Shi, Qiang; Liu, Xiaoyan; Bai, Yuanyuan; Cui, Chuanjue; Li, Jun; Li, Yishi; Hu, Shengshou; Wei, Yingjie
2011-01-01
Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling. PMID:22132230
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway.
Mizoguchi, Takamasa; Ikeda, Shoko; Watanabe, Saori; Sugawara, Michiko; Itoh, Motoyuki
2017-10-31
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1 ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1 ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway. Published under the PNAS license.
Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983-84.
De Siena, Luca; Chiodini, Giovanni; Vilardo, Giuseppe; Del Pezzo, Edoardo; Castellano, Mario; Colombelli, Simona; Tisato, Nicola; Ventura, Guido
2017-08-14
Despite their importance for eruption forecasting the causes of seismic rupture processes during caldera unrest are still poorly reconstructed from seismic images. Seismic source locations and waveform attenuation analyses of earthquakes in the Campi Flegrei area (Southern Italy) during the 1983-1984 unrest have revealed a 4-4.5 km deep NW-SE striking aseismic zone of high attenuation offshore Pozzuoli. The lateral features and the principal axis of the attenuation anomaly correspond to the main source of ground uplift during the unrest. Seismic swarms correlate in space and time with fluid injections from a deep hot source, inferred to represent geochemical and temperature variations at Solfatara. These swarms struck a high-attenuation 3-4 km deep reservoir of supercritical fluids under Pozzuoli and migrated towards a shallower aseismic deformation source under Solfatara. The reservoir became aseismic for two months just after the main seismic swarm (April 1, 1984) due to a SE-to-NW directed input from the high-attenuation domain, possibly a dyke emplacement. The unrest ended after fluids migrated from Pozzuoli to the location of the last caldera eruption (Mt. Nuovo, 1538 AD). The results show that the high attenuation domain controls the largest monitored seismic, deformation, and geochemical unrest at the caldera.
NASA Astrophysics Data System (ADS)
Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Qu, Shan; Zu, Shaohuan
2016-02-01
Direct imaging of simultaneous-source (or blended) data, without the need of deblending, requires a precise subsurface velocity model. In this paper, we focus on the velocity analysis of simultaneous-source data using the normal moveout-based velocity picking approach.We demonstrate that it is possible to obtain a precise velocity model directly from the blended data in the common-midpoint domain. The similarity-weighted semblance can help us obtain much better velocity spectrum with higher resolution and higher reliability compared with the traditional semblance. The similarity-weighted semblance enforces an inherent noise attenuation solely in the semblance calculation stage, thus it is not sensitive to the intense interference. We use both simulated synthetic and field data examples to demonstrate the performance of the similarity-weighted semblance in obtaining reliable subsurface velocity model for direct migration of simultaneous-source data. The migrated image of blended field data using prestack Kirchhoff time migration approach based on the picked velocity from the similarity-weighted semblance is very close to the migrated image of unblended data.
Babona-Pilipos, Robart; Droujinine, Ilia A; Popovic, Milos R; Morshead, Cindi M
2011-01-01
The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.
Asghar, Muhammad Yasir; Viitanen, Tero; Kemppainen, Kati; Törnquist, Kid
2012-10-01
Anaplastic thyroid cancer (ATC) is the most aggressive form of human thyroid cancer, lacking any effective treatment. Sphingosine 1-phosphate (S1P) receptors and human ether-a'-go-go-related gene (HERG (KCNH2)) potassium channels are important modulators of cell migration. In this study, we have shown that the S1P(1-3) receptors are expressed in C643 and THJ-16T human ATC cell lines, both at mRNA and protein level. S1P inhibited migration of these cells and of follicular FTC-133 thyroid cancer cells. Using the S1P(1,3) inhibitor VPC-23019, the S1P(2) inhibitor JTE-013, and the S1P(2) receptor siRNA, we showed that the effect was mediated through S1P(2). Treatment of the cells with the Rho inhibitor C3 transferase abolished the effect of S1P on migration. S1P attenuated Rac activity, and inhibiting Rac decreased migration. Sphingosine kinase inhibitor enhanced basal migration of cells, and addition of exogenous S1P inhibited migration. C643 cells expressed a nonconducting HERG protein, and S1P decreased HERG protein expression. The HERG blocker E-4031 decreased migration. Interestingly, downregulating HERG protein with siRNA decreased the basal migration. In experiments using HEK cells overexpressing HERG, we showed that S1P decreased channel protein expression and current and that S1P attenuated migration of the cells. We conclude that S1P attenuates migration of C643 ATC cells by activating S1P(2) and the Rho pathway. The attenuated migration is also, in part, dependent on a S1P-induced decrease of HERG protein.
Jung, Oisun; Choi, Suyong; Jang, Sun-Bok; Lee, Sin-Ae; Lim, Ssang-Taek; Choi, Yoon-Ju; Kim, Hye-Jin; Kim, Do-Hee; Kwak, Tae Kyoung; Kim, Hyeonjung; Kang, Minkyung; Lee, Mi-Sook; Park, Sook Young; Ryu, Jihye; Jeong, Doyoung; Cheong, Hae-Kap; Kim, Hyun Jeong; Park, Ki Hun; Lee, Bong-Jin; Schlaepfer, David D.; Lee, Jung Weon
2012-01-01
Summary Transmembrane 4 L six family member 5 (TM4SF5) plays an important role in cell migration, and focal adhesion kinase (FAK) activity is essential for homeostatic and pathological migration of adherent cells. However, it is unclear how TM4SF5 signaling mediates the activation of cellular migration machinery, and how FAK is activated during cell adhesion. Here, we showed that direct and adhesion-dependent binding of TM4SF5 to FAK causes a structural alteration that may release the inhibitory intramolecular interaction in FAK. In turn, this may activate FAK at the cell's leading edge, to promote migration/invasion and in vivo metastasis. TM4SF5-mediated FAK activation occurred during integrin-mediated cell adhesion. TM4SF5 was localized at the leading edge of the cells, together with FAK and actin-organizing molecules, indicating a signaling link between TM4SF5/FAK and actin reorganization machinery. Impaired interactions between TM4SF5 and FAK resulted in an attenuated FAK phosphorylation (the signaling link to actin organization machinery) and the metastatic potential. Our findings demonstrate that TM4SF5 directly binds to and activates FAK in an adhesion-dependent manner, to regulate cell migration and invasion, suggesting that TM4SF5 is a promising target in the treatment of metastatic cancer. PMID:23077174
Migration of dispersive GPR data
Powers, M.H.; Oden, C.P.; ,
2004-01-01
Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.
Cysteinyl leukotrienes promote human airway smooth muscle migration.
Parameswaran, Krishnan; Cox, Gerard; Radford, Katherine; Janssen, Luke J; Sehmi, Roma; O'Byrne, Paul M
2002-09-01
Cysteinyl leukotrienes promote airway smooth muscle (ASM) contraction and proliferation. Little is known about their role in ASM migration. We investigated this using cultured human ASMs (between the second and fifth passages) obtained from the large airways of resected nonasthmatic lung. Platelet-derived growth factor-BB (1 ng/ml) promoted significant (3.5-fold) ASM migration of myocytes across collagen-coated 8- micro m polycarbonate membranes in Transwell culture plates. Leukotriene E(4) (10(-7), 10(-8), 10(-9) M) did not demonstrate a chemotactic effect; it did promote chemokinesis. Priming by leukotriene E(4) (10(-7) M) significantly augmented the directional migratory response to platelet-derived growth factor (1.5-fold, p < 0.05). This was blocked by montelukast (10(-6) M), demonstrating the effect to be mediated by the cysteinyl leukotriene receptor. The "priming effect" was also partially attenuated by prostaglandin E(2) (10(-7) M). Whereas both the chemokinetic and the chemotactic "primed" responses were equally attenuated by a p38 mitogen-activated protein kinase inhibitor (SB203580, 25 micro M) and by a Rho-kinase inhibitor (Y27632, 10 micro M), the chemotactic response showed greater inhibition than chemokinesis by a phosphatidylinositol-3 kinase inhibitor (LY294002, 50 micro M). These experiments suggest that cysteinyl leukotrienes play an augmentary role in human ASM migration. The phosphatidylinositol-3 kinase pathway is a key signaling mechanism in the chemotactic migration of ASM cells in response to cysteinyl leukotrienes.
Investigation of water seepage through porous media using X-ray imaging technique
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon
2012-07-01
SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.
Migration velocity analysis using residual diffraction moveout: a real-data example
NASA Astrophysics Data System (ADS)
Gonzalez, Jaime A. C.; de Figueiredo, José J. S.; Coimbra, Tiago A.; Schleicher, Jörg; Novais, Amélia
2016-08-01
Unfocused seismic diffraction events carry direct information about errors in the migration-velocity model. The residual-diffraction-moveout (RDM) migration-velocity-analysis (MVA) method is a recent technique that extracts this information by means of adjusting ellipses or hyperbolas to uncollapsed migrated diffractions. In this paper, we apply this method, which has been tested so far only on synthetic data, to a real data set from the Viking Graben. After application of a plane-wave-destruction (PWD) filter to attenuate the reflected energy, the diffractions in the real data become interpretable and can be used for the RDM method. Our analysis demonstrates that the reflections need not be completely removed for this purpose. Beyond the need to identify and select diffraction events in post-stack migrated sections in the depth domain, the method has a very low computational cost and processing time. To reach an acceptable velocity model of comparable quality as one obtained with common-midpoint (CMP) processing, only two iterations were necessary.
Somanna, Naveen K.; Valente, Anthony J.; Krenz, Maike; Fay, William P.; Delafontaine, Patrice; Chandrasekar, Bysani
2017-01-01
Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuate Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibit CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2O2 production and CF proliferation and migration. Further, AT1 binds Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attnuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling. PMID:26445208
Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael
2012-01-01
SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495
Huang, Guo-Hao; Du, Lei; Li, Ningning; Zhang, Ying; Xiang, Yan; Tang, Jun-Hai; Xia, Shuli; Zhang, Eric Erquan; Lv, Sheng-Qing
2018-06-06
Gliomas with isocitrate dehydrogenases genes mutation (IDH MT ) were found to be less aggressive than their wildtype (IDH WT ) counterparts. However, the mechanism remains unclear. The current study aims to investigate the role of silenced oncogenic microRNAs in IDH MT gliomas, which were largely ignored and may contribute to the less aggressive behavior of IDH MT gliomas. Microarrays, bioinformatics analysis of the data from TCGA and qPCR analysis of samples from our experimental cohort (LGG: IDH WT =10, IDH MT =31; GBM: IDH WT =34, IDH MT =9) were performed. The results show that miR-155 was consistently down-regulated in IDH MT gliomas. Establishment of IDH1 R132H overexpressing glioma cell line and bisulfite sequencing PCR suggested that miR-155 down-regulation was associated with IDH1 R132H mutation induced promoter CpG islands methylation. The cancer testis antigen FAM133A is a direct downstream target of miR-155 and is a negative regulator of glioma invasion and migration possibly by regulating matrix metallopeptidase 14 (MMP14). Together, we found that methylation-regulated miR-155-FAM133A axis may contribute to the attenuated invasion and migration of IDH MT gliomas by targeting MMP14. Copyright © 2018. Published by Elsevier B.V.
Deep hypothermia therapy attenuates LPS-induced microglia neuroinflammation via the STAT3 pathway.
Tong, G; Krauss, A; Mochner, J; Wollersheim, S; Soltani, P; Berger, F; Schmitt, K R L
2017-09-01
Deep hypothermia therapy (HT) is a standard method for neuroprotection during complex pediatric cardiac surgery involving extracorporeal circulation and deep hypothermic cardiac arrest. The procedure, however, can provoke systemic inflammatory response syndrome (SIRS), one of the most severe side effects associated with pediatric cardiac surgery. To date, the cellular inflammatory mechanisms induced by deep HT remain to be elucidated. Therefore, we investigated the effects of deep HT (17°C) and rewarming on the inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 murine microglia. Additionally, we also investigated the application of Stattic, a signal transducer and activator of transcription 3 (STAT3) activation inhibitor, as an alternative to physical cooling to attenuate the LPS-induced inflammatory response. Deep HT had no cytotoxic effect but attenuated microglia migration. IκBα degradation was delayed by deep HT resulting in the attenuation of pNF-κB p65 migration into the nucleus and significant decreases in pro-inflammatory IL-6, TNF-α, and MCP-1 expressions and secretions, as well as decreased anti-inflammatory IL-10 and SOCS3 expressions. Additionally, pStat3 was significantly down regulated under deep hypothermic conditions, also corresponding with the significant reduction in IL-6 and TNF-α expressions. Similar to the effects of HT, the application of Stattic under normothermic conditions resulted in significantly reduced IL-6 and TNF-α expressions. Moreover, attenuation of the inflammatory response resulted in decreased apoptosis in a direct co-culture of microglia and neurons. HT reduces the inflammatory response in LPS-stimulated BV-2 microglial cells, alluding to a possible mechanism of therapeutic hypothermia-induced neuroprotection. In the future, attenuating the phospho-STAT3 pathway may lead to the development of a neuroprotectant with greater clinical efficacy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Lin, Wen-Jian; Ma, Xue-Fei; Hao, Ming; Zhou, Huan-Ran; Yu, Xin-Yang; Shao, Ning; Gao, Xin-Yuan; Kuang, Hong-Yu
2018-07-01
Retinal pericyte migration represents a novel mechanism of pericyte loss in diabetic retinopathy (DR), which plays a crucial role in the early impairment of the blood-retinal barrier (BRB). Glucagon-like peptide-1 (GLP-1) has been shown to protect the diabetic retina in the early stage of DR; however, the relationship between GLP-1 and retinal pericytes has not been discussed. In this study, advanced glycation end products (AGEs) significantly increased the migration of primary bovine retinal pericytes without influencing cell viability. AGEs also significantly enhanced phosphatidylinositol 3-kinase (PI3K)/Akt activation, and changed the expressions of migration-related proteins, including phosphorylated focal adhesion kinase (p-FAK), matrix metalloproteinase (MMP)-2 and vinculin. PI3K inhibition significantly attenuated the AGEs-induced migration of retinal pericytes and reversed the overexpression of MMP-2. Glucagon-like peptide-1 receptor (Glp1r) was expressed in retinal pericytes, and liraglutide, a GLP-1 analog, significantly attenuated the migration of pericytes by Glp1r and reversed the changes in p-Akt/Akt, p-FAK/FAK, vinculin and MMP-2 levels induced by AGEs, indicating that the protective effect of liraglutide was associated with the PI3K/Akt pathway. These results provided new insights into the mechanism underlying retinal pericyte migration. The early use of liraglutide exerts a potential bebefical effect on regulating pericyte migration, which might contribute to mechanisms that maintain the integrity of vascular barrier and delay the development of DR. Copyright © 2018 Elsevier Inc. All rights reserved.
GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Arif Ul, E-mail: ahasan@med.kagawa-u.ac.jp; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793; Ohmori, Koji
How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, themore » silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism. - Highlights: • Agonizing GPR120 differentially regulates the pro-inflammatory adipocytokines. • Agonizing GPR120 in adipocytes attenuates NF-κB mediated IL-6 and CCL2 production. • Agonizing GPR120 concomitantly triggers a PKC mediated pro-inflammatory pathway. • However, the resulted effect in adipocytes remains anti-inflammatory. • Agonizing GPR120 in adipocytes reduces macrophage migration in a paracrine manner.« less
MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Nianxi; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Shen, Liangfang
Highlights: • Decreased miR-153 and up-regulated ADAM19 are correlated with NSCLC pathology. • MiR-153 inhibits the proliferation and migration and invasion of NSCLC cells in vitro. • ADAM19 is a direct target of miR-153. • ADAM19 is involved in miR-153-suppressed migration and invasion of NSCLC cells. - Abstract: MiR-153 was reported to be dysregulated in some human cancers. However, the function and mechanism of miR-153 in lung cancer cells remains unknown. In this study, we investigated the role of miR-153 in human non-small-cell lung cancer (NSCLC). Using qRT-PCR, we demonstrated that miR-153 was significantly decreased in clinical NSCLC tissues andmore » cell lines, and downregulation of miR-153 was significantly correlated with lymph node status. We further found that ectopic expression of miR-153 significantly inhibited the proliferation and migration and invasion of NSCLC cells in vitro, suggesting that miR-153 may be a novel tumor suppressor in NSCLC. Further integrated analysis revealed that ADAM19 is as a direct and functional target of miR-153. Luciferase reporter assay demonstrated that miR-153 directly targeted 3′UTR of ADAM19, and correlation analysis revealed an inverse correlation between miR-153 and ADAM19 mRNA levels in clinical NSCLC tissues. Knockdown of ADAM19 inhibited migration and invasion of NSCLC cells which was similar with effects of overexpression of miR-153, while overexpression of ADAM19 attenuated the function of miR-153 in NSCLC cells. Taken together, our results highlight the significance of miR-153 and ADAM19 in the development and progression of NSCLC.« less
Involvement of PUMA in pericyte migration induced by methamphetamine.
Zhang, Yanhong; Zhang, Yuan; Bai, Ying; Chao, Jie; Hu, Gang; Chen, Xufeng; Yao, Honghong
2017-07-01
Mounting evidence indicates that methamphetamine causes blood-brain barrier damage, with emphasis on endothelial cells. The role of pericytes in methamphetamine-induced BBB damage remains unknown. Our study demonstrated that methamphetamine increased the migration of pericytes from the endothelial basement membrane. However, the detailed mechanisms underlying this process remain poorly understood. Thus, we examined the molecular mechanisms involved in methamphetamine-induced pericyte migration. The results showed that exposure of C3H/10T1/2 cells and HBVPs to methamphetamine increased PUMA expression via activation of the sigma-1 receptor, MAPK and Akt/PI3K pathways. Moreover, methamphetamine treatment resulted in the increased migration of C3H/10T1/2 cells and HBVPs. Knockdown of PUMA in pericytes transduced with PUMA siRNA attenuated the methamphetamine-induced increase in cell migration through attenuation of integrin and tyrosine kinase mechanisms, implicating a role of PUMA in the migration of C3H/10T1/2 cells and HBVPs. This study has demonstrated that methamphetamine-mediated pericytes migration involves PUMA up-regulation. Thus, targeted studies of PUMA could provide insights to facilitate the development of a potential therapeutic approach for alleviation of methamphetamine-induced pericyte migration. Copyright © 2017. Published by Elsevier Inc.
miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2.
Yang, Longlong; Zheng, Zhao; Zhou, Qin; Bai, Xiaozhi; Fan, Lei; Yang, Chen; Su, Linlin; Hu, Dahai
2017-04-01
Inflammation, re-epithelization and tissue remodeling are three essential steps during wound healing. The re-epithelization process plays the most important role which mainly involves keratinocyte proliferation and migration. miR-155 has been reported to participate in cell migration and transformation, however, its function in skin wound healing is largely unknown. Here we hypothesize that overexpression of miR-155 at wound edges could accelerate wound healing mediated by enhanced keratinocyte migration. To test this hypothesis, direct local injection of miR-155 expression plasmid to wound edges was conducted to overexpress miR-155 in vivo. Results shown that miR-155 significantly promoted wound healing and re-epithelization compared to control, while did not affect wound contraction. Also, miR-155 overexpression accelerated primarily cultured keratinocyte migration in vitro, but had no effect on cell proliferation. Importantly, western blot analysis shown that MMP-2 was significantly upregulated whiles its inhibitor TIMP-1 downregulated after miR-155 treatment. Moreover, the use of ARP-101, an MMP-2 inhibitor, effectively attenuated the accelerative effects on cell migration induced by miR-155. Taken together, our results suggest that miR-155 has the promote effect on wound healing that is probably mediated by accelerating keratinocyte migration via upregulated MMP-2 level. This study provides a rationale for the therapeutic effect of miR-155 on wound healing.
Dinicola, Richard S.; Cox, S.E.; Landmeyer, J.E.; Bradley, P.M.
2002-01-01
The U.S. Geological Survey (USGS) evaluated the natural attenuation of chlorinated volatile organic compounds (CVOCs) in ground water beneath the former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The predominant contaminants in ground water are trichloroethene (TCE) and its degradation byproducts cis-1,2-dichloroethene (cisDCE) and vinyl chloride (VC). The Navy planted two hybrid poplar plantations on the landfill in spring of 1999 to remove and control the migration of CVOCs in shallow ground water. Previous studies provided evidence that microbial degradation processes also reduce CVOC concentrations in ground water at OU 1, so monitored natural attenuation is a potential alternative remedy if phytoremediation is ineffective. This report describes the current (2000) understanding of natural attenuation of CVOCs in ground water at OU 1 and the impacts that phytoremediation activities to date have had on attenuation processes. The evaluation is based on ground-water and surface-water chemistry data and hydrogeologic data collected at the site by the USGS and Navy contractors between 1991 and 2000. Previously unpublished data collected by the USGS during 1996-2000 are presented. Natural attenuation of CVOCs in shallow ground water at OU 1 is substantial. For 1999-2000 conditions, approximately 70 percent of the mass of dissolved chlorinated ethenes that was available to migrate from the landfill was completely degraded in shallow ground water before it could migrate to the intermediate aquifer or discharge to surface water. Attenuation of CVOC concentrations appears also to be substantial in the intermediate aquifer, but biodegradation appears to be less significant; those conclusions are less certain because of the paucity of data downgradient of the landfill beneath the tide flats. Attenuation of CVOC concentrations is also substantial in surface water as it flows through the adjacent marsh and out to the tide flats. Attenuation processes other than dilution reduce the CVOC flux in marsh surface water by about 40 percent by the time the water discharges to the tide flats. Despite the importance of natural attenuation processes at reducing both the contaminant concentrations and the contaminant mass at OU 1, natural attenuation alone was not effective enough in the year 2000 to meet current numerical remediation goals for the site. That was in part due to the relatively short distance between the landfill and the adjacent marsh, and in part due to the extremely high CVOC concentrations directly beneath the landfill. Phytoremediation activities had some apparent effect on contaminant concentrations in ground water and surface water, but ground-water redox conditions to date (2000) were not affected by the February 1999 asphalt removal for tree planting. The poplar trees in the phytoremediation plantations were not yet mature in 2000, so the lack of discernible changes to date is understandable. Concentration changes of some redox-sensitive compounds suggest that increased recharge following asphalt removal diluted ambient landfill ground water. CVOC concentrations increased in some downgradient wells in both the northern and southern plantations after asphalt removal, whereas CVOC concentrations decreased in some upgradient wells in the southern plantation. A clear increase in CVOC concentrations in marsh surface water followed asphalt removal, apparently from increased contaminant discharge in ground water beneath the southern plantation. The results of the natural attenuation evaluation suggest than minor modifications to the current sampling plan may be beneficial to understanding the future impacts of phytoremediation and natural attenuation on the fate and distribution of CVOCs at OU 1.
WANG, CHUNHUAI; XIANG, RU; ZHANG, XIANGZHONG; CHEN, YUNXIAN
2015-01-01
Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix-coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti-β1-integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, incubation with blocking anti-β1-integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia. PMID:26004127
Seismic Full Waveform Modeling & Imaging in Attenuating Media
NASA Astrophysics Data System (ADS)
Guo, Peng
Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than the attenuating wavefield, and introduce unwanted phase shift. Numerical examples show that there are phase (depth) shifts in the Q-compensated RTM images from the GSLS equation. An adjoint-based least-squares reverse-time migration is proposed for viscoelastic media (Q-LSRTM), to compensate the attenuation losses in P and S images. The viscoelastic adjoint operator, and the P and S modulus perturbation imaging conditions are derived using the adjoint-state method and an augmented Lagrangian functional. Q-LSRTM solves the viscoelastic linearized modeling operator for synthetic data, and the adjoint operator is used for back propagating the data residual. Q-LSRTM is capable of iteratively updating the P and S modulus perturbations,in the direction of minimizing data residuals, and attenuation loss is iteratively compensated. A novel Q compensation approach is developed for adjoint seismic imaging by pseudodifferential scaling. With a correct Q model included in the migration algorithm, propagation effects, including the Q effects, can be compensated with the application of the inverse Hessian to the RTM image. Pseudodifferential scaling is used to efficiently approximate the action of the inverse Hessian. Numerical examples indicate that the adjoint RTM images with pseudodifferential scaling approximate the true model perturbation, and can be used as well-conditioned gradients for least-squares imaging.
Multisource least-squares reverse-time migration with structure-oriented filtering
NASA Astrophysics Data System (ADS)
Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong
2016-09-01
The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko
2014-05-01
Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation ofmore » VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.« less
Aherne, Carol M.; Collins, Colm B.; Eltzschig, Holger K.
2013-01-01
The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease. PMID:24665394
Seismic Linear Noise Attenuation with Use of Radial Transform
NASA Astrophysics Data System (ADS)
Szymańska-Małysa, Żaneta
2018-03-01
One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.
SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.
Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae
2018-05-01
SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.
Physical confinement alters tumor cell adhesion and migration phenotypes
Balzer, Eric M.; Tong, Ziqiu; Paul, Colin D.; Hung, Wei-Chien; Stroka, Kimberly M.; Boggs, Amanda E.; Martin, Stuart S.; Konstantopoulos, Konstantinos
2012-01-01
Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.—Balzer, E. M., Tong, Z., Paul, C. D., Hung, W.-C., Stroka, K. M., Boggs, A. E., Martin, S. S., Konstantopoulos, K. Physical confinement alters tumor cell adhesion and migration phenotypes. PMID:22707566
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
The design of L1-norm visco-acoustic wavefield extrapolators
NASA Astrophysics Data System (ADS)
Salam, Syed Abdul; Mousa, Wail A.
2018-04-01
Explicit depth frequency-space (f - x) prestack imaging is an attractive mechanism for seismic imaging. To date, the main focus of this method was data migration assuming an acoustic medium, but until now very little work assumed visco-acoustic media. Real seismic data usually suffer from attenuation and dispersion effects. To compensate for attenuation in a visco-acoustic medium, new operators are required. We propose using the L1-norm minimization technique to design visco-acoustic f - x extrapolators. To show the accuracy and compensation of the operators, prestack depth migration is performed on the challenging Marmousi model for both acoustic and visco-acoustic datasets. The final migrated images show that the proposed L1-norm extrapolation results in practically stable and improved resolution of the images.
Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay.
Aichele, Kathrin; Bubel, Monika; Deubel, Gunther; Pohlemann, Tim; Oberringer, Martin
2013-10-01
Bromelain, a pineapple-derived enzyme mixture, is a widely used drug to improve tissue regeneration. Clinical and experimental data indicate a better outcome of soft tissue healing under the influence of bromelain. Proteolytic, anti-bacterial, anti-inflammatory, and anti-oedematogenic effects account for this improvement on the systemic level. It remains unknown, whether involved tissue cells are directly influenced by bromelain. In order to gain more insight into those mechanisms by which bromelain modulates tissue regeneration at the cellular level, we applied a well-established in vitro wound healing assay. Two main players of soft tissue healing--fibroblasts and microvascular endothelial cells--were used as mono- and co-cultures. Cell migration, proliferation, apoptosis, and the differentiation of fibroblasts to myofibroblasts as well as interleukin-6 were quantified in response to bromelain (36 × 10(-3) IU/ml) under normoxia and hypoxia. Bromelain attenuated endothelial cell and fibroblast proliferation in a moderate way. This proliferation decrease was not caused by apoptosis, rather, by driving cells into the resting state G0 of the cell cycle. Endothelial cell migration was not influenced by bromelain, whereas fibroblast migration was clearly slowed down, especially under hypoxia. Bromelain led to a significant decrease of myofibroblasts under both normoxic (from 19 to 12 %) and hypoxic conditions (from 22 to 15 %), coincident with higher levels of interleukin-6. Myofibroblast differentiation, a clear sign of fibrotic development, can be attenuated by the application of bromelain in vitro. Usage of bromelain as a therapeutic drug for chronic human wounds thus remains a very promising concept for the future.
Barbaro, Jeffrey R.; Neupane, Pradumna P.
2002-01-01
Ground-water and surface-water sampling was conducted in the natural attenuation study area in the East Management Unit of Dover Air Force Base, Delaware to determine the distributions of volatile organic compounds in the vicinity of four sites?Fire Training Area Three, the Rubble Area Landfill, the Receiver Station Landfill, and the Liquid Waste Disposal Landfill. This work was done by the U.S. Geological Survey, in cooperation with the U.S. Air Force, as part of an ongoing assessment of the effectiveness of natural attenuation at these sites. The specific objectives of the study were to (1) determine the areal and vertical extent of the contaminant plumes and source areas, (2) measure volatile organic compound concentrations in ground-water discharge areas and in surface water under base-flow conditions, (3) evaluate the potential for off-site migration of the mapped plumes, and (4) estimate the amount of mass loss downgradient of the Liquid Waste Disposal and Receiver Station Landfills. A direct-push drill rig and previously installed multi-level piezometers were used to determine the three-dimensional distributions of volatile organic compounds in the 30?60-foot-thick surficial aquifer underlying the natural attenuation study area. A hand -driven mini-piezometer was used to collect ground-water samples in ground-water discharge areas. A total of 319 ground-water and 4 surface-water samples were collected from November 2000 to February 2001 and analyzed for chlorinated solvents and fuel hydrocarbons. The contaminant plumes migrating from Fire Training Area Three and the Rubble Area Landfill are approximately 500 feet and 800 feet, respectively, in length. These plumes consist predominantly of cis-1,2-dichloroethene, a daughter product, indicating that extensive dechlorination of tetrachloroethene and trichloroethene has occurred at these sites. With an approximate length of 2,200 feet, the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills is the largest of the three plumes in the East Management Unit. In this plume, the parent compounds, tetrachloroethene and trichloroethene, as well as cis-1,2-dichloroethene, are present downgradient of the source. Vinyl chloride was not detected in the natural attenuation study area. Vertical water-quality profiles indicate that volatile organic compounds are present mainly in the upper part of the surficial aquifer. Plumes of fuel hydrocarbon constituents were not detected in the natural attenuation study area. Volatile organic compounds were present at concentrations above detection limits in 6 of 14 samples collected from the aquifer underlying the bed of Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three, indicating that the plumes migrating from Fire Training Area Three and the Receiver Station and Liquid Waste Disposal Landfills are reaching these ground-water discharge areas. In contrast, sampling results indicated that the plume from the Rubble Area Landfill does not reach these ground-water discharge areas. Trichloroethene was present above detection limits in one of four surface-water samples collected from Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three. The trichloroethene concentration is below applicable Delaware Department of Natural Resources and Environmental Control surface-water-quality standards for human health. An assessment of chlorinated-solvent mass loss in the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicates that tetrachloroethene and trichloroethene mass loss downgradient of the source is negligible. Cis-1,2-dichloroethene, however, appears to biodegrade by an unidentified reaction in the plume. Plan-view maps of the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicate that tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene may migrate off Dover Air Force Base property approximately 1,500 f
Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M.; Verma, Vikas K.; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C.; Shah, Vijay H.
2015-01-01
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals. PMID:26534962
Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M; Verma, Vikas K; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C; Shah, Vijay H
2015-12-25
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF.
Wei, Li-Qiang; Liang, Hui-Tao; Qin, Dong-Chun; Jin, Hui-Fang; Zhao, Yong; She, Ming-Cong
2014-12-01
MicroRNAs (miRNAs) play critical roles in the development and progression of ovarian cancer. We found that miR-212 was significantly downregulated in serum and tissues from epithelial ovarian cancer (EOC) patients. Overexpression of miR-212 in ovarian cancer cells inhibited cell proliferation, migration, and invasion. Luciferase reporter assay confirmed HBEGF as a direct target of miR-212. Overexpression of miR-212 decreased HBEGF expression at both the protein and messenger RNA (mRNA) levels. Knockdown of HBEGF expression in SKOV3 cell line significantly inhibited cell growth, migration, and invasion. HBEGF mRNA level was upregulated in EOC tissues and inversely correlated with miR-212 expression in tissues. Upregulation of HBEGF could attenuate the effect induced by miR-212. These findings indicate that miR-212 displays a tumor-suppressive effect in human ovarian cancer. And miR-212 suppresses cell proliferation, migration, and invasion by targeting the HBEGF transcript, highlighting the therapeutic potential of miR-212 and HBEGF in epithelial ovarian cancer treatment.
NASA Astrophysics Data System (ADS)
Karato, S.
A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q ωα is shown to require a distribution function of P(L) L-m with m=4-2α The activation energy of Q-1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q-1 strongly suggests that the Q-1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of 108 m-2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of 10-6, thus even a small strain ( 10-6-10-4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zi-xuan; Rao, Wei; Wang, Huan
Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromalmore » interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.« less
Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla; Hansson, Stefan; Casslén, Bertil
2009-02-01
Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamminen, Jenni A.; Yin, Miao; Transplantation Laboratory, Haartman Institute, University of Helsinki
Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cellsmore » in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.« less
Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N.
2015-01-01
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. PMID:26490115
Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...
Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan
2015-01-01
To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.
Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching
Okimura, Chika; Ueda, Kazuki; Sakumura, Yuichi; Iwadate, Yoshiaki
2016-01-01
ABSTRACT To investigate the relationship between mechanical stimuli from substrata and related cell functions, one of the most useful techniques is the application of mechanical stimuli via periodic stretching of elastic substrata. In response to this stimulus, Dictyostelium discoideum cells migrate in a direction perpendicular to the stretching direction. The origins of directional migration, higher migration velocity in the direction perpendicular to the stretching direction or the higher probability of a switch of migration direction to perpendicular to the stretching direction, however, remain unknown. In this study, we applied periodic stretching stimuli to neutrophil-like differentiated HL-60 cells, which migrate perpendicular to the direction of stretch. Detailed analysis of the trajectories of HL-60 cells and Dictyostelium cells obtained in a previous study revealed that the higher probability of a switch of migration direction to that perpendicular to the direction of stretching was the main cause of such directional migration. This directional migration appears to be a strategy adopted by fast-crawling cells in which they do not migrate faster in the direction they want to go, but migrate to avoid a direction they do not want to go. PMID:26980079
Losartan Attenuates Scar Formation in Filtering Bleb After Trabeculectomy.
Shi, Huimin; Wang, Huiying; Fu, Shuhao; Xu, Kang; Zhang, Xiaoyan; Xiao, Yiqin; Ye, Wen
2017-03-01
To examine the effects of losartan on scar formation after trabeculectomy and on fibrotic changes of human Tenon's fibroblasts (HTFs). Trabeculectomy was performed on New Zealand rabbits. They were randomized to receive one of the following treatments: 0.9% normal saline, mitomycin-C, or one of the three doses of losartan. Bleb morphology, IOP, and histopathology examination were performed. Primary cultured HTFs were treated with losartan or vehicle, with or without angiotensin II (Ang II). Cell proliferation was assessed by Cell Counting Kit-8 assay, and cell migration was detected by scratch wound and transwell assay. Transdifferentiation was evaluated through the expression of α-smooth muscle actin (α-SMA) by immunofluorescence, real-time PCR, and Western blot. The expression of fibronectin (FN) was evaluated by real-time PCR and Western blot. An amount of 5 mg/mL of losartan subconjunctival injection significantly decreased IOP postoperatively and attenuated wound healing of the filtering bleb in the rabbit model. Immunostaining results showed less myofibroblast and collagen deposition around the bleb area in the losartan-treated eyes. Losartan (10-5 M) in vitro significantly attenuated Ang II's stimulatory effects on proliferation and migration of HTFs. Expressions of α-SMA and FN in these cells were also decreased by losartan pretreatment. Losartan attenuates scar formation of filtering bleb after trabeculectomy likely via decreasing proliferation, migration, transdifferentiation, and extracellular matrix deposition of Tenon's fibroblasts. These results indicate that losartan may be an effective therapeutic agent in preventing bleb scar formation and in improving surgical outcome after trabeculectomy.
Novel Role for p21-activated Kinase 2 in Thrombin-induced Monocyte Migration*
Gadepalli, Ravisekhar; Kotla, Sivareddy; Heckle, Mark R.; Verma, Shailendra K.; Singh, Nikhlesh K.; Rao, Gadiparthi N.
2013-01-01
To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation. PMID:24025335
Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.
2014-01-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010
Schmidt, Steven; Duric, Nebojsa; Li, Cuiping; Roy, Olivier; Huang, Zhi-Feng
2011-01-01
Purpose: To explore the feasibility of improving cross-sectional reflection imaging of the breast using refractive and attenuation corrections derived from ultrasound tomography data. Methods: The authors have adapted the planar Kirchhoff migration method, commonly used in geophysics to reconstruct reflection images, for use in ultrasound tomography imaging of the breast. Furthermore, the authors extended this method to allow for refractive and attenuative corrections. Using clinical data obtained with a breast imaging prototype, the authors applied this method to generate cross-sectional reflection images of the breast that were corrected using known distributions of sound speed and attenuation obtained from the same data. Results: A comparison of images reconstructed with and without the corrections showed varying degrees of improvement. The sound speed correction resulted in sharpening of detail, while the attenuation correction reduced the central darkening caused by path length dependent losses. The improvements appeared to be greatest when dense tissue was involved and the least for fatty tissue. These results are consistent with the expectation that denser tissues lead to both greater refractive effects and greater attenuation. Conclusions: Although conventional ultrasound techniques use time-gain control to correct for attenuation gradients, these corrections lead to artifacts because the true attenuation distribution is not known. The use of constant sound speed leads to additional artifacts that arise from not knowing the sound speed distribution. The authors show that in the context of ultrasound tomography, it is possible to construct reflection images of the breast that correct for inhomogeneous distributions of both sound speed and attenuation. PMID:21452737
Xu, Xianhui; Yang, Changdong; Chen, Jun; Liu, Junyan; Li, Ping'ang; Shi, Yan; Yu, Peiwu
2018-05-05
Chronic inflammation is associated with all stages of cancer development. Moreover, a proinflammatory microenvironment resulted from chronic inflammation is considered to be an essential component of cancer. Interleukin-23 (IL-23) is a general proinflammatory factor; and is involved in tumor-associated inflammation in gastric cancer (GC). However, the direct effect of IL-23 on GC cells has been rarely reported. The aim of the study was to clarify the direct role of IL-23 in regulating GC progression, and to identify the underlying mechanism. In this study, Positive expression of IL-23R was observed in GC tissues and cell lines by using immunohistochemistry or immunofluorescence. In western blots, the expression of IL-23R was higher in GC tissues compared with adjacent normal tissues. Furthermore, IL-23R positive GC tissues were closely related with larger tumor size and worse T stage and clinical stage. By performing in vitro experiments, we found that IL-23 binding to its receptor promoted the migration and invasion of BGC-823 cells in vitro. Moreover, IL-23 induced the activation of STAT3 and epithelial-to-mesenchymal transition (EMT) in BGC-823 cells. Knocking down STAT3 in BGC-823 cells attenuated the effect of IL-23 on EMT and cell migration and invasion. Taken together, our study has firstly demonstrated the positive expression of IL-23R in human GC tissues and cell lines. IL-23 binding to its receptor promotes the migration and invasion of GC cells by inducing EMT through the STAT3 signaling pathway. This work provides a new mechanism for the oncogenic role of IL-23 on GC progression. Copyright © 2018. Published by Elsevier Inc.
Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A
2016-09-01
Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls. Intriguingly, FL-VASP/239D abrogated the stimulatory effects of FL-VASP/WT and FL-VASP/239A cells on PKG activity. In turn, pharmacologic blockade of PKG in the presence of BAY60 reversed the inhibitory effect of BAY60 on naïve ASM cell migration. Taken together, we demonstrate for the first time that BAY60 inhibits ASM cell migration through cGMP/PKG/VASP signaling yet through mechanisms independent of pVASP·S239 and that FL-VASP overexpression regulates PKG activity in rat ASM cells. These findings implicate BAY60 as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as CAD and also establish a unique mechanism through which VASP controls PKG activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium
2011-01-01
Background Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β2-integrin activation and function in neutrophilic transmigration through endothelium. Methods and results Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β2-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils in vitro. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β2-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration. Conclusion This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β2-integrins on the cell surface. Blocking this activation of β2-integrins might be an important target in cigarette smoke induced neutrophilic diseases. PMID:21651795
Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri
2015-01-01
MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer.
Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri
2015-01-01
MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer. PMID:26722475
Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Brady D.; Szecsody, James E.; Qafoku, Nikolla
Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effortmore » reported herein.« less
Wang, Xiaochen; Ward, Robert E.
2010-01-01
During dorsal closure in Drosophila, signaling events in the dorsalmost row of epidermal cells (DME cells) direct the migration of lateral epidermal sheets towards the dorsal midline where they fuse to enclose the embryo. A Jun amino-terminal kinase (JNK) cascade in the DME cells induces the expression of Decapentaplegic (Dpp). Dpp signaling then regulates the cytoskeleton in the DME cells and amnioserosa to affect the cell shape changes necessary to complete dorsal closure. We identified a mutation in Sec61α that specifically perturbs dorsal closure. Sec61α encodes the main subunit of the translocon complex for co-translational import of proteins into the ER. JNK signaling is normal in Sec61α mutant embryos, but Dpp signaling is attenuated and the DME cells fail to maintain an actinomyosin cable as epithelial migration fails. Consistent with this model, dorsal closure is rescued in Sec61α mutant embryos by an activated form of the Dpp receptor Thick veins. PMID:20112345
Barbaro, Jeffrey R.
2002-01-01
Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and source areas, and (6) determine whether intrinsic biodegradation is occurring at these sites.The water-quality data indicate that intrinsic biodegradation is occurring at all three sites. The strongest indication of intrinsic biodegradation is the detection of tetrachloroethene and trichloroethene breakdown products within and down-gradient of the source areas. The patterns of electron acceptors and metabolic by-products indicate that contaminant biodegradation has changed the prevailing geochemistry of the surficial aquifer, creating the strongly reducing conditions necessary for chlorinated solvent bio-degradation. Geochemical changes include depleted dissolved oxygen and elevated ferrous iron and methane levels relative to concentrations in uncontaminated zones of the surficial aquifer. At Fire Training Area Three and the Rubble Area Landfill sites, natural attenuation appears to be adequate for controlling the migration of the contaminant plumes. At the third site, the Liquid Waste Disposal and Receiver Station Landfills, the plume is larger and the uncertainty about the effectiveness of natural attenuation in reducing contaminant concentrations and controlling plume migration is greater. Ground-water data indicate, however, that U.S. Environmental Protection Agency maximum contaminant levels were not exceeded in any point-of-compliance wells located along the Base boundary.The information presented in this report led to the development of improved conceptual models for these sites, and to the recognition of four issues that are currently unclear and may need further study. These issues include delineating the areal and vertical extent of the contaminant plumes in greater detail, determining the extent of intrinsic biodegradation downgradient of the Liquid Waste Disposal and Receiver Station Landfills, deter-mining the fate of contaminants in the ground-water discharge areas, and determining the effect of temporal variability in source concentrations and ground-water
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
2015-05-01
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.
Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion.
Belo, Angelica; Cheng, Kunrong; Chahdi, Ahmed; Shant, Jasleen; Xie, Guofeng; Khurana, Sandeep; Raufman, Jean-Pierre
2011-05-01
Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion.
Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion
Belo, Angelica; Cheng, Kunrong; Chahdi, Ahmed; Shant, Jasleen; Xie, Guofeng; Khurana, Sandeep
2011-01-01
Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion. PMID:21273532
Return migration and the health of older aged parents: evidence from rural Thailand.
Zimmer, Zachary; Knodel, John
2010-10-01
To examine the extent to which an association exists between health of older parents and return migration of children in rural Thailand. Data come from the 2006 Migration Impact Survey specifically designed to obtain information on the impact of migration on older adults in rural areas. Associations are examined from both the perspectives of parents (N = 883) and migrating children (N = 2,150) using equations that adjust for demographic characteristics of parents and children and factors that may indicate unmet support needs. A robust association with poor health promoting migration returns from both parent and child perspective exists and remains even with controls that might attenuate the relationship. Although media discussions have pointed out dangers of out-migration for older adults, little systematic evidence exists. This study supports the viewpoint that accommodations for older adults can be made despite social changes promoting out-migration and demographic aging of the population.
Chapnick, Douglas A.; Jacobsen, Jeremy; Liu, Xuedong
2013-01-01
Understanding how cells migrate individually and collectively during development and cancer metastasis can be significantly aided by a computation tool to accurately measure not only cellular migration speed, but also migration direction and changes in migration direction in a temporal and spatial manner. We have developed such a tool for cell migration researchers, named Pathfinder, which is capable of simultaneously measuring the migration speed, migration direction, and changes in migration directions of thousands of cells both instantaneously and over long periods of time from fluorescence microscopy data. Additionally, we demonstrate how the Pathfinder software can be used to quantify collective cell migration. The novel capability of the Pathfinder software to measure the changes in migration direction of large populations of cells in a spatiotemporal manner will aid cellular migration research by providing a robust method for determining the mechanisms of cellular guidance during individual and collective cell migration. PMID:24386097
Karoor, Vijaya; Oka, Masahiko; Walchak, Sandra J.; Hersh, Louis B.; Miller, York E.; Dempsey, Edward C.
2013-01-01
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation. PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs. NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor. Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease. PMID:23381789
Involvement of {gamma}-secretase in postnatal angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi
2007-11-23
{gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less
Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila
2017-06-01
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.
Scarlett, Kisha A; White, El-Shaddai Z; Coke, Christopher J; Carter, Jada R; Bryant, Latoya K; Hinton, Cimona V
2018-04-01
G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR . ©2018 American Association for Cancer Research.
Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N
2015-03-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.
2017-12-01
Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream water. Since the plume at the bank mainly consists of cis-DCE and vinyl chloride, this implies high and persistent stream water concentrations of these compounds. Finally, this study demonstrates the usefulness and complementary nature of sPFM and SBPVP measurements for assessing the attenuation processes through mass balance calculations.
Kuragano, Masahiro; Murakami, Yota; Takahashi, Masayuki
2018-03-25
Nonmuscle myosin II (NMII) plays an essential role in directional cell migration. In this study, we investigated the roles of NMII isoforms (NMIIA and NMIIB) in the migration of human embryonic lung fibroblasts, which exhibit directionally persistent migration in an intrinsic manner. NMIIA-knockdown (KD) cells migrated unsteadily, but their direction of migration was approximately maintained. By contrast, NMIIB-KD cells occasionally reversed their direction of migration. Lamellipodium-like protrusions formed in the posterior region of NMIIB-KD cells prior to reversal of the migration direction. Moreover, NMIIB KD led to elongation of the posterior region in migrating cells, probably due to the lack of load-bearing stress fibers in this area. These results suggest that NMIIA plays a role in steering migration by maintaining stable protrusions in the anterior region, whereas NMIIB plays a role in maintenance of front-rear polarity by preventing aberrant protrusion formation in the posterior region. These distinct functions of NMIIA and NMIIB might promote intrinsic and directed migration of normal human fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Daren; Zhang, Zhang; Li, Min; Frid, Maria G.; Flockton, Amanda R.; McKeon, B. Alexandre; Yeager, Michael E.; Fini, Mehdi A.; Morrell, Nicholas W.; Pullamsetti, Soni S.; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A.; Sucharov, Carmen C.; Stenmark, Kurt R.
2014-01-01
Rationale Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. Objective We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. Methods and Results We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti–miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract–binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3′ untranslated region of polypyrimidine tract–binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Conclusions Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated. PMID:24122720
Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N
2015-12-15
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein-coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin-WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. © 2015 Janjanam et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Effects of directional migration on prisoner's dilemma game in a square domain
NASA Astrophysics Data System (ADS)
Cheng, Hongyan; Dai, Qionglin; Li, Haihong; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong
2013-04-01
We introduce a new migration rule, the directional migration, into evolutionary prisoner's dilemma games defined in a square domain with periodic boundary conditions. We find that cooperation can be enhanced to a much higher level than the case in the absence of migration. Additionally, the presence of the directional migration has profound impact on the population structure: the directional migration drives individuals to form a number of dense clusters which resembles social cohesion. The evolutionary game theory incorporating the directional migration can reproduce some real characteristics of populations in human society and may shed light on the problem of social cohesion.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-08-05
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.
Tsoyi, Konstantin; Chu, Sarah G; Patino-Jaramillo, Nasly G; Wilder, Julie; Villalba, Julian; Doyle-Eisele, Melanie; McDonald, Jacob; Liu, Xiaoli; El-Chemaly, Souheil; Perrella, Mark A; Rosas, Ivan O
2018-02-01
Radiation-induced pulmonary fibrosis is a severe complication of patients treated with thoracic irradiation. We have previously shown that syndecan-2 reduces fibrosis by exerting alveolar epithelial cytoprotective effects. Here, we investigate whether syndecan-2 attenuates radiation-induced pulmonary fibrosis by inhibiting fibroblast activation. C57BL/6 wild-type mice and transgenic mice that overexpress human syndecan-2 in alveolar macrophages were exposed to 14 Gy whole-thoracic radiation. At 24 weeks after irradiation, lungs were collected for histological, protein, and mRNA evaluation of pulmonary fibrosis, profibrotic gene expression, and α-smooth muscle actin (α-SMA) expression. Mouse lung fibroblasts were activated with transforming growth factor (TGF)-β1 in the presence or absence of syndecan-2. Cell proliferation, migration, and gel contraction were assessed at different time points. Irradiation resulted in significantly increased mortality and pulmonary fibrosis in wild-type mice that was associated with elevated lung expression of TGF-β1 downstream target genes and cell death compared with irradiated syndecan-2 transgenic mice. In mouse lung fibroblasts, syndecan-2 inhibited α-SMA expression, cell contraction, proliferation, and migration induced by TGF-β1. Syndecan-2 attenuated phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and serum response factor binding to the α-SMA promoter. Syndecan-2 attenuates pulmonary fibrosis in mice exposed to radiation and inhibits TGF-β1-induced fibroblast-myofibroblast differentiation, migration, and proliferation by down-regulating phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and blocking serum response factor binding to the α-SMA promoter via CD148. These findings suggest that syndecan-2 has potential as an antifibrotic therapy in radiation-induced lung fibrosis.
Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y
2018-06-01
Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.
Xie, Jing; Bai, Jun
2014-07-01
To investigate the antitumor effect of SGI-1776 on human ovarian cancer HO-8910 cells and its molecular mechanism. HO-8910 cells were cultured in vitro, and the proliferation inhibitory effects of SGI- 1776 were determined by MTT assay and colony formation assay. The effect of SGI-1776 on the distribution of cell cycle phase was observed by flow cytometry with propidium iodide (PI) staining. The inhibition rate of migration and invasion were valued by transwell cell assay. Multiple molecular techniques, such as ELISA, Western blot, siRNA and cDNA transfection were used to explore the molecular mechanism. SGI-1776 presented dramatic anti-tumor activity against HO-8910 cells in vitro, inhibited the cells proliferation and colony formation, and attenuated the migration and invasion in a dosedependent manner, accompanied by cell cycle arrest in G1 phase. SGI-1776 caused the proliferation inhibition with concomitant decrease in Pim-1 kinase activity, down-regulated the expression of Pim-1 protein and and its downstream genes, such as CDK6, pCDK6, CDK4, pCDK4, CDK2 and pCDK2, and increased the expression of P21 and P27. Down-regulation expression of Pim-1 by siRNA followed SGI-1776 treatment resulted in enhanced cell proliferation inhibition rate and attenuated migration/invasion. Up-regulation of Pim-1 by cDNA transfection attenuated SGI- 1776-induced cell proliferation inhibition and its migration/invasion. Pim-1 mediates the biological effect of SGI-1776 in human ovarian cancer HO-8910 cells, suggesting Pim-1 might be a novel target for human ovarian cancer.
Dagle, John M; Sabel, Jaime L; Littig, Jennifer L; Sutherland, Lillian B; Kolker, Sandra J; Weeks, Daniel L
2003-10-15
The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.
Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook
2013-12-10
Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Jianwei; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050; Sun, Xiaolei
2015-08-14
Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively,more » but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.« less
Ren, Xuezhi; Guo, Xingzhi; Chen, Li; Guo, Minxia; Peng, Ning; Li, Rui
2014-08-01
Excessive activation of the microglia in the brain is involved in the development of several neurodegenerative diseases. Previous studies have indicated that (-)-epigallocatechin gallate (EGCG), a major active constituent of green tea, exhibits potent suppressive effects on the activation of microglia. As the 67 kDa laminin receptor (67LR) is a key element in cellular activation and migration, we investigated the effect of EGCG on cell migration and 67LR in lipopolysaccharide (LPS)-activated macrophagic RAW264.7 cells. The presence of EGCG (1-25 μM) markedly attenuated LPS-induced cell migration in a dose-dependent manner. However, the total amount of 67LR protein in the RAW264.7 cells was unaffected by EGCG, as revealed by Western blot analysis. In addition, confocal immunofluorescence microscopy indicated that EGCG caused a marked membrane translocation of 67LR from the membrane surface towards the cytoplasm. Cell-surface biotinylation analysis confirmed that EGCG induced a significant internalization of 67LR by 24-68% in a dose-dependent manner. This study helps to explain the pharmacological action of EGCG on 67LR, suggesting its potential use in the treatment of diseases associated with macrophage/microglia activation, such as neurodegenerative diseases and cancer.
Drosophila hemocyte migration: an in vivo assay for directional cell migration.
Moreira, Carolina G A; Regan, Jennifer C; Zaidman-Rémy, Anna; Jacinto, Antonio; Prag, Soren
2011-01-01
This protocol describes an in vivo assay for random and directed hemocyte migration in Drosophila. Drosophila is becoming an increasingly powerful model system for in vivo cell migration analysis, combining unique genetic tools with translucency of the embryo and pupa, which allows direct imaging and traceability of different cell types. In the assay we present here, we make use of the hemocyte response to epithelium wounding to experimentally induce a transition from random to directed migration. Time-lapse confocal microscopy of hemocyte migration in untreated conditions provides a random cell migration assay that allows identification of molecular mechanisms involved in this complex process. Upon laser-induced wounding of the thorax epithelium, a rapid chemotactic response changes hemocyte migratory behavior into a directed migration toward the wound site. This protocol provides a direct comparison of cells during both types of migration in vivo, and combined with recently developed resources such as transgenic RNAi, is ideal for forward genetic screens.
Guo, Zhaoxin; Xing, Zhaoquan; Cheng, Xiangyu; Fang, Zhiqing; Jiang, Chao; Su, Jing; Zhou, Zunlin; Xu, Zhonghua; Holmberg, Anders; Nilsson, Sten; Liu, Zhaoxu
2015-01-01
Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa.
MiR-217 promoted the proliferation and invasion of glioblastoma by repressing YWHAG.
Wang, Hongbin; Zhi, Hua; Ma, Dongzhou; Li, Tao
2017-04-01
To study the effects of miR-217 on glioblastoma cell proliferation, migration and invasion and its regulation on YWHAG. QRT-PCR was used to detect the expression of related mRNAs and miRNA in both glioblastoma tissues and cells. Western blot was used to determine the protein expression of related genes. The transfection was performed using lipo2000. MTT assay, colony formation assay, wound healing assay, Transwell assay as well as flow cytometry were employed to determine the viability, proliferation, migration, invasion and mitosis of UG87 MG cell line. Besides, the dual luciferase reporter gene assay was used to determine the direct targeting relationship between miR-217 and YWHAG. Xenograft models were also constructed and the effect of miR-217 on tumor growth was studied in vivo. MiR-217 was up-regulated, whereas YWHAG was down-regulated in glioblastoma tissues and cells. The down-regulation of miR-217 or the up-regulation of YWHAG suppressed the viability, proliferation, migration, invasion and mitosis of U87 MG cells in vitro. In addition, MiR-217 directly targeted 3'UTR of YWHAG and suppressed the expression of YWHAG. Up-regulation of miR-217 could efficiently attenuate the inhibitory effects of YWHAG overexpression on the proliferation and metastasis of U87 MG cells. YWHAG was able to accelerate the phosphorylation of MDM4 and lead to the degradation of P53, which provides a potential mechanism for the tumor-promoting role of miR-217 in glioblastoma cells. By constructing xenograft models, it was also confirmed that miR-217 could promote tumor growth in vivo. MiR-217 could promote the viability, proliferation, migration, invasion and mitosis of glioblastoma cells both in vitro and in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration.
Bade, Nathan D; Xu, Tina; Kamien, Randall D; Assoian, Richard K; Stebe, Kathleen J
2018-03-27
We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali
2016-08-01
The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.
Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoatedmore » or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK signaling. • PRKD2 regulates transcription of gene products implicated in migration and invasion.« less
Steering cell migration by alternating blebs and actin-rich protrusions.
Diz-Muñoz, Alba; Romanczuk, Pawel; Yu, Weimiao; Bergert, Martin; Ivanovitch, Kenzo; Salbreux, Guillaume; Heisenberg, Carl-Philipp; Paluch, Ewa K
2016-09-02
High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
Yan, Yan; Jiang, Xueli; Zhao, Ying; Wen, Haixia; Liu, Guoyi
2015-12-01
G protein-coupled estrogen receptor (GPER) is identified as a critical estrogen receptor, in addition to the classical estrogen receptors ERα and ERβ. In ERα-negative ovarian cancer cells, our previous studies have found that estrogen stimulated cell proliferation and metastasis via GPER. However, the ligand-independent function of GPER in ovarian cancer cells is still not clear. Herein, we describe that GPER has a co-expression with ERα and ERβ, which are first determined in SKOV3 ovarian cancer cell line. In the absence of estrogen, GPER depletion by specific siRNA inhibits the proliferation, migration and invasion of SKOV3 cells. Whereas abrogation of ERα or ERβ by specific antagonist MPP and PHTPP has the opposite effects for stimulation of cell growth. Markedly, GPER knockdown attenuates MPP or PHTPP-induced cell proliferation, migration and invasion. Furthermore, GPER modulates protein expression of the cell cycle critical components, c-fos and cyclin D1 and factors for cancer cell invasion and metastasis, matrix metalloproteinase 2 (MMP-2) and MMP-9. These findings establish that GPER ligand-independently stimulates the proliferation, migration and invasion of SKOV3 cells. Knockdown of GPER attenuates the progression of ovarian cancer that caused by functional loss of ERα or ERβ. Targeting GPER provides new aspect as a potential therapeutic strategy in ovarian cancer. Copyright © 2015 John Wiley & Sons, Ltd.
APPL1-Mediating Leptin Signaling Contributes to Proliferation and Migration of Cancer Cells.
Ding, Youming; Cao, Yingkang; Wang, Bin; Wang, Lei; Zhang, Yemin; Zhang, Deling; Chen, Xiaoyan; Li, Mingxin; Wang, Changhua
2016-01-01
Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-01-01
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin
Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti-migratory effect of magnolol was cytoskeletal dependent. • Magnolol inhibited β1-integrin and collagen expression in vivo.« less
Effects of 3,3',5-triiodothyronine on microglial functions.
Mori, Yuki; Tomonaga, Daichi; Kalashnikova, Anastasia; Furuya, Fumihiko; Akimoto, Nozomi; Ifuku, Masataka; Okuno, Yuko; Beppu, Kaoru; Fujita, Kyota; Katafuchi, Toshihiko; Shimura, Hiroki; Churilov, Leonid P; Noda, Mami
2015-05-01
L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS. © 2015 Wiley Periodicals, Inc.
Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A
2011-01-01
Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.
Least squares reverse time migration of controlled order multiples
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).
Missirlis, Dimitris; Haraszti, Tamás; Scheele, Catharina v. C.; Wiegand, Tina; Diaz, Carolina; Neubauer, Stefanie; Rechenmacher, Florian; Kessler, Horst; Spatz, Joachim P.
2016-01-01
The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5β1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvβ3 or α5β1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of β1 and β3 integrins in directional migration. PMID:26987342
Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki
2013-01-01
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953
Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.
Wang, Ping; Hu, Zhenqi; Wang, Peijun
2013-01-01
In the subsided areas backfilled with coal gangue, an issue of continuing environmental concern is the migration of hazardous metals to the subsurface soil and groundwater. As an effective isolation material, geosynthetics have been scarcely applied into mining areas reclamation of China. This paper describes research aimed at characterizing the behaviours of different geosynthetics in the leaching columns filled with coal gangues. Four types of geosynthetics were selected: fibres needle-punched nonwoven geotextiles, high-density polyethylene, needle-punched Na-bentonite geosynthetic clay liner (GCL-NP) and Na-bentonite geosynthetic-overbited film. Heavy metals were significantly attenuated and by monitoring aqueous solutions in the whole percolation period, negative correlation was found between pH value and concentration of heavy metals. Generally, GCL-NP showed comparatively better effects on attenuating the migration of heavy metals. According to the meta-analysis of heavy metals present in the leachates and retained in the columns, geosynthetics have good capabilities of sorption and retardation, which can delay the breakthrough time of heavy metals and retard the accumulation in the subsurface. Future research will use X-ray diffraction and micro-imaging (electron microprobe and scanning electron microscopy) to further explain retention mechanisms.
Liu, Lingling; Luo, Qing; Sun, Jinghui; Wang, Aoli; Shi, Yisong; Ju, Yang; Morita, Yasuyuki; Song, Guanbin
2017-06-15
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael
2018-01-03
Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.
Connacher, Mary Katherine; Tay, Jian Wei; Ahn, Natalie G.
2017-01-01
In contrast to events at the cell leading edge, rear-polarized mechanisms that control directional cell migration are poorly defined. Previous work described a new intracellular complex, the Wnt5a-receptor-actomyosin polarity (WRAMP) structure, which coordinates the polarized localization of MCAM, actin, and myosin IIB in a Wnt5a-induced manner. However, the polarity and function for the WRAMP structure during cell movement were not determined. Here we characterize WRAMP structures during extended cell migration using live-cell imaging. The results demonstrate that cells undergoing prolonged migration show WRAMP structures stably polarized at the rear, where they are strongly associated with enhanced speed and persistence of directional movement. Strikingly, WRAMP structures form transiently, with cells displaying directional persistence during periods when they are present and cells changing directions randomly when they are absent. Cells appear to pause locomotion when WRAMP structures disassemble and then migrate in new directions after reassembly at a different location, which forms the new rear. We conclude that WRAMP structures represent a rear-directed cellular mechanism to control directional migration and that their ability to form dynamically within cells may control changes in direction during extended migration. PMID:28592632
Johansson, M W; Khanna, M; Bortnov, V; Annis, D S; Nguyen, C L; Mosher, D F
2017-10-01
IL-5 causes suspended eosinophils to polarize with filamentous (F)-actin and granules at one pole and the nucleus in a specialized uropod, the "nucleopod," which is capped with P-selectin glycoprotein ligand-1 (PSGL-1). IL-5 enhances eosinophil adhesion and migration on periostin, an extracellular matrix protein upregulated in asthma by type 2 immunity mediators. Determine how the polarized morphology evolves to foster migration of IL-5-stimulated eosinophils on a surface coated with periostin. Blood eosinophils adhering to adsorbed periostin were imaged at different time points by fluorescent microscopy, and migration of eosinophils on periostin was assayed. After 10 minutes in the presence of IL-5, adherent eosinophils were polarized with PSGL-1 at the nucleopod tip and F-actin distributed diffusely at the opposite end. After 30-60 minutes, the nucleopod had dissipated such that PSGL-1 was localized in a crescent or ring away from the cell periphery, and F-actin was found in podosome-like structures. The periostin layer, detected with monoclonal antibody Stiny-1, shown here to recognize the FAS1 4 module, was cleared in wide areas around adherent eosinophils. Clearance was attenuated by metalloproteinase inhibitors or antibodies to disintegrin metalloproteinase 8 (ADAM8), a major eosinophil metalloproteinase previously implicated in asthma pathogenesis. ADAM8 was not found in podosome-like structures, which are associated with proteolytic activity in other cell types. Instead, immunoblotting demonstrated proteoforms of ADAM8 that lack the cytoplasmic tail in the supernatant. Anti-ADAM8 inhibited migration of IL-5-stimulated eosinophils on periostin. Migrating IL-5-activated eosinophils on periostin exhibit loss of nucleopodal features and appearance of prominent podosomes along with clearance of the Stiny-1 periostin epitope. Migration and epitope clearance are both attenuated by inhibitors of ADAM8. We propose, therefore, that eosinophils remodel and migrate on periostin-rich extracellular matrix in the asthmatic airway in an ADAM8-dependent manner, making ADAM8 a possible therapeutic target. © 2017 John Wiley & Sons Ltd.
Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons.
Rebman, Jane K; Kirchoff, Kathryn E; Walsh, Gregory S
2016-01-01
Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs.
Modeling Contamination Migration on the Chandra X-Ray Observatory - IV
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil William; Plucinsky, Paul P.; Marshall, Herman L.; Bogdan, Akos; Grant, Catherine E.; Tennant, Allyn F.; Dahmer, Matthew
2017-01-01
During its first 18 years of operation, the cold (about -60degC) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.
Modeling contamination migration on the Chandra X-ray Observatory IV
NASA Astrophysics Data System (ADS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Marshall, Herman L.; Bogdan, Akos; Grant, Catherine E.; Tennant, Allyn F.; Dahmer, Matthew
2017-08-01
During its first 18 years of operation, the cold (about -60°C) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.
Silk Film Topography Directs Collective Epithelial Cell Migration
Rosenblatt, Mark I.
2012-01-01
The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573
Schram, Kristin; Ganguly, Riya; No, Eun Kyung; Fang, Xiangping; Thong, Farah S L; Sweeney, Gary
2011-05-01
Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.
The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.
De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M
2017-01-07
We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modular control of endothelial sheet migration
Vitorino, Philip; Meyer, Tobias
2008-01-01
Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2016-12-27
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
NASA Astrophysics Data System (ADS)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.
2017-01-01
The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).
Japanese direct investment and its impact on migration in the ASEAN 4.
Ito, S; Iguchi, Y
1994-01-01
"The purpose of this article is to show the relationship among Japanese direct investment...,domestic labor markets, and international labor migration in ASEAN-4 countries (Indonesia, Malaysia, Philippines, and Thailand). The effects of foreign direct investment on skilled labor migration are also considered." excerpt
Spatial distribution of filament elasticity determines the migratory behaviors of a cell
Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer
2016-01-01
ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488
First-Time Migration in Juvenile Common Cuckoos Documented by Satellite Tracking
Willemoes, Mikkel; Thomson, Robert L.; Tolvanen, Jere; Rutila, Jarkko; Samaš, Peter; Strandberg, Roine; Grim, Tomáš; Fossøy, Frode; Stokke, Bård Gunnar; Thorup, Kasper
2016-01-01
Being an obligate parasite, juvenile common cuckoos Cuculus canorus are thought to reach their African wintering grounds from Palearctic breeding grounds without guidance from experienced conspecifics but this has not been documented. We used satellite tracking to study naïve migrating common cuckoos. Juvenile cuckoos left breeding sites in Finland moving slowly and less consistently directed than adult cuckoos. Migration of the juveniles (N = 5) was initiated later than adults (N = 20), was directed toward the southwest–significantly different from the initial southeast direction of adults–and included strikingly long Baltic Sea crossings (N = 3). After initial migration of juvenile cuckoos toward Poland, the migration direction changed and proceeded due south, directly toward the winter grounds, as revealed by a single tag transmitting until arrival in Northwest Angola where northern adult cuckoos regularly winter. Compared to adults, the juvenile travelled straighter and faster, potentially correcting for wind drift along the route. That both migration route and timing differed from adults indicates that juvenile cuckoos are able to reach proper wintering grounds independently, guided only by their innate migration programme. PMID:28005960
Liu, Norika Mengchia; Siu, Kin Lung; Youn, Ji Youn; Cai, Hua
2017-03-01
Restenosis after angioplasty is a serious clinical problem that can result in re-occlusion of the coronary artery. Although current drug-eluting stents have proved to be more effective in reducing restenosis, they have drawbacks of inhibiting reendothelialization to promote thrombosis. New treatment options are in urgent need. We have shown that netrin-1, an axon-guiding protein, promotes angiogenesis and cardioprotection via production of nitric oxide (NO). The present study examined whether and how netrin-1 attenuates neointimal formation in a femoral wire injury model. Infusion of netrin-1 into C57BL/6 mice markedly attenuated neointimal formation following wire injury of femoral arteries, measured by intimal to media ratio (from 1.94 ± 0.55 to 0.45 ± 0.86 at 4 weeks). Proliferation of VSMC in situ was largely reduced. This protective effect was absent in DCC +/- animals. NO production was increased by netrin-1 in both intact and injured femoral arteries, indicating netrin-1 stimulation of endogenous NO production from intact endothelium and remaining endothelial cells post-injury. VSMC migration was abrogated by netrin-1 via a NO/cGMP/p38 MAPK pathway, while timely EPC homing was induced. Injection of netrin-1 preconditioned wild-type EPCs, but not EPCs of DCC +/- animals, substantially attenuated neointimal formation. EPC proliferation, NO production, and resistance to oxidative stress induced apoptosis were augmented by netrin-1 treatment. In conclusion, our data for the first time demonstrate that netrin-1 is highly effective in reducing neointimal formation following vascular endothelial injury, which is dependent on DCC, and attributed to inhibition of VSMC proliferation and migration, as well as improved EPC function. These data may support usage of netrin-1 and netrin-1 preconditioned EPCs as novel therapies for post angioplasty restenosis. Netrin-1 attenuates neointimal formation following post endothelial injury via DCC and NO. Netrin-1 inhibits VSMC proliferation in situ following endothelial injury. Netrin-1 inhibits VSMC migration via a NO/cGMP/p38 MAPK pathway. Netrin-1 augments proliferation of endothelial progenitor cells (EPCs) and EPC eNOS/NO activation. Netrin-1 enhances resistance of EPCs to oxidative stress, improving re-endothelialization following injury.
Inomata, Minoru; Kamio, Koichiro; Azuma, Arata; Matsuda, Kuniko; Kokuho, Nariaki; Miura, Yukiko; Hayashi, Hiroki; Nei, Takahito; Fujita, Kazue; Saito, Yoshinobu; Gemma, Akihiko
2014-02-08
Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly attenuated by pirfenidone (P = 0.0003 and P < 0.0001, respectively). Pirfenidone also attenuated macrophage counts stimulated by bleomycin in BAL fluid. Fibrocyte migration toward CCL2 and chemokine (CC motif) receptor-2 expression on fibrocytes was significantly inhibited by pirfenidone in vitro. Pirfenidone attenuated the fibrocyte pool size in bleomycin-treated mouse lungs via attenuation of CCL2 and CCL12 production in vivo, and fibrocyte migration was inhibited by pirfenidone in vitro. Fibrocyte inhibition is considered a mechanism of anti-fibrotic action of pirfenidone.
2014-01-01
Background Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Methods Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Results Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly attenuated by pirfenidone (P = 0.0003 and P < 0.0001, respectively). Pirfenidone also attenuated macrophage counts stimulated by bleomycin in BAL fluid. Fibrocyte migration toward CCL2 and chemokine (CC motif) receptor-2 expression on fibrocytes was significantly inhibited by pirfenidone in vitro. Conclusions Pirfenidone attenuated the fibrocyte pool size in bleomycin-treated mouse lungs via attenuation of CCL2 and CCL12 production in vivo, and fibrocyte migration was inhibited by pirfenidone in vitro. Fibrocyte inhibition is considered a mechanism of anti-fibrotic action of pirfenidone. PMID:24507087
Wang, Jun; Wang, Youliang; Wang, Yu; Ma, Ying; Lan, Yu; Yang, Xiao
2013-04-12
The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.
Okusha, Yuka; Eguchi, Takanori; Sogawa, Chiharu; Okui, Tatsuo; Nakano, Keisuke; Okamoto, Kuniaki; Kozaki, Ken-Ichi
2018-05-15
Members of matrix metalloproteinase (MMP) family promote cancer cell migration, invasion, and metastasis through alteration of the tumor milieu, intracellular signaling pathways, and transcription. We examined gene expression signatures of colon adenocarcinoma cell lines with different metastatic potentials and found that rapidly metastatic cells powerfully expressed genes encoding MMP3 and MMP9. The non-proteolytic PEX isoform and proteolytic isoforms of MMPs were significantly expressed in the metastatic cells in vitro. Knockdown of MMP3 attenuated cancer cell migration and invasion in vitro and lung metastasis in vivo. Profound nuclear localization of MMP3/PEX was found in tumor-stroma marginal area. In contrast, MMP9 was localized in central area of subcutaneous tumors. Overexpression of the PEX isoform of MMP3 promoted proliferation and migration of the rapidly metastatic cells in vitro. Taken together, the non-proteolytic PEX isoform of MMPs locating in cell nuclei involves proliferation, migration, and subsequent metastasis of aggressive adenocarcinoma cells. © 2018 Wiley Periodicals, Inc.
The blocking of aquaporin-3 (AQP3) impairs extravillous trophoblast cell migration.
Alejandra, Reca; Natalia, Szpilbarg; Alicia E, Damiano
2018-05-05
Several aquaporins (AQPs) are expressed in extravillous (EVT) and villous trophoblast cells. Among them, AQP3 is the most abundant AQP expressed in chorionic villi samples from first trimester, followed by AQP1 and AQP9. Although AQP3 expression persists in term placentas, it is significantly decreased in placentas from preeclamptic pregnancies. AQP3 is involved in the migration of different cell types, however its role in human placenta is still unknown. Here, we evaluated the role of AQP3 in the migration of EVT cells during early gestation. Our results showed that Swan 71 cells expressed AQP1, AQP3 and AQP9 but only the blocking of AQP3 by CuSO 4 or the silencing of its expression by siRNA significantly attenuates EVT cell migration. Our work provides evidence that AQP3 is required for EVT cell migration and suggests that an altered expression of placental AQP3 may produce failures in placentation such as in preeclampsia. Copyright © 2018 Elsevier Inc. All rights reserved.
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041
Improving GPR image resolution in lossy ground using dispersive migration
Oden, C.P.; Powers, M.H.; Wright, D.L.; Olhoeft, G.R.
2007-01-01
As a compact wave packet travels through a dispersive medium, it becomes dilated and distorted. As a result, ground-penetrating radar (GPR) surveys over conductive and/or lossy soils often result in poor image resolution. A dispersive migration method is presented that combines an inverse dispersion filter with frequency-domain migration. The method requires a fully characterized GPR system including the antenna response, which is a function of the local soil properties for ground-coupled antennas. The GPR system response spectrum is used to stabilize the inverse dispersion filter. Dispersive migration restores attenuated spectral components when the signal-to-noise ratio is adequate. Applying the algorithm to simulated data shows that the improved spatial resolution is significant when data are acquired with a GPR system having 120 dB or more of dynamic range, and when the medium has a loss tangent of 0.3 or more. Results also show that dispersive migration provides no significant advantage over conventional migration when the loss tangent is less than 0.3, or when using a GPR system with a small dynamic range. ?? 2007 IEEE.
Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.
Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei
2015-01-01
It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.
Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Mathy, Nicholas W; Strauss-Soukup, Juliane K; Chen, Xian-Ming
2017-12-27
Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Cadherin-11 Mediates Contact Inhibition of Locomotion during Xenopus Neural Crest Cell Migration
Becker, Sarah F. S.; Mayor, Roberto; Kashef, Jubin
2013-01-01
Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC. PMID:24392028
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.
Erdogan, Begum; Ao, Mingfang; White, Lauren M; Means, Anna L; Brewer, Bryson M; Yang, Lijie; Washington, M Kay; Shi, Chanjuan; Franco, Omar E; Weaver, Alissa M; Hayward, Simon W; Li, Deyu; Webb, Donna J
2017-11-06
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. © 2017 Erdogan et al.
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin
Ao, Mingfang; White, Lauren M.; Means, Anna L.; Yang, Lijie; Washington, M. Kay; Franco, Omar E.; Li, Deyu; Webb, Donna J.
2017-01-01
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF–cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α–mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. PMID:29021221
Zhang, Liangyu; Shao, Hengyi; Zhu, Tongge; Xia, Peng; Wang, Zhikai; Liu, Lifang; Yan, Maomao; Hill, Donald L.; Fang, Guowei; Chen, Zhengjun; Wang, Dongmei; Yao, Xuebiao
2013-01-01
Cell motility and adhesion involve orchestrated interaction of microtubules (MTs) with their plus-end tracking proteins (+TIPs). However, the mechanisms underlying regulations of MT dynamics and directional cell migration are still elusive. Here, we show that DDA3-EB1 interaction orchestrates MT plus-end dynamics and facilitates directional cell migration. Biochemical characterizations reveal that DDA3 interacts with EB1 via its SxIP motif within the C-terminal Pro/Ser-rich region. Time-lapse and total internal reflection fluorescence (TIRF) microscopic assays demonstrate that DDA3 exhibits EB1-dependent, MT plus-end loading and tracking. The EB1-based loading of DDA3 is responsible for MT plus-ends stabilization at the cell cortex, which in turn orchestrates directional cell migration. Interestingly, the DDA3-EB1 interaction is potentially regulated by EB1 acetylation, which may account for physiological regulation underlying EGF-elicited cell migration. Thus, the EB1-based function of DDA3 links MT dynamics to directional cell migration. PMID:23652583
Gupta, Rajeev; Gupta, Rajiv; Agrawal, Aachu; Misra, Anoop; Guptha, Soneil; Pandey, Ravindra M; Misra, Puneet; Vikram, Naval K; Dey, Sanjit; Rao, Shobha; Menon, V Usha; Kamalamma, N; Revathi, K; Mathur, Beena; Sharma, Vinita
2012-10-01
The authors studied the influence of migration of husband on cardiovascular risk factors in Asian Indian women. Population-based studies in women aged 35-70 years were performed in four urban and five rural locations. 4608 (rural 2604 and urban 2004) of the targeted 8000 (57%) were enrolled. Demographic details, lifestyle factors, anthropometry, fasting glucose and cholesterol were measured. Multivariate logistic and quadratic regression was performed to compare influence of migration and its duration on prevalence of risk factors. Details of migration were available in 4573 women (rural 2267, rural-urban migrants 455, urban 1552 and urban-rural migrants 299). Majority were married, and illiteracy was high. Median (interquartile) duration of residence in urban locations among rural-urban migrants was 9 (4-18) years and in rural areas for urban-rural migrants 23 (18-30) years. In rural, rural-urban migrants, urban and urban-rural migrants, age-adjusted prevalence (%) of risk factors was tobacco use 41.9, 22.7, 18.8 and 38.1; sedentary lifestyle 69.7, 82.0, 79.9 and 74.6; high-fat diet 33.3, 54.2, 66.1 and 61.1; overweight 21.3, 42.7, 46.3 and 29.7; large waist 8.5, 38.5, 29.2 and 29.2; hypertension 30.4, 49.4, 47.7 and 38.4; hypercholesterolaemia 14.4, 31.3, 26.6 and 9.1 and diabetes 3.9, 15.8, 14.9 and 8.4, respectively (p<0.001). In rural-urban migrants, there was a significant correlation of duration of migration with waist size, waist-to-hip ratio and systolic blood pressure (quadratic regression, p<0.001). Association of risk factors with migration remained significant, though attenuated, after adjustment for socioeconomic, lifestyle and obesity variables (logistic regression, p<0.01). Compared with rural women, rural-urban migrants and urban have significantly greater cardiometabolic risk factors. Prevalence is lower in urban-rural migrants. There is significant correlation of duration of migration with obesity and blood pressure. Differences are attenuated after adjusting for social and lifestyle variables.
Modeling contamination migration on the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Anderson, Scot K.; Chen, Kenny C.; Giordano, Rino J.; Knollenberg, Perry J.; Morris, Peter A.; Plucinsky, Paul P.; Tice, Neil W.; Tran, Hien
2005-01-01
During its first 5 years of operation, the cold (-60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), on board the Chandra X-ray Observatory, has accumulated a contaminating layer that attenuates the low-energy x rays. To assist in assessing the likelihood of successfully baking off the contaminant, members of the Chandra Team developed contamination-migration simulation software. The simulation follows deposition onto and (temperature-dependent) vaporization from surfaces comprising a geometrical model of the Observatory. A separate thermal analysis, augmented by on-board temperature monitoring, provides temperatures for each surface of the same geometrical model. This paper describes the physical basis for the simulations, the methodologies, and the predicted migration of the contaminant for various bake-out scenarios and assumptions.
Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François
2012-01-01
Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663
Pleiotropic effects of bisphosphonates on osteosarcoma.
Ohba, Tetsuro; Cates, Justin M M; Cole, Heather A; Slosky, David A; Haro, Hirotaka; Ichikawa, Jiro; Ando, Takashi; Schwartz, Herbert S; Schoenecker, Jonathan G
2014-06-01
Osteosarcoma is the most common primary malignant tumor of bone and accounts for half of all primary skeletal malignancies in children and teenagers. The prognosis for patients who fail or progress on first-line chemotherapy protocols is poor, therefore, additional adjuvant therapeutic strategies are needed. A recent feasibility study has demonstrated that the nitrogen-containing bisphosphonate zoledronic acid (ZOL) can be combined safely with conventional chemotherapy. However, the pharmacodynamics of bisphosphonate therapy is not well characterized. Osteosarcoma is a highly angiogenic tumor. Recent reports of the anti-angiogenic effects of bisphosphonates prompted us to determine whether nitrogen-containing bisphosphonate (ZOL and alendronate) treatment attenuates osteosarcoma growth by inhibition of osteoclast activity, tumor-mediated angiogenesis, or direct inhibitory effects on osteosarcoma. Here, we demonstrate that bisphosphonates directly inhibit VEGFR2 expression in endothelial cells, as well as endothelial cell proliferation and migration. Additionally, bisphosphonates also decrease VEGF-A expression in osteosarcoma (K7M3) cells, resulting in reduced stimulation of endothelial cell migration in co-culture assays. ZOL also decreases VEGFR1 expression in aggressive osteosarcoma cell lines (K7M3, 143B) and induces apoptosis of these cells, but has negligible effects on less aggressive osteosarcoma cell lines (K12 and TE85). In vivo ZOL treatment results in significant reduction in osteosarcoma-initiated angiogenesis and tumor growth in a murine model of osteosarcoma. In conclusion, bisphosphonates have diverse growth inhibitory effects on osteosarcoma through: (1) activation of apoptosis and inhibition of cell proliferation, (2) inhibition of VEGF-A and VEGFR1 expression by tumor cells, (3) inhibition of tumor-induced angiogenesis, and (4) direct inhibitory actions on endothelial cells. Published by Elsevier Inc.
Paseiro-Cerrato, Rafael; Rodríguez-Bernaldo de Quirós, Ana; Otero-Pazos, Pablo; Sendón, Raquel; Paseiro-Losada, Perfecto
2018-03-01
The aim of the present study was to determine the migration kinetics of one photoinitiator, benzophenone, and two optical brighteners, Uvitex OB and 1,4-diphenyl-1,3-butadiene (DPBD), from low-density polyethylene (LDPE) films into cake. Transfer was assessed by both direct contact and also the vapour phase. To perform the migration tests by direct contact, plastic films enriched with the additives were placed between two cake slices. To evaluate the migration through the gas phase, cake and the fortified LDPE film were placed with no direct contact in a glass container that was hermetically closed. Samples were stored at different time-temperature conditions. Target compounds were extracted from the films with ethanol (70°C, 24 h) and analysed by HPLC-DAD. Relevant parameters such as partition and diffusion coefficients between food and plastic film were calculated. The Arrhenius equation was applied to estimate the diffusion coefficient at any temperature. The data indicate that migration of benzophenone occurs in a significant extent into cake by both direct contact and through the gas phase (no direct contact). Conversely, very little migration occurred for Uvitex OB by direct contact and none through the gas phase. Results for benzophenone suggest that migration through the gas phase should be considered when evaluating migration from food packaging materials into food.
Multiscale Cues Drive Collective Cell Migration
NASA Astrophysics Data System (ADS)
Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho
2016-07-01
To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.
Directional Cell Migration in Response to Repeated Substratum Stretching
NASA Astrophysics Data System (ADS)
Okimura, Chika; Iwadate, Yoshiaki
2017-10-01
Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.
Are migrating raptors guided by a geomagnetic compass?
Thorup, Kasper; Fuller, Mark R.; Alerstam, T.; Hake, M.; Kjellen, N.; Standberg, R.
2006-01-01
We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.
Attenuation of multiples in image space
NASA Astrophysics Data System (ADS)
Alvarez, Gabriel F.
In complex subsurface areas, attenuation of 3D specular and diffracted multiples in data space is difficult and inaccurate. In those areas, image space is an attractive alternative. There are several reasons: (1) migration increases the signal-to-noise ratio of the data; (2) primaries are mapped to coherent events in Subsurface Offset Domain Common Image Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) image space is regular and smaller; (4) attenuating the multiples in data space leaves holes in the frequency-Wavenumber space that generate artifacts after migration. I develop a new equation for the residual moveout of specular multiples in ADCIGs and use it for the kernel of an apex-shifted Radon transform to focus and separate the primaries from specular and diffracted multiples. Because of small amplitude, phase and kinematic errors in the multiple estimate, we need adaptive matching and subtraction to estimate the primaries. I pose this problem as an iterative least-squares inversion that simultaneously matches the estimates of primaries and multiples to the data. Standard methods match only the estimate of the multiples. I demonstrate with real and synthetic data that the method produces primaries and multiples with little cross-talk. In 3D, the multiples exhibit residual moveout in SODCIGs in in-line and cross-line offsets. They map away from zero subsurface offsets when migrated with the faster velocity of the primaries. In ADCIGs the residual moveout of the primaries as a function of the aperture angle, for a given azimuth, is flat for those angles that illuminate the reflector. The multiples have residual moveout towards increasing depth for increasing aperture angles at all azimuths. As a function of azimuth, the primaries have better azimuth resolution than the multiples at larger aperture angles. I show, with a real 3D dataset, that even below salt, where illumination is poor, the multiples are well attenuated in ADCIGs with the new Radon transform in planes of azimuth-stacked ADCIGs. The angle stacks of the estimated primaries show little residual multiple energy.
Wang, Xiaoyu; Gao, Yuxuan; Shi, Haigang; Liu, Na; Zhang, Wei; Li, Hongbo
2016-09-01
Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.
Guo, Li-Li; Hu, Chun-Ting; Huang, Ying-Xin; Huang, Guan; Jing, Fang-Yan; Liu, Chao; Li, Zhuo-Yi; Zhou, Na; Yan, Qian-Wen; Lei, Yan; Zhu, Shi-Jie; Cheng, Zhi-Qiang; Cao, Guang-Wen; Deng, Yong-Jian; Ding, Yan-Qing
2017-01-01
Directional migration is a cost-effective movement allowing invasion and metastatic spread of cancer cells. Although migration related to cytoskeletal assembly and microenvironmental chemotaxis has been elucidated, little is known about interaction between extracellular and intracellular molecules for controlling the migrational directionality. A polarized expression of prohibitin (PHB) in the front ends of CRC cells favors metastasis and is correlated with poor prognosis for 545 CRC patients. A high level of vascular endothelial growth factor (VEGF) in the interstitial tissue of CRC patients is associated with metastasis. VEGF bound to its receptor, neuropilin-1, can stimulate the activation of cell division cycle 42, which recruits intra-mitochondrial PHB to the front end of a CRC cell. This intracellular relocation of PHB results in the polymerization and reorganization of filament actin extending to the front end of the cell. As a result, the migration directionality of CRC cells is targeted towards VEGF. Together, these findings identify PHB as a key modulator of directional migration of CRC cells and a target for metastasis. PMID:29100316
Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion
Mutch, Laura Jane; Howden, Jake Davey; Jenner, Emma Poppy Louise; Poulter, Natalie Sarah; Rappoport, Joshua Zachary
2014-01-01
Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility. PMID:24921075
Effects of direct current electric-field using ITO plate on breast cancer cell migration.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul
2014-01-01
Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
40 CFR 270.17 - Specific part B information requirements for surface impoundments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed...
Methods of quantitative and qualitative analysis of bird migration with a tracking radar
NASA Technical Reports Server (NTRS)
Bruderer, B.; Steidinger, P.
1972-01-01
Methods of analyzing bird migration by using tracking radar are discussed. The procedure for assessing the rate of bird passage is described. Three topics are presented concerning the grouping of nocturnal migrants, the velocity of migratory flight, and identification of species by radar echoes. The height and volume of migration under different weather conditions are examined. The methods for studying the directions of migration and the correlation between winds and the height and direction of migrating birds are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs andmore » reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.« less
Estrogen-related receptor α decreases RHOA stability to induce orientated cell migration
Sailland, Juliette; Tribollet, Violaine; Forcet, Christelle; Billon, Cyrielle; Barenton, Bruno; Carnesecchi, Julie; Bachmann, Alice; Gauthier, Karine Cécile; Yu, Shan; Giguère, Vincent; Chan, Franky L.; Vanacker, Jean-Marc
2014-01-01
Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration. PMID:25288732
Estrogen-related receptor α decreases RHOA stability to induce orientated cell migration.
Sailland, Juliette; Tribollet, Violaine; Forcet, Christelle; Billon, Cyrielle; Barenton, Bruno; Carnesecchi, Julie; Bachmann, Alice; Gauthier, Karine Cécile; Yu, Shan; Giguère, Vincent; Chan, Franky L; Vanacker, Jean-Marc
2014-10-21
Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration.
NASA Astrophysics Data System (ADS)
Takam Takougang, E. M.; Bouzidi, Y.
2016-12-01
Multi-offset Vertical Seismic Profile (walkaway VSP) data were collected in an oil field located in a shallow water environment dominated by carbonate rocks, offshore the United Arab Emirates. The purpose of the survey was to provide structural information of the reservoir, around and away from the borehole. Five parallel lines were collected using an air gun at 25 m shot interval and 4 m source depth. A typical recording tool with 20 receivers spaced every 15.1 m, and located in a deviated borehole with an angle varying between 0 and 24 degree from the vertical direction, was used to record the data. The recording tool was deployed at different depths for each line, from 521 m to 2742 m depth. Smaller offsets were used for shallow receivers and larger offsets for deeper receivers. The lines merged to form the input dataset for waveform tomography. The total length of the combined lines was 9 km, containing 1344 shots and 100 receivers in the borehole located half-way down. Acoustic full waveform inversion was applied in the frequency domain to derive a high resolution velocity model. The final velocity model derived after the inversion using the frequencies 5-40 Hz, showed good correlation with velocities estimated from vertical incidence VSP and sonic log, confirming the success of the inversion. The velocity model showed anomalous low values in areas that correlate with known location of hydrocarbon reservoir. Pre-stack depth Reverse time migration was then applied using the final velocity model from waveform inversion and the up-going wavefield from the input data. The final estimated source signature from waveform inversion was used as input source for reverse time migration. To save computational memory and time, every 3 shots were used during reverse time migration and the data were low-pass filtered to 30 Hz. Migration artifacts were attenuated using a second order derivative filter. The final migration image shows a good correlation with the waveform tomography velocity model, and highlights a complex network of faults in the reservoir, that could be useful in understanding fluid and hydrocarbon movements. This study shows that the combination of full waveform tomography and reverse time migration can provide high resolution images that can enhance interpretation and characterization of oil reservoirs.
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Modeling Contamination Migration on the Chandra X-Ray Observatory - III
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.
2015-01-01
During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations
Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo
2018-01-01
Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. PMID:27664007
Describing Directional Cell Migration with a Characteristic Directionality Time
Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.
2015-01-01
Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908
Rooj, Arun K.; Liu, Zhiyong; McNicholas, Carmel M.
2015-01-01
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na+ channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration. PMID:26108662
Syn, Wing-Kin; Lagaisse, Kimberly; van Hul, Noemi; Heindryckx, Femke; Sowa, Jan-Peter; Peeters, Liesbeth; Van Vlierberghe, Hans; Leclercq, Isabelle A.; Canbay, Ali
2016-01-01
Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases. PMID:27618307
Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.
Shamloo, Amir
2014-09-01
This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.
Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.
Uribe, Rosa A; Hong, Stephanie S; Bronner, Marianne E
2018-01-01
The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
HATANAKA, Yumiko; ZHU, Yan; TORIGOE, Makio; KITA, Yoshiaki; MURAKAMI, Fujio
2016-01-01
Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons’ site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits. PMID:26755396
Directional Collective Cell Migration Emerges as a Property of Cell Interactions
Woods, Mae L.; Carmona-Fontaine, Carlos; Barnes, Chris P.; Couzin, Iain D.; Mayor, Roberto; Page, Karen M.
2014-01-01
Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants. PMID:25181349
NASA Astrophysics Data System (ADS)
Thornton, Steven F.; Tellam, John H.; Lerner, David N.
2000-05-01
The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate-rock interactions are dominated by ion-exchange processes, acid-base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (˜4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which may improve the prediction of contaminant attenuation are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yunhee; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon; Lee, Mira
2013-04-26
Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signalingmore » in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.« less
Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes
Okimura, Chika; Iwadate, Yoshiaki
2016-01-01
ABSTRACT Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration. PMID:27124267
Modulation of Neutrophil Motility by Curcumin: Implications for Inflammatory Bowel Disease
Larmonier, C.B.; Midura-Kiela, M.T.; Ramalingam, R.; Laubitz, D.; Janikashvili, N.; Larmonier, N.; Ghishan, F.K.; Kiela, P.R.
2010-01-01
Background Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in Inflammatory Bowel Disease (IBD), transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration. Methods We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo. Results Curcumin attenuated LPS-stimulated expression and secretion of MIP-2, IL-1β, KC and MIP-1α in colonic epithelial cells (CEC) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At non-toxic concentrations, curcumin inhibited random neutrophil migration suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis. Conclusion Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis. PMID:20629184
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α.
Lee, Joon Ho; Hur, Wonhee; Hong, Sung Woo; Kim, Jung-Hee; Kim, Sung Min; Lee, Eun Byul; Yoon, Seung Kew
2017-02-01
Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may represent a novel therapeutic strategy for preventing HCC metastasis and invasion.
Yu, Shan; Gao, Ying; Mei, Xu; Ren, Tanchen; Liang, Su; Mao, Zhengwei; Gao, Changyou
2016-11-02
Selective adhesion and migration of endothelial cells (ECs) over smooth muscle cells (SMCs) is very important in the rapid endothelialization of blood-contacting implants to prevent vascular restenosis. In this study, a uniform cell-resistant layer of methacrylate-functionalized hyaluronic acid (HA) was first immobilized on a poly(ε-caprolactone) (PCL) film via polydopamine coupling. Then, a density gradient of thiol-functionalized Arg-Glu-Asp-Val (REDV) peptide was prepared on the HA layer via thiol-ene click chemistry and the continuous injection method. The REDV gradient selectively enhanced EC adhesion and preferential directional migration toward the region of higher REDV density, reaching 86% directionality in the middle of the gradient. The migration rate of ECs was also significantly enhanced twofold compared with that on tissue culture polystyrene (TCPS). In contrast, the gradient significantly weakened the adhesion of SMCs to 25% of that on TCPS but had no obvious impact on the migration rate and directionality. Successful modulation of the selective adhesion and directional migration of ECs over SMCs on biodegradable polymers serves as an important step toward practical applications for guided tissue regeneration.
Do migratory flight paths of raptors follow constant geographical or geomagnetic courses?
Thorup, K.; Fuller, M.; Alerstam, T.; Hake, M.; Kjellen, N.; Strandberg, R.
2006-01-01
We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.
Nanotopography guides and directs cell migration in amoeboid and epithelial cells
NASA Astrophysics Data System (ADS)
Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang
Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.
Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo
Law, Ah-Lai; Vehlow, Anne; Kotini, Maria; Dodgson, Lauren; Soong, Daniel; Theveneau, Eric; Bodo, Cristian; Taylor, Eleanor; Navarro, Christel; Perera, Upamali; Michael, Magdalene; Dunn, Graham A.; Bennett, Daimark; Mayor, Roberto
2013-01-01
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo. PMID:24247431
Counterintuitive migration patterns by Atlantic salmon Salmo salar smolts in a large lake.
Honkanen, H M; Rodger, J R; Stephen, A; Adams, K; Freeman, J; Adams, C E
2018-06-21
What little is known about the seaward migration of Salmo salar smolt migration through standing waters indicates that it is both slow and results in high mortality rates, compared with riverine migration. This may be partly because smolts in lakes need to swim more actively and require more complex directional cues than they do in rivers. In this telemetry study of smolt migration through Loch Lomond, S. salar smolts made repeated movements in directions away from the outflowing river, which considerably increased migration time. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.
2017-12-01
To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; ...
2017-11-15
In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.
In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less
Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary
2017-10-01
Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS-AAOA, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Cunjin; Shi, Aiming; Cao, Guowen
2015-05-15
There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNAmore » to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.« less
Immune modulation of CD4+CD25+ regulatory T cells by zoledronic acid.
Liu, Hsien; Wang, Shih-Han; Chen, Shin-Cheh; Chen, Ching-Ying; Lo, Jo-Lin; Lin, Tsun-Mei
2016-11-25
CD4 + CD25 + regulatory T (Treg) cells suppress tumor immunity by inhibiting immune cells. Manipulation of Treg cells represents a new strategy for cancer treatment. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts to inhibit osteoclastogenesis. In a mouse model of bisphosphonate-related osteonecrosis of the jaw, administration of ZA suppressed Treg-cell activity and activated inflammatory Th17 cells. However, the interaction between ZA and Treg cells remained unclear. This study investigated the immune modulation of Treg cells by ZA. Flow cytometry was used to analyze the phenotypic and immunosuppressive characteristics of Treg cells treated with ZA. Chemotactic migration was evaluated using transwell assays. Quantitative real-time PCR (qRT-PCR) was used to investigate the effect of ZA on the expression of suppressive molecules by Treg cells. Proliferation of isolated Treg cells in culture was inhibited by ZA, although ZA did not induce apoptosis. qRT-PCR and flow cytometry showed that ZA significantly downregulated the expression of CCR4, CTLA4, PD-1 and RANKL on Treg cells. Chemotactic migration and immunosuppressive functions were also significantly attenuated in Treg cells pretreated with ZA, and these effects were dose-dependent. Co-culture with Treg cells significantly increased the migration rate of breast cancer cells, while pretreatment of Treg cells with ZA attenuated this effect. Our findings demonstrated that ZA acted as an immune modulator by significantly inhibiting the expansion, migration, immunosuppressive function and pro-metastatic ability of Treg cells. Immunomodulation of Treg cells by ZA represents a new strategy for cancer therapy.
Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration
Peyton, Kelly J.; Shebib, Ahmad R.; Azam, Mohammad A.; Liu, Xiao-ming; Tulis, David A.; Durante, William
2012-01-01
Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease. PMID:22470341
Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin
2018-03-02
The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.
Migration of guinea pig airway epithelial cells in response to bombesin analogues.
Kim, J S; McKinnis, V S; White, S R
1997-03-01
Bombesin-like peptides within neuroepithelial cells elicit proliferation of normal and malignant airway epithelial cells. It is not clear that these peptides also elicit epithelial cell migration, a necessary component of airway repair after injury. We studied the effects of the bombesin analogues, gastrin releasing peptide (GRP) and neuromedin B (NMB), on guinea pig tracheal epithelial cell (GPTEC) migration. Primary GPTEC were allowed to migrate through 8-microm-pore gelatin-coated filters for 6 h in a chemotaxis chamber, after which the number of migrated cells per 10 high power fields (10 hpf) were counted. Both neuropeptides elicited migration of GPTEC: 24.8 +/- 4.5 cells for 10(-11) M NMB (P < 0.001 versus control, n = 4) and 16.8 +/- 1.2 cells for 10(-12) M GRP (P < 0.001 versus control, n = 8). Migration was attenuated substantially by a bombesin receptor antagonist. To investigate further the relationship of migration through a filter to the repair of a damaged epithelium, we studied the repair of epithelial cells by video microscopy. A 0.3- to 0.5-microm2 wound was created in a confluent monolayer of GPTEC, and wound closure was followed over 24 h. There was no significant acceleration in the rate of repair of GRP- or NMB-stimulated monolayers compared to control. These data demonstrate that GRP and NMB elicit migration of airway epithelial cells but may not play a significant role in the early repair of the airway epithelium in culture.
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
Qin, Jinghao; Shi, Hongbing; Xu, Yanjie; Zhao, Fang; Wang, Qing
2018-06-14
This study aims to explore the effects and related mechanisms of Tanshinone IIA in cervix carcinoma (CC) stemness-like cells migration, invasion, stemness and chemotherapeutical sensitivity. Here, we found that Tanshinone IIA suppressed CC stemness-like cells migration and invasion in a concentration- and time-dependent manner. And consistent results were obtained in CC cells stemness characterized as the decrease of CC stemness markers expression and cells spheroid formation ability. Mechanistically, we found that Tanshinone IIA suppressed RNA binding protein HuR translocation from nuclear to cytoplasm, and thus reduced YAP mRNAs stability and transcriptional activity. Importantly, overexpression YAP-5SA rescued the inhibition of Tanshinone IIA on CC cells stemness. Furthermore, Tanshinone IIA enhanced adriamycin sensitivity in CC stemness-like cells, this effect was attenuated by YAP-5SA overexpression too. Therefore, Tanshinone IIA could suppress CC stemness-like cells migration and invasion by inhibiting YAP transcriptional activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wang, Yingmei; Wen, Jing; Zhang, Wei
2011-02-01
The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.
Quantitative analysis of random migration of cells using time-lapse video microscopy.
Jain, Prachi; Worthylake, Rebecca A; Alahari, Suresh K
2012-05-13
Cell migration is a dynamic process, which is important for embryonic development, tissue repair, immune system function, and tumor invasion (1, 2). During directional migration, cells move rapidly in response to an extracellular chemotactic signal, or in response to intrinsic cues (3) provided by the basic motility machinery. Random migration occurs when a cell possesses low intrinsic directionality, allowing the cells to explore their local environment. Cell migration is a complex process, in the initial response cell undergoes polarization and extends protrusions in the direction of migration (2). Traditional methods to measure migration such as the Boyden chamber migration assay is an easy method to measure chemotaxis in vitro, which allows measuring migration as an end point result. However, this approach neither allows measurement of individual migration parameters, nor does it allow to visualization of morphological changes that cell undergoes during migration. Here, we present a method that allows us to monitor migrating cells in real time using video - time lapse microscopy. Since cell migration and invasion are hallmarks of cancer, this method will be applicable in studying cancer cell migration and invasion in vitro. Random migration of platelets has been considered as one of the parameters of platelet function (4), hence this method could also be helpful in studying platelet functions. This assay has the advantage of being rapid, reliable, reproducible, and does not require optimization of cell numbers. In order to maintain physiologically suitable conditions for cells, the microscope is equipped with CO(2) supply and temperature thermostat. Cell movement is monitored by taking pictures using a camera fitted to the microscope at regular intervals. Cell migration can be calculated by measuring average speed and average displacement, which is calculated by Slidebook software.
McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.
1998-01-01
Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight into ground-water/surface-water interactions in the subsurface. Characterization of the unsaturated zone will improve our understanding of interactions among ground water, the unsaturated zone, and the atmosphere. The interactions likely of importance to this study include the migration of water, dissolved contaminants, nutrients, and gases (oxygen, carbon dioxide, and methane) between the saturated and unsaturated zones. We will use the results of ground-water chemical analyses to determine the spatial and temporal distribution of (1) chlorinated-hydrocarbon contaminants and their degradation products, (2) oxidation-reduction indicators, (3) nutrients, and (4) major ground-water ions. These water-quality data will provide insight into ground-water flow directions, interactions between ground water and surface water, attenuation of contaminant concentrations caused by dispersion, and intrinsic microbiological processes. Microbiological analyses will indicate whether microorganisms at the site are capable of degrading the contaminants of interest, and will allow us to estimate their potential to attenuate existing contamination. Physical and chemical data interpreted as part of the analysis of ground water and surface water mixing will improve our understanding of the relationship between water quality and contaminant source mixing.
DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA
Rahman, M.; Veigas, Maria; Williams, Paul J.; Fernandes, Gabriel
2013-01-01
Breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Attenuation of breast cancer metastasis to bone and associated osteolysis by fish oil (FO), rich in EPA and DHA, has been demonstrated previously. However, it was not known whether EPA and DHA differentially or similarly affect breast cancer bone metastasis and associated osteolysis. In vitro culture of parental and luciferase gene encoded MDA-MB-231 human breast cancer cell lines treated with EPA and DHA revealed that DHA inhibits proliferation and invasion of breast cancer cells more potently than EPA. Intra-cardiac injection of parental and luciferase gene encoded MDA-MB-231 cells to athymic NCr nu/nu mice demonstrated that DHA treated mice had significantly less breast cancer cell burden in bone, and also significantly less osteolytic lesions than EPA treated mice. In vivo cell migration assay as measured by luciferase intensity revealed that DHA attenuated cell migration specifically to the bone. Moreover, the DHA treated group showed reduced levels of CD44 and TRAP positive area in bone compared to EPA treated group. Breast cancer cell burden and osteolytic lesions were also examined in intra-tibially breast cancer cell injected mice and found less breast cancer cell growth and associated osteolysis in DHA treated mice as compared to EPA treated mice. Finally, doxorubicin resistant MCF-7 (MCF-7dox) human breast cancer cell line was used to examine if DHA can improve sensitization of MCF-7dox cells to doxorubicin. DHA improved the inhibitory effect of doxorubicin on proliferation and invasion of MCF-7dox cells. Interestingly, drug resistance gene P-gp was also down-regulated in DHA plus doxorubicin treated cells. In conclusion, DHA attenuates breast cancer bone metastasis and associated osteolysis more potently than EPA, possibly by inhibiting migration of breast cancer cell to the bone as well as by inhibiting osteoclastic bone resorption. PMID:24062211
Straight as an arrow: humpback whales swim constant course tracks during long-distance migration
Horton, Travis W.; Holdaway, Richard N.; Zerbini, Alexandre N.; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J.
2011-01-01
Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored. PMID:21508023
Straight as an arrow: humpback whales swim constant course tracks during long-distance migration.
Horton, Travis W; Holdaway, Richard N; Zerbini, Alexandre N; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J
2011-10-23
Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng
Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile ductmore » ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM-MSCs were enhanced by CBDL rat serum. • The Akt/Nrf2 instead of ERK/Nrf2 pathway regulates the angiogenic related functions of BM-MSCs.« less
Modeling Contamination Migration on the Chandra X-ray Observatory - II
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.
2013-01-01
During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.
Acanthamoeba migration in an electric field.
Rudell, Jolene Chang; Gao, Jing; Sun, Yuxin; Sun, Yaohui; Chodosh, James; Schwab, Ivan; Zhao, Min
2013-06-21
We investigated the in vitro response of Acanthamoeba trophozoites to electric fields (EFs). Acanthamoeba castellanii were exposed to varying strengths of an EF. During EF exposure, cell migration was monitored using an inverted microscope equipped with a CCD camera and the SimplePCI 5.3 imaging system to capture time-lapse images. The migration of A. castellanii trophozoites was analyzed and quantified with ImageJ software. For analysis of cell migration in a three-dimensional culture system, Acanthamoeba trophozoites were cultured in agar, exposed to an EF, digitally video recorded, and analyzed at various Z focal planes. Acanthamoeba trophozoites move at random in the absence of an EF, but move directionally in response to an EF. Directedness in the absence of an EF is 0.08 ± 0.01, while in 1200 mV/mm EF, directedness is significantly higher at -0.65 ± 0.01 (P < 0.001). We find that the trophozoite migration response is voltage-dependent, with higher directionality with higher voltage application. Acanthamoeba move directionally in a three-dimensional (3D) agar system as well when exposed to an EF. Acanthamoeba trophozoites move directionally in response to an EF in a two-dimensional and 3D culture system. Acanthamoeba trophozoite migration is also voltage-dependent, with increased directionality with increasing voltage. This may provide new treatment modalities for Acanthamoeba keratitis.
Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik
2009-06-01
Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou
2018-05-30
The gradient localization of biological cues is of paramount importance to guide directional migration of cells. In this study, poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate)-block- poly(2-hydroxyethyl methacrylate) (P(HEMA-co-GMA)-b-PHEMA) brushes with a uniform underneath P(HEMA-co-GMA) layer and a gradient thickness of PHEMA blocks were prepared by using surface-initiated atom-transfer radical polymerization and a dynamically controlled polymerization process. The polymer chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups, and their structures and properties were characterized by X-ray photoelectron spectrometry (XPS), quartz crystal microbalance with dissipation (QCM-D) and air contact angle. Adhesion and migration processes of smooth muscle cells (SMCs) were then studied. Compared with those on the sufficiently exposed RGD surface, the cell adhesion and mobility were well maintained when the RGD peptides were localized at 18.9 nm depth, whereas the adhesion, spreading and migration rate of SMCs were significantly impaired when the RGD peptides were localized at a depth of 38.4 nm. On the RGD depth gradient surface, the SMCs exhibited preferential orientation and enhanced directional migration toward the direction of reduced thickness of the second PHEMA brushes. Half of the cells were oriented within ± 30° to the x-axis direction, and 72% of the cells moved directionally at the optimal conditions. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion-related proteins were studied to corroborate the mechanisms, demonstrating that the cell mobility is regulated by the complex and synergetic intracellular signals resulted from the difference in surface properties. Cell migration is of paramount importance for the processes of tissue repair and regeneration. So far, the gradient localization of biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yang, Jie; Liu, Bing; Wang, Qin; Yuan, Dongdong; Hong, Xiaoting; Yang, Yan; Tao, Liang
2011-01-01
The effects of connexin (Cx) and its derived homotypic gap junctional intercellular communication (GJIC) between tumor cells on the invasion of metastatic cancers and the underlying mechanisms remain unclear. In this study, we investigated the influence of Cx32 and the homotypic GJIC mediated by this Cx on the migration, invasion and intercellular adhesion of transfected HeLa cells. The expression of Cx32 significantly increased cell adhesion and inhibited migration and invasion. The inhibition of GJIC by oleamide, a widely used GJIC inhibitor, reduced the enhanced adhesion and partly reversed the decreased migration and invasion that had been induced by Cx32 expression. Blockage of the p38 and extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase (ERK1/2 MAPKs) pathways using their specific inhibitors attenuated the effects of Cx32, but not those of GJIC, on cell adhesion, migration and invasion. These results indicate that the homotypic GJIC mediated by Cx32, as well as the Cx itself, inhibit cell migration and invasion, most likely through the elevation of intercellular adhesion. The suppressive effect of Cx32 on the migration and invasion of cancer cells, but not that of its derived homotypic GJIC, partly depends on the activation of the p38 and the ERK1/2 MAPKs pathways.
Functional Coordination of WAVE and WASP in C. elegans Neuroblast Migration.
Zhu, Zhiwen; Chai, Yongping; Jiang, Yuxiang; Li, Wenjing; Hu, Huifang; Li, Wei; Wu, Jia-Wei; Wang, Zhi-Xin; Huang, Shanjin; Ou, Guangshuo
2016-10-24
Directional cell migration is critical for metazoan development. We define two molecular pathways that activate the Arp2/3 complex during neuroblast migration in Caenorhabditis elegans. The transmembrane protein MIG-13/Lrp12 is linked to the Arp2/3 nucleation-promoting factors WAVE or WASP through direct interactions with ABL-1 or SEM-5/Grb2, respectively. WAVE mutations partially impaired F-actin organization and decelerated cell migration, and WASP mutations did not inhibit cell migration but enhanced migration defects in WAVE-deficient cells. Purified SEM-5 and MIG-2 synergistically stimulated the F-actin branching activity of WASP-Arp2/3 in vitro. In GFP knockin animals, WAVE and WASP were largely organized into separate clusters at the leading edge, and the amount of WASP was less than WAVE but could be elevated by WAVE mutations. Our results indicate that the MIG-13-WAVE pathway provides the major force for directional cell motility, whereas MIG-13-WASP partially compensates for its loss, underscoring their coordinated activities in facilitating robust cell migration. Copyright © 2016 Elsevier Inc. All rights reserved.
Dai, Jin; Van Wie, Peter G; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo
2016-11-15
Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Lin-Yong; Xiao, Jie; Liu, Qiang; Xia, Kun
2017-03-15
Glioblastoma (GBM) is one of the most lethal brain cancers worldwide, and there is an urgent need for development of novel therapeutic approaches. Parecoxib is a well-known cyclooxygenase-2 (COX-2) inhibitor, and had already been developed for postoperative analgesia with high efficacy and low adverse reaction. A recent study has suggested that parecoxib potently enhances immunotherapeutic efficacy of GBM, but its effects on GBM growth, migration and invasion have not previously been studied. In the present study, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and BrdU (5-bromo-2-deoxyuridine) incorporation assays were used to evaluate the cell proliferation of GBM cells. Wound-healing and transwell assays were preformed to analyze GBM cell migration and invasion, respectively. The results suggested that parecoxib inhibits cell proliferation, migration and invasion of GBM cells in a dose-dependent manner. RT-qPCR (real-time quantitative PCR) analysis demonstrated that miRNA-29c can be significantly induced by parecoxib. Furthermore, our data suggests that a miRNA-29c inhibitor can significantly attenuate parecoxib's effect on proliferation, migration and invasion of GBM. In conclusion, the present study suggests that parecoxib inhibits GBM cell proliferation, migration and invasion by upregulating miRNA-29c. © 2017. Published by The Company of Biologists Ltd.
Parecoxib inhibits glioblastoma cell proliferation, migration and invasion by upregulating miRNA-29c
Li, Lin-Yong; Xiao, Jie; Liu, Qiang
2017-01-01
ABSTRACT Glioblastoma (GBM) is one of the most lethal brain cancers worldwide, and there is an urgent need for development of novel therapeutic approaches. Parecoxib is a well-known cyclooxygenase-2 (COX-2) inhibitor, and had already been developed for postoperative analgesia with high efficacy and low adverse reaction. A recent study has suggested that parecoxib potently enhances immunotherapeutic efficacy of GBM, but its effects on GBM growth, migration and invasion have not previously been studied. In the present study, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and BrdU (5-bromo-2-deoxyuridine) incorporation assays were used to evaluate the cell proliferation of GBM cells. Wound-healing and transwell assays were preformed to analyze GBM cell migration and invasion, respectively. The results suggested that parecoxib inhibits cell proliferation, migration and invasion of GBM cells in a dose-dependent manner. RT-qPCR (real-time quantitative PCR) analysis demonstrated that miRNA-29c can be significantly induced by parecoxib. Furthermore, our data suggests that a miRNA-29c inhibitor can significantly attenuate parecoxib's effect on proliferation, migration and invasion of GBM. In conclusion, the present study suggests that parecoxib inhibits GBM cell proliferation, migration and invasion by upregulating miRNA-29c. PMID:27895048
PDK1-mediated activation of MRCKα regulates directional cell migration and lamellipodia retraction
Gagliardi, Paolo Armando; di Blasio, Laura; Puliafito, Alberto; Seano, Giorgio; Sessa, Roberto; Chianale, Federica; Leung, Thomas; Bussolino, Federico
2014-01-01
Directional cell migration is of paramount importance in both physiological and pathological processes, such as development, wound healing, immune response, and cancer invasion. Here, we report that 3-phosphoinositide-dependent kinase 1 (PDK1) regulates epithelial directional migration and invasion by binding and activating myotonic dystrophy kinase–related CDC42-binding kinase α (MRCKα). We show that the effect of PDK1 on cell migration does not involve its kinase activity but instead relies on its ability to bind membrane phosphatidylinositol (3,4,5)-trisphosphate. Upon epidermal growth factor (EGF) stimulation, PDK1 and MRCKα colocalize at the cell membrane in lamellipodia. We demonstrate that PDK1 positively modulates MRCKα activity and drives its localization within lamellipodia. Likewise, the retraction phase of lamellipodia is controlled by PDK1 through an MRCKα-dependent mechanism. In summary, we discovered a functional pathway involving PDK1-mediated activation of MRCKα, which links EGF signaling to myosin contraction and directional migration. PMID:25092657
Transnational nurse migration: future directions for medical anthropological research.
Prescott, Megan; Nichter, Mark
2014-04-01
Transnational nurse migration is a serious global health issue in which inequitably distributed shortages hinder health and development goals. This article selectively reviews the literature on nurse migration that has emerged from nursing, health planning, and the social sciences and offers productive directions for future anthropological research. The literature on global nurse migration has largely focused on push/pull economic logic and the concept of brain drain to understand the causes and effects of nurse migration. These concepts obscure political-economic, historical, and cultural factors that pattern nurse migration and influence the complex effects of nurse migration. Global nurse care chain analysis helps illuminate the numerous nodes in the production and migration of nurses, and management of this transnational process. Examples are provided from the Philippines and India to illustrate ways in which this analysis may be deepened, refined and rendered more critical by anthropological research. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong
Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cellsmore » and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.« less
Farnsworth, Andrew; Van DOREN, Benjamin M; Hochachka, Wesley M; Sheldon, Daniel; Winner, Kevin; Irvine, Jed; Geevarghese, Jeffrey; Kelling, Steve
2016-04-01
Billions of birds migrate at night over North America each year. However, few studies have described the phenology of these movements, such as magnitudes, directions, and speeds, for more than one migration season and at regional scales. In this study, we characterize density, direction, and speed of nocturnally migrating birds using data from 13 weather surveillance radars in the autumns of 2010 and 2011 in the northeastern USA. After screening radar data to remove precipitation, we applied a recently developed algorithm for characterizing velocity profiles with previously developed methods to document bird migration. Many hourly radar scans contained windborne "contamination," and these scans also exhibited generally low overall reflectivities. Hourly scans dominated by birds showed nightly and seasonal patterns that differed markedly from those of low reflectivity scans. Bird migration occurred during many nights, but a smaller number of nights with large movements of birds defined regional nocturnal migration. Densities varied by date, time, and location but peaked in the second and third deciles of night during the autumn period when the most birds were migrating. Migration track (the direction to which birds moved) shifted within nights from south-southwesterly to southwesterly during the seasonal migration peaks; this shift was not consistent with a similar shift in wind direction. Migration speeds varied within nights, although not closely with wind speed. Airspeeds increased during the night; groundspeeds were highest between the second and third deciles of night, when the greatest density of birds was migrating. Airspeeds and groundspeeds increased during the fall season, although groundspeeds fluctuated considerably with prevailing winds. Significant positive correlations characterized relationships among bird densities at southern coastal radar stations and northern inland radar stations. The quantitative descriptions of broadscale nocturnal migration patterns presented here will be essential for biological and conservation applications. These descriptions help to define migration phenology in time and space, fill knowledge gaps in avian annual cycles, and are useful for monitoring long-term population trends of migrants. Furthermore, these descriptions will aid in assessing potential risks to migrants, particularly from structures with which birds collide and artificial lighting that disorients migrants.
De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini
2017-01-10
The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by RAC1 inhibition in MDA-MB231BR cells. In the light of our previous report that WP upregulation causes ID-MA phenotypes in TNBC tumor cells, here we provide the first mechanism based evidence to demonstrate that WP upregulation signals ID-MA tumor cell phenotypes in a RAC1-GTPase dependent manner involving exchange-factors like TIAM1 and VAV2. Our study demonstrates for the first time that beta-catenin-RAC1 cascade signals integrin-directed metastasis-associated tumor cell phenotypes in TNBC.
40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed...
Myeloid Cell 5-Lipoxygenase Activating Protein Modulates the Response to Vascular Injury
Yu, Zhou; Ricciotti, Emanuela; Miwa, Takashi; Liu, Shulin; Ihida-Stansbury, Kaori; Landersberg, Gavin; Jones, Peter L.; Scalia, Rosario; Song, Wenchao; Assoian, Richard K.; FitzGerald, Garret A.
2013-01-01
Rationale Human genetics have implicated the 5- lipoxygenase (5-LO) enzyme in the pathogenesis of cardiovascular disease and an inhibitor of the 5-LO activating protein (FLAP) is in clinical development for asthma. Objective Here we determined whether FLAP deletion modifies the response to vascular injury. Methods and Results Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout (FLAP KO) mice and wild type (WT) controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP KOs while endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine (BrdU) incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP KO macrophages was depressed and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B4 (LTB4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C (TNC), which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin and upregulation of vascular cell adhesion molecule (VCAM) -1 was also suppressed in FLAP KO mice. Transplantation of FLAP replete myeloid cells rescued the proliferative response to vascular injury. Conclusion Expression of lesional FLAP in myeloid cells promotes LTB4 dependent VSMC phenotypic modulation, intimal migration and proliferation. PMID:23250985
Fibronectin in cell adhesion and migration via N-glycosylation
Hsiao, Cheng-Te; Cheng, Hung-Wei; Huang, Chi-Ming; Li, Hao-Ru; Ou, Meng-Hsin; Huang, Jie-Rong; Khoo, Kay-Hooi; Yu, Helen Wenshin; Chen, Yin-Quan; Wang, Yang-Kao; Chiou, Arthur; Kuo, Jean-Cheng
2017-01-01
Directed cell migration is an important step in effective wound healing and requires the dynamic control of the formation of cell-extracellular matrix interactions. Plasma fibronectin is an extracellular matrix glycoprotein present in blood plasma that plays crucial roles in modulating cellular adhesion and migration and thereby helping to mediate all steps of wound healing. In order to seek safe sources of plasma fibronectin for its practical use in wound dressing, we isolated fibronectin from human (homo) and porcine plasma and demonstrated that both have a similar ability as a suitable substrate for the stimulation of cell adhesion and for directing cell migration. In addition, we also defined the N-glycosylation sites and N-glycans present on homo and porcine plasma fibronectin. These N-glycosylation modifications of the plasma fibronectin synergistically support the integrin-mediated signals to bring about mediating cellular adhesion and directed cell migration. This study not only determines the important function of N-glycans in both homo and porcine plasma fibronectin-mediated cell adhesion and directed cell migration, but also reveals the potential applications of porcine plasma fibronectin if it was applied as a material for clinical wound healing and tissue repair. PMID:29050309
Kawabata, Tetsu; Tokuda, Haruhiko; Fujita, Kazuhiko; Kainuma, Shingo; Sakai, Go; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu
2017-01-01
Resveratrol is a polyphenol enriched in the skins of grapes and berries, that shows various beneficial effects for human health. In the present study, we investigated the mechanism behind the epidermal growth factor (EGF)-induced migration of osteoblast-like MC3T3-E1 cells, and the effect of resveratrol on this cell migration. The cell migration was examined using Boyden chamber, and phosphorylation of each kinase was analyzed by Western blotting. The EGF-induced migration was suppressed by PD98059, an inhibitor of MEK1/2, as well as SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of SAPK/JNK, and deguelin, an inhibitor of Akt. In contrast, rapamycin, an inhibitor of upstream kinase of p70 S6 kinase, and fasudil, an inhibitor of Rho-kinase, hardly affected the migration. Resveratrol significantly reduced the EGF-induced migration in a dose-dependent manner. SRT1720, an SIRT1 activator, suppressed the migration by EGF. In addition, resveratrol markedly attenuated the EGF-induced phosphorylation of SAPK/JNK and Akt without affecting the phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. The phosphorylation of SAPK/JNK and Akt induced by EGF was down-regulated by SRT1720. Our results strongly suggest that resveratrol reduces the EGF-stimulated migration of osteoblasts via suppression of SAPK and Akt, and that the inhibitory effect of resveratrol is mediated in part via SIRT1. © 2017 The Author(s). Published by S. Karger AG, Basel.
2013-01-01
Background Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling molecules including AKT pathway independent of enzymatic activity. However, virtually nothing is presently known the role of HPA during macrophage migration exposed to AGEs involving signal pathway. Methods These studies were carried out in Ana-1 macrophages. Macrophage viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. HPA and AKT protein expression in macrophages are analysed by Western blotting and HPA mRNA expression by real time quantitative RT-PCR. Release of HPA was determined by ELISA. Macrophage migration was assessed by Transwell assays. Results HPA protein and mRNA were found to be increased significantly in AGEs-treated macrophages. Pretreatment with anti-HPA antibody which recognizes the nonenzymatic terminal of HPA prevented AGEs-induced AKT phosphorylation and macrophage migration. LY294002 (PI3k/AKT inhibitor) inhibited AGEs-induced macrophage migration. Furthermore, pretreatment with anti-receptor for advanced glycation end products (RAGE) antibody attenuated AGEs-induced HPA expression, AKT phosphorylation and macrophage migration. Conclusions These data indicate that AGEs-induced macrophage migration is dependent on HPA involving RAGE-HPA-PI3K/AKT pathway. The nonenzymatic activity of HPA may play a key role in AGEs-induced macrophage migration associated with inflammation in diabetic vascular complication. PMID:23442498
Texture sensing of cytoskeletal dynamics in cell migration
NASA Astrophysics Data System (ADS)
Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang
Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.
Genetics Home Reference: 3MC syndrome
... pathway is thought to help direct the movement (migration) of cells during early development before birth to ... appears to be particularly important in directing the migration of neural crest cells, which give rise to ...
Chan, Chu-Fang; Kuo, Tzu-Wei; Weng, Ju-Yun; Lin, Yen-Chu; Chen, Ting-Yu; Cheng, Jen-Kun; Lien, Cheng-Chang
2013-01-01
Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba2+- and bupivacaine-sensitive background K+ conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K+ conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function. PMID:23940377
Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun
2012-10-01
OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.
Turk, M A; Klei, T R
1984-01-01
Eighteen parasite-free pony foals were infected orally with 500 third stage larvae of Strongylus vulgaris. At 56 days after infection, six ponies were treated with intramuscular ivermectin (22, 23-dihydroavermectin B1); six were treated with oral ivermectin; and six were not treated. Necropsy was done 91 days after infection to study the pathologic effects of migrating S. vulgaris larvae and to determine the efficacy of ivermectin in attenuation of S. vulgaris-induced lesions. Larval migration induced eosinophilic inflammation of the liver, spleen, mesenteric, colic and cecal lymph nodes, and small and large intestine. Previously unreported parasitic lesions included eosinophilic pneumonia with eosinophilic granulomas and pulmonary lymphoid nodules. S. vulgaris larvae were observed in eosinophilic granulomas in the lung, epicardium, liver, and intestinal serosa. Injectable and oral ivermectin formulations were equally effective in reduction of these lesions.
Han, Qingdong; Liu, Shengwen; Li, Zhengwei; Hu, Feng; Zhang, Qiang; Zhou, Min; Chen, Jingcao; Lei, Ting; Zhang, Huaqiu
2014-01-13
Accumulating evidence indicates that extensive microglia activation-mediated local inflammation contributes to neuronal injury in cerebral ischemia. We have previously shown that 4-(2-butyl-6, 7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), a potent volume-regulated anion channel (VRAC) inhibitor, suppresses pathological glutamate release and excitatory neurotoxicity in reversible middle cerebral artery occlusion (rMCAO) model in vivo. In the present study, we sought to determine whether DCPIB also attenuates microglia activation that could contribute to neuronal injury in the cerebral ischemia/reperfusion pathology. We show that oxygen-glucose deprivation (OGD) induced microglia proliferation, migration, and secretion of cytokines and all these pathological changes were effectively inhibited by DCPIB in vitro. In the microglia/neuron co-cultures, OGD induced neuronal damage was reduced markedly in the presence of DCPIB. In rat rMCAO animal model, DCPIB significantly attenuated microglia activation and neuronal death. Activation of mitogen-activated protein kinase (MAPK) signaling pathway is known to be a critical signaling pathway for microglia activation. We further explored a potential involvement of DCPIB in this pathway by western blot analysis. Under the conditions that MAPK pathway was activated either by lipopolysaccharides (LPS) or OGD, the levels of phosphorylated ERK1/2, JNK and p38 were reduced significantly in the presence of DCPIB. Altogether, our study demonstrated that DCPIB inhibits microglia activation potently under ischemic conditions both in vitro and in vivo. The DCPIB effect is likely attributable to both direct inhibition VRAC and indirect inhibition of MAPK pathway in microglia that are beneficial for the survival of neurons in cerebral ischemic conditions. © 2013 Elsevier B.V. All rights reserved.
Sturek, Michael
2011-08-01
Chronic exercise attenuates coronary artery disease (CAD) in humans largely independent of reductions in risk factors; thus major protective mechanisms of exercise are directly within the coronary vasculature. Further, tight control of diabetes, e.g., blood glucose, can be detrimental. Accordingly, knowledge of mechanisms by which exercise attenuates diabetic CAD could catalyze development of molecular therapies. Exercise attenuates CAD (atherosclerosis) and restenosis in miniature swine models, which enable precise control of exercise parameters (intensity, duration, and frequency) and characterization of the metabolic syndrome (MetS) and diabetic milieu. Intracellular Ca(2+) is a pivotal second messenger for coronary smooth muscle (CSM) excitation-contraction and excitation-transcription coupling that modulates CSM proliferation, migration, and calcification. CSM of diabetic dyslipidemic Yucatan swine have impaired Ca(2+) extrusion via the plasmalemma Ca(2+) ATPase (PMCA), downregulation of L-type voltage-gated Ca(2+) channels (VGCC), increased Ca(2+) sequestration by the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA), increased nuclear Ca(2+) localization, and greater activation of K channels by Ca(2+) release from the SR. Endurance exercise training prevents Ca(2+) transport changes with virtually no effect on the diabetic milieu (glucose, lipids). In MetS Ossabaw swine transient receptor potential canonical (TRPC) channels are upregulated and exercise training reverses expression and TRPC-mediated Ca(2+) influx with almost no change in the MetS milieu. Overall, exercise effects on Ca(2+) signaling modulate CSM phenotype. Future studies should 1) selectively target key Ca(2+) transporters to determine definitively their causal role in atherosclerosis and 2) combine mechanistic studies with clinical outcomes, e.g., reduction of myocardial infarction.
Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes.
Zhang, Yuan; Zhu, Tiebing; Zhang, Xiaotian; Chao, Jie; Hu, Gang; Yao, Honghong
2015-09-04
Mounting evidence has indicated that high-mobility group box 1 (HMGB1) is involved in cell activation and migration. Our previous study demonstrated that methamphetamine mediates activation of astrocytes via sigma-1 receptor (σ-1R). However, the elements downstream of σ-1R in this process remain poorly understood. Thus, we examined the molecular mechanisms involved in astrocyte activation and migration induced by methamphetamine. The expression of HMGB1, σ-1R, and glial fibrillary acidic protein (GFAP) was examined by western blot and immunofluorescent staining. The phosphorylation of cell signaling pathways was detected by western blot, and cell migration was examined using a wound-healing assay in rat C6 astroglia-like cells transfected with lentivirus containing red fluorescent protein (LV-RFP) as well as in primary human astrocytes. The role of HMGB1 in astrocyte activation and migration was validated using a siRNA approach. Exposure of C6 cells to methamphetamine increased the expression of HMGB1 via the activation of σ-1R, Src, ERK mitogen-activated protein kinase, and downstream NF-κB p65 pathways. Moreover, methamphetamine treatment resulted in increased cell activation and migration in C6 cells and primary human astrocytes. Knockdown of HMGB1 in astrocytes transfected with HMGB1 siRNA attenuated the increased cell activation and migration induced by methamphetamine, thereby implicating the role of HMGB1 in the activation and migration of C6 cells and primary human astrocytes. This study demonstrated that methamphetamine-mediated activation and migration of astrocytes involved HMGB1 up-regulation through an autocrine mechanism. Targeting HMGB1 could provide insights into the development of a potential therapeutic approach for alleviation of cell activation and migration of astrocytes induced by methamphetamine.
Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathways.
Jung, Hyun-Joo; Jeon, Yong-Heui; Bokara, Kiran Kumar; Koo, Bon-Nyeo; Lee, Won Taek; Park, Kyung Ah; Lee, Jong-Eun
2013-01-17
The combination of adhesion and migration of endothelial cells (ECs) is an integral process for evolution, organization, repair and vessel formation in living organisms. Agmatine, a polycationic amine existing in brain, has been investigated to exert neuroprotective effects. Up to date, there are no studies reporting that agmatine modulates murine brain endothelial (bEnd.3) cells migration. In the present study, we intend to investigate the role of agmatine in bEnd.3 cells migration and the molecular mechanism mediating this action. The effect of agmatine on the bEnd.3 cells migration was examined by migration assay, and the mechanism involved for this effect was investigated by western blot analysis and NO contents measurements. Agmatine treatment (50, 100 and 200 μM) significantly accelerated bEnd.3 cells migration in a concentration-dependent manner. Western blotting revealed that agmatine treatment significantly induced vascular endothelial growth factor (VEGF), VEGF receptor 2 (Flk-1/KDR or VEGFR2), phosphatidylinositol 3-kinase (PI3K), Akt/protein kinase B (also known as PKB, PI3K downstream effector protein), endothelial nitric oxide synthase (eNOS) nitric oxide (NO; product by eNOS) and intercellular adhesion molecule 1 (ICAM-1) expressions during bEnd.3 cells migration. The expression of ICAM-1 and migration of bEnd.3 cells, induced by agmatine, were significantly attenuated by treatment of wortmannin, a specific PI3K inhibitor. Taken together, we provide the first evidence that activation of VEGF/VEGFR2 and the consequential PI3K/Akt/eNOS/NO/ICAM-1 signaling pathways are serial events, through which the treatment of agmatine could lead to bEnd.3 cells migration. Copyright © 2012 Elsevier Inc. All rights reserved.
Heavy metal migration in soils and rocks at historical smelting sites.
Maskall, J; Whitehead, K; Thornton, I
1995-09-01
The vertical migration of metals through soils and rocks was investigated at five historical lead smelting sites ranging in age between 220 and 1900 years. Core samples were taken through metal-contaminated soils and the underlying strata. Concentration profiles of lead and zinc are presented from which values for the distances and rates of migration have been derived. Slag-rich soil horizons contain highly elevated metal concentrations and some contamination of underlying strata has occurred at all sites. However, the amounts of lead and zinc that have migrated from soils and been retained at greater depths are comparatively low. This low metal mobility in contaminated soils is partly attributed to the elevation of soil pH by the presence of calcium and carbonate originating from slag wastes and perhaps gangue minerals. Distances and rates of vertical migration were higher at those sites with soils underlain by sandstone than at those with soils underlain by clay. For sites with the same parent material, metal mobility appears to be increased at lower soil pH. The mean migration rates for lead and zinc reach maxima of 0.75 and 0.46 cm yr(-1) respectively in sandstone at Bole A where the elements have moved mean distances of 4.3 and 2.6 m respectively. There is some evidence that metal transport in the sandstone underlying Bole A and Cupola B occurs preferentially along rock fractures. The migration of lead and zinc is attenuated by subsurface clays leading to relatively low mean migration rates which range from 0.03 to 0.31 cm yr(-1) with many values typical of migration solely by diffusion. However, enhanced metal migration in clays at Cupola A suggest a preferential transport mechanism possibly in cracks or biopores.
NASA Astrophysics Data System (ADS)
Han, S. M.; Davis, J.
1997-10-01
The bone mineral density (BMD), ultrasound velocity (UV) and attenuation were examined in sixteen matched sets of human patellae and calcanei. For the sixteen calcanei, BMD was strongly correlated with all ultrasound parameters. Calcaneal UV appeared to be inferior to attenuation in the ability to predict BMD. For the sixteen patellae, the average UV was found to be greater in the superior/inferior direction than in the anterior/posterior and medial/lateral directions. It was found that patella BMD was significantly correlated with each of three directional ultrasound velocities. The relationship between BMD and ultrasound attenuation parameters was not significant in the patella. A comparative study of the two different bone sets demonstrated that the BMDs of the patella and calcaneus were significantly correlated with each other. Ultrasound velocity of calcaneus, measured in the medial/lateral direction, was not significantly associated with any of three directional ultrasound velocities in the patella. Similarly, ultrasound attenuation parameters of calcaneus were not significantly correlated with those of patella. The present study also demonstrated evidence that when predicting BMDs at their respective sites using ultrasound, the calcaneus appeared to be superior to the patella.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke
Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metforminmore » significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.« less
Roy, Abhishek; Ansari, Shabbir A; Das, Kaushik; Prasad, Ramesh; Bhattacharya, Anindita; Mallik, Suman; Mukherjee, Ashis; Sen, Prosenjit
2017-08-18
Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIa's role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3β inactivation is involved in these processes and that β-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of β-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. β-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent β-catenin accumulation may represent a potential therapeutic approach to control breast cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Fei; Ruan, Xin-Jian; Zhang, Hong-Yan
2015-01-01
The gut is in direct contact with BDE-99 (2,2',4,4',5-pentabromodiphenyl ether), one of the most abundant PBDE congeners in the environment and in human tissues. The objective of the present study was to investigate the effects of BDE-99 on colorectal cancer (CRC) cells. The effects of BDE-99 on cell proliferation were measured by CCK-8 assay in the CRC cell line HCT-116. Wound healing and transwell migration/invasion assays were used to test the migration and invasion of CRC cells. Factors related to epithelial-to-mesenchymal transition (EMT) were measured by real-time PCR and Western blot analysis for mRNA and protein levels, respectively. BDE-99 was found to increase migration and invasion and trigger EMT in HCT-116 cells; EMT was characterized by cells acquiring mesenchymal spindle-like morphology and by increased expression of N-cadherin with a concomitant decrease in E-cadherin. BDE-99 treatment also increased the protein and mRNA levels of the transcription factor Snail, but not Slug, Twist, and ZEB1. Knockdown of Snail by siRNA significantly attenuated BDE-99-induced EMT in HCT-116 cells, suggesting that Snail plays a crucial role in BDE-99-induced EMT. The PI3K/Akt inhibitor LY294002 completely blocked BDE-99-induced Snail and invasion of HCT-116 cells. Our results revealed that BDE-99 can trigger the EMT of colon cancer cells via the PI3K/AKT/Snail signaling pathway. This study provides new insight into the tumorigenesis and metastasis of CRC stimulated by BDE-99 and possibly other PBDE congeners.
Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite
NASA Technical Reports Server (NTRS)
Ippolito, L. J. (Compiler)
1975-01-01
The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.
Bao, Xing; Ren, Tingting; Huang, Yi; Wang, Shidong; Zhang, Fan; Liu, Kuisheng; Zheng, Bingxin; Guo, Wei
2016-08-30
In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.
Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition.
Law, Brittany A; Carver, Wayne E
2013-08-01
Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as alcoholic cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM, and prior studies by this laboratory have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date, there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Primary rat cardiac fibroblasts were cultured in the presence of ethanol (EtOH) and assayed for fibroblast activation by collagen gel contraction, alpha-smooth muscle actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I and III, and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of TGF-β in the response of cardiac fibroblasts to EtOH. Treatment for cardiac fibroblasts with EtOH at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the EtOH-induced fibroblast activation. EtOH treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by EtOH treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to EtOH. Copyright © 2013 by the Research Society on Alcoholism.
Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition
Law, Brittany A.; Carver, Wayne E.
2013-01-01
Background Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as Alcoholic Cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM and prior studies by this lab have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Methods Primary rat cardiac fibroblasts were cultured in the presence of ethanol and assayed for fibroblast activation by collagen gel contraction, alpha smooth muscle- actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I & III and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of of TGF-β in the response of cardiac fibroblasts to ethanol. Results Treatment of cardiac fibroblasts with ethanol at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the ethanol-induced fibroblast activation. Conclusions Ethanol treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by ethanol treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to ethanol. PMID:23528014
Traffic-Sensitive Live Migration of Virtual Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Umesh; Keahey, Kate
2015-01-01
In this paper we address the problem of network contention between the migration traffic and the VM application traffic for the live migration of co-located Virtual Machines (VMs). When VMs are migrated with pre-copy, they run at the source host during the migration. Therefore the VM applications with predominantly outbound traffic contend with the outgoing migration traffic at the source host. Similarly, during post-copy migration, the VMs run at the destination host. Therefore the VM applications with predominantly inbound traffic contend with the incoming migration traffic at the destination host. Such a contention increases the total migration time of themore » VMs and degrades the performance of VM application. Here, we propose traffic-sensitive live VM migration technique to reduce the contention of migration traffic with the VM application traffic. It uses a combination of pre-copy and post-copy techniques for the migration of the co-located VMs, instead of relying upon any single pre-determined technique for the migration of all the VMs. We base the selection of migration techniques on VMs' network traffic profiles so that the direction of migration traffic complements the direction of the most VM application traffic. We have implemented a prototype of traffic-sensitive migration on the KVM/QEMU platform. In the evaluation, we compare traffic-sensitive migration against the approaches that use only pre-copy or only post-copy for VM migration. We show that our approach minimizes the network contention for migration, thus reducing the total migration time and the application degradation.« less
Sawada, Yu; Hanakawa, Sho; Nakamizo, Satoshi; Murata, Teruasa; Ueharaguchi-Tanada, Yuri; Ono, Sachiko; Amano, Wataru; Nakajima, Saeko; Egawa, Gyohei; Tanizaki, Hideaki; Otsuka, Atsushi; Kitoh, Akihiko; Dainichi, Teruki; Ogawa, Narihito; Kobayashi, Yuichi; Yokomizo, Takehiko; Arita, Makoto; Nakamura, Motonobu; Miyachi, Yoshiki
2015-01-01
Resolvin E1 (RvE1) is a lipid mediator derived from ω3 polyunsaturated fatty acids that exerts potent antiinflammatory roles in several murine models. The antiinflammatory mechanism of RvE1 in acquired immune responses has been attributed to attenuation of cytokine production by dendritic cells (DCs). In this study, we newly investigated the effect of RvE1 on DC motility using two-photon microscopy in a contact hypersensitivity (CHS) model and found that RvE1 impaired DC motility in the skin. In addition, RvE1 attenuated T cell priming in the draining lymph nodes and effector T cell activation in the skin, which led to the reduced skin inflammation in CHS. In contrast, leukotriene B4 (LTB4) induced actin filament reorganization in DCs and increased DC motility by activating Cdc42 and Rac1 via BLT1, which was abrogated by RvE1. Collectively, our results suggest that RvE1 attenuates cutaneous acquired immune responses by inhibiting cutaneous DC motility, possibly through LTB4-BLT1 signaling blockade. PMID:26438363
Zhang, Youen; Li, Hua; Zhao, Gang; Sun, Aijun; Zong, Nobel C.; Li, Zhaofeng; Zhu, Hongming; Zou, Yunzeng; Yang, Xiangdong; Ge, Junbo
2014-01-01
Hydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b+Gr-1+ myeloid cells and to regulate the Bax/Bcl-2 pathway. Furthermore, the cardioprotective effects of NaHS were enhanced by inhibiting the migration of CD11b+Gr-1+ myeloid cells from the spleen into the blood and by attenuating post-infarction inflammation. These observations suggest that the novel mechanism underlying the cardioprotective function of H2S is secondary to a combination of attenuation the recruitment of CD11b+Gr-1+ myeloid cells and regulation of the Bax/Bcl-2 apoptotic signaling. PMID:24758901
Millarte, Valentina; Farhan, Hesso
2012-01-01
Migration and invasion are fundamental features of metastatic cancer cells. The Golgi apparatus, an organelle involved in posttranslational modification and sorting of proteins, is widely accepted to regulate directional cell migration. In addition, mounting evidence suggests that the Golgi is a hub for different signaling pathways. In this paper we will give an overview on how polarized secretion and microtubule nucleation at the Golgi regulate directional cell migration. We will review different signaling pathways that signal to and from the Golgi. Finally, we will discuss how these signaling pathways regulate the role of the Golgi in cell migration and invasion. We propose that by identifying regulators of the Golgi, we might be able to uncover unappreciated modulators of cell migration. Uncovering the regulatory network that orchestrates cell migration is of fundamental importance for the development of new therapeutic strategies against cancer cell metastasis. PMID:22623902
Determinants of spring migration departure decision in a bat.
Dechmann, Dina K N; Wikelski, M; Ellis-Soto, D; Safi, K; O'Mara, M Teague
2017-09-01
Migratory decisions in birds are closely tied to environmental cues and fat stores, but it remains unknown if the same variables trigger bat migration. To learn more about the rare phenomenon of bat migration, we studied departure decisions of female common noctules ( Nyctalus noctula ) in southern Germany. We did not find the fattening period that modulates departure decisions in birds. Female noctules departed after a regular evening foraging session, uniformly heading northeast. As the day of year increased, migratory decisions were based on the interactions among wind speed, wind direction and air pressure. As the migration season progressed, bats were likely to migrate on nights with higher air pressure and faster tail winds in the direction of travel, and also show high probability of migration on low-pressure nights with slow head winds. Common noctules thus monitor complex environmental conditions to find the optimal migration night. © 2017 The Authors.
Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site
NASA Astrophysics Data System (ADS)
Kanmani, S.; Gandhimathi, R.
2013-03-01
The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.
The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.
Yao, Li; Li, Yongchao
2016-06-01
Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.
Numerical Investigation of Force-Free Magnetophoresis of Nonspherical Microparticles
NASA Astrophysics Data System (ADS)
Zhang, Jie; Wang, Cheng
2017-11-01
Our group recently demonstrated novel force-free magnetophoresis to separate nonspherical particles by shape. In this approach, a uniform magnetic field is used to generate a magnetic torque, which breaks the rotational symmetry of the particles and leads to shape-dependent lateral migration of the particles. We use direct numerical simulations to gain a better understanding of this magnetophoresis mechanism by focusing on ellipsoidal microparticles - a representative type of nonspherical particles encountered in biomedical engineering. We study key effects that influence the rotational and translational behaviors, including particle-wall separation distance, direction and strength of the magnetic field, particle aspect ratio and size. The numerical results show that the lateral migration is negligible in the absence of the magnetic field. When the magnetic field is applied, the particles migrate laterally. The migration direction depends on the direction of external magnetic fields, which controls the symmetry property of the particle rotation. These findings agree well with experiments. Our numerical simulations yield a comprehensive understanding of particle migration mechanism, and provide useful guidelines on design of separating devices for non-spherical micro-particles.
Non-contact method for directing electrotaxis
NASA Astrophysics Data System (ADS)
Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.
2015-06-01
We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates.
40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2011 CFR
2011-07-01
... factors to be considered are: (1) The volume, physical, and chemical characteristics of the wastes, including their potential to migrate through the soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing...
40 CFR 264.231 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
Code of Federal Regulations, 2011 CFR
2011-07-01
... chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed with these wastes; and (4...
Jeon, J I; Ko, S H; Kim, Y-J; Choi, S M; Kang, K K; Kim, H; Yoon, H J; Kim, J M
2015-03-01
The CC chemokine eotaxin contributes to epithelium-induced inflammation in airway diseases such as asthma. Eupatilin (5,7-dihydroxy-3',4',6'-trimethoxyflavone), a bioactive component of Artemisia asiatica Nakai (Asteraceae), is reported to inhibit the adhesion of eosinophils to bronchial epithelial cells. However, little is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelium-induced inflammation. In this study, we investigated the effect of eupatilin on expression of eotaxin-1 (CCL11), a potent chemoattractant for eosinophils. Eupatilin significantly inhibited eotaxin expression in bronchial epithelial cells stimulated with TNF-α, while NF-κB and IκBα kinase (IKK) activities declined concurrently. Eupatilin also inhibited mitogen-activated protein kinase (MAPK) activity; however, all of these anti-inflammatory activities were reversed by MAPK overexpression. In contrast, eupatilin did not affect the signal transducer and activator of transcription 6 (STAT6) signalling in bronchial epithelial cells stimulated with IL-4. Furthermore, eupatilin significantly attenuated TNF-α-induced eosinophil migration. These results suggest that the eupatilin inhibits the signalling of MAPK, IKK, NF-κB and eotaxin-1 in bronchial epithelial cells, leading to inhibition of eosinophil migration. © 2015 John Wiley & Sons Ltd.
Ultrasonic wave propagation in powders
NASA Astrophysics Data System (ADS)
Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.
2018-05-01
Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.
Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study
NASA Technical Reports Server (NTRS)
Gauthreaux, S. A., Jr.
1972-01-01
The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.
Zhai, Huan; Qi, Xun; Li, Zixuan; Zhang, Wei; Li, Chenguang; Ji, Lu; Xu, Ke; Zhong, Hongshan
2018-06-26
The present study investigated the role of tissue inhibitor of matrix metalloproteinase‑3 (TIMP‑3) in regulating the proliferation, migration, apoptosis and activity of matrix metalloproteinase (MMP)‑2 and ‑9, during the development of an atherosclerotic abdominal artery aneurysm (AAA). Experiments were conducted using rabbit AAA neck (NA) smooth muscle cells (SMCs), to investigate the potential for TIMP‑3 to be used as a novel stent coating in preventing aortic dilation adjacent to the AAA. The atherosclerotic AAA model was induced in New Zealand white rabbits via a 6‑week high‑cholesterol diet, followed by incubation of the targeted aortic region with elastase. SMCs were isolated from the aorta adjacent to the aneurysm 30 days after AAA model induction, and stimulated with 3, 10, 30 or 100 ng/ml TIMP‑3. Cell proliferation was investigated using Cell Counting Kit‑8 reagent, migration was examined using a Boyden chamber assay and apoptotic rate was analyzed using the Annexin V‑fluorescein isothiocyanate Apoptosis Detection kit. Gelatin zymography and ELISA were used to measure the activity of MMP‑2 and MMP‑9, and the expression of tumor necrosis factor‑α (TNF‑α), respectively. Analysis of cell proliferation indicated that 10, 30 and 100 ng/ml TIMP‑3 reduced cell viability. Cell migration was decreased by 10, 30 and 100 ng/ml TIMP‑3. MMP‑2 activity was inhibited by 10, 30 and 100 ng/ml TIMP‑3, and MMP‑9 activity was suppressed by 30 and 100 ng/ml TIMP‑3. The protein levels of secreted TNF‑α were reduced by 10, 30 and 100 ng/ml TIMP‑3. The present study demonstrated the ability of 30 and 100 ng/ml TIMP‑3 to attenuate migration and proliferation, and to inhibit the activity of MMP‑2, MMP‑9 and TNF‑α secretion of NA SMCs. In conclusion, TIMP‑3 may be considered a potential therapeutic drug for use in a novel drug‑eluting stent, to attenuate the progressive dilation of the aortic NA.
Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells
Boer, Elena F.; Howell, Elizabeth D.; Schilling, Thomas F.; Jette, Cicely A.; Stewart, Rodney A.
2015-01-01
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. PMID:25607881
Viscosity-dependent variations in the cell shape and swimming manner of Leptospira.
Takabe, Kyosuke; Tahara, Hajime; Islam, Md Shafiqul; Affroze, Samia; Kudo, Seishi; Nakamura, Shuichi
2017-02-01
Spirochaetes are spiral or flat-wave-shaped Gram-negative bacteria that have periplasmic flagella between the peptidoglycan layer and outer membrane. Rotation of the periplasmic flagella transforms the cell body shape periodically, allowing the cell to swim in aqueous environments. Because the virulence of motility-deficient mutants of pathogenic species is drastically attenuated, motility is thought to be an essential virulence factor in spirochaetes. However, it remains unknown how motility practically contributes to the infection process. We show here that the cell body configuration and motility of the zoonotic spirochaete Leptospira changes depending on the viscosity of the medium. Leptospira swim and reverse the swimming direction by transforming the cell body. Motility analysis showed that the frequency of cell shape transformation was increased by increasing the viscosity of the medium. The increased cell body transformation induced highly frequent reversal of the swimming direction. A simple kinetic model based on the experimental results shows that the viscosity-induced increase in reversal limits cell migration, resulting in the accumulation of cells in high-viscosity regions. This behaviour could facilitate the colonization of the spirochaete on host tissues covered with mucosa.
Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers
NASA Astrophysics Data System (ADS)
Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang
2016-03-01
Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.
Wall, Jack R.; Ryan, E. Ann
1980-01-01
Tests for the production of migration inhibitory factor by peripheral blood leukocytes in response to ubiquitous bacterial and fungal antigens were carried out in patients with untreated Graves' disease and in healthy control subjects. Dose-response studies, tests for the production of this factor after 72 hours' stimulation with phytohemagglutinin as a test for reserve, and tests before and after 24 hours' preculture to deplete suppressor cells were also performed in some patients. The antigens used were Candida, Trichophyton-Oidiomyces-Epidermophyton, mumps live attenuated virus and purified protein derivative of tuberculin. The production of migration inhibitory factor was measured by the agarose microdroplet method. The production of migration inhibitory factor in response to all the antigens except mumps virus was slightly greater in the patients than in the control subjects, although the differences were not significant. The dose-response characteristics and the production of migration inhibitory factor after stimulation with phytohemagglutinin were similar in the two groups. The production of migration inhibitory factor in response to suboptimal concentrations of Candida, Trichophyton-Oidiomyces-Epidermophyton and mumps virus was not enhanced in either group after 24 hours' preculture apart from a slight increase in response to mumps virus in the patients. These results fail to support the suggestion that patients with Graves' disease have a deficiency of suppressor cells. PMID:6446374
Shi, Hongxue; Cheng, Yi; Ye, Jingjing; Cai, Pingtao; Zhang, Jinjing; Li, Rui; Yang, Ying; Wang, Zhouguang; Zhang, Hongyu; Lin, Cai; Lu, Xianghong; Jiang, Liping; Hu, Aiping; Zhu, Xinbo; Zeng, Qiqiang; Fu, Xiaobing; Li, Xiaokun; Xiao, Jian
2015-01-01
Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways. PMID:26078726
Attenuation process of the longitudinal phonon mode in a TeO2 crystal in the 20-GHz range
NASA Astrophysics Data System (ADS)
Ohno, S.; Sonehara, T.; Tatsu, E.; Koreeda, A.; Saikan, S.
2017-06-01
We experimentally investigated the hypersonic attenuation process of a longitudinal mode (L-mode) sound wave in TeO2 from room temperature to a lower temperature using Brillouin scattering and impulsive stimulated thermal scattering (ISTS) measurements. For precise measurement of the Brillouin linewidth at low temperatures, whereby the mean free path of the phonon becomes longer than the sample length, it is indispensable that the phonon should propagate along the phonon-resonance direction. To figure out the suitable direction, we defined two indices characterizing a degree of phonon divergence and a purity of propagation direction. The best direction that we found from these indices is [110] direction in TeO2, and it was used to discuss the temperature and frequency dependences of Brillouin spectra. We extracted the temperature dependence of the attenuation rate of T4 from the modulated Brillouin spectra due to the phonon resonance below Debye temperature. The frequency dependence ω1 of the hypersonic attenuation was also estimated from the polarization dependence of the Brillouin linewidth. Theoretically, it predicted that the L-mode phonon attenuation at low temperatures in TeO2 is a result of Herring's process, which shows the attenuation behavior of ω2T3 . The ω1T4 dependence is not allowed in Herring's process but is allowed by the L +L →L process, which has been considered to be forbidden so far. We evaluated the thermal phonon lifetime using ISTS and established that it was finite even at 20 K, thereby allowing the L +L →L process. Therefore, we conclude that the L +L →L process dominates the attenuation of an L-mode phonon in TeO2 in the low-temperature region.
Shakir, M. Afaq; Gill, Jason S.; Lundquist, Erik A.
2006-01-01
Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration. PMID:16204220
Migration of magnetotactic bacteria in porous media.
Rismani Yazi, Saeed; Nosrati, Reza; Stevens, Corey A; Vogel, David; Escobedo, Carlos
2018-01-01
Magnetotactic bacteria (MTB) migrate in complex porous sediments where fluid flow is ubiquitous. Here, we demonstrate that magnetotaxis enables MTB to migrate effectively through porous micromodels. Directed MTB can circumvent curved obstacles by traveling along the boundaries and pass flat obstacles by repeatedly switching between forward and backward runs. Magnetotaxis enables directed motion of MTB through heterogeneous porous media, overcoming tortuous flow fields with local velocities as high as 250 μ m s -1 . Our findings bring new insights into the migration behaviour of MTB in their natural habitats and their potential in vivo applications as microbiorobots.
Magnetic Control of Lateral Migration of Ellipsoidal Microparticles in Microscale Flows
NASA Astrophysics Data System (ADS)
Zhou, Ran; Sobecki, Christopher A.; Zhang, Jie; Zhang, Yanzhi; Wang, Cheng
2017-08-01
Precise manipulations of nonspherical microparticles by shape have diverse applications in biology and biomedical engineering. Here, we study lateral migration of ellipsoidal paramagnetic microparticles in low-Reynolds-number flows under uniform magnetic fields. We show that magnetically induced torque alters the rotation dynamics of the particle and results in shape-dependent lateral migration. By adjusting the direction of the magnetic field, we demonstrate versatile control of the symmetric and asymmetric rotation of the particles, thereby controlling the direction of the particle's lateral migration. The particle rotations are experimentally measured, and their symmetry or asymmetry characteristics agree well with the prediction from a simple theory. The lateral migration mechanism is found to be valid for nonmagnetic particles suspended in a ferrofluid. Finally, we demonstrate shape-based sorting of microparticles by exploiting the proposed migration mechanism.
Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J
2017-01-01
During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned ‘ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials. PMID:27893712
Embryonic cell-cell adhesion: a key player in collective neural crest migration.
Barriga, Elias H; Mayor, Roberto
2015-01-01
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.
Nearshore sandbar rotation at single-barred embayed beaches
NASA Astrophysics Data System (ADS)
Blossier, B.; Bryan, K. R.; Daly, C. J.; Winter, C.
2016-04-01
The location of a shore-parallel nearshore sandbar derived from 7 years of video imagery data at the single-barred embayed Tairua Beach (NZ) is investigated to assess the contribution of barline rotation to the overall morphodynamics of sandbars in embayed environments and to characterize the process of rotation in relation to external conditions. Rotation induces cross-shore barline variations at the embayment extremities on the order of magnitude of those induced by alongshore uniform cross-shore migration of the bar. Two semiempirical models have been developed to relate the barline cross-shore migration and rotation to external wave forcing conditions. The rotation model is directly derived from the cross-shore migration model. Therefore, its formulation advocates for a primary role of cross-shore processes in the rotation of sandbars at embayed beaches. The orientation evolves toward an equilibrium angle directly related to the alongshore wave energy gradient due to two different mechanisms. Either the bar extremities migrate in opposite directions with no overall cross-shore bar migration (pivotal rotation) or the rotation relates to an overall migration of the barline which is not uniform along the beach (migration-driven rotation). Migration and rotation characteristic response times are similar, ranging from 10 to 30 days for mild and energetic wave conditions and above 200 days during very calm conditions or when the bar is located far offshore.
Chen, Xiao-Wen; Liu, Wen-Ting; Wang, Yu-Xian; Chen, Wen-Jing; Li, Hong-Yu; Chen, Yi-Hua; Du, Xiao-Yan; Peng, Fen-Fen; Zhou, Wei-Dong; Xu, Zhao-Zhong; Long, Hai-Bo
2016-07-01
The aim of this research was to investigate the effects of cyclopropanyldehydrocostunolide (also named LJ), a derivative of sesquiterpene lactones (SLs), on high glucose (HG)-induced podocyte injury and the associated molecular mechanisms. Differentiated mouse podocytes were incubated in different treatments. The migration and albumin filtration of podocytes were examined by Transwell filters. The protein and mRNA levels of MCP-1 were measured using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (q-PCR). Protein expression and phosphorylation were detected by western blot, and the nuclear translocation of NF-κB was performed with a confocal microscope. The gene expression of the receptor activator for NF-κB (RANK) was silenced by small interfering RNA (siRNA). Our results showed that HG enhanced migration, albumin filtration and MCP-1 expression in podocytes. At the molecular level, HG promoted the phosphorylation of NF-κB/p65, IKKβ, IκBα, mitogen-activated protein kinase (MAPK) and the nuclear translocation of p65. LJ reversed the effects of HG in a dose-dependent manner. Furthermore, our data provided the first demonstration that the receptor activator for NF-κB ligand (RANKL) and its cognate receptor RANK were overexpressed in HG-induced podocytes and were downregulated by LJ. RANK siRNA also attenuated HG-induced podocyte injury and markedly inhibited the activation of NF-κB and MAPK signaling pathways. LJ attenuates HG-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Miyahara, Takuya; Runge, Sara; Chatterjee, Anuran; Chen, Mian; Mottola, Giorgio; Fitzgerald, Jonathan M.; Serhan, Charles N.; Conte, Michael S.
2013-01-01
Recent evidence suggests that specialized lipid mediators derived from polyunsaturated fatty acids control resolution of inflammation, but little is known about resolution pathways in vascular injury. We sought to determine the actions of D-series resolvin (RvD) on vascular smooth muscle cell (VSMC) phenotype and vascular injury. Human VSMCs were treated with RvD1 and RvD2, and phenotype was assessed by proliferation, migration, monocyte adhesion, superoxide production, and gene expression assays. A rabbit model of arterial angioplasty with local delivery of RvD2 (10 nM vs. vehicle control) was employed to examine effects on vascular injury in vivo. Local generation of proresolving lipid mediators (LC-MS/MS) and expression of RvD receptors in the vessel wall were assessed. RvD1 and RvD2 produced dose-dependent inhibition of VSMC proliferation, migration, monocyte adhesion, superoxide production, and proinflammatory gene expression (IC50≈0.1–1 nM). In balloon-injured rabbit arteries, cell proliferation (51%) and leukocyte recruitment (41%) were reduced at 3 d, and neointimal hyperplasia was attenuated (29%) at 28 d by RvD2. We demonstrate endogenous biosynthesis of proresolving lipid mediators and expression of receptors for RvD1 in the artery wall. RvDs broadly reduce VSMC responses and modulate vascular injury, suggesting that local activation of resolution mechanisms expedites vascular homeostasis.—Miyahara, T., Runge, S., Chatterjee, A., Chen, M., Mottola, G., Fitzgerald, J. M., Serhan, C. N., Conte, M. S. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. PMID:23407709
Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.
2015-01-01
The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327
Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Min, Chang-Ki
2017-09-01
Human chronic graft-versus-host disease (GVHD) shares clinical characteristics with a murine sclerodermatous GVHD model that is characterized by skin thickening and lung fibrosis. A B10.D2 → BALB/c transplant model of sclerodermatous GVHD was used to address the therapeutic effect of mesenchymal stem cells (MSCs) on the development of chronic GVHD. The clinical and pathological severity of cutaneous sclerodermatous GVHD was significantly attenuated in MSC-treated recipients relative to sclerodermatous GVHD control subjects. After MSC treatment, skin collagen production was significantly reduced, with consistent down-regulation of Tgfb expression. Effects of MSCs on molecular markers implicated in persistent transforming growth factor-β signaling and fibrosis, such as PTEN, phosphorylated Smad-2/3, and matrix metalloproteinase-1, were observed in skin tissue. MSCs neither migrate to the skin nor affect the in vivo expansion of immune effector cells, but they inhibited the infiltration of immune effector cells into skin via down-regulation of CCR4 and CCR8 expression on CD4 + T cells and CCR1 on CD11b + monocyte/macrophages. MSCs diminished expression of chemokines such as CCL1, CCL3, CCL8, CCL17, and CCL22 in skin. MSCs were also dependent on stimulated splenocytes to suppress fibroblast proliferation. Our findings indicate that MSCs attenuate the cutaneous sclerodermatous GVHD by selectively blocking immune cell migration and down-regulating chemokines and chemokine receptors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Gros, Robert; Hussain, Yasin; Chorazyczewski, Jozef; Pickering, J Geoffrey; Ding, Qingming; Feldman, Ross D
2016-11-01
Estrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen's effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension. © 2016 American Heart Association, Inc.
Han, Liping; Zhao, Qingwei; Liang, Xianhong; Wang, Xiaoqing; Zhang, Zhen; Ma, Zhiguo; Zhao, Miaoqing; Wang, Aihua; Liu, Shuai
2017-07-11
Inhibition of Brd4 by JQ1 treatment showed potential in the treatment of glioma, however, some cases showed low sensitivity of JQ1. In addition, the pre-clinical analysis showed its limitation by demonstrating that transient treatment with JQ1 leads to aggressive tumor development. Thus, an improved understanding of the mechanisms underlying JQ1 is urgently required to design strategies to improve its efficiency, as well as overcome its limitation. HEXIM1 has been confirmed to have an important role in regulating JQ1 sensitivity. In our study, ubenimex, a classical anti-cancer drug showed potential in regulating the JQ1 sensitivity of glioma cells using the WST-1 proliferation assay. Further studies demonstrated that ubenimex inhibited autophagy and downregulated the autophagic degradation of HEXIM1. The role of HEXIM1 in regulating JQ1 sensitivity was verified by the HEXIM1 knockdown. Since ubenimex was verified as an Akt inhibitor, we further studied the role of Akt inhibition in regulating JQ1 sensitivity and migration of glioma cells. Data showed that ubenimex improved the efficiency of JQ1 treatment and suppressed migration both in the in vitro and in vivo xenografts models. The Akt agonist attenuated these effects, pointing to the role of Akt inhibition in JQ1 sensitivity and suppressed migration. Our findings suggest the potential of ubenimex adjuvant treatment to enhance JQ1 efficiency and attenuate parts of its side effect (enhancing tumor aggressive) by regulating the autophagic degradation of HEXIM1 and Akt inhibition.
Pos, Edwin; Guevara Andino, Juan Ernesto; Sabatier, Daniel; Molino, Jean-François; Pitman, Nigel; Mogollón, Hugo; Neill, David; Cerón, Carlos; Rivas-Torres, Gonzalo; Di Fiore, Anthony; Thomas, Raquel; Tirado, Milton; Young, Kenneth R; Wang, Ophelia; Sierra, Rodrigo; García-Villacorta, Roosevelt; Zagt, Roderick; Palacios Cuenca, Walter; Aulestia, Milton; Ter Steege, Hans
2017-06-01
With many sophisticated methods available for estimating migration, ecologists face the difficult decision of choosing for their specific line of work. Here we test and compare several methods, performing sanity and robustness tests, applying to large-scale data and discussing the results and interpretation. Five methods were selected to compare for their ability to estimate migration from spatially implicit and semi-explicit simulations based on three large-scale field datasets from South America (Guyana, Suriname, French Guiana and Ecuador). Space was incorporated semi-explicitly by a discrete probability mass function for local recruitment, migration from adjacent plots or from a metacommunity. Most methods were able to accurately estimate migration from spatially implicit simulations. For spatially semi-explicit simulations, estimation was shown to be the additive effect of migration from adjacent plots and the metacommunity. It was only accurate when migration from the metacommunity outweighed that of adjacent plots, discrimination, however, proved to be impossible. We show that migration should be considered more an approximation of the resemblance between communities and the summed regional species pool. Application of migration estimates to simulate field datasets did show reasonably good fits and indicated consistent differences between sets in comparison with earlier studies. We conclude that estimates of migration using these methods are more an approximation of the homogenization among local communities over time rather than a direct measurement of migration and hence have a direct relationship with beta diversity. As betadiversity is the result of many (non)-neutral processes, we have to admit that migration as estimated in a spatial explicit world encompasses not only direct migration but is an ecological aggregate of these processes. The parameter m of neutral models then appears more as an emerging property revealed by neutral theory instead of being an effective mechanistic parameter and spatially implicit models should be rejected as an approximation of forest dynamics.
The Fat-like Cadherin CDH-4 Acts Cell-Non-Autonomously in Anterior-Posterior Neuroblast Migration
Sundararajan, Lakshmi; Norris, Megan L.; Schöneich, Sebastian; Ackley, Brian D.; Lundquist, Erik A.
2014-01-01
Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In C. elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts. PMID:24954154
Zheng, Bingxin; Ren, Tingting; Huang, Yi; Guo, Wei
2018-01-08
The cure rate of osteosarcoma has not improved in the past 30 years. The new treatments and drugs is urgently needed, especially for metastatic osteosarcoma. Anti-angiogenesis therapy and immunotherapy has got promising anti-tumor effects in various tumors. It is hypothesised that combining checkpoint inhibitor immunotherapies with antiangiogenic treatment may have a synergistic effect and enhance the efficacy of both treatments. However, its underlying mechanism remain largely uninvestigated. To investigate the clinical significance of vascular endothelial growth factor receptor-2 (VEGFR2) and programmed death ligand-1 (PD-L1) in osteosarcoma, we analyzes their expression levels in 93 osteosarcoma specimens by immunohistochemistry. Meanwhile, we analyzes their correlation with the metastatic behavior and overall survival (OS). We also investigate the effects of Apatinib on migration and invasion of osteosarcoma cells and its underlying mechanism in vitro and in vivo. In our study, the positive rates of the VEGFR2 and PD-L1 expression are 64.5% (60/93) and 35.5% (33/93), respectively. A significant correlation is detected between VEGFR2 and PD-L1 expression (P = 0.009). Receiver-operating characteristic (ROC) curves analysis indicates the predictive value of the two markers in tumor metastasis, and both PD-L1 and VEGFR2 are negatively correlated with OS. Transwell assays reveals that VEGFR2 inhibition attenuates migration and invasion of osteosarcoma cells. Mechanistically, we demonstrate that Apatinib attenuates migration and invasion by suppressing epithelial-mesenchymal transition (EMT) and inactivating STAT3. Additionally, Apatinib reduces PD-L1 expression in osteosarcoma cells. Apatinib markedly weakens pulmonary metastatic potential of osteosarcoma in vivo. In conclusion, our study reveals a pro-metastatic functional mechanism for VEGFR2 in osteosarcoma. Furthermore, we demonstrate that Apatinib exerts anti-tumor effect not only through antiangiogenic effect, but also via suppressing immune escape, which may represent a potential therapeutic target for metastatic osteosarcoma. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsai, Yung-Chieh; Leu, Sy-Ying; Peng, Yi-Jen; Lee, Yen-Mei; Hsu, Chih-Hsiung; Chou, Shen-Chieh; Yen, Mao-Hsiung; Cheng, Pao-Yun
2017-03-01
Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health-promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle-related protein (cyclin D1 and p21) and matrix metalloproteinase-2 (MMP-2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)-stimulated A10 cells. In accordance with these finding, genistein decreased the leptin-stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin-induced expression of cyclin D1, and cyclin-dependent kinase inhibitor, p21. Genistein attenuated leptin-induced A10 cell migration by inhibiting MMP-2 activity. Furthermore, the leptin (0.25 mg/kg)-augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)-treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Direct Reconstruction of CT-Based Attenuation Correction Images for PET With Cluster-Based Penalties
NASA Astrophysics Data System (ADS)
Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Kinahan, Paul E.
2017-03-01
Extremely low-dose (LD) CT acquisitions used for PET attenuation correction have high levels of noise and potential bias artifacts due to photon starvation. This paper explores the use of a priori knowledge for iterative image reconstruction of the CT-based attenuation map. We investigate a maximum a posteriori framework with cluster-based multinomial penalty for direct iterative coordinate decent (dICD) reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction used a Poisson log-likelihood data fit term and evaluated two image penalty terms of spatial and mixture distributions. The spatial regularization is based on a quadratic penalty. For the mixture penalty, we assumed that the attenuation map may consist of four material clusters: air + background, lung, soft tissue, and bone. Using simulated noisy sinogram data, dICD reconstruction was performed with different strengths of the spatial and mixture penalties. The combined spatial and mixture penalties reduced the root mean squared error (RMSE) by roughly two times compared with a weighted least square and filtered backprojection reconstruction of CT images. The combined spatial and mixture penalties resulted in only slightly lower RMSE compared with a spatial quadratic penalty alone. For direct PET attenuation map reconstruction from ultra-LD CT acquisitions, the combination of spatial and mixture penalties offers regularization of both variance and bias and is a potential method to reconstruct attenuation maps with negligible patient dose. The presented results, using a best-case histogram suggest that the mixture penalty does not offer a substantive benefit over conventional quadratic regularization and diminishes enthusiasm for exploring future application of the mixture penalty.
Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T
1995-01-01
Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082
Ahn, Ji-Hye; Choi, Youn Seok; Choi, Jung-Hye
2015-10-01
Despite evidence that leptin may play a role in the pathogenesis of endometriosis, the specific function of leptin in the migration and invasion of endometriotic cells is not well characterized. In this study, we investigated the effect of leptin on the migration, invasion and matrix metalloproteinase (MMP) expression levels of human endometriotic cells. We found that leptin stimulated the migration and invasion of endometriotic cells (11Z, 12Z and 22B) in a dose-dependent manner. Leptin receptor (ObR) siRNA significantly inhibited the migration and invasion induced by leptin in 11Z and 12Z cells. Leptin-induced migration and invasion were significantly attenuated by pretreatment with SB-3CT, a specific gelatinase (MMP-2 and MMP-9) inhibitor. In addition, leptin-induced increases in the mRNA and protein expression and enzyme activity of MMP-2 in 11Z and 12Z cells. Selectively inhibiting MMP-2 using siRNA and an inhibitor (GM6003), impaired the ability of leptin to stimulate the migration and invasion of endometriotic cells, suggesting that MMP-2 plays an essential role in leptin-induced migration and invasion. Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) inhibitor (AG490) significantly inhibited the migration, invasion and MMP-2 expression induced by leptin in endometriotic cells. Furthermore, the Extracellular signal-Regulated Kinase inhibitor PD98059 neutralized the migration and invasion promoting effects of leptin. Taken together, these results suggest that leptin may contribute to the migration and invasion abilities of endometriotic cells via the up-regulation of MMP-2 through an ObR-dependent JAK2/STAT3 signaling pathway. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sero, Julia E.; Thodeti, Charles K.; Mammoto, Akiko; Bakal, Chris; Thomas, Sheila; Ingber, Donald E.
2011-01-01
Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices. PMID:22194823
Annexin A2 in Proliferative Vitreoretinopathy
2016-10-01
migrate in the presence of macrophages in an in vitro system. In addition, analysis of human retinal tissue from subjects undergoing ocular surgery... tissue from subjects undergoing ocular surgery for PVR reveals the presence of A2- immunoreactive cells that express both macrophage and RPE cell...greatly attenuated in the absence of annexin A2. Task 2: Macrophage depletion and tissue specific knockout. We have completed the characterization
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface (ER200422)
2008-01-01
discharge to surface water associated with groundwater leachate from coastal landfills, and (3) assessment of remedy effectiveness for treatment of...reduce contaminant concentrations to levels where natural attenuation (NA) and the phytoremediation plantation can effectively control the... phytoremediation plantation was established in March 2002. The in situ chemical oxidation (ISCO) system, which operated from March 2003 to October 2003, was
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation
Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-01-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-01-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-02-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF
2012-04-25
The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do notmore » appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.« less
Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki
2014-01-01
Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.
Sensing of substratum rigidity and directional migration by fast-crawling cells
NASA Astrophysics Data System (ADS)
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Sensing of substratum rigidity and directional migration by fast-crawling cells.
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Babona-Pilipos, Robart; Popovic, Milos R; Morshead, Cindi M
2012-10-13
The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations(1). In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF(2-3). We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab's techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists.
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2018-07-01
Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.
Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis
Abe, Kouki; Katsuno, Hiroko; Toriyama, Michinori; Baba, Kentarou; Mori, Tomoyuki; Hakoshima, Toshio; Kanemura, Yonehiro; Watanabe, Rikiya; Inagaki, Naoyuki
2018-01-01
Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia. PMID:29483251
Krasinets, E
1998-03-01
Two factors influence foreign migration balance of the Russian Federation. The first factor involves the migration process between Russia and former union republics. The influx of population to the Russian Federation from other republics of the former Soviet Union is considered as one of the largest in the world. The average annual migratory growth of Russia during the years 1991-94 as a result of this migration exchange has tripled as compared with 1986-90, with a total of 2.7 million Russians who migrated into Russia. However, from 1996 up to the present time, the number of persons arriving in Russia declined dramatically. Meanwhile, the second factor that determines the country's migration balance is emigration to the far abroad. The most significant trend in determining the development of internal migration in Russia is the outflow of population from northern and eastern regions. The directions of internal and external migratory flows have a large influence on the migration balance in Russia's rural areas. The reduction of migratory flows in rural areas is the direct result of processes in the economic sphere. It confirms the reconstruction of rural-urban migratory exchange.
Suetsugu, Shiro; Yamazaki, Daisuke; Kurisu, Shusaku; Takenawa, Tadaomi
2003-10-01
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.
Comments in reply: new directions in migration research.
Shaw, R P
1986-01-01
The author comments on a review of his recent book NEW DIRECTIONS IN MIGRATION RESEARCH and reflects on theory and model specification, problems of estimation and statistical inference, realities of temporal and spatial heterogeneity, choices of explanatory variables, and the importance of broader political issues in migration studies. A core hypothesis is that market forces have declined as influences on internal migration in Canada over the last 30 years. Theoretical underpinnings include declining relevance of wage considerations in the decision to migrate on the assumption that marginal utility of money diminishes and marginal utility of leisure increases as society becomes wealthier. The author perceives the human capital model to have limitations and is especially troubled by the "as if" clause--that all migrants behave "as if" they calculate benefits and risks with equal rigor. The author has "shadowed" and not quantified the costs involved. He implies that normative frameworks for future migration research and planning should be established.
Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.
Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami
2017-09-01
Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.
Direct observations of American eels migrating across the continental shelf to the Sargasso Sea
Béguer-Pon, Mélanie; Castonguay, Martin; Shan, Shiliang; Benchetrit, José; Dodson, Julian J.
2015-01-01
Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues. PMID:26505325
Zhu, Bangfu; Nicholls, Matthew; Gu, Yu; Zhang, Gaofeng; Zhao, Chao; Franklin, Robin J M; Song, Bing
2016-11-22
The guided migration of neural cells is essential for repair in the central nervous system (CNS). Oligodendrocyte progenitor cells (OPCs) will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs) are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.
Hargrove, Douglas L.
2004-09-14
A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.
Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez
2015-04-20
Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolution with Stochastic Fitness and Stochastic Migration
Rice, Sean H.; Papadopoulos, Anthony
2009-01-01
Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580
Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences.
Srygley, Robert B; Dudley, Robert
2008-07-01
Directed aerial displacement requires that a volant organism's airspeed exceeds ambient wind speed. For biologically relevant altitudes, wind speed increases exponentially with increased height above the ground. Thus, dispersal of most insects is influenced by atmospheric conditions. However, insects that fly close to the Earth's surface displace within the flight boundary layer where insect airspeeds are relatively high. Over the past 17 years, we have studied boundary-layer insects by following individuals as they migrate across the Caribbean Sea and the Panama Canal. Although most migrants evade either drought or cold, nymphalid and pierid butterflies migrate across Panama near the onset of the rainy season. Dragonflies of the genus Pantala migrate in October concurrently with frontal weather systems. Migrating the furthest and thereby being the most difficult to study, the diurnal moth Urania fulgens migrates between Central and South America. Migratory butterflies and dragonflies are capable of directed movement towards a preferred compass direction in variable winds, whereas the moths drift with winds over water. Butterflies orient using both global and local cues. Consistent with optimal migration theory, butterflies and dragonflies adjust their flight speeds in ways that maximize migratory distance traveled per unit fuel, whereas the moths do not. Moreover, only butterflies adjust their flight speed in relation to endogenous fat reserves. It is likely that these insects use optic flow to gauge their speed and drift, and thus must migrate where sufficient detail in the Earth's surface is visible to them. The abilities of butterflies and dragonflies to adjust their airspeed over water indicate sophisticated control and guidance systems pertaining to migration.
Li, Yaping; Xu, Tao; Chen, Xiaomei; Lin, Shin; Cho, Michael; Sun, Dong; Yang, Mengsu
2017-03-01
Tumor metastasis is the primary cause of cancer death. Numerous studies have demonstrated the electrotactic responses of various cancer cell types, and suggested its potential implications in metastasis. In this study, we used a microfluidic device to emulate endogenous direct current electric field (dcEF) environment, and studied the electrotactic migration of non-small cell lung cancer cell lines (H460, HCC827, H1299, and H1975) and the underlying mechanisms. These cell lines exhibited greatly different response in applied dcEFs (2-6 V/cm). While H460 cells (large cell carcinoma) showed slight migration toward cathode, H1299 cells (large cell carcinoma) showed increased motility and dcEF-dependent anodal migration with cell reorientation. H1975 cells (adenocarcinoma) showed dcEF-dependent cathodal migration with increased motility, and HCC827 cells (adenocarcinoma) responded positively in migration speed and reorientation but minimally in migrating directions to dcEF. Activation of MAPK and PI3K signaling pathways was found to be associated with the realignment and directed migration of lung cancer cells. In addition, both Ca 2+ influx through activated stretch-activated calcium channels (SACCs) (but not voltage-gated calcium channels, VGCCs) and Ca 2+ release from intracellular storage were involved in lung cancer cell electrotactic responses. The results demonstrated that the microfluidic device provided a stable and controllable microenvironment for cell electrotaxis study, and revealed that the electrotactic responses of lung cancer cells were heterogeneous and cell-type dependent, and multiple signals contributed to lung cancer cells electrotaxis.
Turning points in international labor migration: a case study of Thailand.
Vasuprasat, P
1994-01-01
"This article describes the dynamics of the structural transformation of the Thai economy, labor migration and direct foreign investment and proposes an econometric model to explain the migration phenomenon. Though migration shifts have been significantly influenced by political factors such as the Gulf crisis and tensions with Saudi Arabia, economic factors such as the Thai government's liberalization of markets and the expansion of trade and direct foreign investment have contributed to changes in labor market needs. The economic conditions of a shift from net exporter to net importer for labor are posited in the model. The empirical results reveal a turning point in labor migration from Thailand and also confirm the contribution of commodity export in place of labor export in creating employment and income." excerpt
FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.
Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A
2018-04-19
In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.
Viljakainen, Heli T; Ben-Shlomo, Yoav; Kinra, Sanjay; Ebrahim, Shah; Kuper, Hannah; Radhakrishna, K V; Kulkarni, Bharati; Tobias, Jon H
2015-01-01
Fracture risk is rising in countries undergoing rapid rural to urban migration, but whether this reflects an adverse effect of urbanization on intrinsic bone strength, as reflected by bone mineral density (BMD), is currently unknown. Lumbar spine (LS) and total hip (TH) BMD, and total body fat and lean mass, were obtained from DXA scans performed in the Hyderabad arm of the Indian Migration Study (54% male, mean age 49 years). Sib-pair comparisons were performed between rural-urban migrants (RUM) and rural non-migrated (RNM) siblings (N = 185 sib-pairs). In analyses adjusted for height, gender, age and occupation, rural to urban migration was associated with higher lumbar and hip BMD and greater predicted hip strength; ΔLS BMD 0.030 (0.005, 0.055) g/cm2, ΔTH BMD 0.044 (0.024; 0.064) g/cm2, Δcross-sectional moment of inertia 0.162 (0.036, 0.289) cm4. These differences were largely attenuated after adjusting for body composition, insulin levels and current lifestyle factors ie. years of smoking, alcohol consumption and moderate to vigorous physical activity. Further analyses suggested that differences in lean mass, and to a lesser extent fat mass, largely explained the BMD differences which we observed. Rural to urban migration as an adult is associated with higher BMD and greater predicted hip strength, reflecting associated alterations in body composition. It remains to be seen how differences in BMD between migration groups will translate into fracture risk in becoming years.
Silva, Rangel L; Castanheira, Fernanda V; Figueiredo, Jozi G; Bassi, Gabriel S; Ferreira, Sérgio H; Cunha, Fernando Q; Cunha, Thiago M; Kanashiro, Alexandre
2016-08-01
The aim of this study was to identify the effect of beta-adrenergic receptor activation on neutrophil migration in experimental peritonitis elucidating the neuroimmune components involved such as nicotinic receptors and the spleen. Mice pre-treated with mecamylamine (nicotinic antagonist) and propranolol (beta-adrenergic antagonist) or splenectomized animals were treated with isoproterenol (beta-adrenergic agonist) prior to intraperitoneal injection of carrageenan. After 4 h, the infiltrating neutrophils and the local cytokine/chemokine levels were evaluated in the peritoneal lavage. The effect of isoproterenol on neutrophil chemotaxis was investigated in a Boyden chamber. Isoproterenol inhibited neutrophil trafficking, reducing the cytokine/chemokine release and neutrophil chemotaxis. Surprisingly, the isoproterenol effect on neutrophil migration was totally reverted by splenectomy and mecamylamine pre-treatment. In contrast, the inhibitory effect of nicotine on neutrophil migration was abrogated only by splenectomy but not by propranolol pre-treatment. Collectively, our data show that beta-adrenergic receptor activation regulates the acute neutrophil recruitment via splenic nicotinic receptor.
Scaffolding protein Gab1 regulates myeloid dendritic cell migration in allergic asthma
Zhang, Yun; Xu, Yun; Liu, Shuwan; Guo, Xiaohong; Cen, Dong; Xu, Jiaqi; Li, Heyuan; Li, Kaijun; Zeng, Chunlai; Lu, Linrong; Zhou, Yiting; Shen, Huahao; Cheng, Hongqiang; Zhang, Xue; Ke, Yuehai
2016-01-01
Asthma is a common allergic disorder involving a complex interplay among multiple genetic and environmental factors. Recent studies identified genetic variants of human GAB1 as a novel asthma susceptibility factor. However, the functions of Gab1 in lung remain largely unexplored. In this study, we first observed an elevation of Gab1 level in peripheral blood mononuclear cells from asthmatic patients during acute exacerbation compared with convalescence. Mice with a selectively disrupted Gab1 in myeloid dendritic cells (mDCs) considerably attenuated allergic inflammation in experimental models of asthma. Further investigations revealed a prominent reduction in CCL19-mediated migration of Gab1-deficient mDCs to draining lymph nodes and subsequent impairment of Th2-driven adaptive activation. Mechanistically, Gab1 is an essential component of the CCL19/CCR7 chemokine axis that regulates mDC migration during asthmatic responses. Together, these findings provide the first evidence for the roles of Gab1 in lung, giving us deeper understanding of asthmatic pathogenesis. PMID:27811945
Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua
2016-01-01
Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181
Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.
Merle, B; Durussel, L; Delmas, P D; Clézardin, P
1999-12-01
Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance effect exerted by its glycosaminoglycan side chains. Copyright 1999 Wiley-Liss, Inc.
Eganhouse, R.P.; Cozzarelli, I.M.; Scholl, M.A.; Matthews, L.L.
2001-01-01
More than 70 individual VOCs were identified in the leachate plume of a closed municipal landfill. Concentrations were low when compared with data published for other landfills, and total VOCs accounted for less than 0.1% of the total dissolved organic carbon. The VOC concentrations in the core of the anoxic leachate plume are variable, but in all cases they were found to be near or below detection limits within 200 m of the landfall. In contrast to the VOCs, the distributions of chloride ion, a conservative tracer, and nonvolatile dissolved organic carbon, indicate little dilution over the same distance. Thus, natural attentuation processes are effectively limiting migration of the VOC plume. The distribution of C2-3-benzenes, paired on the basis of their octanol-water partition coefficients and Henry's law constants, were systematically evaluated to assess the relative importance of volatilization, sorption, and biodegradation as attenuation mechanisms. Based on our data, biodegradation appears to be the process primarily responsible for the observed attenuation of VOCs at this site. We believe that the alkylbenzenes are powerful process probes that can and should be exploited in studies of natural attenuation in contaminated ground water systems.
Isgrò, M; Bianchetti, L; Marini, M A; Bellini, A; Schmidt, M; Mattoli, S
2013-07-01
The C-C motif chemokine ligand 5 (CCL5), CCL11, and CCL24 are involved in the pathogenesis of asthma, and their function is mainly associated with the airway recruitment of eosinophils. This study tested their ability to induce the migration of circulating fibrocytes, which may contribute to the development of irreversible airflow obstruction in severe asthma. The sputum fluid phase (SFP) from patients with severe/treatment-refractory asthma (PwSA) contained elevated concentrations of CCL5, CCL11, and CCL24 in comparison with the SFP from patients with non-severe/treatment-responsive asthma (PwNSA). The circulating fibrocytes from PwSA expressed the receptors for these chemokines at increased levels and migrated in response to recombinant CCL5, CCL11, and CCL24. The SFP from PwSA induced the migration of autologous fibrocytes, and its activity was significantly attenuated by neutralization of endogenous CCL5, CCL11, and CCL24. These findings suggest that CCL5, CCL11, and CCL24 may contribute to the airway recruitment of fibrocytes in severe asthma.
Chang, Yung-Ming; Shih, Ying-Ting; Chen, Yueh-Sheng; Liu, Chien-Liang; Fang, Wen-Kuei; Tsai, Chang-Hai; Tsai, Fuu-Jen; Kuo, Wei-Wen; Lai, Tung-Yuan; Huang, Chih-Yang
2011-01-01
The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-, MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration. PMID:19808845
NASA Astrophysics Data System (ADS)
Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.
2015-12-01
Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675707.
PDGF-A suppresses contact inhibition during directional collective cell migration.
Nagel, Martina; Winklbauer, Rudolf
2018-06-08
The leading edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase-1 upstream and ephrinB1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass. © 2018. Published by The Company of Biologists Ltd.
Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion.
Li, Yupei; Galileo, Deni S
2010-09-15
Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion. We found L1 expression levels were correlated with breast cancer stage of progression in established data sets of clinical samples, and also were high in more metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-435, but low in less migratory MDA-MB-468 cells. Proteolysis of L1 into its soluble form (sL1) was detected in cell culture medium from all three above cell lines, and can be induced by PMA activation. Over-expression of the L1 ectodomain in MDA-MB-468 cells by using a lentiviral vector greatly increased the amount of sL1 released by those cells. Concomitantly, cell adhesion to extracellular matrix and cell transmigration ability were significantly promoted, while cell invasion ability through Matrigel™ remained unaffected. On the other hand, attenuating L1 expression in MDA-MB-231 cells by using a shRNA lentiviral vector resulted in reduced cell-matrix adhesion and transmigration. Similar effects were also shown by monoclonal antibody blocking of the L1 extracellular region. Moreover, sL1 in conditioned cell culture medium induced a directional migration of MDA-MB-468 cells, which could be neutralized by antibody treatment. Our data provides new evidence for the function of L1CAM and its soluble form in promoting cancer cell adhesion to ECM and cell migration. Thus, L1CAM is validated further to be a potential early diagnostic marker in breast cancer progression and a target for breast cancer therapy.
Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion
2010-01-01
Background Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion. Results We found L1 expression levels were correlated with breast cancer stage of progression in established data sets of clinical samples, and also were high in more metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-435, but low in less migratory MDA-MB-468 cells. Proteolysis of L1 into its soluble form (sL1) was detected in cell culture medium from all three above cell lines, and can be induced by PMA activation. Over-expression of the L1 ectodomain in MDA-MB-468 cells by using a lentiviral vector greatly increased the amount of sL1 released by those cells. Concomitantly, cell adhesion to extracellular matrix and cell transmigration ability were significantly promoted, while cell invasion ability through Matrigel™ remained unaffected. On the other hand, attenuating L1 expression in MDA-MB-231 cells by using a shRNA lentiviral vector resulted in reduced cell-matrix adhesion and transmigration. Similar effects were also shown by monoclonal antibody blocking of the L1 extracellular region. Moreover, sL1 in conditioned cell culture medium induced a directional migration of MDA-MB-468 cells, which could be neutralized by antibody treatment. Conclusions Our data provides new evidence for the function of L1CAM and its soluble form in promoting cancer cell adhesion to ECM and cell migration. Thus, L1CAM is validated further to be a potential early diagnostic marker in breast cancer progression and a target for breast cancer therapy. PMID:20840789
Kaneda, Munehisa; Obara, Hideaki; Suzuki, Keiichi; Takeuchi, Osamu; Takizawa, Asako; Osaku, Masayoshi; Matsubara, Hajime; Kitagawa, Yuko
2017-04-01
Numerous studies have investigated the mechanism of the antitumor effect of tranilast, well known as an antiallergic drug. Herein, we investigated the mechanism of the antitumor effects of tranilast using murine PAN 02 cell line. In an allograft mouse model, the number of metastatic sites in the liver was counted. Wound healing and chemoinvasion assay were performed to evaluate migration and invasive ability of PAN 02, respectively. Activities of matrix metalloproteinases (MMPs) were evaluated by gelatin zymography. The expression of cofactors in the activation of MMP-2 was assessed by immunohistochemical staining at the front of metastasis. The number of metastatic sites was reduced in tranilast-treated groups. Migration ability and tumor invasiveness were significantly inhibited by tranilast in a dose-dependent manner. Gelatin zymography revealed inhibition of MMP-2 activity. Immunohistochemical staining showed remarkable attenuation of tissue inhibitor of metalloproteinase (TIMP-) 2 expression in tranilast-treated groups. Tissue inhibitor of metalloproteinase 2 is necessary for MMP-2 activation with interaction between membrane type 1-MMP and proMMP-2. These results suggested that tranilast may inhibit MMP-2 activation through attenuating TIMP-2 expression, resulting in inhibition of tumor invasion and metastasis. Our results showed possibility of tranilast in clinical application for novel cancer therapy.
Secure communications with low-orbit spacecraft using quantum cryptography
Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Luther, Gabriel G.; Morgan, George L; Nordholt, Jane E.; Peterson, Charles G.; Simmons, Charles M.
1999-01-01
Apparatus and method for secure communication between an earth station and spacecraft. A laser outputs single pulses that are split into preceding bright pulses and delayed attenuated pulses, and polarized. A Pockels cell changes the polarization of the polarized delayed attenuated pulses according to a string of random numbers, a first polarization representing a "1," and a second polarization representing a "0." At the receiving station, a beamsplitter randomly directs the preceding bright pulses and the polarized delayed attenuated pulses onto longer and shorter paths, both terminating in a beamsplitter which directs the preceding bright pulses and a first portion of the polarized delayed attenuated pulses to a first detector, and a second portion of the polarized delayed attenuated pulses to a second detector to generate a key for secure communication between the earth station and the spacecraft.
E-cadherin is required for cranial neural crest migration in Xenopus laevis.
Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin
2016-03-15
The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E
2013-01-01
Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.
Geological considerations in hazardouswaste disposal
NASA Astrophysics Data System (ADS)
Cartwright, K.; Gilkeson, R. H.; Johnson, T. M.
1981-12-01
Present regulations assume that long-term isolation of hazardous wastes — including toxic chemical, biological, radioactive, flammable and explosive wastes — may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal.
Geological considerations in hazardouswaste disposal
Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.
1981-01-01
Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.
Sun, Zhen; Gou, Wenyu; Kim, Do-Sung; Dong, Xiao; Strange, Charlie; Tan, Yu; Adams, David B; Wang, Hongjun
2017-11-01
The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 10 5 or 1 × 10 6 GFP + ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP + ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP + ASCs migrated to pancreas and differentiated into amylase + cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase + cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Zhang, Jianglin; Lei, Zhou; Huang, Zunnan; Zhang, Xu; Zhou, Youyou; Luo, Zhongling; Zeng, Weiqi; Su, Juan; Peng, Cong; Chen, Xiang
2016-11-29
TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma.
State policies and internal migration in Asia.
Oberai, A S
1981-01-01
The objective of this discussion is to identify policies and programs in Asia that are explicitly or implicitly designed to influence migration, to investigate why they were adopted and how far they have actually been implemented, and to assess their direct and indirect consequences. For study purposes, policies and programs are classified according to whether they prohibit or reverse migration, redirect or channel migration to specific rural or urban locations, reduce the total volume of migration, or encourage or discourage urban in-migration. Discussion of each type of policy is accompanied by a description of its rationale and implementation mechanism, examples of countries in Asia that have recourse to it, and its intended or actual effect on migration. Several countries in Asia have taken direct measures to reverse the flow of migration and to stop or discourage migration to urban areas. These measures have included administrative and legal controls, police registration, and direct "rustication" programs to remove urban inhabitants to the countryside. The availability of public land has prompted many Asian countries to adopt schemes that have been labeled resettlement, transmigration, colonization, or land development. These schemes have been designed to realize 1 or more of the following objectives: to provide land and income to the landless; increase agricultural production; correct spatial imbalances in the distribution of population; or exploit frontier lands for reasons of national security. 1 of the basic goals of decentralized industrialization and regional development policies has been the reduction of interregional disparities and the redirection of migrations from large metropolitan areas to smaller and medium sized towns. To encourage industry to move to small urban locations initial infrastructure investments, tax benefits, and other incentives have been offered. Policies to reduce the overall volume of migration have frequently included rural development programs, the primary purpose of which is to retain potential migrants in the rural areas, and preferential policies for natives with a view toward discouraging interregional migration. The explicit goal of rural development strategies is often to slow rural-urban migration. Slowly the attitude towards migrant squatters and slum dwellers is changing from punitive to more tolerant. Several measures have been taken to accommodate migrants in urban areas and to promote their welfare.
miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B.
Sun, Feng; Yu, Mengchao; Yu, Jing; Liu, Zhijian; Zhou, Xinyan; Liu, Yanqing; Ge, Xiaolong; Gao, Haidong; Li, Mei; Jiang, Xiaohong; Liu, Song; Chen, Xi; Guan, Wenxian
2018-05-09
Gastric cancer (GC) is one of the most common malignant tumors and peritoneal metastasis is the primary cause for advanced GC's mortality. Protein-tyrosine phosphatase 1B (PTP1B) functions as an oncogene and involves in carcinogenesis and cancer dissemination. However, the function and regulation of PTP1B in GC remain poorly understood. In this study, we found that PTP1B was upregulated in GC tissues and overexpression of PTP1B in vitro promoted cell migration and prevented apoptosis. Then, we predicted that PTP1B was a target of miR-338-3p and we revealed an inverse correlation between miR-338-3p levels and PTP1B protein levels in GC tissues. Next, we verified that PTP1B was inhibited by miR-338-3p via direct targeting to its 3'-untranslated regions. Moreover, overexpression of miR-338-3p in vitro attenuated GC cell migration and promoted apoptosis, and these effects could be partially reversed by reintroduction of PTP1B. Finally, we established an orthotopic xenograft model and a peritoneal dissemination model of GC to demonstrate that miR-338-3p restrained tumor growth and dissemination in vivo by targeting PTP1B. Taken together, our results highlight that PTP1B is an oncogene and is negatively regulated by miR-338-3p in GC, which may provide new insights into novel molecular therapeutic targets for GC.
She, Qing-Bai
2014-01-01
The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epithelial-mesenchymal transition (EMT), which is associated with selective upregulation of the EMT inducer Snail followed by repression of E-cadherin expression and promotion of cell migratory and invasive capabilities as well as metastasis. Conversely, inhibition of cap-dependent translation by a dominant active mutant 4E-BP1 effectively downregulates Snail expression and suppresses cell migration and invasion. Furthermore, dephosphorylation of 4E-BP1 by mTORC1 inhibition or directly targeting the translation initiation also profoundly attenuates Snail expression and cell motility, whereas knockdown of 4E-BP1 or overexpression of Snail significantly rescues the inhibitory effects. Importantly, 4E-BP1-regulated Snail expression is not associated with its changes in the level of transcription or protein stability. Together, these findings indicate a novel role of 4E-BP1 in the regulation of EMT and cell motility through translational control of Snail expression and activity, and suggest that targeting cap-dependent translation may provide a promising approach for blocking Snail-mediated metastatic potential of cancer. PMID:24970798
Reverse time migration in tilted transversely isotropic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael
2004-07-01
This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength inmore » the vertical direction and 1.5 wavelength in the lateral direction.« less
The activation of directional stem cell motility by green light-emitting diode irradiation.
Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun
2013-03-01
Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
New directions for migration policy in Europe.
Laczko, Frank
2002-01-01
There is a growing debate about the future direction of migration policy in Europe. After nearly 30 years of pursuing restrictive immigration and asylum policies, many European Union (EU) governments are beginning to re-assess their migration policies and to call for a new approach. For the first time in many years, several EU governments have begun to talk again about the benefits of labour migration and, even more significantly, have even begun to take action to recruit more migrants, especially skilled workers. This paper looks at the background to current calls for a new approach to migration in Europe and public reaction to these new initiatives. It first describes recent trends in migration in Europe and then briefly considers the demographic case for more migration. This is followed by a brief outline of some of the measures being considered by European governments to promote selective labour migration. The remainder of the paper is devoted to a discussion of some of the implications of this change in policy, focusing on two main issues: the likely consequences for sending countries, and the implications for the fight against the smuggling and trafficking of people. PMID:12028795
2013-01-01
Introduction A feature which makes stem cells promising candidates for cell therapy is their ability to migrate effectively into damaged or diseased tissues. Recent reports demonstrated the increased motility of human mesenchymal stem cells (hMSC) grown under hypoxic conditions compared to normoxic cells. However, the directional migration of hMSC cultured in hypoxia has not been investigated. In this study we examined the in vitro transmembrane migration of hMSC permanently cultured in hypoxia in response to various cytokines. We also studied the involvement of RhoA, a molecule believed to play an essential role in the migration of MSC via reorganization of the cytoskeleton. Methods We compared the directional migration of human hMSCs grown permanently under normal (21%, normoxic) and low O2 (5%, hypoxic) conditions until passage 4 using an in vitro transmembrane migration assay. A series of 17 cytokines was used to induce chemotaxis. We also compared the level of GTP-bound RhoA in the cell extracts of calpeptin-activated hypoxic and normoxic hMSC. Results We found that hMSC cultured in hypoxia demonstrate markedly higher targeted migration activity compared to normoxic cells, particularly towards wound healing cytokines, including those found in ischemic and myocardial infarction. We also demonstrated for the first time that hMSC are dramatically more sensitive to activation of RhoA. Conclusions The results of this study indicate that high directional migration of hMSCs permanently grown in hypoxia is associated with the enhanced activation of RhoA. The enhanced migratory capacity of hypoxic hMSC would further suggest their potential advantages for clinical applications. PMID:23295150
Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew
2016-01-01
The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616
Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew
2016-01-01
The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.
Sirinian, Chaido; Papanastasiou, Anastasios D; Schizas, Michail; Spella, Magda; Stathopoulos, Georgios T; Repanti, Maria; Zarkadis, Ioannis K; King, Tari A; Kalofonos, Haralabos P
2018-05-29
The RANK/RANKL axis emerges as a key regulator of breast cancer initiation, progression, and metastasis. RANK-c is a RANK receptor isoform produced through alternative splicing of the TNFRSF11A (RANK) gene and a dominant-negative regulator of RANK-induced nuclear factor-κB (NF-κB) activation. Here we report that RANK-c transcript is expressed in 3.2% of cases in The Cancer Genome Atlas breast cancer cohort evenly between ER-positive and ER-negative cases. Nevertheless, the ratio of RANK to RANK-c (RANK/RANK-c) is increased in ER-negative breast cancer cell lines compared to ER-positive breast cancer cell lines. In addition, forced expression of RANK-c in ER-negative breast cancer cell lines inhibited stimuli-induced NF-κB activation and attenuated migration, invasion, colony formation, and adhesion of cancer cells. Further, RANK-c expression in MDA-MB-231 cells inhibited lung metastasis and colonization in vivo. The RANK-c-mediated inhibition of cancer cell aggressiveness and nuclear factor-κB (NF-κB) activation in breast cancer cells seems to rely on a RANK-c/TNF receptor-associated factor-2 (TRAF2) protein interaction. This was further confirmed by a mutated RANK-c that is unable to interact with TRAF2 and abolishes the ability to attenuate NF-κB activation, migration, and invasion. Additional protein interaction characterization revealed epidermal growth factor receptor (EGFR) as a novel interacting partner for RANK-c in breast cancer cells with a negative effect on EGFR phosphorylation and EGF-dependent downstream signaling pathway activation. Our findings further elucidate the complex molecular biology of the RANKL/RANK system in breast cancer and provide preliminary data for RANK-c as a possible marker for disease progression and aggressiveness.
Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension
Tang, Haiyang; Chen, Jiwang; Fraidenburg, Dustin R.; Song, Shanshan; Sysol, Justin R.; Drennan, Abigail R.; Offermanns, Stefan; Ye, Richard D.; Bonini, Marcelo G.; Minshall, Richard D.; Garcia, Joe G. N.; Machado, Roberto F.; Makino, Ayako
2014-01-01
Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1–3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1−/− mice were protected against the development and progression of chronic HPH, whereas Akt2−/− mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1−/− mice, with no significant effect noted in the Akt2−/− mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension. PMID:25416384
Millimeter wave attenuation prediction using a piecewise uniform rain rate model
NASA Technical Reports Server (NTRS)
Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.
1980-01-01
A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.
Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen
2012-11-01
Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.
Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.
2012-01-01
Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768
Controlled Source 4D Seismic Imaging
NASA Astrophysics Data System (ADS)
Luo, Y.; Morency, C.; Tromp, J.
2009-12-01
Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.
Gill, Robert E.; Piersma, Theunis; Hufford, Gary; Servranckx, R.; Riegen, Adrian C.
2005-01-01
Populations of the Bar-tailed Godwit (Limosa lapponica; Scolopacidae) embark on some of the longest migrations known among birds. The baueri race breeds in westernAlaska and spends the nonbreeding season a hemisphere away inNew Zealand and eastern Australia; the menzbieri race breeds in Siberia and migrates to western and northern Australia. Although the Siberian birds are known to follow the coast of Asia during both migrations, the southern pathway followed by the Alaskabreeders has remained unknown. Two questions have particularecological importance: (1) do Alaska godwits migrate directly across the Pacific, a distance of 11 000 km? and (2) are they capable of doing this in a single flight without stopping to rest or refuel? We explored six lines of evidence to answer these questions. The distribution of resightings of marked birds of the baueri and menzbieri races was significantly different between northward and southward flights with virtually no marked baueri resighted along the Asian mainland during southward migration. The timing of southward migration of the two races further indicates the absence of a coastal Asia route by baueri with peak passage of godwits in general occurring there a month prior to the departure of most birds from Alaska. The use of a direct route across the Pacific is also supported by significantly more records of godwits reported from within a direct migration corridor than elsewhere in Oceania, and during the September to November period than at other times of the year. The annual but rare occurrence of Hudsonian Godwits (L. haemastica) in New Zealand and the absence of their records along the Asian mainland also support a direct flight and are best explained by Hudsonian Godwits accompanying Bar-tailed Godwits from known communal staging areas in Alaska. Flight simulation models, extreme fat loads, and the apparent evolution of a wind-selected migration from Alaska further support a direct, nonstop flight.
Wynn, Michelle L.; Kulesa, Paul M.; Schnell, Santiago
2012-01-01
Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell–cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell–cell contact. PMID:22219399
An observation related to directional attenuation of SKS waves propagating in anisotropic media
NASA Astrophysics Data System (ADS)
Zhao, Liang; Xue, Mei
2015-04-01
Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a tilting symmetrical axis. This observed behavior of the SKS wave may arise from the combined effects of frequency-dependent attenuation anisotropy and small-scale heterogeneities in the crust and the upper mantle.
Direct Measurement of Intracellular Pressure
Petrie, Ryan J.; Koo, Hyun
2014-01-01
A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836
Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.
2005-01-01
Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide fish into one of two channels in the raceway, and subsequently cause them to pass disproportionately over the weir where turbulent cues were aimed (guidance experiment). Last, we measured and mapped water velocity and turbulence during the experiments to understand water movement patterns and the spatial distribution of turbulence in the raceways.
Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P
2008-04-08
Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.
NASA Astrophysics Data System (ADS)
Norris, R.; Miller, N.; Wassenaar, L.; Hobson, K.
2010-12-01
Each spring, millions of monarch butterflies (Danaus plexippus) migrate up to 3000 km from central Mexico to re-colonize eastern North America. However, despite centuries of research, the patterns of re-colonization are not well understood. We combined stable-hydrogen (δD) and -carbon (δ13C) isotope measurements with demographic models to test (1) whether individuals sampled in the northern part of the breeding range in the Great Lakes originate directly from Mexico or are second generation individuals born in the southern US and (2) to estimate whether populations on the eastern seaboard migrate longitudinally over the Appalachians or originate directly from the Gulf Coast. In the Great Lakes, we found that the majority of individuals were second-generation monarchs born in the Gulf Coast and Central regions of the US. However, 25% individuals originated directly from Mexico and we estimated that these individuals produced the majority of offspring born in the Great Lakes region during June. On the eastern seaboard, we found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing the first direct evidence that second generation monarchs born in June complete a (trans-) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results demonstrate how stable isotopes, when combined with ecological data, can provide insights into patterns of connectivity in migratory insects that have been impossible to test using conventional techniques. The migration patterns presented here have important implications for predicting future changes in population size and for developing effective conservation plans for this species.
Day-Lewis, Frederick D.; Lane, John W.; Harris, Jerry M.; Gorelick, Steven M.
2003-01-01
Accurate characterization of fractured‐rock aquifer heterogeneity remains one of the most challenging and important problems in groundwater hydrology. We demonstrate a promising strategy to identify preferential flow paths in fractured rock using a combination of geophysical monitoring and conventional hydrogeologic tests. Cross‐well difference‐attenuation ground‐penetrating radar was used to monitor saline‐tracer migration in an experiment at the U.S. Geological Survey Fractured Rock Hydrology Research Site in Grafton County, New Hampshire. Radar data sets were collected every 10 min in three adjoining planes for 5 hours during each of 12 tracer tests. An innovative inversion method accounts for data acquisition times and temporal changes in attenuation during data collection. The inverse algorithm minimizes a combination of two functions. The first is the sum of weighted squared data residuals. Second is a measure of solution complexity based on an a priori space‐time covariance function, subject to constraints that limit radar‐attenuation changes to regions of the tomograms traversed by high difference‐attenuation ray paths. The time series of tomograms indicate relative tracer concentrations and tracer arrival times in the image planes; from these we infer the presence and location of a preferential flow path within a previously identified zone of transmissive fractures. These results provide new insights into solute channeling and the nature of aquifer heterogeneity at the site.
Memory, not just perception, plays an important role in terrestrial mammalian migration
Mueller, Thomas
2017-01-01
One of the key questions regarding the underlying mechanisms of mammalian land migrations is how animals select where to go. Most studies assume perception of resources as the navigational mechanism. The possible role of memory that would allow forecasting conditions at distant locations and times based on information about environmental conditions from previous years has been little studied. We study migrating zebra in Botswana using an individual-based simulation model, where perceptually guided individuals use currently sensed resources at different perceptual ranges, while memory-guided individuals use long-term averages of past resources to forecast future conditions. We compare simulated individuals guided by perception or memory on resource landscapes of remotely sensed vegetation data to trajectories of GPS-tagged zebras. Our results show that memory provides a clear signal that best directs migrants to their destination compared to perception at even the largest perceptual ranges. Zebras modelled with memory arrived two to four times, or up to 100 km, closer to the migration destination than those using perception. We suggest that memory in addition to perception is important for directing ungulate migration. Furthermore, our findings are important for the conservation of migratory mammals, as memory informing direction suggests migration routes could be relatively inflexible. PMID:28539516
Memory, not just perception, plays an important role in terrestrial mammalian migration.
Bracis, Chloe; Mueller, Thomas
2017-05-31
One of the key questions regarding the underlying mechanisms of mammalian land migrations is how animals select where to go. Most studies assume perception of resources as the navigational mechanism. The possible role of memory that would allow forecasting conditions at distant locations and times based on information about environmental conditions from previous years has been little studied. We study migrating zebra in Botswana using an individual-based simulation model, where perceptually guided individuals use currently sensed resources at different perceptual ranges, while memory-guided individuals use long-term averages of past resources to forecast future conditions. We compare simulated individuals guided by perception or memory on resource landscapes of remotely sensed vegetation data to trajectories of GPS-tagged zebras. Our results show that memory provides a clear signal that best directs migrants to their destination compared to perception at even the largest perceptual ranges. Zebras modelled with memory arrived two to four times, or up to 100 km, closer to the migration destination than those using perception. We suggest that memory in addition to perception is important for directing ungulate migration. Furthermore, our findings are important for the conservation of migratory mammals, as memory informing direction suggests migration routes could be relatively inflexible. © 2017 The Author(s).
Wang, Shujie; Watanabe, Takashi; Matsuzawa, Kenji; Katsumi, Akira; Kakeno, Mai; Matsui, Toshinori; Ye, Feng; Sato, Kazuhide; Murase, Kiyoko; Sugiyama, Ikuko; Kimura, Kazushi; Mizoguchi, Akira; Ginsberg, Mark H.; Collard, John G.
2012-01-01
Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration. PMID:23071154
Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.
2016-01-01
Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169
Interstitial flow influences direction of tumor cell migration through competing mechanisms
Polacheck, William J.; Charest, Joseph L.; Kamm, Roger D.
2011-01-01
Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526–538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease. PMID:21690404
Eskin, Julian A.; Jaiswal, Richa
2017-01-01
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT–actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration. PMID:28663347
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2009-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. 2008 Wiley-Liss, Inc.
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2008-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate upregulates Stromal cell-Derived Factor-1 (SDF1) and Angiopoietin 1 (Ang1) in the ischemic brain and their, respective, receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and 24 hours later DETA-NONOate (0.4 mg/kg) or phosphate buffered solution were intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate induced SVZ migration after stroke, SDF1α, Ang1 peptide and a specific antagonist of CXCR4 (AMD3100) and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percent area of doublecortin (a marker of migrating neuroblasts) immunoreactive-cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and upregulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo alone animals. In vitro, SDF1α and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate induced SVZ cell migration. Our data indicated that treatment of stroke with a nitric oxide donor upregulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. PMID:18711749
Findlay, A M
1985-11-01
"The author investigates how trends in international labour migration in the Arab world have been paralleled by new directions in migration research....[She] seeks to evaluate why the urban impact of international migration is so great and outlines the considerable potential which exists for pursuing research on this aspect of urban development." excerpt
Grieco, E M
1998-01-01
"This article focuses on how migration auspices affect the formation of migrant networks and ethnic communities. Using ethnographic data and migration histories to focus on caste ¿reformation' in the subcommunities of the Indians of Fiji, the ability to reestablish and maintain subcaste group ¿extensions' in Fiji is shown as directly related to the migration auspices that originally established the community. By determining the characteristics of migrants, the reason for migrating, and the magnitude and duration of migration streams, migration auspices define a migration type. This migration type affects the strength and density of social ties present in migration streams. It also affects the strength and density of network ties that members of a migrant community can establish in a receiving society." excerpt
Modeling Contamination Migration on the Chandra X-ray Observatory II
NASA Technical Reports Server (NTRS)
O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey
2013-01-01
During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.
Inertial migration of deformable droplets in a microchannel
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Xue, Chundong; Zhang, Li; Hu, Guoqing; Jiang, Xingyu; Sun, Jiashu
2014-11-01
The microfluidic inertial effect is an effective way of focusing and sorting droplets suspended in a carrier fluid in microchannels. To understand the flow dynamics of microscale droplet migration, we conduct numerical simulations on the droplet motion and deformation in a straight microchannel. The results are compared with preliminary experiments and theoretical analysis. In contrast to most existing literature, the present simulations are three-dimensional and full length in the streamwise direction and consider the confinement effects for a rectangular cross section. To thoroughly examine the effect of the velocity distribution, the release positions of single droplets are varied in a quarter of the channel cross section based on the geometrical symmetries. The migration dynamics and equilibrium positions of the droplets are obtained for different fluid velocities and droplet sizes. Droplets with diameters larger than half of the channel height migrate to the centerline in the height direction and two equilibrium positions are observed between the centerline and the wall in the width direction. In addition to the well-known Segré-Silberberg equilibrium positions, new equilibrium positions closer to the centerline are observed. This finding is validated by preliminary experiments that are designed to introduce droplets at different initial lateral positions. Small droplets also migrate to two equilibrium positions in the quarter of the channel cross section, but the coordinates in the width direction are between the centerline and the wall. The equilibrium positions move toward the centerlines with increasing Reynolds number due to increasing deformations of the droplets. The distributions of the lift forces, angular velocities, and the deformation parameters of droplets along the two confinement direction are investigated in detail. Comparisons are made with theoretical predictions to determine the fundamentals of droplet migration in microchannels. In addition, existence of the inner equilibrium position is linked to the quartic velocity distribution in the width direction through a simple model for the slip angular velocities of droplets.
Seasonal effects of wind conditions on migration patterns of soaring American white pelican.
Gutierrez Illan, Javier; Wang, Guiming; Cunningham, Fred L; King, D Tommy
2017-01-01
Energy and time expenditures are determinants of bird migration strategies. Soaring birds have developed migration strategies to minimize these costs, optimizing the use of all the available resources to facilitate their displacement. We analysed the effects of different wind factors (tailwind, turbulence, vertical updrafts) on the migratory flying strategies adopted by 24 satellite-tracked American white pelicans (Pelecanus erythrorhynchos) throughout spring and autumn in North America. We hypothesize that different wind conditions encountered along migration routes between spring and autumn induce pelicans to adopt different flying strategies and use of these wind resources. Using quantile regression and fine-scale atmospheric data, we found that the pelicans optimized the use of available wind resources, flying faster and more direct routes in spring than in autumn. They actively selected tailwinds in both spring and autumn displacements but relied on available updrafts predominantly in their spring migration, when they needed to arrive at the breeding regions. These effects varied depending on the flying speed of the pelicans. We found significant directional correlations between the pelican migration flights and wind direction. In light of our results, we suggest plasticity of migratory flight strategies by pelicans is likely to enhance their ability to cope with the effects of ongoing climate change and the alteration of wind regimes. Here, we also demonstrate the usefulness and applicability of quantile regression techniques to investigate complex ecological processes such as variable effects of atmospheric conditions on soaring migration.
Seasonal effects of wind conditions on migration patterns of soaring American white pelican
Wang, Guiming; Cunningham, Fred L.; King, D. Tommy
2017-01-01
Energy and time expenditures are determinants of bird migration strategies. Soaring birds have developed migration strategies to minimize these costs, optimizing the use of all the available resources to facilitate their displacement. We analysed the effects of different wind factors (tailwind, turbulence, vertical updrafts) on the migratory flying strategies adopted by 24 satellite-tracked American white pelicans (Pelecanus erythrorhynchos) throughout spring and autumn in North America. We hypothesize that different wind conditions encountered along migration routes between spring and autumn induce pelicans to adopt different flying strategies and use of these wind resources. Using quantile regression and fine-scale atmospheric data, we found that the pelicans optimized the use of available wind resources, flying faster and more direct routes in spring than in autumn. They actively selected tailwinds in both spring and autumn displacements but relied on available updrafts predominantly in their spring migration, when they needed to arrive at the breeding regions. These effects varied depending on the flying speed of the pelicans. We found significant directional correlations between the pelican migration flights and wind direction. In light of our results, we suggest plasticity of migratory flight strategies by pelicans is likely to enhance their ability to cope with the effects of ongoing climate change and the alteration of wind regimes. Here, we also demonstrate the usefulness and applicability of quantile regression techniques to investigate complex ecological processes such as variable effects of atmospheric conditions on soaring migration. PMID:29065188
Karunarathne, W. K. Ajith; Giri, Lopamudra; Patel, Anilkumar K.; Venkatesh, Kareenhalli V.; Gautam, N.
2013-01-01
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors. PMID:23569254
Karunarathne, W K Ajith; Giri, Lopamudra; Patel, Anilkumar K; Venkatesh, Kareenhalli V; Gautam, N
2013-04-23
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chang Yoon; Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul; Ku, Cheol Ryong
2012-06-22
Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a varietymore » of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Mayeda, K; Malagnini, L
2007-02-01
We develop a new methodology to determine apparent attenuation for the regional seismic phases Pn, Pg, Sn, and Lg using coda-derived source spectra. The local-to-regional coda methodology (Mayeda, 1993; Mayeda and Walter, 1996; Mayeda et al., 2003) is a very stable way to obtain source spectra from sparse networks using as few as one station, even if direct waves are clipped. We develop a two-step process to isolate the frequency-dependent Q. First, we correct the observed direct wave amplitudes for an assumed geometrical spreading. Next, an apparent Q, combining path and site attenuation, is determined from the difference between themore » spreading-corrected amplitude and the independently determined source spectra derived from the coda methodology. We apply the technique to 50 earthquakes with magnitudes greater than 4.0 in central Italy as recorded by MEDNET broadband stations around the Mediterranean at local-to-regional distances. This is an ideal test region due to its high attenuation, complex propagation, and availability of many moderate sized earthquakes. We find that a power law attenuation of the form Q(f) = Q{sub 0}f{sup Y} fit all the phases quite well over the 0.5 to 8 Hz band. At most stations, the measured apparent Q values are quite repeatable from event to event. Finding the attenuation function in this manner guarantees a close match between inferred source spectra from direct waves and coda techniques. This is important if coda and direct wave amplitudes are to produce consistent seismic results.« less
Sources of international migration statistics in Africa.
1984-01-01
The sources of international migration data for Africa may be classified into 2 main categories: administrative records and 2) censuses and survey data. Both categories are sources for the direct measurement of migration, but the 2nd category can be used for the indirect estimation of net international migration. The administrative records from which data on international migration may be derived include 1) entry/departure cards or forms completed at international borders, 2) residence/work permits issued to aliens, and 3) general population registers and registers of aliens. The statistics derived from the entry/departure cards may be described as 1) land frontier control statistics and 2) port control statistics. The former refer to data derived from movements across land borders and the latter refer to information collected at international airports and seaports. Other administrative records which are potential sources of statistics on international migration in some African countries include some limited population registers, records of the registration of aliens, and particulars of residence/work permits issued to aliens. Although frontier control data are considered the most important source of international migration statistics, in many African countries these data are too deficient to provide a satisfactory indication of the level of international migration. Thus decennial population censuses and/or sample surveys are the major sources of the available statistics on the stock and characteristics of international migration. Indirect methods can be used to supplement census data with intercensal estimates of net migration using census data on the total population. This indirect method of obtaining information on migration can be used to evaluate estimates derived from frontier control records, and it also offers the means of obtaining alternative information on international migration in African countries which have not directly investigated migration topics in their censuses or surveys.
Mode-independent attenuation in evanescent-field sensors
NASA Astrophysics Data System (ADS)
Gnewuch, Harald; Renner, Hagen
1995-03-01
Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.
Li, Yan; Rashid, Azhar; Wang, Hongjie; Hu, Anyi; Lin, Lifeng; Yu, Chang-Ping; Chen, Meng; Sun, Qian
2018-08-15
Sulfamethoxazole (SMX) is a sulfonamide antibiotic, widely used as curative and preventive drug for human, animal, and aquaculture bacterial infections. Its residues have been ubiquitously detected in the surface waters and sediments. In the present study, SMX dissipation and kinetics was studied in the natural water samples from Jiulong River under simulated complex natural conditions as well as conditions to mimic various biotic and abiotic environmental conditions in isolation. Structural equation modeling (SEM) by employing partial least square technique in path coefficient analysis was used to investigate the direct and indirect contributions of different environmental factors in the natural attenuation of SMX. The model explained 81% of the variability in natural attenuation as a dependent variable under the influence of sole effects of direct photo-degradation, indirect photo-degradation, hydrolysis, microbial degradation and bacterial degradation. The results of SEM suggested that the direct and indirect photo-degradation were the major pathways in the SMX natural attenuation. However, other biotic and abiotic factors also play a mediatory role during the natural attenuation and other processes. Furthermore, the potential transformation products of SMX were identified and their toxicity was evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.
Chapelle, F.H.
1999-01-01
Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined points in the aquifer. In current practice, intrinsic bioremediation of petroleum hydrocarbons requires a systematic assessment to show that ambient natural attenuation mechanisms are efficient enough to meet regulatory requirements and a monitoring program to verify that performance requirements are met in the future.
Leopold, Christina R.; Hess, Steven C.
2014-01-01
We outfitted six male Hawaiian geese, or nene (Branta sandvicensis), with 45-g solar-powered satellite transmitters and collected four location coordinates d−1 from 2010 to 2012. We used 6193 coordinates to characterize migration corridors, habitat preferences and temporal patterns of displacement for 16 migration events with Brownian bridge utilization distributions (BBUD). We used 1552 coordinates to characterize stopovers from 37 shorter-distance movement events with 25% BBUDs. Two subpopulations used a well-defined common migration corridor spanning a broad gradient of elevation. Use of native-dominated subalpine shrubland was 2.81 times more likely than the availability of this land-cover type. The nene differed from other tropical and temperate-zone migrant birds in that: (1) migration distance and the number of stopovers were unrelated (Mann–Whitney test W = 241, P < 0.006), and; (2) individual movements were not unidirectional suggesting that social interactions may be more important than refuelling en route; but like other species, nene made more direct migrations with fewer stopovers in return to breeding areas (0.58 ± 0.50) than in migration away from breeding areas (1.64 ± 0.48). Our findings, combined with the direction and timing of migration, which is opposite that of most other intratropical migrants, suggest fundamentally different drivers of altitudinal migration.
NASA Astrophysics Data System (ADS)
Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun
2015-07-01
Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.
Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun
2015-07-16
Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.
Wiltschko, Roswitha
2017-07-01
Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.
Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans.
Feng, Guoxin; Zhu, Zhiwen; Li, Wen-Jun; Lin, Qirong; Chai, Yongping; Dong, Meng-Qiu; Ou, Guangshuo
2017-02-01
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2 S139 Live imaging analysis of genome-edited animals indicates that MIG-2 S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility. © 2016 The Authors.
Wang, Xuefeng; Ohlin, Christian A; Lu, Qinghua; Hu, Jun
2008-05-01
The extracellular matrix in animal tissues usually provides a three-dimensional structural support to cells in addition to performing various other important functions. In the present study, wavy submicrometer laser-irradiated periodic surface structures (LIPSS) were produced on a smooth polystyrene film by polarized laser irradiation with a wavelength of 266 nm. Rat C6 glioma cells exhibited directional migration and oriented division on laser-irradiated polystyrene, which was parallel to the direction of LIPSS. However, rat C6 glioma cells on smooth polystyrene moved in a three-step invasion cycle, with faster migration speed than that on laser-irradiated polystyrene. In addition, focal adhesions examined by immunostaining focal adhesion kinase in human epithelial carcinoma HeLa cells were punctuated on smooth polystyrene, whereas dash-like on laser-irradiated polystyrene. We hypothesized that LIPSS on laser-irradiated polystyrene acted as an anisotropic and persistent mechanical stimulus to guide cell anisotropic spreading, migration and division through focal adhesions.
Wang, Xiangming; Zhou, Fanli; Lv, Sijing; Yi, Peishan; Zhu, Zhiwen; Yang, Yihong; Feng, Guoxin; Li, Wei; Ou, Guangshuo
2013-01-01
Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants’ (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration. PMID:23784779
Chan, Yau-Chi; Ng, Joyce H. L.; Au, Ka-Wing; Wong, Lai-Yung; Siu, Chung-Wah; Tse, Hung-Fat
2013-01-01
Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as “off-the-shelf” format for the treatment of tissue ischemia. PMID:23472116
Valente, Anthony J.; Yoshida, Tadashi; Murthy, Subramanyam N.; Sakamuri, Siva S. V. P.; Katsuyama, Masato; Clark, Robert A.; Delafontaine, Patrice
2012-01-01
The redox-sensitive transcription factors NF-κB and activator protein-1 (AP-1) are critical mediators of ANG II signaling. The promitogenic and promigratory factor interleukin (IL)-18 is an NF-κB- and AP-1-responsive gene. Therefore, we investigated whether ANG II-mediated smooth muscle cell (SMC) migration and proliferation involve IL-18. ANG II induced rat carotid artery SMC migration and proliferation and IL-18 and metalloproteinase (MMP)-9 expression via ANG II type 1 (AT1) receptor. ANG II-induced superoxide generation, NF-κB and AP-1 activation, and IL-18 and MMP-9 induction were all markedly attenuated by losartan, diphenyleneiodonium chloride (DPI), and Nox1 knockdown. Similar to ANG II, addition of IL-18 also induced superoxide generation, activated NF-κB and AP-1, and stimulated SMC migration and proliferation, in part via Nox1, and both ANG II and IL-18 induced NOX1 transcription in an AP-1-dependent manner. AT1 physically associates with Nox1 in SMC, and ANG II enhanced this binding. Interestingly, exogenous IL-18 neither induced AT1 binding to Nox1 nor enhanced the ANG II-induced increase in AT1/Nox1 binding. Importantly, IL-18 knockdown, or pretreatment with IL-18 neutralizing antibodies, or IL-18 binding protein, all attenuated the migratory and mitogenic effects of ANG II. Continuous infusion of ANG II for 7 days induced carotid artery hyperplasia in rats via AT1 and was associated with increased AT1/Nox1 binding (despite lower AT1 levels); increased DPI-inhibitable superoxide production; increased phospho-IKKβ, JNK, p65, and c-Jun; and induction of IL-18 and MMP-9 in endothelium-denuded carotid arteries. These results indicate that IL-18 amplifies the ANG II-induced, redox-dependent inflammatory cascades by activating similar promitogenic and promigratory signal transduction pathways. The ANG II/Nox1/IL-18 pathway may be critical in hyperplastic vascular diseases, including atherosclerosis and restenosis. PMID:22636674
Burgett, Monica E.; Lathia, Justin D.; Roth, Patrick; Nowacki, Amy S.; Galileo, Deni S.; Pugacheva, Elena; Huang, Ping; Vasanji, Amit; Li, Meizhang; Byzova, Tatiana; Mikkelsen, Tom; Bao, Shideng; Rich, Jeremy N.; Weller, Michael; Gladson, Candece L.
2016-01-01
The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting. PMID:27270311
Determinants of Mexico-U.S. Outward and Return Migration Flows: A State-Level Panel Data Analysis.
Chort, Isabelle; de la Rupelle, Maëlys
2016-10-01
Using a unique panel data set of state-to-state outward and return migration flows between Mexico and the United States from 1995 to 2012, this study is the first to analyze Mexico-U.S. migration at the state level and explore simultaneously the effect of economic, environmental, and social factors in Mexico over two decades. Pairing origin and destination states and controlling for a rich structure of fixed effects, we find that income positively impacts migration outflows, especially for Mexican states of origin with a recent migration history and for low-educated migrant flows, suggesting the existence of credit constraints. We find evidence that drought causes more out-migration, while other climatic shocks have no effect. Violence is found to increase out-migration flows from border states and to decrease migration from other Mexican states, especially where violence is directed at migrants. Last, return flows are larger when income growth at destination is lower, consistent with the accumulation of savings as a primary motivation of migrants. Exploring the impact of the crisis, we find evidence of significant changes in the geography of migration flows. Traditional flows are drying up, and new migration corridors are rising, with implications on the composition of the Mexican population in the United States. Although the effect of income on flows in both directions is unchanged by the crisis, the negative effect of violence on out-migration tends to reverse at the end of the period. Overall, this study emphasizes the interest of analyzing disaggregated flows at the infra-country level.
Begley, T; Castle, L; Feigenbaum, A; Franz, R; Hinrichs, K; Lickly, T; Mercea, P; Milana, M; O'Brien, A; Rebre, S; Rijk, R; Piringer, O
2005-01-01
Materials and articles intended to come into contact with food must be shown to be safe because they might interact with food during processing, storage and the transportation of foodstuffs. Framework Directive 89/109/EEC and its related specific Directives provide this safety basis for the protection of the consumer against inadmissible chemical contamination from food-contact materials. Recently, the European Commission charged an international group of experts to demonstrate that migration modelling can be regarded as a valid and reliable tool to calculate 'reasonable worst-case' migration rates from the most important food-contact plastics into the European Union official food simulants. The paper summarizes the main steps followed to build up and validate a migration estimation model that can be used, for a series of plastic food-contact materials and migrants, for regulatory purposes. Analytical solutions of the diffusion equation in conjunction with an 'upper limit' equation for the migrant diffusion coefficient, D(P), and the use of 'worst case' partitioning coefficients K(P,F) were used in the migration model. The results obtained were then validated, at a confidence level of 95%, by comparison with the available experimental evidence. The successful accomplishment of the goals of this project is reflected by the fact that in Directive 2002/72/EC, the European Commission included the mathematical modelling as an alternative tool to determine migration rates for compliance purposes.
Miró-Herrans, Aida T.; Al-Meeri, Ali; Mulligan, Connie J.
2014-01-01
Population migration has played an important role in human evolutionary history and in the patterning of human genetic variation. A deeper and empirically-based understanding of human migration dynamics is needed in order to interpret genetic and archaeological evidence and to accurately reconstruct the prehistoric processes that comprise human evolutionary history. Current empirical estimates of migration include either short time frames (i.e. within one generation) or partial knowledge about migration, such as proportion of migrants or distance of migration. An analysis of migration that includes both proportion of migrants and distance, and direction over multiple generations would better inform prehistoric reconstructions. To evaluate human migration, we use GPS coordinates from the place of residence of the Yemeni individuals sampled in our study, their birthplaces and their parents' and grandparents' birthplaces to calculate the proportion of migrants, as well as the distance and direction of migration events between each generation. We test for differences in these values between the generations and identify factors that influence the probability of migration. Our results show that the proportion and distance of migration between females and males is similar within generations. In contrast, the proportion and distance of migration is significantly lower in the grandparents' generation, most likely reflecting the decreasing effect of technology. Based on our results, we calculate the proportion of migration events (0.102) and mean and median distances of migration (96 km and 26 km) for the grandparent's generation to represent early times in human evolution. These estimates can serve to set parameter values of demographic models in model-based methods of prehistoric reconstruction, such as approximate Bayesian computation. Our study provides the first empirically-based estimates of human migration over multiple generations in a developing country and these estimates are intended to enable more precise reconstruction of the demographic processes that characterized human evolution. PMID:24759992
EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans
Josephson, Matthew P.; Chai, Yongping; Ou, Guangshuo; Lundquist, Erik A.
2016-01-01
Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right) and QL (on the left) undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly). EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p) after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function). PMID:26863303
Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A
2016-08-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.
Josephson, Matthew P.; Miltner, Adam M.; Lundquist, Erik A.
2016-01-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39. A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39mab-5egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. PMID:27225683
Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaojie; Taizhou Polytechnic College, Taizhou; Zhang, Ling
2011-12-16
Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated themore » effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed decreased expressions of MMP-2 and MMP-9 at the mRNA and protein levels. Taken together, the present findings suggest that Neu3 is a promising molecular target for the prevention of prostate cancer metastasis.« less
Lu, Jun; Wang, Zhiqiang; Li, Shuyan; Xin, Qi; Yuan, Miaomiao; Li, Huanping; Song, Xiaoxia; Gao, Haijun; Pervaiz, Nabeel; Sun, Xudong; Lv, Wei; Jing, Tao; Zhu, Yanmei
2018-04-27
BACKGROUND Quercetin is a natural bioactive flavonoid that is present in a wide variety of vegetables and fruits and exhibits a promising anti-metastasis property in various human cancer cells. However, the effect of quercetin on human HCCLM3 cells is unclear. MATERIAL AND METHODS In the current study, a wound-healing assay was performed using quercetin-treated HCCLM3 cells to further explore whether quercetin affects the motility of human HCCLM3 cells. Transwell assay was used to explore the potential effect of quercetin in HCCLM3 cells on cell migration and cell invasion. Western blotting analysis was used to explore the expression of p-Akt1, MMP-2, and MMP-9 in quercetin-treated HCCLM3 cells. RESULTS The wound-healing time was delayed in quercetin-treated HCCLM3 cells, and the ability to migrate and invade was inhibited in quercetin-treated human HCCLM3 cells. Moreover, the protein levels of p-Akt1, MMP-2, and MMP-9 were down-regulated in quercetin-treated HCCLM3 cells, as detected by Western blotting. CONCLUSIONS Our data show that quercetin attenuated cell migration and invasion by suppressing the protein levels of p-Akt1, MMP-2, and MMP-9 in HCCLM3 cells.
Laboratory Observations of Sand Ripple Evolution in a Small Oscillatory Flow Tunnel
NASA Astrophysics Data System (ADS)
Calantoni, J.; Palmsten, M. L.; Chu, J.; Landry, B. J.; Penko, A.
2014-12-01
The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Six different monochromatic oscillatory forcings, three with velocity asymmetry and three without, were used to investigate sand ripple dynamics using a unimodal grain size distribution with D50=0.65 mm. The experiments represent an extension of previous work using bimodal grain size distributions. A DSLR camera with a 180-degree fisheye lens collected images of the sediment bed profile every 2 seconds to resolve changes in ripple geometries and migration rates resulting from the different flow conditions for over 127 hours (229,388 images). Matlab © algorithms undistorted the fisheye images and quantified the ripple geometries, wavelengths, heights, and migration rates as a function of flow forcing. The mobility number was kept nearly constant by increasing and decreasing the semi-excursion amplitude and the wave frequency, respectively. We observed distinct changes in ripple geometry and migration rate for the pair of oscillatory forcings having nearly identical mobility numbers. The results suggested that the commonly used mobility number might not be appropriate to characterize ripple geometry or migration rates.
Integrin activation by a cold atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2012-05-01
Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.
Sarabi, A; Kramp, B K; Drechsler, M; Hackeng, T M; Soehnlein, O; Weber, C; Koenen, R R; Von Hundelshausen, P
2011-01-01
The non-allelic variant of CXCL4/PF4, CXCL4L1/PF4alt, differs from CXCL4 in three amino acids of the C-terminal α-helix and has been characterized as a potent anti-angiogenic regulator. Although CXCL4 structurally belongs to the chemokine family, it does not behave like a 'classical' chemokine, lacking significant chemotactic properties. Specific hallmarks are its angiostatic, anti-proliferative activities, and proinflammatory functions, which can be conferred by heteromer-formation with CCL5/RANTES enhancing monocyte recruitment. Here we show that tube formation of endothelial cells was inhibited by CXCL4L1 and CXCL4, while only CXCL4L1 triggered chemokinesis of endothelial cells. The chemotactic response towards VEGF and bFGF was attenuated by both variants and CXCL4L1-induced chemokinesis was blocked by bFGF or VEGF. Endothelial cell proliferation was inhibited by CXCL4 (IC(50) 6.9 μg mL(-1)) but not by CXCL4L1, while both chemokines bound directly to VEGF and bFGF. Moreover, CXCL4 enhanced CCL5-induced monocyte arrest in flow adhesion experiments and monocyte recruitment into the mouse peritoneal cavity in vivo, whereas CXCL4L1 had no effect. CXCL4L1 revealed lower affinity to CCL5 than CXCL4, as quantified by isothermal fluorescence titration. As evidenced by the reduction of the activated partial thromboplastin time, CXCL4L1 showed a tendency towards less heparin-neutralizing activity than CXCL4 (IC(50) 2.45 vs 0.98 μg mL(-1)). CXCL4L1 may act angiostatically by causing random endothelial cell locomotion, disturbing directed migration towards angiogenic chemokines, serving as a homeostatic chemokine with a moderate structural distinction yet different functional profile from CXCL4. © 2010 International Society on Thrombosis and Haemostasis.
Fall movements of Red-headed woodpeckers in South Carolina
Mark Vukovich; John C. Kilgo
2013-01-01
Fall migration of Red-headed Woodpeckers (Melanerpes erythrocephalus) can be erratic, with departure rates, directions, and distances varying among populations and individuals. We report fall migration departure dates, rates, and routes, and the size of fall home ranges of 62 radio-tagged Red-headed Woodpeckers in western South Carolina. Rates of fall migration...
77 FR 18137 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
...), latch pin migration, and broken latch pin fittings. This proposed AD would require various repetitive... cargo door latch mechanism and/or the lower sill structure. The migration of two or more latch pins and... determine if the bolt is broken; and checking the latch pin for migration and, if necessary, a detailed...
78 FR 4047 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... migration of the latch pins of the main deck side cargo door (MDSCD). This AD requires various repetitive... broken retention bolts and the subsequent migration of the latch pins rather than by the broken latch pin... prompted by reports of broken and damaged latch pin retention bolts and subsequent migration of the latch...
Passive non-linear microrheology for determining extensional viscosity
NASA Astrophysics Data System (ADS)
Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.
2017-12-01
Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.
Kunwar, Prabhat S.; Sano, Hiroko; Renault, Andrew D.; Barbosa, Vitor; Fuse, Naoyuki; Lehmann, Ruth
2008-01-01
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion. PMID:18824569
Salser, S J; Kenyon, C
1992-01-16
Anterior-posterior patterning in insects, vertebrates and nematodes involves members of conserved Antennapedia-class homeobox gene clusters (HOM-C) that are thought to give specific body regions their identities. The effects of these genes on region-specific body structures have been described extensively, particularly in Drosophila, but little is known about how HOM-C genes affect the behaviours of cells that migrate into their domains of function. In Caenorhabditis elegans, the Antennapedia-like HOM-C gene mab-5 not only specifies postembryonic fates of cells in a posterior body region, but also influences the migration of mesodermal and neural cells that move through this region. Here we show that as one neuroblast migrates into this posterior region, it switches on mab-5 gene expression; mab-5 then acts as a developmental switch to control the migratory behaviour of the neuroblast descendants. HOM-C genes can therefore not only direct region-specific patterns of cell division and differentiation, but can also act within migrating cells to programme region-specific migratory behaviour.
Majumder, Syamantak; Sowden, Mark P; Gerber, Scott A; Thomas, Tamlyn; Christie, Christine K; Mohan, Amy; Yin, Guoyong; Lord, Edith M; Berk, Bradford C; Pang, Jinjiang
2014-02-01
Recent evidence suggests G-protein-coupled receptor-2-interacting protein-1 (GIT1) overexpression in several human metastatic tumors, including breast, lung, and prostate. Tumor metastasis is associated with an increase in angiogenesis. We have showed previously that GIT1 is required for postnatal angiogenesis during lung development. However, the functional role of GIT1 in pathological angiogenesis during tumor growth is unknown. In the present study, we show inhibition of angiogenesis in matrigel implants as well as reduced tumor angiogenesis and melanoma tumor growth in GIT1-knockout mice. We demonstrate that this is a result of impaired directional migration of GIT1-depleted endothelial cells toward a vascular endothelial growth factor gradient. Cortactin-mediated lamellipodia formation in the leading edge is critical for directional migration. We observed a significant reduction in cortactin localization and lamellipodia formation in the leading edge of GIT1-depleted endothelial cells. We specifically identified that the Spa homology domain (aa 250-420) of GIT1 is required for GIT1-cortactin complex localization to the leading edge. The mechanisms involved extracellular signal-regulated kinases 1 and 2-mediated Cortactin-S405 phosphorylation and activation of Rac1/Cdc42. Finally, using gain of function studies, we show that a constitutively active mutant of cortactin restored directional migration of GIT1-depleted cells. Our data demonstrated that a GIT1-cortactin association through GIT1-Spa homology domain is required for cortactin localization to the leading edge and is essential for endothelial cell directional migration and tumor angiogenesis.
Vaseghi, Golnaz; Taki, Mohamad Javad; Javanmard, Shaghayegh Haghjooy
2017-10-01
Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. In the treatment group, melanoma (B1617) was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls. C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.
Parachoniak, Christine Anna; Luo, Yi; Abella, Jasmine Vanessa; Keen, James H.; Park, Morag
2011-01-01
Summary Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation, or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/Hepatocyte Growth Factor RTK when stimulated, to sort it for recycling in association with “gyrating”-clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met towards degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling. PMID:21664574
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.
China’s Internal Migration, Public Policies, and Economic Growth
2012-12-01
Studying the internal migration of China since 1949, the overall effect of migration on economic performance has had a discernible impact both...positive and negative at different times. There are two distinct aspects: the actual migration patterns and their relative effects on the economy; and the ...domestic policies enacted by the PRC that directly prompted movements whether intentional or not. This thesis has led to the conclusion that it was the
Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores
NASA Technical Reports Server (NTRS)
Edwards, E. S.; Roux, S. J.
1998-01-01
The polarity of germinating single-celled spores of the fern Ceratopteris richardii Brogn. is influenced by gravity during a time period prior to the first cellular division designated a "polarity-determination window". After this window closes, control of polarity is seen in the downward (with respect to gravity) migration of the nucleus along the proximal face of the spore and the subsequent downward growth of the primary rhizoid. When spores are germinated on a clinostat the direction of nuclear migration and subsequent primary rhizoid growth is random. However, in each case the direction of nuclear migration predicts the direction of rhizoid elongation. Although it is the most obvious movement, the downward migration is not the first movement of the nucleus. During the polarity-determination window, the nucleus moves randomly within a region centered behind the trilete marking. While the polarity of many fern spores has been reported to be controlled by light, spores of C. richardii are the first documented to have their polarity influenced by gravity. Directional white light also affects the polarity of these spores, but this influence is slight and is secondary to that of gravity.
Wakida, Nicole M; Botvinick, Elliot L; Lin, Justin; Berns, Michael W
2010-12-23
Establishing and maintaining polarization is critical during cell migration. It is known that the centrosome contains numerous proteins whose roles of organizing the microtubule network range include nucleation, stabilization and severing. It is not known whether the centrosome is necessary to maintain polarization. Due to its role as the microtubule organizing center, we hypothesize that the centrosome is necessary to maintain polarization in a migrating cell. Although there have been implications of its role in cell migration, there is no direct study of the centrosome's role in maintaining polarization. In this study we ablate the centrosome by intracellular laser irradiation to understand the role of the centrosome in two vastly different cell types, human osteosarcoma (U2OS) and rat kangaroo kidney epithelial cells (PtK). The PtK cell line has been extensively used as a model for cytoskeletal dynamics during cell migration. The U2OS cell line serves as a model for a complex, single migrating cell. In this study we use femtosecond near-infrared laser irradiation to remove the centrosome in migrating U2OS and PtK2 cells. Immunofluorescence staining for centrosomal markers verified successful irradiation with 94% success. A loss of cell polarization is observed between 30 and 90 minutes following removal of the centrosome. Changes in cell shape are correlated with modifications in microtubule and actin organization. Changes in cell morphology and microtubule organization were quantified revealing significant depolarization resulting from centrosome irradiation. This study demonstrates that the centrosome is necessary for the maintenance of polarization during directed cell migration in two widely different cell types. Removal of the centrosome from a polarized cell results in the reorganization of the microtubule network into a symmetric non-polarized phenotype. These results demonstrate that the centrosome plays a critical role in the maintenance of cytoskeletal asymmetry during cell migration.
Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas
2001-01-01
Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893
Pokemon promotes the invasiveness of hepatocellular carcinoma by enhancing MEF2D transcription.
Kong, Jing; Liu, Xiaoping; Li, Xiangqian; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang
2016-05-01
Pokemon, a master oncogene crucial for the tumorigenicity and progression of a variety of cancers, has been demonstrated to enhance the proliferation and survival of hepatocellular carcinoma (HCC). However, the contribution of Pokemon to the invasiveness of HCC has not yet been studied. In this study, we employed HCC cells to investigate the role of Pokemon in the invasion of HCC with multidisciplinary approaches. Pokemon overexpression was found to be closely associated with invasion and intrahepatic metastasis of HCC in clinical specimens. Suppression of Pokemon attenuated the invasion of HCC cells by in vitro transwell and wound-healing assays. Myocyte enhancer factor 2D (MEF2D), an oncogene that can promote the invasiveness of HCC, was found to be underexpressed during Pokemon silencing in HCC cells. Restoration of MEF2D abolished the effect of Pokemon downregulation on the migration of HCC cells. Further experiments verified that Pokemon binds two putative recognition sites located within the upstream region of the MEF2D promoter and enhances its transcription. The association between Pokemon and MEF2D was further confirmed in HCC specimens. Animal experiments further confirmed that Pokemon downregulation attenuated the metastasis of HCC cells in mice. Collectively, Pokemon was found to enhance the migration and invasion of HCC by increasing MEF2D expression. Thus, targeting Pokemon and MEF2D may be an effective strategy to suppress the metastasis of HCC.
Xu, Xihui; Pang, Jiaojiao; Chen, Yuguo; Bucala, Richard; Zhang, Yingmei; Ren, Jun
2016-03-04
Aging leads to unfavorable geometric and functional sequelae in the heart. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) plays a role in the maintenance of cardiac homeostasis under stress conditions although its impact in cardiac aging remains elusive. This study was designed to evaluate the role of MIF in aging-induced cardiac anomalies and the underlying mechanism involved. Cardiac geometry, contractile and intracellular Ca(2+) properties were examined in young (3-4 mo) or old (24 mo) wild type and MIF knockout (MIF(-/-)) mice. Our data revealed that MIF knockout exacerbated aging-induced unfavorable structural and functional changes in the heart. The detrimental effect of MIF knockout was associated with accentuated loss in cardiac autophagy with aging. Aging promoted cardiac inflammation, the effect was attenuated by MIF knockout. Intriguingly, aging-induced unfavorable responses were reversed by treatment with the autophagy inducer rapamycin, with improved myocardial ATP availability in aged WT and MIF(-/-) mice. Using an in vitro model of senescence, MIF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was ablated by MIF replenishment. Our data indicated that MIF knockout exacerbates aging-induced cardiac remodeling and functional anomalies despite improved inflammation, probably through attenuating loss of autophagy and ATP availability in the heart.
PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena
Hughes, Shannon K.; Oudin, Madeleine J.; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A.; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S.; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A.; Gertler, Frank B.
2015-01-01
During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385
NASA Astrophysics Data System (ADS)
Iwasaki, Y.; Mochizuki, K.; Ishise, M.; Todd, E. K.; Schwartz, S. Y.; Henrys, S. A.; Savage, M. K.; Sheehan, A.; Ito, Y.; Wallace, L.; Webb, S. C.; Zal, H. J.; Yamada, T.; Shinohara, M.
2017-12-01
From May 2014 to June 2015 a marine seismic and geodetic experiment was conducted at the Hikurangi subduction margin. During this experiment, a slow-slip event (SSE) with equivalent moment magnitude of Mw 6.8 occurred for two weeks starting in late September 2014, directly beneath the ocean bottom seismometer (OBS) network (Wallace et al., 2016). In this study, we used the continuous waveform data recorded by these OBSs. We calculated a cross correlation coefficient between the two horizontal components and applied a polarization analysis every 10 seconds for 30 second-long OBS waveform records. As a result, we detected the continuous arrival of S-wave signals that appeared to have started in the latter half of the SSE. This continuous signal was identified as tremor and its source location was determined by the envelope cross-correlation method (Todd et al., 2017, in prep). Our result, however, suggests that these signals occur continuously rather than as sporadic individual events, and that they last for more than two weeks. Polarization directions changed at the same time and then remained stable through the two week duration. Such stable polarized directions can only be identified during this period. Our analysis requires fewer OBS than other methods for monitoring such S-wave signals, which may enable us to detect as yet unidentified signals in the Hikurangi margin where seismic attenuation has been shown to be large. The continuous signals with a stable polarization direction were only observed at OBS stations in a limited region, which suggests that the signals were generated near the up-dip edge of the slow slip area and surrounding a subducted seamount. Sources of the continuous signals appear to have migrated from south to north . This observation is consistent with the location of individual tremors identified with envelope cross-correlation methods (Todd et al., 2017, in prep). The slow slip along the plate interface circumvented the subducted seamount (Wallace et al., 2016). By comparing our result with the slip distribution, we can put more constraints on relationship between frictional properties along the plate interface and subducting topographic features such as seamounts. Migration of the sources of the continuous signal may further provide us with information on rupture propagation of the slow slip.
Li, Te-Mao; Fong, Yi-Chin; Liu, Shan-Chi; Chen, Po-Chun; Tang, Chih-Hsin
2013-01-01
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23874483
Pantan, Rungusa; Tocharus, Jiraporn; Phatsara, Manussabhorn; Suksamrarn, Apichart; Tocharus, Chainarong
2016-09-13
This study aimed to investigate the mechanism of cyanidin-3-glucoside (C3G) in synergy with atorvastatin, even when it is used in low concentrations. Human aortic smooth muscle cells (HASMCs) were used to verify the synergistic mechanism of atorvastatin and C3G against angiotensin II-induced proliferation and migration. BrdU incorporation assay was used to evaluate cell proliferation. Wound healing and Boyden chamber assays were used to investigate cell migration. The cell cycle was examined using flow cytometry. The results revealed that atorvastatin and C3G exhibit a synergistic effect in ameliorating HASMC proliferation and migration by enhancing cell cycle arrest. In addition, these effects also decreased mitogen-activated protein kinase (MAPK) activity by attenuating the expression of phospho-p38, phospho-extracellular signaling-regulated kinase 1/2, and phospho-c-Jun N-terminal kinase. Furthermore, the combination of atorvastatin and C3G modulated the PI3K/Akt pathway and upregulated p21 Cip1 , which was associated with decreases in cyclin D 1 and phospho-retinoblastoma expressions. The synergistic effect of atorvastatin and C3G induced anti-proliferation and anti-migration through MAPK and PI3K/Akt pathways mediated by AT 1 R. These results suggest that the synergistic effect of atorvastatin and C3G may be an alternative therapy for atherosclerosis patients.
Zhu, Feng; Liu, Pei; Li, Jun; Zhang, Yan
2014-05-01
Chemokines have been reported to play crucial roles in tumor progression. Eotaxin-1 (CCL11), a member of the CC chemokine family, is elevated in many types of human cancer. Here, to reveal the molecular mechanisms of eotaxin-1 in prostate cancer cell invasion, the expression of eotaxin-1 receptors [CC chemokine receptor (CCR)2, CCR3 and CCR5] were silenced by small interfering RNA (siRNA). The ERK pathway was inhibited by the specific MEK inhibitor U0126. The role of eotaxin-1 and the CCR3-ERK pathway in prostate cancer cell invasion was assessed by invasion and migration assays. MMP-3 expression was detected by real-time PCR and ELISA assay. The results demonstrated that eotaxin-1 promoted the invasion and migration of DU-145 cells, and increased ERK1/2 activation and MMP-3 expression. Knockdown of CCR3 inhibited the invasion and migration of prostate cancer cells, and attenuated the eotaxin-1-induced ERK1/2 activation and MMP-3 expression. Furthermore, inactivation of the ERK pathway suppressed the eotaxin‑1-promoted invasion and migration, and decreased MMP-3 expression in the prostate cancer cells. Together, the present study suggests that eotaxin-1 increases MMP-3 expression via the CCR3-ERK pathway, thereby promoting prostate cancer cell invasion and migration. Thus, therapies that block eotaxin-1 and CCR3 may be effective interventions for prostate cancer.
NASA Astrophysics Data System (ADS)
Kitagawa, Takashi; Aoki, Yoshinori
2017-03-01
When discussing the evolution of fish migration, it is necessary to consider the total benefit fish acquire over their entire life history. With diadromous migration, for instance, some fish species migrate from freshwater and feed in the ocean (anadromous species), and others migrate from the ocean and feed in freshwater (catadromous). These contrasting directions of migration can largely be explained by the relative availability of food resources in ocean and freshwater habitats [1]. However, there are few examples that measure or quantify total energy as a concrete value that a single fish acquires through migration.
Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter
2016-10-01
We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui
2014-11-21
Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.
Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-02-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wanty, R.B.; Berger, B.R.
2006-01-01
Base- and precious-metal mineral deposits comprise anomalous concentrations of metals and associated elements, which may be useful subjects for study as analogs for migration of environmental contaminants. In the geologic past, hydrothermal mineral deposits formed at the intersection of favorable geologic, hydrologic and geochemical gradients. In the present, weathering of these sulfide-rich deposits occurs as a result of the interplay between rates of oxygen supply versus rates of ground or surface-water flow. Transport and spatial dispersion of elements from a mineral deposit occurs as a function of competing rates of water flow versus rates of attenuation mechanisms such as adsorption, dilution, or (co)precipitation. In this paper we present several case studies from mineralized and altered sedimentary and crystalline aquifers in the western United States to illustrate the geologic control of ground-water flow and solute transport, and to demonstrate how this combined approach leads to a more complete understanding of the systems under study as well as facilitating some capability to predict major flow directions in aquifers.
miR-22 suppresses the proliferation and invasion of gastric cancer cells by inhibiting CD151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xun; Yu, Honggang, E-mail: honggang_yuwh@163.com; Lu, Xinyao
2014-02-28
Highlights: • miR-22 was decreased in GC tissue samples and cell lines. • miR-22 suppressed GC cell growth and motility in vitro. • CD151 was a direct target of miR-22. • miR-22 suppressed GC cell growth and motility by inhibiting CD151. - Abstract: Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressedmore » migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151.« less
Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion.
Woo, Seon Min; Min, Kyoung-jin; Kim, Shin; Park, Jong-Wook; Kim, Dong Eun; Kim, Sang Hyun; Choi, Yung Hyun; Kwon, Taeg Kyu
2014-08-29
Withaferin A, a withanolide derived from the medicinal plant Withania somnifera, has been reported to exhibit anti-tumorigenic activity against various cancer cells. In this study, we show that withaferin A inhibits the constitutive and recombinant human growth-arrest-specific protein 6 (rhGas6)-induced phosphorylation of Axl and STAT3. In addition, withaferin A also induces the down-regulation of Axl protein expression in a lysosome-dependent manner and inhibits rhGas6-induced wound healing and cell migration. Furthermore, the overexpression of Axl attenuates withaferin A-induced apoptosis. Taken together, the data from the present study indicate that the withaferin A-mediated down-regulation of the Gas6/Axl signaling pathway mediates the inhibition of cell migration and the induction of apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, Sayan; Chakraborty, Suman
2018-02-01
The effect of surface viscosity on the motion of a surfactant-laden droplet in the presence of a non-isothermal Poiseuille flow is studied, both analytically and numerically. The presence of bulk-insoluble surfactants along the droplet surface results in interfacial shear and dilatational viscosities. This, in turn, is responsible for the generation of surface-excess viscous stresses that obey the Boussinesq-Scriven constitutive law for constant values of surface shear and dilatational viscosities. The present study is primarily focused on finding out how this confluence can be used to modulate droplet dynamics in the presence of Marangoni stress induced by nonuniform distribution of surfactants and temperature along the droplet surface, by exploiting an intricate interplay of the respective forcing parameters influencing the interfacial stresses. Under the assumption of negligible fluid inertia and thermal convection, the steady-state migration velocity of a non-deformable spherical droplet, placed at the centerline of an imposed unbounded Poiseuille flow, is obtained for the limiting case when the surfactant transport along the interface is dominated by surface diffusion. Our analysis proves that the droplet migration velocity is unaffected by the shear viscosity whereas the dilatational viscosity has a significant effect on the same. The surface viscous effects always retard the migration of a surfactant-laden droplet when the temperature in the far-field increases in the direction of the imposed flow although the droplet always migrates towards the hotter region. On the contrary, if a large temperature gradient is applied in a direction opposite to that of the imposed flow, the direction of droplet migration gets reversed. However, for a sufficiently high value of dilatational surface viscosity, the direction of droplet migration reverses. For the limiting case in which the surfactant transport along the droplet surface is dominated by surface convection, on the other hand, surface viscosities do not have any effect on the motion of the droplet. These results are likely to have far-reaching consequences in designing an optimal migration path in droplet-based microfluidic technology.
Seismic attenuation of the inner core: Viscoelastic or stratigraphic?
Cormier, V.F.; Xu, L.; Choy, G.L.
1998-01-01
Broadband velocity waveforms of PKIKP in the distance range 150??to 180??are inverted for inner core attenuation. A mean Q?? of 244 is determined at 1 Hz from 8 polar and 9 equatorial paths. The scatter in measured Q-1 exceeds individual error estimates, suggesting significant variation in attenuation with path. These results are interpreted by (1) viscoelasticity, in which the relaxation spectrum has a low-frequency corner near or slightly above the frequency band of short-period body waves, and by (2) stratigraphic (scattering) attenuation, in which attenuation and pulse broadening are caused by the interference of scattered multiples in a velocity structure having rapid fluctuations along a PKIKP path. In the scattering interpretation, PKIKP attenuation is only weakly affected by the intrinsic shear attenuation measured in the free-oscillation band. Instead, its frequency dependence, path variations, and fluctuations are all explained by scattering attenuation in a heterogeneous fabric resulting from solidification texturing of intrinsically anisotropic iron. The requisite fabric may consist of either single or ordered groups of crystals with P velocity differences of at least 5% and as much as 12% between two crystallographic axes at scale lengths of 0.5 to 2 km in the direction parallel to the axis of rotation and longer in the cylindrically radial direction, perpendicular to the axis of rotation.Broadband velocity waveforms of PKIKP in the distance range 150?? to 180?? are inverted for inner core attenuation. A mean Q?? of 244 is determined at 1 Hz from 8 polar and 9 equatorial paths. The scatter in the measured Q-1 exceeds individual error estimates, indicating significant variation in attenuation with path. The results are interpreted by viscoelasticity and stratigraphic (scattering) attenuation.
Behzad, A R; Chu, F; Walker, D C
1996-05-01
Previous findings have shown that pulmonary fibroblasts are associated with preexisting holes in the endothelial and epithelial basal laminae through which neutrophils appear to enter and leave the interstitium as they migrate from capillaries to alveoli. To determine their role in neutrophil migration, fibroblast organization within the interstitium was assessed by transmission electron microscope observations of serial-sectioned rabbit lung tissue. Interstitial fibroblasts were found to physically interconnect the endothelial basal lamina holes to epithelial basal lamina holes. Morphometric assessment of rabbit lung tissue instilled with Streptococcus pneumoniae revealed that approximately 70% of the surface area density of migrating neutrophils is in close contact (15 nm or less) with interstitial fibroblasts and extracellular matrix elements (30 and 40%, respectively). Although migrating neutrophils were close enough to adhere to both fibroblasts and extracellular elements, the interstitial fibroblasts are organized in a manner that would allow them to provide directional information to the neutrophils. A model illustrating this process is proposed.
Climate Variability and Human Migration in the Netherlands, 1865–1937
Jennings, Julia A.; Gray, Clark L.
2014-01-01
Human migration is frequently cited as a potential social outcome of climate change and variability, and these effects are often assumed to be stronger in the past when economies were less developed and markets more localized. Yet, few studies have used historical data to test the relationship between climate and migration directly. In addition, the results of recent studies that link demographic and climate data are not consistent with conventional narratives of displacement responses. Using longitudinal individual-level demographic data from the Historical Sample of the Netherlands (HSN) and climate data that cover the same period, we examine the effects of climate variability on migration using event history models. Only internal moves in the later period and for certain social groups are associated with negative climate conditions, and the strength and direction of the observed effects change over time. International moves decrease with extreme rainfall, suggesting that the complex relationships between climate and migration that have been observed for contemporary populations extend into the nineteenth century. PMID:25937689
Ng, Mei Rosa; Besser, Achim
2012-01-01
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
..., an operator found an aileron trim tab hinge pin that had migrated sufficiently to cause a rubbing.... Recently, during a walk round check, an operator found an aileron trim tab hinge pin that had migrated... walk round check, an operator found an aileron trim tab hinge pin that had migrated sufficiently to...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
..., migration of flammable vapors and fluids to middle electronic bay may occur, which then could lead to an..., migration of flammable vapors and fluids to middle electronic bay may occur, which then could lead to an... assembly, migration of flammable vapors and fluids to middle electronic bay may occur, which then could...
Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.
2013-01-01
Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523
Bauer, David; Redmon, Natalie; Mazzio, Elizabeth; Soliman, Karam F
2017-01-01
Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2). These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), T helper IL-17-producing cells (Th17s), metastasis-associated macrophages (MAMs) and cancer-associated fibroblasts (CAFs). Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells). The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF), IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2). In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.
Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi
2007-11-01
Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben
2015-11-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.
Paradise, Ranjani K; Whitfield, Matthew J; Lauffenburger, Douglas A; Van Vliet, Krystyn J
2013-02-15
Extracellular pH (pH(e)) gradients are characteristic of tumor and wound environments. Cell migration in these environments is critical to tumor progression and wound healing. While it has been shown previously that cell migration can be modulated in conditions of spatially invariant acidic pH(e) due to acid-induced activation of cell surface integrin receptors, the effects of pH(e) gradients on cell migration remain unknown. Here, we investigate cell migration in an extracellular pH(e) gradient, using both model α(v)β(3) CHO-B2 cells and primary microvascular endothelial cells. For both cell types, we find that the mean cell position shifts toward the acidic end of the gradient over time, and that cells preferentially polarize toward the acidic end of the gradient during migration. We further demonstrate that cell membrane protrusion stability and actin-integrin adhesion complex formation are increased in acidic pH(e), which could contribute to the preferential polarization toward acidic pH(e) that we observed for cells in pH(e) gradients. These results provide the first demonstration of preferential cell migration toward acid in a pH(e) gradient, with intriguing implications for directed cell migration in the tumor and wound healing environments. Copyright © 2012 Elsevier Inc. All rights reserved.
Gβ1 is required for neutrophil migration in zebrafish.
Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang
2017-08-01
Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun
2015-01-01
Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797
Epidermal keratinocyte polarity and motility require Ca2+ influx through TRPV1
Graham, David M.; Huang, Ling; Robinson, Kenneth R.; Messerli, Mark A.
2013-01-01
Summary Ca2+ has long been known to play an important role in cellular polarity and guidance. We studied the role of Ca2+ signaling during random and directed cell migration to better understand whether Ca2+ directs cell motility from the leading edge and which ion channels are involved in this function by using primary zebrafish keratinocytes. Rapid line-scan and time-lapse imaging of intracellular Ca2+ (Ca2+i) during migration and automated image alignment enabled us to characterize and map the spatiotemporal changes in Ca2+i. We show that asymmetric distributions of lamellipodial Ca2+ sparks are encoded in frequency, not amplitude, and that they correlate with cellular rotation during migration. Directed migration during galvanotaxis increases the frequency of Ca2+ sparks over the entire lamellipod; however, these events do not give rise to asymmetric Ca2+i signals that correlate with turning. We demonstrate that Ca2+-permeable channels within these cells are mechanically activated and include several transient receptor potential family members, including TRPV1. Last, we demonstrate that cell motility and Ca2+i activity are affected by pharmacological agents that target TRPV1, indicating a novel role for this channel during cell migration. PMID:23943873
NASA Astrophysics Data System (ADS)
Azimzade, Youness; Mashaghi, Alireza
2017-12-01
Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.
Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling
Norris, Megan L; Pauli, Andrea; Gagnon, James A; Lord, Nathan D; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard I
2017-01-01
Toddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling. PMID:29117894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Subo; Katz, Boaz; Socrates, Aristotle
Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by {approx} Gyr-'old' main-sequence stars, they can be as 'hot' as young Jupiters at {approx}100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to 'feed' the 'hot Jupiters'. They are expected from 'high-e' migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semimajor axis by a factor of {approx}10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, andmore » if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L {approx} 100-1000 L{sub Jup}(2 Multiplication-Sign 10{sup -7}-2 Multiplication-Sign 10{sup -6} L{sub Sun }) during a typical {approx} Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. {approx}10 such planets are expected to exist around FGK dwarfs within {approx}50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation {approx}0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.« less
Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite
NASA Technical Reports Server (NTRS)
Ippolito, L. J.
1976-01-01
Studies at 11 locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques using the Applications Technology Satellite-6(ATS-6). In addition to direct measurements on the 20- and 30-GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment were presented. The first section describes the experiment objectives, flight hardware, and modes of operation. The remaining six sections present papers prepared by the major participating organizations in the experiment. The papers present a comprehensive summary of the significant results of the initial 11 months of ATS-6 experiment measurements and related radiometric, radar, and radio-meteorology studies.
Li, Yang; Chen, Yan; Zhu, Zhu-Xia; Liu, Xiao-Hong; Yang, Li; Wan, Lei; Lei, Ting-Wen; Wang, Xu-Dong
2013-07-05
Over-expression of cleaved cyclin E in breast tumors is closely associated with tumor progression and resistance to antiestrogens. 17β-Estradiol (E2) has been recently shown to induce cyclin E processing in breast cancer cells. Tamoxifen has been used in patients with estrogen-sensitive breast cancer, yet resistance to antiestrogens and recurrence will appear in some of the patients after its continued use. We therefore addressed possible effects of tamoxifen on the generation of cleaved cyclin E and its signal mechanism(s) in estrogen-responsive MCF-7 breast cancer cells that express both G protein-coupled protein (GPR) 30 and estrogen receptor α (ERα). 4-Hydroxytamoxifen (OHT, tamoxifen's active form) failed to prevent E2-induced proteolysis of cyclin E and migration, but rather triggered cyclin E cleavage coincident with augmented migration. OHT-induced cyclin E truncation also occurred in SK-BR-3 cells that express GPR30 and lack ERα, but not in MDA-MB-231 cells that express neither GPR30 nor ERα. G1, a specific GPR 30 agonist, caused dramatic proteolysis of cyclin E and enhanced migration. Furthermore, OHT-stimulated cleavage of cyclin E and migration were tremendously attenuated by G15, a GPR30 antagonist, or siRNA against GPR30. In addition, inhibitors for EGFR or ERK1/2 remarkably suppressed OHT-induced truncation of cyclin E, suggesting involvement of EGFR signaling. Collectively, our data indicate that OHT contributes to the production of proteolyzed cyclin E via GPR30 with augmented migration in MCF-7 cells. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF.
Zheng, Bing; Wang, Chunyan; He, Lihong; Xu, Xiaojing; Qu, Jing; Hu, Jun; Zhang, Huanxiang
2013-01-01
Recently, mesenchymal stem cells (MSCs) have been extensively used for cell-based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time-lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF-stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F-actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. Copyright © 2012 Wiley Periodicals, Inc.
Wang, Guojun; Sun, Junfeng; Liu, Guanghui; Fu, Yang; Zhang, Xiefu
2017-12-01
Bradykinin (BK) has been reported to be involved in the progression of diverse types of cancer. In the present study, we investigated the possible role of BK in cell proliferation, migration, invasion, and tumor growth of gastric cancer (GC). Cell proliferation was evaluated by MTT assays. Cell migration and invasion were assessed by Transwell assays. Tumor growth of nude mice was detected by establishing subcutaneous xenograft tumor model. Silencing of bradykinin B1 receptor (B1R) and the bradykinin B2 receptor (B2R) was performed by transfecting cells with si-B1R and si-B2R, respectively. The protein expression levels of phospho-ERK1/2 (p-ERK1/2), matrix metalloproteinase (MMP)-2, MMP-9, and E-Cadherin were examined by Western blot. Data revealed that BK promoted cell proliferation, migration, invasion, and the in vivo tumor growth of GC cells SGC-7901 and HGC-27. Furthermore, BK elevated the protein levels of p-ERK1/2, MMP-2, and MMP-9, but reduced E-Cadherin. In addition, by repressing B2R using si-B2R or inhibiting ERK signaling pathway using PD98059, BK-mediated promotion of cell proliferation, migration, and invasion and upregulation of p-ERK1/2, MMP-2/9, as well as downregulation of E-Cadherin were attenuated. Taken together, the present study demonstrated that BK promoted cell proliferation, migration, invasion, and tumor growth by binding to B2R via ERK signaling pathway. Our findings may provide promising options for the further treatment of GC. J. Cell. Biochem. 118: 4444-4453, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2
Mi, Yang; Weng, Yuxiang
2015-01-01
TiO2 is the most promising semiconductor for photocatalytic splitting of water for hydrogen and degradation of pollutants. The highly photocatalytic active form is its mixed phase of two polymorphs anatase and rutile rather than their pristine compositions. Such a synergetic effect is understood by the staggered band alignment favorable to spatial charge separation. However, electron migration in either direction between the two phases has been reported, the reason of which is still unknown. We determined the band alignment by a novel method, i.e., transient infrared absorption-excitation energy scanning spectra, showing their conduction bands being aligned, thus the electron migration direction is controlled by dynamical factors, such as varying the particle size of anatase, putting electron or hole scavengers on either the surface of anatase or rutile phases, or both. A quantitative criterion capable of predicting the migration direction under various conditions including particle size and surface chemical reactions is proposed, the predictions have been verified experimentally in several typical cases. This would give rise to a great potential in designing more effective titania photocatalysts. PMID:26169699
Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John
2017-11-01
In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.
Lipid rafts sense and direct electric field-induced migration
Lin, Bo-jian; Tsao, Shun-hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling
2017-01-01
Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction. PMID:28739955
Lipid rafts sense and direct electric field-induced migration.
Lin, Bo-Jian; Tsao, Shun-Hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling; Chao, Pen-Hsiu Grace
2017-08-08
Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.
In vitro effects of direct current electric fields on adipose-derived stromal cells.
Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B
2010-06-18
Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Contact guidance is cell cycle-dependent.
Pourfarhangi, Kamyar Esmaeili; De La Hoz, Edgar Cardenas; Cohen, Andrew R; Gligorijevic, Bojana
2018-09-01
Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μ m-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo , breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.
A magnetic compass aids monarch butterfly migration
Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M
2014-01-01
Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration. PMID:24960099
Alignment of cell division axes in directed epithelial cell migration
NASA Astrophysics Data System (ADS)
Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens
2014-11-01
Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.
Device for imaging scenes with very large ranges of intensity
Deason, Vance Albert [Idaho Falls, ID
2011-11-15
A device for imaging scenes with a very large range of intensity having a pair of polarizers, a primary lens, an attenuating mask, and an imaging device optically connected along an optical axis. Preferably, a secondary lens, positioned between the attenuating mask and the imaging device is used to focus light on the imaging device. The angle between the first polarization direction and the second polarization direction is adjustable.
ERIC Educational Resources Information Center
Kirkegaard, Ane Marie Ørbø; Nat-George, Sisse Mari-Louise Wulff
2016-01-01
This article connects directly to the globalisation of both education and conflict, and attends to the intersection between these phenomena, by focusing on conflict-induced student migration, an area, which has until recently been neglected in studies of higher education and migration, and peace and conflict research. The focus is on the very…
Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura
2017-11-16
Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO 4 scaffolds could have potential applications for bone regeneration.
75 FR 67015 - Unexpected Urgent Refugee And Migration Needs Resulting From Flooding InPakistan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... September 3, 2010 Unexpected Urgent Refugee And Migration Needs Resulting From Flooding InPakistan... humanitarian needs resulting from recent devastating flooding in Pakistan. You are authorized and directed to...
75 FR 67013 - Unexpected Urgent Refugee and Migration Needs Resulting from Violence in Kyrgyzstan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... August 26, 2010 Unexpected Urgent Refugee and Migration Needs Resulting from Violence in Kyrgyzstan... humanitarian needs resulting from recent violence in Kyrgyzstan. You are authorized and directed to publish...
Tsouko, Efrosini; Wang, Jun; Frigo, Daniel E; Aydoğdu, Eylem; Williams, Cecilia
2015-09-01
Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity
NASA Astrophysics Data System (ADS)
Kobylkevich, Brian M.; Sarkar, Anyesha; Carlberg, Brady R.; Huang, Ling; Ranjit, Suman; Graham, David M.; Messerli, Mark A.
2018-05-01
Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.
Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity.
Kobylkevich, Brian M; Sarkar, Anyesha; Carlberg, Brady R; Huang, Ling; Ranjit, Suman; Graham, David M; Messerli, Mark A
2018-03-09
Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.
Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M.; Alford, Patrick W.; Kim, Deok-Ho; Provenzano, Paolo P.
2017-01-01
Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously ‘sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell–substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell–substratum and cell–cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level. PMID:28401884
Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D
2016-02-17
Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an EMMPRIN blocking antibody markedly inhibited TGF-β1 induced proliferation, migration, and differentiation of fibroblasts to myofibroblasts. EMMPRIN overexpression in lung fibroblasts was found to induce an increase in TOPFLASH luciferase reporter activity when compared with control fibroblasts. These findings indicate that TGF-β1 induces the release of EMMPRIN that activates β-catenin/canonical Wnt signaling pathway. EMMPRIN overexpression induces an anti-apoptotic and pro-fibrotic phenotype in lung fibroblasts that may contribute to the persistent fibro-proliferative state seen in IPF.
Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D.; Dufour, Sylvie
2016-01-01
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467
Xia, Bing; Huang, Liangliang; Zhu, Lei; Liu, Zhongyang; Ma, Teng; Zhu, Shu; Huang, Jinghui; Luo, Zhuojing
2016-01-01
Schwann cell (SC) transplantation is an attractive strategy for spinal cord injury (SCI). However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS) environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs) to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM) to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF). It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 μm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the migration of transplanted SCs in astrocyte-rich CNS regions in a specific direction and creating an SC bridge in the CNS environment to guide regenerated axons to their distal destination in the treatment of SCI. PMID:28003748
Theories of international labor migration: an overview.
Stahl, C W
1995-01-01
"Emigration pressures are primarily the result of increasing inequalities between countries which, in turn, are the result of factors internal to less developed countries and their relations with developed countries. Both micro (neoclassical) and macrostructural theories of migration are reviewed. It is argued that the neoclassical theory of migration is often unjustly criticized and is sufficiently robust to incorporate those structural considerations which are at the core of macrostructural theories. Moreover, the neoclassical theory, with slight modification, can incorporate the ¿new economics of migration.' The major empirical problem confronting models of international labor migration is that migration flows are constrained by immigration policy. This policy, in turn, is influenced by various special interest groups. The direction and form of migration flows is conditioned by contemporary and historical relationships between source and destination countries." excerpt
Josephson, Matthew P; Aliani, Rana; Norris, Megan L; Ochs, Matthew E; Gujar, Mahekta; Lundquist, Erik A
2017-02-01
During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1 In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. Copyright © 2017 by the Genetics Society of America.
Josephson, Matthew P.; Aliani, Rana; Norris, Megan L.; Ochs, Matthew E.; Gujar, Mahekta; Lundquist, Erik A.
2017-01-01
During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1. In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. PMID:27913619
Appraisal of rural-urban migration determinants: a case study of Constantine, Algeria.
Boukhemis, K; Zeghiche, A
1988-02-01
Despite some impressive achievements, Algerian planning strategy has neglected the spatial aspect of development, which has accelerated interregional migration and consequently has reinforced existing urban problems: 1) overcrowding, 2) the housing crisis, 3) unemployment, and 4) inadequate infrastructure services. It has become obvious that policy makers must take into account the major role of migration in balanced economic growth, and yet knowledge of migration patterns and processes is very limited in Algeria. Constantine's geographic location and role as a regional metropolis played an essential part in shaping migration flows. Up to 1966, Constantine's disproportionate growth was largely the result of massive migration. Since then, there has been a noticeable slowdown in migration, and natural increase has become the largest component of urban growth. This change reflects the government's development policies. Migration flows to Constantine have been deflected to the new industrial poles, which offer greater employment opportunities. More knowledge of migration is essential for an understanding of the factors that determine the rate and direction of migration flows.
NASA Astrophysics Data System (ADS)
Sakala, E.; Fourie, F.; Gomo, M.; Coetzee, H.
2018-01-01
In the last 20 years, the popular mineral systems approach has been used successfully for the exploration of various mineral commodities at various scales owing to its scientific soundness, cost effectiveness and simplicity in mapping the critical processes required for the formation of deposits. In the present study this approach was modified for the assessment of groundwater vulnerability. In terms of the modified approach, water drives the pollution migration processes, with various analogies having been derived from the mineral systems approach. The modified approach is illustrated here by the discussion of a case study of acid mine drainage (AMD) pollution in the Witbank, Ermelo and Highveld coalfields of the Mpumalanga and KwaZulu-Natal Provinces in South Africa. Many AMD cases have been reported in these provinces in recent years and are a cause of concern for local municipalities, mining and environmental agencies. In the Witbank, Ermelo and Highveld coalfields, several areas have been mined out while mining has not yet started in others, hence the need to identify groundwater regions prone to AMD pollution in order to avoid further impacts on the groundwater resources. A knowledge-based fuzzy expert system was built using vulnerability factors (energy sources, ligands sources, pollutant sources, transportation pathways and traps) to generate a groundwater vulnerability model of the coalfields. Highly vulnerable areas were identified in Witbank coalfield and the eastern part of the Ermelo coalfield which are characterised by the presence of AMD sources, good subsurface transport coupled with poor AMD pollution trapping properties. The results from the analysis indicate significant correlations between model values and both groundwater sulphate concentrations as well as pH. This shows that the proposed approach can indeed be used as an alternative to traditional methods of groundwater vulnerability assessment. The methodology only considers the AMD pollution attenuation and migration at a regional scale and does not account for local-scale sources of pollution and attenuation. Further research to refine the approach may include the incorporation of groundwater flow direction, rock-pollution reaction time, and temporal datasets for the future prediction of groundwater vulnerability. The approach may be applied to other coalfields to assess its robustness to changing hydrogeological conditions.
Interactions between CXCR4 and CXCL12 promote cell migration and invasion of canine hemangiosarcoma.
Im, K S; Graef, A J; Breen, M; Lindblad-Toh, K; Modiano, J F; Kim, J-H
2017-06-01
The CXCR4/CXCL12 axis plays an important role in cell locomotion and metastasis in many cancers. In this study, we hypothesized that the CXCR4/CXCL12 axis promotes migration and invasion of canine hemangiosarcoma (HSA) cells. Transcriptomic analysis across 12 HSA cell lines and 58 HSA whole tumour tissues identified heterogeneous expression of CXCR4 and CXCL12, which was associated with cell movement. In vitro, CXCL12 promoted calcium mobilization, cell migration and invasion that were directly proportional to surface expression of CXCR4; furthermore, these responses proved sensitive to the CXCR4 antagonist, AMD3100, in HSA cell lines. These results indicate that CXCL12 potentiates migration and invasion of canine HSA cells through CXCR4 signalling. The direct relationship between these responses in HSA cells suggests that the CXCR4/CXCL12 axis contributes to HSA progression. © 2015 John Wiley & Sons Ltd.
Shear-induced migration and orientation of rigid fibers
NASA Astrophysics Data System (ADS)
Butler, Jason; Strednak, Scott; Shaikh, Saif; Guazzelli, Elisabeth
2017-11-01
The spatial and orientation distributions are measured for a suspension of fibers during pressure-driven flow. The fibers are rigid and non-colloidal, and two aspect ratios (length to diameter ratios) of 12 and 24 were tested; the suspending fluid is viscous, Newtonian, and density matched to the particles. As with the migration of spheres in parabolic flows, the fibers migrate toward the centerline of the channel if the concentration is sufficiently high. Migration is not observed for concentrations below a volume fraction of 0.035 for aspect ratio 24 and 0.07 for aspect ratio 12. The orientation distribution of the fibers is spatially dependent. Fibers near the center of the channel align closely with the flow direction, but fibers near the wall are observed to preferentially align in the vorticity (perpendicular to the flow and gradient) direction. National Science Foundation (Grants #1511787 and #1362060).
TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.
Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C
2015-07-01
To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P < 0.05). Furthermore, sirtinol, SIRT1 siRNA and CBO-P11 attenuated phosphorylation of Akt, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) and the nuclear translocation of NF-κB p65. Pre-treatment with inhibitors of p38, ERK, JNK, PI3K and NF-κB decreased LPS + TNF-α-induced VEGF and SIRT1 expression, MMPs activity in HDPCs and angiogenesis (P < 0.05) in HUVECs. TNF-α and LPS led to upregulation of VEGF and SIRT1, and subsequent upregulation of MMP-2 and MMP-9 production, and promote angiogenesis via pathways involving PI3K, p38, ERK, JNK and NF-κB. The results suggest that inhibition of SIRT1 and VEGF might attenuate pro-inflammatory mediator-induced pulpal disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Xu, Yawen; Zheng, Shaobo; Chen, Binshen; Wen, Yong; Zhu, Shanwen
2016-01-01
Prostate cancer (PCa) is a leading cause of cancer-related death in men. Sodium phenylbutyrate (SPB) has shown its potential as an anticancer therapy in numerous cancer types. In the present study, we attempted to assess the effect of SPB against PCa and whether this treatment was associated with the regulation of survivin. Two human PCa cancer cell lines, DU145 and PC3, were used in the present study. Cell Counting Kit-8 (CCK-8) assay was conducted to measure the proliferation of PCa cells incubated with SPB. The effect of SPB on the cell apoptosis, cell colony formation ability, and cell morphological change was also assessed. Transwell experiment and Western blotting assay were performed to determine the effect of SPB on the migration and invasion ability of both cell types. Moreover, the expression pattern of survivin and MAPK members in both cell types after the treatment of SPB was also detected. Additionally, an in vivo tumor formation assay was performed to evaluate the treatment potential of SPB against PCa. We found that the viability of PCa cells was significantly inhibited by SPB treatment. As illustrated by flow cytometry, for DU145 cell line the average apoptotic rate of SPB-treated cells was significantly lower than that of the control group (P<0.05); similar results were also seen for PC3 (P<0.05). SPB administration also attenuated the colony formation and migration abilities in both cell lines. The expression level of survivin in SPB-treated cells was significantly downregulated, while the phosphorylation of p-38 and ERK was enhanced. Furthermore, in vivo tumor formation of both cell lines was suppressed by SPB as well. The above results confirmed the potential of SPB as an effective therapeutic agent for the prevention or treatment of PCa. This amelioration might be due to the blockade of the survivin pathway.
Kang, Sang-Wook; Kim, Min Soo; Kim, Hyun-Sung; Lee, Yong-Jin; Kang, Young-Hee
2012-06-01
The proliferation and migration of vascular smooth muscle cells (SMCs) play critical roles in intimal thickening and neointimal hyperplasia in early-phase atherosclerosis. This study tested whether wild grape extract (WGE) suppressed the proliferation and migration of human aortic SMCs induced by neighboring macrophages. Cellular expression of fibrogenic connective tissue growth factor (CTGF) and secretion of collagen IV and matrix metalloproteinase (MMP)-2 were determined in SMCs exposed to THP-1-differentiated macrophage-conditioned media. Proliferation was enhanced in SMCs exposed to macrophage-conditioned media collected during the early stage of differentiation, which was attenuated by treatment with ≥ 10 µg/ml WGE. Increased secretion of CTGF and collagen IV macrophage-conditioned media was suppressed in WGE-supplemented SMCs. TGF-β1-promoted production of CTGF and collagen IV was suppressed by blocking TGF-β receptors of R1 and R2 in SMCs. WGE repressed macrophage-conditioned media-upregulated MMP-2 secretion, indicating that WGE had an ability to encumber plaque rupture within atherosclerotic lesions. In addition, ≥ 1 µg/ml WGE ameliorated the migration of SMCs promoted by neighboring macrophages. These results demonstrate that WGE retarded neointimal hyperplasia and thickening within atherosclerotic plaques largely comprising of macrophages and SMCs. Therefore, WGE may be developed as an anti-proliferative and anti-migratory agent targeting SMCs in the proximity of newly differentiated and resident macrophages.
Chang, Yung-Ming; Ye, Chi-Xin; Ho, Tsung-Jung; Tsai, Te-Neng; Chiu, Ping-Ling; Tsai, Chin-Chuan; Lin, Yueh-Min; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang
2014-05-01
This study investigates the molecular mechanisms by which Alpiniae oxyphyllae fructus (AOF) promotes neuron regeneration. A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of AOF extract (0-200 mg/ml). We investigated the role of MAPK (ERK1/2, JNK and p38) pathways for AOF-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in RSC96 Schwann cells. The results showed that AOF increased the expressions of uPA, tPA, MMP-9, and MAPKs in vivo. In vitro, our results show that treatment with AOF extract induces ERK1/2, JNK, and p38 phosphorylation to activate the downstream PAs and MMPs signaling expression. AOF-stimulated ERK1/2, JNK, and p38 phosphorylation attenuated by individual pretreatment with siRNAs or inhibitors (U0126, SP600125 and SB203580), resulting in migration and uPA-related signal pathway inhibition. Taken together our data suggests the MAPKs (ERK1/2, JNK and p38), PAs (uPA, tPA), MMP (MMP2, MMP9) regenerative and migration signaling pathway of Schwann cells regulated by AOF extract might play a major role in Schwann cell migration and damaged peripheral nerve regeneration.
Zhu, Ping; Liao, Ling-Yao; Zhao, Ting-Ting; Mo, Xiao-Mei; Chen, George G; Liu, Zhi-Min
2017-02-15
The higher incidence of thyroid cancer in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogen have strongly suggested that estrogen may be involved in the occurrence and development of thyroid cancer. Cadmium (Cd) is a potent metalloestrogen that disrupts the endocrine system by mimicking the effects of 17β-estradiol (E2). In the present study, we demonstrate that similar to E2 and G1, a specific agonist for G protein-coupled estrogen receptor (GPER), Cd induces the proliferation, invasion and migration of human WRO and FRO thyroid cancer cells that have endogenous GPER. Moreover, like E2 and G1, Cd leads to a rapid activation of ERK/AKT, and then nuclear translocation of NF-κB, increased expression of cyclin A and D1, and secretion of IL-8, all of which are significantly attenuated by GPER blockage or knock-down in both WRO and FRO cells. Furthermore, the Cd-induced proliferation, invasion and migration are suppressed either by specific inhibitors for GPER, ERK, AKT and NF-κB, or by knock-down of GPER. These results suggest that GPER/ERK&AKT/NF-κB signaling pathway is involved in the Cd-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Khan, Md Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-08-14
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis.
Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang
2015-01-01
Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736
Taspine derivative TAS9 regulates cell growth and metastasis of human hepatocellular carcinoma.
Liu, Rui; Wang, Wenjie; Dai, Bingling; Liu, Yanping; Zhang, Yanmin
2015-11-01
Taspine has been indicated to be a potential anti‑carcinogenic agent. The present study investigated the effects of TAS9, a modified taspine derivative, on the proliferation and migration of the SMMC‑7721 human liver cancer cell line. First, the effects of TAS9 on SMMC‑7721 cell growth were examined using MTT and colony formation assaya. In vivo Transwell and wound healing assays were then performed to assess the inhibitory effects of TAS9 on cell invasion and migration, respectively. The expression of cell proliferation‑ and migration‑associated signaling molecules was investigated by western blot analysis. The results indicated that TAS9 inhibited SMMC‑7721 cell growth by downregulating the signaling molecules protein kinase Cβ (PKCβ), Akt, mammalian target of rapamycin, mitogen‑activated protein kinase kinase 2, RAF and c‑Jun N‑terminal kinase‑1, and inhibiting SMMC‑7721 cell migration by suppressing the expression of matrix metalloproteinase (MMP)‑2, MMP‑9, chemokine (C‑X‑C motif) receptor 4, nuclear factor κB, p38 and p53. Small interfering RNA‑mediated knockdown of PKCβ in the SMMC‑7721 cells significantly attenuated the tumor inhibitory effects of TAS9. In conclusion, the results of the present study suggested that TAS9 may have inhibitory effects on the proliferation and migration of SMMC‑7721 cells, and may serve as a potential candidate for cancer treatment.
Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou
2018-05-01
Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides are immobilized in a continuous manner. Selective adhesion and enhanced and directional migration of SMCs over FIBs are achieved by the interplay of cell-repelling layer and gradient SMCs-selective VAPG peptides, paving a new way for the design of novel vascular grafts with enhanced biological performance. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hsu, Chih‐Kai; Lin, Chih‐Chung; Hsiao, Li‐Der
2015-01-01
Background and Purpose Sphingosine 1‐phosphate (S1P), an important inflammatory mediator, has been shown to regulate COX‐2 production and promote various cellular responses such as cell migration. Mevastatin, an inhibitor of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase (HMG‐CoA), effectively inhibits inflammatory responses. However, the mechanisms underlying S1P‐evoked COX‐2‐dependent cell migration, which is modulated by mevastatin in human tracheal smooth muscle cells (HTSMCs) remain unclear. Experimental Approach The expression of COX‐2 was determined by Western blotting, real time‐PCR and promoter analyses. The signalling molecules were investigated by pretreatment with respective pharmacological inhibitors or transfection with siRNAs. The interaction between COX‐2 promoter and transcription factors was determined by chromatin immunoprecipitation assay. Finally, the effect of mevastatin on HTSMC migration and leukocyte counts in BAL fluid and COX‐2 expression induced by S1P was determined by a cell migration assay, cell counting and Western blot. Key Results S1P stimulated mTOR activation through the Nox2/ROS and PI3K/Akt pathways, which can further stimulate FoxO1 phosphorylation and translocation to the cytosol. We also found that S1P induced CREB activation and translocation via an mTOR‐independent signalling pathway. Finally, we showed that pretreatment with mevastatin markedly reduced S1P‐induced cell migration and COX‐2/PGE2 production via a PPARγ‐dependent signalling pathway. Conclusions and Implications Mevastatin attenuates the S1P‐induced increased expression of COX‐2 and cell migration via the regulation of FoxO1 and CREB phosphorylation and translocation by PPARγ in HTSMCs. Mevastatin could be beneficial for prevention of airway inflammation in the future. PMID:26359950
Boedtkjer, Ebbe; Bentzon, Jacob F; Dam, Vibeke S; Aalkjaer, Christian
2016-08-01
Arterial remodelling can cause luminal narrowing and obstruct blood flow. We tested the hypothesis that cellular acid-base transport facilitates proliferation and migration of vascular smooth muscle cells (VSMCs) and enhances remodelling of conduit arteries. [Formula: see text]-cotransport via NBCn1 (Slc4a7) mediates net acid extrusion and controls steady-state intracellular pH (pHi) in VSMCs of mouse carotid arteries and primary aortic explants. Carotid arteries undergo hypertrophic inward remodelling in response to partial or complete ligation in vivo, but the increase in media area and thickness and reduction in lumen diameter are attenuated in arteries from NBCn1 knock-out compared with wild-type mice. With [Formula: see text] present, gradients for pHi (∼0.2 units magnitude) exist along the axis of VSMC migration in primary explants from wild-type but not NBCn1 knock-out mice. Knock-out or pharmacological inhibition of NBCn1 also reduces filopodia and lowers initial rates of VSMC migration after scratch-wound infliction. Interventions to reduce H(+)-buffer mobility (omission of [Formula: see text] or inhibition of carbonic anhydrases) re-establish axial pHi gradients, filopodia, and migration rates in explants from NBCn1 knock-out mice. The omission of [Formula: see text] also lowers global pHi and inhibits proliferation in primary explants. Under physiological conditions (i.e. with [Formula: see text] present), NBCn1-mediated [Formula: see text] uptake raises VSMC pHi and promotes filopodia, VSMC migration, and hypertrophic inward remodelling. We propose that axial pHi gradients enhance VSMC migration whereas global acidification inhibits VSMC proliferation and media hypertrophy after carotid artery ligation. These findings support a key role of acid-base transport, particularly via NBCn1, for development of occlusive artery disease. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Ju, Da-Tong; Kuo, Wei-Wen; Ho, Tsung-Jung; Paul, Catherine Reena; Kuo, Chia-Hua; Viswanadha, Vijaya Padma; Lin, Chien-Chung; Chen, Yueh-Sheng; Chang, Yung-Ming; Huang, Chih-Yang
2015-01-01
Alpinia oxyphylla MIQ (Alpinate Oxyphyllae Fructus, AOF) is an important traditional Chinese medicinal herb whose fruits is widely used to prepare tonics and is used as an aphrodisiac, anti salivary, anti diuretic and nerve-protective agent. Protocatechuic acid (PCA), a simple phenolic compound was isolated from the kernels of AOF. This study investigated the role of PCA in promoting neural regeneration and the underlying molecular mechanisms. Nerve regeneration is a complex physiological response that takes place after injury. Schwann cells play a crucial role in the endogenous repair of peripheral nerves due to their ability to proliferate and migrate. The role of PCA in Schwann cell migration was determined by assessing the induced migration potential of RSC96 Schwann cells. PCA induced changes in the expression of proteins of three MAPK pathways, as determined using Western blot analysis. In order to determine the roles of MAPK (ERK1/2, JNK, and p38) pathways in PCA-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production, the expression of several MAPK-associated proteins was analyzed after siRNA-mediated inhibition assays. Treatment with PCA-induced ERK1/2, JNK, and p38 phosphorylation that activated the downstream expression of PAs and MMPs. PCA-stimulated ERK1/2, JNK and p38 phosphorylation was attenuated by individual pretreatment with siRNAs or MAPK inhibitors (U0126, SP600125, and SB203580), resulting in the inhibition of migration and the uPA-related signal pathway. Taken together, our data suggest that PCA extract regulate the MAPK (ERK1/2, JNK, and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) mediated regeneration and migration signaling pathways in Schwann cells. Therefore, PCA plays a major role in Schwann cell migration and the regeneration of damaged peripheral nerve.
Multimodal chemo-magnetic control of self-propelling microbots
NASA Astrophysics Data System (ADS)
Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar
2014-01-01
We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment. Electronic supplementary information (ESI) available: Scanning electron microscopy, transmission electron microscopy, X-ray diffraction pattern, vibrating sample magnetometry (VSM) hysteresis loop of freshly prepared FeNP coated micromotor and movies of micromotor motion. See DOI: 10.1039/c3nr05294j
Cryan, Paul M.; Diehl, Robert H.
2009-01-01
T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.
Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity
Danson, Christopher M.; Pocha, Shirin M.; Bloomberg, Graham B.; Cory, Giles O.
2009-01-01
Summary The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration. PMID:18032787
Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity.
Danson, Christopher M; Pocha, Shirin M; Bloomberg, Graham B; Cory, Giles O
2007-12-01
The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration.
Polymorphonuclear cell motility, ankylosing spondylitis, and HLA B27.
Pease, C T; Fordham, J N; Currey, H L
1984-01-01
Polymorphonuclear leucocyte (PMN) function was studied in 29 subjects with ankylosing spondylitis (AS). Of these, 20 were HLA B27+ve and 9 B27-ve. There were 30 controls and, of these, 15 were B27+ve. Random and directed cell migration was measured by 2 techniques: migration through a micropore filter and migration under an agar film. The chemo-attractant was either case in-activated serum or zymosan-activated serum. By both techniques directed motility was increased in subjects with B27 or with AS when compared to the B27-ve controls. This suggests that the disease AS and the possession of B27 are both associated with increased PMN motility. PMID:6608924
Nanopore Device for Reversible Ion and Molecule Sensing or Migration
NASA Technical Reports Server (NTRS)
Seger, R. Adam (Inventor); Pourmand, Nader (Inventor); Actis, Paolo (Inventor); Singaram, Bakthan (Inventor); Vilozny, Boaz (Inventor)
2015-01-01
Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
NASA Astrophysics Data System (ADS)
Xia, Zhao; Dafu, Weng; Jie, Gu; Binbin, Li
2017-11-01
In order to study the attenuation performance of solar direct reflectance of reflective thermal insulation coating under natural weathering, we conducted a measured study on five coatings with the built natural weathering platform. After the 18-month natural weathering experiments, the color of coating templets turn undertint or black with coating layer pulverized and fallen off, some of the templets starting to crack, fall off and go mouldy. Meanwhile, the reflectance ratio of reflective thermal insulation coating decreased significantly after 3 to 6 months, the degree of attenuation of the five templets is 2% to 28%. After 18 months’ exposure to the blazing sun, the most significant degree of attenuation reached 46%. The solar direct reflectance of coating templet of the same brand remained high as before after natural weathering with an initial high solar direct reflectance
NASA Astrophysics Data System (ADS)
Sychev, Ilya; Koulakov, Ivan; El Khrepy, Sami; Al-Arifi, Nassir
2017-01-01
Harrat Lunayyir is a relatively young basaltic field in Saudi Arabia located at the western margin of the Arabian Peninsula. In April-June 2009, strong seismic activity and ground deformations at this site marked the activation of the magma system beneath Harrat Lunayyir. In this study, we present new three-dimensional models of the attenuation of P and S waves during the unrest in 2009 based on the analysis of t*. We measured 1658 and 3170 values of t* for P and S waves, respectively, for the same earthquakes that were previously used for travel time tomography. The resulting anomalies of the P and S wave attenuation look very similar. In the center of the study area, we observe a prominent high-attenuation pattern, which coincides with the most active seismicity at shallow depths and maximum ground deformations. This high-attenuation zone may represent a zone of accumulation and ascending of gases, which originated at depths of 5-7 km due to the decompression of ascending liquid volatiles. Based on these findings and previous tomography studies, we propose that the unrest at Harrat Lunayyir in 2009 was triggered by a sudden injection of unstable liquid volatiles from deeper magma sources. At some depths, they were transformed to gases, which caused the volume to increase, and this led to seismic activation in the areas of phase transformations. The overpressurized gases ultimately found the weakest point in the rigid basaltic cover at the junction of several tectonic faults and escaped to the surface.
NASA Astrophysics Data System (ADS)
El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Sychev, Ilya
2017-04-01
Harrat Lunayyir is a relatively young basaltic field in Saudi Arabia located at the western margin of the Arabian Peninsula. In April-June 2009, strong seismic activity and ground deformations at this site marked the activation of the magma system beneath Harrat Lunayyir. In this study, we present new three-dimensional models of the attenuation of P and S waves during the unrest in 2009 based on the analysis of t*. We measured 1658 and 3170 values of t* for P and S waves, respectively, for the same earthquakes that were previously used for travel time tomography. The resulting anomalies of the P and S wave attenuation look very similar. In the center of the study area, we observe a prominent high-attenuation pattern, which coincides with the most active seismicity at shallow depths and maximum ground deformations. This high-attenuation zone may represent a zone of accumulation and ascending of gases, which originated at depths of 5-7 km due to the decompression of ascending liquid volatiles. Based on these findings and previous tomography studies, we propose that the unrest at Harrat Lunayyir in 2009 was triggered by a sudden injection of unstable liquid volatiles from deeper magma sources. At some depths, they were transformed to gases, which caused the volume to increase, and this led to seismic activation in the areas of phase transformations. The overpressurized gases ultimately found the weakest point in the rigid basaltic cover at the junction of several tectonic faults and escaped to the surface.
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.
2010-12-01
Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.
Kong, Su Chii; Nøhr-Nielsen, Asbjørn; Zeeberg, Katrine; Reshkin, Stephan Joel; Hoffmann, Else Kay; Novak, Ivana; Pedersen, Stine Falsig
2016-08-01
Novel treatments for pancreatic ductal adenocarcinoma (PDAC) are severely needed. The aim of this work was to explore the roles of H-lactate monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in PDAC cell migration and invasiveness. Monocarboxylate transporter expression, localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. MCT1 and MCT4 (messenger RNA, protein) were robustly expressed in all PDAC lines, localizing to the plasma membrane. Lactate influx capacity was highest in AsPC-1 cells and lowest in HPDE cells and was inhibited by the MCT inhibitor α-cyano-4-hydroxycinnamate (4-CIN), MCT1/MCT2 inhibitor AR-C155858, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858 and by MCT1 or MCT4 knockdown. Human PDAC cells exhibit robust MCT1 and MCT4 expression and partially MCT1- and MCT4-dependent lactate flux. PDAC cell migration is partially dependent on MCT4; and invasion, on MCT1 and MCT4. Inhibition of MCT1 and MCT4 may have clinical relevance in PDAC.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Hoeppli, Romy E; MacDonald, Katherine N; Leclair, Pascal; Fung, Vivian C W; Mojibian, Majid; Gillies, Jana; Rahavi, Seyed M R; Campbell, Andrew I M; Gandhi, Sanjiv K; Pesenacker, Anne M; Reid, Gregor; Lim, Chinten J; Levings, Megan K
2018-05-15
Cell-based therapy with CD4 + FOXP3 + Regulatory T cells (Tregs) is a promising strategy to limit organ rejection and graft-versus-host disease. Ongoing clinical applications have yet to consider how human Tregs could be modified to direct their migration to specific inflammation sites and/or tissues for more targeted immunosuppression. We show here that stable, homing-receptor-tailored human Tregs can be generated from thymic Tregs isolated from pediatric thymus or adult blood. To direct migration to Th1-inflammatory sites, addition of IFN-γ and IL-12 during Treg expansion produced suppressive, epigenetically-stable CXCR3 + TBET + FOXP3 + Th1-Tregs. CXCR3 remained expressed after injection in vivo and Th1-Tregs migrated efficiently towards CXCL10 in vitro. To induce tissue-specific migration, addition of retinoic acid (RA) during Treg expansion induced expression of the gut-homing receptors α4β7-integrin and CCR9. FOXP3 + RA-Tregs had elevated expression of the functional markers LAP and GARP, increased suppressive capacity in vitro and migrated efficiently to healthy and inflamed intestine after injection into mice. Homing-receptor-tailored Tregs were epigenetically stable even after long-term exposure to inflammatory conditions, suppressive in vivo and characterized by Th1- or gut-homing-specific transcriptomes. Tailoring human thymic Treg homing during in vitro expansion offers a new and clinically-applicable approach to improving the potency and specificity of Treg therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
THE ROLE OF ELECTRICAL SIGNALS IN MURINE CORNEAL WOUND RE-EPITHELIALISATION
Kucerova, R.; Walczysko, P.; Reid, B.; Ou, J.; Leiper, L. J.; Rajnicek, A. M.; McCaig, C. D.; Zhao, M.; Collinson, J. M.
2011-01-01
Ion flow from intact tissue into epithelial wound sites results in lateral electric currents that may represent a major driver of wound healing cell migration. Use of applied electric fields to promote wound healing is the basis of Medicare-approved electric stimulation therapy. This study investigated the roles for electric fields in wound re-epithelialisation, using the Pax6+/− mouse model of the human ocular surface abnormality aniridic keratopathy (in which wound healing and corneal epithelial cell migration are disrupted). Both wild-type and Pax6+/− corneal epithelial cells showed increased migration speeds in response to applied electric fields in vitro. However, only Pax6+/+ cells demonstrated directional galvanotaxis towards the cathode, with activation of pSrc signalling, polarised to the leading edges of cells. In vivo, the epithelial wound site normally represents a cathode, but 43% of Pax6+/− corneas exhibited reversed endogenous wound-induced currents (the wound was an anode). These corneas healed at the same rate as wild-type. Surprisingly, epithelial migration did not correlate with direction or magnitude of endogenous currents for wild-type or mutant corneas. Furthermore, during healing in vivo, no polarisation of pSrc was observed. We found little evidence that Src-dependent mechanisms of cell migration, observed in response to applied EFs in vitro, normally exist in vivo. It is concluded that endogenous electric fields do not drive long-term directionality of sustained healing migration in this mouse corneal epithelial model. Ion flow from wounds may nevertheless represent an important component of wound signalling initiation. PMID:20945376
Inner Core Anisotropy in Attenuation
NASA Astrophysics Data System (ADS)
Yu, W.; Wen, L.
2004-12-01
It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation and the direction of high attenuation correlates with that of high P velocity. Different anisotropic behaviors in velocity and attenuation can be best explained by different alignments of iron crystals under the hypothesis that iron crystals are anisotropic in both velocity and attenuation and their axes of high P velocity correspond to those of high attenuation.
Lafyatis, Robert; Burkly, Linda C.
2017-01-01
Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention. PMID:28662216
Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto
2017-07-01
A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.
Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.
2014-01-01
Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744
Niimi, Kenta; Ueda, Mizuha; Fukumoto, Moe; Kohara, Misaki; Sawano, Toshinori; Tsuchihashi, Ryo; Shibata, Satoshi; Inagaki, Shinobu; Furuyama, Tatsuo
2017-08-05
Sprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched. In this study, we investigated function of FOXO1 transcription factor associated with LEC migration toward exogenous ATP which has recently gathered attentions as a cell migratory attractant. The transwell membrane assay indicated that LECs migrated toward exogenous ATP, which was impaired by FOXO1 knockdown. RT-PCR analysis showed that P2Y1, a purinergic receptor, expression was markedly reduced by FOXO1 knockdown in LECs. Moreover, P2Y1 blockage impaired LEC migration toward exogenous ATP. Western blot analysis revealed that Akt phosphorylation contributed to FOXO1-dependent LEC migration toward exogenous ATP and its blockage affected LEC migratory activity. Furthermore, luciferase reporter assay and ChIP assay suggested that FOXO1 directly bound to a conserved binding site in P2RY1 promoter and regulated its activity. These results indicated that FOXO1 serves a pivotal role in LEC migration toward exogenous ATP via direct transcriptional regulation of P2Y1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.
Population, migration and urbanization.
1982-06-01
Despite recent estimates that natural increase is becoming a more important component of urban growth than rural urban transfer (excess of inmigrants over outmigrants), the share of migration in the total population growth has been consistently increasing in both developed and developing countries. From a demographic perspective, the migration process involves 3 elements: an area of origin which the mover leaves and where he or she is considered an outmigrant; the destination or place of inmigration; and the period over which migration is measured. The 2 basic types of migration are internal and international. Internal migration consists of rural to urban migration, urban to urban migration, rural to rural migration, and urban to rural migration. Among these 4 types of migration various patterns or processes are followed. Migration may be direct when the migrant moves directly from the village to the city and stays there permanently. It can be circular migration, meaning that the migrant moves to the city when it is not planting season and returns to the village when he is needed on the farm. In stage migration the migrant makes a series of moves, each to a city closer to the largest or fastest growing city. Temporary migration may be 1 time or cyclical. The most dominant pattern of internal migration is rural urban. The contribution of migration to urbanization is evident. For example, the rapid urbanization and increase in urban growth from 1960-70 in the Republic of Korea can be attributed to net migration. In Asia the largest component of the population movement consists of individuals and groups moving from 1 rural location to another. Recently, because urban centers could no longer absorb the growing number of migrants from other places, there has been increased interest in the urban to rural population redistribution. This reverse migration also has come about due to slower rates of employment growth in the urban centers and improved economic opportunities in rural areas. According to UN data, at the global level the trend in longterm and permanent migration is towards stabilization or decline in the rate of movement into developed countries like the US, Canada, the UK, and Australia from developing countries. Migrants in the Asian and Pacific region mostly tend to be in the 15-25 year age group. Most migrants streams are male dominant. The rural urban migration stream includes a large proportion of people who are better educated than their rural counterparts but generally less educated than the urban natives. Reasons for migrating in the Asian and Pacific region are economic, educational, sociocultural and political. A negative factor in rural migration is that it deprives villages of the ablest people.
Measuring directional urban spatial interaction in China: A migration perspective
Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen
2017-01-01
The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China’s urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities. PMID:28141853
Measuring directional urban spatial interaction in China: A migration perspective.
Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen
2017-01-01
The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China's urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities.
APC and Smad7 link TGFβ type I receptors to the microtubule system to promote cell migration
Ekman, Maria; Mu, Yabing; Lee, So Young; Edlund, Sofia; Kozakai, Takaharu; Thakur, Noopur; Tran, Hoanh; Qian, Jiang; Groeden, Joanna; Heldin, Carl-Henrik; Landström, Maréne
2012-01-01
Cell migration occurs by activation of complex regulatory pathways that are spatially and temporally integrated in response to extracellular cues. Binding of adenomatous polyposis coli (APC) to the microtubule plus ends in polarized cells is regulated by glycogen synthase kinase 3β (GSK-3β). This event is crucial for establishment of cell polarity during directional migration. However, the role of APC for cellular extension in response to extracellular signals is less clear. Smad7 is a direct target gene for transforming growth factor-β (TGFβ) and is known to inhibit various TGFβ-induced responses. Here we report a new function for Smad7. We show that Smad7 and p38 mitogen–activated protein kinase together regulate the expression of APC and cell migration in prostate cancer cells in response to TGFβ stimulation. In addition, Smad7 forms a complex with APC and acts as an adaptor protein for p38 and GSK-3β kinases to facilitate local TGFβ/p38–dependent inactivation of GSK-3β, accumulation of β-catenin, and recruitment of APC to the microtubule plus end in the leading edge of migrating prostate cancer cells. Moreover, the Smad7–APC complex links the TGFβ type I receptor to the microtubule system to regulate directed cellular extension and migratory responses evoked by TGFβ. PMID:22496417
Lee, Hojin
2013-01-01
Receptor tyrosine kinases (RTKs) exist in equilibrium between tyrosyl-phosphorylated and dephosphorylated states. Despite a detailed understanding of how RTKs become tyrosyl phosphorylated, much less is known about RTK tyrosyl dephosphorylation. Receptor protein tyrosine phosphatases (RPTPs) can play essential roles in the dephosphorylation of RTKs. However, a complete understanding of the involvement of the RPTP subfamily in RTK tyrosyl dephosphorylation has not been established. In this study, we have employed a small interfering RNA (siRNA) screen to identify RPTPs in the human genome that serve as RTK phosphatases. We observed that each RPTP induced a unique fingerprint of tyrosyl phosphorylation among 42 RTKs. We identified EphA2 as a novel LAR substrate. LAR dephosphorylated EphA2 at phosphotyrosyl 930, uncoupling Nck1 from EphA2 and thereby attenuating EphA2-mediated cell migration. These results demonstrate that each RPTP exerts a unique regulatory fingerprint of RTK tyrosyl dephosphorylation and suggest a complex signaling interplay between RTKs and RPTPs. Furthermore, we observed that LAR modulates cell migration through EphA2 site-specific dephosphorylation. PMID:23358419
Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yangxin; Yu, XiYong; Lin, ShuGuang
2007-05-11
Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response tomore » SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.« less
Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug; Kim, Koanhoi
2017-01-01
Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol.
Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug
2017-01-01
Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol. PMID:29236764
Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou
2015-11-27
Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jianhua S.; Zhai Wenwu; Young, William L.
2006-04-21
Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGFmore » stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.« less
PAQR3 inhibits the proliferation, migration and invasion in human glioma cells.
Tang, Shi-Lei; Gao, Yuan-Lin; Hu, Wen-Zhong
2017-08-01
Progestin and AdipoQ Receptor 3 (PAQR3), a member of the PAQR family, is down-regulated in several types of cancers and has been closely associated with tumor progression and development. However, little is known about the functions of PAQR3 in the tumorigenesis of human glioma. Therefore, in this report, we investigated the role of PAQR3 in human glioma. Our results showed that the expression of PAQR3 was significantly reduced in human glioma tissues and cell lines. PAQR3 overexpression inhibited the proliferation of glioma cells in vitro and attenuated tumor xenograft growth in vivo. In addition, PAQR3 overexpression suppressed the migration and invasion of glioma cells, as well as prevented the EMT process. Mechanistic studies demonstrated that PAQR3 overexpression significantly down-regulated the levels of phosphorylated PI3K and Akt in U251 cells. In conclusion, these results demonstrated that PAQR3 inhibited the proliferation, migration and invasion in glioma cells, at least in part, through the inactivation of PI3K/Akt signaling pathway. Therefore, PAQR3 may be a therapeutic target for the treatment of glioma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Park, Eun Hye; Kim, Seokho; Jo, Ji Yoon; Kim, Su Jin; Hwang, Yeonsil; Kim, Jin-Man; Song, Si Young; Lee, Dong-Ki; Koh, Sang Seok
2013-03-01
Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein involved in vascular remodeling, bone formation and developmental morphogenesis. CTHRC1 has recently been shown to be expressed in human cancers such as breast cancer and melanoma. In this study, we show that CTHRC1 is highly expressed in human pancreatic cancer tissues and plays a role in the progression and metastasis of the disease. CTHRC1 promoted primary tumor growth and metastatic spread of cancer cells to distant organs in orthotopic xenograft tumor mouse models. Overexpression of CTHRC1 in cancer cells resulted in increased motility and adhesiveness, whereas these cellular activities were diminished by down-regulation of the protein. CTHRC1 activated several key signaling molecules, including Src, focal adhesion kinase, paxillin, mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase and Rac1. Treatment with chemical inhibitors of Src, MEK or Rac1 and expression of dominant-negative Rac1 attenuated CTHRC1-induced cell migration and adhesion. Collectively, our results suggest that CTHRC1 has a role in pancreatic cancer progression and metastasis by regulating migration and adhesion activities of cancer cells.
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987
Smart cushion innovations (ACI) 100gm crash attenuator.
DOT National Transportation Integrated Search
2015-03-01
Determine the effectiveness of the SCI100GM in a mainline application. The : SCI100GM is a fully redirective, speed-dependent, non-gating, bi-directional crash : attenuator with a reverse-tapered design to eliminate side panel stress during a : colla...