV2. All pE1D2-vaccinated mice survived challenge, while 45% of animals immunized with the pE2D2 died after infection. Furthermore, only 10% of pE1D2-immunized mice presented some clinical signs of infection after challenge, whereas most of animals inoculated with the pE2D2 showed effects of the disease with high morbidity degrees. Levels of neutralizing antibodies were significantly higher in pE1D2-vaccinated mice than in pE2D2-immunized animals, also suggesting that the pE1D2 vaccine was more protective than the pE2D2. PMID:21779317

  9. Live Attenuated and Inactivated Influenza Vaccines in Children

    PubMed Central

    Ilyushina, Natalia A.; Haynes, Brenda C.; Hoen, Anne G.; Khalenkov, Alexey M.; Housman, Molly L.; Brown, Eric P.; Ackerman, Margaret E.; Treanor, John J.; Luke, Catherine J.; Subbarao, Kanta; Wright, Peter F.

    2015-01-01

    Background. Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. Methods. Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). Results. Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)—numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. Conclusions. LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. Clinical Trials Registration. NCT01246999. PMID:25165161

  10. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates.

    PubMed

    Swaminathan, Gokul; Thoryk, Elizabeth A; Cox, Kara S; Smith, Jeffrey S; Wolf, Jayanthi J; Gindy, Marian E; Casimiro, Danilo R; Bett, Andrew J

    2016-10-05

    Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in Rhesus macaques, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP's ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.

  11. Characterization of attenuated Theileria annulata vaccines from Spain and the Sudan.

    PubMed

    Gubbels, M J; Viseras, J; Habela, M A; Jongejan, F

    2000-01-01

    Theileriosis caused by Theileria annulata can be effectively prevented by vaccination with attenuated, cultured schizonts. Although these attenuated vaccines have been applied for a long time, not much is known about the fate of the vaccine strain in the field. Here, two experimental Spanish vaccine strains originating in Cádiz and Cáceres, and one Sudanese strain are studied to address the development of a carrier status and the infectivity for Hyalomma ticks. Moreover, the heterogeneity of the merozoite surface protein, Tams1, was analyzed in search for an attenuation marker. Using the sensitive reverse line blot (RLB) hybridization, the development of a low level carrier status was demonstrated in the Cáceres and Sudanese line vaccinated calves. Although no signal was detected in the Cádiz line vaccinated calves, seroconversion against the schizont stage was observed, as it was in all other calves. The experimental transmission of T. annulata by Hyalomma ticks to naïve calves was unsuccessful for all cell line inoculated calves. Tams1 heterogeneity indicated a clonal selection of parasites during the process of attenuation, but the Tams1 sequence itself has no connection with the attenuation status. In conclusion, a carrier status develops in attenuated schizont culture vaccinated calves, but is not infective for Hyalomma ticks. Based on these data, the risk for spread of the vaccine strains in the field may be very low.

  12. Neutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice

    PubMed Central

    Kulkarni, Ajit; Bhat, Rushil; Malik, Mansi; Sane, Suvarna; Kothari, Sweta; Vaidya, Shashikant; Chowdhary, Abhay; Deshmukh, Ranjana A.

    2017-01-01

    Background: Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. Methods: Five experimental groups (6 mice per group) each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid) (100 µg, i.m.) on days 0, 14 and 28. Among these, four groups (one group per serotype) of each were subsequently challenged 3 weeks after the last boost with dengue virus (DENV) serotypes 1-4 (100 LD50, 20 µl intracerebrally) to determine vaccine efficacy. The fifth group of each was used as a control. The PBS immunized group was used as mock control. Serum samples were collected before and after subsequent immunizations. EDIII fusion protein expression was determined by Western blot. Total protein concentration was measured by Bradford assay. Neutralizing antibodies were assessed by TCID50-CPE inhibition assay. Statistical analysis was performed using Stata/IC 10.1 software for Windows. One-way repeated measures ANOVA and Mann-Whitney test were used for neutralizing antibody analysis and vaccine efficacy, respectively. Results: The recombinant EDIII fusion protein was expressed adequately in transfected 293T cells. Total protein concentration was almost 3 times more than the control. Vaccine candidate induced neutralizing antibodies against all four DENV serotypes with a notable increase after subsequent boosters. Vaccine efficacy was 83.3% (DENV-1, -3, -4) and 50% (DENV-2). Conclusion: Our results suggest that vaccine is immunogenic and protective; however, further studies are required to improve the immunogenicity particularly against DENV-2. PMID:28360441

  13. Efficacy and effectiveness of live attenuated influenza vaccine in school-age children.

    PubMed

    Coelingh, Kathleen; Olajide, Ifedapo Rosemary; MacDonald, Peter; Yogev, Ram

    2015-01-01

    Evidence of high efficacy of live attenuated influenza vaccine (LAIV) from randomized controlled trials is strong for children 2-6 years of age, but fewer data exist for older school-age children. We reviewed the published data on efficacy and effectiveness of LAIV in children ≥5 years. QUOSA (Elsevier database) was searched for articles published from January 1990 to June 2014 that included 'FluMist', 'LAIV', 'CAIV', 'cold adapted influenza vaccine', 'live attenuated influenza vaccine', 'live attenuated cold adapted' or 'flu mist'. Studies evaluated included randomized controlled trials, effectiveness and indirect protection studies. This review demonstrates that LAIV has considerable efficacy and effectiveness in school-age children.

  14. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  15. Development of a human live attenuated West Nile infectious DNA vaccine: conceptual design of the vaccine candidate.

    PubMed

    Yamshchikov, Vladimir

    2015-10-01

    West Nile virus has become an important epidemiological problem attracting significant attention of health authorities, mass media, and the public. Although there are promising advancements toward addressing the vaccine need, the perspectives of the commercial availability of the vaccine remain uncertain. To a large extent this is due to lack of a sustained interest for further commercial development of the vaccines already undergoing the preclinical and clinical development, and a predicted insignificant cost effectiveness of mass vaccination. There is a need for a safe, efficacious and cost effective vaccine, which can improve the feasibility of a targeted vaccination program. In the present report, we summarize the background, the rationale, and the choice of the development pathway that we selected for the design of a live attenuated human West Nile vaccine in a novel infectious DNA format.

  16. Live Attenuated S. Typhimurium Vaccine with Improved Safety in Immuno-Compromised Mice

    PubMed Central

    Periaswamy, Balamurugan; Maier, Lisa; Vishwakarma, Vikalp; Slack, Emma; Kremer, Marcus; Andrews-Polymenis, Helene L.; McClelland, Michael; Grant, Andrew J.; Suar, Mrutyunjay; Hardt, Wolf-Dietrich

    2012-01-01

    Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV). Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb−/−nos2−/− animals lacking NADPH oxidase and inducible NO synthase. In cybb−/−nos2−/− mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093), was >1000-fold attenuated in cybb−/−nos2−/− mice and ≈100 fold attenuated in tnfr1−/− animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA) response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety. PMID:23029007

  17. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded Antigens for Rapid Diagnosis and Vaccine Development

    DTIC Science & Technology

    1986-11-26

    SIE cop AD nCloning and Expression of Genes for Dengue Virus ,4. CJ Type 2 Encoded Antigens for Rapid Diagnosis and Vaccine Development 0ANNUAL...Type 2 Encoded Antigens for Rapid Diagnosis and Vaccine Development 12. PERSONAL AUTHOR(S) Radha K. Padmanabhan, Ph.D. 13a. TYPE OF REPORT 13b. TIME...pVVI and pVVI7 cDNA clones, synthetic peptides homologous to NS5 and NSI regions were synthesized. These peptides are being used at Walter Reed Army

  18. Spray application of live attenuated F Strain-derived Mycoplasma gallisepticum vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Live attenuated vaccines (LAVs) are commonly utilized to protect commercial table egg producers from economic losses associated with challenges by the respiratory pathogen Mycoplasma gallisepticum (MG). Currently there are four MG LAVs commercially available within the United States. Consistent am...

  19. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease.

    PubMed

    Sánchez-Valdéz, Fernando J; Pérez Brandán, Cecilia; Ferreira, Arturo; Basombrío, Miguel Ángel

    2015-05-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. This illness is now becoming global, mainly due to congenital transmission, and so far, there are no prophylactic or therapeutic vaccines available to either prevent or treat Chagas disease. Therefore, different approaches aimed at identifying new protective immunogens are urgently needed. Live vaccines are likely to be more efficient in inducing protection, but safety issues linked with their use have been raised. The development of improved protozoan genetic manipulation tools and genomic and biological information has helped to increase the safety of live vaccines. These advances have generated a renewed interest in the use of genetically attenuated parasites as vaccines against Chagas disease. This review discusses the protective capacity of genetically attenuated parasite vaccines and the challenges and perspectives for the development of an effective whole-parasite Chagas disease vaccine.

  20. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children

    PubMed Central

    Rao, Sameer; Mao, J. S.; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-01-01

    ABSTRACT Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored. PMID:27532370

  1. Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine.

    PubMed

    Zhou, Peifu; Xie, Jianping

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains a major threat to global public health. A new TB vaccine affording superior immune protection to M. bovis Bacillus Calmette-Guérin (BCG) is imperative. The advantage of a live attenuated vaccine is that it can mimic the bona fide pathogen, elicit immune responses similar to natural infection, and potentially provide more protection than other vaccines. BCG, the only vaccine and a live attenuated vaccine that is the result of cumulative mutations by serial passage of M. bovis, has provided clues for the construction of novel improved vaccines. A strategy is put forward for identifying a new live attenuated TB vaccine generated by cumulative mutation based on M.tb. Given the important role of the M.tb signaling network consisting of a two-component system, eukaryotic-like Ser/Thr protein kinase system and sigma factor system based on comparisons among M.tb H37Rv, M. bovis, and BCG, we have put a premium on this signaling circuit as the starting point for the generation of an attenuated TB vaccine.

  2. Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations.

    PubMed

    Kolibab, Kristopher; Derrick, Steven C; Jacobs, William R; Morris, Sheldon L

    2012-09-01

    The viability of BCG vaccine has traditionally been monitored using a colony-forming unit (CFU) assay. Despite its widespread use, results from the CFU assay can be highly variable because of the characteristic clumping of mycobacteria, their requirement for complex growth media, and the three week incubation period needed to cultivate slow-growing mycobacteria. In this study, we evaluated whether an ATP luminescence assay (which measures intracellular ATP content) could be used to rapidly estimate the viability of lyophilized and/or frozen preparations of six different BCG vaccine preparations - Danish, Tokyo, Russia, Brazil, Tice, and Pasteur - and two live attenuated mycobacterial vaccine candidates - a ΔlysAΔpanCD M. tuberculosis strain and a ΔmmaA4 BCG vaccine mutant. For every vaccine tested, a significant correlation was observed between intracellular ATP concentrations and the number of viable attenuated bacilli. However, the extractable intracellular ATP levels detected per cell among the different live vaccines varied suggesting that validated ATP luminescence assays with specific appropriate standards must be developed for each individual live attenuated vaccine preparation. Overall, these data indicate that the ATP luminescence assay is a rapid, sensitive, and reliable alternative method for quantifying the viability of varying live attenuated mycobacterial vaccine preparations.

  3. Vaccination of full-sib channel catfish families against enteric septicemia of catfish with an oral live attenuated Edwardsiella ictaluri vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study evaluated the efficacy of an oral live-attenuated Edwardsiella ictaluri vaccine against enteric septicemia of catfish in 20 full-sib fingerling channel catfish families. Each family was split into vaccinated and non-vaccinated groups. The vaccine was delivered orally by feeding fish diet...

  4. Persistence of Th1/Tc1 responses one year after tetravalent dengue vaccination in adults and adolescents in Singapore.

    PubMed

    Harenberg, Anke; Begue, Sarah; Mamessier, Audrey; Gimenez-Fourage, Sophie; Ching Seah, Ching; Wei Liang, Ai; Li Ng, Jun; Yun Toh, Xue; Archuleta, Sophia; Wilder-Smith, Annelies; Shek, Lynette P; Wartel-Tram, Anh; Bouckenooghe, Alain; Lang, Jean; Crevat, Denis; Caillet, Catherine; Guy, Bruno

    2013-11-01

    To characterize the cell mediated immunity (CMI) induced by the investigational CYD tetravalent dengue vaccine (TDV), we developed a whole-blood, intracellular cytokine staining (ICS) assay and a multiplex assay, each requiring 3 mL of blood. We assessed CMI before and 28 d after a first and third injection of CYD-TDV and one year after the third injection in a subset of 80 adolescents and adults enrolled in a phase II trial in Singapore (ClinicalTrial.gov NCT NCT00880893). CD4/IFNγ/TNFα responses specific to dengue NS3 were detected before vaccination. Vaccination induced YF-17D-NS3-specific CD8/IFNγ responses, without significant TNFα, and a CYD-specific Th1/Tc1 cellular response in all participants, which was characterized by predominant IFNγ secretion compared with TNFα, associated with low level IL-13 secretion in multiplex analysis of peripheral blood mononuclear cells (PBMC) supernatants after restimulation with each the CYD vaccine viruses. Responses were directed mainly against CYD-4 after the first vaccination, and were more balanced against all four serotypes after the third vaccination. The same qualitative profile was observed one year after the third vaccination, with approximately 2-fold lower NS3-specific responses, and 3-fold lower serotype-specific cellular responses. These findings confirm previous observations regarding both the nature and specificity of cellular responses induced by CYD-TDV, and for the first time demonstrate the persistence of cellular responses after one year. We also established the feasibility of analyzing CMI with small blood samples, allowing such analysis to be considered for pediatric trials.

  5. Induction of neutralizing antibody response against four dengue viruses in mice by intramuscular electroporation of tetravalent DNA vaccines.

    PubMed

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2014-01-01

    DNA vaccine against dengue is an interesting strategy for a prime/boost approach. This study evaluated neutralizing antibody (NAb) induction of a dengue tetravalent DNA (TDNA) vaccine candidate administered by intramuscular-electroporation (IM-EP) and the benefit of homologous TDNA boosting in mice. Consensus humanized pre-membrane (prM) and envelope (E) of each serotypes, based on isolates from year 1962-2003, were separately cloned into a pCMVkan expression vector. ICR mice, five-six per group were immunized for three times (2-week interval) with TDNA at 100 µg (group I; 25 µg/monovalent) or 10 µg (group II; 2.5 µg/monovalent). In group I, mice received an additional TDNA boosting 13 weeks later. Plaque reduction neutralization tests (PRNT) were performed at 4 weeks post-last immunization. Both 100 µg and 10 µg doses of TDNA induced high NAb levels against all DENV serotypes. The median PRNT50 titers were comparable among four serotypes of DENV after TDNA immunization. Median PRNT50 titers ranged 240-320 in 100 µg and 160-240 in 10 µg groups (p = ns). A time course study of the 100 µg dose of TDNA showed detectable NAb at 2 weeks after the second injection. The NAb peaked at 4 weeks after the third injection then declined over time but remained detectable up to 13 weeks. An additional homologous TDNA boosting significantly enhanced the level of NAb from the nadir for at least ten-fold (p<0.05). Of interest, we have found that the use of more recent dengue viral strain for both vaccine immunogen design and neutralization assays is critical to avoid a mismatching outcome. In summary, this TDNA vaccine candidate induced good neutralizing antibody responses in mice; and the DNA/DNA prime/boost strategy is promising and warranted further evaluation in non-human primates.

  6. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    PubMed

    Costa, Simone M; Yorio, Anna Paula; Gonçalves, Antônio J S; Vidale, Mariana M; Costa, Emmerson C B; Mohana-Borges, Ronaldo; Motta, Marcia A; Freire, Marcos S; Alves, Ada M B

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  7. Genomic variations associated with attenuation in Mycobacterium avium subsp. paratuberculosis vaccine strains

    PubMed Central

    2013-01-01

    Background Mycobacterium avium subspecies paratuberculosis (MAP) whole cell vaccines have been widely used tools in the control of Johne’s disease in animals despite being unable to provide complete protection. Current vaccine strains derive from stocks created many decades ago; however their genotypes, underlying mechanisms and relative degree of their attenuation are largely unknown. Results Using mouse virulence studies we confirm that MAP vaccine strains 316 F, II and 2e have diverse but clearly attenuated survival and persistence characteristics compared with wild type strains. Using a pan genomic microarray we characterise the genomic variations in a panel of vaccine strains sourced from stocks spanning over 40 years of maintenance. We describe multiple genomic variations specific for individual vaccine stocks in both deletion (26–32 Kbp) and tandem duplicated (11–40 Kbp) large variable genomic islands and insertion sequence copy numbers. We show individual differences suitable for diagnostic differentiation between vaccine and wild type genotypes and provide evidence for functionality of some of the deleted MAP-specific genes and their possible relation to attenuation. Conclusions This study shows how culture environments have influenced MAP genome diversity resulting in large tandem genomic duplications, deletions and transposable element activity. In combination with classical selective systematic subculture this has led to fixation of specific MAP genomic alterations in some vaccine strain lineages which link the resulting attenuated phenotypes with deficiencies in high reactive oxygen species handling. PMID:23339684

  8. Live attenuated varicella-zoster vaccine in hematopoietic stem cell transplantation recipients.

    PubMed

    Issa, Nicolas C; Marty, Francisco M; Leblebjian, Houry; Galar, Alicia; Shea, Margaret M; Antin, Joseph H; Soiffer, Robert J; Baden, Lindsey R

    2014-02-01

    Hematopoietic stem cell transplantation (HSCT) recipients are at risk for varicella-zoster virus (VZV) reactivation. Vaccination may help restore VZV immunity; however, the available live attenuated VZV vaccine (Zostavax) is contraindicated in immunocompromised hosts. We report our experience with using a single dose of VZV vaccine in 110 adult autologous and allogeneic HSCT recipients who were about 2 years after transplantation, free of graft-versus-host disease, and not receiving immunosuppression. One hundred eight vaccine recipients (98.2%) had no clinically apparent adverse events with a median follow-up period of 9.5 months (interquartile range, 6 to 16; range, 2 to 28). Two vaccine recipients (1.8%) developed a skin rash (one zoster-like rash with associated pain, one varicella-like) within 42 days post-vaccination that resolved with antiviral therapy. We could not confirm if these rashes were due to vaccine (Oka) or wild-type VZV. No other possible cases of VZV reactivation have occurred with about 1178 months of follow-up. Live attenuated zoster vaccine appears generally safe in this population when vaccinated as noted; the overall vaccination risk needs to be weighed against the risk of wild-type VZV disease in this high-risk population.

  9. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  10. Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization.

    PubMed

    Sirinonthanawech, Naraporn; Surichan, Somchaiya; Namsai, Aphinya; Puthavathana, Pilaipan; Auewarakul, Prasert; Kongchanagul, Alita

    2016-11-01

    Formulation and quality control of trivalent live-attenuated influenza vaccine requires titration of infectivity of individual strains in the trivalent mix. This is usually performed by selective neutralization of two of the three strains and titration of the un-neutralized strain in cell culture or embryonated eggs. This procedure requires standard sera with high neutralizing titer against each of the three strains. Obtaining standard sera, which can specifically neutralize only the corresponding strain of influenza viruses and is able to completely neutralize high concentration of virus in the vaccine samples, can be a problem for many vaccine manufacturers as vaccine stocks usually have very high viral titers and complete neutralization may not be obtained. Here an alternative approach for titration of individual strain in trivalent vaccine without the selective neutralization is presented. This was done by detecting individual strains with specific antibodies in an end-point titration of a trivalent vaccine in cell culture. Similar titers were observed in monovalent and trivalent vaccines for influenza A H3N2 and influenza B strains, whereas the influenza A H1N1 strain did not grow well in cell culture. Viral interference among the vaccine strains was not observed. Therefore, providing that vaccine strains grow well in cell culture, this assay can reliably determine the potency of individual strains in trivalent live-attenuated influenza vaccines.

  11. CHIMERIC SINDBIS/EASTERN EQUINE ENCEPHALITIS VACCINE CANDIDATES ARE HIGHLY ATTENUATED AND IMMUNOGENIC IN MICE

    PubMed Central

    Wang, Eryu; Petrakova, Olga; Adams, A. Paige; Aguilar, Patricia V.; Kang, Wenli; Paessler, Slobodan; Volk, Sara M.; Frolov, Ilya; Weaver, Scott C.

    2007-01-01

    We developed chimeric Sindbis (SINV)/Eastern equine encephalitis (EEEV) viruses and investigated their potential for use as live virus vaccines against EEEV. One vaccine candidate contained structural protein genes from a typical North American EEEV strain, while the other had structural proteins from a naturally attenuated Brazilian isolate. Both chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in mice. Vaccinated mice did not develop detectable disease or viremia, but developed high titers of neutralizing antibodies. Upon challenge with EEEV, mice vaccinated with >104PFU of the chimeric viruses were completely protected from disease. These findings support the potential use of these SIN/EEEV chimeras as safe and effective vaccines. PMID:17904699

  12. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis

    PubMed Central

    Pandey, Aseem; Cabello, Ana; Akoolo, Lavoisier; Rice-Ficht, Allison; Arenas-Gamboa, Angela; McMurray, David; Ficht, Thomas A.; de Figueiredo, Paul

    2016-01-01

    Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms. PMID:27537413

  13. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    PubMed

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate.

  14. Experimental study of a further attenuated live measles vaccine of the Sugiyama strain in Iran

    PubMed Central

    Mirchamsy, H.; Shafyi, A.; Rafyi, M. R.; Bahrami, S.; Nazari, P.; Fatemie, S.

    1974-01-01

    After encouraging results of the mass vaccination programme in Iran, in which 5 million children in rural areas were vaccinated with the Japanese Sugiyama strain at its 82nd passage in baby calf kidney, and a progressive decrease in the incidence of measles as well as a reduction of excessive infant mortality, a further attenuated vaccine, produced with the same strain, cloned in Japan, was compared in a field trial with the parent vaccine. The new strain caused fewer reactions than the original strain. Seroconversion with a geometric mean antibody titre of 6·1 was observed in 95% of susceptible children. PMID:4522721

  15. Dengue viral infections

    PubMed Central

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections. PMID:15466994

  16. Dengue viral infections.

    PubMed

    Malavige, G N; Fernando, S; Fernando, D J; Seneviratne, S L

    2004-10-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections.

  17. Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus.

    PubMed

    Mire, Chad E; Matassov, Demetrius; Geisbert, Joan B; Latham, Theresa E; Agans, Krystle N; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael A; Fenton, Karla A; Clarke, David K; Eldridge, John H; Geisbert, Thomas W

    2015-04-30

    The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.

  18. Single dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus

    PubMed Central

    Geisbert, Joan B.; Latham, Theresa E.; Agans, Krystle N.; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael A.; Fenton, Karla A.; Clarke, David K.; Eldridge, John H.; Geisbert, Thomas W.

    2015-01-01

    The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus1. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal hemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in nearly 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primate (NHPs) against ZEBOV2. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately ten-fold lower vaccine-associated viremia compared to the first generation vaccine and both provided complete, single dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV. PMID:25853476

  19. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen

    PubMed Central

    Alves, Rúbens Prince dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta

    2016-01-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. PMID:27030586

  20. Efficacy of a new attenuated duck parvovirosis vaccine in Muscovy ducks.

    PubMed

    Maurin-Bernaud, L; Goutebroze, S; Merdy, O; Chanay, A; Cozette, V; Le Gros, F-X

    2014-09-20

    The efficacy of a new live attenuated parvovirosis vaccine was tested in conventional ducklings against Derzsy's disease by comparing two vaccination regimens. Ducklings were vaccinated with either one injection at 17 days of age or two injections at 1 and 17 days of age. Controls and vaccinated ducklings were challenged with a virulent Derzsy strain at 21 days of age (day 20). Weight was measured on days 20, 34 and 42/43. Surviving birds were necropsied on day 42/43. Protection rates were significantly higher in the groups vaccinated once (90 per cent, P=0.003) and twice (95 per cent, P<0.001) than in the control group (59 per cent). The bodyweight was significantly higher in both vaccinated groups than in the control group on day 34 (P=0.008 and P<0.001, respectively) and day 42/43 (P<0.001 for both groups). The growth was significantly higher in the group vaccinated twice than the group vaccinated once on day 34 (P=0.047) and day 42/43 (P=0.017). Both vaccination regimens provided a quick onset of immunity. The higher weight gain in the group vaccinated twice suggests that an early vaccination at hatchery followed by a second injection at 17 days of age is an optimal and practical schedule to prevent parvovirosis.

  1. Serological response of foals to polyvalent and monovalent live-attenuated African horse sickness virus vaccines.

    PubMed

    Crafford, J E; Lourens, C W; Smit, T K; Gardner, I A; MacLachlan, N J; Guthrie, A J

    2014-06-17

    African horse sickness (AHS) is typically a highly fatal disease in susceptible horses and vaccination is currently used to prevent the occurrence of disease in endemic areas. Similarly, vaccination has been central to the control of incursions of African horse sickness virus (AHSV) into previously unaffected areas and will likely play a significant role in any future incursions. Horses in the AHSV-infected area in South Africa are vaccinated annually with a live-attenuated (modified-live virus [MLV]) vaccine, which includes a cocktail of serotypes 1, 3, 4 (bottle 1) and 2, 6-8 (bottle 2) delivered in two separate doses at least 21 days apart. In this study, the neutralising antibody response of foals immunized with this polyvalent MLV AHSV vaccine was evaluated and compared to the response elicited to monovalent MLV AHSV serotypes. Naïve foals were immunized with either the polyvalent MLV AHSV vaccine, or a combination of monovalent MLV vaccines containing individual AHSV serotypes 1, 4, 7 or 8. There was a marked and consistent difference in the immunogenicity of individual virus serotypes contained in the MLV vaccines. Specifically, foals most consistently seroconverted to AHSV-1 and responses to other serotypes were highly variable, and often weak or not detected. The serotype-specific responses of foals given the monovalent MLV vaccines were similar to those of foals given the polyvalent MLV preparation suggesting that there is no obvious enhanced immune response through the administration of a monovalent vaccine as opposed to the polyvalent vaccine.

  2. Attenuated strains of Mycobacterium avium subspecies paratuberculosis as vaccine candidates against Johne's disease.

    PubMed

    Settles, Erik W; Kink, John A; Talaat, Adel

    2014-04-11

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is the causative agent of Johne's disease in ruminants. Johne's disease has a severe economic impact on the dairy industry in the USA and worldwide. In an effort to combat this disease, we screened several transposon mutants that were attenuated in the murine model of paratuberculosis for the potential use as live attenuated vaccines. Using the murine model, two vaccine candidates (pgs1360, pgs3965 with mutations of fabG2_2 and umaA1, respectively) were at or below the limit of detection for tissue colonization suggesting their low level persistence and hence safety. Prior to challenge, both candidates induced a M. paratuberculosis-specific IFN-γ, an indication of eliciting cell-mediated immunity. Following challenge with a virulent strain of M. paratuberculosis, the two vaccine candidates significantly reduced bacterial colonization in organs with reduced histological scores compared to control animals. In addition, one of the vaccine candidates (pgs3965) also induced IL-17a, a cytokine associated with protective immunity in mycobacterial infection. Our analysis suggested that the pgs3965 vaccine candidate is a potential live-attenuated vaccine that could be tested further in ruminant models of paratuberculosis. The analysis also validated our screening strategy to identify effective vaccine candidates against intracellular pathogens.

  3. Safety, immunogenicity and efficacy of a recombinant tetravalent dengue vaccine: a meta-analysis of randomized trials.

    PubMed

    da Costa, Vivaldo G; Marques-Silva, Ariany C; Floriano, Vitor G; Moreli, Marcos L

    2014-09-03

    The World Health Organization has stipulated a target: reduce the mortality rate caused by dengue disease by 50% until 2020. Most likely, this goal can be achieved by means of a dengue vaccine. Accordingly, the recombinant and tetravalent dengue vaccine (CYD-TDV), developed by the Sanofi Pasteur Group, is in an advanced stage of human testing. Although there are multiple randomized, placebo-controlled trials evaluating the CYD-TDV, individual results may have little power to identify differences between the populations studied. Thus, we conducted a meta-analysis to determine a more precise estimate of the overall parameters of safety, immunogenicity and efficacy of CYD-TDV. A data search was conducted in the PubMed, Medline, Cochrane Central Register of Controlled Trials and SciELO databases with defined selection criteria. We included for meta-analysis seven randomized and placebo-controlled studies that included 6678 patients randomized to receive the CYD-TDV (4586) or placebo (2092). Regarding vaccine safety, it was found that there was no significant difference between treated and placebo groups, as only approximately 5.5% of patients were withdrawn from the study. Regarding immunogenicity, the levels of neutralizing antibodies were measured by weighted mean differences (WMD), which were always higher in the vaccinated group (WMD/DENV1=59.7, 95% confidence interval [CI] 57-61; WMD/DENV2=99, 95% CI 95-102; WMD/DENV3=138, 95% CI 133-142; WMD/DENV4=123, 95% CI 119-126). The clinical efficacy of the vaccine was 59% (95% CI 15-80; RR=0.41, 95% CI 0.2-0.85, I(2)=30.9%). In conclusion, safety and a balanced immune response to the CYD-TDV were found. However, to fully establish the clinical effectiveness and robustness of immunogenicity, it is necessary to perform further studies to assess the long-term effects of the vaccine.

  4. A Meta-Analysis of Experimental Studies of Attenuated Schistosoma mansoni Vaccines in the Mouse Model

    PubMed Central

    Fukushige, Mizuho; Mitchell, Kate M.; Bourke, Claire D.; Woolhouse, Mark E. J.; Mutapi, Francisca

    2015-01-01

    Schistosomiasis is a water-borne, parasitic disease of major public health importance. There has been considerable effort for several decades toward the development of a vaccine against the disease. Numerous mouse experimental studies using attenuated Schistosoma mansoni parasites for vaccination have been published since 1960s. However, to date, there has been no systematic review or meta-analysis of these data. The aim of this study is to identify measurable experimental conditions that affect the level of protection against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae. Following a systematic review, a total of 755 observations were extracted from 105 articles (published 1963–2007) meeting the searching criteria. Random effects meta-regression models were used to identify the influential predictors. Three predictors were found to have statistically significant effects on the level of protection from vaccination: increasing numbers of immunizing parasites had a positive effect on fraction of protection whereas increasing radiation dose and time to challenge infection had negative effects. Models showed that the irradiated cercariae vaccine has the potential to achieve protection as high as 78% with a single dose vaccination. This declines slowly over time but remains high for at least 8 months after the last immunization. These findings provide insights into the optimal delivery of attenuated parasite vaccination and into the nature and development of protective vaccine induced immunity against schistosomiasis, which may inform the formulation of human vaccines and the predicted duration of protection and thus frequency of booster vaccines. PMID:25774157

  5. Aspects of T Cell-Mediated Immunity Induced in Mice by a DNA Vaccine Based on the Dengue-NS1 Antigen after Challenge by the Intracerebral Route

    PubMed Central

    Oliveira, Edson R. A.; Gonçalves, Antônio J. S.; Costa, Simone M.; Azevedo, Adriana S.; Mantuano-Barradas, Marcio; Nogueira, Ana Cristina M. A.

    2016-01-01

    Dengue disease has emerged as a major public health issue across tropical and subtropical countries. Infections caused by dengue virus (DENV) can evolve to life-threatening forms, resulting in about 20,000 deaths every year worldwide. Several animal models have been described concerning pre-clinical stages in vaccine development against dengue, each of them presenting limitations and advantages. Among these models, a traditional approach is the inoculation of a mouse-brain adapted DENV variant in immunocompetent animals by the intracerebral (i.c.) route. Despite the historical usage and relevance of this model for vaccine testing, little is known about the mechanisms by which the protection is developed upon vaccination. To cover this topic, a DNA vaccine based on the DENV non-structural protein 1 (pcTPANS1) was considered and investigations were focused on the induced T cell-mediated immunity against i.c.-DENV infection. Immunophenotyping assays by flow cytometry revealed that immunization with pcTPANS1 promotes a sustained T cell activation in spleen of i.c.-infected mice. Moreover, we found that the downregulation of CD45RB on T cells, as an indicator of cell activation, correlated with absence of morbidity upon virus challenge. Adoptive transfer procedures supported by CFSE-labeled cell tracking showed that NS1-specific T cells induced by vaccination, proliferate and migrate to peripheral organs of infected mice, such as the liver. Additionally, in late stages of infection (from the 7th day onwards), vaccinated mice also presented reduced levels of circulating IFN-γ and IL-12p70 in comparison to non-vaccinated animals. In conclusion, this work presented new aspects about the T cell-mediated immunity concerning DNA vaccination with pcTPANS1 and the i.c. infection model. These insights can be explored in further studies of anti-dengue vaccine efficacy. PMID:27631083

  6. A vaccine candidate for eastern equine encephalitis virus based on IRES-mediated attenuation

    PubMed Central

    Pandya, Jyotsna; Gorchakov, Rodion; Wang, Eryu; Leal, Grace; Weaver, Scott C.

    2012-01-01

    To develop an effective vaccine against eastern equine encephalitis (EEE), we engineered a recombinant EEE virus (EEEV) that was attenuated and capable of replicating only in vertebrate cells, an important safety feature for live vaccines against mosquito-borne viruses. The subgenomic promoter was inactivated with 13 synonymous mutations and expression of the EEEV structural proteins was placed under the control of an internal ribosomal entry site (IRES) derived from encephalomyocarditis virus (EMCV). We tested this vaccine candidate for virulence, viremia and efficacy in the murine model. A single subcutaneous immunization with 104 infectious units protected 100% of mice against intraperitoneal challenge with a highly virulent North American EEEV strain. None of the mice developed any signs of disease or viremia after immunization or following challenge. Our findings suggest that the IRES-based attenuation approach can be used to develop a safe and effective vaccine against EEE and other alphaviral diseases. PMID:22222869

  7. A vaccine candidate for eastern equine encephalitis virus based on IRES-mediated attenuation.

    PubMed

    Pandya, Jyotsna; Gorchakov, Rodion; Wang, Eryu; Leal, Grace; Weaver, Scott C

    2012-02-08

    To develop an effective vaccine against eastern equine encephalitis (EEE), we engineered a recombinant EEE virus (EEEV) that was attenuated and capable of replicating only in vertebrate cells, an important safety feature for live vaccines against mosquito-borne viruses. The subgenomic promoter was inactivated with 13 synonymous mutations and expression of the EEEV structural proteins was placed under the control of an internal ribosomal entry site (IRES) derived from encephalomyocarditis virus (EMCV). We tested this vaccine candidate for virulence, viremia and efficacy in the murine model. A single subcutaneous immunization with 10(4) infectious units protected 100% of mice against intraperitoneal challenge with a highly virulent North American EEEV strain. None of the mice developed any signs of disease or viremia after immunization or following challenge. Our findings suggest that the IRES-based attenuation approach can be used to develop a safe and effective vaccine against EEE and other alphaviral diseases.

  8. Comparison of the Effectiveness of Trivalent Inactivated Influenza Vaccine and Live, Attenuated Influenza Vaccine in Preventing Influenza-Like Illness among US Service Members, 2006-2009

    DTIC Science & Technology

    2012-11-26

    controlled studies. Vaccine 2012; 30:886–92. 11. Piedra PA, Gaglani MJ, Kozinetz CA, et al. Trivalent live attenuated intranasal influenza vaccine...120:e553–64. 12. Halloran ME, Piedra PA, Longini IM Jr, et al. Efficacy of trivalent, cold-adapted, influenza virus vaccine against influenza A (Fujian

  9. Optimization of efficacy of a live attenuated Flavobacterium psychrophilum immersion vaccine.

    PubMed

    Sudheesh, Ponnerassery S; Cain, Kenneth D

    2016-09-01

    This study was aimed at optimizing the efficacy of a recently developed live attenuated immersion vaccine (B.17-ILM) as a promising vaccine against bacterial coldwater disease (BCWD) caused by Flavobacterium psychrophilum in salmonids. Rainbow trout (RBT) fry were vaccinated by immersion, and different parameters affecting vaccination such as fish size, vaccine delivery time, dose, duration of protection, booster regimes and vaccine growth incubation time were optimized. Specific anti-F. psychrophilum immune response was determined by ELISA. Protective efficacy was determined by challenging with a virulent strain of F. psychrophilum (CSF-259-93) and calculating cumulative percent mortality (CPM) and relative percent survival (RPS). All vaccinated fish developed significantly higher levels of serum antibody titers by week 8 when compared to their respective controls. Immersion vaccination for 3, 6 and 30 min produced significant protection with comparable RPS values of 47%, 53% and 52%, respectively. This vaccine provided significant protection for fish as small as 0.5 g with an RPS of 55%; larger fish of 1 g and 2 g yielded slightly higher RPS values of 59% and 60%, respectively. Fish vaccinated with higher vaccine doses of ∼10(10) and 10(8) colony forming units mL(-1) (cfu ml(-1)) were strongly protected out to at least 24 weeks with RPS values up to 70%. Fish vaccinated with lower doses (∼10(6) and 10(5) cfu mL(-1)) had good protection out to 12 weeks, but RPS values dropped to 36% and 34%, respectively by 24 weeks. Vaccine efficacy was optimum when the primary vaccination was followed by a single booster (week 12 challenge RPS = 61%) rather than two boosters (week 12 challenge RPS = 48%). Vaccination without a booster resulted in a lower RPS (13%) indicating the necessity of a single booster vaccination to maximize efficacy. This study presents key findings that demonstrate the efficacy and commercial potential for this live attenuated BCWD

  10. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    SciTech Connect

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  11. Genome sequence of Bacillus anthracis attenuated vaccine strain A16R used for human in China.

    PubMed

    Liu, Xiankai; Qi, Xinpeng; Zhu, Li; Wang, Dongshu; Gao, Zhiqi; Deng, Haijun; Wu, Weili; Hu, Tao; Chen, Chen; Chen, Weijun; Wang, Hengliang

    2015-09-20

    An attenuated Bacillus anthracis vaccine strain for human use, A16R, was obtained in China after ultraviolet radiation treatment and continuous subculture of the wild-type strain A16. A16R can synthesize the exotoxin, but without a capsule. We sequenced and annotated the A16R genome to encourage the use of this strain. The genome sequencing of the wild-type strain A16 is underway and the genomic comparison between the two strains will help to illustrate the attenuating mechanism of the A16R vaccine strain.

  12. Safety, tolerability, and immunogenicity of a recombinant, genetically engineered, live-attenuated vaccine against canine blastomycosis.

    PubMed

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I; Legendre, Alfred M; Klein, Bruce S

    2011-05-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 10⁴ to 2 × 10⁷ yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of < 2 × 10⁶ yeast cells induced less fever and local inflammation. A vaccine dose of 10⁵ yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy.

  13. Genetic characterisation of attenuated SAD rabies virus strains used for oral vaccination of wildlife.

    PubMed

    Geue, Lutz; Schares, Susann; Schnick, Christina; Kliemt, Jeannette; Beckert, Aline; Freuling, Conrad; Conraths, Franz J; Hoffmann, Bernd; Zanoni, Reto; Marston, Denise; McElhinney, Lorraine; Johnson, Nicholas; Fooks, Anthony R; Tordo, Noel; Müller, Thomas

    2008-06-19

    The elimination of rabies from the red fox (Vulpes vulpes) in Western Europe has been achieved by the oral rabies vaccination (ORV) of wildlife with a range of attenuated rabies virus strains. With the exception of the vaccinia rabies glycoprotein recombinant vaccine (VRG), all strains were originally derived from a common ancestor; the Street Alabama Dufferin (SAD) field strain. However, after more than 30 years of ORV it is still not possible to distinguish these vaccine strains and there is little information on the genetic basis for their attenuation. We therefore sequenced and compared the full-length genome of five commercially available SAD vaccine viruses (SAD B19, SAD P5/88, SAG2, SAD VA1 and SAD Bern) and four other SAD strains (the original SAD Bern, SAD VA1, ERA and SAD 1-3670 Wistar). Nucleotide sequencing allowed identifying each vaccine strain unambiguously. Phylogenetic analysis revealed that the majority of the currently used commercial attenuated rabies virus vaccines appear to be derived from SAD B19 rather than from SAD Bern. One commercially available vaccine virus did not contain the SAD strain mentioned in the product information of the producer. Two SAD vaccine strains appeared to consist of mixed genomic sequences. Furthermore, in-del events targeting A-rich sequences (in positive strand) within the 3' non-coding regions of M and G genes were observed in SAD-derivates developed in Europe. Our data also supports the idea of a possible recombination that had occurred during the derivation of the European branch of SAD viruses. If confirmed, this recombination event would be the first one reported among RABV vaccine strains.

  14. Site-specific characterization of envelope protein N-glycosylation on Sanofi Pasteur's tetravalent CYD dengue vaccine.

    PubMed

    Dubayle, Jean; Vialle, Sandrine; Schneider, Diane; Pontvianne, Jérémy; Mantel, Nathalie; Adam, Olivier; Guy, Bruno; Talaga, Philippe

    2015-03-10

    Recently, several virus studies have shown that protein glycosylation play a fundamental role in the virus-host cell interaction. Glycosylation characterization of the envelope proteins in both insect and mammalian cell-derived dengue virus (DENV) has established that two potential glycosylation residues, the asparagine 67 and 153 can potentially be glycosylated. Moreover, it appears that the glycosylation of these two residues can influence dramatically the virus production and the infection spreading in either mosquito or mammalian cells. The Sanofi Pasteur tetravalent dengue vaccine (CYD) consists of four chimeric viruses produced in mammalian vero cells. As DENV, the CYDs are able to infect human monocyte-derived dendritic cells in vitro via C-type lectins cell-surface molecules. Despite the importance of this interaction, the specific glycosylation pattern of the DENV has not been clearly documented so far. In this paper, we investigated the structure of the N-linked glycans in the four CYD serotypes. Using MALDI-TOF analysis, the N-linked glycans of CYDs were found to be a mix of high-mannose, hybrid and complex glycans. Site-specific N-glycosylation analysis of CYDs using nanoLC-ESI-MS/MS demonstrates that both asparagine residues 67 and 153 are glycosylated. Predominant glycoforms at asparagine 67 are high mannose-type structures while mainly complex- and hybrid-type structures are detected at asparagine 153. In vitro studies have shown that the immunological consequences of infection by the CYD dengue viruses 1-4 versus the wild type parents are comparable in human monocyte-derived dendritic cells. Our E-protein glycan characterizations of CYD are consistent with those observations from the wild type parents and thus support in vitro studies. In addition, these data provide new insights for the role of glycans in the dengue virus-host cell interactions.

  15. Construction of a live-attenuated HIV-1 vaccine through genetic code expansion.

    PubMed

    Wang, Nanxi; Li, Yue; Niu, Wei; Sun, Ming; Cerny, Ronald; Li, Qingsheng; Guo, Jiantao

    2014-05-05

    A safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) is urgently needed to combat the worldwide AIDS pandemic, but still remains elusive. The fact that uncontrolled replication of an attenuated vaccine can lead to regaining of its virulence creates safety concerns precluding many vaccines from clinical application. We introduce a novel approach to control HIV-1 replication, which entails the manipulation of essential HIV-1 protein biosynthesis through unnatural amino acid (UAA*)-mediated suppression of genome-encoded blank codon. We successfully demonstrate that HIV-1 replication can be precisely turned on and off in vitro.

  16. The dengue viruses.

    PubMed Central

    Henchal, E A; Putnak, J R

    1990-01-01

    Dengue, a major public health problem throughout subtropical and tropical regions, is an acute infectious disease characterized by biphasic fever, headache, pain in various parts of the body, prostration, rash, lymphadenopathy, and leukopenia. In more severe or complicated dengue, patients present with a severe febrile illness characterized by abnormalities of hemostasis and increased vascular permeability, which in some instances results in a hypovolemic shock. Four distinct serotypes of the dengue virus (dengue-1, dengue-2, dengue-3, and dengue-4) exist, with numerous virus strains found worldwide. Molecular cloning methods have led to a greater understanding of the structure of the RNA genome and definition of virus-specific structural and nonstructural proteins. Progress towards producing safe, effective dengue virus vaccines, a goal for over 45 years, has been made. Images PMID:2224837

  17. Multicenter Safety and Immunogenicity Trial of an Attenuated Measles Vaccine for NHP.

    PubMed

    Yee, Joann L; McChesney, Michael B; Christe, Kari L

    2015-10-01

    Measles is a highly contagious viral disease in NHP. The infection can range from asymptomatic to rapidly fatal, resulting in significant morbidity and mortality in captive populations. In addition to appropriate quarantine practices, restricted access, the immunization of all personnel in contact with NHP, and the wearing of protective clothing including face masks, measles immunization further reduces the infection risk. Commercially available measles vaccines are effective for use in NHP, but interruptions in their availability have prevented the implementation of ongoing, consistent vaccination programs. This need for a readily available vaccine led us to perform a broad, multicenter safety and immunogenicity study of another candidate vaccine, MVac (Serum Institute of India), a monovalent measles vaccine derived from live Edmonston-Zagreb strain virus that had been attenuated after 22 passages on human diploid cells.

  18. Multicenter Safety and Immunogenicity Trial of an Attenuated Measles Vaccine for NHP

    PubMed Central

    Yee, JoAnn L; McChesney, Michael B; Christe, Kari L

    2015-01-01

    Measles is a highly contagious viral disease in NHP. The infection can range from asymptomatic to rapidly fatal, resulting in significant morbidity and mortality in captive populations. In addition to appropriate quarantine practices, restricted access, the immunization of all personnel in contact with NHP, and the wearing of protective clothing including face masks, measles immunization further reduces the infection risk. Commercially available measles vaccines are effective for use in NHP, but interruptions in their availability have prevented the implementation of ongoing, consistent vaccination programs. This need for a readily available vaccine led us to perform a broad, multicenter safety and immunogenicity study of another candidate vaccine, MVac (Serum Institute of India), a monovalent measles vaccine derived from live Edmonston–Zagreb strain virus that had been attenuated after 22 passages on human diploid cells. PMID:26473350

  19. Schistosoma japonicum: An ultraviolet-attenuated cercarial vaccine applicable in the field for water buffaloes

    SciTech Connect

    Shi, Y.E.; Jiang, C.F.; Han, J.J.; Li, Y.L.; Ruppel, A. )

    1990-07-01

    Water buffaloes were vaccinated three times with 10,000 Schistosoma japonicum cercariae irradiated with ultraviolet (uv) light at a dose of 400 microW x min/cm2. The irradiation was performed with cheap, simple, and portable equipment in a rural area of Hubei Province (People's Republic of China). A challenge infection of 1000 untreated cercariae was given to six vaccinated and six naive control buffaloes, while two vaccinated animals were not challenged. The experiment was terminated 6 weeks after the challenge. Control animals had lost body weight and harbored a mean of 110 worms and 37 eggs per gram of liver. The vaccinated animals gained weight after the challenge and developed 89% resistance to infection with S. japonicum. Since schistosomiasis japonica is nowadays transmitted in China predominantly by domestic livestock, a uv-attenuated cercarial vaccine for bovines may contribute to the control of this disease.

  20. Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group.

    PubMed

    Maiztegui, J I; McKee, K T; Barrera Oro, J G; Harrison, L H; Gibbs, P H; Feuillade, M R; Enria, D A; Briggiler, A M; Levis, S C; Ambrosio, A M; Halsey, N A; Peters, C J

    1998-02-01

    Argentine hemorrhagic fever (AHF), caused by the arenavirus Junin, is a major public health problem among agricultural workers in Argentina. A prospective, randomized, double-blind, placebo-controlled, efficacy trial of Candid 1, a live attenuated Junin virus vaccine, was conducted over two consecutive epidemic seasons among 6500 male agricultural workers in the AHF-endemic region. Twenty-three men developed laboratory-confirmed AHF during the study; 22 received placebo and 1 received vaccine (vaccine efficacy 95%; 95% confidence interval [CI], 82%-99%). Three additional subjects in each group developed laboratory-confirmed Junin virus infection associated with mild illnesses that did not fulfill the clinical case definition for AHF, yielding a protective efficacy for prevention of any illness associated with Junin virus infection of 84% (95% CI, 60%-94%). No serious adverse events were attributed to vaccination. Candid 1, the first vaccine for the prevention of illness caused by an arenavirus, is safe and highly efficacious.

  1. Immunogenicity of a Candidate DNA Vaccine Based on the prM/E Genes of a Dengue Type 2 Virus Cosmopolitan Genotype Strain.

    PubMed

    Putri, Dwi Hilda; Sudiro, Tjahjani Mirawati; Yunita, Rina; Jaya, Ungke Anton; Dewi, Beti Ernawati; Sjatha, Fithriyah; Konishi, Eiji; Hotta, Hak; Sudarmono, Pratiwi

    2015-01-01

    The development of a dengue virus vaccine is a major priority in efforts to control the diseases. Several researchers are currently using the Asian 1 and Asian 2 genotypes as vaccine candidates for dengue type 2 virus (DENV-2). However, in this study, we constructed a recombinant plasmid-based prM/E gene, from a DENV-2 Cosmopolitan genotype strain as a dengue DNA vaccine candidate. The protein expression of the recombinant plasmid in CHO cells was analyzed using an enzyme-linked immunosorbent assay, western blotting, and sucrose gradient sedimentation. After being used to immunize ddY mice three times at doses of 25 or 100 μg, the DNA vaccine induced humoral immune responses. There was no difference in the neutralizing antibody titer (focus reduction neutralization test 50% value) of mice immunized with 25 and 100 μg DNA vaccine doses. When challenged with 3 × 10(5) FFU DENV-2, immunized mice could raise anamnestic neutralizing antibody responses, which were observed at day 4 and day 8 post-challenge. Analysis of immunogenicity using BALB/c mice showed that their antibody neutralization titers were lower than those of ddY mice. In addition, the antibodies produced after immunization and challenge could also neutralize a DENV-2 Asian 2 genotype (New Guinea C) strain. Therefore, the DENV-2 Cosmopolitan genotype may be a DENV-2 vaccine candidate.

  2. Vaccination using radiation- or genetically attenuated live sporozoites.

    PubMed

    Vaughan, Ashley M; Kappe, Stefan H I

    2013-01-01

    The attenuation of Plasmodium parasites by either radiation or targeted gene deletion can result in viable sporozoites that invade the liver and subsequently arrest. The death of the growth-arrested liver stage parasite and the ensuing recognition by the immune system of parasite antigens promotes protective immunity in immunized mice and humans. The methods described below will enable researchers to determine the efficacy of radiation-attenuated and genetically attenuated rodent malaria sporozoite immunizations against infectious sporozoite challenge, and study protective immunity in immunized mice. In addition, by determining the time of arrest of genetically attenuated parasite liver stages and the mechanisms of clearance, researchers will be able to correlate biological features of the growth-arrested parasites with their ability to promote protective immunity.

  3. Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus

    PubMed Central

    Meliopoulos, Victoria A.; Wang, Wei; Lin, Xudong; Stucker, Karla M.; Halpin, Rebecca A.; Stockwell, Timothy B.; Schultz-Cherry, Stacey

    2016-01-01

    ABSTRACT The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By

  4. Evaluation of an attenuated strain of Ehrlichia canis as a vaccine for canine monocytic ehrlichiosis.

    PubMed

    Rudoler, Nir; Baneth, Gad; Eyal, Osnat; van Straten, Michael; Harrus, Shimon

    2012-12-17

    Canine monocytic ehrlichiosis is an important tick-borne disease worldwide. No commercial vaccine for the disease is currently available and tick control is the main preventive measure against the disease. The aim of this study was to evaluate the potential of a multi-passaged attenuated strain of Ehrlichia canis to serve as a vaccine for canine monocytic ehrlichiosis, and to assess the use of azithromycin in the treatment of acute ehrlichiosis. Twelve beagle dogs were divided into 3 groups of 4 dogs. Groups 1 and 2 were inoculated (vaccinated) with an attenuated strain of E. canis (#611A) twice or once, respectively. The third group consisted of naïve dogs which served as controls. All 3 groups were challenged with a wild virulent strain of E. canis by administering infected dog-blood intravenously. Transient thrombocytopenia was the only hematological abnormality observed following inoculation of dogs with the attenuated strain. Challenge with the virulent strain resulted in severe disease in all 4 control dogs while only 3 of 8 vaccinated dogs presented mild transient fever. Furthermore, the mean blood rickettsial load was significantly higher in the control group (27-92-folds higher during days 14-19 post challenge with the wild the strain) as compared to the vaccinated dogs. The use of azithromycin was assessed as a therapeutic agent for the acute disease. Four days treatment resulted in further deterioration of the clinical condition of the dogs. Molecular comparison of 4 genes known to express immunoreactive proteins and virulence factors (p30, gp19, VirB4 and VirB9) between the attenuated strain and the challenge wild strain revealed no genetic differences between the strains. The results of this study indicate that the attenuated E. canis strain may serve as an effective and secure future vaccine for canine ehrlichiosis.

  5. Envelope exchange for the generation of live-attenuated arenavirus vaccines.

    PubMed

    Bergthaler, Andreas; Gerber, Nicolas U; Merkler, Doron; Horvath, Edit; de la Torre, Juan Carlos; Pinschewer, Daniel D

    2006-06-01

    Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  6. Distinct Cross-reactive B-Cell Responses to Live Attenuated and Inactivated Influenza Vaccines

    PubMed Central

    Sasaki, Sanae; Holmes, Tyson H.; Albrecht, Randy A.; García-Sastre, Adolfo; Dekker, Cornelia L.; He, Xiao-Song; Greenberg, Harry B.

    2014-01-01

    Background. The immunological bases for the efficacies of the 2 currently licensed influenza vaccines, live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV), are not fully understood. The goal of this study was to identify specific B-cell responses correlated with the known efficacies of these 2 vaccines. Methods. We compared the B-cell and antibody responses after immunization with 2010/2011 IIV or LAIV in young adults, focusing on peripheral plasmablasts 6–8 days after vaccination. Results. The quantities of vaccine-specific plasmablasts and plasmablast-derived polyclonal antibodies (PPAbs) in IIV recipients were significantly higher than those in LAIV recipients. No significant difference was detected in the avidity of vaccine-specific PPAbs between the 2 vaccine groups. Proportionally, LAIV induced a greater vaccine-specific immunoglobulin A plasmablast response, as well as a greater plasmablast response to the conserved influenza nuclear protein, than IIV. The cross-reactive plasmablast response to heterovariant strains, as indicated by the relative levels of cross-reactive plasmablasts and the cross-reactive PPAb binding reactivity, was also greater in the LAIV group. Conclusions. Distinct quantitative and qualitative patterns of plasmablast responses were induced by LAIV and IIV in young adults; a proportionally greater cross-reactive response was induced by LAIV. PMID:24676204

  7. CANINE DISTEMPER VIRUS ANTIBODY TITERS IN DOMESTIC CATS AFTER DELIVERY OF A LIVE ATTENUATED VIRUS VACCINE.

    PubMed

    Ramsay, Edward; Sadler, Ryan; Rush, Robert; Seimon, Tracie; Tomaszewicz, Ania; Fleetwood, Ellen A; McAloose, Denise; Wilkes, Rebecca P

    2016-06-01

    Three methods for delivering a live attenuated canine distemper virus (CDV) vaccine to domestic cats ( Felis catus ) were investigated, as models for developing vaccination protocols for tigers (Panthera tigris). Twenty domestic cats were randomly divided into four treatment groups: saline injection (negative controls); and oral, intranasal, and subcutaneous vaccinates. Cats were injected with saline or a CDV vaccine (Nobivac DP, Merck) at wk 0 and 4. Blood and nasal swabs were collected at wk 0 (prior to the initial vaccination) and weekly thereafter for 9 wk. Urine samples were collected on wk 1 to 9 after initial vaccination. Forty-nine weeks following the initial vaccination series, three cats from the subcutaneous group and three cats from the intranasal group were revaccinated. Blood was collected immediately prior, and 7 and 21 days subsequent to revaccination. Nasal swabs and urine samples were collected from each cat prior to wk 49 revaccination and daily for 7 days thereafter. Nasal swabs and urine were analyzed by quantitative PCR for vaccine virus presence. Sera were tested for CDV antibodies by virus neutralization. All cats were sero-negative for CDV antibodies at the beginning of the study, and saline-injected cats remained sero-negative throughout the study. A dramatic anamnestic response was seen following wk 4 subcutaneous vaccinations, with titers peaking at wk 6 (geometric mean = 2,435.5). Following wk 49 revaccination, subcutaneous vaccinates again mounted impressive titers (wk 52 geometric mean = 2,048). Revaccination of the intranasal group cats at wk 49 produced a small increase in titers (wk 52 geometric mean = 203). CDV viral RNA was detected in six nasal swabs but no urine samples, demonstrating low viral shedding postvaccination. The strong antibody response to subcutaneous vaccination and the lack of adverse effects suggest this vaccine is safe and potentially protective against CDV infection in domestic cats.

  8. Immunogenicity and protective efficacy of a psoralen-inactivated dengue-1 virus vaccine candidate in Aotus nancymaae monkeys.

    PubMed

    Maves, Ryan C; Oré, Roger M Castillo; Porter, Kevin R; Kochel, Tadeusz J

    2011-03-24

    Psoralens are photoreactive compounds that cross-link pyrimidines after exposure to UVA radiation. In this experiment, we tested the protective efficacy of a psoralen-inactivated dengue vaccine candidate in non-human primates. Two groups of 7 Aotus nancymaae monkeys received either 10ng per dose of inactivated DENV1 plus alum adjuvant or alum alone (controls). Doses were injected intradermally on days 0, 14, and 28. Monkeys then received a challenge inoculation of 1.1 × 10(4)PFUs of WestPac 74 DENV-1 on day 132. At 62 days, only 1/7 vaccinated monkeys had detectable IgM, but IgG and neutralizing antibody remained detectable in 7/7. No IgM, IgG, or neutralizing antibody was detectable in control monkeys. DENV-1 viremia was detected after challenge in 3/7 vaccinated monkeys and 5/6 control monkeys (with one removed due to pregnancy) (p=0.27), but days of viremia were reduced from 3.67 days/animal among controls to 0.71 days/animal among vaccinated monkeys (p=0.051). Psoralen-inactivated DENV1 is immunogenic in Aotus nancymaae with a trend towards a reduction in days of viremia following experimental challenge.

  9. Global gene expression in channel catfish after vaccination with an attenuated Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the global gene expression in channel catfish after immersion vaccination with an attenuated Edwardsiella ictaluri (AquaVac ESCTM), microarray analysis of 65,182 UniGene transcripts were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 2, a t...

  10. A comparative study of live attenuated F strain-derived Mycoplasma gallisepticum vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...

  11. Complete Genome Sequence of the Attenuated Novobiocin-Resistant Streptococcus iniae Vaccine Strain ISNO

    PubMed Central

    Zhang, Dunhua; Zhang, Lee

    2014-01-01

    Streptococcus iniae ISNO is an attenuated novobiocin-resistant vaccine strain. Its full genome is 2,070,182 bp in length. The availability of this genome will allow comparative genomics to identify potential virulence genes important for pathogenesis of S. iniae and potential mechanisms associated with novobiocin resistance in this strain. PMID:24874684

  12. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  13. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine.

    PubMed

    Zhang, Zhilun; Zhu, Xiangjun; Hu, Yuansheng; Liang, Miao; Sun, Jin; Song, Yufei; Yang, Qi; Ji, Haiquan; Zeng, Gang; Song, Lifei; Chen, Jiangting

    2017-02-14

    In China, both inactivated hepatitis A (HA) vaccine and live attenuated HA vaccine are available. We conducted a trial to evaluate 5-year immune persistence induced by one dose of inactivated or live attenuated HA vaccines in children. Subjects with no HA vaccination history had randomly received one dose of inactivated or live attenuated HA vaccine at 18-60 months of age. Anti-HAV antibody concentrations were measured before vaccination and at the first, second, and fifth year after vaccination. Suspected cases of hepatitis A were monitored during the study period. A total of 332 subjects were enrolled and 182 provided evaluable serum samples at all planned time points. seropositive rate at 5 y was 85.9% in the inactivated HA vaccine group and 90.7% in the live attenuated HA vaccine group. GMCs were 76.3% mIU/ml (95% CI: 61.7 - 94.4) and 66.8mIU/ml (95% CI: 57.8 - 77.3), respectively. No significant difference in antibody persistence between 2 groups was found. No clinical hepatitis A case was reported. A single dose of an inactivated or live attenuated HA vaccine at 18-60 months of age resulted in high HAV seropositive rate and anti-HAV antibody concentrations that lasted for at least 5 y.

  14. Development of Live-Attenuated Arenavirus Vaccines Based on Codon Deoptimization

    PubMed Central

    Cheng, Benson Yee Hin; Ortiz-Riaño, Emilio; Nogales, Aitor

    2015-01-01

    ABSTRACT Arenaviruses have a significant impact on public health and pose a credible biodefense threat, but the development of safe and effective arenavirus vaccines has remained elusive, and currently, no Food and Drug Administration (FDA)-licensed arenavirus vaccines are available. Here, we explored the use of a codon deoptimization (CD)-based approach as a novel strategy to develop live-attenuated arenavirus vaccines. We recoded the nucleoprotein (NP) of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with the least frequently used codons in mammalian cells, which caused lower LCMV NP expression levels in transfected cells that correlated with decreased NP activity in cell-based functional assays. We used reverse-genetics approaches to rescue a battery of recombinant LCMVs (rLCMVs) encoding CD NPs (rLCMV/NPCD) that showed attenuated growth kinetics in vitro. Moreover, experiments using the well-characterized mouse model of LCMV infection revealed that rLCMV/NPCD1 and rLCMV/NPCD2 were highly attenuated in vivo but, upon a single immunization, conferred complete protection against a subsequent lethal challenge with wild-type (WT) recombinant LCMV (rLCMV/WT). Both rLCMV/NPCD1 and rLCMV/NPCD2 were genetically and phenotypically stable during serial passages in FDA vaccine-approved Vero cells. These results provide proof of concept of the safety, efficacy, and stability of a CD-based approach for developing live-attenuated vaccine candidates against human-pathogenic arenaviruses. IMPORTANCE Several arenaviruses cause severe hemorrhagic fever in humans and pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections, while antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and is associated with side effects. Here, we describe the generation of recombinant versions of the prototypic arenavirus LCMV encoding codon-deoptimized viral

  15. Deep Sequencing of Distinct Preparations of the Live Attenuated Varicella-Zoster Virus Vaccine Reveals a Conserved Core of Attenuating Single-Nucleotide Polymorphisms

    PubMed Central

    Yamanishi, Koichi; Gomi, Yasuyuki; Gershon, Anne A.; Breuer, Judith

    2016-01-01

    ABSTRACT The continued success of the live attenuated varicella-zoster virus vaccine in preventing varicella-zoster and herpes zoster is well documented, as are many of the mutations that contribute to the attenuation of the vOka virus for replication in skin. At least three different preparations of vOka are marketed. Here, we show using deep sequencing of seven batches of vOka vaccine (including ZostaVax, VariVax, VarilRix, and the Oka/Biken working seed) from three different manufacturers (VariVax, GSK, and Biken) that 137 single-nucleotide polymorphism (SNP) mutations are present in all vaccine batches. This includes six sites at which the vaccine allele is fixed or near fixation, which we speculate are likely to be important for attenuation. We also show that despite differences in the vaccine populations between preparations, batch-to-batch variation is minimal, as is the number and frequency of mutations unique to individual batches. This suggests that the vaccine manufacturing processes are not introducing new mutations and that, notwithstanding the mixture of variants present, VZV live vaccines are extremely stable. IMPORTANCE The continued success of vaccinations to prevent chickenpox and shingles, combined with the extremely low incidence of adverse reactions, indicates the quality of these vaccines. The vaccine itself is comprised of a heterogeneous live attenuated virus population and thus requires deep-sequencing technologies to explore the differences and similarities in the virus populations between different preparations and batches of the vaccines. Our data demonstrate minimal variation between batches, an important safety feature, and provide new insights into the extent of the mutations present in this attenuated virus. PMID:27440875

  16. A high-temperature passaging attenuated Pseudorabies vaccine protects piglets completely against emerging PRV variant.

    PubMed

    Liang, Chao; Tong, Wu; Zheng, Hao; Liu, Fei; Wu, Jiqiang; Li, Guoxin; Zhou, En-Min; Tong, Guangzhi

    2017-02-13

    Emerging variant of pseudorabies virus (PRV) have evaded the antiviral immunity of commercially available PRV vaccine and have led to PRV outbreaks in Chinese pig farms. Here, we attenuated a PRV variant strain by serial passages in vitro and evaluate the protective efficacy of the attenuated strain as a vaccine candidate. The virulent PRV variant strain JS-2012 was continuously passaged in Vero cells at 40°C and attenuated rapidly. After 90 passages in Vero cells, the passaged virus lost its ability to cause death in 2-week-old piglets. The 120th passage virus was avirulent in the sucking piglets. An attenuated strain, JS-2012-F120 derived from the 120th passage virus by three rounds of plaque cloning grew better than its parent strain JS-2012 in Vero cells and showed notably different cytopathic effects and plaque morphology from JS-2012. PCR combined with sequence analysis showed that JS-2012-F120 contained a 2307-bp deletion covering nucleotide 487 of gE gene to 531 of US2 gene. After inoculation with JS-2012-F120, young piglets were completely protected from challenge with the classical and emerging virulent PRVs. Moreover, the piglets did not develop specific gE antibodies. Thus, JS-2012-F120 appears to be a promising marker vaccine to control PRV variant circulating in Chinese pig farms, and the high-temperature passaging in vitro was an efficient method to attenuated alphaherpesvirus.

  17. Room Temperature Stabilization of Oral, Live Attenuated Salmonella enterica serovar Typhi-Vectored Vaccines

    PubMed Central

    Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, DeQi; Lechuga-Ballesteros, David; Truong-Le, Vu

    2011-01-01

    Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi ‘Ty21a’ bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log10 CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096

  18. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections.

    PubMed

    Chaussee, Michael S; Sandbulte, Heather R; Schuneman, Margaret J; Depaula, Frank P; Addengast, Leslie A; Schlenker, Evelyn H; Huber, Victor C

    2011-05-12

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete.

  19. Effect of attenuated Erysipelothrix rhusiopathiae vaccine in pigs infected with porcine reproductive respiratory syndrome virus.

    PubMed

    Sakano, T; Shibata, I; Namimatsu, T; Mori, M; Ono, M; Uruno, K; Osumi, T

    1997-11-01

    Twenty 2nd specific pathogen-free pigs were divided into 4 groups: Group A were infected with porcine reproductive and respiratory syndrome (PRRS) virus at 6 weeks of age and treated with available swine erysipelas and swine fever combined vaccine (vaccinated) at 7 weeks of age; Group B were vaccinated at 7 weeks of age and infected with PRRS virus at 8 weeks of age; Group C were vaccinated at 7 weeks of age: Group D were neither vaccinated nor infected with PRRS virus. All pigs were challenged to Erysipelothrix rhusiopathiae C42 strain at 10 weeks of age. No clinical signs appeared after vaccination of group A and B pigs, thus confirming that the safety of the vaccine was not influenced by infection with PRRS virus. None of the pigs in Groups A and C developed erysipelas after challenge exposure to E. rhusiopathiae. In contrast, fever and/or urticaria appeared transiently in all pigs of Group B after challenge exposure. At the time of challenge exposure to E. rhusiopathiae, the PRRS virus titer was high in sera of Group B, but was low in those from Group A. However, vaccination of pigs with attenuated E. rhusiopathiae was effective in dual infection with PRRS virus and E. rhusiopathiae, because the clinical signs were milder and the E. rhusiopathiae strain was less recovered from these pigs compared to pigs of group D.

  20. Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination

    PubMed Central

    Baldo, Aline; Galanis, Evanthia; Tangy, Frédéric; Herman, Philippe

    2016-01-01

    ABSTRACT Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it attractive candidate vector to prevent infectious diseases. Attenuated MV have acquired the ability to use the complement regulator CD46 as a major receptor to mediate virus entry and intercellular fusion. Therefore, attenuated MV strains preferentially infect and destroy a wide variety of cancer cells making them also attractive oncolytic vectors. The use of recombinant MV vector has to comply with various regulatory requirements, particularly relating to the assessment of potential risks for human health and the environment. The present article highlights the main characteristics of MV and recombinant MV vectors used for vaccination and virotherapy and discusses these features from a biosafety point of view. PMID:26631840

  1. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone.

    PubMed

    Li, Zhushi; Yang, Huiqiang; Yang, Jian; Lin, Hua; Wang, Wei; Liu, Lina; Zhao, Yu; Liu, Li; Zeng, Xianwu; Yu, Yongxin; Li, Yuhua

    2014-10-13

    For the purpose of developing a novel dengue vaccine candidate, recombinant plasmids were constructed which contained the full length cDNA clone of Japanese encephalitis (JE) vaccine strain SA14-14-2 with its premembrane (PreM) and envelope (E) genes replaced by the counterparts of dengue virus type 4 (DENV4). By transfecting the in vitro transcription products of the recombinant plasmids into BHK-21 cells, a chimeric virus JEV/DENV4 was successfully recovered. The chimeric virus was identified by complete genome sequencing, Western blot and immunofluorescent staining. Growth characteristics revealed it was well adapted to primary hamster kidney (PHK) cells. Its genetic stability was investigated and only one unintentional mutation in 5'-untranslated region (5'-UTR) was found after 20 passages in PHK cells. Neurotropism, neurovirulence and immunogenicity of the chimeric virus were tested in mice. Besides, the influence of JE vaccine pre-immunization on the neutralizing antibody level induced by the chimeric virus was illuminated. To our knowledge, this is the first chimeric virus incorporating the JE vaccine stain SA14-14-2 and DENV4. It is probably a potential candidate to compose a tetravalent dengue chimeric vaccine.

  2. Evaluation of chimeric DNA vaccines consisting of premembrane and envelope genes of Japanese encephalitis and dengue viruses as a strategy for reducing induction of dengue virus infection-enhancing antibody response.

    PubMed

    Sjatha, Fithriyah; Kuwahara, Miwa; Sudiro, T Mirawati; Kameoka, Masanori; Konishi, Eiji

    2014-02-01

    Neutralizing antibodies induced by dengue virus (DENV) infection show viral infection-enhancing activities at sub-neutralizing doses. On the other hand, preimmunity against Japanese encephalitis virus (JEV), a congener of DENV, does not increase the severity of DENV infection. Several studies have demonstrated that neutralizing epitopes in the genus Flavivirus are mainly located in domain III (DIII) of the envelope (E) protein. In this study, chimeric premembrane and envelope (prM-E) gene-based expression plasmids of JEV and DENV1 with DIII substitution of each virus were constructed for use as DNA vaccines and their immunogenicity evaluated. Sera from C3H/He and ICR mice immunized with a chimeric gene containing DENV1 DIII on a JEV prM-E gene backbone showed high neutralizing antibody titers with less DENV infection-enhancing activity. Our results confirm the applicability of this approach as a new dengue vaccine development strategy.

  3. A pilot study on an attenuated Chinese EIAV vaccine inducing broadly neutralizing antibodies.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Liang, Hua; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2011-08-01

    The attenuated Chinese equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. In this pilot study, to determine whether this attenuated vaccine can induce broadly neutralizing antibodies, we immunized four horses with the attenuated Chinese vaccine strain EIAVFDDV and then observed the evolution of neutralizing antibodies against different EIAV strains. During the vaccination phase, all vaccinees rapidly developed high levels of neutralizing antibodies against the homologous vaccine strain (pLGFD3V), and 3 out of 4 horses showed a gradual increase in serum neutralizing activity against two relatively heterologous virulent variants of the challenge strain (pLGFD3Mu12V and DLV34). After challenge, the three horses that had developed high levels of neutralizing antibodies against pLGFD3Mu12V and DLV34 did not show signs of infection, which was demonstrated by immune suppression, while the one horse producing serum that could only neutralize pLGFD3V developed a febrile episode during the 8-month observation period. To assess whether the broadly neutralizing activity is associated with immune protection, sera drawn on the day of challenge from these four vaccinees and an additional four EIAVFDDV-vaccinated horses were analyzed for neutralizing antibodies against pLGFD3V, pLGFD3Mu12V and DLV34. Although there was no significant correlation between protection from infection and serum neutralizing activity against any of these three viral strains, protection from infection was observed to correlate better with serum neutralizing activity against the two heterologous virulent strains than against the homologous vaccine strain. These data indicate that EIAVFDDV induced broadly neutralizing antibodies, which might confer enhanced protection of vaccinees from infection by the challenge virus.

  4. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate

    PubMed Central

    Plante, Kenneth S; Rossi, Shannan L.; Bergren, Nicholas A.; Seymour, Robert L.; Weaver, Scott C.

    2015-01-01

    We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing. PMID:26340754

  5. Tests in mice of a dengue vaccine candidate made of chimeric Junin virus-like particles and conserved dengue virus envelope sequences.

    PubMed

    Mareze, Vania Aparecida; Borio, Cristina Silvia; Bilen, Marcos F; Fleith, Renata; Mirazo, Santiago; Mansur, Daniel Santos; Arbiza, Juan; Lozano, Mario Enrique; Bruña-Romero, Oscar

    2016-01-01

    Two new vaccine candidates against dengue virus (DENV) infection were generated by fusing the coding sequences of the self-budding Z protein from Junin virus (Z-JUNV) to those of two cryptic peptides (Z/DENV-P1 and Z/DENV-P2) conserved on the envelope protein of all serotypes of DENV. The capacity of these chimeras to generate virus-like particles (VLPs) and to induce virus-neutralizing antibodies in mice was determined. First, recombinant proteins that displayed reactivity with a Z-JUNV-specific serum by immunofluorescence were detected in HEK-293 cells transfected with each of the two plasmids and VLP formation was also observed by transmission electron microscopy. Next, we determined the presence of antibodies against the envelope peptides of DENV in the sera of immunized C57BL/6 mice. Results showed that those animals that received Z/DENV-P2 DNA coding sequences followed by a boost with DENV-P2 synthetic peptides elicited significant specific antibody titers (≥6.400). Finally, DENV plaque-reduction neutralization tests (PRNT) were performed. Although no significant protective effect was observed when using sera of Z/DENV-P1-immunized animals, antibodies raised against vaccine candidate Z/DENV-P2 (diluted 1:320) were able to reduce in over 50 % the number of viral plaques generated by infectious DENV particles. This reduction was comparable to that of the 4G2 DENV-specific monoclonal cross-reactive (all serotypes) neutralizing antibody. We conclude that Z-JUNV-VLP is a valid carrier to induce antibody-mediated immune responses in mice and that Z/DENV-P2 is not only immunogenic but also protective in vitro against infection of cells with DENV, deserving further studies. On the other side, DENV's fusion peptide-derived chimera Z/DENV-P1 did not display similar protective properties.

  6. Post-marketing surveillance of live-attenuated Japanese encephalitis vaccine safety in China.

    PubMed

    Wang, Yali; Dong, Duo; Cheng, Gang; Zuo, Shuyan; Liu, Dawei; Du, Xiaoxi

    2014-10-07

    Japanese encephalitis (JE) is the most severe form of viral encephalitis in Asia and no specific treatment is available. Vaccination provides an effective intervention to prevent JE. In this paper, surveillance data for adverse events following immunization (AEFI) related to SA-14-14-2 live-attenuated Japanese encephalitis vaccine (Chengdu Institute of Biological Products) was presented. This information has been routinely generated by the Chinese national surveillance system for the period 2009-2012. There were 6024 AEFI cases (estimated reported rate 96.55 per million doses). Most common symptoms of adverse events were fever, redness, induration and skin rash. There were 70 serious AEFI cases (1.12 per million doses), including 9 cases of meningoencephalitis and 4 cases of death. The post-marketing surveillance data add the evidence that the Chengdu institute live attenutated vaccine has a reasonable safety profile. The relationship between encephalitis and SA-14-14-2 vaccination should be further studied.

  7. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    PubMed

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  8. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    PubMed

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-08-07

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats.

  9. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis.

    PubMed

    Ghosh, Pallab; Shippy, Daniel C; Talaat, Adel M

    2015-12-16

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) causes Johne's disease, a chronic enteric infection in ruminants with severe economic impact on the dairy industry in the USA and worldwide. Currently, available vaccines have limited protective efficacy against disease progression and does not prevent spread of the infection among animals. Because of their ability to elicit wide-spectrum immune responses, we adopted a live-attenuated vaccine approach based on a sigH knock-out strain of M. paratuberculosis (ΔsigH). Earlier analysis of the ΔsigH mutant in mice indicated their inadequate ability to colonize host tissues, unlike the isogenic wild-type strain, validating the role of this sigma factor in M. paratuberculosis virulence. In the present study, we evaluated the performance of the ΔsigH mutant compared to inactivated vaccine constructs in a vaccine/challenge model of murine paratuberculosis. The presented analysis indicated that ΔsigH mutant with or without QuilA adjuvant is capable of eliciting strong immune responses (such as interferon gamma-γ, IFN-γ) suggesting their immunogenicity and ability to potentially initiate effective vaccine-induced immunity. Following a challenge with virulent strains of M. paratuberculosis, ΔsigH conferred protective immunity as indicated by the reduced bacterial burden accompanied with reduced lesions in main body organs (liver, spleen and intestine) usually infected with M. paratuberculosis. More importantly, our data indicated better ability of the ΔsigH vaccine to confer protection compared to the inactivated vaccine constructs even with the presence of oil-adjuvant. Overall, our approach provides a rational basis for using live-attenuated mutant strains to develop improved vaccines that elicit robust immunity against this chronic infection.

  10. Schistosoma mansoni polypeptides immunogenic in mice vaccinated with radiation-attenuated cercariae

    SciTech Connect

    Dalton, J.P.; Strand, M.

    1987-10-01

    We compared the humoral immune response of mice protected against Schistosoma mansoni by vaccination with radiation-attenuated cercariae to that of patently infected mice, and we identified antigens that elicit a greater, or unique, immune response in the vaccinated mice. These comparisons were based upon radioimmunoprecipitations and immunodepletion of (/sup 35/S)methionine-labeled schistosomular and adult worm polypeptides, followed by one- and two-dimensional polyacrylamide gel analyses. The humoral responses of patently infected mice and of mice vaccinated once were remarkably similar and were directed against schistosome glycoproteins ranging in molecular size from greater than 300 to less than 10 kDa. Exposing mice to a second vaccination resulted in a marked change in the immune response, to one predominantly directed toward high molecular size glycoproteins. Sequential immunodepletion techniques identified five schistosomular and seven adult worm antigens that showed a greater or unique immunogenicity in vaccinated mice as compared with patently infected mice. These adult worm antigens were purified by preparative sequential immunoaffinity chromatography and used to prepare a polyclonal antiserum, anti-irradiated vaccine. This antiserum bound to the surface of live newly transformed and lung-stage schistosomula, as assessed by immunofluorescence assays, and was reactive with a number of /sup 125/I-labeled schistosomular surface polypeptides, including a doublet of 150 kDa that was also recognized by sera of vaccinated mice but not by sera of patently infected mice.

  11. Generation of a Live Attenuated Influenza Vaccine that Elicits Broad Protection in Mice and Ferrets.

    PubMed

    Wang, Lulan; Liu, Su-Yang; Chen, Hsiang-Wen; Xu, Juan; Chapon, Maxime; Zhang, Tao; Zhou, Fan; Wang, Yao E; Quanquin, Natalie; Wang, Guiqin; Tian, Xiaoli; He, Zhanlong; Liu, Longding; Yu, Wenhai; Sanchez, David Jesse; Liang, Yuying; Jiang, Taijiao; Modlin, Robert; Bloom, Barry R; Li, Qihan; Deng, Jane C; Zhou, Paul; Qin, F Xiao-Feng; Cheng, Genhong

    2017-03-08

    New influenza vaccines that provide effective and broad protection are desperately needed. Live attenuated viruses are attractive vaccine candidates because they can elicit both humoral and cellular immune responses. However, recent formulations of live attenuated influenza vaccines (LAIVs) have not been protective. We combined high-coverage transposon mutagenesis of influenza virus with a rapid high-throughput screening for attenuation to generate W7-791, a live attenuated mutant virus strain. W7-791 produced only a transient asymptomatic infection in adult and neonatal mice even at doses 100-fold higher than the LD50 of the parent strain. A single administration of W7-791 conferred full protection to mice against lethal challenge with H1N1, H3N2, and H5N1 strains, and improved viral clearance in ferrets. Adoptive transfer of T cells from W7-791-immunized mice conferred heterologous protection, indicating a role for T cell-mediated immunity. These studies present an LAIV development strategy to rapidly generate and screen entire libraries of viral clones.

  12. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough.

    PubMed

    Mielcarek, Nathalie; Debrie, Anne-Sophie; Raze, Dominique; Bertout, Julie; Rouanet, Carine; Younes, Amena Ben; Creusy, Colette; Engle, Jacquelyn; Goldman, William E; Locht, Camille

    2006-07-01

    Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth.

  13. Cross-protection against Salmonella Typhimurium infection conferred by a live attenuated Salmonella Enteritidis vaccine.

    PubMed

    Nandre, Rahul M; Lee, Dajeong; Lee, John Hwa

    2015-01-01

    In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge.

  14. Cross-protection against Salmonella Typhimurium infection conferred by a live attenuated Salmonella Enteritidis vaccine

    PubMed Central

    Nandre, Rahul M.; Lee, Dajeong; Lee, John Hwa

    2015-01-01

    In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge. PMID:25673904

  15. Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough

    PubMed Central

    Mielcarek, Nathalie; Debrie, Anne-Sophie; Raze, Dominique; Bertout, Julie; Rouanet, Carine; Younes, Amena Ben; Creusy, Colette; Engle, Jacquelyn; Goldman, William E; Locht, Camille

    2006-01-01

    Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth. PMID:16839199

  16. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  17. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    SciTech Connect

    Lee, Yoon Jae; Jang, Yo Han; Kim, Paul; Lee, Yun Ha; Lee, Young Jae; Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik; Seong, Baik Lin

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  18. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models.

    PubMed

    Shan, Chao; Muruato, Antonio E; Nunes, Bruno T D; Luo, Huanle; Xie, Xuping; Medeiros, Daniele B A; Wakamiya, Maki; Tesh, Robert B; Barrett, Alan D; Wang, Tian; Weaver, Scott C; Vasconcelos, Pedro F C; Rossi, Shannan L; Shi, Pei-Yong

    2017-04-10

    Zika virus (ZIKV) infection of pregnant women can cause a wide range of congenital abnormalities, including microcephaly, in the infant, a condition now collectively known as congenital ZIKV syndrome. A vaccine to prevent or significantly attenuate viremia in pregnant women who are residents of or travelers to epidemic or endemic regions is needed to avert congenital ZIKV syndrome, and might also help to suppress epidemic transmission. Here we report on a live-attenuated vaccine candidate that contains a 10-nucleotide deletion in the 3' untranslated region of the ZIKV genome (10-del ZIKV). The 10-del ZIKV is highly attenuated, immunogenic, and protective in type 1 interferon receptor-deficient A129 mice. Crucially, a single dose of 10-del ZIKV induced sterilizing immunity with a saturated neutralizing antibody titer, which no longer increased after challenge with an epidemic ZIKV, and completely prevented viremia. The immunized mice also developed a robust T cell response. Intracranial inoculation of 1-d-old immunocompetent CD-1 mice with 1 × 10(4) infectious focus units (IFU) of 10-del ZIKV caused no mortality, whereas infections with 10 IFU of wild-type ZIKV were lethal. Mechanistically, the attenuated virulence of 10-del ZIKV may be due to decreased viral RNA synthesis and increased sensitivity to type-1-interferon inhibition. The attenuated 10-del ZIKV was incapable of infecting mosquitoes after oral feeding of spiked-blood meals, representing an additional safety feature. Collectively, the safety and efficacy results suggest that further development of this promising, live-attenuated ZIKV vaccine candidate is warranted.

  19. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals

    PubMed Central

    Kong, Huihui; Zhang, Qianyi; Gu, Chunyang; Shi, Jianzhong; Deng, Guohua; Ma, Shujie; Liu, Jinxiong; Chen, Pucheng; Guan, Yuntao; Jiang, Yongping; Chen, Hualan

    2015-01-01

    The continued spread of the newly emerged H7N9 viruses among poultry in China, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. An MF59-adjuvant H7N9 inactivated vaccine is reported to be well-tolerated and immunogenic in humans; however a study in ferrets indicated that while a single dose of the inactivated H7N9 vaccine reduced disease severity, it did not prevent virus replication and transmission. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H7N9 vaccine (H7N9/AAca) that contains wild-type HA and NA genes from AH/1, and the backbone of the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AAca). H7N9/AAca was attenuated in mice and ferrets, and induced robust neutralizing antibody responses in rhesus mice, ferrets, and guinea pigs immunized once or twice intranasally. The animals immunized twice were completely protected from H7N9 virus challenge. Importantly, the animals vaccinated once were fully protected from transmission when exposed to or in contact with the H7N9 virus-inoculated animals. These results demonstrate that a cold-adapted H7N9 vaccine can prevent H7N9 virus transmission; they provide a compelling argument for further testing of this vaccine in human trials. PMID:26058711

  20. Active vaccination attenuates the psychostimulant effects of α-PVP and MDPV in rats.

    PubMed

    Nguyen, Jacques D; Bremer, Paul T; Ducime, Alex; Creehan, Kevin M; Kisby, Brent R; Taffe, Michael A; Janda, Kim D

    2016-12-09

    Recreational use of substituted cathinones continues to be an emerging public health problem in the United States; cathinone derivatives α-pyrrolidinopentiophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV), which have been linked to human fatalities and show high potential for abuse liability in animal models, are of particular concern. The objective of this study was to develop an immunotherapeutic strategy for attenuating the effects of α-PVP and MDPV in rats, using drug-conjugate vaccines created to generate antibodies with neutralizing capacity. Immunoconjugates (α-PVP-KLH and MDPV-KLH) or the control carrier protein, keyhole limpet hemocyanin (KLH), were administered to groups (N = 12) of male Sprague-Dawley rats on Weeks 0, 2 and 4. Groups were administered α-PVP or MDPV (0.0, 0.25, 0.5, 1.0, 5.0 mg/kg, i.p.) in acute drug challenges and tested for changes in wheel activity. Increased wheel activity produced by α-PVP or MDPV in the controls was attenuated in the α-PVP-KLH and MDPV-KLH vaccinated groups, respectively. Rectal temperature decreases produced by MDPV in the controls were reduced in duration in the MDPV-KLH vaccine group. A separate group (N = 19) was trained to intravenously self-administer α-PVP (0.05, 0.1 mg/kg/inf) and vaccinated with KLH or α-PVP-KLH, post-acquisition. Self-administration in α-PVP-KLH rats was initially higher than in the KLH rats but then significantly decreased following a final vaccine booster, unlike the stable intake of KLH rats. The data demonstrate that active vaccination provides functional protection against the effects of α-PVP and MDPV, in vivo, and recommend additional development of vaccines as potential therapeutics for mitigating the effects of designer cathinone derivatives.

  1. Immune responses elicited to a live-attenuated influenza virus vaccine compared to a traditional whole-inactivated virus vaccine for pandemic H1N1in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza vaccination is designing a platform that provides cross-protection across strains...

  2. Immunogenicity and Safety of a Live Attenuated Zoster Vaccine (ZOSTAVAX™) in Korean Adults.

    PubMed

    Choi, Won Suk; Choi, Jung-Hyun; Choi, Jun Yong; Eom, Joong Sik; Kim, Sang Il; Pai, Hyunjoo; Peck, Kyong Ran; Sohn, Jang Wook; Cheong, Hee Jin

    2016-01-01

    A live attenuated zoster vaccine (ZOSTAVAX™, Merck & Co., Inc.) was approved by the Korea Ministry of Food and Drug Safety in 2009. However, the immunogenicity and safety of the vaccine has not been assessed in Korean population. This is multi-center, open-label, single-arm study performed with 180 healthy Korean adults ≥ 50 yr of age. The geometric mean titer (GMT) and geometric mean fold rise (GMFR) of varicella zoster virus (VZV) antibodies were measured by glycoprotein enzyme-linked immunosorbent assay (gpELISA) at 4 weeks post-vaccination. Subjects were followed for exposure to varicella or herpes zoster (HZ), the development of any varicella/varicella-like or HZ/HZ-like rashes, and any other clinical adverse experiences (AEs) for 42 days post-vaccination. For the 166 subjects included in the per-protocol population, the GMT at Day 1 was 66.9. At 4 weeks post-vaccination, the GMT for this population was 185.4, with a GMFR of 2.8 (95% CI, 2.5-3.1). Of the 180 subjects vaccinated, 62.8% experienced ≥ 1 AE, with 53.3% of subjects reporting injection-site AEs. The most frequently reported injection-site AEs were erythema (45.0%) with the majority being mild in intensity. Overall, 44 (24.4%) subjects experienced ≥ 1 systemic AE, 10 (5.5%) subjects experienced a systemic vaccine-related AE, and 3 (1.7%) subjects experienced ≥ 1 serious AE not related to vaccine. No subjects reported a VZV-like rash. There was no subject of death and no subject discontinued due to an adverse event. A single dose of zoster vaccine induced VZV-specific gpELISA antibody response and was generally well-tolerated in healthy Korean adults ≥50 yr of age (registry at www.clinicaltrial.gov No. NCT01556451).

  3. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein.

    PubMed

    Cheng, Benson Y H; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2017-01-15

    Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we document that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses.

  4. Engineered alphavirus replicon vaccines based on known attenuated viral mutants show limited effects on immunogenicity.

    PubMed

    Maruggi, Giulietta; Shaw, Christine A; Otten, Gillis R; Mason, Peter W; Beard, Clayton W

    2013-12-01

    The immunogenicity of alphavirus replicon vaccines is determined by many factors including the level of antigen expression and induction of innate immune responses. Characterized attenuated alphavirus mutants contain changes to the genomic 5' UTR and mutations that result in altered non-structural protein cleavage timing leading to altered levels of antigen expression and interferon (IFN) induction. In an attempt to create more potent replicon vaccines, we engineered a panel of Venezuelan equine encephalitis-Sindbis virus chimeric replicons that contained these attenuating mutations. Modified replicons were ranked for antigen expression and IFN induction levels in cell culture and then evaluated in mice. The results of these studies showed that differences in antigen production and IFN induction in vitro did not correlate with large changes in immunogenicity in vivo. These findings indicate that the complex interactions between innate immune response and the replicon's ability to express antigen complicate rational design of more potent alphavirus replicons.

  5. In vitro analysis of virus particle subpopulations in candidate live-attenuated influenza vaccines distinguishes effective from ineffective vaccines.

    PubMed

    Marcus, Philip I; Ngunjiri, John M; Sekellick, Margaret J; Wang, Leyi; Lee, Chang-Won

    2010-11-01

    Two effective (vac+) and two ineffective (vac-) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac- variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.

  6. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction

    PubMed Central

    Watanabe, Ryo; Suzuki, Jun-ichi; Wakayama, Kouji; Maejima, Yasuhiro; Shimamura, Munehisa; Koriyama, Hiroshi; Nakagami, Hironori; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Morishita, Ryuichi; Komuro, Issei; Isobe, Mitsuaki

    2017-01-01

    A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure. PMID:28266578

  7. Safety and Immunogenicity of a Live-Attenuated Junin (Argentine Hemorrhagic Fever) Vaccine in Rhesus Macaques

    DTIC Science & Technology

    1993-01-01

    virus from animals in every dose group. vetted 1-2.5 weeks after initial virus recovery. That the viruses recovered were Junin virus is certain: all...wild-type strains (LI 1.25). When vivo neutralization and virus clearance are com- we used this system to examine viruses recovered plex and multi...Fredertcktfarniand Abstract. The safety and immunogenicity of Candid #1. a live-attenuated Junin- virus vaccine, were evaluated in rhesus macaques. Candid #1 was

  8. General Molecular Strategy for Development of Arenavirus Live-Attenuated Vaccines

    PubMed Central

    Iwasaki, Masaharu; Ngo, Nhi; Cubitt, Beatrice; Teijaro, John R.

    2015-01-01

    ABSTRACT Hemorrhagic fever arenaviruses (HFA) pose important public health problems in regions where they are endemic. Thus, Lassa virus (LASV) infects several hundred thousand individuals yearly in West Africa, causing a large number of Lassa fever cases associated with high morbidity and mortality. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. The Mopeia virus (MOPV)/LASV reassortant (ML29) is a LASV candidate live-attenuated vaccine (LAV) that has shown promising results in animal models. Nevertheless, the mechanism of ML29 attenuation remains unknown, which raises concerns about the phenotypic stability of ML29 in response to additional mutations. Development of LAVs based on well-defined molecular mechanisms of attenuation will represent a major step in combatting HFA. We used the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to develop a general molecular strategy for arenavirus attenuation. Our approach involved replacement of the noncoding intergenic region (IGR) of the L genome segment with the IGR of the S genome segment to generate a recombinant LCMV, rLCMV(IGR/S-S), that was highly attenuated in vivo but induced protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV(IGR/S-S) was associated with a stable reorganization of the control of viral gene expression. This strategy can facilitate the rapid development of LAVs with the antigenic composition of the parental HFA and a mechanism of attenuation that minimizes concerns about increased virulence that could be caused by genetic changes in the LAV. IMPORTANCE Hemorrhagic fever arenaviruses (HFA) cause high morbidity and mortality, and pose important public health problems in the regions where they are endemic. Implementation of live-attenuated vaccines (LAV) will represent a

  9. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis.

    PubMed

    Xue, Jianmin; Chen, Xia; Selby, Dale; Hung, Chiung-Yu; Yu, Jieh-Juen; Cole, Garry T

    2009-08-01

    Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.

  10. Innate and adaptive immune control of genetically engineered live-attenuated arenavirus vaccine prototypes.

    PubMed

    Pinschewer, Daniel D; Flatz, Lukas; Steinborn, Ralf; Horvath, Edit; Fernandez, Marylise; Lutz, Hans; Suter, Mark; Bergthaler, Andreas

    2010-09-01

    Arenaviruses such as Lassa virus (LASV) cause significant morbidity and mortality in endemic areas. Using a glycoprotein (GP) exchange strategy, we have recently developed live-attenuated arenavirus vaccine prototypes (rLCMV/VSVG) based on lymphocytic choriomeningitis virus (LCMV), a close relative of LASV. rLCMV/VSVG induced long-term CD8(+) T cell immunity against wild-type virus challenge and exhibited a stably attenuated phenotype in vivo. Here we elucidated the innate and adaptive immune requirements for the control of rLCMV/VSVG. Infection of RAG(-/-) mice resulted in persisting viral RNA in blood but not in overt viremia. The latter was only found in mice lacking both RAG and IFN type I receptor. Conversely, absence of IFN type II signaling or NK cells on an RAG-deficient background had only minor effects on vaccine virus load or none at all. rLCMV/VSVG infection of wild-type mice induced less type I IFN than did wild-type LCMV, and type I as well as type II IFNs were dispensable for the induction of virus-specific memory CD8 T cells and virus-neutralizing antibodies by rLCMV/VSVG. In conclusion, the adaptive immune systems are essential for elimination of rLCMV/VSVG, and type I but not type II IFN plays a major contributive role in lowering rLCMV/VSVG loads in vivo, attesting to the attenuation profile of the vaccine. Nevertheless, IFNs are not required for the induction of potent vaccine responses. These results provide a better understanding of the immunobiology of rLCMV/VSVG and will contribute to the further development of GP exchange vaccines for combating arenaviral hemorrhagic fevers.

  11. Characterization of Francisella tularensis Schu S4 defined mutants as live-attenuated vaccine candidates.

    PubMed

    Santiago, Araceli E; Mann, Barbara J; Qin, Aiping; Cunningham, Aimee L; Cole, Leah E; Grassel, Christen; Vogel, Stefanie N; Levine, Myron M; Barry, Eileen M

    2015-08-01

    Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 10(5) CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development.

  12. Sublingual vaccine with GroEL attenuates atherosclerosis.

    PubMed

    Hagiwara, M; Kurita-Ochiai, T; Kobayashi, R; Hashizume-Takizawa, T; Yamazaki, K; Yamamoto, M

    2014-04-01

    Autoimmune responses to heat-shock protein 60 (HSP60) contribute to the progression of atherosclerosis, whereas immunization with HSP60 may induce atheroprotective responses. We assessed the capacity of an atheroprotective vaccine that targeted a recombinant HSP60 from Porphyromonas gingivalis (rGroEL) to induce a protective mucosal immune response. Female apolipoprotein E-deficient spontaneously hyperlipidemic (Apoe(shl)) mice received sublingual delivery of rGroEL prior to P. gingivalis 381 injection. The animals were euthanized 16 weeks later. Sublingual immunization with rGroEL induced significant rGroEL-specific serum IgG responses. Antigen-specific cells isolated from spleen produced significantly high levels of IL-10 and IFN-γ after antigen re-stimulation in vitro. Flow cytometric analysis indicated that the frequencies of both IL-10(+) and IFN-γ(+) CD4(+) Foxp3(+) cells increased significantly in submandibular glands (SMG). Furthermore, sublingual immunization with rGroEL significantly reduced atherosclerosis lesion formation in the aortic sinus and decreased serum CRP, MCP-1, and ox-LDL levels. These findings suggest that sublingual immunization with rGroEL is associated with the increase of IFNγ(+) or IL-10(+) Foxp3(+) cells in SMG and a systemic humoral response, which could be an effective strategy for the prevention of naturally occurring or P. gingivalis-accelerated atherosclerosis.

  13. Correlates of Immunity to Influenza as Determined by Challenge of Children with Live, Attenuated Influenza Vaccine

    PubMed Central

    Wright, Peter F.; Hoen, Anne G.; Ilyushina, Natalia A.; Brown, Eric P.; Ackerman, Margaret E.; Wieland-Alter, Wendy; Connor, Ruth I.; Jegaskanda, Sinthujan; Rosenberg-Hasson, Yael; Haynes, Brenda C.; Luke, Catherine J.; Subbarao, Kanta; Treanor, John J.

    2016-01-01

    Background. The efficacy of live, attenuated live attenuated influenza vaccine(LAIV) and inactivated influenza vaccine(IIV) is poorly explained by either single or composite immune responses to vaccination. Protective biomarkers were therefore studied in response to LAIV or IIV followed by LAIV challenge in children. Methods. Serum and mucosal responses to LAIV or IIV were analyzed using immunologic assays to assess both quantitative and functional responses. Cytokines and chemokines were measured in nasal washes collected before vaccination, on days 2, 4, and 7 after initial LAIV, and again after LAIV challenge using a 63-multiplex Luminex panel. Results. Patterns of immunity induced by LAIV and IIV were significantly different. Serum responses induced by IIV, including hemagglutination inhibition, did not correlate with detection or quantitation of LAIV on subsequent challenge. Modalities that induced sterilizing immunity seen after LAIV challenge could not be defined by any measurements of mucosal or serum antibodies induced by the initial LAIV immunization. No single cytokine or chemokine was predictive of protection. Conclusions. The mechanism of protective immunity observed after LAIV could not be defined, and traditional measurements of immunity to IIV did not correlate with protection against an LAIV challenge. PMID:27419180

  14. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders

    PubMed Central

    Hatcher, Christopher L.; Mott, Tiffany M.; Muruato, Laura A.; Sbrana, Elena

    2016-01-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. PMID:27271739

  15. Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney Cells.

    PubMed

    Ghetas, A M; Thaxton, G E; Breedlove, C; van Santen, V L; Toro, H

    2015-03-01

    The population structure of an embryo-attenuated infectious bronchitis virus (IBV) Arkansas (Ark) Delmarva Poultry Industry (DPI)-derived vaccine was characterized during serial passages in chicken embryo kidney (CEK) cells and after back-passage in embryonated chicken eggs (ECE) and in chickens. Both conventional and deep-sequencing results consistently showed population changes occurred during adaptation to CEK cells. Specifically, 13 amino acid (aa) positions seemed to be targets of selection when comparing the vaccine genome prior to and after seven passages in CEK (CEKp7). Amino acid changes occurred at four positions in the spike (S) gene and, at two positions in the S gene, large shifts in frequencies of aa encoding were observed. CEK adaptation shifted the virus population towards homogeneity in S. The changes achieved in the S1 gene in CEKp7 were maintained after a back-passage in ECE. Outside the S gene, aa changes at three positions and large shifts in frequencies at four positions were observed. Synonymous nucleotide changes and changes in noncoding regions of the genome were observed at eight genome positions. Inoculation of early CEK passages into chickens induced higher antibody levels and CEKp4 induced increased respiratory signs compared to CEKp7. From an applied perspective, the fact that CEK adaptation of embryo-attenuated Ark vaccines reduces population heterogeneity, and that changes do not revert after one replication cycle in ECE or in chickens, provides an opportunity to improve commercial ArkDPI-derived vaccines.

  16. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum.

    PubMed

    Fiuza, Jacqueline Araújo; Gannavaram, Sreenivas; Santiago, Helton da Costa; Selvapandiyan, Angamuthu; Souza, Daniel Menezes; Passos, Lívia Silva Araújo; de Mendonça, Ludmila Zanandreis; Lemos-Giunchetti, Denise da Silveira; Ricci, Natasha Delaqua; Bartholomeu, Daniella Castanheira; Giunchetti, Rodolfo Cordeiro; Bueno, Lilian Lacerda; Correa-Oliveira, Rodrigo; Nakhasi, Hira L; Fujiwara, Ricardo Toshio

    2015-01-03

    Live attenuated Leishmania donovani parasites such as LdCen(-/-) have been shown elicit protective immunity against leishmanial infection in mice and hamster models. Previously, we have reported on the induction of strong immunogenicity in dogs upon vaccination with LdCen(-/-) including an increase in immunoglobulin isotypes, higher lymphoproliferative response, higher frequencies of activated CD4(+) and CD8(+) T cells, IFN-γ production by CD8(+) T cells, increased secretion of TNF-α and IL-12/IL-23p40 and, finally, decreased secretion of IL-4. To further explore the potential of LdCen(-/-) parasites as vaccine candidates, we performed a 24-month follow up of LdCen(-/-) immunized dogs after challenge with virulent Leishmania infantum, aiming determination of parasite burden by qPCR, antibody production (ELISA) and cellular responses (T cell activation and cytokine production) by flow cytometry and sandwich ELISA. Our data demonstrated that vaccination with a single dose of LdCen(-/-) (without any adjuvant) resulted in the reduction of up to 87.3% of parasite burden after 18 months of virulent challenge. These results are comparable to those obtained with commercially available vaccine in Brazil (Leishmune(®)). The protection was associated with antibody production and CD4(+) and CD8(+) proliferative responses, as well as T cell activation and significantly higher production of IFN-γ, IL-12/IL-23p40 and TNF-α, which was comparable to responses induced by immunization with Leishmune(®), with significant differences when compared to control animals (Placebo). Moreover, only animals immunized with LdCen(-/-) expressed lower levels of IL-4 when compared to animals vaccinated either with Leishmune(®) or PBS. Our results support further studies aiming to demonstrate the potential of genetically modified live attenuated L. donovani vaccine to control L. infantum transmission in endemic areas for CVL.

  17. Development of an acid-resistant Salmonella Typhi Ty21a attenuated vector for improved oral vaccine delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, T...

  18. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  19. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation.

    PubMed

    Stobart, Christopher C; Rostad, Christina A; Ke, Zunlong; Dillard, Rebecca S; Hampton, Cheri M; Strauss, Joshua D; Yi, Hong; Hotard, Anne L; Meng, Jia; Pickles, Raymond J; Sakamoto, Kaori; Lee, Sujin; Currier, Michael G; Moin, Syed M; Graham, Barney S; Boukhvalova, Marina S; Gilbert, Brian E; Blanco, Jorge C G; Piedra, Pedro A; Wright, Elizabeth R; Moore, Martin L

    2016-12-21

    Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats.

  20. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation

    PubMed Central

    Stobart, Christopher C.; Rostad, Christina A.; Ke, Zunlong; Dillard, Rebecca S.; Hampton, Cheri M.; Strauss, Joshua D.; Yi, Hong; Hotard, Anne L.; Meng, Jia; Pickles, Raymond J.; Sakamoto, Kaori; Lee, Sujin; Currier, Michael G.; Moin, Syed M.; Graham, Barney S.; Boukhvalova, Marina S.; Gilbert, Brian E.; Blanco, Jorge C. G.; Piedra, Pedro A.; Wright, Elizabeth R.; Moore, Martin L.

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization and there remains no pediatric vaccine. RSV live-attenuated vaccines (LAVs) have a history of safe testing in infants; however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we seek to engineer an RSV LAV with enhanced immunogenicity. Genetic mapping identifies strain line 19 fusion (F) protein residues that correlate with pre-fusion antigen maintenance by ELISA and thermal stability of infectivity in live RSV. We generate a LAV candidate named OE4 which expresses line 19F and is attenuated by codon-deoptimization of non-structural (NS1 and NS2) genes, deletion of the small hydrophobic (SH) gene, codon-deoptimization of the attachment (G) gene and ablation of the secreted form of G. OE4 (RSV-A2-dNS1-dNS2-ΔSH-dGm-Gsnull-line19F) exhibits elevated pre-fusion antigen levels, thermal stability, immunogenicity, and efficacy despite heavy attenuation in the upper and lower airways of cotton rats. PMID:28000669

  1. Computational Prediction and Analysis of Envelop Glycoprotein Epitopes of DENV-2 and DENV-3 Pakistani Isolates: A First Step towards Dengue Vaccine Development

    PubMed Central

    Idrees, Muhammad

    2015-01-01

    Dengue fever of tropics is a mosquito transmitted devastating disease caused by dengue virus (DENV). There is no effective vaccine available, so far, against any of its four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). There is a need for the development of preventive and therapeutic vaccines against DENV to decrease the prevalence of dengue fever, especially in Pakistan. In this research, linear and conformational B-cell epitopes of envelope glycoprotein of DENV-2 and DENV-3 (the most prevalent serotypes in Pakistan) were predicted. We used Kolaskar and Tongaonkar method for linear epitope prediction, Emini’s method for surface accessibility prediction and Karplus and Schulz’s algorithm for flexibility determination. To propose three dimensional epitopes, the E proteins for both serotypes were homology modeled by using Phyre2 V 2.0 server, and ElliPro was used for the prediction of surface epitopes on their globular structure. Total 21 and 19 linear epitopes were predicted for DENV-2 and DENV-3 Pakistani isolates respectively. Whereas, 5 and 4 discontinuous epitopes were proposed for DENV-2 and DENV-3 Pakistani isolates respectively. Moreover, the values of surface accessibility, flexibility and solvent-accessibility can be helpful in analyzing vaccines against DENV-2 and DENV-3. In conclusion, the proposed continuous and discontinuous antigenic peptides can be valuable candidates for diagnostic and therapeutics of DENV. PMID:25775090

  2. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure.

  3. Relaxation of purifying selection on the SAD lineage of live attenuated oral vaccines for rabies virus.

    PubMed

    Hughes, Austin L

    2009-09-01

    Analysis of patterns of nucleotide sequence diversity in wild-type rabies virus (RABV) genomes and in the SAD live attenuated oral vaccine lineage was used to test for the relaxation of purifying selection in the latter and provide evidence regarding the genomic regions where such relaxation of selection occurs. The wild-type sequences showed evidence of strong past and ongoing purifying selection both on nonsynonymous sites in coding regions and on non-coding regions, particularly the start, end and 5' UTR regions. SAD vaccine sequences showed a relaxation of purifying selection at nonsynonymous sites in coding regions, resulting a substantial number of amino acid sequence polymorphisms at sites that were invariant in the wild-type sequences. Moreover, SAD vaccine sequences showed high levels of mutation accumulation in the non-coding regions that were most conserved in the wild-type sequences. Understanding the biological effects of the unique mutations accumulated in the vaccine lineage is important because of their potential effects on antigenicity and effectiveness of the vaccine.

  4. Antibody response in seropositive multiple sclerosis patients vaccinated with attenuated live varicella zoster virus

    PubMed Central

    Ross, RT; Dawood, MR; Cheang, Mary; Nicolle, Lindsay E

    1996-01-01

    OBJECTIVE: To determine the safety and effectiveness of live attenuated varicella zoster virus (VZV) vaccine (OKA/Merck) on 50 patients with chronic progressive multiple sclerosis (MS), based on the hypothesis that VZV might be the antigen or antigen mimic of MS plus the fact that repeated high antigen doses have produced ‘antigen paralysis’ in experimental allergic encephalomyelitis mice. DESIGN: Fifty patients were randomly selected without controls. They were assessed clinically at entry and on four other occasions over 14 months. Enhanced cranial magnetic resonance imaging (MRI) was performed at entry and at six and 12 months post entry. All were vaccinated after initial assessment and again six weeks later. SETTING: All clinical and laboratory assessments were performed at the Health Sciences Centre, Winnipeg, in the out-patient department. All MRI examinations were performed at the St Boniface General Hospital, Winnipeg, Manitoba. Both are tertiary care hospitals. POPULATION STUDIED: Fifty randomly selected patients with chronic progressive MS, age 18 to 60 years, and a disability status scale of 2.0 or greater were included. Forty-five patients completed the study. INTERVENTIONS: Two vaccinations with attenuated live VZV six weeks apart. RESULTS: All patients were VZV seropositive at entry and all showed an increased antibody level following vaccination. No one was harmed by the vaccine. There may have been some changes in the MS of 15 patients. CONCLUSIONS: It may be reasonable and safe to challenge the process of MS using large doses of the immunogenic proteins of the VZV to induce ‘immune paralysis’. PMID:22514454

  5. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    PubMed

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  6. Dengue Research Opportunities in the Americas

    PubMed Central

    Laughlin, Catherine A.; Morens, David M.; Cassetti, M. Cristina; Costero-Saint Denis, Adriana; San Martin, Jose-Luis; Whitehead, Stephen S.; Fauci, Anthony S.

    2012-01-01

    Dengue is a systemic arthropod-borne viral disease of major global public health importance. At least 2.5 billion people who live in areas of the world where dengue occurs are at risk of developing dengue fever (DF) and its severe complications, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Repeated reemergences of dengue in sudden explosive epidemics often cause public alarm and seriously stress healthcare systems. The control of dengue is further challenged by the lack of effective therapies, vaccines, and point-of-care diagnostics. Despite years of study, even its pathogenic mechanisms are poorly understood. This article discusses recent advances in dengue research and identifies challenging gaps in research on dengue clinical evaluation, diagnostics, epidemiology, immunology, therapeutics, vaccinology/clinical trials research, vector biology, and vector ecology. Although dengue is a major global tropical pathogen, epidemiologic and disease control considerations in this article emphasize dengue in the Americas. PMID:22782946

  7. Live Attenuated Human Salmonella Vaccine Candidates: tracking the pathogen in natural infection and stimulation of host immunity

    PubMed Central

    Galen, James E.; Buskirk, Amanda D.; Tennant, Sharon M.; Pasetti, Marcela F.

    2016-01-01

    Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality, in both animals and humans. In this review, we will discuss the pathogenesis of S. Typhi and S. Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable. PMID:27809955

  8. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity.

    PubMed

    Galen, James E; Buskirk, Amanda D; Tennant, Sharon M; Pasetti, Marcela F

    2016-11-01

    Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.

  9. Construction of two Listeria ivanovii attenuated strains expressing Mycobacterium tuberculosis antigens for TB vaccine purposes.

    PubMed

    Lin, Qingqing; Zhou, Mengying; Xu, Zongkai; Khanniche, Asma; Shen, Hao; Wang, Chuan

    2015-02-20

    Bacillus Calmette-Guerin (BCG) has failed in complete control of tuberculosis (TB), thus, novel tuberculosis vaccines are urgently needed. We have constructed several TB vaccine candidates, which are characterized by the use of Listeria ivanovii (LI) strain as an antigen delivery vector. Two L. ivanovii attenuated recombinant strains L. ivanovii△actAplcB-Rv0129c and L. ivanovii△actAplcB-Rv3875 were successfully screened. Results from genome PCR and sequencing showed that the Mycobacterium tuberculosis antigen gene cassette coding for Ag85C or ESAT-6 protein respectively had been integrated into LI genome downstream of mpl gene. Western blot confirmed the secretion of Ag85C or ESAT-6 protein from the recombinant LI strains. These two recombinant strains showed similar growth curves as wide type strain in vitro. In vivo, they transiently propagated in mice spleen and liver, and induced specific CD8(+) IFN-γ secretion. Therefore, in this paper, two novel LI attenuated strains expressing specific TB antigens were successfully constructed. The promising growth characteristics in mice immune system and the capability of induction of IFN-γ secretion make them of potential interest for development of TB vaccines.

  10. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    PubMed

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  11. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments

    PubMed Central

    Hill, Terence E.; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Slack, Olga A. L.; Ly, Hoai J.; Lokugamage, Nandadeva; Freiberg, Alexander N.

    2015-01-01

    ABSTRACT Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to

  12. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen

    PubMed Central

    Gonçalves, Antônio J. S.; Oliveira, Edson R. A.; Costa, Simone M.; Paes, Marciano V.; Silva, Juliana F. A.; Azevedo, Adriana S.; Mantuano-Barradas, Marcio; Nogueira, Ana Cristina M. A.; Almeida, Cecília J.; Alves, Ada M. B.

    2015-01-01

    Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity. PMID:26650916

  13. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen.

    PubMed

    Gonçalves, Antônio J S; Oliveira, Edson R A; Costa, Simone M; Paes, Marciano V; Silva, Juliana F A; Azevedo, Adriana S; Mantuano-Barradas, Marcio; Nogueira, Ana Cristina M A; Almeida, Cecília J; Alves, Ada M B

    2015-12-01

    Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.

  14. Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: intra-nasal vaccination.

    PubMed

    Vijaysri, Sangeetha; Jentarra, Garilyn; Heck, Michael C; Mercer, Andrew A; McInnes, Colin J; Jacobs, Bertram L

    2008-01-30

    Vaccinia virus (VACV) has been used as the vaccine to protect against smallpox, and recombinant VACVs have been used to develop vaccine candidates against numerous cancers and infectious diseases. Although relatively safe for use in humans, the strains of VACV that were used as smallpox vaccines led to several complications including, progressive infection in immune compromised individuals, eczema vaccination in individuals with a history of atopic dermatitis, and encephalitis and perimyocarditis in apparently healthy individuals. The work described in this paper focuses on attenuated strains of VACV that may have the potential for use as vaccine vectors with reduced pathogenicity. We have generated several VACV mutants in a WR background with specific mutations in the E3L gene that were at least a 1000-fold less pathogenic compared to wtVACV upon intra-nasal infection of mice. Many of these mutant viruses replicated to high titers in the nasal mucosa of mice following intra-nasal administration. Despite replication to high titers in the nose, there was little spread to other organs in infected animals. Intra-nasal vaccination with doses as low as 100-1000 pfu (plaque forming units) of these replicating VACV constructs were sufficient to protect the host from challenge with large doses of wtVACV. Similar constructs in a Copenhagen and a NYCBH background were highly attenuated, yet effective as vaccines in the mouse model. These recombinant VACV constructs may be promising vector candidates for use in vaccination strategies against smallpox and other pathogens.

  15. A Low Gastric pH Mouse Model to Evaluate Live Attenuated Bacterial Vaccines

    PubMed Central

    Brenneman, Karen E.; Willingham, Crystal; Kilbourne, Jacquelyn A.; 3rd, Roy Curtiss; Roland, Kenneth L.

    2014-01-01

    The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials. PMID:24489912

  16. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    PubMed

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  17. Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice.

    PubMed

    Bannantine, John P; Everman, Jamie L; Rose, Sasha J; Babrak, Lmar; Katani, Robab; Barletta, Raúl G; Talaat, Adel M; Gröhn, Yrjö T; Chang, Yung-Fu; Kapur, Vivek; Bermudez, Luiz E

    2014-01-01

    Johne's disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP), which results in serious economic losses worldwide in farmed livestock such as cattle, sheep, and goats. To control this disease, an effective vaccine with minimal adverse effects is needed. In order to identify a live vaccine for Johne's disease, we evaluated eight attenuated mutant strains of MAP using a C57BL/6 mouse model. The persistence of the vaccine candidates was measured at 6, 12, and 18 weeks post vaccination. Only strains 320, 321, and 329 colonized both the liver and spleens up until the 12-week time point. The remaining five mutants showed no survival in those tissues, indicating their complete attenuation in the mouse model. The candidate vaccine strains demonstrated different levels of protection based on colonization of the challenge strain in liver and spleen tissues at 12 and 18 weeks post vaccination. Based on total MAP burden in both tissues at both time points, strain 315 (MAP1566::Tn5370) was the most protective whereas strain 318 (intergenic Tn5367 insertion between MAP0282c and MAP0283c) had the most colonization. Mice vaccinated with an undiluted commercial vaccine preparation displayed the highest bacterial burden as well as enlarged spleens indicative of a strong infection. Selected vaccine strains that showed promise in the mouse model were moved forward into a goat challenge model. The results suggest that the mouse trial, as conducted, may have a relatively poor predictive value for protection in a ruminant host such as goats.

  18. Rational Development of an Attenuated Recombinant Cyprinid Herpesvirus 3 Vaccine Using Prokaryotic Mutagenesis and In Vivo Bioluminescent Imaging

    PubMed Central

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S.; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J.; Vanderplasschen, Alain

    2015-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. PMID:25700279

  19. Safety and efficacy of a metabolic drift live attenuated Salmonella Gallinarum vaccine against fowl typhoid.

    PubMed

    Shehata, Awad Ali; Sultan, Hesham; Hafez, Hafez M; Krüger, Monika

    2013-03-01

    Fowl typhoid (FT), a systemic disease that results in septicemia in poultry, is caused by Salmonella enterica serovar Gallinarum biovar Gallinarum (SG). Mortality and morbidity rates from FT can reach up to 80%. Attenuated live Salmonella vaccine candidates have received considerable attention because they confer solid immunity, and they can produce systemic and mucosal immunity in the gut when administered orally. In the present study, five metabolic drift (MD) mutants with a single-(designated SG-Rif1, SG-Sm6) or double-attenuating marker (designated SG-Rif1-Sm4, SG-Sm6-Rif10, and SG-Rif1-Sm10) were isolated. The relative colony sizes to wild-type strain after 24 hr at 37 C incubation were 50%, 40%, 30%, 30%, and 20%, respectively. The probability of a back mutation can almost be excluded because the reduced colony sizes were stable after at least 50 passages on culture media. The safety and immunogenicity were evaluated in susceptible 1-day-old commercial layer chickens. After oral administration of 10(8) colony-forming units (CFU), all developed MD mutants proved to be safe and did not cause death of any infected birds during 15 days postvaccination, whereas chickens receiving 10(6) CFU SG wild-type strain showed a high mortality rate (40%). Vaccination of commercial layer chicks with SG-Rif1, SG-Sm6, SG-Rif1-Sm4, and SG-Sm6-Rif10 MD mutants could protect chickens against challenge by homologous wild-type strain; however, SG-Rif1-Sm10 could not protect against challenge, indicating hyperattenuation. In conclusion, vaccination with SG MD mutant vaccine appears to be safe and offers protection against FT in chickens.

  20. B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial.

    PubMed

    Jahnmatz, Maja; Amu, Sylvie; Ljungman, Margaretha; Wehlin, Lena; Chiodi, Francesca; Mielcarek, Nathalie; Locht, Camille; Thorstensson, Rigmor

    2014-06-05

    Despite high vaccination coverage, pertussis is still a global concern in infant morbidity and mortality, and improved pertussis vaccines are needed. A live attenuated Bordetella pertussis strain, named BPZE1, was designed as an intranasal vaccine candidate and has recently been tested in man in a phase I clinical trial. Here, we report the evaluation of the B-cell responses after vaccination with BPZE1. Forty-eight healthy males with no previous pertussis-vaccination were randomized into one of three dose-escalating groups or into a placebo group. Plasma blast- and memory B-cell responses were evaluated by ELISpot against three different pertussis antigens: pertussis toxin, filamentous haemagglutinin and pertactin. Seven out of the 36 subjects who had received the vaccine were colonized by BPZE1, and significant increases in the memory B-cell response were detected against all three tested antigens in the culture-positive subjects between days 0 and 28 post-vaccination. The culture-positive subjects also mounted a significant increase in the filamentous haemagglutinin-specific plasma blast response between days 7 and 14 post-vaccination. No response could be detected in the culture-negatives or in the placebo group post-vaccination. These data show that BPZE1 is immunogenic in humans and is therefore a promising candidate for a novel pertussis vaccine. This trial is registered at ClinicalTrials.gov (NCT01188512).

  1. An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines.

    PubMed

    Dong, Bo; Zarlenga, Dante S; Ren, Xiaofeng

    2014-01-01

    Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals.

  2. Dengue Fever

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Dengue Fever KidsHealth > For Parents > Dengue Fever Print A ... can help lower the chances of infection. About Dengue Fever Dengue (DEN-gee) fever is caused by ...

  3. Progress toward the development of a genetically engineered attenuated hepatitis A virus vaccine.

    PubMed Central

    Funkhouser, A W; Raychaudhuri, G; Purcell, R H; Govindarajan, S; Elkins, R; Emerson, S U

    1996-01-01

    Mutations which positively affect growth of hepatitis A virus in cell culture may negatively affect growth in vivo. Therefore, development of an attenuated vaccine for hepatitis A may require a careful balancing of mutations to produce a virus that will grow efficiently in cells suitable for vaccine production and still maintain a satisfactory level of attenuation in vivo. Since such a balance could be achieved most directly by genetic engineering, we are analyzing mutations that accumulated during serial passage of the HM-175 strain of hepatitis A virus in MRC-5 cell cultures in order to determine the relative importance of the mutations for growth in MRC-5 cells and for attenuation in susceptible primates. Chimeric viral genomes of the HM-175 strain were constructed from cDNA clones derived from a virulent virus and from two attenuated viruses adapted to growth in African green monkey kidney (AGMK) and MRC-5 cells, respectively. Viruses encoded by these chimeric genomes were recovered by in vitro or in vivo transfection and assessed for their ability to grow in cultured MRC-5 cells or to cause hepatitis in primates (tamarins). The only MRC-5-specific mutations that substantially increased the efficiency of growth in MRC-5 cells were a group of four mutations in the 5' noncoding (NC) region. These 5' NC mutations and a separate group of 5' NC mutations that accumulated during earlier passages of the HM-175 virus in primary AGMK cells appeared, independently and additively, to result in decreased biochemical evidence of hepatitis in tamarins. However, neither group of 5' NC mutations had a demonstrable effect on the extent of virus excretion or liver pathology in these animals. PMID:8892918

  4. Progress toward the development of a genetically engineered attenuated hepatitis A virus vaccine.

    PubMed

    Funkhouser, A W; Raychaudhuri, G; Purcell, R H; Govindarajan, S; Elkins, R; Emerson, S U

    1996-11-01

    Mutations which positively affect growth of hepatitis A virus in cell culture may negatively affect growth in vivo. Therefore, development of an attenuated vaccine for hepatitis A may require a careful balancing of mutations to produce a virus that will grow efficiently in cells suitable for vaccine production and still maintain a satisfactory level of attenuation in vivo. Since such a balance could be achieved most directly by genetic engineering, we are analyzing mutations that accumulated during serial passage of the HM-175 strain of hepatitis A virus in MRC-5 cell cultures in order to determine the relative importance of the mutations for growth in MRC-5 cells and for attenuation in susceptible primates. Chimeric viral genomes of the HM-175 strain were constructed from cDNA clones derived from a virulent virus and from two attenuated viruses adapted to growth in African green monkey kidney (AGMK) and MRC-5 cells, respectively. Viruses encoded by these chimeric genomes were recovered by in vitro or in vivo transfection and assessed for their ability to grow in cultured MRC-5 cells or to cause hepatitis in primates (tamarins). The only MRC-5-specific mutations that substantially increased the efficiency of growth in MRC-5 cells were a group of four mutations in the 5' noncoding (NC) region. These 5' NC mutations and a separate group of 5' NC mutations that accumulated during earlier passages of the HM-175 virus in primary AGMK cells appeared, independently and additively, to result in decreased biochemical evidence of hepatitis in tamarins. However, neither group of 5' NC mutations had a demonstrable effect on the extent of virus excretion or liver pathology in these animals.

  5. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys

    PubMed Central

    Schaap-Nutt, Anne; Scull, Margaret A.; Schmidt, Alexander C.; Murphy, Brian R.; Pickles, Raymond J.

    2010-01-01

    Human parainfluenza viruses (HPIVs) are common causes of severe pediatric respiratory viral disease. We characterized wild-type HPIV2 infection in an in vitro model of human airway epithelium (HAE) and found that the virus replicates to high titer, sheds apically, targets ciliated cells, and induces minimal cytopathology. Replication of an experimental, live attenuated HPIV2 vaccine strain, containing both temperature sensitive (ts) and non-ts attenuating mutations, was restricted >30-fold compared to rHPIV2-WT in HAE at 32°C and exhibited little productive replication at 37°C. This restriction paralleled attenuation in the upper and lower respiratory tract of African green monkeys, supporting the HAE model as an appropriate and convenient system for characterizing HPIV2 vaccine candidates. PMID:20139039

  6. Dengue in Vietnamese infants--results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity.

    PubMed

    Chau, Tran Nguyen Bich; Quyen, Nguyen Than Ha; Thuy, Tran Thi; Tuan, Nguyen Minh; Hoang, Dang Minh; Dung, Nguyen Thi Phuong; Lien, Le Bich; Quy, Nguyen Thien; Hieu, Nguyen Trong; Hieu, Lu Thi Minh; Hien, Tran Tinh; Hung, Nguyen Thanh; Farrar, Jeremy; Simmons, Cameron P

    2008-08-15

    The pathogenesis of severe dengue is not well understood. Maternally derived subneutralizing levels of dengue virus-reactive IgG are postulated to be a critical risk factor for severe dengue during infancy. In this study, we found that, in healthy Vietnamese infants, there was a strong temporal association between the Fc-dependent, dengue virus infection-enhancing activity of neat plasma and the age-related epidemiology of severe dengue. We then postulated that disease severity in infants with primary infections would be associated with a robust immune response, possibly as a consequence of higher viral burdens in vivo. Accordingly, in infants hospitalized with acute dengue, the activation phenotype of peripheral-blood NK cells and CD8+ and CD4+ T cells correlated with overall disease severity, but HLA-A*1101-restricted NS3(133-142)-specific CD8+ T cells were not measurable until early convalescence. Plasma levels of cytokines/chemokines were generally higher in infants with dengue shock syndrome. Collectively, these data support a model of dengue pathogenesis in infants whereby antibody-dependent enhancement of infection explains the age-related case epidemiology and could account for antigen-driven immune activation and its association with disease severity. These results also highlight potential risks in the use of live attenuated dengue vaccines in infants in countries where dengue is endemic.

  7. Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia.

    PubMed

    Soto, Esteban; Brown, Nicholas; Gardenfors, Zackarias O; Yount, Shaun; Revan, Floyd; Francis, Stewart; Kearney, Michael T; Camus, Alvin

    2014-12-01

    Francisella noatunensis subsp. orientalis (Fno) is a pleomorphic, facultative intracellular, Gram-negative, emerging bacterial pathogen of marine and fresh water fish with worldwide distribution. In this study, the efficacy of an attenuated Fno intracellular growth locus C (iglC) mutant was evaluated for use as a live immersion vaccine, when administered to hybrid tilapia at two different stages of growth (5 g fry and 10 g fingerlings) and at two temperatures (25 °C and 30 °C). To determine vaccine efficacy, mortality, days to first death, and Fno genome equivalents (GE) in the spleens of survivors, as well as serum and mucus antibody levels, were evaluated after 30 d in fish challenged with a wild type virulent strain. Both size and temperature at vaccination played an important role in immunization and protection. Fry vaccinated at 25 °C were not protected when compared to non-vaccinated fry at 25 °C (p = 0.870). In contrast, 5 g fry vaccinated at 30 °C were significantly protected compared to non-vaccinated fry at 30 °C (p = 0.038). Although lower mortalities occurred, 10 g fingerlings vaccinated at 25 °C were not protected, compared to non-vaccinated fingerlings at 25 °C (p = 0.328), while, 10 g fingerlings vaccinated at 30 °C were significantly protected, compared to non-vaccinated fingerlings at 30 °C (p = 0.038). Additionally, overall mortality of 5 g fish was significantly higher than in 10 g fish. Mortality was also significantly higher in fish subjected to a 30 to 25 °C temperature change one week prior to challenge, than in fish maintained at the same temperature during vaccination and challenge. This information demonstrates that both temperature and size at vaccination are important factors when implementing immunization prophylaxis in cultured tilapia.

  8. Gentamicin-Attenuated Leishmania infantum Vaccine: Protection of Dogs against Canine Visceral Leishmaniosis in Endemic Area of Southeast of Iran

    PubMed Central

    Daneshvar, Hamid; Namazi, Mohammad Javad; Kamiabi, Hossein; Burchmore, Richard; Cleaveland, Sarah; Phillips, Stephen

    2014-01-01

    An attenuated line of Leishmania infantum (L. infantum H-line) has been established by culturing promastigotes in vitro under gentamicin pressure. A vaccine trial was conducted using 103 naive dogs from a leishmaniosis non-endemic area (55 vaccinated and 48 unvaccinated) brought into an endemic area of southeast Iran. No local and/or general indications of disease were observed in the vaccinated dogs immediately after vaccination. The efficacy of the vaccine was evaluated after 24 months (4 sandfly transmission seasons) by serological, parasitological analyses and clinical examination. In western blot analysis of antibodies to L. infantum antigens, sera from 10 out of 31 (32.2%) unvaccinated dogs, but none of the sera from vaccinated dogs which were seropositive at >100, recognized the 21 kDa antigen of L. infantum wild-type (WT). Nine out of 31 (29%) unvaccinated dogs, but none of vaccinated dogs, were positive for the presence of Leishmania DNA. One out of 46 (2.2%) vaccinated dogs and 9 out of 31 (29%) unvaccinated dogs developed clinical signs of disease. These results suggest that gentamicin-attenuated L. infantum induced a significant and strong protective effect against canine visceral leishmaniosis in the endemic area. PMID:24743691

  9. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication.

    PubMed

    Macadam, Andrew J; Ferguson, Geraldine; Stone, David M; Meredith, Janet; Knowlson, Sarah; Auda, Ghazi; Almond, Jeffrey W; Minor, Philip D

    2006-09-01

    The global eradication of poliomyelitis caused by wild-type virus is likely to be completed within the next few years, despite immense logistic and political difficulties, and may ultimately be followed by the cessation of vaccination. However, the existing live-attenuated vaccines have the potential to revert to virulence, causing occasional disease, and viruses can be shed by immunocompromised individuals for prolonged periods of time. Moreover, several outbreaks of poliomyelitis have been shown to be caused by viruses derived from the Sabin vaccine strains. The appearance of such strains depends on the prevailing circumstances but poses a severe obstacle to strategies for stopping vaccination. Vaccine strains that are incapable of reversion at a measurable rate would provide a possible solution. Here, we describe the constructions of strains of type 3 poliovirus that are stabilized by the introduction of four mutations in the 5' noncoding region compared to the present vaccine. The strains are genetically and phenotypically stable under conditions where the present vaccine loses the attenuating mutation in the 5' noncoding region completely. Type 1 and type 2 strains in which the entire 5' noncoding regions of Sabin 1 and Sabin 2 were replaced exactly with that of one of the type 3 strains were also constructed. The genetic stability of 5' noncoding regions of these viruses matched that of the type 3 strains, but significant phenotypic reversion occurred, illustrating the potential limitations of a rational approach to the genetic stabilization of live RNA virus vaccines.

  10. A Live Attenuated Vaccine for Lassa Fever Made by Reassortment of Lassa and Mopeia Viruses

    PubMed Central

    Lukashevich, Igor S.; Patterson, Jean; Carrion, Ricardo; Moshkoff, Dmitry; Ticer, Anysha; Zapata, Juan; Brasky, Kathleen; Geiger, Robert; Hubbard, Gene B.; Bryant, Joseph; Salvato, Maria S.

    2005-01-01

    Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Old World arenaviruses that can exchange genomic segments (reassort) during coinfection. Clone ML29, selected from a library of MOPV/LASV (MOP/LAS) reassortants, encodes the major antigens (nucleocapsid and glycoprotein) of LASV and the RNA polymerase and zinc-binding protein of MOPV. Replication of ML29 was attenuated in guinea pigs and nonhuman primates. In murine adoptive-transfer experiments, as little as 150 PFU of ML29 induced protective cell-mediated immunity. All strain 13 guinea pigs vaccinated with clone ML29 survived at least 70 days after LASV challenge without either disease signs or histological lesions. Rhesus macaques inoculated with clone ML29 developed primary virus-specific T cells capable of secreting gamma interferon in response to homologous MOP/LAS and heterologous MOPV and lymphocytic choriomeningitis virus. Detailed examination of two rhesus macaques infected with this MOPV/LAS reassortant revealed no histological lesions or disease signs. Thus, ML29 is a promising attenuated vaccine candidate for Lassa fever. PMID:16254329

  11. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    PubMed

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.

  12. A live-attenuated influenza vaccine for H3N2 canine influenza virus.

    PubMed

    Rodriguez, Laura; Nogales, Aitor; Reilly, Emma C; Topham, David J; Murcia, Pablo R; Parrish, Colin R; Martinez Sobrido, Luis

    2017-04-01

    Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.

  13. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein

    PubMed Central

    Cheng, Benson Y.H.; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2016-01-01

    Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we dcument that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses. PMID:27855284

  14. Clustering, climate and dengue transmission.

    PubMed

    Junxiong, Pang; Yee-Sin, Leo

    2015-06-01

    Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders.

  15. Comparative Immunogenicities of Frozen and Refrigerated Formulations of Live Attenuated Influenza Vaccine in Healthy Subjects▿

    PubMed Central

    Block, Stan L.; Reisinger, Keith S.; Hultquist, Micki; Walker, Robert E.

    2007-01-01

    The frozen version of live attenuated influenza vaccine (LAIV; FluMist) was compared with a newly licensed, refrigerated formulation, the cold-adapted influenza vaccine, trivalent (CAIV-T), for their immunogenicity, safety, and tolerability in healthy subjects 5 to 49 years of age. Eligible subjects were randomized 1:1 to receive CAIV-T or frozen LAIV. Subjects 5 to 8 years of age received two doses of vaccine 46 to 60 days apart; subjects 9 to 49 years of age received one dose of vaccine. Equivalent immunogenicities were defined as serum hemagglutination inhibition (HAI) geometric mean titer (GMT) ratios >0.5 and <2.0 for each of the three vaccine-specific strains. A total of 376 subjects 5 to 8 years of age and 566 subjects 9 to 49 years of age were evaluable. Postvaccination HAI GMT ratios were equivalent for CAIV-T and LAIV. The GMT ratios of CAIV-T/LAIV for the H1N1, H3N2, and B strains were 1.24, 1.02, and 1.00, respectively, for the 5- to 8-year-old age group and 1.14, 1.12, and 0.96, respectively, for the 9- to 49-year-old age group. Seroresponse/seroconversion rates (fourfold or greater rise) were similar in both age groups for each of the three vaccine strains. Within 28 days, the most frequent reactogenicity event in the CAIV-T and LAIV groups was runny nose/nasal congestion, which occurred at higher rates after dose 1 (44% and 42%, respectively) than after dose 2 (41% and 29%, respectively) in the 5- to 8-year-old group. Otherwise, the rates of adverse events (AEs) were similar between the treatment groups and the two age cohorts, with no serious AEs related to the study vaccines. The immunogenicities, reactogenicity events, and AEs were comparable for refrigerated CAIV-T and frozen LAIV. PMID:17724151

  16. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin.

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H; Yildirim-Aksoy, Mediha

    2013-04-26

    In an attempt to develop attenuated bacteria as potential live vaccines, four chemicals (gossypol, proflavine hemisulfate, novobiocin, and ciprofloxacin) were used to modify the following four genera of bacteria through chemical-resistance strategy: (1) Aeromonas hydrophila (9 isolates); (2) Edwardsiella tarda (9 isolates); (3) Streptococcus iniae (9 isolates); and (4) S. agalactiae (11 isolates). All bacteria used in this study were able to develop high resistance to gossypol. However, only some bacteria were able to develop resistance to proflavine hemisulfate, novobiocin, or ciprofloxacin. When the virulence of resistant bacteria was tested in tilapia or catfish, none of the gossypol-resistant isolate was attenuated, whereas majority of the proflavine hemisulfate-resistant isolates were attenuated. However, all proflavine hemisulfate-attenuated bacteria failed to provide significant protection to fish. Eight novobiocin- or ciprofloxacin-resistant Gram-positive bacteria (S. agalactiae and S. inaie) were found to be attenuated. However, none of them offered protection higher than 70%. Of seven attenuated novobiocin- or ciprofloxacin-resistant Gram-negative isolates (A. hydrophila and E. tarda), only one (novobiocin-resistant E. tarda 30305) was found to safe and highly efficacious. When E. tarda 30305-novo vaccinated Nile tilapia were challenged by its virulent E. tarda 30305, relative percent of survival of vaccinated fish at 14- and 28-days post vaccination (dpv) was 100% and 92%, respectively. Similarly, E. tarda 30305-novo offered 100% protection to channel catfish against challenges with virulent parent isolate E. tarda 30305 at both 14- and 28-dpv. Our results suggest that the development of live attenuated bacterial vaccines that are safe and efficacious is challenging, although it is feasible.

  17. Development of a Live Attenuated Bivalent Oral Vaccine Against Shigella sonnei Shigellosis and Typhoid Fever.

    PubMed

    Wu, Yun; Chakravarty, Sumana; Li, Minglin; Wai, Tint T; Hoffman, Stephen L; Sim, B Kim Lee

    2017-01-15

    Shigella sonnei and Salmonella Typhi cause significant morbidity and mortality. We exploited the safety record of the oral, attenuated S. Typhi vaccine (Ty21a) by using it as a vector to develop a bivalent oral vaccine to protect against S. sonnei shigellosis and typhoid fever. We recombineered the S. sonnei form I O-antigen gene cluster into the Ty21a chromosome to create Ty21a-Ss, which stably expresses S. sonnei form I O antigen. To enhance survivability in the acid environment of the stomach, we created an acid-resistant strain, Ty21a-AR-Ss, by inserting Shigella glutaminase-glutamate decarboxylase systems coexpressed with S. sonnei form I O-antigen gene. Mice immunized intranasally with Ty21a-AR-Ss produced antibodies against S. sonnei and S. Typhi, and survived lethal intranasal S. sonnei challenge. This paves the way for proposed good manufacturing practices manufacture and clinical trials intended to test the clinical effectiveness of Ty21a-AR-Ss in protecting against S. sonnei shigellosis and typhoid fever, as compared with the current Ty21a vaccine.

  18. Recurrent 6th nerve palsy in a child following different live attenuated vaccines: case report

    PubMed Central

    2012-01-01

    Background Recurrent benign 6th nerve palsy in the paediatric age group is uncommon, but has been described following viral and bacterial infections. It has also been temporally associated with immunization, but has not been previously described following two different live attenuated vaccines. Case presentation A case is presented of a 12 month old Caucasian boy with recurrent benign 6th nerve palsy following measles-mumps-rubella and varicella vaccines, given on separate occasions with complete recovery following each episode. No alternate underlying etiology was identified despite extensive investigations and review. Conclusions The majority of benign 6th nerve palsies do not have a sinister cause and have an excellent prognosis, with recovery expected in most cases. The exact pathophysiology is unknown, although hypotheses including autoimmune mechanisms and direct viral invasion could explain the pathophysiology behind immunization related nerve palsies. It is important to rule out other aetiologies with thorough history, physical examination and investigations. There is limited information in the literature regarding the safety of a repeat dose of a live vaccine in this setting. Future immunizations should be considered on a case-by-case basis. PMID:22545865

  19. Genetic variation in vitro and in vivo of an attenuated Lassa vaccine candidate.

    PubMed

    Zapata, Juan C; Goicochea, Marco; Nadai, Yuka; Eyzaguirre, Lindsay M; Carr, Jean K; Tallon, Luke J; Sadzewicz, Lisa; Myers, Garry; Fraser, Claire M; Su, Qi; Djavani, Mahmoud; Lukashevich, Igor S; Salvato, Maria S

    2014-03-01

    The attenuated Lassa vaccine candidate ML29 is a laboratory-produced reassortant between Lassa and Mopeia viruses, two Old World arenaviruses that differ by 40% in nucleic acid sequence. In our previous studies, ML29 elicited sterilizing immunity against Lassa virus challenge in guinea pigs and marmosets and virus-specific cell-mediated immunity in both simian immunodeficiency virus (SIV)-infected and uninfected rhesus macaques. Here, we show that ML29 is stable after 12 passages in vitro without losing its plaque morphology or its attenuated phenotype in suckling mice. Additionally, we used deep sequencing to characterize the viral population comprising the original stock of ML29, the stock of ML29 after 12 passages in Vero cells, and the ML29 isolates obtained from vaccinated animals. Twenty-seven isolates bore approximately 77 mutations that exceeded 20% of the single-nucleotide polymorphism (SNP) changes at any single locus. Of these 77 mutations, 5 appeared to be host specific, for example, appearing in mice but not in primates. None of these mutations were reversions of ML29 to the sequences of the parental Lassa and Mopeia viruses. The host-specific mutations indicate viral adaptations to virus-host interactions, and such interactions make reasonable targets for antiviral approaches. Variants capable of chronic infection did not emerge from any of the primate infections, even in immune-deficient animals, indicating that the ML29 reassortant is reasonably stable in vivo. In conclusion, the preclinical studies of ML29 as a Lassa virus vaccine candidate have been advanced, showing high levels of protection in nonhuman primates and acceptable stability both in vitro and in vivo.

  20. Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine.

    PubMed

    Nogales, Aitor; Rodriguez, Laura; Chauché, Caroline; Huang, Kai; Reilly, Emma C; Topham, David J; Murcia, Pablo R; Parrish, Colin R; Martínez-Sobrido, Luis

    2017-02-15

    Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV.

  1. Evaluation in mice of Brucella ovis attenuated mutants for use as live vaccines against B. ovis infection.

    PubMed

    Sancho, Pilar; Tejedor, Carmen; Sidhu-Muñoz, Rebeca S; Fernández-Lago, Luis; Vizcaíno, Nieves

    2014-06-04

    Brucella ovis causes ram contagious epididymitis, a disease for which a specific vaccine is lacking. Attenuated Brucella melitensis Rev 1, used as vaccine against ovine and caprine brucellosis caused by B. melitensis, is also considered the best vaccine available for the prophylaxis of B. ovis infection, but its use for this purpose has serious drawbacks. In this work, two previously characterized B. ovis attenuated mutants (Δomp25d and Δomp22) were evaluated in mice, in comparison with B. melitensis Rev 1, as vaccines against B. ovis. Similarities, but also significant differences, were found regarding the immune response induced by the three vaccines. Mice vaccinated with the B. ovis mutants developed anti-B. ovis antibodies in serum of the IgG1, IgG2a and IgG2b subclasses and their levels were higher than those observed in Rev 1-vaccinated mice. After an antigen stimulus with B. ovis cells, splenocytes obtained from all vaccinated mice secreted similar levels of TNF-α and IL12(p40) and remarkably high amounts of IFN-γ, a crucial cytokine in protective immunity against other Brucella species. By contrast, IL-1α -an enhancer of T cell responses to antigen- was present at higher levels in mice vaccinated with the B. ovis mutants, while IL-10, an anti-inflammatory cytokine, was significantly more abundant in Rev 1-vaccinated mice. Additionally, the B. ovis mutants showed appropriate persistence, limited splenomegaly and protective efficacy against B. ovis similar to that observed with B. melitensis Rev 1. These characteristics encourage their evaluation in the natural host as homologous vaccines for the specific prophylaxis of B. ovis infection.

  2. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    PubMed Central

    Lin, Ivan Y. C.; Van, Thi Thu Hao; Smooker, Peter M.

    2015-01-01

    Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined. PMID:26569321

  3. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection.

    PubMed

    Lyke, Kirsten E; Ishizuka, Andrew S; Berry, Andrea A; Chakravarty, Sumana; DeZure, Adam; Enama, Mary E; James, Eric R; Billingsley, Peter F; Gunasekera, Anusha; Manoj, Anita; Li, Minglin; Ruben, Adam J; Li, Tao; Eappen, Abraham G; Stafford, Richard E; Kc, Natasha; Murshedkar, Tooba; Mendoza, Floreliz H; Gordon, Ingelise J; Zephir, Kathryn L; Holman, LaSonji A; Plummer, Sarah H; Hendel, Cynthia S; Novik, Laura; Costner, Pamela J M; Saunders, Jamie G; Berkowitz, Nina M; Flynn, Barbara J; Nason, Martha C; Garver, Lindsay S; Laurens, Matthew B; Plowe, Christopher V; Richie, Thomas L; Graham, Barney S; Roederer, Mario; Sim, B Kim Lee; Ledgerwood, Julie E; Hoffman, Stephen L; Seder, Robert A

    2017-02-21

    A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 10(5) PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.

  4. Further evaluation of a mutagen-attenuated Rift Valley fever vaccine in sheep.

    PubMed

    Morrill, J C; Carpenter, L; Taylor, D; Ramsburg, H H; Quance, J; Peters, C J

    1991-01-01

    A previous study demonstrated that a mutagen-attenuated Rift Valley fever virus (RVFV) vaccine, RVF MP-12, was immunogenic and non-abortogenic when ewes, 90-110 days pregnant, were inoculated with 5 x 10(5) plaque-forming units (p.f.u.) of the virus strain. The ewes delivered live, healthy lambs that had no neutralizing antibody to RVFV until after they had ingested colostrum. To assess further the safety and protective capability of this candidate vaccine, six pregnant ewes were inoculated with 5 x 10(3) p.f.u. of RVF MP-12 and challenged with 5 x 10(5) p.f.u. of virulent ZH-501 strain of RVFV 30 days later. No viraemia was detected after vaccination or challenge and all six ewes delivered live, healthy lambs. Those lambs tested before their nursing did not have neutralizing antibody to RVFV but quickly acquired antibody titres of 1:320 to greater than or equal to 1:10,240 after ingesting colostrum. To test the safety of the RVF MP-12 immunogen in neonates, lambs less than or equal to 7 days old, born to unvaccinated ewes, were inoculated with 5 x 10(5) p.f.u. of RVF MP-12. With the exception of brief pyrexia in 18 of 26 lambs, and a transient low-titred viraemia in 16 of 26 lambs after inoculation, no untoward effects were observed. Serum-neutralizing antibody to RVFV was detected 5-7 days after inoculation. Lambs vaccinated with either 5 x 10(5) or 5 x 10(3) p.f.u. of RVF MP-12 were protected against virulent RVFV challenge at 14 days postvaccination.

  5. Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain.

    PubMed

    Liu, Yan; Wu, Bin; Weinstock, George; Walker, David H; Yu, Xue-Jie

    2014-01-01

    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine.

  6. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    SciTech Connect

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  7. [Effect of Low Dose of Chicken Infectious Anemia Virus in Attenuated Vaccine on SPF Chicken Body Weight and Vaccine Immune Antibody].

    PubMed

    Fang, Lichun; Li, Xiaohan; Ren, Zhihao; Li, Yang; Wang, Yixin; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-03-01

    In order to observe the effect of the immune and weight of chickens after use the attenuated vaccine with low dose of chicken infectious anemia virus (CIAV). In this study, the effects of low dose of CIAV on the weight of SPF chickens and NDV antibody production were observed by simulated experiments. The results showed that 10 EID50 and 5 EID50 CIAV per plume attenuated NDV vaccines were used to cause the weight loss of SPF chickens. Compared with the use of the non contaminated vaccine group, it has significant difference. And NDV antibody levels compared with the use of the non contaminated groups also decreased after use the vaccine with two doses of CIAV contaminated. It has significant difference. A certain proportion of CIAV antibody positive was detected at the beginning of the second week after use the NDV vaccine with two doses of CIAV contaminated. The detection of a high proportion of CIAV nucleic acid was detected in the first week after the use of a contaminated vaccine. The results of the study demonstrate the effects of CIAV pollution on the production and immune function of SPF chickens, and it is suggested that increasing the detection of viral nucleic acid can help save time and improve the detection rate in the detection of exogenous virus contamination by SPF chicken test method.

  8. The Major Determinant of Attenuation in Mice of the Candid1 Vaccine for Argentine Hemorrhagic Fever Is Located in the G2 Glycoprotein Transmembrane Domain▿

    PubMed Central

    Albariño, César G.; Bird, Brian H.; Chakrabarti, Ayan K.; Dodd, Kimberly A.; Flint, Mike; Bergeron, Éric; White, David M.; Nichol, Stuart T.

    2011-01-01

    Candid1, a live-attenuated Junin virus vaccine strain, was developed during the early 1980s to control Argentine hemorrhagic fever, a severe and frequently fatal human disease. Six amino acid substitutions were found to be unique to this vaccine strain, and their role in virulence attenuation in mice was analyzed using a series of recombinant viruses. Our results indicate that Candid1 is attenuated in mice through a single amino acid substitution in the transmembrane domain of the G2 glycoprotein. This work provides insight into the molecular mechanisms of attenuation of the only arenavirus vaccine currently available. PMID:21795336

  9. Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice.

    PubMed

    Shi, Huoying; Wang, Shifeng; Curtiss, Roy

    2013-06-01

    We developed regulated delayed attenuation strategies for Salmonella vaccine vectors. In this study, we evaluated the combination of these strategies in recombinant attenuated Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium vaccine vectors with similar genetic backgrounds in vitro and in vivo. Our goal is to develop a vaccine to prevent Streptococcus pneumoniae infection in newborns; thus, all strains delivered a pneumococcal antigen PspA and the impact of maternal antibodies was evaluated. The results showed that all strains with the regulated delayed attenuated phenotype (RDAP) displayed an invasive ability stronger than that of the S. Typhi vaccine strain, Ty21a, but weaker than that of their corresponding wild-type parental strains. The survival curves of different RDAP vaccine vectors in vitro and in vivo exhibited diverse regulated delayed attenuation kinetics, which was different from S. Typhi Ty21a and the wild-type parental strains. Under the influence of maternal antibody, the persistence of the S. Typhimurium RDAP strain displayed a regulated delayed attenuation trend in nasal lymphoid tissue (NALT), lung, and Peyer's patches, while the persistence of S. Typhi RDAP strains followed the curve only in NALT. The bacterial loads of S. Typhi RDAP strains were lower in NALT, lung, and Peyer's patches in mice born to immune mothers than in those born to naive mothers. In accordance with these results, RDAP vaccine strains induced high titers of IgG antibodies against PspA and against Salmonella lipopolysaccharides. Immunization of mothers with S. Typhi RDAP strains enhanced the level of vaginal mucosal IgA, gamma interferon (IFN-γ), and interleukin 4 (IL-4) and resulted in a higher level of protection against S. pneumoniae challenge.

  10. An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery

    PubMed Central

    Larragoite, Erin T.; Tacchi, Luca; LaPatra, Scott E.

    2016-01-01

    Nasal vaccines are very effective but the olfactory organ provides direct access of antigens to the brain. Infectious hematopoietic necrosis virus (IHNV) is known to cause high mortalities in salmonids. The purpose of this study is to evaluate the safety of a live attenuated IHNV nasal (I.N) vaccine in rainbow trout (Oncorhynchus mykiss). In the olfactory organ, the vaccine was detected 1 and 4 days after primary I.N vaccination but not in the intramuscular (i.m) or control groups. In the brain, IHNV was detected by RT-qPCR 4 and 21 days after i.m primary vaccination. One i.m and one I.N vaccinated trout were positive at days 4 and 28 days post-boost, respectively. Presence of IHNV in the brain of i.m vaccinated fish correlated with moderate increases in IL-1β and TNF-α expression in this tissue. These results demonstrate that IHNV vaccine lasts for 4 days in the local nasal environment and that nasal vaccination appears to be safe to the CNS of rainbow trout. PMID:26772477

  11. An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery.

    PubMed

    Larragoite, Erin T; Tacchi, Luca; LaPatra, Scott E; Salinas, Irene

    2016-02-01

    Nasal vaccines are very effective but the olfactory organ provides direct access of antigens to the brain. Infectious hematopoietic necrosis virus (IHNV) is known to cause high mortalities in salmonids. The purpose of this study is to evaluate the safety of a live attenuated IHNV nasal (I.N) vaccine in rainbow trout (Oncorhynchus mykiss). In the olfactory organ, the vaccine was detected 1 and 4 days after primary I.N vaccination but not in the intramuscular (i.m) or control groups. In the brain, IHNV was detected by RT-qPCR 4 and 21 days after i.m primary vaccination. One i.m and one I.N vaccinated trout were positive at days 4 and 28 days post-boost, respectively. Presence of IHNV in the brain of i.m vaccinated fish correlated with moderate increases in IL-1β and TNF-α expression in this tissue. These results demonstrate that IHNV vaccine lasts for 4 days in the local nasal environment and that nasal vaccination appears to be safe to the CNS of rainbow trout.

  12. Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees.

    PubMed

    Eberl, M; Langermans, J A; Frost, P A; Vervenne, R A; van Dam, G J; Deelder, A M; Thomas, A W; Coulson, P S; Wilson, R A

    2001-09-01

    The radiation-attenuated Schistosoma mansoni vaccine is highly effective in rodents and primates but has never been tested in humans, primarily for safety reasons. To strengthen its status as a paradigm for a human recombinant antigen vaccine, we have undertaken a small-scale vaccination and challenge experiment in chimpanzees (Pan troglodytes). Immunological, clinical, and parasitological parameters were measured in three animals after multiple vaccinations, together with three controls, during the acute and chronic stages of challenge infection up to chemotherapeutic cure. Vaccination induced a strong in vitro proliferative response and early gamma interferon production, but type 2 cytokines were dominant by the time of challenge. The controls showed little response to challenge infection before the acute stage of the disease, initiated by egg deposition. In contrast, the responses of vaccinated animals were muted throughout the challenge period. Vaccination also induced parasite-specific immunoglobulin M (IgM) and IgG, which reached high levels at the time of challenge, while in control animals levels did not rise markedly before egg deposition. The protective effects of vaccination were manifested as an amelioration of acute disease and overall morbidity, revealed by differences in gamma-glutamyl transferase level, leukocytosis, eosinophilia, and hematocrit. Moreover, vaccinated chimpanzees had a 46% lower level of circulating cathodic antigen and a 38% reduction in fecal egg output, compared to controls, during the chronic phase of infection.

  13. Attenuated Salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus.

    PubMed

    Liu, Xueyan; Liu, Qing; Xiao, Kangpeng; Li, Pei; Liu, Qiong; Zhao, Xinxin; Kong, Qingke

    2016-04-15

    DNA vaccines are widely used to prevent and treat infectious diseases, cancer and autoimmune diseases; however, their relatively low immunogenicity is an obstacle to their use. In this study, we constructed a novel and universal DNA vaccine vector (pSS898) that can be used to build DNA vaccines against duck enteritis virus (DEV) and other viruses that require DNA vaccines to provide protection. This vaccine vector has many advantages, including innate immunogenicity, efficient nuclear trafficking and resistance to attack from nucleases. UL24 and tgB from DEV were chosen as the antigens, and the heat labile enterotoxin B subunit (LTB) from Escherichia coli and the IL-2 gene (DuIL-2) from duck were used as adjuvants for the construction of DNA vaccine plasmids. Ducklings that were orally immunized with S739 (Salmonella Typhimurium Δasd-66 Δcrp-24 Δcya-25) and harboring these DEV DNA vaccines produced strong mucosal and systemic immune responses, and they resisted an otherwise lethal DEV challenge. More importantly, S739 (UL24-LTB) provided 90% protection after a priming-boost immunization. This study shows that our novel and universal DNA vaccine vector can be used efficiently in practical applications and may provide a promising method of orally inoculating ducks with a DEV DNA vaccine delivered by attenuated Salmonella Typhimurium for prevention of DVE.

  14. Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine-associated enhanced respiratory disease (VAERD) can occur in pigs immunized with whole-inactivated influenza virus (WIV) vaccine and subsequently infected with an antigenically divergent virus of the same HA subtype. Live-attenuated influenza virus (LAIV) vaccines administered intranasally h...

  15. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro.

    PubMed

    Li, L P; Wang, R; Liang, W W; Huang, T; Huang, Y; Luo, F G; Lei, A Y; Chen, M; Gan, X

    2015-08-01

    Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P < 0.01), and 1 × 10(5) CFU/fish hardly displayed any protective effect. In addition, the efficacy of 2-3 times of immunization was significantly higher than that of single immunization (P < 0.01) while no significant difference in the efficacy between twice and thrice of immunization was seen (P > 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P < 0.01), and the antibody reached their maximum levels 14-21 days after the immunization but decreased

  16. Reversion to virulence and efficacy of an attenuated Canarypox vaccine in Hawai'i 'Amakihi (Hemignathus virens).

    PubMed

    Atkinson, Carter T; Wiegand, Kimberly C; Triglia, Dennis; Jarvi, Susan I

    2012-12-01

    Vaccines may be effective tools for protecting small populations of highly susceptible endangered, captive-reared, or translocated Hawaiian honeycreepers from introduced Avipoxvirus, but their efficacy has not been evaluated. An attenuated Canarypox vaccine that is genetically similar to one of two passerine Avipoxvirus isolates from Hawai'i and distinct from Fowlpox was tested to evaluate whether Hawai'i 'Amakihi (Hemignathus virens) can be protected from wild isolates of Avipoxvirus from the Hawaiian Islands. Thirty-one (31) Hawai'i 'Amakihi were collected from high-elevation habitats on Mauna Kea Volcano, where pox transmission is rare, and randomly divided into two groups. One group was vaccinated with Poximune C, whereas the other group received a sham vaccination with sterile water. Four of 15 (27%) vaccinated birds developed life-threatening disseminated lesions or lesions of unusually long duration, whereas one bird never developed a vaccine-associated lesion or "take." After vaccine lesions healed, vaccinated birds were randomly divided into three groups of five and challenged with either a wild isolate of Fowlpox (FP) from Hawai'i, a Hawai'i 'Amakihi isolate of a Canarypox-like virus (PV1), or a Hawai'i 'Amakihi isolate of a related, but distinct, passerine Avipoxvirus (PV2). Similarly, three random groups of five unvaccinated 'Amakihi were challenged with the same virus isolates. Vaccinated and unvaccinated 'Amakihi challenged with FP had transient infections with no clinical signs of infection. Mortality in vaccinated 'Amakihi challenged with PV1 and PV2 ranged from 0% (0/5) for PV1 to 60% (3/5) for PV2. Mortality in unvaccinated 'Amakihi ranged from 40% (2/5) for PV1 to 100% (5/5) for PV2. Although the vaccine provided some protection against PV1, both potential for vaccine reversion and low efficacy against PV2 preclude its use in captive or wild honeycreepers.

  17. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens.

    PubMed

    Vagnozzi, Ariel; Zavala, Guillermo; Riblet, Sylva M; Mundt, Alice; García, Maricarmen

    2012-01-01

    Viral vector vaccines using fowl poxvirus (FPV) and herpesvirus of turkey (HVT) as vectors and carrying infectious laryngotracheitis virus (ILTV) genes are commercially available to the poultry industry in the USA. Different sectors of the broiler industry have used these vaccines in ovo or subcutaneously, achieving variable results. The objective of the present study was to determine the efficacy of protection induced by viral vector vaccines as compared with live-attenuated ILTV vaccines. The HVT-LT vaccine was more effective than the FPV-LT vaccine in mitigating the disease and reducing levels of challenge virus when applied in ovo or subcutaneously, particularly when the challenge was performed at 57 days rather than 35 days of age. While the FPV-LT vaccine mitigated clinical signs more effectively when administered subcutaneously than in ovo, it did not reduce the concentration of challenge virus in the trachea by either application route. Detection of antibodies against ILTV glycoproteins expressed by the viral vectors was a useful criterion to assess the immunogenicity of the vectors. The presence of glycoprotein I antibodies detected pre-challenge and post challenge in chickens vaccinated with HVT-LT indicated that the vaccine induced a robust antibody response, which was paralleled by significant reduction of clinical signs. The chicken embryo origin vaccine provided optimal protection by significantly mitigating the disease and reducing the challenge virus in chickens vaccinated via eye drop. The viral vector vaccines, applied in ovo and subcutaneously, provided partial protection, reducing to some degree clinical signs, and challenge VIRUS replication in the trachea.

  18. Elucidation of the molecular basis for the attenuation of a live, attenuated influenza A H5N1 cold-adapted vaccine virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant, live influenza A H5N1 vaccine candidate with the hemagglutinin (HA) and neuraminidase (NA) genes derived from A/VietNam/1203/04 (H5N1) (H5N1 2004 wt) and the internal protein genes from A/Ann Arbor/6/60 (AA) (H2N2) cold-adapted (ca) virus has been previously shown to be attenuated in ...

  19. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an attempt to develop attenuated bacteria as potential live vaccines, four chemicals (gossypol, proflavine hemisulfate, novobiocin, and ciprofloxacin) were used to modify the following four genera of bacteria through chemical-resistance strategy: 1) Aeromonas hydrophila (9 isolates); 2) Edwardsie...

  20. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an attempt to develop attenuated bacteria as potential live vaccines, four chemicals (gossypol, proflavine hemisulfate, novobiocin, and ciprofloxacin) were used to modify the following four genera of bacteria through chemical-resistance strategy: (1) Aeromonas hydrophila (9 isolates); (2) Edwards...

  1. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis.

    PubMed

    Selvapandiyan, Angamuthu; Dey, Ranadhir; Gannavaram, Sreenivas; Solanki, Sumit; Salotra, Poonam; Nakhasi, Hira L

    2014-06-30

    Visceral leishmaniasis (VL) is fatal if not treated and is prevalent widely in the tropical and sub-tropical regions of world. VL is caused by the protozoan parasite Leishmania donovani or Leishmania infantum. Although several second generation vaccines have been licensed to protect dogs against VL, there are no effective vaccines against human VL [1]. Since people cured of leishmaniasis develop lifelong protection, development of live attenuated Leishmania parasites as vaccines, which can have controlled infection, may be a close surrogate to leishmanization. This can be achieved by deletion of genes involved in the regulation of growth and/or virulence of the parasite. Such mutant parasites generally do not revert to virulence in animal models even under conditions of induced immune suppression due to complete deletion of the essential gene(s). In the Leishmania life cycle, the intracellular amastigote form is the virulent form and causes disease in the mammalian hosts. We developed centrin gene deleted L. donovani parasites that displayed attenuated growth only in the amastigote stage and were found safe and efficacious against virulent challenge in the experimental animal models. Thus, targeting genes differentially expressed in the amastigote stage would potentially attenuate only the amastigote stage and hence controlled infectivity may be effective in developing immunity. This review lays out the strategies for attenuation of the growth of the amastigote form of Leishmania for use as live vaccine against leishmaniasis, with a focus on visceral leishmaniasis.

  2. A reassortment-incompetent live attenuated influenza virus vaccine for use in protection against pandemic virus strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although live-attenuated influenza vaccines (LAIV) are safe for use in protection against seasonal influenza strains, concerns over their potential to reassort with wild-type virus strains have been voiced. LAIVs have been demonstrated to induce enhanced mucosal and cell-mediated immunity over inac...

  3. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    SciTech Connect

    Barkhouse, Darryll A.; Faber, Milosz; Hooper, D. Craig

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression.

  4. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study

    PubMed Central

    Lone, Nazir I; Kavanagh, Kimberley; Robertson, Chris; McMenamin, Jim; von Wissmann, Beatrix; Vasileiou, Eleftheria; Butler, Chris; Ritchie, Lewis D; Gunson, Rory; Schwarze, Jürgen; Sheikh, Aziz

    2017-01-01

    Introduction Seasonal (inactivated) influenza vaccination is recommended for all individuals aged 65+ and in individuals under 65 who are at an increased risk of complications of influenza infection, for example, people with asthma. Live attenuated influenza vaccine (LAIV) was recommended for children as they are thought to be responsible for much of the transmission of influenza to the populations at risk of serious complications from influenza. A phased roll-out of the LAIV pilot programme began in 2013/2014. There is limited evidence for vaccine effectiveness (VE) in the populations targeted for influenza vaccination. The aim of this study is to examine the safety and effectiveness of the live attenuated seasonal influenza vaccine programme in children and the inactivated seasonal influenza vaccination programme among different age and at-risk groups of people. Methods and analysis Test negative and cohort study designs will be used to estimate VE. A primary care database covering 1.25 million people in Scotland for the period 2000/2001 to 2015/2016 will be linked to the Scottish Immunisation Recall Service (SIRS), Health Protection Scotland virology database, admissions to Scottish hospitals and the Scottish death register. Vaccination status (including LAIV uptake) will be determined from the primary care and SIRS database. The primary outcome will be influenza-positive real-time PCR tests carried out in sentinel general practices and other healthcare settings. Secondary outcomes include influenza-like illness and asthma-related general practice consultations, hospitalisations and death. An instrumental variable analysis will be carried out to account for confounding. Self-controlled study designs will be used to estimate the risk of adverse events associated with influenza vaccination. Ethics and dissemination We obtained approval from the National Research Ethics Service Committee, West Midlands—Edgbaston. The study findings will be presented at

  5. Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation

    PubMed Central

    Shcherbik, Svetlana; Pearce, Nicholas; Balish, Amanda; Jones, Joyce; Thor, Sharmi; Davis, Charles Todd; Pearce, Melissa; Tumpey, Terrence; Cureton, David; Chen, Li-Mei; Villanueva, Julie; Bousse, Tatiana L.

    2015-01-01

    Background Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes. Methodology/Principal Findings LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7. Conclusions/Significance Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and

  6. Intratumoral injection of attenuated Salmonella vaccine can induce tumor microenvironmental shift from immune suppressive to immunogenic.

    PubMed

    Hong, Eun-Hye; Chang, Sun-Young; Lee, Bo-Ra; Pyun, A-Rim; Kim, Ji-Won; Kweon, Mi-Na; Ko, Hyun-Jeong

    2013-02-27

    Attenuated Salmonella vaccines show therapeutic anti-cancer effects, but the underlying mechanism has not been well investigated. In the current study, intratumoral (i.t.) injection of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine (RASV) significantly inhibited Her-2/neu-expressing tumor growth. Although depletion of CD8(+) cells in RASV-treated mice significantly restored tumor growth, the induction of Her-2/neu-specific cytotoxic T lymphocytes (CTLs) was not well correlated with the generation of the anti-tumor effect. Therefore, we hypothesized that RASV might induce a tumor microenvironmental shift, from immune suppressive to immunogenic, to reduce the suppressive force and finally elicit a successful anti-tumor response. We found that i.t. injection of RASV significantly increased the level of CD11b(+)Gr-1(+) myeloid cells identified as myeloid-derived suppressor cell (MDSC), but a significant portion of these cells were TNF-α-secreting Ly6-G(high) subsets, which can function as antitumor effector cells. We further investigated whether RASV can modulate immunosuppressive Treg cells, and CD4(+)CD25(+) Foxp3(+) Tregs was significantly reduced in RASV-treated mice. Thus, i.t. injection of RASV may offer a novel anti-cancer approach by eliciting transformation of immunosuppressive MDSCs into TNF-α-secreting neutrophils and reducing the generation of Treg cells, especially in the presence of tumor-specific CTLs. Collectively, these data will provide us an insight for the development of new anti-tumor approaches to overcome the immunosuppressive environment generated by tumors.

  7. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: Process challenges and success stories.

    PubMed

    Rudenko, Larisa; Yeolekar, Leena; Kiseleva, Irina; Isakova-Sivak, Irina

    2016-10-26

    Influenza is a viral infection that affects much of the global population each year. Vaccination remains the most effective tool for preventing the disease. Live attenuated influenza vaccine (LAIV) has been used since the 1950s to protect humans against seasonal influenza. LAIVs developed by the Institute of Experimental Medicine (IEM), Saint Petersburg, Russia, have been successfully used in Russia since 1987. In 2006, the World Health Organization (WHO) announced a Global action plan for influenza vaccines (GAP). WHO, recognizing potential advantages of LAIV over the inactivated influenza vaccine in a pandemic situation, included LAIV in the GAP. BioDiem Ltd., a vaccine development company based in Melbourne, Australia which held the rights for the Russian LAIV, licensed this technology to WHO in 2009. WHO was permitted to grant sub-licenses to vaccine manufacturers in newly industrialized and developing countries to use the Russian LAIV for the development, manufacture, use and sale of pandemic and seasonal LAIVs. To date, WHO has granted sub-licenses to vaccine manufacturers in China (Changchun BCHT Biotechnology Co., Ltd.), India (Serum Institute of India Pvt. Ltd.) and Thailand (Government Pharmaceutical Organization). In parallel, in 2009, IEM signed an agreement with WHO, under which IEM committed to supply pandemic and seasonal candidate vaccine viruses to the sub-licensees. This paper describes the progress made by collaborators from China, India, Russia and Thailand in developing preventive measures, including LAIV against pandemic influenza.

  8. Mucosal and systemic immunization with a novel attenuated pneumococcal vaccine candidate confer serotype independent protection against Streptococcus pneumoniae in mice.

    PubMed

    Wu, Kaifeng; Yao, Run; Wang, Hong; Pang, Dan; Liu, Yusi; Xu, Hongmei; Zhang, Shuai; Zhang, Xuemei; Yin, Yibing

    2014-07-16

    Despite the availability of effective vaccines, Streptococcus pneumoniae is still one of the major infectious diseases causing substantial morbidity and mortality in children under 5 years old. In this study, we demonstrate the protective efficacy of S. pneumoniae SPY1, a novel live attenuated vaccine strain against pneumococcal infection in murine models. This strain was characterized by defects in three important pneumococcal virulence factors including capsule, teichoic acids and pneumolysin. The lactate dehydrogenase assays and in vivo animal experiments demonstrated a significantly attenuated virulence and a reduced nasopharyngeal colonization for the SPY1 strain. We also show that mucosal and systemic immunization with the live SPY1 strain induced protective immune responses against pneumococci. Mucosal immunization with SPY1 offered better protection against colonization challenge with strains TIGR4 and serotype 19F than systemic SPY1 immunization. In invasive infection models, mucosal vaccination with the SPY1 strain conferred complete protection against D39 and clinical serotype 6B and 3 strains. Notably, intranasal vaccination with the SPY1 strain conferred superior protection against pneumococcal invasive disease compared with the commercial available vaccines. SPY1 strain was shown to elicit high levels of serotype-independent antibodies and a mixed cellular immune response. Besides, the SPY1 serum was able to passively protect mice against invasive challenge with D39 strain, indicating the protective effect of the antibody-mediated responses. Together, the SPY1 strain may be a promising live vaccine strain to protect pneumococcal infection.

  9. Oral Vaccination with Attenuated Salmonella typhimurium-Delivered TsPmy DNA Vaccine Elicits Protective Immunity against Trichinella spiralis in BALB/c Mice

    PubMed Central

    Wang, Lei; Wang, Xiaohuan; Bi, Kuo; Sun, Ximeng; Yang, Jing; Gu, Yuan; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2016-01-01

    Background Our previous studies showed that Trichinella spiralis paramyosin (TsPmy) is an immunomodulatory protein that inhibits complement C1q and C8/C9 to evade host complement attack. Vaccination with recombinant TsPmy protein induced protective immunity against T. spiralis larval challenge. Due to the difficulty in producing TsPmy as a soluble recombinant protein, we prepared a DNA vaccine as an alternative approach in order to elicit a robust immunity against Trichinella infection. Methods and Findings The full-length TsPmy coding DNA was cloned into the eukaryotic expression plasmid pVAX1, and the recombinant pVAX1/TsPmy was transformed into attenuated Salmonella typhimurium strain SL7207. Oral vaccination of mice with this attenuated Salmonella-delivered TsPmy DNA vaccine elicited a significant mucosal sIgA response in the intestine and a systemic IgG antibody response with IgG2a as the predominant subclass. Cytokine analysis also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 5, 6, 10) responses in lymphocytes from the spleen and MLNs of immunized mice upon stimulation with TsPmy protein. The expression of the homing receptors CCR9/CCR10 on antibody secreting B cells may be related to the translocation of IgA-secreted B cells to local intestinal mucosa. The mice immunized with Salmonella-delivered TsPmy DNA vaccine produced a significant 44.8% reduction in adult worm and a 46.6% reduction in muscle larvae after challenge with T. spiralis larvae. Conclusion Our results demonstrated that oral vaccination with TsPmy DNA delivered by live attenuated S. typhimurium elicited a significant local IgA response and a mixed Th1/Th2 immune response that elicited a significant protection against T. spiralis infection in mice. PMID:27589591

  10. Efficacy for a new live attenuated Salmonella Enteritidis vaccine candidate to reduce internal egg contamination.

    PubMed

    Nandre, R; Matsuda, K; Lee, J H

    2014-02-01

    To evaluate the efficacy of a novel attenuated Salmonella Enteritidis (△lon△cpxR) vaccine candidate (JOL919), chickens were immunized through oral and intramuscular routes to reduce egg contamination against S. Enteritidis challenge. Birds were orally immunized with JOL919 on the first day of life and were subsequently boosted in the 6th and 16th weeks through oral (group B) or intramuscular (group C) route, while control birds were unimmunized (group A). The chickens of all groups were challenged intravenously with the virulent S. Enteritidis strain in the 24th week. The immunized groups B and C showed significantly higher plasma IgG and intestinal secretory IgA levels as compared to those of the control group. The lymphocyte proliferation response and CD45(+) CD3(+) T-cell number in the peripheral blood of the groups B and C were significantly increased. In addition, the egg contamination rates were significantly lower in the group B (0%, 10.7% and 0%) and the group C (3.6%, 14.3% and 3.6%) as compared to the group A (28.6%, 42.8% and 28.6%) in the 1st, 2nd and 3rd weeks post-challenge. All animals in the groups B and C showed lower organ lesion scores in the liver and spleen and lower bacterial counts in the liver, spleen and ovary at the 3rd week post-challenge. These results indicate that this vaccine candidate can be an efficient tool for prevention of Salmonella infections by inducing protective humoral and cellular immune responses. In addition, this vaccine did not prevent egg contamination, but did appear to reduce incidence. Booster immunizations, especially via oral administration route, showed an efficient protection against internal egg contamination with S. Enteritidis.

  11. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins

    PubMed Central

    DeBuysscher, Blair L.; Scott, Dana; Marzi, Andrea; Prescott, Joseph; Feldmann, Heinz

    2016-01-01

    Background Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. Methods In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. Results Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. Conclusions The rVSV vectors expressing Nipah virus G or F are prime candidates for new ‘emergency vaccines’ to be utilized for NiV outbreak management. PMID:24631094

  12. Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children.

    PubMed

    Gomez, Margarita; Mufson, Maurice A; Dubovsky, Filip; Knightly, Conor; Zeng, Wen; Losonsky, Genevieve

    2009-07-01

    A live, attenuated respiratory syncytial virus and parainfluenza virus type 3 vaccine was evaluated in healthy respiratory syncytial virus/parainfluenza virus type 3 seropositive children aged 1 to 9 years. Three cohorts of 40 children were randomized 1:1 to receive 10, 10, or 10 median tissue culture infectious dose50 MEDI-534 vaccine or placebo. The vaccine's safety profile was similar to placebo, no viral shedding was detected, and the vaccine was minimally immunogenic.

  13. [History of development of the live poliomyelitis vaccine from Sabin attenuated strains in 1959 and idea of poliomyelitis eradication].

    PubMed

    Lashkevich, V A

    2013-01-01

    In 1958 Poliomyelitis Institute in Moscow and Institute of Experimental Medicine in St. Petersburg received from A. Sabin the attenuated strains of poliomyelitis virus. The characteristics of the strains were thoroughly studied by A. A. Smorodintsev and coworkers. They found that the virulence of the strains fluctuated slightly in 10 consecutive passages through the intestine of the non-immune children. A part of the Sabin material was used by A. A. Smorodintsev and M. P. Chumakov in the beginning of 1959 for immunizing approximately 40000 children in Estonia, Lithuania, and Latvia. Epidemic poliomyelitis rate in these republics decreased from approximately 1000 cases yearly before vaccination to less than 20 in the third quarter of 1959. This was a convincing proof of the efficacy and safety of the vaccine from the attenuated Sabin strains. In 1959, according to A. Sabin's recommendation, a technology of live vaccine production was developed at the Poliomyelitis Institute, and several experimental lots of vaccine were prepared. In the second part of 1959, 13.5 million children in USSR were immunized. The epidemic poliomyelitis rate decreased 3-5 times in different regions without paralytic cases, which could be attributed to the vaccination. These results were the final proof of high efficiency and safety of live poliomyelitis vaccine from the attenuated Sabin strains. Based on these results, A. Sabin and M. P. Chumakov suggested in 1960 the idea of poliomyelitis eradication using mass immunization of children with live vaccine. 72 million persons up to 20 years old were vaccinated in USSR in 1960 with a 5 times drop in the paralytic rate. 50-year-long use of live vaccine results in poliomyelitis eradication in almost all countries worldwide. More than 10 million children were rescued from the death and palsy. Poliomyelitis eradication in a few countries where it still exists depends not on medical services but is defined by the attitude of their leaders to fight

  14. Evidence for the Inhibition of Dengue Virus Binding in the Presence of Silver Nanoparticles

    DTIC Science & Technology

    2015-03-26

    with DENV are known to increase in severity from Dengue Fever to Dengue Hemorrhagic Fever or Dengue Shock Syndrome. Currently, no vaccines or...treatments are approved for DENV infections. Unsuccessful vaccine trials open the door for non- traditional treatments such as silver nanoparticles...implementation of a dengue vaccine is complicated by numerous factors. First, the candidate vaccine must provide equal and lasting immune responses against

  15. Safety and immunogenicity of a live-attenuated auxotrophic candidate vaccine against the intracellular pathogen Rhodococcus equi.

    PubMed

    Lopez, A M; Townsend, H G G; Allen, A L; Hondalus, M K

    2008-02-13

    Rhodococcus equi causes serious pneumonia in neonatal foals and is an opportunistic pathogen of people with compromised cellular immunity. No effective vaccine against R. equi disease in foals is available. We tested the safety and immunogenicity of a live, fully attenuated riboflavin auxotrophic candidate vaccine strain of R. equi (R. equi rib-). We demonstrated that R. equi rib- is immunogenic and capable of inducing IFN-gamma responses in immunocompetent BALB/c mice, yet it is safe even in an immunocompromised SCID mouse infection model. Moreover, it protects immunocompetent mice against virulent R. equi challenge. In foals, R. equi rib- was likewise safe and stimulated serum R. equi-specific immune responses. A preliminary immunization strategy did not afford protection against virulent R. equi challenge and therefore, optimization of the vaccine formulation and or vaccination protocol will be necessary.

  16. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions.

    PubMed

    Virnik, Konstantin; Ni, Yisheng; Berkower, Ira

    2013-04-19

    Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity.

  17. Dengue encephalitis

    PubMed Central

    Borawake, Kapil; Prayag, Parikshit; Wagh, Atul; Dole, Swati

    2011-01-01

    We report a case of dengue fever with features of encephalitis. The diagnosis of dengue was confirmed by the serum antibodies to dengue and the presence of a dengue antigen in the cerebrospinal fluid. This patient had characteristic magnetic resonance imaging brain findings, mainly involving the bilateral thalami, with hemorrhage. Dengue is not primarily a neurotropic virus and encephalopathy is a common finding in Dengue. Hence various other etiological possibilities were considered before concluding this as a case of Dengue encephalitis. This case explains the importance of considering the diagnosis of dengue encephalitis in appropriate situations. PMID:22013316

  18. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses

    PubMed Central

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023

  19. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses.

    PubMed

    Nishiyama, Shoko; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  20. Protective efficacy of a live attenuated Mycoplasma hyopneumoniae vaccine with an ISCOM-matrix adjuvant in pigs.

    PubMed

    Xiong, Qiyan; Wei, Yanna; Feng, Zhixin; Gan, Yuan; Liu, Zhanjun; Liu, Maojun; Bai, Fangfang; Shao, Guoqing

    2014-02-01

    An attenuated Mycoplasma hyopneumoniae vaccine that requires intrathoracic administration is commercially available for use against mycoplasmal pneumonia in China. Given the limitations of such a route of administration, this study was undertaken to assess the capacity of an ISCOM-matrix adjuvant to enhance immunogenicity following intramuscular use. Immune responses in pigs following vaccination and subsequent intra-tracheal bacterial inoculation were examined using lymphocyte proliferation, serology and mucosal IgA in both nasal and saliva swabs. Vaccination induced clear lymphocyte proliferation, but only slight serum antibody responses although these were significantly increased following experimental infection. Mucosal IgA was not detected in either nasal or salivary secretions. Following bacterial challenge, animals vaccinated with the adjuvant-containing live vaccine exhibited less severe pulmonary lesions (median score 3.67) than unvaccinated pigs (median score 13.58). The degree of ciliary loss on the respiratory tract surface was reduced in vaccinated pigs compared with experimentally infected controls. The findings indicated that the adjuvant vaccine administered IM provided protection against experimentally induced mycoplasmal pneumonia and could have commercial potential.

  1. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine

    PubMed Central

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  2. Dengue in a changing climate.

    PubMed

    Ebi, Kristie L; Nealon, Joshua

    2016-11-01

    Dengue is the world's most important arboviral disease in terms of number of people affected. Over the past 50 years, incidence increased 30-fold: there were approximately 390 million infections in 2010. Globalization, trade, travel, demographic trends, and warming temperatures are associated with the recent spread of the primary vectors Aedes aegypti and Aedes albopictus and of dengue. Overall, models project that new geographic areas along the fringe of current geographic ranges for Aedes will become environmentally suitable for the mosquito's lifecycle, and for dengue transmission. Many endemic countries where dengue is likely to spread further have underdeveloped health systems, increasing the substantial challenges of disease prevention and control. Control focuses on management of Aedes, although these efforts have typically had limited effectiveness in preventing outbreaks. New prevention and control efforts are needed to counter the potential consequences of climate change on the geographic range and incidence of dengue, including novel methods of vector control and dengue vaccines.

  3. Generation of a live rabies vaccine strain attenuated by multiple mutations and evaluation of its safety and efficacy.

    PubMed

    Nakagawa, Keisuke; Ito, Naoto; Masatani, Tatsunori; Abe, Masako; Yamaoka, Satoko; Ito, Yuki; Okadera, Kota; Sugiyama, Makoto

    2012-05-21

    An amino acid substitution at position 333 in rabies virus G protein is known to determine the pathogenicity: strains with Arg or Lys at that position kill adult mice after intracerebral inoculation, whereas strains with other amino acids cause non-lethal infection. Based on those findings, attenuated rabies virus strains have been established and used for oral vaccines mainly for wild animals. However, considering the possibility of back-mutation to the virulent phenotype, a strain that is attenuated by multiple mutations not only in the G protein but also in other viral proteins would be more appropriate as a safe live vaccine. We previously demonstrated that the fixed rabies virus Ni-CE strain, which causes only transient body weight loss in adult mice after intracerebral inoculation, is mainly attenuated by mutations in the N, P and M proteins, while this strain has virulent-type Arg at position 333 in the G protein. In this study, to obtain a live vaccine strain that is attenuated by multiple mutations, we generated Ni-CE mutant, Ni-CE(G333Glu) strain, which has an Arg-to-Glu mutation at position 333 in the G protein, and examined its pathogenicity and immunogenicity. We found that, in contrast to Ni-CE strain, Ni-CE(G333Glu) strain did not cause transient body weight loss in adult mice after intracerebral inoculation. The attenuated phenotype of Ni-CE(G333Glu) strain did not change even after 10 serial intracerebral passages in suckling mice. We also demonstrated that inoculation of Ni-CE(G333Glu) strain induced virus-neutralizing antibody in immunized mice and protected the mice from lethal challenge. These results indicate that Ni-CE(G333Glu) strain is a promising candidate for development of a live rabies vaccine with a high safety level.

  4. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.

    PubMed

    Solórzano, Alicia; Ye, Jianqiang; Pérez, Daniel R

    2010-05-01

    Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backbone results in an attenuated virus in vitro and in vivo. Furthermore, we show the potential of our TR backbone as a vaccine that provides protection against the 2009 swine-origin pandemic influenza H1N1 virus (S-OIV) when carrying the surface of a classical swine strain. We propose that the availability of alternative backbones to the conventional ca A/Ann Arbor/6/60 LAIV strain could also be useful in epidemic and pandemic influenza and should be considered for influenza vaccine development. In addition, our data provide evidence that the use of these alternative backbones could potentially circumvent the effects of original antigenic sin (OAS) in certain circumstances.

  5. Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp (Cyprinus carpio L).

    PubMed

    Jiang, Xinyu; Zhang, Chao; Zhao, Yanjing; Kong, Xianghui; Pei, Chao; Li, Li; Nie, Guoxing; Li, Xuejun

    2016-06-08

    Aeromonas hydrophila, as a strong Gram-negative bacterium, can infect a wide range of freshwater fish, including common carp Cyprinus carpio, and cause the huge economic loss. To create the effective vaccine is the best way to control the outbreak of the disease caused by A. hydrophila. In this study, a live attenuated A. hydrophila strain, XX1LA, was screened from the pathogenic A. hydrophila strain XX1 cultured on medium containing the antibiotic rifampicin, which was used as a live attenuated vaccine candidate. The immune protection of XX1LA against the pathogen A. hydrophila in common carp was evaluated by the relative percent survival (RPS), the specific IgM antibody titers, serum lysozyme activity and the expression profiles of multiple immune-related genes at the different time points following immunization. The results showed that the variable up-regulations of the immune-related genes, such as the pro-inflammatory cytokine IL-1β, the chemokine IL-10 and IgM, were observed in spleen and liver of common carp injected in the vaccines with the formalin-killed A. hydrophila (FKA) and the live attenuated XX1LA. Specific antibody to A. hydrophila was found to gradually increase during 28 days post-vaccination (dpv), and the RPS (83.7%) in fish vaccinated with XX1LA, was significant higher than that (37.2%) in fish vaccinated with FKA (P<0.05) on Day 28 after challenged by pathogen. It was demonstrated that the remarkable immune protection presented in the group vaccinated with XX1LA. During the late stage of 4-week immunization phase, compared with FKA and the control, specific IgM antibody titers significantly increased (P<0.05) in the XX1LA group. The activity of the lysozyme in serum indicated no significant change among three groups. In summary, the live attenuated bacterial vaccine XX1LA, screened in this study, indicates the better protect effect on common carp against A. hydrophila, which can be applied in aquaculture of common carp to prevent from the

  6. Live attenuated measles and mumps viral strain-containing vaccines and hearing loss: Vaccine Adverse Event Reporting System (VAERS), United States, 1990--2003.

    PubMed

    Asatryan, Armenak; Pool, Vitali; Chen, Robert T; Kohl, Katrin S; Davis, Robert L; Iskander, John K

    2008-02-26

    Hearing loss (HL) is a known complication of wild measles and mumps viral infections. As vaccines against measles and mumps contain live attenuated viral strains, it is biologically plausible that in some individuals HL could develop as a complication of vaccination against measles and/or mumps. Our objectives for this study were: to find and describe all cases of HL reported in the scientific literature and to the US Vaccine Adverse Events Reporting System (VAERS) for the period 1990--2003; and to determine reporting rate of HL after live attenuated measles and/or mumps viral strain-containing vaccines (MMCV) administration. We searched published reports for cases of HL identified after vaccination with MMCV. We also searched for reports of HL after MMCV administration submitted to VAERS from 1990 through 2003 and determined the dose-adjusted reporting rate of HL. Our main outcome measure was reported cases of HL after immunization with MMCV which were classified as idiopathic. We found 11 published case reports of HL following MMCV. The review of the VAERS reports identified 44 cases of likely idiopathic sensorineural HL after MMCV administration. The onset of HL in the majority of VAERS and published cases was consistent with the incubation periods of wild measles and mumps viruses. Based on the annual usage of measles-mumps-rubella (MMR) vaccine, we estimated the reporting rate of HL to be 1 case per 6-8 million doses. Thus, HL following MMCV has been reported in the literature and to the VAERS. Further studies are needed to better understand if there is a causal relationship between MMCV and HL.

  7. Watching Every Step of the Way: Junín Virus Attenuation Markers in the Vaccine Lineage

    PubMed Central

    Stephan, Betina Inés; Lozano, Mario Enrique; Goñi, Sandra Elizabeth

    2013-01-01

    The Arenaviridae family includes several hemorrhagic fever viruses which are important emerging pathogens. Junín virus, a member of this family, is the etiological agent of Argentine Hemorrhagic Fever (AHF). A collaboration between the Governments of Argentina and the USA rendered the attenuated Junín virus vaccine strain Candid#1. Arenaviruses are enveloped viruses with genomes consisting of two single-stranded RNA species (L and S), each carrying two coding regions separated by a stably structured, non-coding intergenic region. Molecular characterization of the vaccine strain and of its more virulent ancestors, XJ13 (prototype) and XJ#44, allows a systematic approach for the discovery of key elements in virulence attenuation. We show comparisons of sequence information for the S RNA of the strains XJ13, XJ#44 and Candid#1 of Junín virus, along with other strains from the vaccine lineage and a set of Junín virus field strains collected at the AHF endemic area. Comparisons of nucleotide and amino acid sequences revealed different point mutations which might be linked to the attenuated phenotype. The majority of changes are consistent with a progressive attenuation of virulence between XJ13, XJ#44 and Candid#1. We propose that changes found in genomic regions with low natural variation frequencies are more likely to be associated with the virulence attenuation process. We partially sequenced field strains to analyze the genomic variability naturally occurring for Junín virus. This information, together with the sequence analysis of strains with intermediate virulence, will serve as a starting point to study the molecular bases for viral attenuation. PMID:24396274

  8. Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease.

    PubMed

    Goñi, Fernando; Mathiason, Candace K; Yim, Lucia; Wong, Kinlung; Hayes-Klug, Jeanette; Nalls, Amy; Peyser, Daniel; Estevez, Veronica; Denkers, Nathaniel; Xu, Jinfeng; Osborn, David A; Miller, Karl V; Warren, Robert J; Brown, David R; Chabalgoity, Jose A; Hoover, Edward A; Wisniewski, Thomas

    2015-01-29

    Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.

  9. Mucosal Immunization with an Attenuated Salmonella Vaccine Partially Protects White-Tailed Deer from Chronic Wasting Disease

    PubMed Central

    Goñi, Fernando; Mathiason, Candace K.; Yim, Lucia; Wong, Kinlung; Hayes-Klug, Jeanette; Nalls, Amy; Peyser, Daniel; Estevez, Veronica; Denkers, Nathaniel; Xu, Jinfeng; Osborn, David A.; Miller, Karl V.; Warren, Robert J.; Brown, David R.; Chabalgoity, Jose A.; Hoover, Edward A.; Wisniewski, Thomas

    2014-01-01

    Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrPC (C for cellular) to a pathological and infectious conformer known as PrPSc (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrPCWD. We document the first partially successful vaccination for a prion disease in a species naturally at risk. PMID:25539804

  10. A Live Attenuated Equine H3N8 Influenza Vaccine Is Highly Immunogenic and Efficacious in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Treanor, John J.; Jin, Hong

    2014-01-01

    ABSTRACT Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and

  11. Attenuation, persistence, and vaccine potential of an Edwardsiella ictaluri purA mutant.

    PubMed Central

    Lawrence, M L; Cooper, R K; Thune, R L

    1997-01-01

    In this study, an adenine-auxotrophic strain of Edwardsiella ictaluri was constructed and its virulence, tissue persistence, and vaccine efficacy were evaluated. A clone containing the purA gene was isolated from an E. ictaluri genomic library, sequenced, and shown to have an overall sequence identity of 79.3% at the nucleotide level and 85.7% at the amino acid level with the Escherichia coli purA gene. The cloned E. ictaluri purA gene was mutated by deleting a 598-bp segment of the gene and inserting the kanamycin resistance gene from Tn903 into the gap. The delta purA::Km(r) gene was subcloned into the suicide plasmid pGP704, and the resulting plasmid was used to deliver the modified gene into a virulent strain of E. ictaluri by conjugation. Homologous recombination replaced the chromosomal purA gene with the mutated gene to create an adenine-auxotrophic strain (LSU-E2). Compared to wild-type E. ictaluri, LSU-E2 was highly attenuated by the injection, immersion, and oral routes of exposure. By the injection route, LSU-E2 had a 50% lethal dose (LD50) that was greater than 5 logs10 higher than the LD50 for wild-type E. ictaluri. In a tissue persistence study, LSU-E2 was able to invade channel catfish by the immersion route and persist in internal organs for at least 48 h. Channel catfish that were vaccinated with a single immersion dose of LSU-E2 had mortality significantly lower (P < 0.01) following a wild-type E. ictaluri challenge than that of nonvaccinated fish. PMID:9353045

  12. Comparative genomic analysis of Brucella melitensis vaccine strain M5 provides insights into virulence attenuation.

    PubMed

    Jiang, Hai; Du, Pengcheng; Zhang, Wen; Wang, Heng; Zhao, Hongyan; Piao, Dongri; Tian, Guozhong; Chen, Chen; Cui, Buyun

    2013-01-01

    The Brucella melitensis vaccine strain M5 is widely used to prevent and control brucellosis in animals. In this study, we determined the whole-genome sequence of M5, and conducted a comprehensive comparative analysis against the whole-genome sequence of the virulent strain 16 M and other reference strains. This analysis revealed 11 regions of deletion (RDs) and 2 regions of insertion (RIs) within the M5 genome. Among these regions, the sequences encompassed in 5 RDs and 1 RI showed consistent variation, with a large deletion between the M5 and the 16 M genomes. RD4 and RD5 showed the large diversity among all Brucella genomes, both in RD length and RD copy number. Thus, RD4 and RD5 are potential sites for typing different Brucella strains. Other RD and RI regions exhibited multiple single nucleotide polymorphisms (SNPs). In addition, a genome fragment with a 56 kb rearrangement was determined to be consistent with previous studies. Comparative genomic analysis indicated that genomic island inversion in Brucella was widely present. With the genetic pattern common among all strains analyzed, these 2 RDs, 1 RI, and one inversion region are potential sites for detection of genomic differences. Several SNPs of important virulence-related genes (motB, dhbC, sfuB, dsbAB, aidA, aroC, and lysR) were also detected, and may be used to determine the mechanism of virulence attenuation. Collectively, this study reveals that comparative analysis between wild-type and vaccine strains can provide resources for the study of virulence and microevolution of Brucella.

  13. Comparative Genomic Analysis of Brucella melitensis Vaccine Strain M5 Provides Insights into Virulence Attenuation

    PubMed Central

    Zhang, Wen; Wang, Heng; Zhao, Hongyan; Piao, Dongri; Tian, Guozhong; Chen, Chen; Cui, Buyun

    2013-01-01

    The Brucella melitensis vaccine strain M5 is widely used to prevent and control brucellosis in animals. In this study, we determined the whole-genome sequence of M5, and conducted a comprehensive comparative analysis against the whole-genome sequence of the virulent strain 16 M and other reference strains. This analysis revealed 11 regions of deletion (RDs) and 2 regions of insertion (RIs) within the M5 genome. Among these regions, the sequences encompassed in 5 RDs and 1 RI showed consistent variation, with a large deletion between the M5 and the 16 M genomes. RD4 and RD5 showed the large diversity among all Brucella genomes, both in RD length and RD copy number. Thus, RD4 and RD5 are potential sites for typing different Brucella strains. Other RD and RI regions exhibited multiple single nucleotide polymorphisms (SNPs). In addition, a genome fragment with a 56 kb rearrangement was determined to be consistent with previous studies. Comparative genomic analysis indicated that genomic island inversion in Brucella was widely present. With the genetic pattern common among all strains analyzed, these 2 RDs, 1 RI, and one inversion region are potential sites for detection of genomic differences. Several SNPs of important virulence-related genes (motB, dhbC, sfuB, dsbAB, aidA, aroC, and lysR) were also detected, and may be used to determine the mechanism of virulence attenuation. Collectively, this study reveals that comparative analysis between wild-type and vaccine strains can provide resources for the study of virulence and microevolution of Brucella. PMID:23967122

  14. Efficacy of HVT-IBD vector vaccine compared to attenuated live vaccine using in-ovo vaccination against a Korean very virulent IBDV in commercial broiler chickens.

    PubMed

    Roh, J-H; Kang, M; Wei, B; Yoon, R-H; Seo, H-S; Bahng, J-Y; Kwon, J-T; Cha, S-Y; Jang, H-K

    2016-05-01

    The production performance, efficacy, and safety of two types of vaccines for infectious bursal disease virus (IBDV) were compared with in-ovo vaccination of Cobb 500 broiler chickens for gross and microscopic examination of the bursa of Fabricius, bursa/body weight (b/B) ratio, flow cytometry, and serologic response to Newcastle disease virus (NDV) vaccination. One vaccine was a recombinant HVT-IBD vector vaccine (HVT as for herpesvirus of turkeys) and the other was an intermediate plus live IBDV vaccine. A significant difference was detected at 21 d. Eight of 10 chickens that received the IBDV live vaccine had severe bursal lesions and a relatively low b/B ratio of 0.95, and an inhibited NDV vaccine response. On the other hand, the HVT-IBD vector vaccine resulted in mild bursal lesions and a b/B ratio of 1.89. Therefore, the live vaccine had lower safety than that of the HVT-IBD vector vaccine. To determine the protective efficacy, chickens were intraocularly challenged at 24 d. Eight of 10 chickens in the IBDV live vaccination group showed gross and histological lesions characterized by hemorrhage, cyst formation, lymphocytic depletion, and a decreased b/B ratio. In contrast, the HVT-IBD vector vaccinated chickens showed mild gross and histological lesions in three of 10 chickens with a b/B ratio of 1.36, which was similar to that of the unchallenged controls. Vaccinated chickens showed a significant increase in IBDV antibody titers, regardless of the type of vaccine used. In addition, significantly better broiler flock performance was observed with the HVT-IBD vector vaccine compared to that of the live vaccine. Our results revealed that the HVT-IBD vector vaccine could be used as an alternative vaccine to increase efficacy, and to have an improved safety profile compared with the IBDV live vaccine using in-ovo vaccination against the Korean very virulent IBDV in commercial broiler chickens.

  15. Efficiency of live attenuated and inactivated rabies viruses in prophylactic and post exposure vaccination against the street virus strain.

    PubMed

    Huang, F; Ahmad, W; Duan, M; Liu, Z; Guan, Z; Zhang, M; Qiao, B; Li, Y; Song, Y; Song, Y; Chen, Y; Amjad Ali, M

    2015-06-01

    Rabies remains an enigmatic and widely discussed global infectious disease and causes an increasing number of deaths. The currently used highly effective prophylactic and post exposure (p.e.) vaccination depends solely upon inexpensive, effective and safe vaccines to counteract the spread of the disease. In this study, the potential of an attenuated Chinese rabies vaccine (SRV9) strain in prophylactic and p.e. vaccination against the street strain of rabies virus (RV) was evaluated in mice. Prophylactic vaccination consisting of one intramuscular (i.m.) dose of SRV9 protected 100% of mice from intracerebral (i.c.) challenge with a lethal dose of the street virus. The latter was detected in the brain of mice at day 6 post challenge by RT-PCR. Post exposure vaccination was performed at days 1, 2, 3, 4, 5 and 6 post infection (p.i.) with either SRV9 or inactivated rabies vaccine. The survival rates after i.m. inoculation of SRV9 at the indicated days were 70%, 50%, 30%, 20%, 10%, and 0%, respectively; the corresponding survival rates for the inactivated rabies vaccine were 30%, 20%, 10%, 0%, 0%, and 0%, respectively. However, 100%, 90%, 70%, 50%, 20%, 10%, and 10% of mice survived after i.c. inoculation of SRV9 at the indicated days. The increased permeability of the blood-brain barrier and the infiltration of CD19+ B cells into the central nervous system after i.c. inoculation of SRV9 are regarded as prerequisites for the clearance of the street virus. The obtained data suggest that SRV9 is a promising candidate for prophylactic and p.e. vaccination against rabies infection and that it exhibits a potential for the control of rabies in China.

  16. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach

    PubMed Central

    Jindra, Christoph; Huber, Bettina; Shafti-Keramat, Saeed; Wolschek, Markus; Ferko, Boris; Muster, Thomas; Brandt, Sabine; Kirnbauer, Reinhard

    2015-01-01

    Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease. PMID:26381401

  17. Development of a live attenuated antigenic marker classical swine fever vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical Swine Fever, caused by Classical Swine Fever Virus (CSFV), is a highly contagious disease affecting swine worldwide. The two main strategies for disease control are prophylactic vaccination and non-vaccination “stamping out” policies. In a vaccination-to-live strategy, marker vaccines coul...

  18. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    PubMed

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  19. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine

    PubMed Central

    Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-01-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  20. Safety of Japanese encephalitis live attenuated vaccination in post-marketing surveillance in Guangdong, China, 2005-2012.

    PubMed

    Liu, Yu; Lin, Hualiang; Zhu, Qi; Wu, Chenggang; Zhao, Zhanjie; Zheng, Huizhen

    2014-03-26

    We reviewed the adverse events following immunization of live attenuated Japanese encephalitis vaccine in Guangdong Province, China. During the period of 2005-2012, 23 million doses of live attenuated Japanese encephalitis vaccine were used and 1426 adverse events were reported (61.24 per million doses); of which, 570 (40%) were classified as allergic reactions (24.48 per million doses), 31 (2%) were neurologic events (1.33 per million doses), and 36 (2.5%) were diagnosed as serious adverse events (1.55 per million doses). This study suggests that the JEV-L has a reasonable safety profile, most adverse events are relatively mild, with relatively rare neurologic events being observed.

  1. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8.

    PubMed

    Eto, Akiko; Saito, Tomoya; Yokote, Hiroyuki; Kurane, Ichiro; Kanatani, Yasuhiro

    2015-11-09

    LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox.

  2. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice.