Betaine Attenuates Alcohol-Induced Pancreatic Steatosis.
Yang, Wenjuan; Gao, Jinhang; Tai, Yang; Chen, Meng; Huang, Luming; Wen, Shilei; Huang, Zhiyin; Liu, Rui; Li, Jing; Tang, Chengwei
2016-07-01
To explore the effect of betaine on alcoholic pancreatic steatosis and its mechanism. Rats were randomly assigned to control, ethanol, or ethanol + betaine groups. Changes in pancreatic morphology; serum lipid levels; and pancreatic lipid, amylase and lipase levels were determined. The serum and adipose tissue adiponectin level was measured by an enzyme-linked immunoassay. Adiponectin receptor-1 (AdipoR1), AdipoR2, sterol regulatory element binding protein-1c (SREBP-1c), SREBP-2, and fatty acid synthetase expression levels were quantified. The SREBP-1c expression in SW1990 cells treated with various concentrations of ethanol or ethanol plus betaine and/or adiponectin was assessed. Alcohol-induced changes in pancreatic morphology were attenuated by betaine. Pancreatic triglyceride, free fatty acid and expression levels of SREBP-1c and fatty acid synthetase were elevated after ethanol feeding but remained at control levels after betaine supplementation. Alcohol-induced decreases in serum and adipose tissue adiponectin, pancreatic AdipoR1, amylase, and lipase were attenuated by betaine. Serum triglyceride and free fatty acid levels were elevated after alcohol consumption and remained higher after betaine supplementation compared with controls. Betaine and/or adiponectin suppressed alcohol-induced SREBP-1c upregulation in vitro. Betaine attenuated alcoholic-induced pancreatic steatosis most likely by suppressing pancreatic SREBP-1c both directly and through the restoration of adiponectin signaling.
Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B
2018-02-07
We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.
Hossain, Ekhtear; Sarkar, Oli; Li, Yuan; Anand-Srivastava, Madhu B
2018-03-01
We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O 2 - ), hydrogen peroxide (H 2 O 2 ), peroxynitrite (ONOO - ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P 22phox , and P 47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Hypoxia mediates mutual repression between microRNA-27a and PPARγ in the pulmonary vasculature.
Kang, Bum-Yong; Park, Kathy K; Green, David E; Bijli, Kaiser M; Searles, Charles D; Sutliff, Roy L; Hart, C Michael
2013-01-01
Pulmonary hypertension (PH) is a serious disorder that causes significant morbidity and mortality. The pathogenesis of PH involves complex derangements in multiple pathways including reductions in peroxisome proliferator-activated receptor gamma (PPARγ). Hypoxia, a common PH stimulus, reduces PPARγ in experimental models. In contrast, activating PPARγ attenuates hypoxia-induced PH and endothelin 1 (ET-1) expression. To further explore mechanisms of hypoxia-induced PH and reductions in PPARγ, we examined the effects of hypoxia on selected microRNA (miRNA or miR) levels that might reduce PPARγ expression leading to increased ET-1 expression and PH. Our results demonstrate that exposure to hypoxia (10% O2) for 3-weeks increased levels of miR-27a and ET-1 in the lungs of C57BL/6 mice and reduced PPARγ levels. Hypoxia-induced increases in miR-27a were attenuated in mice treated with the PPARγ ligand, rosiglitazone (RSG, 10 mg/kg/d) by gavage for the final 10 d of exposure. In parallel studies, human pulmonary artery endothelial cells (HPAECs) were exposed to control (21% O2) or hypoxic (1% O2) conditions for 72 h. Hypoxia increased HPAEC proliferation, miR-27a and ET-1 expression, and reduced PPARγ expression. These alterations were attenuated by treatment with RSG (10 µM) during the last 24 h of hypoxia exposure. Overexpression of miR-27a or PPARγ knockdown increased HPAEC proliferation and ET-1 expression and decreased PPARγ levels, whereas these effects were reversed by miR-27a inhibition. Further, compared to lungs from littermate control mice, miR-27a levels were upregulated in lungs from endothelial-targeted PPARγ knockout (ePPARγ KO) mice. Knockdown of either SP1 or EGR1 was sufficient to significantly attenuate miR-27a expression in HPAECs. Collectively, these studies provide novel evidence that miR-27a and PPARγ mediate mutually repressive actions in hypoxic pulmonary vasculature and that targeting PPARγ may represent a novel therapeutic approach in PH to attenuate proliferative mediators that stimulate proliferation of pulmonary vascular cells.
Tivers, M S; House, A K; Smith, K C; Wheeler-Jones, C P D; Lipscomb, V J
2014-01-01
Dogs with congenital portosystemic shunts (CPSS) have hypoplasia of the intrahepatic portal veins. Surgical CPSS attenuation results in the development of the intrahepatic portal vasculature, the precise mechanism for which is unknown, although new vessel formation by angiogenesis is suspected. That the degree of portal vascular development and the increase in portal vascularization after CPSS attenuation is significantly associated with hepatic vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) gene expression and serum VEGF concentration. Client-owned dogs with CPSS undergoing surgical treatment. Forty-nine dogs were included in the gene expression data and 35 in the serum VEGF data. Dogs surgically treated by partial or complete CPSS attenuation were prospectively recruited. Relative gene expression of VEGF and VEGFR2 was measured in liver biopsy samples taken at initial and follow-up surgery using quantitative polymerase chain reaction. Serum VEGF concentration was measured before and after CPSS attenuation using a canine specific ELISA. Statistical significance was set at the 5% level (P ≤ .05). There was a significant increase in the mRNA expression of VEGFR2 after partial attenuation (P = .006). Dogs that could tolerate complete attenuation had significantly greater VEGFR2 mRNA expression than those that only tolerated partial attenuation (P = .037). Serum VEGF concentration was significantly increased at 24 (P < .001) and 48 (P = .003) hours after attenuation. These findings suggest that intrahepatic angiogenesis is likely to occur after the surgical attenuation of CPSS in dogs, and contributes to the development of the intrahepatic vasculature postoperatively. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.
2011-01-01
The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675
Mariscotti, Javier F; García-del Portillo, Francisco
2009-03-01
Intracellular growth attenuator A (IgaA) was identified as a Salmonella enterica regulator limiting bacterial growth inside fibroblasts. Genetic evidence further linked IgaA to repression of the RcsCDB regulatory system, which responds to envelope stress. How IgaA attenuates this system is unknown. Here, we present genome expression profiling data of S. enterica serovar Typhimurium igaA mutants grown at high osmolarity and displaying exacerbated Rcs responses. Transcriptome data revealed that IgaA attenuates gene expression changes requiring phosphorylated RcsB (RcsB~P) activity. Some RcsB-regulated genes, yciGFE and STM1862 (pagO)-STM1863-STM1864, were equally expressed in wild-type and igaA strains, suggesting a maximal expression at low levels of RcsB ~P. Other genes, such as metB, ypeC, ygaC, glnK, glnP, napA, glpA, and nirB, were shown for the first time and by independent methods to be regulated by the RcsCDB system. Interestingly, IgaA-deficient strains with reduced RcsC or RcsD levels exhibited different Rcs responses and distinct virulence properties. spv virulence genes were differentially expressed in most of the analyzed strains. spvA expression required RcsB and IgaA but, unexpectedly, was also impaired upon stimulation of the RcsC-->RcsD-->RcsB phosphorelay. Overproduction of either RcsB(+) or a nonphosphorylatable RcsB(D56Q) variant in strains displaying low spvA expression unveiled that both dephosphorylated RcsB and RcsB~P are required for optimal spvA expression. Taken together, our data support a model with IgaA attenuating the RcsCDB system by favoring the switch of RcsB~P to the dephosphorylated state. This role of IgaA in constantly fine-tuning the RcsB~P/RcsB ratio may ensure the proper expression of important virulence factors, such as the Spv proteins.
Gene Rearrangement Attenuates Expression and Lethality of a Nonsegmented Negative Strand RNA Virus
NASA Astrophysics Data System (ADS)
Williams Wertz, Gail; Perepelitsa, Victoria P.; Ball, L. Andrew
1998-03-01
The nonsegmented negative strand RNA viruses comprise hundreds of human, animal, insect, and plant pathogens. Gene expression of these viruses is controlled by the highly conserved order of genes relative to the single transcriptional promoter. We utilized this regulatory mechanism to alter gene expression levels of vesicular stomatitis virus by rearranging the gene order. This report documents that gene expression levels and the viral phenotype can be manipulated in a predictable manner. Translocation of the promoter-proximal nucleocapsid protein gene N, whose product is required stoichiometrically for genome replication, to successive positions down the genome reduced N mRNA and protein expression in a stepwise manner. The reduction in N gene expression resulted in a stepwise decrease in genomic RNA replication. Translocation of the N gene also attenuated the viruses to increasing extents for replication in cultured cells and for lethality in mice, without compromising their ability to elicit protective immunity. Because monopartite negative strand RNA viruses have not been reported to undergo homologous recombination, gene rearrangement should be irreversible and may provide a rational strategy for developing stably attenuated live vaccines against this type of virus.
Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression.
Koh, Phil-Ok
2013-07-01
Intracellular calcium overload is a critical pathophysiological factor in ischemic injury. Hippocalcin is a neuronal calcium sensor protein that buffers intracellular calcium levels and protects cells from apoptotic stimuli. Ferulic acid exerts a neuroprotective effect in cerebral ischemia through its anti-oxidant and anti-inflammation activity. This study investigated whether ferulic acid contributes to hippocalcin expression during cerebral ischemia and glutamate exposure-induced neuronal cell death. Rats were immediately treated with vehicle or ferulic acid (100 mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO and followed by assessment of cerebral infarct. Ferulic acid reduced MCAO-induced infarct regions. A proteomics approach elucidated a decrease in hippocalcin in MCAO-operated animals, ferulic acid attenuates the injury-induced decrease in hippocalcin expression. Reverse transcription-polymerase chain reaction and Western blot analyses confirmed that ferulic acid prevents the injury-induced decrease in hippocalcin. In cultured HT22 hippocampal cells, glutamate exposure increased the intracellular Ca(2+) levels, whereas ferulic acid attenuated this increase. Moreover, ferulic acid attenuated the glutamate toxicity-induced decrease in hippocalcin expression. These findings can suggest the possibility that ferulic acid exerts a neuroprotective effect through modulating hippocalcine expression and regulating intracellular calcium levels. Copyright © 2013 Wiley Periodicals, Inc.
2014-01-01
Background Insulin resistance plays an important role in the development of metabolic syndrome (MS). Fu Fang Zhen Zhu Tiao Zhi formula (FTZ), a Chinese medicinal decoction, has been used to relieve hyperlipidemia, atherosclerosis and other symptoms associated with metabolic disorders in the clinic. Methods To evaluate the effect of FTZ on insulin resistance, HepG2 cells were induced with high insulin as a model of insulin resistance and treated with FTZ at one of three dosages. Next, the levels of glucose content, insulin receptor substrate1 (IRS1) protein expression and phosphatidylinositol 3-kinase (PI3K) subunit p85 mRNA expression were measured. Alternatively, MS was induced in rats via gavage feeding of a high-fat diet for four consecutive weeks followed by administration of FTZ for eight consecutive weeks. Body weight and the plasma levels of lipids, insulin and glucose were evaluated. Finally, the expression of PI3K p85 mRNA in adipose tissue of rats was measured. Results Our results revealed that FTZ attenuated glucose content and up-regulated the expression of PI3K p85 mRNA and IRS1 protein in insulin-resistant HepG2 cells in vitro. Moreover, FTZ reduced body weight and the plasma concentrations of triacylglycerol, cholesterol, fasting glucose and insulin in insulin resistant MS rats. FTZ also elevated the expression of PI3K p85 mRNA in the adipose tissues of MS rats. Conclusion FTZ attenuated MS symptoms by decreasing the plasma levels of glucose and lipids. The underlying mechanism was attenuation of the reduced expression of PI3K p85 mRNA and IRS1 protein in both insulin-resistant HepG2 cells and MS rats. PMID:24555840
Marwarha, Gurdeep; Raza, Shaneabbas; Meiers, Craig; Ghribi, Othman
2014-01-01
The aspartyl protease β-site AβPP-cleaving enzyme 1 (BACE1) catalyzes the rate-limiting step in Aβ production, a peptide at the nexus of neurodegenerative cascades in Alzheimer Disease (AD). The adipocytokine leptin has been demonstrated to reduce Aβ production and decrease BACE1 activity and expression levels. However, the signaling cascades involved in the leptin-induced mitigation in Aβ levels and BACE1 expression levels have not been elucidated. We have demonstrated that the transcription factor nuclear factor – kappa B (NF-κB) positively regulates BACE1 transcription. NF-κB activity is tightly regulated by the mammalian sirtuin SIRT1. Multiple studies have cogently evinced that leptin activates the metabolic master regulator SIRT1. In this study, we determined the extent to which SIRT1 expression and activity regulate the leptin-induced attenuation in BACE1 expression and Aβ levels in cultured human neuroblastoma SH-SY5Y cells. This study also elucidated and delineated the signal transduction pathways involved in the leptin induced mitigation in BACE1 expression. Our results demonstrate for the first time that leptin attenuates the activation and transcriptional activity of NF-κB by reducing the acetylation of the p65 subunit in a SIRT1-dependent manner. Furthermore, our data shows that leptin reduces the NF-κB – mediated transcription of BACE1 and consequently reduces Amyloid-β genesis. Our study provides a valuable insight and a novel mechanism by which leptin reduces BACE1 expression and Amyloid-β production and may help design potential therapeutic interventions. PMID:24874077
Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung
2016-01-25
Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. © 2016 Authors.
Attenuated XPC Expression Is Not Associated with Impaired DNA Repair in Bladder Cancer
Naipal, Kishan A. T.; Raams, Anja; Bruens, Serena T.; Brandsma, Inger; Verkaik, Nicole S.; Jaspers, Nicolaas G. J.; Hoeijmakers, Jan H. J.; van Leenders, Geert J. L. H.; Pothof, Joris; Kanaar, Roland; Boormans, Joost; van Gent, Dik C.
2015-01-01
Bladder cancer has a high incidence with significant morbidity and mortality. Attenuated expression of the DNA damage response protein Xeroderma Pigmentosum complementation group C (XPC) has been described in bladder cancer. XPC plays an essential role as the main initiator and damage-detector in global genome nucleotide excision repair (NER) of UV-induced lesions, bulky DNA adducts and intrastrand crosslinks, such as those made by the chemotherapeutic agent Cisplatin. Hence, XPC protein might be an informative biomarker to guide personalized therapy strategies in a subset of bladder cancer cases. Therefore, we measured the XPC protein expression level and functional NER activity of 36 bladder tumors in a standardized manner. We optimized conditions for dissociation and in vitro culture of primary bladder cancer cells and confirmed attenuated XPC expression in approximately 40% of the tumors. However, NER activity was similar to co-cultured wild type cells in all but one of 36 bladder tumors. We conclude, that (i) functional NER deficiency is a relatively rare phenomenon in bladder cancer and (ii) XPC protein levels are not useful as biomarker for NER activity in these tumors. PMID:25927440
Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.
2011-01-01
Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449
O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U
1991-07-08
In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.
Kang, Ju Hyung; Baik, Haing Woon; Yoo, Seung-Min; Kim, Joo Heon; Cheong, Hae Il; Park, Chung-Gyu; Kang, Hee Gyung; Ha, Il-Soo
2016-01-01
Renin, in addition to its activation of the renin-angiotensin system, binds to the (pro)renin receptor (PRR) and triggers inflammatory and fibrogenic signaling in tissue. In addition, aliskiren, a direct renin inhibitor, has been shown to affect IgG metabolism by altering PRR and neonatal Fc receptors (FcRns). We investigated the effect of aliskiren on proteinuria, glomerular extracellular matrix, expressions of fibronectin, transforming growth factor β1 (TGF-β1), PRR, FcRn and renal metabolism of IgG in a mice model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). IgG deposition and expressions of FcRn and PRR were enhanced at glomeruli and urinary IgG levels increased in anti-GBM GN. Aliskiren attenuated anti-GBM GN with reduction of proteinuria and cortical expressions of fibronectin and TGF-β1. In addition, aliskiren suppressed the renal cortical expressions of FcRn and PRR. Aliskiren also reduced the glomerular IgG depositions and the urinary IgG levels albeit with increased circulating serum IgG levels. These results suggest that suppression of FcRn and PRR and regulation of IgG metabolism may be related to the attenuation of anti-GBM GN by aliskiren. © 2016 S. Karger AG, Basel.
Marwarha, Gurdeep; Raza, Shaneabbas; Meiers, Craig; Ghribi, Othman
2014-09-01
The aspartyl protease β-site AβPP-cleaving enzyme 1 (BACE1) catalyzes the rate-limiting step in Aβ production, a peptide at the nexus of neurodegenerative cascades in Alzheimer Disease (AD). The adipocytokine leptin has been demonstrated to reduce Aβ production and decrease BACE1 activity and expression levels. However, the signaling cascades involved in the leptin-induced mitigation in Aβ levels and BACE1 expression levels have not been elucidated. We have demonstrated that the transcription factor nuclear factor - kappa B (NF-κB) positively regulates BACE1 transcription. NF-κB activity is tightly regulated by the mammalian sirtuin SIRT1. Multiple studies have cogently evinced that leptin activates the metabolic master regulator SIRT1. In this study, we determined the extent to which SIRT1 expression and activity regulate the leptin-induced attenuation in BACE1 expression and Aβ levels in cultured human neuroblastoma SH-SY5Y cells. This study also elucidated and delineated the signal transduction pathways involved in the leptin induced mitigation in BACE1 expression. Our results demonstrate for the first time that leptin attenuates the activation and transcriptional activity of NF-κB by reducing the acetylation of the p65 subunit in a SIRT1-dependent manner. Furthermore, our data shows that leptin reduces the NF-κB-mediated transcription of BACE1 and consequently reduces Amyloid-β genesis. Our study provides a valuable insight and a novel mechanism by which leptin reduces BACE1 expression and Amyloid-β production and may help design potential therapeutic interventions. Copyright © 2014 Elsevier B.V. All rights reserved.
Chung, Seung Ah; Jeon, Bo Kyung; Choi, Youn-Hee; Back, Keum Ok; Lee, Jong Bok; Kook, Koung Hoon
2014-04-09
This study aimed to investigate the effect of pirfenidone on the IL-1β-induced hyaluronic acid (HA) increase in orbital fibroblasts from patients with thyroid-associated ophthalmopathy (TAO). Primary cultured orbital fibroblasts were obtained from patients with TAO, and the excreted levels of HA from IL-1β-treated cells with or without pirfenidone were measured. The effect of pirfenidone on IL-1β-induced hyaluronic acid synthase (HAS) expression was evaluated. The relevance of the mitogen-activated protein kinase (MAPK)-mediated signaling pathway in IL-1β-induced HAS expression was assessed using specific inhibitors to p38, extracellular signal-regulated kinase (ERK), or c-Jun N-terminal kinase (JNK). The phosphorylation level of each MAPK in IL-1β-treated cells with or without pirfenidone and the level of AP-1 DNA binding were measured. The inhibitory potency of pirfenidone on HA production was evaluated using dexamethasone as a reference agent. Pirfenidone strongly attenuated the IL-1β-induced HA release in a dose-dependent manner. The IL-1β-induced HAS expression was decreased significantly following cotreatment with pirfenidone at the mRNA and protein levels. The production of mRNAs was halted by cotreatment with inhibitors of ERK and p38, but not by inhibitors of JNK. The IL-1β-induced ERK and p38 phosphorylation, and AP-1 DNA binding were attenuated in the presence of pirfenidone. Pirfenidone showed greater potency than dexamethasone in inhibiting increases in IL-1β-induced HA. Pirfenidone attenuates the IL-1β-induced HA production in orbital fibroblasts from patients with TAO, at least in part, through suppression of the MAPK-mediated HAS expression. These results support the potential use of pirfenidone for treatment of patients with TAO.
Hu, Xiong-Ke; Yin, Xin-Hua; Zhang, Hong-Qi; Guo, Chao-Feng; Tang, Ming-Xing
2016-01-01
Liraglutide, a synthetic analogue of glucagon-like peptide-1, is utilized in the treatment of type 2 diabetes and obesity. Liraglutide has been previously demonstrated to prevent osteoblastic differentiation of human vascular smooth muscle cells, resulting in the slowing of arterial calcification, however, its effect on bone formation remains unclear. The present study investigated the effect of liraglutide on osteoblastic differentiation using Alizarin Red S staining, and examined the molecular mechanisms underlying the regulatory effect by western blot analysis. The present study demonstrated that protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were downregulated in MC3T3-E1 cells during osteoblastic differentiation in commercial osteogenic differentiation medium, whereas protein expression levels of transforming growth factor-β (TGF-β) and phosphorylated mammalian target of rapamycin (p-mTOR) increased. Liraglutide was subsequently demonstrated to dose-dependently attenuate the osteoblastic differentiation of MC3T3-E1 cells, to upregulate p-AMPK, and downregulate p-mTOR and TGF-β protein expression levels. Treatment with an AMPK-specific inhibitor, Compound C, eradicated the effect of liraglutide on osteoblastic differentiation, and p-mTOR and TGF-β downregulation. An mTOR activator, MHY1485, also abolished the inhibitory effect of liraglutide on osteoblastic differentiation, and resulted in p-mTOR and TGF-β downregulation, but did not attenuate the liraglutide-induced increase in p-AMPK protein expression levels. The results of the present study demonstrate that liraglutide attenuates osteoblastic differentiation of MC3T3-E1 cells via modulation of AMPK/mTOR signaling. The present study revealed a novel function of liraglutide, which contributes to the understanding of its pharmacological and physiological effects in clinical settings. PMID:27600753
Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu
2014-11-11
To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.
Alantolactone suppresses APOC3 expression and alters lipid homeostasis in L02 liver cells.
Yang, Meiting; Zhao, Hanhan; Ai, Huihan; Zhu, Hongbin; Wang, Shuyue; Bao, Yongli; Li, Yuxin
2018-06-05
A high level of APOC3 expression is an independent risk factor for some lipid metabolism-related diseases, such as cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). This suggests that down-regulating APOC3 expression is a potential way of regulating lipid levels. In this study, we used luciferase reporter screening to identify a natural compound, alantolactone (ALA), that can inhibit the promoter activity of APOC3. ALA decreased APOC3 expression at both mRNA and protein levels. Then we pretreated L02 liver cells with oxLDL to investigate the function of ALA in lipid homeostasis. Intriguingly, ALA attenuated oxLDL-induced foam cell formation by reducing total cholesterol (TC) and triglyceride (TG) contents. Furthermore, these results could be reversed by overexpressing APOC3 protein. ALA inhibited tyrosine phosphorylation (Tyr705pho) of STAT3 to down-regulate APOC3 expression. Intriguingly, overexpression of a wild-type STAT3 or a constitutively active form of STAT3 (STAT3-C) up-regulated APOC3 expression and partly reversed the effect of ALA in oxLDL-induced L02 cells. Overexpression of wild-type STAT3 also increased TC but not TG contents in L02 cells. However, overexpression of STAT3-C significantly increased TC and TG contents, and the effect of ALA was partly attenuated by STAT3-C, although this was not statistically significant. These results suggest that ALA attenuates lipid accumulation through down-regulation of APOC3 expression, at least in part by inhibiting STAT3 signaling. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xiaohui; Ha, Tuanzhu; Hu, Yuanping; Lu, Chen; Liu, Li; Zhang, Xia; Kao, Race; Kalbfleisch, John; Williams, David; Li, Chuanfu
2016-12-27
Myocardial apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Activation of PI3K/Akt signaling protects the myocardium from I/R injury. This study investigated the role of miR-214 in hypoxia/reoxygenation (H/R)-induced cell damage in vitro and myocardial I/R injury in vivo. H9C2 cardiomyoblasts were transfected with lentivirus expressing miR-214 (LmiR-214) or lentivirus expressing scrambled miR-control (LmiR-control) respectively, to establish cell lines of LmiR-214 and LmiR-control. The cells were subjected to hypoxia for 4 h followed by reoxygenation for 24 h. Transfection of LmiR-214 suppresses PTEN expression, significantly increases the levels of Akt phosphorylation, markedly attenuates LDH release, and enhances the viability of the cells subjected to H/R. In vivo transfection of mouse hearts with LmiR-214 significantly attenuates I/R induced cardiac dysfunction and reduces I/R-induced myocardial infarct size. LmiR-214 transfection significantly attenuates I/R-induced myocardial apoptosis and caspase-3/7 and caspase-8 activity. Increased expression of miR-214 by transfection of LmiR-214 suppresses PTEN expression, increases the levels of phosphorylated Akt, represses Bim1 expression and induces Bad phosphorylation in the myocardium. In addition, in vitro data shows transfection of miR-214 mimics to H9C2 cells suppresses the expression and translocation of Bim1 from cytosol to mitochondria and induces Bad phosphorylation. Our in vitro and in vivo data suggests that miR-214 protects cells from H/R induced damage and attenuates I/R induced myocardial injury. The mechanisms involve activation of PI3K/Akt signaling by targeting PTEN expression, induction of Bad phosphorylation, and suppression of Bim1 expression, resulting in decreases in I/R-induced myocardial apoptosis.
Regla-Nava, Jose A.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Fernandez-Delgado, Raul; Fett, Craig; Castaño-Rodríguez, Carlos; Perlman, Stanley; DeDiego, Marta L.
2015-01-01
ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a respiratory disease with a mortality rate of 10%. A mouse-adapted SARS-CoV (SARS-CoV-MA15) lacking the envelope (E) protein (rSARS-CoV-MA15-ΔE) is attenuated in vivo. To identify E protein regions and host responses that contribute to rSARS-CoV-MA15-ΔE attenuation, several mutants (rSARS-CoV-MA15-E*) containing point mutations or deletions in the amino-terminal or the carboxy-terminal regions of the E protein were generated. Amino acid substitutions in the amino terminus, or deletion of regions in the internal carboxy-terminal region of E protein, led to virus attenuation. Attenuated viruses induced minimal lung injury, diminished limited neutrophil influx, and increased CD4+ and CD8+ T cell counts in the lungs of BALB/c mice, compared to mice infected with the wild-type virus. To analyze the host responses leading to rSARS-CoV-MA15-E* attenuation, differences in gene expression elicited by the native and mutant viruses in the lungs of infected mice were determined. Expression levels of a large number of proinflammatory cytokines associated with lung injury were reduced in the lungs of rSARS-CoV-MA15-E*-infected mice, whereas the levels of anti-inflammatory cytokines were increased, both at the mRNA and protein levels. These results suggested that the reduction in lung inflammation together with a more robust antiviral T cell response contributed to rSARS-CoV-MA15-E* attenuation. The attenuated viruses completely protected mice against challenge with the lethal parental virus, indicating that these viruses are promising vaccine candidates. IMPORTANCE Human coronaviruses are important zoonotic pathogens. SARS-CoV caused a worldwide epidemic infecting more than 8,000 people with a mortality of around 10%. Therefore, understanding the virulence mechanisms of this pathogen and developing efficacious vaccines are of high importance to prevent epidemics from this and other human coronaviruses. Previously, we demonstrated that a SARS-CoV lacking the E protein was attenuated in vivo. Here, we show that small deletions and modifications within the E protein led to virus attenuation, manifested by minimal lung injury, limited neutrophil influx to the lungs, reduced expression of proinflammatory cytokines, increased anti-inflammatory cytokine levels, and enhanced CD4+ and CD8+ T cell counts in vivo, suggesting that these phenomena contribute to virus attenuation. The attenuated mutants fully protected mice from challenge with virulent virus. These studies show that mutations in the E protein are not well tolerated and indicate that this protein is an excellent target for vaccine development. PMID:25609816
Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali
2011-10-01
Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.
Hussain, Ahtesham; Yadav, Mukesh Kumar; Bose, Shambhunath; Wang, Jing-Hua; Lim, Dongwoo; Song, Yun-Kyung; Ko, Seong-Gyu; Kim, Hojun
2016-01-01
Obesity has become a major global health challenge due to its increasing prevalence, and the associated health risk. It is the main cause of various metabolic diseases including diabetes, hypertension, cardiovascular disease, stroke and certain forms of cancer. In the present study we evaluated the anti-obesity property of Daesiho-tang (DSHT), an herbal medicine, using high fat diet (HFD)-induced obese mice as a model. Our results showed that DSHT ameliorated body weight gain, decreased total body fat, regulated expression of leptin and adiponectin genes of adipose tissue and exerted an anti-diabetic effect by attenuating fasting glucose level and serum insulin level in HFD-fed animals. In addition, DSHT-treatment significantly reduced total cholesterol (TC), triglycerides (TG) and increased high density lipoprotein-cholesterol (HDL), glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) levels in serum and reduced deposition of fat droplets in liver. DSHT treatment resulted in significantly increased relative abundance of bacteria including Bacteroidetes, Bacteroidetes/Firmicutes ratio, Akkermansia Bifidobacterium., Lactobacillus, and decreased the level of Firmicutes. Using RT2 profiler PCR array, 39 (46%) genes were found to be differentially expressed in HFD-fed mice compared to normal control. However, normal gene expressions were restored in 36 (92%) genes of HFD-fed mice, when co-exposed to DSHT. The results of this study demonstrated that DSHT is an effective herbal formulation in attenuation of obesity in HFD-fed mice through alteration of gene expressions and modulation of intestinal microbiota.
Li, Yonghong; Cai, Shanglang; Wang, Qixin; Zhou, Jingwei; Hou, Bo; Yu, Haichu; Ge, Zhiming; Guan, Renyan; Liu, Xu
2016-05-15
The role of the Mas receptor in the activity of valsartan against intimal hyperplasia is unclear. Herein, we investigated the role of the angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis on the activity of valsartan against intimal hyperplasiain balloon-injured rat aortic arteries. Wistar rats were randomized equally into the sham control group, injured group, and injured plus valsartan (20 mg/kg/d)-treated group. Valsartan significantly attenuated the vascular smooth muscle cell proliferation and intimal and medial thickening on days 14 and 28 after injury. The angiotensin-(1-7) levels as well as ACE2 and Mas receptor mRNA/protein expression were significantly decreased in the injured rats, compared to the uninjured rats; meanwhile, the angiotensin II level as well as the ACE and AT1 receptor mRNA/protein expression were increased (all P < 0.05 or < 0.01). Additionally, the p-ERK protein expression was increased (P < 0.01). Treatment with valsartan significantly increased the angiotensin-(1-7) levels as well as ACE2 and Mas receptor mRNA/protein expression but decreased the angiotensin II level, ACE and AT1 receptor mRNA/protein expression, as well as the p-ERK protein expression, compared to the injured group (all P < 0.05 or < 0.01). These results suggest that valsartan attenuates neointimal hyperplasiain balloon-injured rat aortic arteries through activation of the ACE2-angiotensin-(1-7)-Mas axis as well as inhibition of the ACE-angiotensin II-AT1 and p-ERK pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Chang, Yun Sil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Oh, Wonil; Yang, Yoon Sun; Park, Won Soon
2011-01-01
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this preclinical translation study was to optimize the dose of human UCB-derived MSCs in attenuating hyperoxia-induced lung injury in newborn rats. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (95% oxygen) or normoxia after birth for 14 days. Three different doses of human UCB-derived MSCs, 5 × 10(3) (HT1), 5 × 10(4) (HT2), and 5 × 10(5) (HT3), were delivered intratracheally at postnatal day (P) 5. At P14, lungs were harvested for analyses including morphometry for alveolarization, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining, myeoloperoxidase activity, mRNA level of tumor necross factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β), human glyceradehyde-3-phosphate dehydrogenase (GAPDH), and p47(phox), and collagen levels. Increases in TUNEL-positive cells were attenuated in all transplantation groups. However, hyperoxia-induced lung injuries, such as reduced alveolarization, as evidenced by increased mean linear intercept and mean alveolar volume, and increased collagen levels were significantly attenuated in both HT2 and HT3, but not in HT1, with better attenuation in HT3 than in HT2. Dose-dependent human GAPDH expression, indicative of the presence of human RNA in lung tissue, was observed only in the transplantation groups, with higher expression in HT3 than in HT2, and higher expression in HT2 than in HT1. Hyperoxia-induced inflammatory responses such as increased myeloperoxidase acitivity, mRNA levels of TNF-α, IL-1β, IL-6, and TGF-β of the lung tissue, and upregulation of both cytosolic and membrane p47(phox), indicative of oxidative stress, were significantly attenuated in both HT2 and HT3 but not in HT1. These results demonstrate that intratracheal transplantation of human UCB-derived MSCs with appropriate doses may attenuate hyperoxia-induced lung injury through active involvement of these cells in modulating host inflammatory responses and oxidative stress in neonatal rats.
Yoshida, Asuka; Samal, Siba K.
2017-01-01
Avian paramyxovirus serotype 3 (APMV-3) causes infection in a wide variety of avian species, but it does not cause apparent diseases in chickens. On the contrary, APMV-1, also known as Newcastle disease virus (NDV), can cause severe disease in chickens. Currently, natural low virulence strains of NDV are used as live-attenuated vaccines throughout the world. NDV is also being evaluated as a vaccine vector against poultry pathogens. However, due to routine vaccination programs, chickens often possess pre-existing antibodies against NDV, which may cause the chickens to be less sensitive to recombinant NDV vaccines expressing antigens of other avian pathogens. Therefore, it may be possible for an APMV-3 vector vaccine to circumvent this issue. In this study, we determined the optimal insertion site in the genome of APMV-3 for high level expression of a foreign gene. We generated recombinant APMV-3 viruses expressing the green fluorescent protein (GFP) by inserting the GFP gene at five different intergenic regions in the genome. The levels of GFP transcription and translation were evaluated. Interestingly, the levels of GFP transcription and translation did not follow the 3′-to-5′ attenuation mechanism of non-segmented, negative-sense RNA viruses. The insertion of GFP gene into the P-M gene junction resulted in higher level of expression of GFP than when the gene was inserted into the upstream N-P gene junction. Unlike NDV, insertion of GFP did not attenuate the growth efficiency of AMPV-3. Thus, APMV-3 could be a more useful vaccine vector for avian pathogens than NDV. PMID:28473820
Yoshida, Asuka; Samal, Siba K
2017-01-01
Avian paramyxovirus serotype 3 (APMV-3) causes infection in a wide variety of avian species, but it does not cause apparent diseases in chickens. On the contrary, APMV-1, also known as Newcastle disease virus (NDV), can cause severe disease in chickens. Currently, natural low virulence strains of NDV are used as live-attenuated vaccines throughout the world. NDV is also being evaluated as a vaccine vector against poultry pathogens. However, due to routine vaccination programs, chickens often possess pre-existing antibodies against NDV, which may cause the chickens to be less sensitive to recombinant NDV vaccines expressing antigens of other avian pathogens. Therefore, it may be possible for an APMV-3 vector vaccine to circumvent this issue. In this study, we determined the optimal insertion site in the genome of APMV-3 for high level expression of a foreign gene. We generated recombinant APMV-3 viruses expressing the green fluorescent protein (GFP) by inserting the GFP gene at five different intergenic regions in the genome. The levels of GFP transcription and translation were evaluated. Interestingly, the levels of GFP transcription and translation did not follow the 3'-to-5' attenuation mechanism of non-segmented, negative-sense RNA viruses. The insertion of GFP gene into the P-M gene junction resulted in higher level of expression of GFP than when the gene was inserted into the upstream N-P gene junction. Unlike NDV, insertion of GFP did not attenuate the growth efficiency of AMPV-3. Thus, APMV-3 could be a more useful vaccine vector for avian pathogens than NDV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seok-Joo; Lee, Sun-Mee, E-mail: sunmee@skku.edu
Alcoholic fatty liver is susceptible to secondary stresses such as ischemia/reperfusion (I/R). Baicalin is an active component extracted from Scutellaria baicalensis, which is widely used in herbal preparations for treatment of hepatic diseases and inflammatory disorders. This study evaluated the potential beneficial effect of baicalin on I/R injury in alcoholic fatty liver. Rats were fed an alcohol liquid diet or a control isocaloric diet for 5 weeks, and then subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Baicalin (200 mg/kg) was intraperitoneally administered 24 and 1 h before ischemia. After reperfusion, baicalin attenuated the increases inmore » serum alanine aminotransferase activity, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels in alcoholic fatty liver. The increased levels of TNF-α and IL-6 mRNA expression and inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions increased after reperfusion, which were higher in ethanol-fed animals, were attenuated by baicalin. In ethanol-fed animals, baicalin attenuated the increases in toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 protein expressions and the nuclear translocation of NF-κB after reperfusion. In conclusion, our findings suggest that baicalin ameliorates I/R-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in alcoholic fatty liver. -- Highlights: ► Baicalin attenuates hepatic I/R-induced inflammation in alcoholic fatty liver. ► Baicalin downregulates TLR4, MyD88 expression during I/R in alcoholic fatty liver. ► Baicalin attenuates NF-κB nuclear translocation during I/R in alcoholic fatty liver.« less
Li, Yong; Pan, Yiyuan; Gao, Lin; Lu, Guotao; Zhang, Jingzhu; Xie, Xiaochun; Tong, Zhihui; Li, Baiqiang; Li, Gang; Li, Weiqin
2018-01-22
Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms. Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20 μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR. Dexmedetomidine at 20 μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20 μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Nelson, Christine L; Tang, Roderick S; Stillman, Elizabeth A
2013-08-12
MEDI-534 is the first live, attenuated and vectored respiratory syncytial virus (RSV) vaccine to be evaluated in seronegative children. It consists of a bovine/human parainfluenza virus type 3 (PIV3) backbone with the RSV fusion glycoprotein (RSV-F) expressed from the second position. The PIV3 fusion and hemaglutinin-neuraminidase proteins are human-derived. No small animal appropriately replicates the restrictive growth of bovine PIV3 (bPIV3) based viruses relative to human PIV3 (hPIV3) observed in the respiratory tract of rhesus monkeys and humans, making analysis of the genetic stability of the attenuation phenotype and maintenance of RSV-F expression difficult. Screening of multiple cell-lines identified MRC-5 cells as supporting permissive growth of hPIV3 while restricting bPIV3 and MEDI-534 growth. In MRC-5 cells, the peak titers of MEDI-534 were more than 20-fold lower compared to hPIV3 peak titers. After more than 10 multicycle passages in MRC-5 cells, genetic alterations were detected in MEDI-534 that contributed to a partial loss in restricted growth in MRC-5 cells and a decrease in RSV-F expression. These adaptive mutations did not occur in the RSV-F gene but were found in the polyA sequence upstream of the transgene. MRC-5 adapted MEDI-534 viruses (1) lost some attenuation but did not replicate to the level of hPIV3 in this cell line, (2) did not completely lose RSV-F expression and (3) were able to elicit a protective anti-RSV immune response in hamsters despite lower levels of RSV-F expression. Interestingly analysis of shed MEDI-534 from a recent clinical trial indicates that in some recipients similar mutations arise by day 7 or day 12 post immunization (in press) suggesting that these mutations can arise rapidly in the human host. The utility and limits of MRC-5 cells for characterizing the attenuation and RSV-F expression of MEDI-534 is discussed. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Datta, Sanchita; Roy, Syamal; Manna, Madhumita
2015-01-01
Visceral leishmaniasis (VL) or Kala-Azar (KA) is one of the most deadly forms of disease among all neglected tropical diseases. There are no satisfactory drugs or vaccine candidates available for this dreaded disease. Our previous studies showed promising therapeutic and prophylactic efficacy of the live, radio-attenuated parasites through intramuscular (I.M.) and intraperitoneal (I.P.) route in BALB/c mice model. The T-cell proliferation level, the mRNA expression level of inducible nitric oxide synthase (iNOS) and tumor growth factor-beta (TGF-β) genes and finally the phosphorylation levels of phosphoinositide dependent kinase 1 (PDK1), phosphoinositide 3 kinase (PI3K) and p38 mitogen activated protein kinase (p38MAPK) molecules were checked in BALB/c mice model immunized with radio-attenuated Leishmania donovani parasites through I.M. route. Higher T-cell proliferation, increased iNOS level, and suppressed TGF-β level were found in treated infected animal groups (100 and 150Gy) in relation to untreated infected animals. Likewise, phosphorylation levels of PDK1, PI3K and p38MAPK of these two groups were increased when compared to untreated infected controls. The clearance of the parasites from treated infected groups of animals may be mediated by the restoration of T-cell due to therapy with radio-attenuated L. donovani parasites. The killing of parasites was mediated by increase in nitric oxide release through PDK1, PI3K and p38MAPK signaling pathways. A lower TGF-β expression has augmented the restored Th1 ambience in the 100 and 150Gy treated animal groups proving further the efficacy of the candidate vaccine. Copyright © 2015. Published by Elsevier Editora Ltda.
Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish
Khor, Beng-Siang; Amar Jamil, Mohd Fadzly; Adenan, Mohamad Ilham; Chong Shu-Chien, Alexander
2011-01-01
A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pengfei; Zhang, Yingjie; Liu, Yunye
2016-01-01
Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepaticmore » stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.« less
Nandrolone attenuates aortic adaptation to exercise in rats.
Sun, Mengwei; Shen, Weili; Zhong, Meifang; Wu, Pingping; Chen, Hong; Lu, Aiyun
2013-03-15
In this study, we investigated the interaction between exercise-induced mitochondrial adaptation of large vessels and the effects of chronic anabolic androgenic steroids (AASs). Four groups of Sprague-Dawley rats were studied: (i) sedentary, (ii) sedentary + nandrolone-treated, (iii) aerobic exercise trained, and (iv) trained + nandrolone-treated. Aerobic training increased the levels of aortic endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) in accordance with improved acetylcholine-induced vascular relaxation. These beneficial effects were associated with induction of mitochondrial complexes I and V, increased mitochondrial DNA copy number, and greater expression of transcription factors involved in mitochondrial biogenesis/fusion. We also observed enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein-7 (ATG7). The levels of thiobarbituric acid-reactive substances and protein carbonyls remained unchanged, whereas significant increases in catalase and mitochondrial manganese superoxide dismutase (MnSOD) levels were observed in the aortas of trained animals, when compared with sedentary controls. Nandrolone increased oxidative stress biomarkers and inhibited exercise-induced increases of eNOS, HO-1, catalase, and MnSOD expression. In addition, it also attenuated elevated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitofusin-2 expression, and further up-regulated LC3II conversion, beclin1, ATG7, and dynamin-related protein-1 expression. These results demonstrate that nandrolone attenuates aortic adaptations to exercise by regulating mitochondrial dynamic remodelling, including down-regulation of mitochondrial biogenesis and intensive autophagy.
Ikeda, Jun-ichi; Kojima, Natsuki; Saeki, Kohji; Ishihara, Miki; Takayama, Makoto
2015-01-05
Patients with hypertension have a high risk of ischemic stroke and subsequent stroke-associated pneumonia. Stroke-associated pneumonia is most likely to develop in patients with dysphagia. The present study was designed to compare the ameliorative effects of different treatments in rat model of dysphagia. Spontaneously hypertensive rats were treated with bilateral common carotid artery occlusion (BCAO) to induce chronic cerebral hypoperfusion causing disorders of the swallowing reflex. Angiotensin-converting enzyme (ACE) inhibitors (perindopril, imidapril and enalapril), an angiotensin II type 1-receptor blocker (losartan), a vasodilator (hydralazine) and an indirect dopamine agonist (amantadine) were dissolved in drinking water and administered to the rats for six weeks. The blood pressure, the swallowing reflex under anesthesia, the substance P content in the striatum and the tyrosine hydroxylase (TH) expression in the substantial nigra were measured. Compared to the vehicle control, the decrease in the swallowing reflex induced by BCAO was attenuated significantly by enalapril, imidapril and perindopril, but only slightly by losartan. Hydralazine had no effect on the swallowing reflex. Amantadine significantly attenuated the decreased swallowing reflex but increased the blood pressure. Cerebral hypoperfusion for six weeks decreased the TH expression and substance P level. Perindopril improved both the TH expressions and substance P level, but imidapril, enalapril and amantadine only improved the substance P level. The present findings indicate that perindopril could be useful for preventing dysphagia in the chronic stage of stroke by attenuating the decrease in TH expression and the decrease in the substance P level. Copyright © 2014 Elsevier B.V. All rights reserved.
Harrison-Findik, Duygu Dee; Lu, Sizhao
2015-05-06
This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.
Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J
2014-04-21
Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Montes-Cobos, Elena; Li, Xiao; Fischer, Henrike J; Sasse, André; Kügler, Sebastian; Didié, Michael; Toischer, Karl; Fassnacht, Martin; Dressel, Ralf; Reichardt, Holger M
2015-01-01
Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.
GREEN TEA BEVERAGE AND EPIGALLOCATECIHIN GALLATE ATTENUATE NICOTINE CARDIOCYTOTOXICITY IN RAT.
Nacerai, Haroun; Gregory, Tufo; Sihem, Berdja; Salah, Akkal; Souhila, Aouichat-Bouguerra
2017-01-01
Nicotine, the principal alkaloid in tobacco, induces a cellular damage on heart and cardiomyocyte culture. We investigate the protective role of green tea extract (GTE) against nicotine. Male albino rats were treated by injecting nicotine (1 mg/kg b.w. for 2 months) subcutaneously and thereby supplementing GTE 2% orally to them. The levels of plasma lipids, cardiac MDA (malondialdehyde) and catalase activity Mitogen-activated proteins kinases MAPKs were measured. The expression levels of (ERK 1/2, extracellular signal - regulated kinase 1/2 and P38 MAP kinase), endoplasmic reticulum stress (ERS)-related protein (GRP78 glucose regulated protein-78, HSP70 heat shock protein-70, CHOP C/EBP homologous protein), AIF (apoptosis-inducing factor) and VDAC (voltage-dependant anion channel) were evaluated by Western blot. In the in vitro study, the cardiomyocytes were exposed to nicotine (10 μM) and major GTE polyphenol epigallocatechin gallate EGCG (50 μM). Data showed that nicotine induced a significant increase on MDA levels, LDH (lactate dehy- drogenase) and aminotransferase activity compared with control. The heart sections of nicotine exposed-rats showed severe degenerative changes. Nicotine increased the expression of P38, but not ERK 1/2, ER stress-related proteins and AIF with no changes of VDAC. Concomitant GTE treatment significantly normalized and/or improved,the levels of MDA, enzymatic activity and histological injuries. The proteins expression was attenuated by GTE co-administration without any changes for VDAC. ERK 1/2 expression enhanced in GTE- treated groups. Exposure of cardiac cells to nicotine induced the expression of ERS markers and p38; the ERK 1/2 was highly expressed only in the presence of EGCG. It was suggested that green tea beverage can protect against nicotine toxicity by attenuating oxidative stress, endoplasmic reticulum stress and apoptosis. Otherwise, our results have showed that ERK1/2 and p38 are survival signaling pathways activated by GTE and EGCG.
Shi, Feng-Tao; Cheung, Anthony P; Klausen, Christian; Huang, He-Feng; Leung, Peter C K
2010-10-01
We have reported that growth differentiation factor 9 (GDF9) can enhance activin A (β(A)β(A))-induced inhibin B (αβ(B)) secretion in human granulosa-lutein (hGL) cells, but its effects on steroidogenic acute regulatory protein (StAR), ovarian steroidogenic enzymes, and progesterone production are unknown. We undertook this study to further evaluate GDF9 in this regard. hGL cells from women undergoing in vitro fertilization treatment were cultured with and without small interfering RNA (siRNA) transfection targeted at inhibin α-subunit or GDF9 before treatment with GDF9, activin A, FSH, or combinations. We compared StAR, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase expression in hGL cells and progesterone levels in culture media after these treatments. mRNA, protein, and hormone levels were assessed with real-time RT-PCR, immunoblotting, and ELISA, respectively. Data were analyzed by ANOVA followed by Tukey's test. Activin A alone reduced basal and FSH-induced progesterone production by decreasing the expression of StAR protein, which regulates the rate-limiting step in steroidogenesis but not P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase. GDF9 attenuated these activin A effects on StAR and progesterone. After transfection of α-subunit siRNA, activin A level increased (P < 0.001), whereas basal and activin A-induced inhibin B levels (with and without GDF9) decreased. Furthermore, the effects of GDF9 in reversing activin A suppression of progesterone production were attenuated (P < 0.001). Transfection of GDF9 siRNA decreased GDF9 as expected and led to lower StAR expression and progesterone secretion than those observed with activin A treatment alone. GDF9 attenuates the suppressive effects of activin A on StAR expression and progesterone production by increasing the expression of inhibin B, which acts as an activin A competitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Duanmin; Su, Cunjin; Jiang, Min
There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs,more » siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.« less
Nakagawa, Keisuke; Nakagawa, Kento; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Mitake, Hiromichi; Okada, Kazuma; Yamaoka, Satoko; Takashima, Yasuhiro; Masatani, Tatsunori; Okadera, Kota; Ito, Naoto; Mizutani, Tetsuya; Sugiyama, Makoto
2017-10-09
The current live rabies vaccine SAG2 is attenuated by only one mutation (Arg-to-Glu) at position 333 in the glycoprotein (G333). This fact generates a potential risk of the emergence of a pathogenic revertant by a back mutation at this position during viral propagation in the body. To circumvent this risk, it is desirable to generate a live vaccine strain highly and stably attenuated by multiple mutations. However, the information on attenuating mutations other than that at G333 is very limited. We previously reported that amino acids at positions 273 and 394 in the nucleoprotein (N273/394) (Leu and His, respectively) of fixed rabies virus Ni-CE are responsible for the attenuated phenotype by enhancing interferon (IFN)/chemokine gene expressions in infected neural cells. In this study, we found that amino acid substitutions at N273/394 (Phe-to-Leu and Tyr-to-His, respectively) attenuated the pathogenicity of the oral live vaccine ERA, which has a virulent-type Arg at G333. Then we generated ERA-N273/394-G333 attenuated by the combination of the above attenuating mutations at G333 and N273/394, and checked its safety. Similar to the ERA-G333, which is attenuated by only the mutation at G333, ERA-N273/394-G333 did not cause any symptoms in adult mice after intracerebral inoculation, indicating a low level of residual pathogenicity of ERA-N273/394-G333. Further examination revealed that infection with ERA-N273/394-G333 induces IFN-β and CXCL10 mRNA expressions more strongly than ERA-G333 infection in a neuroblastoma cell line. Importantly, we found that the ERA-N273/394-G333 stain has a lower risk for emergence of a pathogenic revertant than does the ERA-G333. These results indicate that ERA-N273/394-G333 has a potential to be a promising candidate for a live rabies vaccine strain with a high level of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manning, John T; Seregin, Alexey V; Yun, Nadezhda E; Koma, Takaaki; Huang, Cheng; Barral, José; de la Torre, Juan C; Paessler, Slobodan
2017-01-01
Junin virus (JUNV), a highly pathogenic New World arenavirus, is the causative agent of Argentine hemorrhagic fever (AHF). The live-attenuated Candid #1 (Can) strain currently serves as a vaccine for at-risk populations. We have previously shown that the Can glycoprotein (GPC) gene is the primary gene responsible for attenuation in a guinea pig model of AHF. However, the mechanisms through which the GPC contributes to the attenuation of the Can strain remain unknown. A more complete understanding of the mechanisms underlying the attenuation and immunogenicity of the Can strain will potentially allow for the rational design of additional safe and novel vaccines. Here, we provide a detailed comparison of both RNA and protein expression profiles between both inter- and intra-segment chimeric JUNV recombinant clones expressing combinations of genes from the Can strain and the pathogenic Romero (Rom) strain. The recombinant viruses that express Can GPC, which were shown to be attenuated in guinea pigs, displayed different RNA levels and GPC processing patterns as determined by Northern and Western blot analyses, respectively. Analysis of recombinant viruses containing amino acid substitutions selected at different mouse brain passages during the generation of Can revealed that altered Can GPC processing was primarily due to the T168A substitution within G1, which eliminates an N-linked glycosylation motif. Incorporation of the T168A substitution in the Rom GPC resulted in a Can-like processing pattern of Rom GPC. In addition, JUNV GPCs containing T168A substitution were retained within the endoplasmic reticulum (ER) and displayed significantly lower cell surface expression than wild-type Rom GPC. Interestingly, the reversion A168T in Can GPC significantly increased GPC expression at the cell surface. Our results demonstrate that recombinant JUNV (rJUNV) expressing Can GPC display markedly different protein expression and elevated genomic RNA expression when compared to viruses expressing Rom GPC. Additionally, our findings indicate that the N-linked glycosylation motif at amino acid positions 166-168 is important for trafficking of JUNV GPC to the cell surface, and the elimination of this motif interferes with the GPC release from the ER.
Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jeong-Min; Kim, Seok-Joo; Lee, Sun-Mee, E-ma
Ischemia and reperfusion (I/R) is a complex phenomenon involving massive inflammation and cell death. Necroptosis refers to a newly described cell death as “programmed necrosis” that is controlled by receptor-interacting protein kinase (RIP) 1 and RIP3, which is involved in the pathogenesis of several inflammatory diseases. Autophagy is an essential cytoprotective system that is rapidly activated in response to various stimuli and involves crosstalk between different modes of cell death and inflammation. In this study, we investigated pattern changes in necroptosis and its role in autophagy signaling during hepatic I/R. Male C57BL/6 mice were subjected to 60 min of ischemiamore » followed by 3 h reperfusion. Necrostatin-1 (Nec-1, a necroptosis inhibitor; 1.65 mg/kg) was administered intraperitoneally 5 min before reperfusion. Hepatic I/R significantly increased the level of RIP3, phosphorylated RIP1 and RIP3 protein expression, and RIP1/RIP3 necrosome formation, which were attenuated by Nec-1. I/R also significantly increased serum levels of alanine aminotransferase, tumor necrosis factor-α, and interleukin-6, which were attenuated by Nec-1. Meanwhile, hepatic I/R activated autophagy and mitophagy, as evidenced by increased LC3-II, PINK1, and Parkin, and decreased sequestosome 1/p62 protein expression. Nec-1 attenuated these changes and attenuated the increased levels of autophagy-related protein (ATG) 3, ATG7, Rab7, and cathepsin B protein expression during hepatic I/R. Moreover, hepatic I/R activated the extracellular signal-regulated kinase (ERK) pathway, and Nec-1 attenuated this increase. Taken together, our findings suggest that necroptosis contributes to hepatic damage during I/R, which induces autophagy via ERK activation. - Highlights: • Hepatic I/R induces RIP1/RIP3-dependent necroptosis. • Necroptosis contributes to hepatic I/R injury. • Necroptosis activates autophagic flux via ERK activation during hepatic I/R.« less
Kim, Hye Yoom; Oh, Hyuncheol; Li, Xiang; Cho, Kyung Woo; Kang, Dae Gill; Lee, Ho Sub
2011-01-27
The vasorelaxant effect of ethanol extract of seeds of Oenothera odorata (Onagraceae) (one species of evening primroses) (ESOO) and its mechanisms involved were defined. Changes in vascular tension, guanosine 3',5'-cyclic monophosphate (cGMP) levels, and Akt expression were measured in carotid arterial rings from rats. Seeds of Oenothera odorata were extracted with ethanol (94%) and the extract was filtered, concentrated and stored at -70°C. ESOO relaxed endothelium-intact, but not endothelium-denuded, carotid arterial rings in a concentration-dependent manner. Similarly, ESOO increased cGMP levels of the carotid arterial rings. Pretreatment of endothelium-intact arterial rings with L-NAME, an inhibitor of nitric oxide synthase (NOS), or ODQ, an inhibitor of soluble guanylyl cyclase (sGC), blocked the ESOO-induced vasorelaxation and increase in cGMP levels. Nominally Ca(2+)-free but not L-typed Ca(2+) channel inhibition attenuated the ESOO-induced vasorelaxation. Thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate, modulators of store-operated Ca(2+) entry (SOCE), significantly attenuated the ESOO-induced vasorelaxation and increase in cGMP levels. Further, wortmannin, an inhibitor of Akt, attenuated the ESOO-induced vasorelaxation and increases in cGMP levels and phosphorylated Akt2 expression. K(+) channel blockade with TEA, 4-aminopyridine, and glibenclamide attenuated the ESOO-induced vascular relaxation. Taken together, the present study demonstrates that ESOO relaxes vascular smooth muscle via endothelium-dependent NO-cGMP signaling through activation of the Akt-eNOS-sGC pathway. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Oh, Sang-seok; Kim, Donghyeok; Kim, Dong-Hee; Chang, Hong Hee; Sohn, Kyung-Cheol; Kim, Kyo Hyun; Jung, Sung Hoo; Lee, Byoung Kil; Kim, Joo Heon; Kim, Kwang Dong
2012-10-01
N-myc downstream-regulated gene 2 (NDRG2) has been studied for its inhibitory effects against growth and metastasis of many tumor cell types. In this study, we showed NDRG2 expression was correlated with favorable recurrence-free survival of patients with breast cancer and inhibited metastasis of breast cancer cells (4T1). NDRG2 expression was examined in 189 breast carcinoma tissues and paired normal breast tissues using immunohistochemistry. Histological and clinicopathological data were correlated using Pearson's chi-square test of independence. NDRG2 expression in human breast cancer tissues was inversely associated with lymph node metastasis and pTNM stage. Furthermore, patients with breast cancer with a high level of NDRG2 expression showed favorable recurrence-free survival (P = 0.038). To study the effect of NDRG2 on metastasis in vivo, we established an NDRG2-overexpressing mouse breast cancer cell line (4T1-NDRG2) and measured the metastasis and survival of 4T1-NDRG2 tumor-bearing mice. To test whether transforming growth factor β (TGF-β)- mediated metastasis of 4T1 was inhibited by NDRG2 expression, TGF-Smad-binding element (SBE)-luciferase activity and/or measurement of active TGF-β were performed in cell or tumor tissue level. 4T1-NDRG2 cells grew gradually and showed less metastatic activity in vivo and low invasiveness in vitro. 4T1-NDRG2 cells showed lower SBE-luciferase activity and lower level of active autocrine TGF-β than 4T1-Mock did. Correctly, our data show that NDRG2 significantly suppress tumor metastasis by attenuating active autocrine TGF-β production, and the attenuation might be typically associated with the favorable recurrence-free survival of patients clinically.
Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee
2016-04-01
Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Bi, Rui Yun; Ding, Yun; Gan, Ye Hua
2016-03-01
To investigate the association between the analgesic effect of non-steroidal antiinflammatory drugs (NSAIDs) and sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG). Temporomandibular joint (TMJ) inflammation was induced by complete Freund's adjuvant (CFA) in female rats. Ibuprofen, diclofenac sodium and meloxicam were given intragastrically before induction of TMJ inflammation. Histopathological evaluation and scoring of TMJ inflammation was used to evaluate the level of inflammation. The head withdrawal threshold and food intake were measured to evaluate TMJ nociceptive responses. The mRNA and protein expression of trigeminal ganglionic Nav1.7 was examined using real-time polymerase chain reaction and western blot. Twenty-four hours after the injection of CFA into the TMJs, NSAIDs attenuated hyperalgesia of inflamed TMJ and simultaneously blocked inflammation-induced upregulation of Nav1.7 mRNA and protein expression in the TG. However, ibuprofen and diclofenac sodium slightly attenuated TMJ inflammation and meloxicam did not affect TMJ inflammation. Attenuation of hyperalgesia of inflamed TMJ by NSAIDs might be associated with their role in blocking upregulation of trigeminal ganglionic Nav1.7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal
Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity tomore » both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.« less
TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells
Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi
2016-01-01
Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763
Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie
2018-05-01
Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.
Park, Ji Hyeon; Jang, Hye Ryoun; Kim, Do Hee; Kwon, Ghee Young; Lee, Jung Eun; Huh, Wooseong; Choi, Soo Jin; Oh, Wonil; Oh, Ha Young; Kim, Yoon-Goo
2017-10-01
Preemptive treatment with mesenchymal stem cells (MSCs) can attenuate cisplatin-induced acute kidney injury (AKI). However, it is uncertain whether MSC treatment after the development of renal dysfunction prevents AKI progression or if MSC immunomodulatory properties contribute to MSC therapy. In this study, human umbilical cord blood (hUCB)-derived MSCs were used to compare the effects and mechanisms of early and late MSC therapy in a murine model. After cisplatin injection into C57BL/6 mice, hUCB-MSCs were administered on day 1 (early treatment) or day 3 (late treatment). With early treatment, cisplatin nephrotoxicity was attenuated as evidenced by decreased blood urea nitrogen (BUN) and reduced apoptosis and tubular injury scores on day 3 Early treatment resulted in downregulation of intrarenal monocyte chemotactic protein-1 and IL-6 expression and upregulation of IL-10 and VEGF expression. Flow cytometric analysis showed similar populations of infiltrated immune cells in both groups; however, regulatory T-cell (Treg) infiltration was 2.5-fold higher in the early treatment group. The role of Tregs was confirmed by the blunted effect of early treatment on renal injury after Treg depletion. In contrast, late treatment (at a time when BUN levels were 2-fold higher than baseline levels) showed no renoprotective effects on day 6 Neither the populations of intrarenal infiltrating immune cells (including Tregs) nor cytokine expression levels were affected by late treatment. Our results suggest that early MSC treatment attenuates renal injury by Treg induction and immunomodulation, whereas a late treatment (i.e., after the development of renal dysfunction) does not prevent AKI progression or alter the intrarenal inflammatory micromilieu. Copyright © 2017 the American Physiological Society.
Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.
Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae
2009-08-01
It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.
Savchuk, Iuliia; Söder, Olle; Svechnikov, Konstantin
2013-01-01
It is well known that estrogens and estrogen-like endocrine disruptors can suppress steroidogenic gene expression, attenuate androgen production and decrease differentiation of adult Leydig cell lineage. However, there is no information about the possible link between the potency of Leydig cells to produce androgens and their sensitivity to estrogenic stimuli. Thus, the present study explored the relationship between androgen production potential of Leydig cells and their responsiveness to estrogenic compounds. To investigate this relationship we selected mouse genotypes contrasting in sex hormone levels and differing in testosterone/estradiol (T/E2) ratio. We found that two mouse genotypes, CBA/Lac and C57BL/6j have the highest and the lowest serum T/E2 ratio associated with increased serum LH level in C57BL/6j compared to CBA/Lac. Analysis of steroidogenic gene expression demonstrated significant upregulation of Cyp19 gene expression but coordinated suppression of LHR, StAR, 3βHSDI and Cyp17a1 in Leydig cells from C57BL/6j that was associated with attenuated androgen production in basal and hCG-stimulated conditions compared to CBA/Lac mice. These genotype-dependent differences in steroidogenesis were not linked to changes in the expression of estrogen receptors ERα and Gpr30, while ERβ expression was attenuated in Leydig cells from C57BL/6j compared to CBA/Lac. No effects of estrogenic agonists on steroidogenesis in Leydig cells from both genotypes were found. In contrast, xenoestrogen bisphenol A significantly potentiated hCG-activated androgen production by Leydig cells from C57BL/6j and CBA/Lac mice by suppressing conversion of testosterone into corresponding metabolite 5α-androstane-3α,17β-diol. All together our data indicate that developing mouse Leydig cells with different androgen production potential are resistant to estrogenic stimuli, while xenoestrogen BPA facilitates hCG-induced steroidogenesis in mouse Leydig cells via attenuation of testosterone metabolism. This cellular event can cause premature maturation of Leydig cells that may create abnormal intratesticular paracrine milieu and disturb proper development of germ cells. PMID:23967237
Sung, Jin-Hee; Gim, Sang-Ah; Koh, Phil-Ok
2014-04-30
Ferulic acid, a phenolic phytochemical compound found in various plants, has a neuroprotective effect through its anti-oxidant and anti-inflammation functions. Peroxiredoxin-2 and thioredoxin play a potent neuroprotective function against oxidative stress. We investigated whether ferulic acid regulates peroxiredoxin-2 and thioredoxin levels in cerebral ischemia. Sprague-Dawley rats (male, 210-230g) were treated with vehicle or ferulic acid (100mg/kg) after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24h after MCAO. Decreases in peroxiredoxin-2 and thioredoxin levels were elucidated in MCAO-operated animals using a proteomics approach. We found that ferulic acid treatment prevented the MCAO-induced decrease in the expression of peroxiredoxin-2 and thioredoxin. RT-PCR and Western blot analyses confirmed that ferulic acid treatment attenuated the MCAO-induced decrease in peroxiredoxin-2 and thioredoxin levels. Moreover, immunoprecipitation analysis showed that the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) decreased during MCAO, whereas ferulic acid prevented the MCAO-induced decrease in this interaction. Our findings suggest that ferulic acid plays a neuroprotective role by attenuating injury-induced decreases in peroxiredoxin-2 and thioredoxin levels in neuronal cell injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhao, Tian-Yu; Su, Li-Ping; Ma, Chun-Ye; Zhai, Xiao-Han; Duan, Zhi-Jun; Zhu, Ying; Zhao, Gang; Li, Chun-Yan; Wang, Li-Xia; Yang, Dong
2015-07-08
Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. Tight junction dysfunction develops during the development of liver cirrhosis, and endotoxemia will develop subsequently. Correspondingly, increased endotoxin in portal system worsens tight junction dysfunction via decreasing intestinal occludin and claudin-1 expressions and increasing enterocytic apoptosis. Endotoxemia and intestinal barrier dysfunction form a vicious circle. External administration of IGF-1 breaks this vicious circle. Improvement of tight junctions might be one possible mechanism of the restoration of intestinal barrier function mediated by IGF-1.
Bloch, Konstantin; Gil-Ad, Irit; Tarasenko, Igor; Vanichkin, Alexey; Taler, Michal; Hornfeld, Shay Henry; Vardi, Pnina; Weizman, Abraham
2015-06-01
The treatment of rodents with non-competitive antagonist of the N-Methyl-D-aspartate (NMDA) receptor, MK-801 (dizocilpine), induces symptoms of psychosis, deficits in spatial memory and impairment of synaptic plasticity. Recent studies have suggested that insulin administration might attenuate the cognitive dysfunctions through the modulatory effect on the expression of NMDA receptors and on the brain insulin signaling. Intrahepatic pancreatic islet transplantation is known as an efficient tool for correcting impaired insulin signaling. We examined the capacity of syngeneic islets grafted into the cranial subarachnoid cavity to attenuate behavioral dysfunctions in rats exposed to MK-801. Animals were examined in the open field (OF) and the Morris Water Maze (MWM) tests following acute or subchronic administration of MK-801. We found well-vascularized grafted islets expressing insulin, glucagon and somatostatin onto the olfactory bulb and prefrontal cortex. Significantly higher levels of insulin were detected in the hippocampus and prefrontal cortex of transplanted animals compared to the non-transplanted rats. All animals expressed normal peripheral glucose homeostasis for two months after transplantation. OF tests revealed that rats exposed to MK-801 treatment, showed hyper-responsiveness in motility parameters and augmented center field exploration compared to intact controls and these effects were attenuated by the grafted islets. Moreover, in the MWM, the rats treated with MK-801 showed impairment of spatial memory that were partially corrected by the grafted islets. In conclusion, intracranial islet transplantation leads to the expression of islet hormones in the brain and attenuates behavioral and cognitive dysfunctions in rats exposed to MK-801 administration without altering the peripheral glucose homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.
Ashley, Noah T; Walton, James C; Haim, Achikam; Zhang, Ning; Prince, Laura A; Fruchey, Allison M; Lieberman, Rebecca A; Weil, Zachary M; Magalang, Ulysses J; Nelson, Randy J
2013-07-15
Sleep is restorative, whereas reduced sleep leads to negative health outcomes, such as increased susceptibility to disease. Sleep deprivation tends to attenuate inflammatory responses triggered by infection or exposure to endotoxin, such as bacterial lipopolysaccharide (LPS). Previous studies have demonstrated that Siberian hamsters (Phodopus sungorus), photoperiodic rodents, attenuate LPS-induced fever, sickness behavior and upstream pro-inflammatory gene expression when adapted to short day lengths. Here, we tested whether manipulation of photoperiod alters the suppressive effects of sleep deprivation upon cytokine gene expression after LPS challenge. Male Siberian hamsters were adapted to long (16 h:8 h light:dark) or short (8 h:16 h light:dark) photoperiods for >10 weeks, and were deprived of sleep for 24 h using the multiple platform method or remained in their home cage. Hamsters received an intraperitoneal injection of LPS or saline (control) 18 h after starting the protocol, and were killed 6 h later. LPS increased liver and hypothalamic interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF) gene expression compared with vehicle. Among LPS-challenged hamsters, sleep deprivation reduced IL-1 mRNA levels in liver and hypothalamus, but not TNF. IL-1 attenuation was independent of circulating baseline cortisol, which did not increase after sleep deprivation. Conversely, photoperiod altered baseline cortisol, but not pro-inflammatory gene expression in sleep-deprived hamsters. These results suggest that neither photoperiod nor glucocorticoids influence the suppressive effect of sleep deprivation upon LPS-induced inflammation.
Lv, Longxian; Yang, Jianzhuan; Lu, Haifeng; Li, Lanjuan
2015-01-01
Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism. PMID:25978374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin
We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocytemore » diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines. • PVN inhibition of NF-κB attenuates PVN NF-κB p65 activity and oxidative stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ching-Chu
Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis ofmore » 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical. • Andrographolide inhibits adipogenesis of 3 T3-L1 adipocytes. • Andrographolide suppresses differentiation cocktail-induced C/EBPβ expression. • Andrographolide attenuates ERK and GSK3β-dependent C/EBPβ activation. • Andrographolide arrests 3 T3-L1 adipocytes at G0/G1 phase.« less
PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction
Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen
2016-01-01
Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092
Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong
2015-10-01
During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8(+) T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential.
Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.
2008-01-01
Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663
Wang, Fei; Song, Xiudao; Zhou, Liang; Liang, Guoqiang; Huang, Fei; Jiang, Guorong; Zhang, Lurong
2017-12-26
Sweet taste receptors (STRs) involve in regulating the release of glucose-stimulated glucagon-like peptide-1 (GLP-1). Our in vivo and in vitro studies found that 3-deoxyglucosone (3DG) inhibited glucose-stimulated GLP-1 secretion. This study investigated the role of STRs in 3DG-induced inhibition of high glucose-stimulated GLP-1 secretion. STC-1 cells were incubated with lactisole or 3DG for 1 h under 25 mM glucose conditions. Western blotting was used to study the expression of STRs signaling molecules and ELISA was used to analyse GLP-1 and cyclic adenosine monophosphate (cAMP) levels. Lactisole inhibited GLP-1 secretion. Exposure to 25 mM glucose increased the expressions of STRs subunits when compared with 5.6 mM glucose. 3DG decreased GLP-1 secretion and STRs subunits expressions, with affecting other components of STRs pathway, including the downregulation of transient receptor potential cation channel subfamily M member 5 (TRPM5) expression and the reduction of intracellular cAMP levels. 3DG attenuates high glucose-stimulated GLP-1 secretion by reducing STR subunit expression and downstream signaling components.
Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin
2017-05-15
The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development. Copyright © 2017 American Society for Microbiology.
Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting
2015-01-01
Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury.
Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting
2015-01-01
Introduction: Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Methods: Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Results: In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Conclusions: Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury. PMID:26884836
Aquatic mesocosms were dosed with an environmentally relevant concentration of 17-a-ethinyl estradiol (EE2) to study the significance of trophic status (N, P levels) on the attenuation and bioavailability of synthetic estrogens in aquatic ecosystems. Estrogenic activity was asse...
Wu, Haijian; Shao, Anwen; Zhao, Mingfei; Chen, Sheng; Yu, Jun; Zhou, Jingyi; Liang, Feng; Shi, Ligen; Dixon, Brandon J; Wang, Zhen; Ling, Chenhan; Hong, Yuan; Zhang, Jianmin
2016-09-01
Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. The neuron-specific K(+) -Cl(-) cotransporter-2 (KCC2), the principal Cl(-) extruder in adult neurons, plays an important role in Cl(-) homeostasis and neuronal function. This present study was designed to investigate the expression pattern of KCC2 following TBI and to evaluate whether or not melatonin is able to prevent neuronal apoptosis by modulating KCC2 expression in a Sprague Dawley rat controlled cortical impact model of TBI. The time course study showed decreased mRNA and protein expression of KCC2 in the ipsilateral peri-core parietal cortex after TBI. Double immunofluorescence staining demonstrated that KCC2 is located in the plasma membrane of neurons. In addition, melatonin (10 mg/kg) was injected intraperitoneally at 5 minutes and repeated at 1, 2, 3, and 4 hours after brain trauma, and brain samples were extracted 24 hours after TBI. Compared to the vehicle group, melatonin treatment altered the down-regulation of KCC2 expression in both mRNA and protein levels after TBI. Also, melatonin treatment increased the protein levels of brain-derived neurotrophic factor (BDNF) and phosphorylated extracellular signal-regulated kinase (p-ERK). Simultaneously, melatonin administration ameliorated cortical neuronal apoptosis, reduced brain edema, and attenuated neurological deficits after TBI. In conclusion, our findings suggested that melatonin restores KCC2 expression, inhibits neuronal apoptosis and attenuates secondary brain injury after TBI, partially through activation of BDNF/ERK pathway. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Papaconstantinou, John; Wang, Chen Z; Zhang, Min; Yang, San; Deford, James; Bulavin, Dmitry V; Ansari, Naseem H
2015-09-01
Functional competence and self-renewal of mammalian skeletal muscle myofibers and progenitor cells declines with age. Progression of the muscle aging phenotype involves the decline of juvenile protective factorsi.e., proteins whose beneficial functions translate directly to the quality of life, and self-renewal of progenitor cells. These characteristics occur simultaneously with the age-associated increase of p38α stress response signaling. This suggests that the maintenance of low levels of p38α activity of juvenile tissues may delay or attenuate aging. We used the dominant negative haploinsufficient p38α mouse (DN-p38α(AF/+)) to demonstrate that in vivo attenuation of p38α activity in the gastrocnemius of the aged mutant delays age-associated processes that include: a) the decline of the juvenile protective factors, BubR1, aldehyde dehydrogenase 1A (ALDH1A1), and aldehyde dehydrogenase 2 (ALDH2); b) attenuated expression of p16(Ink4a) and p19(Arf) tumor suppressor genes of the Cdkn2a locus; c) decreased levels of hydroxynonenal protein adducts, expression of COX2 and iNOS; d) decline of the senescent progenitor cell pool level and d) the loss of gastrocnemius muscle mass. We propose that elevated P-p38α activity promotes skeletal muscle aging and that the homeostasis of p38α impacts the maintenance of a beneficial healthspan.
Pterostilbene attenuates acute kidney injury in septic mice
Xia, Yizi; Chen, Ying; Tang, Luming; Wang, Zheng; Zheng, Yu
2018-01-01
Acute kidney injury (AKI) is a severe complication of sepsis with a high mortality and morbidity. Pterostilbene (Pte) has been suggested to confer anti-apoptotic and anti-inflammatory effects. In the current study, the effects of Pte on AKI were evaluated in septic mice. Cecal ligation and puncture surgery was performed to induce sepsis. The results suggested that Pte administration significantly decreased the levels of serum urea nitrogen and creatinine, and improved the survival rate of septic mice. Additionally, the renal injury induced by sepsis was attenuated by pterostilbene treatment. Notably, pterostilbene reduced Bcl-2-associated X protein expression, and levels of interleukin-1β and tumor necrosis factor-α, and upregulated B-cell lymphoma 2 expression. The results indicate that pterostilbene may serve as a potential therapeutic candidate for the treatment of AKI induced by sepsis. PMID:29545882
Yu, Liming; Li, Qing; Yu, Bo; Yang, Yang; Jin, Zhenxiao; Duan, Weixun; Zhao, Guolong; Zhai, Mengen; Liu, Lijun; Yi, Dinghua; Chen, Min; Yu, Shiqiang
2016-01-01
Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91(phox) expression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie
2016-11-01
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.
Harrison-Findik, Duygu Dee; Lu, Sizhao
2015-01-01
This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1−/−) and catalase (catalase−/−) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1−/− displayed significantly higher hepatic H2O2 levels than catalase−/− compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1−/− mice. Alcohol increased H2O2 production in catalase−/− and wild-type, but not gpx-1−/−, mice. Hepcidin expression was inhibited in alcohol-fed catalase−/− and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1−/− mice. Gpx-1−/− mice also displayed higher level of basal liver CHOP protein expression than catalase−/− mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1−/− mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1−/− mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH. PMID:25955433
Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun
2016-05-01
It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mackow, Natalie; Amaro-Carambot, Emérito; Liang, Bo; Surman, Sonja; Lingemann, Matthias; Yang, Lijuan; Collins, Peter L.
2015-01-01
ABSTRACT Live attenuated recombinant human parainfluenza virus type 1 (rHPIV1) was investigated as a vector to express the respiratory syncytial virus (RSV) fusion (F) glycoprotein, to provide a bivalent vaccine against RSV and HPIV1. The RSV F gene was engineered to include HPIV1 transcription signals and inserted individually into three gene locations in each of the two attenuated rHPIV1 backbones. Each backbone contained a single previously described attenuating mutation that was stabilized against deattenuation, specifically, a non-temperature-sensitive deletion mutation involving 6 nucleotides in the overlapping P/C open reading frames (ORFs) (CΔ170) or a temperature-sensitive missense mutation in the L ORF (LY942A). The insertion sites in the genome were pre-N (F1), N-P (F2), or P-M (F3) and were identical for both backbones. In vitro, the presence of the F insert reduced the rate of virus replication, but the final titers were the same as the final titer of wild-type (wt) HPIV1. High levels of RSV F expression in cultured cells were observed with rHPIV1-CΔ170-F1, -F2, and -F3 and rHPIV1-LY942A-F1. In hamsters, the rHPIV1-CΔ170-F1, -F2, and -F3 vectors were moderately restricted in the nasal turbinates, highly restricted in lungs, and genetically stable in vivo. Among the CΔ170 vectors, the F1 virus was the most immunogenic and protective against wt RSV challenge. The rHPIV1-LY942A vectors were highly restricted in vivo and were not detectably immunogenic or protective, indicative of overattenuation. The CΔ170-F1 construct appears to be suitably attenuated and immunogenic for further development as a bivalent intranasal pediatric vaccine. IMPORTANCE There are no vaccines for the pediatric respiratory pathogens RSV and HPIV. We are developing live attenuated RSV and HPIV vaccines for use in virus-naive infants. Live attenuated RSV strains in particular are difficult to develop due to their poor growth and physical instability, but these obstacles could be avoided by the use of a vaccine vector. We describe the development and preclinical evaluation of live attenuated rHPIV1 vectors expressing the RSV F protein. Two different attenuated rHPIV1 backbones were each engineered to express RSV F from three different gene positions. The rHPIV1-CΔ170-F1 vector, bearing an attenuating deletion mutation (CΔ170) in the P/C gene and expressing RSV F from the pre-N position, was attenuated, stable, and immunogenic against the RSV F protein and HPIV1 in the hamster model and provided substantial protection against RSV challenge. This study provides a candidate rHPIV1-RSV-F vaccine virus suitable for continued development as a bivalent vaccine against two major childhood pathogens. PMID:26223633
Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas
2001-01-01
Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893
Ansari, Hifzur Rahman; Tajeri, Shahin; Latre De Late, Perle; Langsley, Gordon
2018-01-01
Theileria annulata is an apicomplexan parasite that infects and transforms bovine macrophages that disseminate throughout the animal causing a leukaemia-like disease called tropical theileriosis. Using deep RNAseq of T. annulata-infected B cells and macrophages we identify a set of microRNAs induced by infection, whose expression diminishes upon loss of the hyper-disseminating phenotype of virulent transformed macrophages. We describe how infection-induced upregulation of miR-126-5p ablates JIP-2 expression to release cytosolic JNK to translocate to the nucleus and trans-activate AP-1-driven transcription of mmp9 to promote tumour dissemination. In non-disseminating attenuated macrophages miR-126-5p levels drop, JIP-2 levels increase, JNK1 is retained in the cytosol leading to decreased c-Jun phosphorylation and dampened AP-1-driven mmp9 transcription. We show that variation in miR-126-5p levels depends on the tyrosine phosphorylation status of AGO2 that is regulated by Grb2-recruitment of PTP1B. In attenuated macrophages Grb2 levels drop resulting in less PTP1B recruitment, greater AGO2 phosphorylation, less miR-126-5p associated with AGO2 and a consequent rise in JIP-2 levels. Changes in miR-126-5p levels therefore, underpin both the virulent hyper-dissemination and the attenuated dissemination of T. annulata-infected macrophages. PMID:29570727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aloy, Marie-Therese; Hospices Civils de Lyon, Service de Radiotherapie, Centre Hospitalier Lyon-Sud, Pierre-Benite; Hadchity, Elie
Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively ormore » in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.« less
Drummond, Heather A.; Gousette, Monette U.; Storm, Megan V.; Abraham, Nader G.; Csongradi, Eva
2012-01-01
Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139±3 versus 153±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments,. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption. PMID:22323644
Ji, Xiao-Bing; Li, Xiu-Rong; Hao-Ding; Sun, Qi; Zhou, Yang; Wen, Ping; Dai, Chun-Sun; Yang, Jun-Wei
2015-01-01
Uncoupling protein 2 (UCP2) is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC), and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip) or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls). ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload. © 2015 S. Karger AG, Basel.
Zhang, Shuang-Wei; Liu, Yu; Wang, Fang; Qiang, Jiao; Liu, Pan; Zhang, Jun; Xu, Jin-Wen
2017-01-01
The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague-Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.
Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L.; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R.
2015-01-01
In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach. PMID:26338325
Zhao, Ming-ming
2017-01-01
The objective of this study is to investigate if sinomenine hydrochloride (SIN-HCl) could be effective against adriamycin-induced renal fibrosis by regulating autophagy in a rat model. Forty male Sprague-Dawley (SD) rats were randomly divided into control group, model group, telmisartan group, and SIN-HCl group; rat model was induced by adriamycin; all rats were given intragastric administration for 6 weeks. Urine was collected from rats in metabolic cages to determine 24 h protein level. This was done after intragastric administration for the first two weeks and then once for every two weeks. Renal pathological changes were examined by the staining of HE, Masson, and PASM. Expressions and distributions of fibronectin (FN), laminin (LN), light chain 3 (LC3), and Beclin-1 were observed by immunohistochemistry. SIN-HCl ameliorates proteinuria, meanwhile attenuating the renal pathological changes in adriamycin-induced rats and also attenuating renal fibrosis and excessive autophagy by reducing the expression of FN, LN, LC3, and Beclin-1. SIN-HCl attenuates renal fibrosis by inhibiting excessive autophagy induced by adriamycin and upregulates the basal autophagy. PMID:28798804
Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J. Michael; Hanson, Glen R; Fleckenstein, Annette E
2015-01-01
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats 1): attenuates short-term dopaminergic damage induced by methamphetamine and 2) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4 × 7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration. PMID:26871405
Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E
2016-08-01
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.
Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast
Dephoure, Noah; Hwang, Sunyoung; O'Sullivan, Ciara; Dodgson, Stacie E; Gygi, Steven P; Amon, Angelika; Torres, Eduardo M
2014-01-01
Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions. Posttranslational mechanisms attenuate their expression when their encoding genes are in excess. Our proteomic analyses further revealed a novel aneuploidy-associated protein expression signature characteristic of altered metabolism and redox homeostasis. Indeed aneuploid cells harbor increased levels of reactive oxygen species (ROS). Interestingly, increased protein turnover attenuates ROS levels and this novel aneuploidy-associated signature and improves the fitness of most aneuploid strains. Our results show that aneuploidy causes alterations in metabolism and redox homeostasis. Cells respond to these alterations through both transcriptional and posttranscriptional mechanisms. DOI: http://dx.doi.org/10.7554/eLife.03023.001 PMID:25073701
Merhi, Z; Buyuk, E; Cipolla, M J
2018-06-01
Does vitamin D attenuate the adverse effects of advanced glycation end products (AGEs) on steroidogenesis by human granulosa cells (GCs)? AGEs alter the expression of genes important in steroidogenesis while 1,25-dihydroxyvitamin D3 (vit D3) in vitro attenuates some of the actions of AGEs on steroidogenic gene expression, possibly by downregulating the expression of the pro-inflammatory cell membrane receptor for AGEs (RAGE). Vitamin D attenuates the pro-inflammatory effects of AGEs in non-ovarian tissues. Women who were undergoing IVF were enrolled. Follicular fluid samples (n = 71) were collected and cumulus GCs (n = 12) were treated in culture. Follicular fluid levels of the anti-inflammatory soluble RAGE (sRAGE), AGEs and 25-hydroxyvitamin D (25-OHD) were quantified for possible correlations. GCs of each participant were split equally and treated with either media alone (control) or with human glycated albumin (HGA as a precursor for AGEs) with or without vit D3 after which RT-PCR and immunofluorescence were performed and cell culture media estradiol (E2) levels were compared. In follicular fluid, sRAGE levels were positively correlated with 25-OHD levels. HGA treatment (i) increased CYP11A1 (by 48%), 3β-HSD (by 38%), StAR (by 42%), CYP17A1 (by 30%) and LHR (by 37%) mRNA expression levels (P < 0.05 for all) but did not alter CYP19A1 or FSHR mRNA expression levels; and (ii) increased E2 release in cell culture media (P = 0.02). Vit D3 treatment (i) downregulated RAGE mRNA expression by 33% and RAGE protein levels by 44% (P < 0.05); (ii) inhibited the HGA-induced increase in CYP11A1, StAR, CYP17A1 and LHR mRNA levels, but not the increase in 3β-HSD mRNA levels; and (iii) did not inhibit the HGA-induced E2 release in cell culture media. This study used luteinized GCs that were collected from women who received gonadotropins thus the results obtained may not fully extrapolate to non-luteinized GCs in vivo. This study suggests that there is a relationship between AGEs and their receptors (RAGE and sRAGE) with vitamin D. Understanding the interaction between AGEs and vitamin D in ovarian physiology could lead to a more targeted therapy for the treatment of ovarian dysfunction. Funding was received from NIH (R01 NS045940), American Society for Reproductive Medicine, Ferring Pharmaceuticals Inc., and University of Vermont College of Medicine Bridge Funds. All authors have nothing to disclose.
Hinchcliff, Monique; Toledo, Diana M; Taroni, Jaclyn N; Wood, Tammara A; Franks, Jennifer M; Ball, Michael S; Hoffmann, Aileen; Amin, Sapna M; Tan, Ainah U; Tom, Kevin; Nesbeth, Yolanda; Lee, Jungwha; Ma, Madeleine; Aren, Kathleen; Carns, Mary A; Pioli, Patricia A; Whitfield, Michael L
2018-01-31
Fewer than half of patients with systemic sclerosis demonstrate modified Rodnan skin score improvement during mycophenolate mofetil (MMF) treatment. To understand the molecular basis for this observation, we extended our prior studies and characterized molecular and cellular changes in skin biopsies from subjects with systemic sclerosis treated with MMF. Eleven subjects completed ≥24 months of MMF therapy. Two distinct skin gene expression trajectories were observed across six of these subjects. Three of the six subjects showed attenuation of the inflammatory signature by 24 months, paralleling reductions in CCL2 mRNA expression in skin and reduced numbers of macrophages and myeloid dendritic cells in skin biopsies. MMF cessation at 24 months resulted in an increased inflammatory score, increased CCL2 mRNA and protein levels, modified Rodnan skin score rebound, and increased numbers of skin myeloid cells in these subjects. In contrast, three other subjects remained on MMF >24 months and showed a persistent decrease in inflammatory score, decreasing or stable modified Rodnan skin score, CCL2 mRNA reductions, sera CCL2 protein levels trending downward, reduction in monocyte migration, and no increase in skin myeloid cell numbers. These data summarize molecular changes during MMF therapy that suggest reduction of innate immune cell numbers, possibly by attenuating expression of chemokines, including CCL2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian
2015-01-01
Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805
Yeh, Shu-Lan; Wu, Tzu-Chin; Chan, Shu-Ting; Hong, Meng-Jun; Chen, Hsiao-Ling
2014-01-01
This study determined the effects of long-term D-galactose (DG) injection on the lung pro-inflammatory and fibrotic status and whether fructo-oligosaccharide (FO) could attenuate such effects. Forty Balb/cJ mice (12 weeks of age) were divided into four groups: control (s.c. saline) (basal diet), DG (s.c. 1.2 g DG/kg body weight) (basal diet), DG + FO (FO diet, 2.5% w/w FO), and DG + E (vitamin E diet, α-tocopherol 0.2% w/w) serving as an antioxidant control group. These animals were killed after 49 day of treatments. Another group of naturally aging (NA) mice without any injection was killed at 64 weeks of age to be an aging control group. D-galactose treatment, generally similar to NA, increased the lung pro-inflammatory status, as shown in the IL-6 and IL-1β levels and the expression of phospho-Jun and phospho-JNK, and the fibrotic status as shown in the hydroxyproline level compared to the vehicle. FO diminished the DG-induced increases in the lung IL-1β level and expressions of total Jun, phospho-JNK, and attenuated DG effects on lung IL-6 and hydroxyproline, while α-tocopherol exerted anti-inflammatory effects on all parameters determined. FO, as well as α-tocopherol, modulated the large bowel ecology by increasing the fecal bifidobacteria and cecal butyrate levels compared with DG. D-galactose treatment mimicked the lung pro-inflammatory status as shown in the NA mice. FO attenuated the DG-induced lung pro-inflammatory status and down-regulated JNK/Jun pathway in the lung, which could be mediated by the prebiotic effects and metabolic products of FO in the large intestine.
Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun
2014-05-01
The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Chaoyun; Wang, Chunhua; Ma, Chunlei; Huang, Qingxian; Sun, Hongliu; Zhang, Xiaomin; Bai, Xianyong
2014-02-15
Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Hakami, Alqassem
Drug abuse is associated with deficits in glutamate uptake and impairment of glutamate homeostasis. Glutamate transporters are the key players in regulating extracellular glutamate concentrations. Considering the importance of glutamate transporters, pharmacological management of the transporter functions can be used as very promising therapeutic targets. Ceftriaxone (beta-lactam antibiotic) has been shown to attenuate ethanol consumption and cocaine-seeking behavior in part by restoring glutamate homeostasis in mesocorticolimbic regions. Furthermore, recent studies from our lab have demonstrated the effects of amoxicillin and Augmentin on upregulating GLT-1 expression level as well as reducing ethanol consumption in male P rats. Therefore, in this project, we examined the effects of amoxicillin and Augmentin on other glutamate transporters (xCT and GLAST) expression levels in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Furthermore, we also investigated the effects of clavulanic acid administration on alcohol consumption as well as GLT-1 and xCT expression levels in NAc. Additionally, we also determined whether oral Augmentin have any effect in reducing alcohol intake in male P rats. Rats were exposed to free choice of ethanol (15% and 30%), water, and food for a period of five weeks. During week six, rats were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg amoxicillin injections or 100 mg/kg Augmentin injections. Both compounds significantly increased xCT expression level in NAc. Augmentin also increased xCT expression level in PFC. In the clavulanic acid study, rats were given five consecutive i.p. injections of 5 mg/kg clavulanic acid for the treatment group and the saline injections for the saline group. Clavulanic acid significantly reduced ethanol consumption and significantly upregulated GLT-1 and xCT expression levels in NAc. In oral Augmentin study, oral gavage of Augmentin (100 mg/kg) significantly attenuated alcohol consumption in male P rats as compared to the water gavage group. These findings revealed that amoxicillin, Augmentin and clavulanic acid may have a potential therapeutic action for the treatment of alcohol dependence that are mediated through upregulation of GLT-1 and xCT expression levels in the mesocorticolimbic structures.
Bae, Jun Sang; Lee, Jongsung; Park, Yoonkook; Park, Kyungmoon; Kim, Jung Ryul; Cho, Dong Hyu; Jang, Kyu Yun; Park, See-Hyoung
2017-10-01
Previously, we reported that auranofin induces apoptosis in SKOV3 cells via regulation of the IKKβ/FOXO3 pathway. In the present study, we reveal that the anticancer activity of auranofin in SKOV3 cells could be enhanced by the attenuation of MUC4 through the regulation of the Her2/Akt/FOXO3 pathway. Compared to the control-siRNA, siRNA transfection against MUC4 into SKOV3 cells accelerated the protein degradation of Her2. Under the same conditions, the expression level of phosphorylated Akt was also downregulated leading to an increase of FOXO3 in the nucleus. Notably, auranofin treatment in SKOV3 cells also resulted in the downregulation of the expression levels of both Her2 and phosphorylated Akt. Thus, Her2 was identified as the common molecular target protein by siRNA transfection against MUC4. Western blot analysis of total and nuclear fraction lysates from SKOV3 cells revealed that attenuation of MUC4 combined with auranofin treatment in SKOV3 cells synergistically activated FOXO3 translocation from the cytoplasm to the nucleus through the regulation of the Her2/Akt/FOXO3 pathway. Attenuation of MUC4 by siRNA transfection potentiated the antitumor effect of auranofin which was examined by performing in vitro assays such as WST-1, cell counting, colony formation, TUNEL and Annexin V staining. In addition, western blot analysis of the apoptosis‑related proteins such as PARP1, caspase-3, Bim extra large (EL), Bax and Bcl2 revealed that the attenuation of MUC4 by siRNA transfection potentiates the pro-apoptotic activity of auranofin in SKOV3 cells. Collectively, auranofin could regulate the Her2/Akt/FOXO3 signaling pathway in SKOV3 cells and be used as a potential antitumor agent considering the expression of MUC4 in ovarian cancer patients.
Kim, Shin-Hee; Paldurai, Anandan; Xiao, Sa; Collins, Peter L.; Samal, Siba K.
2016-01-01
Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans. PMID:24968158
Lv, Yan; Zhang, Liang; Li, Na; Mai, Naiken; Zhang, Yu; Pan, Shuyi
2017-12-01
Geraniol, a plant-derived monoterpene, has been extensively studied and showed a wide variety of beneficial effects. The aim of this study was to investigate the therapeutic effect of geraniol on functional recovery and neuropathic pain in rats with spinal cord injury (SCI). Rats received a clip-compression SCI and were treated with geraniol 6 h following SCI. Treatment of SCI rats with geraniol markedly improved locomotor function, and reduced sensitivity to the mechanical allodynia and thermal hyperalgesia. Treatment of SCI rats with geraniol increased NeuN-positive cells, suppressed expression of glial fibrillary acidic protein, and reduced activity of caspase-3 in the injured region. Treatment of SCI rats with geraniol reduced levels of malondialdehyde and 3-nitrotyrosine, upregulated protein expression of nuclear factor-erythroid 2-related factor 2 and heme oxygenase 1, and suppressed expression of inducible nitric oxide synthase in the injured region. In addition, treatment of SCI rats with geraniol downregulated protein expression of N-methyl-d-aspartate receptor 1 and reduced the number of CD68-positive cells and protein levels of TNF-α in the injured region. In conclusion, geraniol significantly promoted the recovery of neuronal function and attenuated neuropathic pain after SCI.
Aguilar-Valles, Argel; Poole, Stephen; Mistry, Yogesh; Williams, Sylvain; Luheshi, Giamal N
2007-08-15
An attenuated fever response to pathogens during late pregnancy is a phenomenon that has been described in several mammalian species, and although mechanisms are not completely understood, decreased prostaglandin E2 (PGE2) synthesis has been implicated. Upstream of PGE2, there is evidence to suggest that anti-inflammatory cytokines such as interleukin-1 receptor antagonist (IL-1ra) could play a significant role. In the present study we addressed the role of pro-inflammatory cytokines during late pregnancy, specifically interleukin-6 (IL-6), an important circulating mediator in fever. Turpentine oil (TURP), a very potent pyrogen and activator of IL-6, was injected into the hind-limb muscle of rats at the 18th day of pregnancy (GD 18) or in non-pregnant (NP) age-matched female controls. As expected, TURP injection induced a highly significant fever in the NP animals, which peaked 11 h post-injection and lasted for over 24 h. This was accompanied by a significant rise in circulating IL-6 levels, which correlated with changes in PGE2 synthesizing enzymes expression in the hypothalamus. In complete contrast, TURP-induced fever was totally absent in GD 18 animals whose body temperature did not deviate from basal values. The lack of response was additionally reflected by the absence of change in IL-6 concentration and by the significant attenuation of PGE2 synthesizing enzymes expression, which correlated with the suppressed expression of SOCS3, a hypothalamic marker of IL-6 activity. Contrary to the changes in circulating IL-6 levels at GD 18, IL-1ra was induced to levels comparable to those of NP females, suggesting that the influence of this anti-inflammatory cytokine on the fever response to TURP is at best minimal. These data further confirm the importance of IL-6 in fever generation and provide evidence that it may be a key component of the attenuated fever response in late pregnancy.
Aguilar-Valles, Argel; Poole, Stephen; Mistry, Yogesh; Williams, Sylvain; Luheshi, Giamal N
2007-01-01
An attenuated fever response to pathogens during late pregnancy is a phenomenon that has been described in several mammalian species, and although mechanisms are not completely understood, decreased prostaglandin E2 (PGE2) synthesis has been implicated. Upstream of PGE2, there is evidence to suggest that anti-inflammatory cytokines such as interleukin-1 receptor antagonist (IL-1ra) could play a significant role. In the present study we addressed the role of pro-inflammatory cytokines during late pregnancy, specifically interleukin-6 (IL-6), an important circulating mediator in fever. Turpentine oil (TURP), a very potent pyrogen and activator of IL-6, was injected into the hind-limb muscle of rats at the 18th day of pregnancy (GD 18) or in non-pregnant (NP) age-matched female controls. As expected, TURP injection induced a highly significant fever in the NP animals, which peaked 11 h post-injection and lasted for over 24 h. This was accompanied by a significant rise in circulating IL-6 levels, which correlated with changes in PGE2 synthesizing enzymes expression in the hypothalamus. In complete contrast, TURP-induced fever was totally absent in GD 18 animals whose body temperature did not deviate from basal values. The lack of response was additionally reflected by the absence of change in IL-6 concentration and by the significant attenuation of PGE2 synthesizing enzymes expression, which correlated with the suppressed expression of SOCS3, a hypothalamic marker of IL-6 activity. Contrary to the changes in circulating IL-6 levels at GD 18, IL-1ra was induced to levels comparable to those of NP females, suggesting that the influence of this anti-inflammatory cytokine on the fever response to TURP is at best minimal. These data further confirm the importance of IL-6 in fever generation and provide evidence that it may be a key component of the attenuated fever response in late pregnancy. PMID:17556393
Tivers, Michael S; Lipscomb, Victoria J; Smith, Kenneth C; Wheeler-Jones, Caroline P D; House, Arthur K
2014-05-01
Dogs with congenital portosystemic shunts (CPSS) have liver hypoplasia and hepatic insufficiency. Surgical CPSS attenuation results in liver growth associated with clinical improvement. The mechanism of this hepatic response is unknown, although liver regeneration is suspected. This study investigated whether markers of liver regeneration were associated with CPSS attenuation. Dogs treated with CPSS attenuation were prospectively recruited. Residual liver tissue was collected for gene expression analysis (seven genes) from 24 CPSS dogs that tolerated complete attenuation, 25 dogs that tolerated partial attenuation and seven control dogs. Relative gene expression was measured using quantitative polymerase chain reaction (qPCR). Blood samples were collected before, 24 h and 48 h post-surgery from 36 CPSS dogs and from 10 control dogs. Serum hepatocyte growth factor (HGF) concentration was measured using a canine specific enzyme-linked immunosorbent assay (ELISA). HGF mRNA expression was significantly decreased in CPSS compared with control dogs (P = 0.046). There were significant increases in HGF (P = 0.050) and methionine adenosyltransferase 2 A (MAT2A; P = 0.002) mRNA expression following partial CPSS attenuation. Dogs with complete attenuation had significantly greater MAT2A (P = 0.024) mRNA expression compared with dogs with partial attenuation. Serum HGF concentration significantly increased 24 h following CPSS attenuation (P < 0.001). Hepatic mRNA expression of two markers of hepatocyte proliferation (HGF and MAT2A) was associated with the response to surgery in dogs with CPSS, and serum HGF significantly increased following surgery, suggesting hepatocyte proliferation. These findings support the concept that hepatic regeneration is important in the hepatic response to CPSS surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E
2013-06-01
Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.
Huang, Ya-Ni; Yang, Ling-Yu; Wang, Jing-Ya; Lai, Chien-Cheng; Chiu, Chien-Tsai; Wang, Jia-Yi
2017-01-01
Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.
IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.
Li, Hui; Li, Bing; Larose, Louise
2017-08-01
PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
New Generation Live Vaccines against Human Respiratory Syncytial Virus Designed by Reverse Genetics
Collins, Peter L.; Murphy, Brian R.
2005-01-01
Development of a live pediatric vaccine against human respiratory syncytial virus (RSV) is complicated by the need to immunize young infants and the difficulty in balancing attenuation and immunogenicity. The ability to introduce desired mutations into infectious virus by reverse genetics provides a method for identifying and designing highly defined attenuating mutations. These can be introduced in combinations as desired to achieve gradations of attenuation. Attenuation is based on several strategies: multiple independent temperature-sensitive point mutations in the polymerase, a temperature-sensitive point mutation in a transcription signal, a set of non–temperature-sensitive mutations involving several genes, deletion of a viral RNA synthesis regulatory protein, and deletion of viral IFN α/β antagonists. The genetic stability of the live vaccine can be increased by judicious choice of mutations. The virus also can be engineered to increase the level of expression of the protective antigens. Protective antigens from antigenically distinct RSV strains can be added or swapped to increase the breadth of coverage. Alternatively, the major RSV protective antigens can be expressed from transcription units added to an attenuated parainfluenza vaccine virus, making a bivalent vaccine. This would obviate the difficulties inherent in the fragility and inefficient in vitro growth of RSV, simplifying vaccine design and use. PMID:16113487
Wang, Y; Huang, G; Mo, B; Wang, C
2016-06-03
The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation.
Gautron, L; Mingam, R; Moranis, A; Combe, C; Layé, S
2005-01-01
Fasting attenuates disease-associated anorexia, but the mechanisms underlying this effect are not well understood. In the present study, we investigated the extent to which a 48 h fast alters hypothalamic neuronal activity in response to the anorectic effects of lipopolysaccharide in rats. Male rats were fed ad libitum or fasted, and were injected with i.p. saline or lipopolysaccharide (250 microg/kg). Immunohistochemistry for Fos protein was used to visualize neuronal activity in response to lipopolysaccharide within selected hypothalamic feeding regulatory nuclei. Additionally, food intake, body weight, plasma interleukin-1 and leptin levels, and the expression of mRNA for appetite-related neuropeptides (neuropeptide Y, proopiomelanocortin and cocaine-amphetamine-regulated transcript) were measured in a time-related manner. Our data show that the pattern of lipopolysaccharide-induced Fos expression was similar in most hypothalamic nuclei whatever the feeding status. However, we observed that fasting significantly reduced lipopolysaccharide-induced Fos expression in the paraventricular nucleus, in association with an attenuated lipopolysaccharide-induced anorexia and body weight loss. Moreover, lipopolysaccharide reduced fasting-induced Fos expression in the perifornical area of the lateral hypothalamus. Lipopolysaccharide-induced circulating levels of interleukin-1 were similar across feeding status. Finally, fasting, but not lipopolysaccharide, affected circulating level of leptin and appetite-related neuropeptides expression in the arcuate nucleus. Together, our data show that fasting modulates lipopolysaccharide-induced anorexia and body weight loss in association with neural changes in specific hypothalamic nuclei.
Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung
2015-02-01
We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei
2018-03-09
The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Junnarkar, Sameer P; Tapuria, Niteen; Mani, Alireza; Dijk, Sas; Fuller, Barry; Seifalian, Alexander M; Davidson, Brian R
2010-12-01
Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression. © 2010 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.
Ling, Youguo; Zhang, Xiaojuan; Bai, Yuanyuan; Li, Ping; Wei, Congwen; Song, Ting; Zheng, Zirui; Guan, Kai; Zhang, Yanhong; Zhang, Buchang; Liu, Xuedong; Ma, Runlin Z; Cao, Cheng; Zhong, Hui; Xu, Quanbin
2014-08-08
The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.
Choudhury, Soumen; Kandasamy, Kannan; Maruti, Bhojane Somnath; Addison, M Pule; Kasa, Jaya Kiran; Darzi, Sazad A; Singh, Thakur Uttam; Parida, Subhashree; Dash, Jeevan Ranjan; Singh, Vishakha; Mishra, Santosh Kumar
2015-10-15
Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Mi, Yuling; Tu, Longlong; Wang, Huimin; Zeng, Weidong; Zhang, Caiqiao
2013-10-01
The beneficial effects of quercetin on reproductive damage elicited by 4-nitrophenol (PNP) were studied in adult male mice. A six-week treatment of weekly intraperitoneal injections of PNP (50 mg/kg) resulted in severe damage to the seminiferous tubules, a remarkable increase in both hydroxyl radical and malondiadehyde production, and notably decreased glutathione peroxidase and superoxide dismutase activities. Moreover, PNP treatment induced germ cell apoptosis, inhibited Bcl-xl expression, and then activated Bax expression and the caspase-3 enzyme. Exposure to PNP also increased XBP-1 and HO-1 mRNAs levels. However, simultaneous supplementation with quercetin (75 mg/kg) attenuated the toxicity induced by PNP through renewal of the antioxidant enzyme's status, alleviating apoptosis by regulating the expressions of Bax and Bcl-xl, XBP-1 and HO-1mRNAs, and the regulation of caspase-3 activity. Taken together, these findings indicated that the antioxidant quercetin displays a potential preventive effect on PNP-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity from environmental toxicants in order to ensure reproductive health and sperm production. Copyright © 2013 Wiley Periodicals, Inc.
Koma, Takaaki; Huang, Cheng; Aronson, Judith F.; Walker, Aida G.; Miller, Milagros; Smith, Jeanon N.; Patterson, Michael; Paessler, Slobodan
2016-01-01
Machupo virus (MACV), a New World arenavirus, is the etiological agent of Bolivian hemorrhagic fever (BHF). Junin virus (JUNV), a close relative, causes Argentine hemorrhagic fever (AHF). Previously, we reported that a recombinant, chimeric MACV (rMACV/Cd#1-GPC) expressing glycoprotein from the Candid#1 (Cd#1) vaccine strain of JUNV is completely attenuated in a murine model and protects animals from lethal challenge with MACV. A rMACV with a single F438I substitution in the transmembrane domain (TMD) of GPC, which is equivalent to the F427I attenuating mutation in Cd#1 GPC, was attenuated in a murine model but genetically unstable. In addition, the TMD mutation alone was not sufficient to fully attenuate JUNV, indicating that other domains of the GPC may also contribute to the attenuation. To investigate the requirement of different domains of Cd#1 GPC for successful attenuation of MACV, we rescued several rMACVs expressing the ectodomain of GPC from Cd#1 either alone (MCg1), along with the TMD F438I substitution (MCg2), or with the TMD of Cd#1 (MCg3). All rMACVs exhibited similar growth curves in cultured cells. In mice, the MCg1 displayed significant reduction in lethality as compared with rMACV. The MCg1 was detected in brains and spleens of MCg1-infected mice and the infection was associated with tissue inflammation. On the other hand, all animals survived MCg2 and MCg3 infection without detectable levels of virus in various organs while producing neutralizing antibody against Cd#1. Overall our data suggest the indispensable role of each GPC domain in the full attenuation and immunogenicity of rMACV/Cd#1 GPC. PMID:27580122
Reiman, Jennifer M; Kumar, Sanjai; Rodriguez, Ingrid B; Gnidehou, Sedami; Ito, Koichi; Stanisic, Danielle I; Lee, Moses; McPhun, Virginia; Majam, Victoria; Willemsen, Nicole M; Batzloff, Michael R; Raja, Amber I; Dooley, Brad; Hoffman, Stephen L; Yanow, Stephanie K; Good, Michael F
2018-01-01
Blood stage malaria parasites attenuated with seco-cyclopropyl pyrrolo indole (CPI) analogues induce robust immunity in mice to homologous and heterologous malaria parasites and are being considered for the development of a human vaccine. However, it is not understood how attenuated parasites induce immunity. We showed that following vaccination, parasite DNA persisted in blood for several months, raising the possibility that ongoing immune stimulation may be critical. However, parasites were not seen microscopically beyond 24 h postvaccination. We aimed to provide a mechanistic understanding of immune induction. Mice were vaccinated with chemically attenuated Plasmodium chabaudi parasites. PCR and adoptive transfer studies were used to determine the presence of parasites and antigen in vivo . In other experiments, Plasmodium falciparum parasitised red blood cells were attenuated in vitro and RNA and antigen expression studied. We show that blood transferred from vaccinated mice into naïve mice activates T cells and induces complete protective immunity in the recipient mice strongly suggesting that there is persistence of parasite antigen postvaccination. This is supported by the presence of parasite RNA in vaccinated mice and both RNA and antigen expression in P. falciparum cultures treated with CPI drugs in vitro . In addition, drugs that block parasite growth also prevent the induction of immunity in vaccinated mice, indicating that some growth of attenuated parasites is required for immune induction. Attenuated parasites persist at submicroscopic levels in the blood of mice postvaccination with the ability to activate T cells and induce ongoing protective immune responses.
Dugbartey, George J; Talaei, Fatemeh; Houwertjes, Martin C; Goris, Maaike; Epema, Anne H; Bouma, Hjalmar R; Henning, Robert H
2015-12-15
Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine β-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S. Copyright © 2015 Elsevier B.V. All rights reserved.
Luo, Yang; Fu, Changfeng; Wang, Zhenyu; Zhang, Zhuo; Wang, Hongxia; Liu, Yi
2015-11-01
Mangiferin has antioxidant, antiviral, apoptosis regulating, anti‑inflammatory, antitumor and antidiabetic effects, which can also inhibit osteoclast formation and bone resorption. However, whether mangiferin ameliorates the neurological pain of spinal cord injury (SCI) in ratS remains to be elucidated. The present study investigated the therapeutic effects of mangiferin on neurological function, the water content of spinal cord, oxidative stress, the expression of inflammatory cytokines and the protein expression of Bcl‑2/Bax in a SCI rat model. In the present study, the Basso, Beattie and Bresnahan scores, and the water content of the spinal cord were used to analyze the therapeutic effects of mangiferin on neurological pain in the SCI rat. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and the serum levels of glutathione peroxidase (GSH‑PX), nuclear factor‑κB p65 unit, tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and caspase‑3/9 were detected using commercial kits. The expression levels of Bcl‑2 and Bax were measured using western blot analysis. The results demonstrated that administrating mangiferin began to ameliorate neurological function and the water content of the spinal cord in the SCI rat. The mangiferin‑treated group were found to have lower oxidative stress activity and lower expression levels of inflammatory cytokines, compared with the SCI rat. In addition, mangiferin significantly reduced the protein expression of Bax and promoted the protein expression of Bcl-2 in the SCI rat model. Finally, mangiferin markedly suppressed the expression of caspase‑3/9, indicating that the protective action of mangiferin may be associated with anti‑apoptosis activation. In conclusion, mangiferin attenuated contusive SCI in the rats through regulating oxidative stress, inflammation and the Bcl‑2 and Bax pathway.
Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred
2012-03-15
Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.
Yan, Wenqing; Li, Jianfeng; Chai, Renjie; Guo, Wentao; Xu, Lei; Han, Yuechen; Bai, Xiaohui; Wang, Haibo
2014-01-01
Objectives In this study, using an Streptococcus pneumoniae-induced tympanosclerosis (TS) model, we explored the effects of captopril and losartan in the treatment of TS and the possible mechanisms. Study Design A prospective experimental animal study. Methods We set up the TS models in both guinea pig and wistar rat by inoculation of type-3 Streptococcus pneumoniae microorganisms and then treated the animals with the combining use of captopril and losartan. Otomicroscopy was employed to observe the development of TS. Auditory brainstem response was used to test the hearing function of animals. Hematoxylin-eosin and von Kossa staining were performed to determine the morphological changes and calcium depositions. The protein expressions of transforming growth factor β1 (TGF-β1) were assessed by western blot and immunohistochemistry staining, and the mRNA level of TGF-β1 was measured by quantitative reverse transcription- polymerase chain reaction. Results The combining use of captopril and losartan attenuated TS responses in terms of a decrease in the TS incidence and the ABR threshold, a reduction of hyalinization and calcification in the middle ear mucosa and the thickness of the mucosa. In addition, the TGF-β1 expression was decreased at both protein and mRNA levels. Conclusion Our data indicate, for the first time, that the combining use of captopril and losartan obviously attenuates TS progress through inhibiting the overexpressing of TGF-β1. PMID:25360706
Fu, Ran; Li, Jian; Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin
2014-01-01
Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells.
Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R; Diwan, Abhinav; Lee, Jin-Moo
2015-09-02
In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach. Copyright © 2015 the authors 0270-6474/15/3512137-15$15.00/0.
Cheng, Ching-Yi; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chuen-Mao
2012-07-01
Matrix metalloproteinase-9 (MMP-9) plays an important role in the outgrowth of expanded human limbal epithelial cells on intact amniotic membranes (AM). The mechanisms of MMP-9 expression and cell outgrowth remain unknown. Here, we demonstrated that MMP-9 is preferentially expressed at the leading edge of limbal epithelial outgrowth. Treatment with the inhibitors of PI3-K (LY294002), Akt (SH-5), MEK1/2 (U0126), and JNK1/2 (SP600125) attenuated the outgrowth area, indicating that PI3-K/Akt, p42/p44 MAPK, and JNK1/2 are involved in the outgrowth of intact AM-expanded limbal epithelial cells. However, MMP-9 expression at both transcriptional and translational levels was attenuated by treatment with SP600125, LY294002, or SH-5, not by U0126 and SB202190, suggesting that JNK1/2 and PI3-K/Akt participate in MMP-9 expression. Moreover, NF-κB phosphorylation and nuclear translocation was especially noted at the leading edge, which was attenuated by treatment with SP600125 or LY294002. Helenalin, a selective NF-κB inhibitor, reduced both the limbal epithelial outgrowth and MMP-9 expression. Finally, the data reveal that PI3-K/Akt is an upstream component of the JNK1/2 pathway in MMP-9 expression. Thus, both MAPKs and PI3-K/Akt are required for limbal epithelial outgrowth on intact AM, only the PI3-K/Akt/JNK is essential for MMP-9 expression mediated through activation of transcriptional factor NF-κB in this model. Copyright © 2012 Elsevier B.V. All rights reserved.
Ono, Daisuke; Honma, Sato; Honma, Ken-ichi
2016-01-01
The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074
Dietary apigenin attenuates the development of atopic dermatitis-like skin lesions in NC/Nga mice.
Yano, Satomi; Umeda, Daisuke; Yamashita, Shuya; Yamada, Koji; Tachibana, Hirofumi
2009-11-01
One of the flavones, apigenin has various physiological functions including anti-inflammatory activities. Atopic dermatitis (AD) is a chronically relapsing inflammatory disorder that is characterized by pruritic and eczematous skin lesions. To evaluate the anti-allergic effect of apigenin in vivo, we examined the effect of dietary apigenin on picrylchloride (PiCl)-induced AD-like pathology in NC/Nga mice. NC/Nga mice were fed experimental diets containing apigenin from Day 18 after sensitized with PiCl for 4 weeks. Dietary apigenin significantly alleviated the development of skin lesions, accompanied by lower serum immunoglobulin (Ig) G1 and IgE levels in NC/Nga mice. Interferon (IFN)-gamma mRNA expression level in spleen cells from NC/Nga mice was reduced by apigenin feeding. Moreover, interleukin 4-induced signal transducers and activators of transcription 6 phosphorylation in primary spleen cells from BALB/c mice was inhibited by treatment with apigenin. These results suggest that apigenin attenuates exacerbation of AD-like symptoms in part through the reduction of serum IgE level and IFN-gamma expression in NC/Nga mice.
Xu, Zhe; Wang, Yang
2014-08-01
Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.
Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.
Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan
2005-03-01
Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.
Omega-3 free fatty acids attenuate insulin-promoted breast cancer cell proliferation.
Guo, Yang; Zhu, Sheng-Long; Wu, Yi-Kuan; He, Zhao; Chen, Yong-Quan
2017-06-01
High insulin levels in obese people are considered as a risk factor to induce breast carcinogenesis. And consumption of fish oils which mainly contain omega-3 fatty acids is associated with a reduced risk of breast cancer. However, whether omega-3 free fatty acids (FFAs) modulate insulin signaling pathway to prevent breast cancer is poorly understood. The current study tested the hypothesis that omega-3 FFAs attenuate insulin-induced breast cancer cell proliferation and regulate insulin signaling pathway. We show here that omega-3 FFAs attenuate MCF-7 cell proliferation and Akt and Erk1/2 phosphorylation levels stimulated by insulin. Knockdown Shp2 by siRNA resulted in significantly elevated omega-3 FFAs-activated Akt phosphorylation but failed to change insulin-stimulated Akt and Erk1/2 phosphorylation. And viable cell number was not affected by either downregulation of Shp2 expression or Erk1/2 inhibitor U0126 treatment. These observations indicated that omega-3 FFAs attenuate insulin-promoted breast cancer cell proliferation and insulin-activated Akt phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.
Pickard, Mark R; Williams, Gwyn T
2014-06-01
The putative tumour suppressor and apoptosis-promoting gene, growth arrest-specific 5 (GAS5), encodes long ncRNA (lncRNA) and snoRNAs. Its expression is down-regulated in breast cancer, which adversely impacts patient prognosis. In this preclinical study, the consequences of decreased GAS5 expression for breast cancer cell survival following treatment with chemotherapeutic agents are addressed. In addition, functional responses of triple-negative breast cancer cells to GAS5 lncRNA are examined, and mTOR inhibition as a strategy to enhance cellular GAS5 levels is investigated. Breast cancer cell lines were transfected with either siRNA to GAS5 or with a plasmid encoding GAS5 lncRNA and the effects on breast cancer cell survival were determined. Cellular responses to mTOR inhibitors were evaluated by assaying culture growth and GAS5 transcript levels. GAS5 silencing attenuated cell responses to apoptotic stimuli, including classical chemotherapeutic agents; the extent of cell death was directly proportional to cellular GAS5 levels. Imatinib action in contrast, was independent of GAS5. GAS5 lncRNA promoted the apoptosis of triple-negative and oestrogen receptor-positive cells but only dual PI3K/mTOR inhibition was able to enhance GAS5 levels in all cell types. Reduced GAS5 expression attenuates apoptosis induction by classical chemotherapeutic agents in breast cancer cells, providing an explanation for the relationship between GAS5 expression and breast cancer patient prognosis. Clinically, this relationship may be circumvented by the use of GAS5-independent drugs such as imatinib, or by restoration of GAS5 expression. The latter may be achieved by the use of a dual PI3K/mTOR inhibitor, to improve apoptotic responses to conventional chemotherapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei
We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heartmore » weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of TNF-α attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of TNF-α attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of TNF-α attenuates hypertension-induced imbalance of cytokines. • PVN inhibition of TNF-α attenuates PVN NF-κB p65 activity and oxidative stress.« less
Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats.
Jiao, Kun; Sun, Quan; Chen, Baian; Li, Shengli; Lu, Jing
2014-06-01
Vitamin K1 is used as a liver protection drug for cholestasis-induced liver fibrosis in China, but the mechanism of vitamin K1's action in liver fibrosis is unclear. In this study, a model of liver fibrosis was achieved via bile duct ligation in rats. The rats were then injected with vitamin K1, and the levels of serum aspartate aminotransferase, alanine transaminase, total bilirubin and the fibrotic grade score, collagen content, the expressions of α-smooth muscle actin (SMA) and cytokeratin 19 (CK19) were measured on day 28 after ligation. The levels of the biochemical parameters, fibrotic score and collagen content were significantly reduced by treatment with vitamin K1 in bile duct-ligated rats. In addition, α-SMA and CK19 expression was significantly reduced by vitamin K1 treatment in bile duct-ligated rats. These results suggested that vitamin K1 may attenuate liver fibrosis by inhibiting hepatic stellate cell activation in bile duct-ligated rats.
Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio
2014-01-01
Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808
Connective Tissue Growth Factor (CTGF) Expression Modulates Response to High Glucose
James, Leighton R.; Le, Catherine; Doherty, Heather; Kim, Hyung-Suk; Maeda, Nobuyo
2013-01-01
Connective tissue growth factor (CTGF) is an important mediator of fibrosis; emerging evidence link changes in plasma and urinary CTGF levels to diabetic kidney disease. To further ascertain the role of CTGF in responses to high glucose, we assessed the consequence of 4 months of streptozotocin-induced diabetes in wild type (+/+) and CTGF heterozygous (+/−) mice. Subsequently, we studied the influence of glucose on gene expression and protein in mice embryonic fibroblasts (MEF) cells derived from wildtype and heterozygous mice. At study initiation, plasma glucose, creatinine, triglyceride and cholesterol levels were similar between non-diabetic CTGF+/+ and CTGF+/− mice. In the diabetic state, plasma glucose levels were increased in CTGF+/+ and CTGF+/− mice (28.2 3.3 mmol/L vs 27.0 3.1 mmol/L), plasma triglyceride levels were lower in CTGF+/− mice than in CTGF+/+ (0.7 0.2 mmol/L vs 0.5 0.1 mmol/L, p<0.05), but cholesterol was essentially unchanged in both groups. Plasma creatinine was higher in diabetic CTGF+/+ group (11.7±1.2 vs 7.9±0.6 µmol/L p<0.01), while urinary albumin excretion and mesangial expansion were reduced in diabetic CTGF+/− animals. Cortices from diabetic mice (both CTGF +/+ and CTGF +/−) manifested higher expression of CTGF and thrombospondin 1 (TSP1). Expression of nephrin was reduced in CTGF +/+ animals; this reduction was attenuated in CTGF+/− group. In cultured MEF from CTGF+/+ mice, glucose (25 mM) increased expression of pro-collagens 1, IV and XVIII as well as fibronectin and thrombospondin 1 (TSP1). In contrast, activation of these genes by high glucose was attenuated in CTGF+/− MEF. We conclude that induction of Ctgf mediates expression of extracellular matrix proteins in diabetic kidney. Thus, genetic variability in CTGF expression directly modulates the severity of diabetic nephropathy. PMID:23950936
Attenuation of CCl4-Induced Hepatic Fibrosis in Mice by Vaccinating against TGF-β1
Li, Shuang; Lv, Yifei; Su, Houqiang; Jiang, Huiping; Hao, Zhiming
2013-01-01
Transforming growth factor β1 (TGF-β1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β125–[41-65] and TGF-β130–[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases. PMID:24349218
Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool
2018-01-01
Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.
Li, Xuguang; Yang, Guangtian; Edin, Matthew L.; Zeldin, Darryl C.; Wang, Dao Wen
2014-01-01
Background Our previous studies demonstrated that C-reactive protein (CRP) acts as an inflammatory factor to induce endothelial dysfunction and hypertension in rats. The anti-inflammatory effects of statins suggest that they may attenuate CRP-induced endothelial dysfunction and hypertension in Sprague Dawley (SD) rats. Methods Male SD rats were injected with an adeno-associated virus (AAV) to induce overexpression of human CRP (AAV-hCRP) or GFP control (AAV-GFP). Two months after injection, rats were administered rosuvastatin by daily oral gavage (10 mg/kg) for two additional months. Blood pressure was monitored, serum hCRP concentrations were assessed by ELISA, and vascular levels of endothelial nitric oxide synthase (eNOS), PI3K/Akt, Rho kinase, angiotensin type 1 (AT1) receptor, MAPK, SOD-1, and NADPH oxidase was determined by immunoblotting. Results Rosuvastatin administration attenuated the increased blood pressure and loss of vascular eNOS expression in AAV-hCRP-treated rats. Rosuvastatin also activated PI3K/Akt, inhibited Rho kinase activity, and downregulated the AT1 receptor expression in aorta. Rosuvastatin reduced production of ROS through downregulation of NADPH oxidase subunit p22 phox and gp91 phox, and upregulation of SOD-1 expression. Conclusions Rosuvastatin attenuated the increase in blood pressure in AAV-hCRP-treated rats through endothelial protection and antioxidant effects. Our data reveals a novel mechanism through which statins may lower blood pressure and suggests the potential use of statins in the treatment of hypertension. PMID:21562509
Li, Lili; Hamel, Nancy; Baker, Kristi; McGuffin, Michael J; Couillard, Martin; Gologan, Adrian; Marcus, Victoria A; Chodirker, Bernard; Chudley, Albert; Stefanovici, Camelia; Durandy, Anne; Hegele, Robert A; Feng, Bing-Jian; Goldgar, David E; Zhu, Jun; De Rosa, Marina; Gruber, Stephen B; Wimmer, Katharina; Young, Barbara; Chong, George; Tischkowitz, Marc D; Foulkes, William D
2015-05-01
Inherited mutations in DNA mismatch repair genes predispose to different cancer syndromes depending on whether they are mono-allelic or bi-allelic. This supports a causal relationship between expression level in the germline and phenotype variation. As a model to study this relationship, our study aimed to define the pathogenic characteristics of a recurrent homozygous coding variant in PMS2 displaying an attenuated phenotype identified by clinical genetic testing in seven Inuit families from Northern Quebec. Pathogenic characteristics of the PMS2 mutation NM_000535.5:c.2002A>G were studied using genotype-phenotype correlation, single-molecule expression detection and single genome microsatellite instability analysis. This PMS2 mutation generates a de novo splice site that competes with the authentic site. In homozygotes, expression of the full-length protein is reduced to a level barely detectable by conventional diagnostics. Median age at primary cancer diagnosis is 22 years among 13 NM_000535.5:c.2002A>G homozygotes, versus 8 years in individuals carrying bi-allelic truncating mutations. Residual expression of full-length PMS2 transcript was detected in normal tissues from homozygotes with cancers in their 20s. Our genotype-phenotype study of c.2002A>G illustrates that an extremely low level of PMS2 expression likely delays cancer onset, a feature that could be exploited in cancer preventive intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak
2013-09-01
Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancermore » A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin.« less
Ye, Han-Yang; Jin, Jian; Jin, Ling-Wei; Chen, Yan; Zhou, Zhi-Hong; Li, Zhan-Yuan
2017-04-01
Chlorogenic acid (CGA), a polyphenolic compound, exists widely in medicinal herbs, which has been shown a strong antioxidant and anti-inflammatory effect. This study investigated the protective effects and mechanism of CGA on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Treatment of CGA successfully ameliorates LPS-induced renal function and pathological damage. Moreover, CGA dose-dependently suppressed LPS-induced blood urea nitrogen (BUN), creatinine levels, and inflammatory cytokines TNF-α, IL-6, and IL-1β in serum and tissue. The relative proteins' expression of TLR4/NF-κB signal pathway was assessed by western blot analysis. Our results showed that CGA dose-dependently attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels. CGA also suppressed LPS-induced TNF-α, IL-6, and IL-1β production both in serum and kidney tissues. Furthermore, our results showed that CGA significantly inhibited the LPS-induced expression of phosphorylated NF-κB p65 and IκB as well as the expression of TLR4 signal. In conclusion, our results provide a mechanistic explanation for the anti-inflammatory effects of CGA in LPS-induced AKI mice through inhibiting TLR4/NF-κB signaling pathway.
Tsuzuki, Takamasa; Kobayashi, Hiroyuki; Yoshihara, Toshinori; Kakigi, Ryo; Ichinoseki-Sekine, Noriko; Naito, Hisashi
2017-03-01
Heat shock proteins (HSPs) play an important role in insulin resistance and improve the cellular stress response via HSP induction by exercise to treat type 2 diabetes. In this study, the effects of exercise-induced HSP72 expression levels on whole-body insulin resistance in type 2 diabetic rats were investigated. Male 25-week-old Otsuka Long-Evans Tokushima Fatty rats were divided into three groups: sedentary (Sed), trained in a thermal-neutral environment (NTr: 25 °C), and trained in a cold environment (CTr: 4 °C). Exercise training was conducted 5 days/week for 10 weeks. Rectal temperature was measured following each bout of exercise. An intraperitoneal glucose tolerance test (IPGTT) was performed after the training sessions. The serum, gastrocnemius muscle, and liver were sampled 48 h after the final exercise session. HSP72 and heat shock cognate protein 73 expression levels were analyzed by Western blot, and serum total cholesterol, triglyceride (TG), and free fatty acid (FFA) levels were measured. NTr animals exhibited significantly higher body temperatures following exercise, whereas, CTr animals did not. Exercise training increased HSP72 levels in the gastrocnemius muscle and liver, whereas, HSP72 expression was significantly lower in the CTr group than that in the NTr group (p < 0.05). Glucose tolerance improved equally in both trained animals; however, insulin levels during the IPGTT were higher in CTr animals than those in NTr animals (p < 0.05). In addition, the TG and FFA levels decreased significantly only in NTr animals compared with those in Sed animals. These results suggest that attenuation of exercise-induced HSP72 expression partially blunts improvement in whole-body insulin resistance and lipid metabolism in type 2 diabetic rats.
Mechanism of attenuation of a chimeric influenza A/B transfectant virus.
Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P
1992-08-01
The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.
Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka
2017-06-30
3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
2013-01-01
Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113
Asghar, Muhammad Yasir; Viitanen, Tero; Kemppainen, Kati; Törnquist, Kid
2012-10-01
Anaplastic thyroid cancer (ATC) is the most aggressive form of human thyroid cancer, lacking any effective treatment. Sphingosine 1-phosphate (S1P) receptors and human ether-a'-go-go-related gene (HERG (KCNH2)) potassium channels are important modulators of cell migration. In this study, we have shown that the S1P(1-3) receptors are expressed in C643 and THJ-16T human ATC cell lines, both at mRNA and protein level. S1P inhibited migration of these cells and of follicular FTC-133 thyroid cancer cells. Using the S1P(1,3) inhibitor VPC-23019, the S1P(2) inhibitor JTE-013, and the S1P(2) receptor siRNA, we showed that the effect was mediated through S1P(2). Treatment of the cells with the Rho inhibitor C3 transferase abolished the effect of S1P on migration. S1P attenuated Rac activity, and inhibiting Rac decreased migration. Sphingosine kinase inhibitor enhanced basal migration of cells, and addition of exogenous S1P inhibited migration. C643 cells expressed a nonconducting HERG protein, and S1P decreased HERG protein expression. The HERG blocker E-4031 decreased migration. Interestingly, downregulating HERG protein with siRNA decreased the basal migration. In experiments using HEK cells overexpressing HERG, we showed that S1P decreased channel protein expression and current and that S1P attenuated migration of the cells. We conclude that S1P attenuates migration of C643 ATC cells by activating S1P(2) and the Rho pathway. The attenuated migration is also, in part, dependent on a S1P-induced decrease of HERG protein.
Ju, Tae-Jin; Dan, Jin-Myoung; Cho, Young-Je
2011-01-01
The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-α, and IL-1β were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation. PMID:22359474
Adenosine kinase regulation of cardiomyocyte hypertrophy
Fassett, John T.; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie
2011-01-01
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKTSer473 phosphorylation but did attenuate sustained phosphorylation of RafSer338 (24–48 h), mTORSer2448 (24–48 h), p70S6kThr389 (2.5–48 h), and ERKThr202/Tyr204 (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6kThr389 phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERKThr202/Tyr204 and AKTSer473. Reduction of Raf-induced p70S6kThr389 phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k. PMID:21335462
Lippai, Dora; Kodys, Karen; Catalano, Donna; Iracheta-Vellve, Arvin; Szabo, Gyongyi
2015-01-01
Background & Aim MicroRNAs (miRs) regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis. Methods Wild type (WT) and miR-155-deficient (KO) mice were fed methionine-choline-deficient (MCD) or -supplemented (MCS) control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed. Results MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB) activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and monocyte chemoattractant protein-1 (MCP1) in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3) and reduction in collagen and α smooth muscle actin (αSMA) levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF), a pro-fibrotic cytokine; SMAD family member 3 (Smad3), a protein involved in transforming growth factor-β (TGFβ) signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT) in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ) a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice. Conclusions Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis. PMID:26042593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung
2014-09-01
Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phoxmore » activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.« less
Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.
Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin
2016-12-01
Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.
Luo, Yunpeng; Che, Wen; Zhao, Mingyan
2017-01-01
Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI. PMID:27959396
Yang, Wenjuan; Huang, Luming; Gao, Jinhang; Wen, Shilei; Tai, Yang; Chen, Meng; Huang, Zhiyin; Liu, Rui; Tang, Chengwei; Li, Jing
2017-10-01
Betaine has previously been demonstrated to protect the liver against alcohol‑induced fat accumulation. However, the mechanism through which betaine affects alcohol‑induced hepatic lipid metabolic disorders has not been extensively studied. The present study aimed to investigate the effect of betaine on alcoholic simple fatty liver and hepatic lipid metabolism disorders. A total of 36 rats were randomly divided into control, ethanol and ethanol + betaine groups. Liver function, morphological alterations, lipid content and tumor necrosis factor (TNF)‑α levels were determined. Hepatic expression levels of diacylglycerol acyltransferase (DGAT) 1, DGAT2, sterol regulatory element binding protein (SREBP)‑1c, SREBP‑2, fatty acid synthase (FAS), 3‑hydroxy‑3‑methyl‑glutaryl (HMG)‑CoA reductase, peroxisome proliferator-activated receptor λ coactivator (PGC)‑1α, adiponectin receptor (AdipoR) 1 and AdipoR2 were quantified. Serum and adipose tissue adiponectin levels were assessed using an enzyme‑linked immunoassay. The results demonstrated that alcohol‑induced ultramicrostructural alterations in hepatocytes, including the presence of lipid droplets and swollen mitochondria, were attenuated by betaine. Hepatic triglyceride, free fatty acid, total cholesterol and cholesterol ester contents and the expression of DGAT1, DGAT2, SREBP‑1c, SREBP‑2, FAS and HMG‑CoA reductase were increased following ethanol consumption, however were maintained at control levels following betaine supplementation. Alcohol‑induced decreases in hepatic PGC‑1α mRNA levels and serum and adipose tissue adiponectin concentrations were prevented by betaine. The downregulation of hepatic AdipoR1 which resulted from alcohol exposure was partially attenuated by betaine. No significant differences in liver function, TNF‑α, phospholipid and AdipoR2 levels were observed among the control, ethanol and ethanol + betaine groups. Overall, these results indicated that betaine attenuated the alcoholic simple fatty liver by improving hepatic lipid metabolism via suppression of DGAT1, DGAT2, SREBP‑1c, FAS, SREBP‑2 and HMG‑CoA reductase and upregulation of PGC‑1α.
LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways.
Lee, Seung Jin; Seo, Kyo Won; Kim, Chi Dae
2015-05-01
5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.
Chen, Xiao-Wen; Liu, Wen-Ting; Wang, Yu-Xian; Chen, Wen-Jing; Li, Hong-Yu; Chen, Yi-Hua; Du, Xiao-Yan; Peng, Fen-Fen; Zhou, Wei-Dong; Xu, Zhao-Zhong; Long, Hai-Bo
2016-07-01
The aim of this research was to investigate the effects of cyclopropanyldehydrocostunolide (also named LJ), a derivative of sesquiterpene lactones (SLs), on high glucose (HG)-induced podocyte injury and the associated molecular mechanisms. Differentiated mouse podocytes were incubated in different treatments. The migration and albumin filtration of podocytes were examined by Transwell filters. The protein and mRNA levels of MCP-1 were measured using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (q-PCR). Protein expression and phosphorylation were detected by western blot, and the nuclear translocation of NF-κB was performed with a confocal microscope. The gene expression of the receptor activator for NF-κB (RANK) was silenced by small interfering RNA (siRNA). Our results showed that HG enhanced migration, albumin filtration and MCP-1 expression in podocytes. At the molecular level, HG promoted the phosphorylation of NF-κB/p65, IKKβ, IκBα, mitogen-activated protein kinase (MAPK) and the nuclear translocation of p65. LJ reversed the effects of HG in a dose-dependent manner. Furthermore, our data provided the first demonstration that the receptor activator for NF-κB ligand (RANKL) and its cognate receptor RANK were overexpressed in HG-induced podocytes and were downregulated by LJ. RANK siRNA also attenuated HG-induced podocyte injury and markedly inhibited the activation of NF-κB and MAPK signaling pathways. LJ attenuates HG-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin
2014-01-01
Background Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Method Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. Results We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Conclusion Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells. PMID:24667347
NASA Astrophysics Data System (ADS)
Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning
2017-04-01
The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.
Hu, Xuguang; Zhang, Xiaojun; Han, Bin; Bei, Weijian
2013-10-02
The aims of this study were to evaluate the effect and mechanism of a traditional Chinese medicine formula: Tongxieyaofang (TXYF) on Rats with Post Infectious Irritable Bowel Syndrome (PI-IBS). SD male rats in adult were used to model PI-IBS and treated with TXYF at three dosage for 14 consecutive days, and then visceral sensation and the frequency of stool in PI-IBS rats were investigated. In addition, the contents of SP, TNF- α and IL-6 in colonic mucosal were analyzed by ELISA. Moreover faecal serine protease activity and PAR-2 mRNA expression were measured by ultraviolet spectrophotometry and RT-PCR, respectively. Our study showed that TXYF attenuated visceral hyperalgesia and inhibited stool frequency in Campylobacter-stimulated Post Infectious Irritable Bowel Syndrome (PI-IBS) rats. Furthermore, TXYF decreased the colonic SP, TNF- α and IL-6 content in PI-IBS rats. In addition, the up-regulated colonic mucosa PAR-2 mRNA expression in PI-IBS rats was significantly suppressed by orally TXYF. TXYF attenuated PI-IBS symptom by attenuating behavioral hyperalgesia and anti-diarrhea, the underlying mechanism was mediated by inhibiting PAR-2 receptor expression, reducing the levels of SP, TNF- α and IL-6 in colonic mucosa and decreasing faecal serine protease activity.
Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model.
Park, Dong-Ju; Shah, Fawad-Ali; Koh, Phil-Ok
2018-04-27
Cerebral ischemia is a neurological disorder with high mortality. Quercetin is a flavonoid compound that is abundant in vegetables and fruits. It exerts anti-inflammatory and anti-apoptotic effects. This study investigated the neuroprotective effects of quercetin in focal cerebral ischemia. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) to induce focal cerebral ischemia. Quercetin or vehicle was injected 30 min before the onset of ischemia. A neurological function test, brain edema measurement, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of quercetin. Western blot analysis was performed to observe caspase-3 and poly ADP-ribose polymerase (PARP) protein expression. MCAO leads to severe neuronal deficits and increases brain edema and infarct volume. However, quercetin administration attenuated the MCAO-induced neuronal deficits and neuronal degeneration. We observed increases in caspase-3 and PARP protein levels in MCAO-operated animals injected with vehicle, whereas quercetin administration attenuated these increases in MCAO injury. This study reveals the neuroprotective effect of quercetin in an MCAO-induced animal model and demonstrates the regulation of caspase-3 and PARP expression by quercetin treatment. These results suggest that quercetin exerts a neuroprotective effect through preventing the MCAO-induced activation of apoptotic pathways affecting caspase-3 and PARP expression.
miR-1271 inhibits ERα expression and confers letrozole resistance in breast cancer.
Yu, Tao; Yu, Hai-Ru; Sun, Jia-Yi; Zhao, Zhao; Li, Shuang; Zhang, Xin-Feng; Liao, Zhi-Xuan; Cui, Ming-Ke; Li, Juan; Li, Chan; Zhang, Qiang
2017-12-05
Attenuation of estrogen receptor α (ERα) expression via unknown mechanism(s) is a hallmark of endocrine-resistant breast cancer (BCa) progression. Here, we report that miR-1271 was significantly down-regulated in letrozole-resistant BCa tissues and in letrozole-resistant BCa cells. miR-1271 directly targeted the chromatin of DNA damage-inducible transcript 3 (DDIT3) gene. miR-1271 expression level was inversely correlated to DDIT3 mRNA level in BCa biopsies. Form a mechanistic standpoint, reintroduction of exogenous miR-1271 could effectively restore ERα level via inhibiting DDIT3 expression, thereby potentiating letrozole sensitivity in BCa cells. Moreover, DDIT3 deregulation promoted letrozole-resistance by acting as a potent corepressor of ESR1 transcription. Taken together, we have identified that disruption of the miR-1271/DDIT3/ERα cascade plays a causative role in the pathogenesis of letrozole resistance in BCa.
Tan, Gang; Pan, Shangha; Li, Jie; Dong, Xuesong; Kang, Kai; Zhao, Mingyan; Jiang, Xian; Kanwar, Jagat R; Qiao, Haiquan; Jiang, Hongchi; Sun, Xueying
2011-01-01
Hydrogen sulfide (H(2)S) displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2)S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2)S in carbon tetrachloride (CCl(4))-induced hepatotoxicity, cirrhosis and portal hypertension. Sodium hydrosulfide (NaHS), a donor of H(2)S, and DL-propargylglycine (PAG), an irreversible inhibitor of cystathionine γ-lyase (CSE), were applied to the rats to investigate the effects of H(2)S on CCl(4)-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2)S, hepatic H(2)S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP) 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4) significantly reduced serum levels of H(2)S, hepatic H(2)S production and CSE expression. NaHS attenuated CCl(4)-induced acute hepatotoxicity by supplementing exogenous H(2)S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), albumin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and soluble intercellular adhesion molecule (ICAM)-1, liver histology, hepatic hydroxyproline content and α-smooth muscle actin (SMA) expression. PAG showed opposing effects to NaHS on most of the above parameters. Exogenous H(2)S attenuates CCl(4)-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H(2)S may present a promising approach, particularly for its prophylactic effects, against liver cirrhosis and portal hypertension.
Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko
2017-08-01
The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Transgenic tomato (Solanum lycopersicum) lines over-expressing yeast spermidine synthase (ySpdSyn), an enzyme involved in polyamine (PA) biosynthesis, were developed. These transgenic lines accumulate higher levels of spermidine (Spd) than the wild type plants and were examined for responses to the...
Boker, Steven M.; Cohn, Jeffrey F.; Theobald, Barry-John; Matthews, Iain; Brick, Timothy R.; Spies, Jeffrey R.
2009-01-01
When people speak with one another, they tend to adapt their head movements and facial expressions in response to each others' head movements and facial expressions. We present an experiment in which confederates' head movements and facial expressions were motion tracked during videoconference conversations, an avatar face was reconstructed in real time, and naive participants spoke with the avatar face. No naive participant guessed that the computer generated face was not video. Confederates' facial expressions, vocal inflections and head movements were attenuated at 1 min intervals in a fully crossed experimental design. Attenuated head movements led to increased head nods and lateral head turns, and attenuated facial expressions led to increased head nodding in both naive participants and confederates. Together, these results are consistent with a hypothesis that the dynamics of head movements in dyadicconversation include a shared equilibrium. Although both conversational partners were blind to the manipulation, when apparent head movement of one conversant was attenuated, both partners responded by increasing the velocity of their head movements. PMID:19884143
Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A
2004-09-10
While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these results suggest that Ang II attenuates NMDA receptor-mediated neurotoxicity and that this effect may be due, in part, to an alteration in Bcl-2 expression.
Qiu, Linan; Luo, Yuju; Chen, Xiaojuan
2018-07-01
Despite the severity of osteoarthritis (OA), current medical therapy strategies for OA aim at symptom control and pain reduction, as there is no ideal drug for effective OA treatment. OA rat model was used to explore the therapeutic function of quercetin on remission of OA, by determining the reactive oxygen species (ROS) levels, mitochondrial function and extracellular matrix integrity. Quercetin could attenuate ROS generation and augment the glutathione (GSH) and glutathione peroxidase (GPx) expression levels in OA rat. Quercetin not only enhanced mitochondrial membrane potential, oxygen consumption, adenosine triphosphate (ATP) levels in mitochondria, but also increased the mitochondrial copy number. Furthermore, the interlukin (IL)-1β-induced accumulation of nitric oxide (NO), matrixmetalloproteinase (MMP)-3) and MMP-13 could be suppressed by quercetin. Finally, we confirmed that the therapeutic properties of quercetin on OA might function through the adenosine monophosphate-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway. In summary, quercetin could alleviate OA through attenuating the ROS levels, reversing the mitochondrial dysfunction and keeping the integrality of extracellular matrix of joint cartilage. The underlying mechanism might involve the regulation of AMPK/SIRT1 signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D
2015-10-01
We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.
He, Wenhua; Shi, Feng; Zhou, Zhi-Wei; Li, Bimin; Zhang, Kunhe; Zhang, Xinhua; Ouyang, Canhui; Zhou, Shu-Feng; Zhu, Xuan
2015-01-01
NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug–drug interaction via chemical–protein interactome tool, a server that can predict drug–drug interaction via chemical–protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results suggest that UA may act as a promising antifibrotic agent. More studies are warranted to evaluate the safety and efficacy of UA in the treatment of liver fibrosis. PMID:26347199
Liraglutide attenuates partial warm ischemia-reperfusion injury in rat livers.
Abdelsameea, Ahmed A; Abbas, Noha A T; Abdel Raouf, Samar M
2017-03-01
Ischemia-reperfusion (IR) injury constitutes the most important cause of primary dysfunction of liver grafts. In this study, we have addressed the possible hepatoprotective action of liraglutide against partial warm hepatic IR injury in male rats. Rats were randomly assigned into: sham, IR, and liraglutide-pretreated IR groups. Liraglutide was administered 50 μg/kg s.c. twice daily for 14 days, and then, hepatic IR was induced by clamping portal vein and hepatic artery to left and median lobes for 30 min followed by reperfusion for 24 h. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transferase (GGT) activities were determined. Malondialdehyde (MDA) level, reduced glutathione (GSH) content, tumor necrosis factor-α (TNF-α), phosphoralated Akt (p-Akt), and caspase-3 levels of the liver were determined. Hematoxylin and eosin (H&E) stained sections from liver were examined as well as immunohistochemical sections for detection of Bcl-2 expression. IR injury increased ALT, AST, and GGT while decreased GSH and p-Akt with increase in MDA, TNF-α, and caspase-3 levels in the liver with necrosis and inflammatory cellular infiltration with decreased Bcl-2 expression. Pretreatment with liraglutide decreased ALT, AST, and GGT activities while increased glutathione content and Akt activation with decrements in MDA, TNF-α, and caspase-3 levels with attenuation of necrosis and inflammation while enhanced Bcl-2 expression in the liver. Liraglutide protects against IR injury of the liver through antiinflammatory and antioxidant actions as well as inhibition of apoptosis.
Hur, Jin; Eo, Seong Kug; Park, Sang-Youel; Choi, Yoonyoung; Lee, John Hwa
2016-01-01
Salmonella Typhimurium strain expressing the Actinobacillus pleuropneumoniae antigens, ApxIA, ApxIIA, ApxIIIA and OmpA, was previously constructed as a vaccine candidate for porcine pleuropneumonia. This strain was a live attenuated (∆lon∆cpxR∆asd)Salmonella as a delivery host and contained a vector containing asd. An immunological study of lymphocyte proliferation, T-lymphocyte subsets and cytokines in the splenocytes of a mouse model was carried out after stimulation with the candidate Salmonella Typhimurium by intranasal inoculation. The splenic lymphocyte proliferation and the levels of IL-4, IL-6 and IL-12 of the inoculated mice were significantly increased, and the T- and B-cell populations were also elevated. Collectively, the candidate may efficiently induce the Th1- and Th2-type immune responses.
Wu, Shao-Ze; Tao, Lu-Yuan; Wang, Jiao-Ni; Xu, Zhi-Qiang; Wang, Jie; Xue, Yang-Jing; Huang, Kai-Yu; Lin, Jia-Feng; Li, Lei; Ji, Kang-Ting
2017-01-01
The present study was aimed at investigating the effect of amifostine on myocardial ischemia/reperfusion (I/R) injury of mice and H9c2 cells cultured with TBHP (tert-butyl hydroperoxide). The results showed that pretreatment with amifostine significantly attenuated cell apoptosis and death, accompanied by decreased reactive oxygen species (ROS) production and lower mitochondrial potential (ΔΨm). In vivo, amifostine pretreatment alleviated I/R injury and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase (SOD) and reduced malondialdehyde (MDA) in myocardial tissues, increased Bcl2 expression, decreased Bax expression, lower cleaved caspase-3 level, fewer TUNEL positive cells, and fewer DHE-positive cells in heart. Our results indicate that amifostine pretreatment has a protective effect against myocardial I/R injury via scavenging ROS.
2012-01-01
Background At present there is no effective and accepted therapy for hepatic fibrosis. Transforming growth factor (TGF)-β1 signaling pathway contributes greatly to hepatic fibrosis. Reducing TGF-β synthesis or inhibiting components of its complex signaling pathway represent important therapeutic targets. The aim of the study was to investigate the effect of curcumin on liver fibrosis and whether curcumin attenuates the TGF-β1 signaling pathway. Methods Sprague–Dawley rat was induced liver fibrosis by carbon tetrachloride (CCl4) for six weeks together with or without curcumin, and hepatic histopathology and collagen content were employed to quantify liver necro-inflammation and fibrosis. Moreover, the mRNA and protein expression levels of TGF-β1, Smad2, phosphorylated Smad2, Smad3, Smad7 and connective tissue growth factor (CTGF) were determined by quantitative real time-PCR, Western blot, or immunohistochemistry. Results Rats treated with curcumin improved liver necro-inflammation, and reduced liver fibrosis in association with decreased α-smooth muscle actin expression, and decreased collagen deposition. Furthermore, curcumin significantly attenuated expressions of TGFβ1, Smad2, phosphorylated Smad2, Smad3, and CTGF and induced expression of the Smad7. Conclusions Curcumin significantly attenuated the severity of CCl4-induced liver inflammation and fibrosis through inhibition of TGF-β1/Smad signalling pathway and CTGF expression. These data suggest that curcumin might be an effective antifibrotic drug in the prevention of liver disease progression. PMID:22978413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkhouse, Darryll A.; Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107; Faber, Milosz
Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4more » RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression.« less
Roles of the Adenosine Receptor and CD73 in the Regulatory Effect of γδ T Cells
Liang, Dongchun; Zuo, Aijun; Shao, Hui; Chen, Mingjiazi; Kaplan, Henry J.; Sun, Deming
2014-01-01
The adenosine A2A receptor (A2AR), the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses. PMID:25268760
Liu, Hui; Liu, Hong-Yang; Jiang, Yi-Nong; Li, Nan
2016-03-01
Thymoquinone is the main active monomer extracted from black cumin and has anti‑inflammatory, antioxidant and anti‑apoptotic functions. However, the protective effects of thymoquinone on cardiovascular function in diabetes remain to be fully elucidated. The present study aimed to investigate the molecular mechanisms underling the beneficial effects of thymoquinone on the cardiovascular function in streptozotocin‑induced diabetes mellitus (DM) rats. Supplement thymoquinone may recover the insulin levels and body weight, inhibit blood glucose levels and reduce the heart rate in DM‑induced rats. The results indicated that the heart, liver and lung to body weight ratios, in addition to the blood pressure levels, were similar for each experimental group. Treatment with thymoquinone significantly reduced oxidative stress damage, inhibited the increased endothelial nitric oxide synthase protein expression and suppressed the elevation of cyclooxygenase‑2 levels in DM‑induced rats. In addition, thymoquinone significantly suppressed the promotion of tumor necrosis factor‑α and interleukin‑6 levels in the DM‑induced rats. Furthermore, administration of thymoquinone significantly reduced caspase‑3 activity and the promotion of phosphorylated‑protein kinase B (Akt) protein expression levels in DM‑induced rats. These results suggest that the protective effect of thymoquinone improves cardiovascular function and attenuates oxidative stress, inflammation and apoptosis by mediating the phosphatidylinositol 3‑kinase/Akt pathway in DM‑induced rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xingguo, E-mail: chengx@stjohns.edu; Vispute, Saurabh G.; Liu, Jie
The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) ofmore » Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.« less
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 < α , β ≤ 2 } based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W
2016-01-01
Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.
Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan
2013-01-01
Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.
Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping
2017-10-01
Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.
Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm
2017-06-01
Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Mohanty, Madhu C; Deshpande, Jagadish M
2013-01-01
Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.
Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.
Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan
2015-02-05
Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Yan; Liu, Chang; Wan, Xin-Shun; Li, Shao-Wei
2018-06-22
Diabetic retinopathy (DR) is the common cause of diabetic vascular complications. The NOD-like receptor (NLR) family, pyrin domain containing 1 (NLRP1), also known as NALP1, inflammasome is the first member of the NLR family to be discovered, playing an important role in inflammatory response. However, its effect on DR development has not been reported. In the study, the wild type (WT) and NLRP1 -/- mice were injected with streptozotocin (STZ) to induce DR. The results indicated that NLRP1 -/- significantly increased bodyweight reduction and decreased blood glucose levels induced by STZ. WT/DR mice exhibited higher levels of NLRP1 in retinas. NLRP1 -/- ameliorated retinal abnormalities in DR mice using H&E staining. In addition, attenuated avascular areas and neovascular tufts were also observed in NLRP1 -/- /DR mice. The levels of pro-inflammatory cytokines in serum and retinas were highly induced in WT/DR mice, whereas being markedly reduced by NLRP1 -/- . In addition, vascular endothelial growth factor (VEGF) and Iba1 expressions induced by STZ in serum or retinas were significantly down-regulated in NLRP1 -/- /DR mice. Consistently, NLRP1 -/- attenuated ASC and Caspase-1 expressions in retinas of DR mice. Compared to WT/DR group, NLRP1 -/- markedly decreased retina p-nuclear factor-κB (NF-κB), interleukin-1β (IL-1β) and IL-18 levels. And similar results were confirmed in vitro that suppressing NLRP1/ASC inflammasome ameliorated inflammatory response in fructose-treated retinal ganglion cells. The results above indicated that the modulation of NLRP1 inflammasome might be a promising strategy for DR therapy. Copyright © 2018. Published by Elsevier Inc.
Chen, Jigang; Guo, Yanhong; Zeng, Wei; Huang, Li; Pang, Qi; Nie, Ling; Mu, Jiao; Yuan, Fahuan; Feng, Bing
2014-04-15
Epigenetics plays a key role in the pathogenesis of diabetic nephropathy (DN), although the precise regulatory mechanism is still unclear. Here, we examined the role of endoplasmic reticulum (ER) stress in histone H3 lysine 4 (H3K4) methyltransferase SET7/9-induced monocyte chemoattractant protein-1 (MCP-1) expression in the kidneys of db/db mice. Our results indicate that the expression of MCP-1 significantly increased in the kidneys of db/db mice in a time-dependent manner. An increased chromatin mark associated with an active gene (H3K4me1) at MCP-1 promoters accompanied this change in expression. The expression of SET7/9 and the recruitment to these promoters were also elevated. SET7/9 gene silencing with small interfering (si) RNAs significantly attenuated the expression of H3K4me1 and MCP-1. Furthermore, expression of signaling regulator glucose-regulated protein 78 (GRP78), a monitor of ER stress, significantly increased in the kidneys of db/db mice. The expression of spliced X-box binding protein 1 (XBP1s), an ER stress-inducible transcription factor, and recruitment to the SET7/9 promoters were also increased. XBP1s gene silencing with siRNAs significantly attenuated the expression of SET7/9, H3K4me1, and MCP-1. The chaperone betaine not only effectively downregulated the GRP78 and XBP1s expression levels but also markedly decreased the SET7/9, H3K4me1, and MCP-1 levels. Luciferase reporter assay demonstrated that XBP1s participated in ER stress-induced SET7/9 transcription, Taken together, these results reveal that ER stress can trigger the expression of MCP-1, in part through the XBP1s-mediated induction of SET7/9.
A study was conducted to determine if differential display could be used to detect differences in gene expression in the amphipod, Hyalella azteca. In a study of synthetic estrogen attenuation in different aquatic media, amphipods were exposed to 20 ng/L 17 a-ethynylestradiol in...
Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain
NASA Astrophysics Data System (ADS)
Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo
2015-10-01
Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.
Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.
2015-01-01
Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were attenuated by CBD. CBD by itself did not induce any effect. Moreover, CBD effects were similar to those induced by repeated clozapine treatment. Conclusions: These results indicate that repeated treatment with CBD, similar to clozapine, reverses the psychotomimetic-like effects and attenuates molecular changes observed after chronic administration of an NMDAR antagonist. These data support the view that CBD may have antipsychotic properties. PMID:25618402
Gomes, Felipe V; Issy, Ana Carolina; Ferreira, Frederico R; Viveros, Maria-Paz; Del Bel, Elaine A; Guimarães, Francisco S
2014-10-31
Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were attenuated by CBD. CBD by itself did not induce any effect. Moreover, CBD effects were similar to those induced by repeated clozapine treatment. These results indicate that repeated treatment with CBD, similar to clozapine, reverses the psychotomimetic-like effects and attenuates molecular changes observed after chronic administration of an NMDAR antagonist. These data support the view that CBD may have antipsychotic properties. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo
2012-08-01
A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.
Han, Sora; Jeong, Ae Lee; Lee, Sunyi; Park, Jeong Su; Kim, Kwang Dong; Choi, Inpyo; Yoon, Suk Ran; Lee, Myung Sok; Lim, Jong-Seok; Han, Seung Hyun; Yoon, Do Young; Yang, Young
2013-05-01
Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.
Qiu, Yanyan; Sui, Xianxian; Zhan, Yongkun; Xu, Chen; Li, Xiaobo; Ning, Yanxia; Zhi, Xiuling; Yin, Lianhua
2017-04-01
Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.
Wiest, Elani F; Walsh-Wilcox, Mary T; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K
2016-11-01
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Yamamoto, Tsunehisa; Tamaki, Kayoko; Shirakawa, Kohsuke; Ito, Kentaro; Yan, Xiaoxiang; Katsumata, Yoshinori; Anzai, Atsushi; Matsuhashi, Tomohiro; Endo, Jin; Inaba, Takaaki; Tsubota, Kazuo; Sano, Motoaki; Fukuda, Keiichi; Shinmura, Ken
2016-04-15
Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting that cardiac Sirt1 regulates the local complement system during CR. Copyright © 2016 the American Physiological Society.
Kadam, Leena; Mial, Tara N.; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S.; Xu, Zhonghui; Tarca, Adi L.; Drewlo, Sascha; Gomez-Lopez, Nardhy
2016-01-01
Macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo an M1 polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. Herein, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) M2-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared to term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL12, but low levels of PPARγ, during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with rosiglitazone reduces the expression of TNF and IL12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with rosiglitazone reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic pro-inflammatory response in B6 mice and down-regulating mRNA and protein expression of NFκB, TNF, and IL10 in decidual and myometrial macrophages. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor, and that PPARγ activation via rosiglitazone can attenuate the macrophage-mediated pro-inflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth. PMID:26889045
Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing
2015-01-05
Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.
Kaur, Harpreet; Patro, Ishan; Tikoo, Kulbhushan; Sandhir, Rajat
2015-10-01
Evidence suggests that glial cells play a critical role in inflammation in chronic epilepsy, contributing to perpetuation of seizures and cognitive dysfunctions. The present study was designed to evaluate the beneficial effect of curcumin, a polyphenol with pleiotropic properties, on cognitive deficits and inflammation in chronic epilepsy. Kindled model of epilepsy was induced by administering sub-convulsive dose of pentylenetetrazole (PTZ) at 40 mg/kg, i.p. every alternative day for 30 days to Wistar rats. The animals were assessed for cognitive deficits by Morris water maze and inflammatory response in terms of microglial and astrocyte activation. PTZ treated animals had increased escape latency suggesting impaired cognitive functions. Further, an increased expression of astrocyte (GFAP) and microglial (Iba-1) activation markers were observed in terms of mRNA and protein levels in the PTZ treated animals. Concomitantly, mRNA and protein levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and chemokine (MCP-1) were increased in hippocampus and cortex. Immunoreactivity to anti-GFAP and anti-Iba-1 antibodies was also enhanced in hippocampus and cortex suggesting gliosis in PTZ treated animals. However, curcumin administration at a dose of 100 mg/kg to PTZ animals prevented cognitive deficits. A significant decrease in pro-inflammatory cytokines and chemokine expression was observed in hippocampus and cortex of PTZ treated rats supplemented with curcumin. In addition, curcumin also attenuated increased expression of GFAP and Iba-1 in animals with PTZ induced chronic epilepsy. Moreover, immunohistochemical analysis also showed significant reduction in number of activated glial cells on curcumin administration to PTZ treated animals. Taken together, these findings suggest that curcumin is effective in attenuating glial activation and ameliorates cognitive deficits in chronic epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity
Law, Ivy K.M.; Xu, Aimin; Lam, Karen S.L.; Berger, Thorsten; Mak, Tak W.; Vanhoutte, Paul M.; Liu, Jacky T.C.; Sweeney, Gary; Zhou, Mingyan; Yang, Bo; Wang, Yu
2010-01-01
OBJECTIVE The proinflammatory cytokines/adipokines produced from adipose tissue act in an autocrine and/or endocrine manner to perpetuate local inflammation and to induce peripheral insulin resistance. The present study investigates whether lipocalin-2 deficiency or replenishment with this adipokine has any impact on systemic insulin sensitivity and the underlying mechanisms. METHODS AND RESULTS Under conditions of aging or dietary-/genetic-induced obesity, lipocalin-2 knockout (Lcn2-KO) mice show significantly decreased fasting glucose and insulin levels and improved insulin sensitivity compared with their wild-type littermates. Despite enlarged fat mass, inflammation and the accumulation of lipid peroxidation products are significantly attenuated in the adipose tissues of Lcn2-KO mice. Adipose fatty acid composition of these mice varies significantly from that in wild-type animals. The amounts of arachidonic acid (C20:4 n6) are elevated by aging and obesity and are paradoxically further increased in adipose tissue, but not skeletal muscle and liver of Lcn2-KO mice. On the other hand, the expression and activity of 12-lipoxygenase, an enzyme responsible for metabolizing arachidonic acid, and the production of tumor necrosis factor-α (TNF-α), a critical insulin resistance–inducing factor, are largely inhibited by lipocalin-2 deficiency. Lipocalin-2 stimulates the expression and activity of 12-lipoxygenase and TNF-α production in fat tissues. Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), an arachidonate lipoxygenase inhibitor, prevents TNF-α expression induced by lipocalin-2. Moreover, treatment with TNF-α neutralization antibody or CDC significantly attenuated the differences of insulin sensitivity between wild-type and Lcn2-KO mice. CONCLUSIONS Lipocalin-2 deficiency protects mice from developing aging- and obesity-induced insulin resistance largely by modulating 12-lipoxygenase and TNF-α levels in adipose tissue. PMID:20068130
Ketoconazole attenuates radiation-induction of tumor necrosis factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.
1994-07-01
Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2more » inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.« less
Withaferin A Suppresses Estrogen Receptor-α Expression in Human Breast Cancer Cells
Hahm, Eun-Ryeong; Lee, Joomin; Huang, Yi; Singh, Shivendra V.
2011-01-01
We have shown previously that withaferin A (WA), a promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits growth of MCF-7 and MDA-MB-231 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo by causing apoptosis. However, the mechanism of WA-induced apoptosis is not fully understood. The present study was designed to systematically determine the role of tumor suppressor p53 and estrogen receptor-α (ER-α) in proapoptotic response to WA using MCF-7, T47D, and ER-α overexpressing MDA-MB-231 cells as a model. WA treatment resulted in induction as well as increased Ser15 phosphorylation of p53 in MCF-7 cells, but RNA interference of this tumor suppressor gene conferred modest protection at best against WA-induced apoptosis. WA-mediated growth inhibition and apoptosis induction in MCF-7 cells were significantly attenuated in the presence of 17β-estradiol (E2). Exposure of MCF-7 cells to WA resulted in a marked decrease in protein levels of ER-α (but not ER-β) and ER-α regulated gene product pS2, and this effect was markedly attenuated in the presence of E2. WA-mediated down-regulation of ER-α protein expression correlated with a decrease in its nuclear level, suppression of its mRNA level, and inhibition of E2-dependent activation of ERE2e1b-luciferase reporter gene. Ectopic expression of ER-α in the MDA-MB-231 cell line conferred partial but statistically significant protection against WA-mediated apoptosis, but not G2/M phase cell cycle arrest. Collectively, these results indicate that WA functions as an anti-estrogen, and the proapoptotic effect of this promising natural product is partially attenuated by p53 knockdown and E2-ER-α. PMID:21432907
Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.
2010-01-01
Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246
Lin, Xu; You, Yanwu; Wang, Jie; Qin, Youling; Huang, Peng; Yang, Fafen
2015-04-01
MiR-155 has been reported to be involved in both innate and adaptive immune responses. But the role of miR-155 in hyperglycemia-induced nephropathy is still unknown. In our current study, 3-month-old male wild-type C57 mice and Mir-155(-/-) mice were used to establish hyperglycemia-induced nephropathy. In our hyperglycemia-induced nephropathy model, the expression of podocyte injury marker desmin was markedly increased in the diabetes group when compared with control. Diabetes also significantly decreased the levels of nephrin and acetylated nephrin, whereas the expression of miR-155 was markedly increased in diabetes group when compared with control. MiR-155(-/-) mice showed significantly increased expression of nephrin, acetylated nephrin, and Wilm's tumor-1 protein (WT-1) when compared with wild-type control. MiR-155 deficiency results in significantly decrease in IL-17A expression both in vivo and in vitro. And the increased expression of WT-1, nephrin, and ac-nephrin was reversed with additional treatment of rmIL-17. Furthermore, we found that the inhibited Th17 differentiation induced by miR-155 deficiency was dependent on increased expression of SOCS1. In conclusion, miR-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy. This was associated with inhibited IL-17 production through enhancement of SOCS1 expression.
CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus
Russell, Mike R.; Penikis, Annalise; Oldridge, Derek A.; Alvarez-Dominguez, Juan R.; McDaniel, Lee; Diamond, Maura; Padovan, Olivia; Raman, Pichai; Li, Yimei; Wei, Jun S.; Zhang, Shile; Gnanchandran, Janahan; Seeger, Robert; Asgharzadeh, Shahab; Khan, Javed; Diskin, Sharon J.; Maris, John M.; Cole, Kristina A.
2015-01-01
Chromosome 6p22 was identified recently as a neuroblastoma susceptibility locus, but its mechanistic contributions to tumorigenesis are as yet undefined. Here we report that the most highly significant single nucleotide polymorphism (SNP) associations reside within CASC15, a long non-coding RNA that we define as a tumor suppressor at 6p22. Low-level expression of a short CASC15 isoform (CASC15-S) associated highly with advanced neuroblastoma and poor patient survival. In human neuroblastoma cells, attenuating CASC15-S increased cellular growth and migratory capacity. Gene expression analysis revealed downregulation of neuroblastoma-specific markers in cells with attenuated CASC15-S, with concomitant increases in cell adhesion and extracellular matrix transcripts. Altogether, our results point to CASC15-S as a mediator of neural growth and differentiation, which impacts neuroblastoma initiation and progression. PMID:26100672
Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens.
Sizemore, Donata R; Warner, Beth; Lawrence, Julie; Jones, Amy; Killeen, Kevin P
2006-05-01
We describe the evaluation of three live, attenuated deltaphoP/Q Salmonella enteric serovar Typhimurium strains expressing PEB1 minus its signal sequence (PEB1-ss) from three different plasmids: a pBR-based asd plasmid, an arabinose-based runaway plasmid, which each expressed PEB1-ss in the bacterial cytosol, and a PEB1::HlyA fusion plasmid that directs secretion of PEB1-ss into the extracellular milieu. Serum IgG responses specific for PEB1-ss were induced by pBR-derived and runaway plasmids, with 100 and 90% seroconversion, respectively, at a 1:500 dilution of anti-sera as measured by Western blot analysis, while the PEB1-ss::HlyA fusion plasmid induced serum IgG in only 20% of the mice. Although significant levels of anti-PEB serum IgG were induced, no protection against oral Campylobacter jejuni challenge was observed.
Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi
2017-06-17
Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra
2015-04-01
The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR rats.
Transient decrease in nociceptor GRK2 expression produces long–term enhancement in inflammatory pain
Ferrari, Luiz F.; Bogen, Oliver; Alessandri–Haber, Nicole; Levine, Emma; Gear, Robert W.; Levine, Jon D.
2012-01-01
In heterozygous mice, attenuation of G-protein-coupled receptor kinase 2 (GRK2) level in nociceptors is associated with enhanced and prolonged inflammatory hyperalgesia. To further elucidate the role of GRK2 in nociceptor function we reversibly decreased GRK2 expression using intrathecal antisense oligodeoxynucleotide (AS-ODN). GRK2 AS-ODN administration led to an enhanced and prolonged hyperalgesia induced by prostaglandin E 2, epinephrine and carrageenan. Morover, this effect persisted unattenuated 2 weeks after the last dose of antisense, well after GRK2 protein recovered, suggesting that transient attenuation of GRK2 produced neuroplastic changes in nociceptor function. Unlike hyperalgesic priming induced by transient attenuation of GRK2 produced neuroplastic changes in nociceptor function. Unlike hyperalgesic priming induced by transient activation of protein kinase C epsilon (PKCε), (Aley et al., 2000, Parada et al., 2003b), the enhanced and prolonged hyperalgesia following attenuation of GRK2 is PKCε- and cytoplasmic polyadenylation element binding protein (CPEB)-independent and is protein kinase A (PKA)- and Src tyrosine kinase (Src)-dependent. Finally, rats treated with GRK2 AS-ODN exhibited enhanced and prolonged hyperalgesia induced by direct activation of second messengers, adenyl cyclase, Epac or PKA, suggesting changes downstream of G-protein-coupled receptors. Because inflammation can produce a decrease in GRK2, such a mechanism could help explain a predilection to develop chronic pain, after resolution of acute inflammation. PMID:22796071
Neuroprotective effects of sodium hydrosulfide against β-amyloid-induced neurotoxicity
Li, Xiao-Hui; Deng, Yuan-Yuan; Li, Fei; Shi, Jing-Shan; Gong, Qi-Hai
2016-01-01
Alzheimer's disease (AD) is known to be caused by the accumulation of amyloid-β peptide (Aβ). The accumulation of Aβ has been shown to cause learning and memory impairment in rats, and it has been shown that hydrogen sulfide donors, such as sodium hydrosulfide (NaHS) can attenuate these effects. However, the underlying mechanisms have not yet been fully eludicated. This study was designed to investigate whether NaHS attenuates the inflammation and apoptosis induced by Aβ. We demonstrated that NaHS attenuated Aβ25–35-induced neuronal reduction and apoptosis, and inhibited the activation of pro-caspase-3. It also decreased the protein expresion of phosphodiesterase 5 (PDE5) in the hippocampus of the rats. In addition, NaHS upregulated the expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ, but it did not affect the expression of PPAR-β. Moreover, the Aβ25–35-exposed rats exhibited a decrease in IκB-α degradation and an increase in nuclear factor-κB (NF-κB) p65 phosphorylation levels, whereas these effects were attenuated by NaHS. Our data suggest that NaHS prevents Aβ-induced neurotoxicity via the upregulation of PPAR-α and PPAR-γ and the inhibition of PDE5. Hence NaHS may prove to be beneficial in the treatment of AD. PMID:27511125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Tomoki; Taura, Junki; Hattori, Yukiko
We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2–20 μg/kg),more » all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects. - Highlights: • The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on mouse growth was studied. • TCDD reduced the levels of luteinizing hormone and growth hormone in perinatal pups. • Maternal exposure to TCDD also attenuated testicular steroidogenesis in pups. • The above effects of TCDD were more pronounced in C57BL/6J than in DBA/2J strain. • TCDD seems to disturb pup maturation by activating aryl hydrocarbon receptor.« less
Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.
2013-01-01
Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108
Chakraborty, Debrup; Mukherjee, Avinaba; Sikdar, Sourav; Paul, Avijit; Ghosh, Samrat; Khuda-Bukhsh, Anisur Rahman
2012-04-05
Arsenic toxicity induces type 2 diabetes via stress mediated pathway. In this study, we attempt to reveal how sodium arsenite (iAs) could induce stress mediated impaired insulin signaling in mice and if an isolated active fraction of ginger, [6]-gingerol could attenuate the iAs intoxicated hyperglycemic condition of mice and bring about improvement in their impaired insulin signaling. [6]-Gingerol treatment reduced elevated blood glucose level and oxidative stress by enhancing activity of super oxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and GSH. [6]-Gingerol also helped in increasing plasma insulin level, brought down after iAs exposure. iAs treatment to primary cell culture of β-cells and hepatocytes in vitro produced cyto-degenerative effect and accumulated reactive oxygen species (ROS) in pancreatic β-cells and hepatocytes of mice. [6]-Gingerol appeared to inhibit/intervene iAs induced cyto-degeneration of pancreatic β-cells and hepatocytes, helped in scavenging the free radicals. The over-expression of TNFα and IL6 in iAs intoxicated mice was down-regulated by [6]-gingerol treatment. iAs intoxication reduced expression levels of GLUT4, IRS-1, IRS-2, PI3K, AKT, PPARγ signaling molecules; [6]-gingerol mediated its action through enhancing the expressions of these signaling molecules, both at protein and mRNA levels. Thus, our results suggest that [6]-gingerol possesses an anti-hyperglycemic property and can improve impaired insulin signaling in arsenic intoxicated mice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Adenosine kinase regulation of cardiomyocyte hypertrophy.
Fassett, John T; Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Chen, Yingjie; Bache, Robert J
2011-05-01
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k.
Inhibition of Prolyl Hydroxylase Attenuates Fas Ligand-Induced Apoptosis and Lung Injury in Mice.
Nagamine, Yusuke; Tojo, Kentaro; Yazawa, Takuya; Takaki, Shunsuke; Baba, Yasuko; Goto, Takahisa; Kurahashi, Kiyoyasu
2016-12-01
Alveolar epithelial injury and increased alveolar permeability are hallmarks of acute respiratory distress syndrome. Apoptosis of lung epithelial cells via the Fas/Fas ligand (FasL) pathway plays a critical role in alveolar epithelial injury. Activation of hypoxia-inducible factor (HIF)-1 by inhibition of prolyl hydroxylase domain proteins (PHDs) is a possible therapeutic approach to attenuate apoptosis and organ injury. Here, we investigated whether treatment with dimethyloxalylglycine (DMOG), an inhibitor of PHDs, could attenuate Fas/FasL-dependent apoptosis in lung epithelial cells and lung injury. DMOG increased HIF-1α protein expression in vitro in MLE-12 cells, a murine alveolar epithelial cell line. Treatment of MLE-12 cells with DMOG significantly suppressed cell surface expression of Fas and attenuated FasL-induced caspase-3 activation and apoptotic cell death. Inhibition of the HIF-1 pathway by echinomycin or small interfering RNA transfection abolished these antiapoptotic effects of DMOG. Moreover, intraperitoneal injection of DMOG in mice increased HIF-1α expression and decreased Fas expression in lung tissues. DMOG treatment significantly attenuated caspase-3 activation, apoptotic cell death in lung tissue, and the increase in alveolar permeability in mice instilled intratracheally with FasL. In addition, inflammatory responses and histopathological changes were also significantly attenuated by DMOG treatment. In conclusion, inhibition of PHDs protects lung epithelial cells from Fas/FasL-dependent apoptosis through HIF-1 activation and attenuates lung injury in mice.
Acetazolamide Attenuates Lithium–Induced Nephrogenic Diabetes Insipidus
de Groot, Theun; Sinke, Anne P.; Kortenoeven, Marleen L.A.; Alsady, Mohammad; Baumgarten, Ruben; Devuyst, Olivier; Loffing, Johannes; Wetzels, Jack F.
2016-01-01
To reduce lithium–induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA–specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects. PMID:26574046
Park, S; Kang, S; Kim, D S; Shin, B K; Moon, N R; Daily, J W
2014-08-01
Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease.
Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi
2007-11-01
Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.
Zaidi, Maria; Krolikowki, John G; Jones, Deron W; Pritchard, Kirkwood A; Struve, Janine; Nandedkar, Sandhya D; Lohr, Nicole L; Pagel, Paul S; Weihrauch, Dorothée
2013-01-01
The tight skin mouse (Tsk(-/+)) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low-level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk(-/+) mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk(-/+) mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk(-/+) mice received LLLT (670 nm, 50 mW cm(-2), 30 J cm(-2)) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk(-/+) compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk(-/+) mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk(-/+) mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk(-/+) mice. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Kim, Donghoon; You, Byunghyun; Jo, Eun-Kyeong; Han, Sang-Kyou; Simon, Melvin I.; Lee, Sung Joong
2010-01-01
Increasing evidence supports the notion that spinal cord microglia activation plays a causal role in the development of neuropathic pain after peripheral nerve injury; yet the mechanisms for microglia activation remain elusive. Here, we provide evidence that NADPH oxidase 2 (Nox2)-derived ROS production plays a critical role in nerve injury-induced spinal cord microglia activation and subsequent pain hypersensitivity. Nox2 expression was induced in dorsal horn microglia immediately after L5 spinal nerve transection (SNT). Studies using Nox2-deficient mice show that Nox2 is required for SNT-induced ROS generation, microglia activation, and proinflammatory cytokine expression in the spinal cord. SNT-induced mechanical allodynia and thermal hyperalgesia were similarly attenuated in Nox2-deficient mice. In addition, reducing microglial ROS level via intrathecal sulforaphane administration attenuated mechanical allodynia and thermal hyperalgesia in SNT-injured mice. Sulforaphane also inhibited SNT-induced proinflammatory gene expression in microglia, and studies using primary microglia indicate that ROS generation is required for proinflammatory gene expression in microglia. These studies delineate a pathway involving nerve damage leading to microglial Nox2-generated ROS, resulting in the expression of proinflammatory cytokines that are involved in the initiation of neuropathic pain. PMID:20679217
Yang, Huihai; Li, Wei; Wang, Lulu; He, Xiaofeng; Sun, Hang; Zhang, Jing
2017-07-31
Our study aimed to investigate the protective role of SDAPR on cisplatin-induced cytotoxicity and its' possible mechanism in HEK293 cells. Cell viability was measured by MTT assay. Oxidative stress (SOD, GSH, LDH and MDA), inflammatory factors (TNF-α and IL-6) and apoptosis-related proteins (caspase-3, Bax, Bcl-2) expression were measured. The apoptotic cells were observed by TUNEL staining. Our study results indicated that non-cytotoxic levels of SDAPR significantly increased viability rate (LD 50 value of cisplatin is 20 μM), which improved antioxidant defence, attenuated apoptosis by decreasing expression levels of cleaved-caspase-3 and Bax, increasing Bcl-2 expression and inhibiting apoptotic positive cells in HEK 293 cells. In addition, SDAPR treatment markedly inhibited the levels of TNF-α and IL-6. In conclusion, Sika deer antler protein, a potential modulator, could alleviate cisplatin-induced cytotoxicity in HEK 293 cells.
Buler, Marcin; Aatsinki, Sanna-Mari; Izzi, Valerio; Hakkola, Jukka
2012-01-01
Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression. Glucagon and cAMP induced SIRT3 mRNA in mouse primary hepatocytes. Metformin prevented SIRT3 induction by glucagon. Moreover, metformin downregulated constitutive expression of SIRT3 in primary hepatocytes and in the liver in vivo. Estrogen related receptor alpha (ERRα) mediates regulation of Sirt3 gene by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). ERRα mRNA expression was regulated in a similar manner as SIRT3 mRNA by glucagon, cAMP and metformin. However, a higher metformin concentration was required for downregulation of ERRα than SIRT3. ERRα siRNA attenuated PGC-1α mediated induction of SIRT3, but did not affect constitutive expression. Overexpression of the constitutively active form of AMP-activated protein kinase (AMPK) induced SIRT3 mRNA, indicating that the SIRT3 downregulation by metformin is not mediated by AMPK. Metformin reduced the hepatocyte ATP level. This effect was partially counteracted by SIRT3 overexpression. Furthermore, metformin decreased mitochondrial SIRT3 protein levels and this was associated with enhanced acetylation of several mitochondrial proteins. However, metformin increased mitochondrial mass in hepatocytes. Altogether, our results indicate that metformin attenuates mitochondrial expression of SIRT3 and suggest that this mechanism is involved in regulation of energy metabolism by metformin in the liver and may contribute to the therapeutic action of metformin. PMID:23166782
Song, Hun Min; Park, Gwang Hun; Koo, Jin Suk; Jeong, Hyung Jin; Jeong, Jin Boo
2017-01-01
Fruit from Vitex rotundifolia L. (VF) has been reported to initiate apoptosis in human colorectal cancer cells through the accumulation of reactive oxygen species. Since various regulatory factors are involved in the apoptotic pathway, further study of the potential mechanisms of VF associated with the induction of apoptosis may be important despite the fact that the molecular target of VF for apoptosis has already been elucidated. In this study, we showed a new potential mechanism for the relationship between VF-mediated ATF3 expression and apoptosis to better understand the apoptotic mechanism of VF in human colorectal cancer cells. VF reduced the cell viability and induced apoptosis in human colorectal cancer cells. VF treatment increased both the protein and mRNA level of ATF3 and upregulated ATF3 promoter activity. The cis-element responsible for ATF3 transcriptional activation by VF was CREB which is located between [Formula: see text]147 to [Formula: see text]85 of ATF3 promoter. Inhibitions of ERK1/2, p38, JNK and GSK3[Formula: see text] blocked VF-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of PARP by VF, while ATF3 overexpression increased VF-mediated cleaved PARP. ATF3 knockdown also attenuated VF-mediated cell viability and cell death. In addition, VF downregulated Bcl-2 expression at both protein and mRNA level. ATF3 knockdown by ATF3 siRNA blocked VF-mediated downregulation of Bcl-2. In conclusion, VF may activate ATF3 expression through transcriptional regulation and subsequently suppress Bcl-2 expression as an anti-apoptotic protein, which may result in the induction of apoptosis in human colorectal cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr
Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ERmore » stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.« less
The effects of pleiotrophin in proliferative vitreoretinopathy.
Ding, Xue; Bai, Yujing; Zhu, Xuemei; Li, Tianqi; Jin, Enzhong; Huang, Lvzhen; Yu, Wenzhen; Zhao, Mingwei
2017-05-01
The purpose of our study was to investigate the effects of pleiotrophin (PTN) in proliferative vitreoretinopathy (PVR) both in vitro and in vivo. Immunofluorescence was used to observe the PTN expression in periretinal membrane samples from patients with PVR and controls. ARPE-19 cells were exposed to TGF-β1. The epithelial-to-mesenchymal transition (EMT) of the ARPE-19 cells was confirmed by observed morphological changes and the increased expression of α-SMA and fibronectin at both the mRNA and protein levels. We used specific small interfering (si)RNA to knock down the expression of PTN. The subsequent effects of PTN inhibition were assessed with regard to the EMT, migration, proliferation, cytoskeletal arrangement, TGF-β signaling, PTN signaling, integral tight junction protein expression (e.g., claudin-1 and occludin), and p38 MAPK and p-p38 MAPK levels. Additionally, a PVR rat model was established by the intravitreal injection of ARPE-19 cells transfected with PTN-siRNA and was evaluated accordingly. PTN was highly expressed in PVR membranes compared to controls. PTN knockdown attenuated the TGF-β1-induced migration, proliferation, cytoskeletal rearrangement, and expression of EMT markers such as α-SMA and fibronectin in the ARPE-19 cells, and these effects may have been mediated through p38 MAPK signaling pathway activation. PTN silencing inhibited the up-regulation of claudin-1 and occludin stimulated by TGF-β1, and PTN knockdown inhibited the proliferative aspects of severe PVR in vivo. PTN is involved in the process of EMT induced by TGF-β1 in human ARPE-19 cells in vitro, and PTN knockdown attenuated the progression of experimental PVR in vivo. These findings provide new insights into the pathogenesis of PVR.
Searles, L L; Wessler, S R; Calvo, J M
1983-01-25
Three mutations, each causing constitutive expression of the Salmonella typhimurium leu operon, were cloned into phage vector lambda gt4 on EcoRI DNA fragments carrying all of that operon except for part of the promoter-distal last gene. Sequence analysis of DNA from these phage demonstrated that each contains a single base change in the leu attenuator. Transcription of mutant DNA in vitro resulted in transcription beyond the usual site of termination. The level of beta-IPM dehydrogenase, the leuB enzyme, was elevated 40-fold in a strain carrying one of these mutations, and starvation of this strain for leucine had little effect on the amount of activity expressed. Using a strain with a wild-type promoter-leader region of the leu operon, the rates of synthesis and degradation of leu leader RNA and readthrough RNA (leu mRNA) were measured by DNA-RNA hybridizations with specific DNA probes. The rate of synthesis of the leu leader was about the same in cells grown with excess or with limiting leucine. On the other hand, the rate of synthesis of leu mRNA was 12-fold higher for cells grown in limiting leucine as opposed to excess leucine. The rate of degradation of these RNA species was the same under both conditions of growth. Thus, the variation in expression of the leu operon observed for cells grown in minimal medium is, for the most part, not caused by control over the frequency of initiation or by the differential stability of these RNA species. Rather, the variation is a direct result of the frequency of transcription termination at an attenuator site. These results taken together suggest that transcription attenuation is the major mechanism by which leucine regulates expression of the leu operon of S. typhimurium for cells growing in a minimal medium.
Zhang, Zhiguo; Chen, Jing; Zhou, Shanshan; Wang, Shudong; Cai, Xiaohong; Conklin, Daniel J.; Kim, Ki-Soo; Kim, Ki Ho; Tan, Yi; Zheng, Yang; Kim, Young Heui; Cai, Lu
2015-01-01
In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity. PMID:26157343
Reis, Pedro A A; Rosado, Gustavo L; Silva, Lucas A C; Oliveira, Luciana C; Oliveira, Lucas B; Costa, Maximiller D L; Alvim, Fátima C; Fontes, Elizabeth P B
2011-12-01
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.
Reis, Pedro A.A.; Rosado, Gustavo L.; Silva, Lucas A.C.; Oliveira, Luciana C.; Oliveira, Lucas B.; Costa, Maximiller D.L.; Alvim, Fátima C.; Fontes, Elizabeth P.B.
2011-01-01
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response. PMID:22007022
Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W
2009-05-01
Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.
The Influence of Autism-Like Traits on Cheek Biases for the Expression and Perception of Happiness
ERIC Educational Resources Information Center
Harris, Chris D.; Lindell, Annukka K.
2011-01-01
People with autism show attenuated cerebral lateralisation for emotion processing. Given growing appreciation of the notion that autism represents a continuum, the present study aimed to determine whether atypical hemispheric lateralisation is evident in people with normal but above average levels of autism-like traits. One hundred and…
Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi
2012-10-01
Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.
Pham, Tho X; Park, Young-Ki; Lee, Ji-Young
2016-06-21
We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca(2+)/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.
HDAC1 and HDAC2 are Differentially Expressed in Endometriosis
Colón-Díaz, Maricarmen; Báez-Vega, Perla; García, Miosotis; Ruiz, Abigail; Monteiro, Janice B.; Fourquet, Jessica; Bayona, Manuel; Alvarez-Garriga, Carolina; Achille, Alexandra; Seto, Edward; Flores, Idhaliz
2012-01-01
Epigenetic mechanisms have been ascribed important roles in endometriosis. Covalent histone modifications at lysine residues have been shown to regulate gene expression and thus contribute to pathological states in many diseases. In endometriosis, histone deacetylase inhibition (HDACi) resulted in reactivation of E-cadherin, attenuation of invasion, decreased proliferation of endometriotic cells, and caused lesion regression in an animal model. This study was conducted to assess basal and hormone-regulated gene expression levels of HDAC1 and HDAC2 (HDAC1/2) in cell lines and protein expression levels in tissues. Basal and steroid hormone-regulated HDAC1/2 gene expression levels were determined by quantitative polymerase chain reaction in cell lines and tissues. Protein levels were measured by immunohistochemistry (IHC) in tissues on an endometriosis tissue microarray (TMA). Basal HDAC1/2 gene expression levels were significantly higher in endometriotic versus endometrial stromal cells, which was confirmed by Western blot analysis. Estradiol (E2) and progesterone (P4) significantly downregulated HDAC1 expression in endometrial epithelial cells. Levels of HDAC2 were upregulated by E2 and downregulated by E2 + P4 in endometrial stromal cells. Hormone modulation of HDAC1/2 gene expression was lost in the endometriotic cell line. Immunohistochemistry showed that HDAC1/2 proteins were expressed in a substantial proportion of lesions and endometrium from patients, and their expression levels varied according to lesion localization. The highest proportion of strong HDAC1 immunostaining was seen in ovarian, skin, and gastrointestinal lesions, and of HDAC2 in skin lesions and endometrium from patients with endometriosis. These studies suggest that endometriosis etiology may be partially explained by epigenetic regulation of gene expression due to dysregulations in the expression of HDACs. PMID:22344732
Bae, Eun Hui; Fang, Fei; Williams, Vanessa R; Konvalinka, Ana; Zhou, Xiaohua; Patel, Vaibhav B; Song, Xuewen; John, Rohan; Oudit, Gavin Y; Pei, York; Scholey, James W
2017-06-01
Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase in the renin-angiotensin system that catalyzes the breakdown of angiotensin II to angiotensin 1-7. We have reported that ACE2 expression in the kidney is reduced in experimental Alport syndrome but the impact of this finding on disease progression has not been studied. Accordingly, we evaluated effects of murine recombinant ACE2 treatment in Col4a3 knockout mice, a model of Alport syndrome characterized by proteinuria and progressive renal injury. Murine recombinant ACE2 (0.5 mg/kg/day) was administered from four to seven weeks of age via osmotic mini-pump. Pathological changes were attenuated by murine recombinant ACE2 treatment which ameliorated kidney fibrosis as shown by decreased expression of COL1α1 mRNA, less accumulation of extracellular matrix proteins, and inhibition of transforming growth factor-β signaling. Further, increases in proinflammatory cytokine expression, macrophage infiltration, inflammatory signaling pathway activation, and heme oxygenase-1 levels in Col4a3 knockout mice were also reduced by murine recombinant ACE2 treatment. Lastly, murine recombinant ACE2 influenced the turnover of renal ACE2, as it suppressed the expression of tumor necrosis factor-α converting enzyme, a negative regulator of ACE2. Thus, treatment with exogenous ACE2 alters angiotensin peptide metabolism in the kidneys of Col4a3 knockout mice and attenuates the progression of Alport syndrome nephropathy. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Lu, Meili; Tang, Futian; Zhang, Jing; Luan, Aina; Mei, Meng; Xu, Chonghua; Zhang, Suping; Wang, Hongxin; Maslov, Leonid N
2015-04-01
Myocardial ischemia/reperfusion (MI/R) injury, in which inflammatory response and cell apoptosis play a vital role, is frequently encountered in clinical practice. Astragaloside IV (AsIV), a small molecular saponin of Astragalus membranaceus, has been shown to confer protective effects against many cardiovascular diseases. The present study was aimed to investigate the antiinflammatory and antiapoptotic effects and the possible mechanism of AsIV on MI/R injury in rats. Rats were randomly divided into sham operation group, MI/R group and groups with combinations of MI/R and different doses of AsIV. The results showed that the expressions of myocardial toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were significantly increased, and apoptosis of cardiomyocytes was induced in MI/R group compared with that in sham operation group. Administration of AsIV attenuated MI/R injury, downregulated the expressions of TLR4 and NF-κB and inhibited cell apoptosis as evidenced by decreased terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells, B-cell lymphoma-2 associated X protein and caspase-3 expressions and increased B-cell lymphoma-2 expression compared with that in MI/R group. In addition, AsIV treatment reduced levels of inflammatory cytokines induced by MI/R injury. In conclusion, our results demonstrated that AsIV downregulates TLR4/NF-κB signaling pathway and inhibits cell apoptosis, subsequently attenuating MI/R injury in rats. Copyright © 2015 John Wiley & Sons, Ltd.
Zhang, Ying-Hui; Wang, Juan-Juan; Li, Min; Zheng, Han-Xi; Xu, Lan; Chen, You-Guo
2016-03-01
The objectives of this study were to investigate the functional effect of matrix metallopeptidase 14 (MMP14) on cell invasion in cervical cancer cells (HeLa line) and to study the underlying molecular mechanisms. Expression vector of short hairpin RNA targeting MMP14 was treated in HeLa cells, and then, transfection efficiency was verified by a florescence microscope. Transwell assay was used to investigate cell invasion ability in HeLa cells. Quantitative polymerase chain reaction and Western blotting analysis were used to detect the expression of MMP14 and relative factors in messenger RNA and protein levels, respectively. Matrix metallopeptidase 14 short hairpin RNA expression vector transfection obviously decreased MMP14 expression in messenger RNA and protein levels. Down-regulation of MMP14 suppressed invasion ability of HeLa cells and reduced transforming growth factor β1 and vascular endothelial growth factor B expressions. Furthermore, MMP14 knockdown decreased bone sialoprotein and enhanced forkhead box protein L2 expression in both RNA and protein levels. Matrix metallopeptidase 14 plays an important role in regulating invasion of HeLa cells. Matrix metallopeptidase 14 knockdown contributes to attenuating the malignant phenotype of cervical cancer cell.
Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes.
Chen, Hong-Jhang; Kang, Shih-Pei; Lee, I-Jung; Lin, Yun-Lian
2014-01-22
Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.
MicroRNA-149 contributes to scarless wound healing by attenuating inflammatory response.
Lang, Hongxin; Zhao, Feng; Zhang, Tao; Liu, Xiaoyu; Wang, Zhe; Wang, Rui; Shi, Ping; Pang, Xining
2017-08-01
A fibrotic or pathological scar is an undesired consequence of skin wound healing and may trigger a series of problems. An attenuated inflammatory response is a significant characteristic of fetal skin wound healing, which can contribute to the scarless healing of fetal skin. According to deep sequencing data, microRNA‑149 (miR‑149) expression was increased in mid-gestational compared with that in late‑gestational fetal skin keratinocytes. It was demonstrated that overexpression of miR‑149 in HaCaT cells can downregulate the expression of pro‑inflammatory cytokines interleukin (IL)‑1α, IL‑1β, and IL‑6 at basal levels and in inflammatory conditions. Furthermore, miR‑149 was revealed to indirectly accelerate transforming growth factor‑β3 and collagen type III expression in fibroblasts, which are essential cells in extracellular matrix remodeling. In a rat skin wound model, miR‑149 improved the quality of the arrangement of collagen bundles and reduced inflammatory cell infiltration during skin wound healing. These results indicate that miR‑149 may be a potential regulator in improving the quality of skin wound healing.
Cardioprotective effect of sulphonated formononetin on acute myocardial infarction in rats.
Zhang, Shumin; Tang, Xuexi; Tian, Jingwei; Li, Chunmei; Zhang, Guanbo; Jiang, Wanglin; Zhang, Zunting
2011-06-01
This study was designed to investigate the therapeutic effect of sodium formononetin-3'-sulphonate (Sul-F), a water-soluble derivate of formononetin, on acute myocardial infarction in rats. The results showed that treatment with Sul-F significantly prevented the elevation of ST-segment level, decreased the contents of creatine kinase-MB, lactate dehydrogenase, alanine aminotransferase and cardiac troponin T in serum and reduced the myocardium necrosis scores. The number of apoptosis cardiocytes is well accordance with the up-regulated expression of Bcl-2 and the down-regulated expression of Bax. Meanwhile, Sul-F significantly increased the cardiac mitochondrial ATP content, improved ATP synthase activity, decreased thiobarbituric acid-reactive substances content and attenuated the decrease in superoxide dismutase and glutathione peroxidase activities. These findings indicate that Sul-F has a protective potential against myocardial infarction injury. A possible mechanism for the protective effect is the elevated expression of endogenous antioxidant defence enzymes degraded lipid peroxidation products and improved energy metholism of cardiac mitochondrial, thus attenuating cardiocyte apoptosis. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.
Bjoraker, Kendra J; Swanson, Michael A; Coughlin, Curtis R; Christodoulou, John; Tan, Ee S; Fergeson, Mark; Dyack, Sarah; Ahmad, Ayesha; Friederich, Marisa W; Spector, Elaine B; Creadon-Swindell, Geralyn; Hodge, M Antoinette; Gaughan, Sommer; Burns, Casey; Van Hove, Johan L K
2016-03-01
To evaluate the impact of sodium benzoate and dextromethorphan treatment on patients with the attenuated form of nonketotic hyperglycinemia. Families were recruited with 2 siblings both affected with attenuated nonketotic hyperglycinemia. Genetic mutations were expressed to identify residual activity. The outcome on developmental progress and seizures was compared between the first child diagnosed and treated late with the second child diagnosed at birth and treated aggressively from the newborn period using dextromethorphan and benzoate at dosing sufficient to normalize plasma glycine levels. Both siblings were evaluated with similar standardized neurodevelopmental measures. In each sibling set, the second sibling treated from the neonatal period achieved earlier and more developmental milestones, and had a higher developmental quotient. In 3 of the 4 sibling pairs, the younger sibling had no seizures whereas the first child had a seizure disorder. The adaptive behavior subdomains of socialization and daily living skills improved more than motor skills and communication. Early treatment with dextromethorphan and sodium benzoate sufficient to normalize plasma glycine levels is effective at improving outcome if used in children with attenuated disease with mutations providing residual activity and when started from the neonatal period. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2012-01-01
Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471
Qiu, Peiyu; Sun, Jiachen; Man, Shuli; Yang, He; Ma, Long; Yu, Peng; Gao, Wenyuan
2017-03-08
N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.
Kan, Juntao; Hood, Molly; Burns, Charlie; Scholten, Jeff; Chuang, Jennifer; Tian, Feng; Pan, Xingchang; Du, Jun; Gui, Min
2017-01-01
Gastritis or peptic ulcer is believed to affect about half of people worldwide. Traditional medications can lead to adverse effects, therefore, alternative nutritional strategies are needed to prevent the development of gastric mucosal damage. A novel combination of two food-grade ingredients, wheat peptides and fucoidan (WPF), was prepared to treat male Sprague Dawley rats for 30 days before gastric mucosal damage was induced by oral administration of ethanol. The serum levels of biomarkers were determined by enzyme-linked immunosorbent assay. Biomarkers in stomach tissue were analyzed using immunohistochemistry. In addition, human gastric epithelial cell line (GES-1) was used to investigate protein expression by Western blot. WPF could attenuate ethanol-induced gastric mucosal damage in an inverse dose-dependent manner, with both ulcer index and pathological index improved. WPF increased superoxide dismutase level and decreased malondialdehyde level. WPF also decreased the levels of interleukin-8, platelet-activating factor, and Caspase 3, while increasing the levels of prostaglandin E-2, epidermal growth factor (EGF), and EGF receptor (EGFR). Furthermore, phosphorylation of EGFR and extracellular signal–regulated kinases was induced by WPF in GES-1 cells. In conclusion, the novel combination of wheat peptides and fucoidan attenuated ethanol-induced gastric mucosal damage in rats through anti-oxidant, anti-inflammatory, and pro-survival mechanisms. PMID:28878183
Kan, Juntao; Hood, Molly; Burns, Charlie; Scholten, Jeff; Chuang, Jennifer; Tian, Feng; Pan, Xingchang; Du, Jun; Gui, Min
2017-09-06
Gastritis or peptic ulcer is believed to affect about half of people worldwide. Traditional medications can lead to adverse effects, therefore, alternative nutritional strategies are needed to prevent the development of gastric mucosal damage. A novel combination of two food-grade ingredients, wheat peptides and fucoidan (WPF), was prepared to treat male Sprague Dawley rats for 30 days before gastric mucosal damage was induced by oral administration of ethanol. The serum levels of biomarkers were determined by enzyme-linked immunosorbent assay. Biomarkers in stomach tissue were analyzed using immunohistochemistry. In addition, human gastric epithelial cell line (GES-1) was used to investigate protein expression by Western blot. WPF could attenuate ethanol-induced gastric mucosal damage in an inverse dose-dependent manner, with both ulcer index and pathological index improved. WPF increased superoxide dismutase level and decreased malondialdehyde level. WPF also decreased the levels of interleukin-8, platelet-activating factor, and Caspase 3, while increasing the levels of prostaglandin E-2, epidermal growth factor (EGF), and EGF receptor (EGFR). Furthermore, phosphorylation of EGFR and extracellular signal-regulated kinases was induced by WPF in GES-1 cells. In conclusion, the novel combination of wheat peptides and fucoidan attenuated ethanol-induced gastric mucosal damage in rats through anti-oxidant, anti-inflammatory, and pro-survival mechanisms.
Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan
2016-09-27
The aim of this study was to investigate the potential role of PHRF1 in lung tumorigenesis. Western blot analysis was used to detect the expression of proteins. Quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, soft agar assay and tumor formation assay in nude mice were applied. Cell cycle distribution was analyzed by flow cytometry. The lower level of PHRF1 mRNA was observed in human lung cancer tissues than that in paracancerous tissues. The decreased expression of PHRF1 protein was observed in H1299 and H1650 cell lines than that in 16HBE and BEAS-2B cell lines. The decreased expression of PHRF1 protein was observed in malignant 16HBE cells compared to control cells. The reduced expression of PHRF1 protein was observed in mice lung tissues treated with BaP than that in control group. Overexpression of PHRF1 inhibited H1299 cell proliferation, colony formation in vitro and growth of tumor xenograft in vivo, and arrested cell cycle in G1 phase. The decreased expression of TGIF and c-Myc proteins and the increased expression of p21 protein were observed in H1299-PHRF1 cells compared with H1299-pvoid cells. In conclusion, our findings suggest that overexpression of PHRF1 attenuated the proliferation and tumorigenicity of non-small cell lung cancer cell line of H1299.
Lo, Chao-Sheng; Chang, Shiao-Ying; Chenier, Isabelle; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao Ling; Chan, John S.D.
2012-01-01
We investigated the impact of heterogeneous nuclear ribonucleoprotein F (hnRNP F) overexpression on angiotensinogen (Agt) gene expression, hypertension, and renal proximal tubular cell (RPTC) injury in high-glucose milieu both in vivo and in vitro. Diabetic Akita transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs were created, and the effects on systemic hypertension, Agt gene expression, renal hypertrophy, and interstitial fibrosis were studied. We also examined immortalized rat RPTCs stably transfected with control plasmid or plasmid containing hnRNP F cDNA in vitro. The results showed that hnRNP F overexpression attenuated systemic hypertension, suppressed Agt and transforming growth factor-β1 (TGF-β1) gene expression, and reduced urinary Agt and angiotensin II levels, renal hypertrophy, and glomerulotubular fibrosis in Akita hnRNP F-Tg mice. In vitro, hnRNP F overexpression prevented the high-glucose stimulation of Agt and TGF-β1 mRNA expression and cellular hypertrophy in RPTCs. These data suggest that hnRNP F plays a modulatory role and can ameliorate hypertension, renal hypertrophy, and interstitial fibrosis in diabetes. The underlying mechanism is mediated, at least in part, via the suppression of intrarenal Agt gene expression in vivo. hnRNP F may be a potential target in the treatment of hypertension and kidney injury in diabetes. PMID:22664958
Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli
2015-01-01
Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735
Vukojević, Jakša; Siroglavić, Marko; Kašnik, Katarina; Kralj, Tamara; Stanćić, Duje; Kokot, Antonio; Kolarić, Darko; Drmić, Domagoj; Sever, Anita Zenko; Barišić, Ivan; Šuran, Jelena; Bojić, Davor; Patrlj, Masa Hrelec; Sjekavica, Ivica; Pavlov, Katarina Horvat; Vidović, Tinka; Vlainić, Josipa; Stupnišek, Mirjana; Seiwerth, Sven; Sikirić, Predrag
2018-03-03
Rat inferior caval vein (ICV) ligation (up to the right ovarian vein (ROV)) commonly represents a recapitulation of Virchow: with ligation leading to vessel injury, stasis, thrombosis and hemodynamic changes. We revealed that BPC 157's therapy collectively attenuated or counteracted all these events and the full syndrome. We applied BPC 157 (10 μg, 10 ng/kg) as an early regimen or as a delayed therapy. Assessment includes gross assessment by microcamera; microscopy, venography, bleeding, blood pressure, ECG, thermography, MDA and NO-level in plasma and ICV, and gene expression. Direct vein injury, thrombosis, thrombocytopenia, prolonged bleeding were all counteracted. Also, rapid presentation of collaterals and redistribution of otherwise trapped blood volume (bypassing through the left ovarian vein (LOV) and other veins), with venous hypertension, arterial hypotension and tachycardia counteraction were shown. BPC 157-rats presented raised plasma NO-values, but normal MDA-values; in ICV tissue reverted low NO-values and counteracted increased MDA-levels. Altered expression of EGR, NOS, SRF, VEGFR and KRAS in ICV, ROV and LOV revealed increased or decreased levels, while some genes continuously remained unchanged. As a new insight, BPC 157 application largely attenuated or even completely eliminated all consequences of ICV ligation in rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Bao, Suqing; Cao, Yanli; Zhou, Haicheng; Sun, Xin; Shan, Zhongyan; Teng, Weiping
2015-03-18
Obesity-related insulin resistance is associated with chronic systemic low-grade inflammation, and toll-like receptor 4 (TLR4) regulates inflammation. We investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin and TLR4 signaling in adipocytes. Inflammation was induced in adipocytes by lipopolysaccharide (LPS). An antibody against the 67 kDa laminin receptor (67LR, to which EGCG exclusively binds) was used to examine the effect of EGCG on TLR4 signaling, and a TLR4/MD-2 antibody was used to inhibit TLR4 activity and to determine the insulin sensitivity of differentiated 3T3-L1 adipocytes. We found that EGCG dose-dependently inhibited LPS stimulation of adipocyte inflammation by reducing inflammatory mediator and cytokine levels (IKKβ, p-NF-κB, TNF-α, and IL-6). Pretreatment with the 67LR antibody prevented EGCG inhibition of inflammatory cytokines, decreased glucose transporter isoform 4 (GLUT4) expression, and inhibited insulin-stimulated glucose uptake. TLR4 inhibition attenuated inflammatory cytokine levels and increased glucose uptake by reversing GLUT4 levels. These data suggest that EGCG suppresses TLR4 signaling in LPS-stimulated adipocytes via 67LR and attenuates insulin-stimulated glucose uptake associated with decreased GLUT4 expression.
Liu, Li-Bo; Xue, Yi-Xue; Liu, Yun-Hui; Wang, Yi-Bao
2008-04-01
Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (<20 microm) after BK infusion, and there is no change in the larger tumor capillaries (>20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.
Zhu, Chong-Gui; Liu, Ya-Xin; Wang, Hao; Wang, Bao-Ping; Qu, Hui-Qi; Wang, Bao-Li; Zhu, Mei
2017-07-28
The purpose of this study was to determine whether treatment using the active form of vitamin D (1,25(OH) 2 D 3 ) could protect against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats and ameliorate oxidative stress. Male Sprague-Dawley rats were divided into three groups and treated with standard chow, HFD, or HFD plus intraperitoneal injection of 1,25(OH) 2 D 3 (5 μg/kg body weight, twice per week), respectively, for 16 weeks. Serum lipid profiles, hepatic function, intrahepatic lipid, and calcium levels were determined. Hepatic histology was examined using hematoxylin/eosin, Masson's trichrome, and Oil Red O staining. Oxidative stress was assessed by measuring hepatic malondialdehyde (MDA) and F2α-isoprostane content. Expression of nuclear factor-erythroid-2-related factor 2 (Nrf2) and downstream target genes was analyzed using quantitative RT-PCR. 1,25(OH) 2 D 3 treatment improved the serum lipid profile, reduced intrahepatic lipid levels, and attenuated hepatic steatosis and inflammation in HFD rats. Furthermore, MDA and F2α-isoprostane levels in liver tissue were reduced by 1,25(OH) 2 D 3 administration. Although 1,25(OH) 2 D 3 did not regulate the expression of Nrf2 mRNA, it did induce Nrf2 nuclear translocation. The expression of Nrf2 target genes, including Gclc, Nqo1, Sod2, and Cat, was up-regulated by 1,25(OH) 2 D 3 . We conclude that 1,25(OH) 2 D 3 protects against HFD-induced NAFLD by attenuating oxidative stress, inducing NRF2 nuclear translocation, and up-regulating the expression of genes encoding antioxidant enzymes.
Ait-Belgnaoui, Afifa; Durand, Henri; Cartier, Christel; Chaumaz, Gilles; Eutamene, Hélène; Ferrier, Laurent; Houdeau, Eric; Fioramonti, Jean; Bueno, Lionel; Theodorou, Vassilia
2012-11-01
Intestinal barrier impairment is incriminated in the pathophysiology of intestinal gut disorders associated with psychiatric comorbidity. Increased intestinal permeability associated with upload of lipopolysaccharides (LPS) translocation induces depressive symptoms. Gut microbiota and probiotics alter behavior and brain neurochemistry. Since Lactobacillus farciminis suppresses stress-induced hyperpermeability, we examined whether (i) L. farciminis affects the HPA axis stress response, (ii) stress induces changes in LPS translocation and central cytokine expression which may be reversed by L. farciminis, (iii) the prevention of "leaky" gut and LPS upload are involved in these effects. At the end of the following treatments female rats were submitted to a partial restraint stress (PRS) or sham-PRS: (i) oral administration of L. farciminis during 2 weeks, (ii) intraperitoneal administration of ML-7 (a specific myosin light chain kinase inhibitor), (iii) antibiotic administration in drinking water during 12 days. After PRS or sham-PRS session, we evaluated LPS levels in portal blood, plasma corticosterone and adrenocorticotropic hormone (ACTH) levels, hypothalamic corticotropin releasing factor (CRF) and pro-inflammatory cytokine mRNA expression, and colonic paracellular permeability (CPP). PRS increased plasma ACTH and corticosterone; hypothalamic CRF and pro-inflammatory cytokine expression; CPP and portal blood concentration of LPS. L. farciminis and ML-7 suppressed stress-induced hyperpermeability, endotoxemia and prevented HPA axis stress response and neuroinflammation. Antibiotic reduction of luminal LPS concentration prevented HPA axis stress response and increased hypothalamic expression of pro-inflammatory cytokines. The attenuation of the HPA axis response to stress by L. farciminis depends upon the prevention of intestinal barrier impairment and decrease of circulating LPS levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Jun-Ming; Yang, Lian-He; Zhang, Yue-Yue; Niu, Chun-Ling; Cui, Ying; Feng, Wei-Sheng; Wang, Gui-Fang
2015-11-01
Catalpol, a major compound in Rehmannia glutinosa with both medicinal and nutritional values, has been previously confirmed to shorten the duration of immobility in mice exposed to tail suspension and forced swimming tests. This study attempted to examine the anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress (CUMS) by involving brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2). CUMS-exposed rats were given catalpol daily (5, 10, and 20mg/kg, ig) or a reference drug, fluoxetine hydrochloride (FH, 10mg/kg, ig), at 5 weeks after starting the CUMS procedure. Sucrose preference test was performed to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. CUMS induced depression-like behavior, whereas catalpol and FH administration attenuated this symptom. Moreover, CUMS caused excessively elevated levels of serum corticosterone, an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, in a manner attenuated by catalpol and FH administration. Catalpol administration also further decreased BDNF activities, downregulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB), and reversed the excessive elevation in the activities and mRNA expression levels of COX-2 and prostaglandin E2 (PGE2) in the hippocampus and frontal cortex of rats undergoing CUMS. Results indicate that catalpol can ameliorate CUMS-induced depression-like behavior, and suggest its mechanisms may partially be ascribed to restoring HPA axis dysfunctions, upregulating BDNF expression and its cognate receptor TrkB, and downregulating COX-2 expression, thereby reducing PGE2 levels in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gangduo; Wang, Jianling; Ma, Huaxian
Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCEmore » exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in increased IL-17 release and in IL-17 mRNA expression. • NAC supplementation attenuated both TCE-induced oxidative stress and autoimmunity. • The findings further support a role of oxidative stress in TCE-induced autoimmunity.« less
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.
1994-08-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.
Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.
1994-01-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.
Xie, Zhongcong; Dong, Yuanlin; Maeda, Uta; Xia, Weiming; Tanzi, Rudolph E
2012-03-22
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.
Sugiyama, Yukari; Asai, Kazuhisa; Yamada, Kazuhiro; Kureya, Yuko; Ijiri, Naoki; Watanabe, Tetsuya; Kanazawa, Hiroshi; Hirata, Kazuto
2017-01-01
Cigarette smoking-induced oxidant-antioxidant imbalance is a factor that contributes to the pathogenesis of COPD through epithelial cell apoptosis. Irisin is a skeletal muscle cell-derived myokine associated with physical activity. Irisin is also known to decrease oxidant-induced apoptosis in patients with diabetes mellitus. However, the correlation between irisin and emphysema in COPD and its role in epithelial cell apoptosis remains unknown. Forty patients with COPD were enrolled in this study. Pulmonary function tests and measurements of the percentage of low-attenuation area on high-resolution computed tomography images were performed, and the results were evaluated for correlation with serum irisin levels. The effect of irisin on cigarette-smoke extract-induced A549 cell apoptosis and the expression of Nrf2, a transcription factor for antioxidants, was also examined in vitro. Serum irisin levels were significantly correlated with lung diffusing capacity for carbon monoxide divided by alveolar volume ( r =0.56, P <0.01) and percentage of low-attenuation area ( r =-0.79, P <0.01). Moreover, irisin significantly enhanced Nrf2 expression ( P <0.05) and reduced cigarette-smoke extract-induced A549 cell apoptosis ( P <0.05). Decreased serum irisin levels are related to emphysema in patients with COPD and involved in epithelial apoptosis, resulting in emphysema. Irisin could be a novel treatment for emphysema in patients with COPD.
NASA Astrophysics Data System (ADS)
Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.
2008-10-01
Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.
Inflammatory gene changes associated with the repeated-bout effect.
Hubal, Monica J; Chen, Trevor C; Thompson, Paul D; Clarkson, Priscilla M
2008-05-01
This study proposed that attenuated expression of inflammatory factors is an underlying mechanism driving the repeated-bout effect (rapid adaptation to eccentric exercise). We investigated changes in mRNA levels and protein localization of inflammatory genes after two bouts of muscle-lengthening exercise. Seven male subjects performed two bouts of lower body exercise (separated by 4 wk) in which one leg performed 300 eccentric-concentric actions, and the contralateral leg performed 300 concentric actions only. Vastus lateralis biopsies were collected at 6 h, and strength was assessed at baseline and at 0, 3, and 5 days after exercise. mRNA levels were measured via semiquantitative RT-PCR for the following genes: CYR61, HSP40, HSP70, IL1R1, TCF8, ZFP36, CEBPD, and MCP1. Muscle functional adaptation was demonstrated via attenuated strength loss (16% less, P = 0.04) at 5 days after bout 2 compared with bout 1 in the eccentrically exercised leg. mRNA expression of three of the eight genes tested was significantly elevated in the eccentrically exercised leg from bout 1 to bout 2 (+3.9-fold for ZFP36, +2.3-fold for CEBPD, and +2.6-fold for MCP1), while all eight mRNA levels were unaffected by bout in the concentrically exercised leg. Immunohistochemistry further localized the protein of one of the elevated factors [monocyte chemoattractant protein-1 (MCP1)] within the tissue. MCP1 colocalized with resident macrophage and satellite cell populations, suggesting that alterations in cytokine signaling between these cell populations may play a role in muscle adaptation to exercise. Contrary to our hypothesis, several inflammatory genes were transcriptionally upregulated (rather than attenuated) after a repeated exercise bout, potentially indicating a role for these genes in the adaptation process.
Xia, Yujing; Dai, Weiqi; Wang, Fan; Shen, Miao; Cheng, Ping; Wang, Junshan; Lu, Jie; Zhang, Yan; Yang, Jing; Zhu, Rong; Zhang, Huawei; Li, Jingjing; Zheng, Yuanyuan; Zhou, Yingqun; Guo, Chuanyong
2014-01-01
Background Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. Methods A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM). Results We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. Conclusion NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2. PMID:25264893
Dangguishaoyao-San attenuates LPS-induced neuroinflammation via the TLRs/NF-κB signaling pathway.
Ding, Rui-Rui; Chen, Wang; Guo, Cong-Ying; Liao, Wei-Tao; Yang, Xia; Liao, Feng-Er; Lin, Jing-Ming; Mei, Han-Fang; Zeng, Yu
2018-05-29
Dangguishaoyao-San (DSS) is composed of six traditional Chinese medicines, including Angelica sinensis, Paeoniae radix, Rhizoma Ligusticum, Poria cocos, Rhizoma Atractylodis Macrocephalae, and Rhizoma Alismatis. DSS has been reported to be effective in alleviating the symptoms of Alzheimer's disease (AD). The aim of this study was to investigate the mechanism of action of DSS in vitro using lipopolysaccharide (LPS)-stimulated BV-2 microglia cells. BV-2 cells were pretreated with 0.58-1.16 mg/mL of DSS for 2 h and then treated with 1 μg/mL LPS for 24 h. Cell viability was determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression levels were measured by Western blots. Inflammatory factors were detected by enzyme-linked immunosorbent assays (ELISAs). The mRNA levels of inflammatory factors were analyzed by quantitative real-time PCR (qRT-PCR). DSS treatment at concentrations of 0.58-1.16 mg/mL resulted in no significant cytotoxicity. DSS attenuated the release of pro-inflammatory factors, such as interleukin-1β (IL-1β), iNOS and tumor necrosis factor-α (TNF-α) in LPS-induced BV-2 cells. DSS attenuated the mRNA expression of pro-inflammatory cytokines, TLR2, and TLR4 and decreased TLR4 and TLR protein levels as well as the phosphorylation of IκB in LPS-induced BV-2 cells. DSS also down-regulated the nuclear translocation of p65. This study demonstrated that DSS has a protective effect on neuroinflammation in LPS-induced BV-2 microglia cells through the TLRs/NF-κB signaling pathway. Copyright © 2018. Published by Elsevier Masson SAS.
Reference Production: Production-Internal and Addressee-Oriented Processes
ERIC Educational Resources Information Center
Arnold, Jennifer
2008-01-01
This paper reviews research on the production of referential expressions, examining the choice between explicit and attenuated lexical forms (e.g., pronouns vs. names), and between acoustically prominent and attenuated pronunciations. Both choices can be explained in terms of addressee-design, in that explicit expressions tend to be used in…
Liu, Siyu; Wang, Xiling; Pan, Lilong; Wu, Weijun; Yang, Di; Qin, Ming; Jia, Wanwan; Xiao, Chenxi; Long, Fen; Ge, Junbo; Liu, Xinhua; Zhu, YiZhun
2018-03-01
Overproduction of inflammatory mediators contributes to uncontrolled inflammation during endotoxin shock. Cystathionine-γ-lyase (CSE), an enzyme involved in hydrogen sulfide (H 2 S) biosynthesis, has potential anti-inflammatory activity in a variety of inflammatory diseases. Jumonji domain-containing protein 3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in macrophage activation, but its function in CSE-mediated anti-inflammatory activities remains unknown. In the present study CSE was found to be upregulated in macrophages and mouse lipopolysaccharide (LPS) challenge models. LPS stimulation also enhanced the activation of JMJD3 and decreased H3K27me3 levels. JMJD3 knockdown upregulated H3K27me3 levels and attenuated the LPS-mediated inflammatory response. CSE knockout amplified the inflammatory cascade by increasing JMJD3 expression in septic mice. Similarly, enhanced production of inflammatory mediators by macrophages was mitigated by CSE overexpression via inhibition of JMJD3 expression. This is the first report indicating that inflammation enhanced CSE/H 2 S system biosynthesis, that in turn attenuated the LPS-triggered inflammatory response by regulating JMJD3 expression. Thus, the CSE/H 2 S system represents an epigenetic-based modification mechanism to prevent uncontrolled inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Maezawa, Toshiyuki; Tanaka, Masayuki; Kanazashi, Miho; Maeshige, Noriaki; Kondo, Hiroyo; Ishihara, Akihiko; Fujino, Hidemi
2017-09-01
Immobilization induces skeletal muscle fibrosis characterized by increasing collagen synthesis in the perimysium and endomysium. Transforming growth factor-β1 (TGF-β1) is associated with this lesion via promoting differentiation of fibroblasts into myofibroblasts. In addition, reactive oxygen species (ROS) are shown to mediate TGF-β1-induced fibrosis in tissues. These reports suggest the importance of ROS reduction for attenuating skeletal muscle fibrosis. Astaxanthin, a powerful antioxidant, has been shown to reduce ROS production in disused muscle. Therefore, we investigated the effects of astaxanthin supplementation on muscle fibrosis under immobilization. In the present study, immobilization increased the collagen fiber area, the expression levels of TGF-β1, α-smooth muscle actin, and superoxide dismutase-1 protein and ROS production. However, these changes induced by immobilization were attenuated by astaxanthin supplementation. These results indicate the effectiveness of astaxanthin supplementation on skeletal muscle fibrosis induced by ankle joint immobilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn; Zhang, Dong-Mei; Yu, Xiao-Jing
The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiacmore » atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE attenuates ANG II-induced hypertension and cardiac hypertrophy. • PVN inhibition of ACE attenuates ANG II-induced imbalance of PVN neurotransmitters. • PVN inhibition of ACE attenuates ANG II-induced imbalance of cytokines in the PVN. • PVN blockade of AT1-R attenuates ANG II-induced imbalance of cytokines in the PVN.« less
MicroRNA-218 inhibits the proliferation of human choriocarcinoma JEG-3 cell line by targeting Fbxw8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dazun; Tan, Zhihui; Lu, Rong
2014-08-08
Highlights: • The miR-218 expression was decreased in choriocarcinoma cell lines. • The Fbxw8 protein expression was increased in choriocarcinoma cell lines. • We show that Fbxw8 is bona-fide target of miR-218 in JEG-3. • Ectopic miR-218 expression inhibits the proliferation of JEG-3 via Fbxw8. • Overexpression of miR-218 affected cyclin A and p27 expression via Fbxw8. - Abstract: MicroRNAs (miRNAs) are endogenous 19–25 nucleotide noncoding single-stranded RNAs that regulate gene expression by blocking the translation or decreasing the stability of mRNAs. In this study, we showed that miR-218 expression levels were decreased while Fbxw8 expression levels were increased inmore » human choriocarcinoma cell lines, and identified Fbxw8 as a novel direct target of miR-218. Overexpression of miR-218 inhibited cell growth arrest at G2/M phase, suppressed the protein levels of cyclin A and up-regulated the expression levels of p27 through decreasing the levels of Fbxw8. On the other hand, forced expression of Fbxw8 partly rescued the effect of miR-218 in the cells, attenuated cell proliferation decrease the percentage of cells at G2/M phase, induced cyclin A protein expression and suppressed the protein level of p27 through up-regulating the levels of Fbxw8. Taken together, these findings will shed light the role to mechanism of miR-218 in regulating JEG-3 cells proliferation via miR-218/Fbxw8 axis, and miR-218 may serve as a novel potential therapeutic target in human choriocarcinoma in the future.« less
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia( PHN) in rats. A total of 100 male SD rats were randomly divided into the five groups( n = 20) : control group,PHN group,PHN group treated with hydrogen-rich saline( PHN-H2group),PHN group treated with hydrogen-rich saline and3-MA( PHN-H2-3-MA group),PHN group treated with hydrogen-rich saline and rapamycin( PHN-H2-Rap group). PHN models were established by varicella-zoster virus( VZV) inoculation. After modeling,15 mg / kg 3-MA or 10 mg / kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline( 10 m L / kg)was injected intraperitoneally twice a day for 7 consecutive days in PHN-H2 group,PHN-H2-3-MA group and PHN-H2-Rap group after VZV injection. The paw withdrawal thresholds( PWT) of 50 rats were detected at 3,7,14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α( TNF-α),interleukine 1β( IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3( LC3),beclin 1and P62 by Western blotting. Compared with the control group,the rats in the PHN group presented with decreased PWT,increased levels of TNF-α,IL-1β,IL-6,LC3Ⅱ and beclin 1,and down-regulated P62 expression. Compared with PHN group,the rats in the PHN-H2 group and PHN-H2-Rap group showed increased PWT,decreased levels of TNF-α,IL-1β and IL-6,further up-regulated expressions of LC3 and beclin 1 as wel as P62 expression. Compared with PHN-H2 group,the rats in the PHN-H2-3-MA group had reduced PWT,elevated expressions of TNF-α,IL-1β and IL-6,suppressed expressions of LC3 and beclin 1,and enhanced p62 expression. Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α,IL-1β,IL-6 in rats with PHN via activating autophagy.
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
Objective To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia (PHN) in rats. Methods A total of 100 male SD rats were randomly divided into the five groups (n=20): control group, PHN group, PHN group treated with hydrogen-rich saline (PHN-H 2 group), PHN group treated with hydrogen-rich saline and 3-MA (PHN-H 2 -3-MA group), PHN group treated with hydrogen-rich saline and rapamycin (PHN-H 2 -Rap group). PHN models were established by varicella-zoster virus (VZV) inoculation. After modeling, 15 mg/kg 3-MA or 10 mg/kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline (10 mL/kg) was injected intraperitoneally twice a day for 7 consecutive days in PHN-H 2 group, PHN-H 2 -3-MA group and PHN-H 2 -Rap group after VZV injection. The paw withdrawal thresholds (PWT) of 50 rats were detected at 3, 7, 14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α (TNF-α), interleukine 1β (IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3 (LC3), beclin 1 and P62 by Western blotting. Results Compared with the control group, the rats in the PHN group presented with decreased PWT, increased levels of TNF-α, IL-1β, IL-6, LC3II and beclin 1, and down-regulated P62 expression. Compared with PHN group, the rats in the PHN-H 2 group and PHN-H 2 -Rap group showed increased PWT, decreased levels of TNF-α, IL-1β and IL-6, further up-regulated expressions of LC3 and beclin 1 as well as P62 expression. Compared with PHN-H 2 group, the rats in the PHN-H 2 -3-MA group had reduced PWT, elevated expressions of TNF-α, IL-1β and IL-6, suppressed expressions of LC3 and beclin 1, and enhanced p62 expression. Conclusion Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α, IL-1β, IL-6 in rats with PHN via activating autophagy.
Chen, Ming-liang; Yi, Long; Zhang, Yong; Zhou, Xi; Ran, Li; Yang, Jining; Zhu, Jun-dong; Zhang, Qian-yong; Mi, Man-tian
2016-04-05
The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE(-/-) mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE(-/-) mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis. Recently, trimethylamine-N-oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV's anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases. Copyright © 2016 Chen et al.
Ji, Yuan Yuan; Zhu, Yong Ming; Wang, Jian Wen
2013-11-01
Pyrazolo[1,5-a]indole derivatives, a new type of topoisomerase (topo) inhibitor, demonstrate a broad spectrum of antitumor activities. However, the mechanism underlying the induced cytotoxicity remains unclear. In this study, we investigated whether GS-2, one of the derivatives, altered the levels of ROS in breast cancer MDA-231 cells and whether these ROS contributed to the observed antitumoral activity. Our data revealed that GS-2 caused a time- and dose-dependent elevation of intracellular ROS level in MDA-231 cells. GS-2 subsequently elicited notable inhibition on the expression of topos, DNA damage, activation of caspase-3, -9. The loss of mitochondrial membrane potential (MMP) was observed during the induction. The addition of N-acetyl cysteine (NAC, a well-known antioxidant) could effectively attenuate the GS-2-induced ROS enhancement and subsequent apoptosis. NAC attenuated the induced inhibition on expression of topos, indicating that topos might be the target of GS-2-induced ROS. The finding of the induced ROS provides new evidence for the molecular mechanisms of antitumor activity of pyrazolo[1,5-a]indole derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Fan; Yao, Yunyi; Huang, Hui; Hao, Hua; Ying, Mingzhong
2018-06-12
Cisplatin is a chemotherapeutic agent that widely used in the treatment of cancer. However, cisplatin has been reported to induce nephrotoxicity by directly inducing inflammatory response and oxidative stress. In this study, we aimed to investigate the protective effects and mechanism of xanthohumol on cisplatin-induced nephrotoxicity. The model of nephrotoxicity was induced by intraperitoneal injection of cisplatin and xanthohumol was given intraperitoneally for three consecutive days. The results showed that xanthohumol significantly attenuated kidney histological changes and serum creatinine and BUN production. The levels of TNF-α, IL-1ß and IL-6 in kidney tissues were suppressed by xanthohumol. The levels of malondialdehyde (MDA) and ROS were suppressed by treatment of xanthohumol. The activities of glutathione (GSH) and superoxide dismutase (SOD) decreased by cisplatin were reversed by xanthohumol. Furthermore, the expression of TLR4 and the activation of NF-κB induced by cisplatin were significantly inhibited by xanthohumol. The expression of Nrf2 and HO-1 were dose-dependently up-regulated by the treatment of xanthohumol. In conclusion, xanthohumol protects against cisplatin-induced nephrotoxicity by ameliorating inflammatory and oxidative responses. Copyright © 2018 Elsevier B.V. All rights reserved.
Shin, Sunhee; Joo, Seong Soo; Park, Dongsun; Jeon, Jeong Hee; Kim, Tae Kyun; Kim, Jeong Seon; Park, Sung Kyeong
2010-01-01
The anti-inflammatory effects of an ethanol extract of Angelica gigas (EAG) were investigated in vitro and in vivo using croton oil-induced inflammation models. Croton oil (20 µg/mL) up-regulated mRNA expression of cyclooxygenase (COX)-I and COX-II in the macrophage cell line, RAW 264.7, resulting in the release of high concentrations of prostaglandin E2 (PGE2). EAG (1~10 µg/mL) markedly suppressed croton oil-induced COX-II mRNA expression and PGE2 production. Application of croton oil (5% in acetone) to mouse ears caused severe local erythema, edema and vascular leakage, which were significantly attenuated by oral pre-treatment with EAG (50~500 mg/kg). Croton oil dramatically increased blood levels of interleukin (IL)-6 and PGE2 without affecting tumor-necrosis factor (TNF)-α and nitric oxide (NO) levels. EAG pre-treatment remarkably lowered IL-6 and PGE2, but did not alter TNF-α or NO concentrations. These results indicate that EAG attenuates inflammatory responses in part by blocking the COX-PGE2 pathway. Therefore, EAG could be a promising candidate for the treatment of inflammatory diseases. PMID:20195064
Gao, Chenguang; Chen, Hong; Niu, Cong; Hu, Jie; Cao, Bo
2017-01-02
Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.
Kathawala, Rishil J.; Sodani, Kamlesh; Chen, Kang; Patel, Atish; Abuznait, Alaa H.; Anreddy, Nagaraju; Sun, Yue-Li; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng
2014-01-01
Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at non-toxic concentrations, significantly attenuates paclitaxel resistance in HEK293 cells transfected with ABCC10. Our in vitro studies indicated that masitinib (2.5 μM) enhanced the intracellular accumulation and decreased the efflux of paclitaxel by inhibiting the ABCC10 transport activity without altering the expression level of ABCC10 protein. Furthermore, masitinib, in combination with paclitaxel, significantly inhibited the growth of ABCC10-expressing tumors in nude athymic mice in vivo. Masitinib administration also resulted in a significant increase in the levels of paclitaxel in the plasma, tumors and lungs compared to paclitaxel alone. In conclusion, the combination of paclitaxel and masitinib could serve as a novel and useful therapeutic strategy to reverse paclitaxel resistance mediated by ABCC10. PMID:24431074
PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.
Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip
2018-06-01
PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.
Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung
2016-01-01
CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034
Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom
2016-09-01
CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.
Blockade of CCN4 attenuates CCl4-induced liver fibrosis.
Li, Xiaofei; Chen, Yongxin; Ye, Weiwei; Tao, Xingfei; Zhu, Jinhong; Wu, Shuang; Lou, Lianqing
2015-06-19
CCN4, also termed WNT-inducible signaling pathway protein-1 (WISP-1), has important roles in inflammation and tissue injury. This study aimed to investigate the effect of CCN4 inhibition using monoclonal anti-CCN4 antibody (CCN4mAb) on the liver injury and fibrosis in a mouse model of liver fibrosis. The mouse liver fibrosis model was induced by carbon tetrachloride (CCl4). Mice received vehicle (saline/olive oil) by subcutaneous injection, CCl4 by subcutaneous injection or CCl4 (subcutaneous) plus CCN4mAb by subcutaneous injection. The pro-inflammatory and pro-fibrotic factors were determined by Western blot. The biochemistry and histopathology, collagen deposition and nuclear factor (NF)-κB activity were also assessed. Chronic CCl4 treatment caused liver injury and collagen accumulation. The expression levels of CCN4, pro-inflammatory and pro-fibrotic mediators as well as the activity of NF-κB were markedly increased. Treatment with CCN4mAb significantly inhibited CCl4-induced CCN4 expression, leading to attenuated CCl4-induced liver injury and the inflammatory response. CCN4 blockade also significantly reduced the formation of collagen in the liver and the expression of α-smooth muscle actin and transforming growth factor β1. CCN4 inhibition by CCN4mAb in vivo significantly attenuated the CCl4-induced liver injury and the progression of liver fibrosis. CCN4 may represent a novel therapeutic target for liver injury and fibrosis.
Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan
2013-03-01
Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.
MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas
2015-01-01
Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524
Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus.
de Groot, Theun; Sinke, Anne P; Kortenoeven, Marleen L A; Alsady, Mohammad; Baumgarten, Ruben; Devuyst, Olivier; Loffing, Johannes; Wetzels, Jack F; Deen, Peter M T
2016-07-01
To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects. Copyright © 2016 by the American Society of Nephrology.
Investigation of JAKs/STAT‐3 in lipopolysaccharide‐induced intestinal epithelial cells
Fu, L.; Wei, L.‐W.; Zhao, M.‐D.; Zhu, J.‐L.; Chen, S.‐Y.; Jia, X.‐B.
2016-01-01
Summary Janus‐activated kinase (JAKs)‐signal transducer and activator of transcription 3 (STAT‐3) signalling play critical roles in immunoregulation and immunopathology, which involve inflammatory responses and enteritis. JAK phosphorylates STAT‐3 in response to stimulation by cytokines or growth factors, and then activates or represses the gene expression. STAT‐3 is activated persistently in cancer cells and contributes to the malignant progression of various types of cancer and inflammation. To elucidate the different roles of JAKs in the activation of STAT‐3, the lipopolysaccharide‐induced primary intestinal epithelial cell (IEC) acute inflammatory model was established. Small interference RNAs (siRNAs) were then employed to attenuate the expression levels of JAKs. Real‐time quantitative reverse transcription–polymerase chain reaction (PCR) (qRT–PCR) revealed that JAK mRNA levels were reduced efficiently by JAK‐specific siRNAs. Under the IEC inflammatory model transfected with si‐JAK, which equates to effective silencing, qRT–PCR and Western blot assays, suggested that knockdowns of JAK attenuated the JAK‐induced down‐regulation of STAT‐3 at the mRNA or protein levels. In particular, JAK1 played a key role, which was consistent with the RNA‐Seq results. Subsequently, the expression levels of proinflammatory cytokines interleukin (IL)‐1β and tumour necrosis factor (TNF)‐α were down‐regulated in the IEC inflammatory model transfected with si‐JAK1. JAK1 appears as a direct activator for STAT‐3, whereas treatments targeting JAK1 repressed STAT‐3 sufficiently pathways in the IEC inflammatory model. Therefore, the control of JAK1 using siRNAs has the potential to be an effective strategy against enteritis. PMID:27357529
Shin, Na-Rae; Ryu, Hyung-Won; Ko, Je-Won; Park, Ji-Won; Kwon, Ok-Kyoung; Oh, Sei-Ryang; Kim, Jong-Choon; Shin, In-Sik; Ahn, Kyung-Seop
2016-12-24
A standardized bark extract of Pinus pinaster Aiton (Pycnogenol ® ; PYC) used as an herbal medicine to treat various diseases in Europe and North America. This study evaluates the ability of PYC to inhibit chronic obstructive pulmonary disease (COPD) in the cigarette smoke extract (CSE)-stimulated human airway epithelial cell line NCI-H292 and in a cigarette smoke (CS) and lipopolysaccharide (LPS)-induced mouse model. To induce COPD, the mice intranasally received LPS on day 4 and were exposed to CS for 1h per day (total eight cigarettes per day) from days 1-7. The mice were administered PYC at a dose of 15mg/kg and 30mg/kg 1h before CS exposure. In the CSE-stimulated NCI-H292 cells, PYC significantly inhibited Erk phosphorylation, sp1 expression, MUC5AC, and pro-inflammatory cytokines in a concentration-dependent manner, as evidenced by a reduction in their mRNA levels. Co-treatment with PYC and Erk inhibitors markedly reduced the levels inflammatory mediators compared to only PYC-treatment. In the COPD mice model, PYC decreased the inflammatory cell count and the levels of pro-inflammatory cytokines in the broncho-alveolar lavage fluid compared with COPD mice. PYC attenuated the recruitment of inflammatory cells in the airways and decreased the expression levels of Erk phosphorylation and sp1. PYC also inhibited the expression of myeloperoxidase and matrix metalloproteinases-9 in lung tissue. Our results indicate that PYC inhibited the reduction in the inflammatory response in CSE-stimulated NCI-H292 cells and the COPD mouse model via the Erk-sp1 pathway. Therefore, we suggest that PYC has the potential to treat COPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation
Pantazi, Eirini; Bejaoui, Mohamed; Zaouali, Mohamed Amine; Folch-Puy, Emma; Pinto Rolo, Anabela; Panisello, Arnau; Palmeira, Carlos Marques; Roselló-Catafau, Joan
2015-01-01
AIM: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. METHODS: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4 °C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD+, a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. RESULTS: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 ± 133.44 vs 206 ± 33.61, P < 0.05) and aspartate aminotransferase levels (893.57 ± 397.69 vs 500.85 ± 118.07, P < 0.05). The lessened hepatic injury in case of losartan was associated with enhanced SIRT1 protein expression and activity (5.27 ± 0.32 vs 6.08 ± 0.30, P < 0.05). This was concomitant with increased levels of NAD+ (0.87 ± 0.22 vs 1.195 ± 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. CONCLUSION: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model. PMID:26185373
Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation.
Pantazi, Eirini; Bejaoui, Mohamed; Zaouali, Mohamed Amine; Folch-Puy, Emma; Pinto Rolo, Anabela; Panisello, Arnau; Palmeira, Carlos Marques; Roselló-Catafau, Joan
2015-07-14
To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4 °C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD(+), a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 ± 133.44 vs 206 ± 33.61, P < 0.05) and aspartate aminotransferase levels (893.57 ± 397.69 vs 500.85 ± 118.07, P < 0.05). The lessened hepatic injury in case of losartan was associated with enhanced SIRT1 protein expression and activity (5.27 ± 0.32 vs 6.08 ± 0.30, P < 0.05). This was concomitant with increased levels of NAD(+) (0.87 ± 0.22 vs 1.195 ± 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model.
Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J.; Collins, Peter L.; Schaap-Nutt, Anne
2014-01-01
ABSTRACT A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109–114, 2012; C.-F. Yang et al., Vaccine 31:2822–2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this knowledge has general application to the development and clinical evaluation of other mononegavirus vectors and vaccines. PMID:24478424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.
We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain bymore » quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.« less
Chang, Katherine; Xiao, DaLiao; Huang, Xiaohui; Xue, Zhice; Yang, Shumei; Longo, Lawrence D.; Zhang, Lubo
2010-01-01
Previous studies in ovine uterine arteries have demonstrated that sex steroid hormones upregulate ERK1/2 expression and downregulate PKC signaling pathway, resulting in the attenuated myogenic tone in pregnancy. The present study tested the hypothesis that chronic hypoxia during gesttation inhibits the sex steroid-mediated adaptation of ERK1/2 and PKC signaling pathways and increases the myogenic tone of uterine arteries. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep that had been maintained at sea level (~300 m) or exposed to high altitude (3,801 m) hypoxia for 110 days. In contrast to the previous findings in normoxic animals, 17β-estradiol and progesterone failed to suppress PKC-induced contractions and the pressure-induced myogenic tone in uterine arteries from hypoxic animals. Western analyses showed that the sex steroids lost their effects on ERK1/2 expression and phospho-ERK1/2 levels, as well as the activation of PKC isozymes in uterine arteries of hypoxic ewes. In normoxic animals, pregnancy and the sex steroid treatments significantly increased uterine artery estrogen receptor α and progesterone receptor B expression. Chronic hypoxia selectively downregulated estrogen receptor α expression in uterine arteries of pregnant animals, and eliminated the upregulation of estrogen receptor α in pregnancy or by the steroid treatments observed in normoxic animals. The results demonstrate that in the ovine uterine artery chronic hypoxia in pregnancy inhibits the sex steroid hormone-mediated adaptation of decreased myogenic tone by downregulating estrogen receptor α expression, providing a mechanism linking hypoxia and maladaptation of uteroplacental circulation, and an increased risk of preeclampsia in pregnancy. PMID:20660818
Chen, Xuhui; Zhang, Bo; Li, Jiayan; Feng, Miaomiao; Zhang, Yue; Yao, Wenlong; Zhang, Chuanhan; Wan, Li
2018-05-08
This study aimed to investigate whether celastrol (CEL) could alleviate incision-induced pain and decipher its possible mechanism. Sprague-Dawley rats were randomly divided into five groups: naïve, vehicle, CEL (5 μg/paw, 10 μg/paw and 20 μg/paw). CEL or vehicle was administered intraplantarly before plantar surgical incision. Histological examinations of skin tissues were performed after HE staining. Additionally, immunohistochemical staining, RT-PCR and western blot were performed to analyse macrophages, proinflammatory cytokines, SARM and NF-κB expression, respectively. Moreover, the previous mentioned factors were re-evaluated after suppressing SARM expression by shRNA. The plantar incision rats displayed pain-related behaviours and inflammatory infiltration in the skin. The mRNA levels of proinflammatory cytokines, such as IL-1β, IL-6, and TNFα were significantly upregulated in the skin of surgical rats. The expression of sterile α- and armadillo-motif-containing protein (SARM) was downregulated and nuclear factor kappa-B (NF-κB) was activated. Interestingly, CEL could partially restore the pain-related behavioural changes. Furthermore, molecular mechanism of CEL was explored, that included significantly reduction of proinflammatory cytokines mRNA expressions, a significant decrease of p-p65 and p65 levels and a markedly increase of SARM and IkBα expressions in skin tissues. However, supression SARM by shRNA partially eliminated those protective effect of CEL. Our data suggest that intraplantarly administration of CEL attenuates inflammatory and acute pain. This finding could be attributed to regulation of the NF-κB signalling pathway via SARM. These results provide pre-clinical evidence supporting the use of CEL in the treatment of surgical pain. Copyright © 2017. Published by Elsevier Inc.
Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model.
Boonloh, Kampeebhorn; Lee, Eun Soo; Kim, Hong Min; Kwon, Mi Hye; Kim, You Mi; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Lee, Eun Young; Kukongviriyapan, Veerapol; Chung, Choon Hee
2018-03-01
Diabetic nephropathy (DN) is an important microvascular complication of uncontrolled diabetes. The features of DN include albuminuria, extracellular matrix alterations, and progressive renal insufficiency. Rice bran protein hydrolysates (RBPs) have been reported to have antihyperglycemic, lipid-lowering, and anti-inflammatory effects in diabetic rats. Our study was to investigate the renoprotective effects of RBP in diabetic animals and mesangial cultured cells. Eight-week-old male db/m and db/db mice were orally treated with tap water or RBP (100 or 500 mg/kg/day) for 8 weeks. At the end of the experiment, diabetic nephropathy in kidney tissues was investigated for histological, ultrastructural, and clinical chemistry changes, and biomarkers of angiogenesis, fibrosis, inflammation, and antioxidant in kidney were analyzed by Western blotting. Protection against proangiogenic proteins and induction of cytoprotection by RBP in cultured mesangial cells was evaluated. RBP treatment improved insulin sensitivity, decreased elevated fasting serum glucose levels, and improved serum lipid levels and urinary albumin/creatinine ratios in diabetic mice. RBP ameliorated the decreases in podocyte slit pore numbers, thickening of glomerular basement membranes, and mesangial matrix expansion and suppressed elevation of MCP-1, ICAM-1, HIF-1α, VEGF, TGF-β, p-Smad2/3, and type IV collagen expression. Moreover, RBP restored suppressed antioxidant Nrf2 and HO-1 expression. In cultured mesangial cells, RBP inhibited high glucose-induced angiogenic protein expression and induced the expression of Nrf2 and HO-1. RBP attenuates the progression of diabetic nephropathy and restored renal function by suppressing the expression of proangiogenic and profibrotic proteins, inhibiting proinflammatory mediators, and restoring the antioxidant and cytoprotective system.
Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury
Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang
2017-01-01
Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. PMID:28052874
Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.
Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na
2017-03-01
Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.
Kamat, Pradip K.; Kalani, Anuradha; Tyagi, Suresh C.; Tyagi, Neetu
2014-01-01
Previously we have showed that homocysteine (Hcy) caused oxidative stress and altered mitochondrial function. Hydrogen sulphide (H2S) has potent anti-inflammatory, anti-oxidative and anti-apoptotic effects. Therefore, in the present study we examined whether H2S ameliorates Hcy-induced mitochondrial toxicity which led to endothelial dysfunction in part, by epigenetic alterations in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 100μM Hcy treatment in the presence or absence of 30μM NaHS (donor of H2S) for 24hrs. Hcy-activate NMDA receptor and induced mitochondrial toxicity by increased levels of Ca2+, NADPH-oxidase-4 (NOX-4) expression, mitochondrial dehydrogenase activity and decreased the level of nitrate, superoxide dismutase (SOD-2) expression, mitochondria membrane potentials, ATP production. To confirm the role of epigenetic, 5′-azacitidine (an epigenetic modulator) treatment was given to the cells. Pretreatment with NaHS (30μM) attenuated the Hcy-induced increased expression of DNMT1, DNMT3a, Ca2+ and decreased expression of DNMT3b in bEND3 cells. Furthermore, NaHS treatment also enhanced mitochondrial oxidative stress (NOX4, ROS, and NO) and restored ATP that indicates its protective effects against mitochondrial toxicity. Additional, NaHS significantly alleviated Hcy-induced LC3-I/II, CSE, Atg3/7 and low p62 expression which confirm its effect on mitophagy. Likewise, NaHS also restored level of eNOS, CD31, VE-Cadherin and ET-1 and maintains endothelial function in Hcy treated cells. Molecular inhibition of NMDA receptor by using small interfering RNA showed protective effect whereas inhibition of H2S production by propargylglycine (PG) (inhibitor of enzyme CSE) showed mitotoxic effect. Taken together, results demonstrate that, administration of H2S protected the cells from HHcy-induced mitochondrial toxicity and endothelial dysfunction. PMID:25056869
Kamat, Pradip K; Kalani, Anuradha; Tyagi, Suresh C; Tyagi, Neetu
2015-02-01
Previously we have shown that homocysteine (Hcy) caused oxidative stress and altered mitochondrial function. Hydrogen sulfide (H2S) has potent anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Therefore, in the present study we examined whether H2S ameliorates Hcy-induced mitochondrial toxicity which led to endothelial dysfunction in part, by epigenetic alterations in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 100 μM Hcy treatment in the presence or absence of 30 μM NaHS (donor of H2S) for 24 h. Hcy-activate NMDA receptor and induced mitochondrial toxicity by increased levels of Ca(2+), NADPH-oxidase-4 (NOX-4) expression, mitochondrial dehydrogenase activity and decreased the level of nitrate, superoxide dismutase (SOD-2) expression, mitochondria membrane potentials, ATP production. To confirm the role of epigenetic, 5'-azacitidine (an epigenetic modulator) treatment was given to the cells. Pretreatment with NaHS (30 μM) attenuated the Hcy-induced increased expression of DNMT1, DNMT3a, Ca(2+), and decreased expression of DNMT3b in bEND3 cells. Furthermore, NaHS treatment also mitigated mitochondrial oxidative stress (NOX4, ROS, and NO) and restored ATP that indicates its protective effects against mitochondrial toxicity. Additional, NaHS significantly alleviated Hcy-induced LC3-I/II, CSE, Atg3/7, and low p62 expression which confirm its effect on mitophagy. Likewise, NaHS also restored level of eNOS, CD31, VE-cadherin and ET-1 and maintains endothelial function in Hcy treated cells. Molecular inhibition of NMDA receptor by using small interfering RNA showed protective effect whereas inhibition of H2S production by propargylglycine (PG) (inhibitor of enzyme CSE) showed mitotoxic effect. Taken together, results demonstrate that, administration of H2S protected the cells from HHcy-induced mitochondrial toxicity and endothelial dysfunction. © 2014 Wiley Periodicals, Inc.
Whitaker, Annie M.; Farooq, Muhammad A.; Edwards, Scott; Gilpin, Nicholas W.
2016-01-01
Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our laboratory has established a rodent model of stress that mimics the avoidance symptom cluster of PTSD. Rats are classified as ‘Avoiders’ or ‘Non-Avoiders’ post-stress based on avoidance of a predator-odor paired context. Previously, we demonstrated that Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration prior to stress would reduce magnitude and incidence of avoidance of a stress-paired context. Furthermore, we predicted that Avoiders would exhibit altered expression of GR signaling machinery elements, such as steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pre-treated with corticosterone (25 mg/kg) or saline and exposed to predator odor stress paired with a context, and tested for avoidance 24 h later, A second group of corticosterone-naïve rats (n = 24) were stressed (or not stressed), indexed for avoidance 24 h later, and killed 48 h post-odor exposure for analysis of phosphorylated GR, FKBP51, and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that express high quantities of GRs and regulate HPA function. Rats pre-treated with corticosterone exhibited lower magnitude and incidence of avoidance. Predator odor exposure also reduced SRC-1 expression in the PVN and CeA of Avoiders, and increased SRC-1 expression in the VH of Avoiders. SRC-1 expression in PVN, CeA, and VH was predicted by prior avoidance behavior. These results suggest that blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats. PMID:26482332
IL-1β directly suppress ghrelin mRNA expression in ghrelin-producing cells.
Bando, Mika; Iwakura, Hiroshi; Ueda, Yoko; Ariyasu, Hiroyuki; Inaba, Hidefumi; Furukawa, Yasushi; Furuta, Hiroto; Nishi, Masahiro; Akamizu, Takashi
2017-05-15
In animal models, ghrelin production is suppressed by LPS administration. To elucidate the detailed molecular mechanisms involved in the phenomenon, we investigated the effects of LPS and LPS-inducible cytokines, including TNF-α, IL-1β, and IL-6, on the expression of ghrelin in the ghrelin-producing cell line MGN3-1. These cells expressed IL-1R, and IL-1β significantly suppressed ghrelin mRNA levels. The suppressive effects of IL-1β were attenuated by knockdown of IKKβ, suggesting the involvement of the NF-κB pathway. These results suggested that IL-1β is a major regulator of ghrelin expression during inflammatory processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Changbo; Cheng, Wei; Yu, Pingping; Wang, Li; Zhou, Lulin; Zeng, Li; Yang, Qin
2016-10-01
There is considerable interest in the use of drugs and other methods for protecting implanted neural stem cells (NSCs) from the adverse environment of injured tissue for successful cell therapy. Resveratrol can modify cardiac stem cells to enhance their survival and differentiation, however, its effect and the mechanism underlying its neuroprotective effect on NSCs following stroke remain to be fully elucidated. Nuclear factor erythroid 2‑related factor 2 (Nrf‑2) signaling is important in antioxidative stress, and the role of Nrf‑2 signaling in the enhanced neuroprotection of NSCs by resveratrol following stroke also remains to be elucidated. In the present study, NSCs were pretreated with resveratrol prior to oxygen‑glucose deprivation/reoxygenation (OGD/R) in vitro. The survival, apoptosis and proliferation of the NSCs were assessed using an MTT assay, Hoechst 33258 staining of nuclei and flow cytometry, respectively. In addition, the activity of superoxide dismutase (SOD), level of malondiadehyde (MDA) and content of glutathione (GSH) were determined. The protein expressions levels of Nrf‑2, NAD(P)H:quinone oxidoreductase 1 (NQO‑1), and heme oxygenase 1 (HO‑1) were detected using western blot analysis. It was found that resveratrol markedly enhanced NSC survival and proliferation, decreased apoptosis and the levels of MDA, and increased the activity of SOD and content of GSH in a concentration‑dependent manner following OGD/R injury in vitro. In addition, the protein expression levels of Nrf2, HO‑1 and NQO1 were significantly upregulated. These findings suggested that resveratrol attenuated injury and promoted proliferation of the NSCs, at least in part, by upregulating the expression of Nrf2, HO‑1 and NQO1 following OGD/R injury in vitro.
Hossain, Ekhtear; Anand-Srivastava, Madhu B
2017-08-01
We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.
Sugiyama, Y; Sasajima, J; Mizukami, Y; Koizumi, K; Kawamoto, T; Ono, Y; Karasaki, H; Tanabe, H; Fujiya, M; Kohgo, Y
2016-06-01
The hedgehog pathway is known to promote proliferation of pancreatic ductal adenocarcinoma (PDA) and has been shown to restrain tumor progression. To understand how hedgehog causes these effects, we sought to carefully examine protein expression of hedgehog signaling components during different tumor stages. Genetically engineered mice, Pdx1-Cre;LSL-KrasG12D and Pdx1-Cre;LSL-KrasG12D;p53lox/+, were utilized to model distinct phases of tumorigenesis, pancreatic intraepithelial neoplasm (PanIN) and PDA. Human pancreatic specimens of intraductal papillary mucinous neoplasm (IPMN) and PDA were also employed. PanIN and IPMN lesions highly express Sonic Hedgehog, at a level that is slightly higher than that observed in PDA. GLI2 protein is also expressed in both PanIN/IPMN and PDA. Although there was no difference in the nuclear staining, the cytoplasmic GLI2 level in PDA was modest in comparison to that in PanIN/IPMN. Hedgehog interacting protein was strongly expressed in the precursors, whereas the level in PDA was significantly attenuated. There were no differences in expression of Patched1 at early and late stages. Finally, a strong correlation between Sonic Hedgehog and GLI2 staining was found in both human and murine pancreatic tumors. The results indicate that the GLI2 protein level could serve as a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.
Global gene expression in channel catfish after vaccination with an attenuated Edwardsiella ictaluri
USDA-ARS?s Scientific Manuscript database
To understand the global gene expression in channel catfish after immersion vaccination with an attenuated Edwardsiella ictaluri (AquaVac ESCTM), microarray analysis of 65,182 UniGene transcripts were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 2, a t...
Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza
2018-03-01
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.
Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.
Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H
2008-10-01
Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.
Effect of diosgenin on metabolic dysfunction: Role of ERβ in the regulation of PPARγ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin, E-mail: xinwang@fmmu.edu.cn; Liu, Jun; Long, Zi
The present study was designed to investigate the effect of diosgenin (DSG) on metabolic dysfunction and to elucidate the possible molecular mechanisms. High fat (HF) diet-fed mice and 3T3-L1 preadipocytes was used to evaluate the effect of DSG. We showed that DSG attenuated metabolic dysfunction in HF diet-fed mice, as evidenced by reduction of blood glucose level and improvement of glucose and insulin intolerance. DSG ameliorated oxidative stress, reduced body weight, fat pads, and systematic lipid profiles and attenuated lipid accumulation. DSG inhibited 3T3-L1 adipocyte differentiation and reduced adipocyte size through regulating key factors. DSG inhibited PPARγ and its targetmore » gene expression both in differentiated 3T3-L1 adipocytes and fat tissues in HF diet-fed mice. Overexpression of PPARγ suppressed DSG-inhibited adipocyte differentiation. DSG significantly increased nuclear expression of ERβ. Inhibition of ERβ significantly suppressed DSG-exerted suppression of adipocyte differentiation and PPARγ expression. In response to DSG stimulation, ERβ bound with RXRα and dissociated RXRα from PPARγ, leading to the reduction of transcriptional activity of PPARγ. These data provide new insight into the mechanisms underlying the inhibitory effect of DSG on adipocyte differentiation and demonstrate that ERβ-exerted regulation of PPARγ expression and activity is critical for DSG-inhibited adipocyte differentiation. - Highlights: • Diosgenin (DSG) attenuated metabolic dysfunction in high fat (HF) diet-fed mice. • DSG reduced oxidative stress and lipid accumulation in HF diet-fed mice. • DSG inhibited 3T3-L1 adipocyte differentiation and reduced adipocyte size. • DSG induced the binding of ERβ with RXRα. • DSG-induced activation of ERβ dissociated RXRα from PPARγ and reduced PPARγ activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Hai-Yan; Liu, Yao; Chen, Jian-Hong
Highlights: {yields} Hyperoside attenuated H{sub 2}O{sub 2}-induced L02 cell damage. {yields} Hyperoside up-regulated HO-1 expression at both mRNA and protein levels. {yields} Hyperoside activated both Nrf{sub 2} nuclear translocation and gene expression. {yields} Hyperoside may inhibit Keap{sub 1} mRNA translation or protein degradation. {yields} Phosphorylation of ERK and p38 is involved in hyperoside-mediated Nrf{sub 2} activation. -- Abstract: The flavonoid hyperoside has been reported to elicit cytoprotection against oxidative stress partly by increasing the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase. However, the cellular and molecular mechanisms underlying this effect remain unclear. Here, hepatic L02more » cells exposed to H{sub 2}O{sub 2} (100 {mu}M) were used to demonstrate that hyperoside protected cells by significantly inhibiting overproduction of intracellular ROS, depletion of the mitochondrial membrane potential and leakage of lactate dehydrogenase. Hyperoside further enhanced the cellular antioxidant defense system through increasing the activity of heme oxygenase-1 (HO-1), and by up-regulating HO-1 expression. Meanwhile, real time PCR, western blot and immunofluorescence studies revealed that hyperoside stimulated nuclear translocation of the Nrf{sub 2} transcription factor in a dose-dependent manner, and this effect was significantly suppressed by pharmacological inhibition of the mitogen-activated protein kinases (MAPK) p38 and ERK. Collectively, our data provide the first description of the mechanism underlying hyperoside's ability to attenuate H{sub 2}O{sub 2}-induced cell damage, namely this compound interacts with the MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway to up-regulate HO-1 expression and enhance intracellular antioxidant activity.« less
Schwenk, Robert W; Baumeier, Christian; Finan, Brian; Kluth, Oliver; Brauer, Christine; Joost, Hans-Georg; DiMarchi, Richard D; Tschöp, Matthias H; Schürmann, Annette
2015-03-01
Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.
Liu, Feng; Zong, Ming; Wen, Xiaofei; Li, Xuezhu; Wang, Jun; Wang, Yi; Jiang, Wei; Li, Xiaojun; Guo, Zhongliang; Qi, Hualin
2016-01-01
Podocyte dysfunction is important in the onset and development of diabetic nephropathy (DN). Histone deacetylases (HDACs) have been recently proved to play critical roles in the pathogenesis of DN. As one subtype of the class IIa HDACs, HDAC9 is capable to repress/de-repress their target genes in tumor, inflammation, atherosclerosis and metabolic diseases. In the present study, we investigate whether HDAC9 is involved in the pathophysiologic process of DN, especially the podocyte injury. Firstly, we explored the expression patterns and localization of HDAC9 and found that HDAC9 expression was significantly up-regulated in high glucose (HG)-treated mouse podocytes, as well as kidney tissues from diabetic db/db mice and patients with DN. Secondly, knockdown of HDAC9 in mouse podocytes significantly suppressed HG-induced reactive oxygen species (ROS) generation, cell apoptosis and inflammation through JAK2/STAT3 pathway and reduced the podocytes injury by decreasing the expression levels of Nephrin and Podocin. Moreover, in diabetic db/db mice, silencing of HDAC9 attenuated the glomerulosclerosis, inflammatory cytokine release, podocyte apoptosis and renal injury. Collectively, these data indicate that HDAC9 may be involved in the process of DN, especially podocyte injury. Our study suggest that inhibition of HDAC9 may have a therapeutic potential in DN treatment. PMID:27633396
Townsend, Brigitte E; Johnson, Rodney W
2016-01-01
Increased neuroinflammation and oxidative stress resulting from heightened microglial activation are associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Gyeong-Ji; Song, Da Hye; Yoo, Han Seok; Chung, Kang-Hyun; Lee, Kwon Jai; An, Jeung Hee
2017-01-06
In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury.
Lipopolysaccharide and toll-like receptor 4 in dogs with congenital portosystemic shunts.
Tivers, M S; Lipscomb, V J; Smith, K C; Wheeler-Jones, C P D; House, A K
2015-12-01
Surgical attenuation of a congenital portosystemic shunt (CPSS) results in increased portal vein perfusion, liver growth and clinical improvement. Portal lipopolysaccharide (LPS) is implicated in liver regeneration via toll-like receptor (TLR) 4 mediated cytokine activation. The aim of this study was to investigate factors associated with LPS in dogs with CPSS. Plasma LPS concentrations were measured in the peripheral and portal blood using a limulus amoebocyte lysate (LAL) assay. LPS concentration was significantly greater in the portal blood compared to peripheral blood in dogs with CPSS (P = 0.046) and control dogs (P = 0.002). LPS concentrations in the peripheral (P = 0.012) and portal (P = 0.005) blood of dogs with CPSS were significantly greater than those of control dogs. The relative mRNA expression of cytokines and TLRs was measured in liver biopsies from dogs with CPSS using quantitative PCR. TLR4 expression significantly increased following partial CPSS attenuation (P = 0.020). TLR4 expression was significantly greater in dogs that tolerated complete CPSS attenuation (P = 0.011) and those with good portal blood flow on pre-attenuation (P = 0.004) and post-attenuation (P = 0.015) portovenography. Serum interleukin (IL)-6 concentration was measured using a canine specific ELISA and significantly increased 24 h following CPSS attenuation (P < 0.001). Portal LPS was increased in dogs with CPSS, consistent with decreased hepatic clearance. TLR4 mRNA expression was significantly associated with portal blood flow and increased following surgery. These findings support the concept that portal LPS delivery is important in the hepatic response to surgical attenuation. Serum IL-6 significantly increased following surgery, consistent with LPS stimulation via TLR4, although this increase might be non-specific. Copyright © 2015 Elsevier Ltd. All rights reserved.
Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge
2006-04-01
Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.
Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei
2013-01-01
Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912
Chen, Yong; Shen, Yubang; Pandit, Narayan Prasad; Fu, Jianjun; Li, Da; Li, Jiale
2013-06-15
The peptide YY (PYY) is a 36 amino acid peptide involved in the food intake control in vertebrates. We have cloned and characterized a PYY gene from grass carp Ctenopharyngodon idellus. The full-length cDNA encodes a precursor protein of grass carp PYY (gcPYY) that consists of a putative 28-amino acid signal peptide, a 36-amino acid mature peptide, an amidation-proteolytic site, and a 30-amino acid carboxy-terminal extension. The gcPYY gene is comprised of 4 exons interspaced by 3 introns as seen in PYYs from other species. Amino acid alignment and gene structure comparison indicate that the structure of PYY is well preserved throughout vertebrate phylogeny. The tissue distribution and postprandial changes in gcPYY mRNA expression were evaluated by real-time PCR, which showed that the gcPYY is expressed abundantly in the central nervous system, with significantly increased expression following a single meal. During embryogenesis, the presence of gcPYY mRNA was detected in early developing embryos, and high expression levels were observed when most larvae completed their switch from endogenous nourishment to exogenous feeding. Reduced food intake by juveniles during a single meal after giving perpheral injection of gcPYY1-36 suggests a potentially important role of PYY in the food intake attenuation in grass carp. Copyright © 2013 Elsevier Inc. All rights reserved.
SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.
Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae
2018-05-01
SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Daqing; Wang, Jing; Yang, Niandi
Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion moleculesmore » in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.« less
Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen
2017-01-01
Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299
miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuefeng; Zhu, Xiaolan; Xu, Wenlin
2013-02-15
Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the bestmore » characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.« less
Nair, Anand R; Mariappan, Nithya; Stull, April J; Francis, Joseph
2017-11-15
Blueberries (BB) have been shown to improve insulin sensitivity and endothelial function in obese and pre-diabetic humans, and decrease oxidative stress and inflammation, and ameliorate cardio-renal damage in rodents. This indicates that blueberries have a systemic effect and are not limited to a particular organ system. In order for blueberries to exert beneficial effects on the whole body, the mechanism would logically have to operate through modulation of cellular humoral factors. This study investigated the role of blueberries in modulating immune cell levels and attenuating circulatory and monocyte inflammation and oxidative stress in metabolic syndrome (MetS) subjects. A double-blind, randomized and placebo-controlled study was conducted in adults with MetS, in which they received a blueberry (22.5 g freeze-dried) or placebo smoothie twice daily for six weeks. Free radical production in the whole blood and monocytes, dendritic cell (DC) levels, expression of cytokines in monocytes and serum inflammatory markers were assessed pre- and post-intervention. Baseline free radical levels in MetS subjects' samples were not different between groups. Treatment with blueberries markedly decreased superoxide and total reactive oxygen species (ROS) in whole blood and monocytes compared to the placebo (p ≤ 0.05). The baseline DC numbers in MetS subjects' samples in both groups were not different, however treatment with blueberries significantly increased myeloid DC (p ≤ 0.05) and had no effect on plasmacytoid cells. Blueberry treatment decreased monocyte gene expression of TNFα, IL-6, TLR4 and reduced serum GMCSF in MetS subjects when compared to the placebo treatment (p ≤ 0.05). The findings of the current study demonstrate that blueberries exert immunomodulatory effects and attenuate oxidative stress and inflammation in adults with MetS.
Pervin, Mehnaz; Hasnat, Md Abul; Lim, Ji-Hong; Lee, Yoon-Mi; Kim, Eun Ok; Um, Byung-Hun; Lim, Beong Ou
2016-02-01
Inflammatory bowel disease (IBD) is an inflammatory disorder caused by hyperactivation of effector immune cells that produce high levels of proinflammatory cytokines. The aims of our study were to determine whether orally administered blueberry extract (BE) could attenuate or prevent the development of experimental colitis in mice and to elucidate the mechanism of action. Female Balb/C mice (n=7) were randomized into groups differing in treatment conditions (prevention and treatment) and dose of BE (50 mg/kg body weight). Acute ulcerative colitis was induced by oral administration of 3% dextran sodium sulfate for 7 days in drinking water. Colonic mucosal injury was assessed by clinical, macroscopic, biochemical and histopathological examinations. BE significantly decreased disease activity index and improved the macroscopic and histological score of colons when compared to the colitis group (P<.05). BE markedly attenuated myeloperoxidase accumulation (colitis group 54.97±2.78 nmol/mg, treatment group 30.78±1.33 nmol/mg) and malondialdehyde in colon and prostaglandin E2 level in serum while increasing the levels of superoxide dismutase and catalase (colitis group 11.94±1.16 U/ml, BE treatment group 16.49±0.39 U/ml) compared with the colitis group (P<.05). mRNA levels of the cyclooxygenase (COX)-2, interferon-γ, interleukin (IL)-1β and inducible nitric oxide synthase cytokines were determined by reverse transcriptase polymerase chain reaction. Immunohistochemical analysis showed that BE attenuates the expression of COX-2 and IL-1β in colonic tissue. Moreover, BE reduced the nuclear translocation of nuclear transcription factor kappa B (NF-κB) by immunofluorescence analysis. Thus, the anti-inflammatory effect of BE at colorectal sites is a result of a number of mechanisms: antioxidation, down-regulation of the expression of inflammatory mediators and inhibition of the nuclear translocation of NF-κB. Copyright © 2015 Elsevier Inc. All rights reserved.
Jørgensen, Casper Møller; Fields, Christopher J.; Chander, Preethi; Watt, Desmond; Burgner, John W.; Smith, Janet L.; Switzer, Robert L.
2011-01-01
Summary The PyrR protein regulates expression of pyrimidine biosynthetic (pyr) genes in many bacteria. PyrR binds to specific sites in the 5’ leader RNA of target operons and favors attenuation of transcription. Filter binding and gel mobility assays were used to characterize the binding of PyrR from Bacillus caldolyticus to RNA sequences (binding loops) from the three attenuation regions of the B. caldolyticus pyr operon. Binding of PyrR to the three binding loops and modulation of RNA binding by nucleotides was similar for all three RNAs. Apparent dissociation constants at 0° C ranged from 0.13 to 0.87 nM in the absence of effectors; dissociation constants were decreased by 3 to 12 fold by uridine nucleotides and increased by 40 to 200 fold by guanosine nucleotides. The binding data suggest that pyr operon expression is regulated by the ratio of intracellular uridine nucleotides to guanosine nucleotides; the effects of nucleoside addition to the growth medium on aspartate transcarbamylase (pyrB) levels in B. subtilis cells in vivo supported this conclusion. Analytical ultracentrifugation established that RNA binds to dimeric PyrR, even though the tetrameric form of unbound PyrR predominates in solution at the concentrations studied. PMID:18190533
Leite, Nayara de Carvalho; Ferreira, Thiago Rentz; Rickli, Sarah; Borck, Patricia Cristine; Mathias, Paulo Cezar de Freitas; Emilio, Henriette Rosa de Oliveira; Grassiolli, Sabrina
2013-01-01
Obese rats obtained by neonatal monosodium glutamate (MSG) administration present insulin hypersecretion. The metabolic mechanism by which glucose catabolism is coupled to insulin secretion in the pancreatic β-cells from MSG-treated rats is understood. The purpose of this study was to evaluate glucose metabolism in pancreatic islets from MSG-treated rats subjected to swimming training. MSG-treated and control (CON) rats swam for 30 minutes (3 times/week) over a period of 10 weeks. Pancreatic islets were isolated and incubated with glucose in the presence of glycolytic or mitochondrial inhibitors. Swimming training attenuated fat pad accumulation, avoiding changes in the plasma levels of lipids, glucose and insulin in MSG-treated rats. Adipocyte and islet hypertrophy observed in MSG-treated rats were attenuated by exercise. Pancreatic islets from MSG-treated obese rats also showed insulin hypersecretion, greater glucose transporter 2 (GLUT2) expression, increased glycolytic flux and reduced mitochondrial complex III activity. Swimming training attenuated islet hypertrophy and normalised GLUT2 expression, contributing to a reduction in the glucose responsiveness of pancreatic islets from MSG-treated rats without altering glycolytic flux. However, physical training increased the activity of mitochondrial complex III in pancreatic islets from MSG-treated rats without a subsequent increase in glucose-induced insulin secretion. Copyright © 2013 S. Karger AG, Basel.
Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer
2011-07-01
Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.
Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone.
Zhou, Ting; Zhao, Lei; Zhan, Rui; He, Qihua; Tong, Yawei; Tian, Xiaosheng; Wang, Hecheng; Zhang, Tao; Fu, Yaoyun; Sun, Yang; Xu, Feng; Guo, Xiangyang; Fan, Dongsheng; Han, Hongbin; Chui, Dehua
2014-10-24
Blood-brain barrier (BBB) dysfunction is a key event in the development of many central nervous system (CNS) diseases, such as septic encephalopathy and stroke. 4,4'-Diaminodiphenylsulfone (DDS, Dapsone) has displayed neuroprotective effect, but whether DDS has protective role on BBB integrity is not clear. This study was designed to examine the effect of DDS on lipopolysaccharide (LPS)-induced BBB disruption and oxidative stress in brain vessels. Using in vivo multiphoton imaging, we found that DDS administration significantly restored BBB integrity compromised by LPS. DDS also increased the expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Level of reactive oxygen species (ROS) was reduced by DDS treatment, which may due to decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NOX2 expression. Our results showed that LPS-induced BBB dysfunction could be attenuated by DDS, indicated that DDS has a therapeutic potential for treating CNS infection and other BBB related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Oxidation-specific epitopes restrain bone formation.
Ambrogini, Elena; Que, Xuchu; Wang, Shuling; Yamaguchi, Fumihiro; Weinstein, Robert S; Tsimikas, Sotirios; Manolagas, Stavros C; Witztum, Joseph L; Jilka, Robert L
2018-06-06
Atherosclerosis and osteoporosis are epidemiologically linked and oxidation specific epitopes (OSEs), such as phosphocholine (PC) of oxidized phospholipids (PC-OxPL) and malondialdehyde (MDA), are pathogenic in both. The proatherogenic effects of OSEs are opposed by innate immune antibodies. Here we show that high-fat diet (HFD)-induced bone loss is attenuated in mice expressing a single chain variable region fragment of the IgM E06 (E06-scFv) that neutralizes PC-OxPL, by increasing osteoblast number and stimulating bone formation. Similarly, HFD-induced bone loss is attenuated in mice expressing IK17-scFv, which neutralizes MDA. Notably, E06-scFv also increases bone mass in mice fed a normal diet. Moreover, the levels of anti-PC IgM decrease in aged mice. We conclude that OSEs, whether produced chronically or increased by HFD, restrain bone formation, and that diminished defense against OSEs may contribute to age-related bone loss. Anti-OSEs, therefore, may represent a novel therapeutic approach against osteoporosis and atherosclerosis simultaneously.
Yu, Honglei; Zhou, Qiaoling; Huang, Renfa; Yuan, Mingxia; Ao, Xiang; Yang, Jinghua
2012-01-01
To observe the level of urinary neutrophil gelatinase-associated lipocalin (NGAL), the expression of hypoxia inducible factor-1α (HIF-1α) and NGAL in rat kidney after renal ischemia and reperfusion (I/R), before and after the treatment with Cordyceps Sinensis (C. sinensis), and to explore the mechanism of C. sinensis against I/R injury. A total of 45 healthy male Sprague-Dawley rats were randomly divided into a sham group, a renal I/R model group, and a C. sinensis group (15 in each group).The rats in the sham group and the renal I/R model group were intragastrically administered saline (2 mL/d), and rats in the treatment group were intragastricabby administered of C. sinensis [5.0 g/(kg.d)]. The rats were sacrificed at 24, 48, and 72 h, respectively after the reperfusion and urinary N-acetyl-β-D-glucosaminidase (NAG) level was measured, renal function in rats was detected, and the pathological changes were observed with HE staining. We determined the urinary NGAL levels in the rats by ELISA, the expression of HIF-1α mRNA by RT-PCR, and the expressions of HIF-1α and NGAL proteins by confocal immunofluorescence. Compared with the sham group, the levels of BUN, SCr, levels of NAG and NGAL in urine were increased in the I/R group and the C. sinensis group, reached a peak at 24 h after the reperfusion and slowly declined at 48 and 72 h. Glomerular and tubulointerstitial areas in the sham group did not show any pathological change. Induced pathological changes included tubular cell necrosis, focal areas of proximal tubular dilation, distal tubular casts, effacement and loss of proximal tubule brush border, etc. Compared with the sham group, the expression of HIF-1α and NGAL in the kidney tissues of the I/R group and the C. sinensis group increased. C. sinensis can lower the level of NAG and NGAL in the urine and the expression of NGAL protein in the kidney tissues. It up-regulated the expression of HIF-1α mRNA and protein in the kidney tissues whilst attenuated the pathological changes. Renal I/R injury in rats can lead to pathological changes in renal tubular epithelial cells and renal interstitial damage, which are consistent with the pathological features of acute kidney injury (AKI).The level of urinary NAGL increases after the I/R, and positively correlates with the level of urinary NAG and pathological changes, suggesting that urinary NGAL may serve as a urinary biomarker for specific detection of tubular injury in AKI. C. sinensis can attenuate the renal I/ R-induced AKI. Its mechanism may be associated with up-regulating the expression of HIF-1α and down-regulating the expression of NGAL in the kidney tissues.
Zhu, Bokai; Khozoie, Combiz; Bility, Moses T.; Ferry, Christina H.; Blazanin, Nicholas; Glick, Adam B.; Gonzalez, Frank J.
2012-01-01
The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G2/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis. PMID:22473992
Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun
2012-10-01
OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.
On the relation between phase path, group path and attenuation in a cold absorbing plasma
NASA Technical Reports Server (NTRS)
Bennett, J. A.; Dyson, P. L.
1978-01-01
Consideration is given to a cold absorbing plasma in which the collision frequency is zero. Expressions are developed which relate the attenuation and the group and phase refractive indices. It is found that because the expressions for the group and phase refractive indices and the imaginary part of the refractive index are closely related in form, the attenuation is related to the difference between the group and phase paths. Numerical calculations have derived approximations which significantly increase the range of known approximations of this type.
Dietary fat and corticosterone levels are contributing factors to meal anticipation.
Namvar, Sara; Gyte, Amy; Denn, Mark; Leighton, Brendan; Piggins, Hugh D
2016-04-15
Daily restricted access to food leads to the development of food anticipatory activity and metabolism, which depends upon an as yet unidentified food-entrainable oscillator(s). A premeal anticipatory peak in circulating hormones, including corticosterone is also elicited by daily restricted feeding. High-fat feeding is associated with elevated levels of corticosterone with disrupted circadian rhythms and a failure to develop robust meal anticipation. It is not clear whether the disrupted corticosterone rhythm, resulting from high-fat feeding contributes to attenuated meal anticipation in high-fat fed rats. Our aim was to better characterize meal anticipation in rats fed a low- or high-fat diet, and to better understand the role of corticosterone in this process. To this end, we utilized behavioral observations, hypothalamic c-Fos expression, and indirect calorimetry to assess meal entrainment. We also used the glucocorticoid receptor antagonist, RU486, to dissect out the role of corticosterone in meal anticipation in rats given daily access to a meal with different fat content. Restricted access to a low-fat diet led to robust meal anticipation, as well as entrainment of hypothalamic c-Fos expression, metabolism, and circulating corticosterone. These measures were significantly attenuated in response to a high-fat diet, and animals on this diet exhibited a postanticipatory rise in corticosterone. Interestingly, antagonism of glucocorticoid activity using RU486 attenuated meal anticipation in low-fat fed rats, but promoted meal anticipation in high-fat-fed rats. These findings suggest an important role for corticosterone in the regulation of meal anticipation in a manner dependent upon dietary fat content. Copyright © 2016 the American Physiological Society.
Turan, Inci; Ozacmak, Hale Sayan; Ozacmak, V Haktan; Barut, Figen; Araslı, Mehmet
2017-11-15
Oxidative stress and inflammatory response are major factors causing several tissue injuries in intestinal ischemia and reperfusion (I/R). Agmatine has been reported to attenuate I/R injury of various organs. The present study aims to analyze the possible protective effects of agmatine on intestinal I/R injury in rats. Four groups were designed: sham control, agmatine-treated control, I/R control, and agmatine-treated I/R groups. IR injury of small intestine was induced by the occlusion of the superior mesenteric artery for half an hour to be followed by a 3-hour-long reperfusion. Agmatine (10mg/kg) was administered intraperitoneally before reperfusion period. After 180min of reperfusion period, the contractile responses to both carbachol and potassium chloride (KCl) were subsequently examined in an isolated-organ bath. Malondialdehyde (MDA), reduced glutathione (GSH), and the activity of myeloperoxidase (MPO) were measured in intestinal tissue. Plasma cytokine levels were determined. The expression of the intestinal inducible nitric oxide synthase (iNOS) was also assessed by immunohistochemistry. The treatment with agmatine appeared to be significantly effective in reducing the MDA content and MPO activity besides restoring the content of GSH. The treatment also attenuated the histological injury. The increases in the I/R induced expressions of iNOS, IFN-γ, and IL-1α were brought back to the sham control levels by the treatment as well. Our findings indicate that the agmatine pretreatment may ameliorate reperfusion induced injury in small intestine mainly due to reducing inflammatory response and oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kui; Fan, Wendong; Wang, Xing
Highlights: Black-Right-Pointing-Pointer Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. Black-Right-Pointing-Pointer miR-101 represses mTOR expression through a specific 3 Prime UTR binding site. Black-Right-Pointing-Pointer Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. Black-Right-Pointing-Pointer Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3 Prime -untranslated region (3 Primemore » UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm{sup 2} laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3 Prime UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC proliferation. These studies advance our understanding of the posttranscriptional mechanisms by which shear stress modulates endothelial homeostasis.« less
Tong, Fei; Liu, Suhuan; Yan, Bing; Li, Xuejun; Ruan, Shiwei; Yang, Shuyu
2017-01-01
The purpose of the study was to reveal the therapeutic effect of quercetin (QUE) nanoparticle complex on diabetic nephropathy (DN) by regulating the expression of intercellular adhesion molecular-1 (ICAM-1) on endothelium as compared to free QUE. QUE 10 mg/kg as a single abdominal subcutaneous injection daily for 8 weeks continuously in diabetic rats and 10 mg/kg QUE nanoparticle complex as a single abdominal subcutaneous injection every 5 days, continuously administered for 8 weeks to diabetic rats. Blood and left kidneys were collected; pathological change of kidney, renal function, oxidative stress level, blood glucose level, serum lipid, urine protein, and albumin/creatinine ratio were measured; and neutrophil adhesion, ICAM-1 expression, and CD11b+ cells infiltration were observed. Both QUE and QUE nanoparticle complex preconditioning ameliorated the pathological damage of kidney and improved renal function, alleviated renal oxidative stress injury, restricted inflammatory cells infiltration, and downregulated the ICAM-1 expression as compared to DN group, while QUE nanoparticle complex significantly alleviated this effect. PMID:29123394
Yen, Chi-Hua; Wang, Cheng-Hsin; Wu, Wen-Tzu; Chen, Hsiao-Ling
2017-05-01
Long-term d-galactose injection induces accelerated aging in experimental rodent models. The aim of this study was to determine the effects of dietary fructo-oligosaccharide (FO) on the brain β-amyloid (Aβ), amyloid-associated enzymes, cognitive function, and plasma antioxidant levels in d-galactose-treated Balb/c mice. The subcutaneous (s.c.) injection and the dietary treatment were conducted simultaneously for 49 days. Mice (12 weeks of age) were divided into five groups (n = 14/group): control (s.c. saline, control diet) serving as a young control, DG (s.c. 1.2 g d-galactose/kg body weight, control diet), DG + LFO (2.5% w/w FO, low-dose FO diet), DG + HFO (5% w/w FO, high-dose FO diet), and DG + E (α-tocopherol 0.2% w/w, vitamin E diet) as an antioxidant reference group. Another group of older mice (64 weeks of age) without any injection served as a natural aging (NA) group. The DG and NA groups had greater Aβ levels in the cortex, hippocampus, and the whole brain. High-dose FO, similar to α-tocopherol, attenuated the d-galactose-induced Aβ density in the cortex and hippocampus. In addition, FO attenuated the d-galactose-induced protein expression of Aβ and beta-site amyloid precursor cleaving enzyme of the whole brain in a dose-response manner. Either dose of FO supplementation, similar to α-tocopherol, attenuated the d-galactose-induced cognitive dysfunction. In addition, FO improved the plasma ascorbic acid level in a dose-response manner. Dietary FO (2.5-5% w/w diet) could attenuate the development of Alzheimer's disease, which was likely to be associated with its systematic antioxidant effects.
Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao
2016-02-04
Behavior sensitization is a long-lasting enhancement of locomotor activity after exposure to psychostimulants. Incubation of sensitization is a phenomenon of remarkable augmentation of locomotor response after withdrawal and reflects certain aspects of compulsive drug craving. However, the mechanisms underlying these phenomena remain elusive. Here we pay special attention to the incubation of sensitization and suppose that the intervention of this procedure will finally decrease the expression of sensitization. Melatonin is an endogenous hormone secreted mainly by the pineal gland. It is effective in treating sleep disorder, which turns out to be one of the major withdrawal symptoms of methamphetamine (MA) addiction. Furthermore, melatonin can also protect neuronal cells against MA-induced neurotoxicity. In the present experiment, we treated mice with low dose (10mg/kg) of melatonin for 14 consecutive days during the incubation of sensitization. We found that melatonin significantly attenuated the expression of sensitization. In contrast, the vehicle treated mice showed prominent enhancement of locomotor activity after incubation. MeCP2 expression was also elevated in the vehicle treated mice and melatonin attenuated its expression. Surprisingly, correlation analysis suggested significant correlation between MeCP2 expression in the nucleus accumbens (NAc) and locomotion in both saline control and vehicle treated mice, but not in melatonin treated ones. MA also induced MeCP2 over-expression in PC12 cells. However, melatonin failed to reduce MeCP2 expression in vitro. Our results suggest that melatonin treatment during the incubation of sensitization attenuates MA-induced expression of sensitization and decreases MeCP2 expression in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...
Cohen, Shlomi; Kozlovsky, Nitsan; Matar, Michael A; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit
2012-01-01
Reliable evidence supports the role of sleep in learning and memory processes. In rodents, sleep deprivation (SD) negatively affects consolidation of hippocampus-dependent memories. As memory is integral to post-traumatic stress symptoms, the effects of post-exposure SD on various aspect of the response to stress in a controlled, prospective animal model of post-traumatic stress disorder (PTSD) were evaluated. Rats were deprived of sleep for 6 h throughout the first resting phase after predator scent stress exposure. Behaviors in the elevated plus-maze and acoustic startle response tests were assessed 7 days later, and served for classification into behavioral response groups. Freezing response to a trauma reminder was assessed on day 8. Urine samples were collected daily for corticosterone levels, and heart rate (HR) was also measured. Finally, the impact of manipulating the hypothalamus–pituitary–adrenal axis and adrenergic activity before SD was assessed. Mifepristone (MIFE) and epinephrine (EPI) were administered systemically 10-min post-stress exposure and behavioral responses and response to trauma reminder were measured on days 7–8. Hippocampal expression of glucocorticoid receptors (GRs) and morphological assessment of arborization and dendritic spines were subsequently evaluated. Post-exposure SD effectively ameliorated long-term, stress-induced, PTSD-like behavioral disruptions, reduced trauma reminder freezing responses, and decreased hippocampal expression of GR compared with exposed-untreated controls. Although urine corticosterone levels were significantly elevated 1 h after SD and the HR was attenuated, antagonizing GRs with MIFE or stimulation of adrenergic activity with EPI effectively abolished the effect of SD. MIFE- and EPI-treated animals clearly demonstrated significantly lower total dendritic length, fewer branches and lower spine density along dentate gyrus dendrites with increased levels of GR expression 8 days after exposure, as compared with exposed-SD animals. Intentional prevention of sleep in the early aftermath of stress exposure may well be beneficial in attenuating traumatic stress-related sequelae. Post-exposure SD may disrupt the consolidation of aversive or fearful memories by facilitating correctly timed interactions between glucocorticoid and adrenergic systems. PMID:22713910
Huang, Jing; Wang, Tao; Yu, Daorui; Fang, Xingyue; Fan, Haofei; Liu, Qiang; Yi, Guohui; Yi, Xinan; Liu, Qibin
2018-06-08
We investigated the therapeutic effects of l-homocarnosine against inflammation in a rat model of cerebral ischemia-reperfusion injury. Rats were grouped into control, middle cerebral artery occlusion (MCAO), 0.5 mM l-homocarnosine + MCAO, and 1 mM l-homocarnosine + MCAO treatment groups. Superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase, lipid peroxidation, and reduced glutathione (GSH) levels were measured. Neurological scores were assessed, and histopathology, scanning electron microscopy (SEM), and fluorescence microscopy analyses were conducted. The mRNA expression levels of nod-like receptor protein 3 (NLRP3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and protein expression levels of NLRP3 were assessed. l-Homocarnosine supplementation substantially increased SOD, catalase, Gpx, and GSH levels, whereas it reduced the levels of lipid peroxidation relative to MCAO rats. l-Homocarnosine significantly reduced the infarct area and neurological deficit score, as well as histopathological alteration, apoptosis, and necrosis in brain tissue. The mRNA expression levels of NLRP3, TNF-α, and IL-6 were increased in MCAO rats, whereas l-homocarnosine supplementation reduced mRNA expression by >40%, and NLRP3 protein expression was reduced by >30% in 1 mM l-homocarnosine-treated MCAO rats. We propose that l-homocarnosine exerts a protective effect in cerebral ischemia-reperfusion injury-induced rats by downregulating NLRP3 expression. Copyright © 2017. Published by Elsevier B.V.
Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats.
Yang, Fang; Yu, Jinqiang; Ke, Feng; Lan, Mei; Li, Dekun; Tan, Ke; Ling, Jiaojiao; Wang, Ying; Wu, Kaili; Li, Dai
2018-03-29
To investigate the potential protective effects of curcumin on the retina in diabetic rats. An experimental diabetic rat model was induced by a low dose of streptozotocin combined with a high-energy diet. Rats which had blood glucose levels ≥11.6 mmol/L were used as diabetic rats. The diabetic rats were randomly divided into 3 groups: diabetic rats with no treatment (DM), diabetic rats treated with 100 mg/kg curcumin (DM + Cur 100 mg/kg), and diabetic rats treated with 200 mg/kg curcumin (DM + Cur 200 mg/kg). Curcumin was orally administered daily for 16 weeks. After 16 weeks of administration, the rats were euthanized, and eyes were dissected. Retinal histology was examined, and the thickness of the retina was measured. Ultrastructural changes of retinal ganglion cells, inner layer cells, retinal capillary, and membranous disks were observed by electron microscopy. Malondialdehyde, superoxide dismutase, and total antioxidant capacity were measured by ELISA. Expression levels of vascular endothelial growth factor (VEGF) in retina tissues were examined by immunohistochemical staining and ELISA. Expression levels of Bax and Bcl-2 in retina tissues were determined by immunohistochemical staining and Western blotting. Curcumin reduced the blood glucose levels of diabetic rats and decreased diabetes-induced body weight loss. Curcumin prevented attenuation of the retina in diabetic rats and ameliorated diabetes-induced ultrastructure changes of the retina, including thinning of the retina, apoptosis of the retinal ganglion cells and inner nuclear layer cells, thickening of retinal capillary basement membrane and disturbance of photoreceptor cell membranous disks. We also found that curcumin has a strong antioxidative ability in the retina of diabetic rats. It was observed that curcumin attenuated the expression of VEGF in the retina of diabetic rats. We also discovered that curcumin had an antiapoptotic effect by upregulating the expression of Bcl-2 and downregulating the expression of Bax in the retina of diabetic rats. Taken together, these results suggest that curcumin may have great therapeutic potential in the treatment of diabetic retinopathy which could be attributed to the hypoglycemic, antioxidant, VEGF-downregulating and neuroprotection properties of curcumin. © 2018 S. Karger AG, Basel.
Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen
2017-05-01
Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression, which was abolished by coadministration of SB203580 or luzindole. Melatonin prevents trauma-hemorrhage-induced liver injury in rats via the melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. Copyright © 2017 the American Physiological Society.
Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao
2017-07-10
The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.
Song, Daeun; Park, Hyeonji; Lee, Su-Hyon; Kim, Mi Jung; Kim, Eun-Joo; Lim, Kyung-Min
2017-11-01
Peptoids are a class of peptidomimetics whose pharmacological activities are widely investigated owing to their remarkable biological stability. However, the utilities of peptoids as cosmetic functional ingredients have not been fully explored. Here, we investigated anti-aging effects of PAL-12, a new hexa-peptoid, on UVB-induced photoaging in human dermal fibroblasts (HDFs) and a 3D reconstituted human full skin model, Keraskin-FT™. PAL-12 suppressed matrix metalloproteinase-1 (MMP-1) expression induced by UVB irradiation along with the attenuation of MMP-1 secretion as determined by ELISA assay. Interestingly PAL-12 slightly enhanced the expression levels of collagen-1 and fibronectin-1 in HDFs or Keraskin-FT™. In addition, PAL-12 prevented the decrease of cell viability following UVB irradiation. However, PAL-12 failed to affect ROS generation, cell necrosis and apoptosis significantly. Instead, PAL-12 suppressed UVB-induced activation of epidermal growth factor receptors (EGFR), extracellular signal-regulated kinase (ERK) and c-Jun, which may resulted in the attenuation of AP-1-promoted MMP-1 expression. Collectively, these results suggest that PAL-12 might be a novel cosmetic ingredient effective against UVB-induced skin photoaging.
Zheng, P; Liu, J; Mai, S; Yuan, Y; Wang, Y; Dai, G
2015-05-01
The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways. © The Author(s) 2014.
Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping
2015-05-01
Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.
Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito
2015-12-08
Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.
Baraldi, D; Casali, K; Fernandes, R O; Campos, C; Sartório, C; Conzatti, A; Couto, G K; Schenkel, P C; Belló-Klein, A; Araujo, A R S
2013-10-01
The objective of this study was to explore the influence of the renin-angiotensin system on cardiac prooxidants and antioxidants levels and its association to autonomic imbalance induced by hyperthyroidism. Male Wistar rats were divided into four groups: control, losartan (10mg/kg/day by gavage, 28 day), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4+losartan. Spectral analysis (autonomic balance), angiotensin II receptor (AT1R), NADPH oxidase, Nrf2 and heme-oxygenase-1 (HO-1) myocardial protein expression, and hydrogen peroxide (H2O2) concentration were quantified. Autonomic imbalance induced by hyperthyroidism (~770%) was attenuated in the T4+losartan group (~32%) (P<0.05). AT1R, NADPH oxidase, H2O2, as well as concentration, Nrf2 and HO-1 protein expression were elevated (~172%, 43%, 40%, 133%, and 154%, respectively) in T4 group (P<0.05). H2O2 and HO-1 levels were returned to control values in the T4+losartan group (P<0.05). The overall results demonstrate a positive impact of RAS blockade in the autonomic control of heart rate, which was associated with an attenuation of H2O2 levels, as well as with a reduced counter-regulatory response of HO-1 in experimental hyperthyroidism. Copyright © 2013 Elsevier B.V. All rights reserved.
Meesarapee, Benjawan; Thampithak, Anusorn; Jaisin, Yamaratee; Sanvarinda, Pimtip; Suksamrarn, Apichart; Tuchinda, Patoomratana; Morales, Noppawan Phumala; Sanvarinda, Yupin
2014-04-01
6-Hydroxydopamine (6-OHDA) selectively enters dopaminergic neurons and undergoes auto-oxidation resulting in the generation of reactive oxygen species and dopamine quinones, subsequently leading to apoptosis. This mechanism mimics the pathogenesis of Parkinson's disease and has been used to induce experimental Parkinsonism in both in vitro and in vivo systems. In this study, we investigated the effects of curcumin I (diferuloylmethane) purified from Curcuma longa on quinoprotein production, phosphorylation of p38 MAPK (p-p38), and caspase-3 activation in 6-OHDA-treated SH-SY5Y dopaminergic cells. Pretreatment of SH-SY5Y with curcumin I at concentrations of 1, 5, 10, and 20 μM, significantly decreased the formation of quinoprotein and reduced the levels of p-p38 and cleaved caspase-3 in a dose-dependent manner. Moreover, the levels of the dopaminergic neuron marker, phospho-tyrosine hydroxylase (p-TH), were also dose-dependently increased upon treatment with curcumin I. Our results clearly demonstrated that curcumin I protects neurons against oxidative damage, as shown by attenuation of p-p38 expression, caspase-3-activation, and toxic quinoprotein formation, together with the restoration of p-TH levels. This study provides evidence for the therapeutic potential of curcumin I in the chemoprevention of oxidative stress-related neurodegeneration. Copyright © 2013 John Wiley & Sons, Ltd.
Li, Fangxiong; Shi, Ruizheng; Liao, Meichun; Li, Jianzhe; Li, Shixun; Pan, Wei; Yang, Tianlun; Zhang, Guogang
2010-08-01
To determine the effect of losartan on vascular remodeling and the underlying mechanism in spontaneously hypertensive rats(SHR). SHR of 12 weeks old were given losartan orally [0, 15, 30 mg/(kg.d), n=12]. The tail arterial pressure was measured every week. Eight weeks later, the pathological changes and p22(phox) expression in the thoracic aorta, the activity of catalase (CAT), the contents of H(2)O(2) and Ang II in the plasma were evaluated. Blood pressure was increased in the SHR accompanied by the thickened wall and increased p22(phox) expression in the thoracic aorta. The plasma levels of H(2)O(2) and Ang II were elevated while the CAT level was decreased in the SHR. Administration of losartan reversed the thickened wall and increased the CAT activity concomitantly with the decreased plasma levels of H(2)O(2) and p22(phox) expression in the SHR. The plasma level of Ang II increased after the losartan treatment. Oxidative stress induces the vascular remodeling of the aorta in the SHR. Losartan can reverse the vascular remodeling through down-regulating p22(phox) expression and inhibiting the oxidative stress.
RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing
2012-01-01
Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided. PMID:23211096
Petersen, Pia S.; Lei, Xia; Wolf, Risa M.; Rodriguez, Susana; Tan, Stefanie Y.; Little, Hannah C.; Schweitzer, Michael A.; Magnuson, Thomas H.; Steele, Kimberley E.
2017-01-01
Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. PMID:28223291
Badr, Gamal; Ramadan, Nancy K; Abdel-Tawab, Hanem S; Ahmed, Samia F; Mahmoud, Mohamed H
2017-11-22
Heat stress (HS) is an environmental factor that depresses the immune systems mediating dysfunctional immune cells. Camel whey protein (CWP) can scavenge free radicals and enhance immunity. The present study investigated the impact of dietary supplementation with CWP on immune dysfunction induced by exposure to HS. Male mice (n = 45) were divided into three groups: control group; HS group; and HS mice that were orally administered CWP (HS+CWP group). The HS group exhibited elevated levels of reactive oxygen species (ROS) and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) as well as a significant reduction in the IL-2 and IL-4 levels. Exposure to HS resulted in impaired AKT and IκB-α phosphorylation; increased ATF-3 and HSP70 expression; and aberrant distribution of CD3+ T cells and CD20+ B cells in the thymus and spleen. Interestingly, HS mice treated with CWP presented significantly restored levels of ROS and pro-inflammatory cytokines near the levels observed in control mice. Furthermore, supplementation of HS mice with CWP enhanced the phosphorylation of AKT and IκB-α; attenuated the expression of ATF-3, HSP70 and HSP90; and improved T and B cell distributions in the thymus and spleen. Our findings reveal a potential immunomodulatory effect of CWP in attenuating immune dysfunction induced by exposure to thermal stress.
Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma
2015-01-01
Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106
Mannose Receptor 2 Attenuates Renal Fibrosis
López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.
2012-01-01
Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946
Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan
2015-07-01
Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.
Xu, Yi; Romero, Roberto; Miller, Derek; Kadam, Leena; Mial, Tara N; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S; Xu, Zhonghui; Tarca, Adi L; Drewlo, Sascha; Gomez-Lopez, Nardhy
2016-03-15
Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth. Copyright © 2016 by The American Association of Immunologists, Inc.
Luo, Da; Hu, Huihui; Qin, Zhiliang; Liu, Shan; Yu, Xiaomei; Ma, Ruisong; He, Wenbo; Xie, Jing; Lu, Zhibing; He, Bo; Jiang, Hong
2017-12-01
Heart failure (HF) is associated with autonomic dysfunction. Vagus nerve stimulation has been shown to improve cardiac function both in HF patients and animal models of HF. The purpose of this present study is to investigate the effects of ganglionated plexus stimulation (GPS) on HF progression and autonomic remodeling in a canine model of acute HF post-myocardial infarction. Eighteen adult mongrel male dogs were randomized into the control (n=8) and GPS (n=10) groups. All dogs underwent left anterior descending artery ligation followed by 6-hour high-rate (180-220bpm) ventricular pacing to induce acute HF. Transthoracic 2-dimensional echocardiography was performed at different time points. The plasma levels of norepinephrine, B-type natriuretic peptide (BNP) and Ang-II were measured using ELISA kits. C-fos and nerve growth factor (NGF) proteins expressed in the left stellate ganglion as well as GAP43 and TH proteins expressed in the peri-infarct zone were measured using western blot. After 6h of GPS, the left ventricular end-diastolic volume, end-systolic volume and ejection fraction showed no significant differences between the 2 groups, but the interventricular septal thickness at end-systole in the GPS group was significantly higher than that in the control group. The plasma levels of norepinephrine, BNP, Ang-II were increased 1h after myocardial infarction while the increase was attenuated by GPS. The expression of c-fos and NGF proteins in the left stellate ganglion as well as GAP43 and TH proteins in cardiac peri-infarct zone in GPS group were significantly lower than that in control group. GPS inhibits cardiac sympathetic remodeling and attenuates HF progression in canines with acute HF induced by myocardial infarction and ventricular pacing. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez Díaz, Matías F.F.; Acosta, Mariano; Mohamed, Fabián H.
We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd{sup 2+}, respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidasemore » (GPx) activities, which were even higher with 100 ppm of Cd{sup 2+}, in aorta. Also, 100 ppm Cd{sup 2+} exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd{sup 2+} did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta. - Highlights: • Under casein diet, 100 ppm Cd{sup 2+} in drinking water induces oxidative stress in aorta. • Under casein diet, 100 ppm Cd{sup 2+} increases Nrf2, MT II and NOX2 expressions in aorta. • Under casein diet, 100 ppm Cd{sup 2+} induces morphological changes in rat aorta. • The soybean diet attenuates the redox changes induced by Cd in rat aorta. • The soybean diet attenuates morphological alterations induced by Cd in rat aorta.« less
Beneficial Effects of Hydrogen-Rich Saline on Early Burn-Wound Progression in Rats
Guo, Song Xue; Jin, Yun Yun; Fang, Quan; You, Chuan Gang; Wang, Xin Gang; Hu, Xin Lei; Han, Chun-Mao
2015-01-01
Introduction Deep burn wounds undergo a dynamic process known as wound progression that results in a deepening and extension of the initial burn area. The zone of stasis is more likely to develop more severe during wound progression in the presence of hypoperfusion. Hydrogen has been reported to alleviate injury triggered by ischaemia/reperfusion and burns in various organs by selectively quenching oxygen free radicals. The aim of this study was to investigate the possible protective effects of hydrogen against early burn-wound progression. Methods Deep-burn models were established through contact with a boiled, rectangular, brass comb for 20 s. Fifty-six Sprague-Dawley rats were randomly divided into sham, burn plus saline, and burn plus hydrogen-rich saline (HS) groups with sacrifice and analysis at various time windows (6 h, 24 h, 48 h) post burn. Indexes of oxidative stress, apoptosis and autophagy were measured in each group. The zone of stasis was evaluated using immunofluorescence staining, ELISA, and Western blot to explore the underlying effects and mechanisms post burn. Results The burn-induced increase in malondialdehyde was markedly reduced with HS, while the activities of endogenous antioxidant enzymes were significantly increased. Moreover, HS treatment attenuated increases in apoptosis and autophagy postburn in wounds, according to the TUNEL staining results and the expression analysis of Bax, Bcl-2, caspase-3, Beclin-1 and Atg-5 proteins. Additionally, HS lowered the level of myeloperoxidase and expression of TNF-α, IL-1β, and IL-6 in the zone of stasis while augmenting IL-10. The elevated levels of Akt phosphorylation and NF-κB p65 expression post burn were also downregulated by HS management. Conclusion Hydrogen can attenuate early wound progression following deep burn injury. The beneficial effect of hydrogen was mediated by attenuating oxidative stress, which inhibited apoptosis and inflammation, and the Akt/NF-κB signalling pathway may be involved in regulating the release of inflammatory cytokines. PMID:25874619
Cardio-Metabolic Effects of HIV Protease Inhibitors (Lopinavir/Ritonavir)
Reyskens, Kathleen M. S. E.; Fisher, Tarryn-Lee; Schisler, Jonathan C.; O'Connor, Wendi G.; Rogers, Arlin B.; Willis, Monte S.; Planesse, Cynthia; Boyer, Florence; Rondeau, Philippe; Bourdon, Emmanuel; Essop, M. Faadiel
2013-01-01
Although antiretroviral treatment decreases HIV-AIDS morbidity/mortality, long-term side effects may include the onset of insulin resistance and cardiovascular diseases. However, the underlying molecular mechanisms responsible for highly active antiretroviral therapy (HAART)-induced cardio-metabolic effects are poorly understood. In light of this, we hypothesized that HIV protease inhibitor (PI) treatment (Lopinavir/Ritonavir) elevates myocardial oxidative stress and concomitantly inhibits the ubiquitin proteasome system (UPS), thereby attenuating cardiac function. Lopinavir/Ritonavir was dissolved in 1% ethanol (vehicle) and injected into mini-osmotic pumps that were surgically implanted into Wistar rats for 8 weeks vs. vehicle and sham controls. We subsequently evaluated metabolic parameters, gene/protein markers and heart function (ex vivo Langendorff perfusions). PI-treated rats exhibited increased serum LDL-cholesterol, higher tissue triglycerides (heart, liver), but no evidence of insulin resistance. In parallel, there was upregulation of hepatic gene expression, i.e. acetyl-CoA carboxylase β and 3-hydroxy-3-methylglutaryl-CoA-reductase, key regulators of fatty acid oxidation and cholesterol synthesis, respectively. PI-treated hearts displayed impaired cardiac contractile function together with attenuated UPS activity. However, there was no significant remodeling of hearts exposed to PIs, i.e. lack of ultrastructural changes, fibrosis, cardiac hypertrophic response, and oxidative stress. Western blot analysis of PI-treated hearts revealed that perturbed calcium handling may contribute to the PI-mediated contractile dysfunction. Here chronic PI administration led to elevated myocardial calcineurin, nuclear factor of activated T-cells 3 (NFAT3), connexin 43, and phosphorylated phospholamban, together with decreased calmodulin expression levels. This study demonstrates that early changes triggered by PI treatment include increased serum LDL-cholesterol levels together with attenuated cardiac function. Furthermore, PI exposure inhibits the myocardial UPS and leads to elevated calcineurin and connexin 43 expression that may be associated with the future onset of cardiac contractile dysfunction. PMID:24098634
Ushida, Takafumi; Kotani, Tomomi; Tsuda, Hiroyuki; Imai, Kenji; Nakano, Tomoko; Hirako, Shima; Ito, Yumiko; Li, Hua; Mano, Yukio; Wang, Jingwen; Miki, Rika; Yamamoto, Eiko; Iwase, Akira; Bando, Yasuko K; Hirayama, Masaaki; Ohno, Kinji; Toyokuni, Shinya; Kikkawa, Fumitaka
2016-12-01
Oxidative stress plays an important role in the pathogenesis of preeclampsia. Recently, molecular hydrogen (H 2 ) has been shown to have therapeutic potential in various oxidative stress-related diseases. The aim of this study is to investigate the effect of H 2 on preeclampsia. We used the reduced utero-placental perfusion pressure (RUPP) rat model, which has been widely used as a model of preeclampsia. H 2 water (HW) was administered orally ad libitum in RUPP rats from gestational day (GD) 12-19, starting 2 days before RUPP procedure. On GD19, mean arterial pressure (MAP) was measured, and samples were collected. Maternal administration of HW significantly decreased MAP, and increased fetal and placental weight in RUPP rats. The increased levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and diacron reactive oxygen metabolites as a biomarker of reactive oxygen species in maternal blood were decreased by HW administration. However, vascular endothelial growth factor level in maternal blood was increased by HW administration. Proteinuria, and histological findings in kidney were improved by HW administration. In addition, the effects of H 2 on placental villi were examined by using a trophoblast cell line (BeWo) and villous explants from the placental tissue of women with or without preeclampsia. H 2 significantly attenuated hydrogen peroxide-induced sFlt-1 expression, but could not reduce the expression induced by hypoxia in BeWo cells. H 2 significantly attenuated sFlt-1 expression in villous explants from women with preeclampsia, but not affected them from normotensive pregnancy. The prophylactic administration of H 2 attenuated placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress. These results support the theory that H 2 has a potential benefit in the prevention of preeclampsia. Copyright © 2016 Elsevier Inc. All rights reserved.
Fang, Liang; Gong, Jiuyu; Wang, Ying; Liu, Rongrong; Li, Zengshan; Wang, Zhe; Zhang, Yun; Zhang, Chunmei; Song, Chaojun; Yang, Angang; Ting, Jenny P-Y; Jin, Boquan; Chen, Lihua
2014-09-18
MICA/B are major ligands for NK cell activating receptor NKG2D and previous studies showed that the serum level of soluble MICA (sMICA) is an independent prognostic factor for advanced human hepatocellular carcinoma. However, the correlation between cellular MICA/B expression pattern and human hepatocellular carcinoma progression has not been well explored. The unfolded protein response is one of the main causes of resistance to chemotherapy and radiotherapy in tumor cells. However, whether the UPR in HCC could regulate the expression levels of MICA/B and affect the sensitivity of HCC cells to NK cell cytolysis has not been established yet. MICA/B expression pattern was evaluated by immunohistochemistry and Kaplan-Meier survival analysis was done to explore the relationship between MICA/B expression level and patient survival. The protein and mRNA expression levels of MICA/B in SMMC7721 and HepG2 cells treated by tunicamycin were evaluated by flow cytometry, Western Blot and RT-PCR. The cytotoxicity analysis was performed with the CytoTox 96 Non-Radioactive LDH Cytotoxicity Assay. MICA/B was highly expressed in human hepatocellular carcinoma and the expression level was significantly and negatively associated with tumor-node metastasis (TNM) stages. Patients with low level of MICA/B expression showed a trend of shorter survival time. The unfolded protein response (UPR) downregulated the expression of MICA/B. This decreased protein expression occurred via post-transcriptional regulation and was associated with proteasomal degradation. Moreover, decreased expression level of MICA/B led to the attenuated sensitivity of human HCC to NK cell cytotoxicity. These new findings of the connection of MICA/B, UPR and NK cells may represent a new concrete theory of NK cell regulation in HCC, and suggest that targeting this novel NK cell-associated immune evasion pathway may be meaningful in treating patients with HCC.
Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells
Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.
2011-01-01
Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608
Xu, Chenggui; Lu, Guihua; Li, Qinglang; Zhang, Juhong; Huang, Zhibin; Gao, Xiuren
2017-07-01
A high-fat diet is a major risk factor for coronary heart diseases. Matrix metalloprotease (MMP) expression is changed in many cardiovascular diseases. Selenium, which is an important trace element in animals, has a close relationship with cardiovascular diseases. The TGFβ1/Smad signalling pathway is ubiquitous in diverse tissues and cells, and it is also associated with the occurrence and development of cardiovascular diseases. Therefore, in this study, we aimed to determine selenium's effect on lipid metabolism, atherosclerotic plaque formation, and MMP2 expression, as well as the underlying functional mechanism. In vivo tests: 24 male New Zealand white rabbits were randomly divided into 4 groups: regular diet, high-fat diet, high-fat diet+selenium and regular diet+selenium groups. The high-fat diet induced the lipid disturbances of rabbits at week 12. Selenium supplementation lowered total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels (p<0.01). Selenium supplementation also suppressed MMP2 over-expression in thoracic aortas. In vitro tests: Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of selenium or ox-LDL. Ox-LDL promoted MMP2 expression by increasing TGFβ1, pSmad2, pSmad3 and Smad3 expression (p<0.01). Selenium attenuated MMP2 over-expression by regulating the TGFβ1/Smad signalling pathway. Selenium suppressed high-fat diet-induced MMP2 over-expression in vivo by improving lipid metabolism. In vitro, selenium attenuated MMP2 over-expression through the TGFβ1/Smad signalling pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Haipeng; Xu Beibei; Sheveleva, Elena
2008-10-01
Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less
Cao, Chun; Gao, Tao; Cheng, Yan; Cheng, Minhua; Su, Ting; Xi, Fengchan; Wu, Cuili; Yu, Wenkui
2018-03-18
Hypercatabolism plays a critical role in the pathogenesis of post-critical care debility in critical patients. Central nervous system may exerte a critical role in the regulation of hypercatabolism. However, little is known about the exact mechanisms of the central role. Here, we reported that actived hypothalamic AMP-activated protein kinase (AMPK)-induced autophagy modulated the expression of POMC to ameliorate hypercatabolism in septic rats. Firstly, rats were i.c.v. injected with the lentiviral vector containing shRNA against POMC. Two weeks after injections, rats were intraperitoneally injected with LPS or saline. Twenty-four hours later, blood, skeletal muscle and hypothalamus tissues were obtained. Hypercatabolism markers and neuropeptides expression were detected. Then, rats were injected with AICAR or saline into third ventricle and promptly intraperitoneally injected with LPS or saline. Twenty-four hours after infection, blood, skeletal muscle and hypothalamus tissues were obtained. Hypercatabolism, hypothalamic AMPK-induced autophagy markers and neuropeptides expression were also detected. Results showed that sepsis would decrease the level of hypothalamic autophagy accompany with the alterations of POMC expression and hypercatabolism. Knocking out hypothalamus POMC expression could significantly ameliorate hypercatabolism. Moreover, Central activation of AMPK-induced autophagy pathway via third ventricle injection of AICAR, an AMPK activator, could efficiently ameliorate hypercatabolism as well as attenuate the elevated POMC expression rather than other neuropeptides. Taken together, these results suggested that hypothalamic AMPK-autophagy pathway as a regulatory pathway for POMC expression was essential for hypercatabolism during sepsis. And hypothalamic AMPK-autophagy activation could attenuate the POMC expression to ameliorate hypercatabolism. Pharmaceuticals with the ability of activating hypothalamic AMPK-autophagy pathway may be a therapeutic potential for hypercatabolism in septic patients. Copyright © 2018 Elsevier Inc. All rights reserved.
Rothman, Naomi B; Magee, Joe C
2016-01-01
Our findings draw attention to the interpersonal communication function of a relatively unexplored dimension of emotions-the level of social engagement versus disengagement. In four experiments, regardless of valence and target group gender, observers infer greater relational well-being (more cohesiveness and less conflict) between group members from socially engaging (sadness and appreciation) versus disengaging (anger and pride) emotion expressions. Supporting our argument that social (dis)engagement is a critical dimension communicated by these emotions, we demonstrate (1) that inferences about group members' self-interest mediate the effect of socially engaging emotions on cohesiveness and (2) that the influence of socially disengaging emotion expressions on inferences of conflict is attenuated when groups have collectivistic norms (i.e., members value a high level of social engagement). Furthermore, we show an important downstream consequence of these inferences of relational well-being: Groups that seem less cohesive because of their members' proud (versus appreciative) expressions are also expected to have worse task performance.
Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D G
2013-12-01
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.
Caillaud, Marie-Cécile; Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie; Fabro, Georgina; Jones, Jonathan D. G.
2013-01-01
Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)–triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression. PMID:24339748
Choi, Youn-Hee; Back, Keum Ok; Kim, Hee Ja; Lee, Sang Yeul; Kook, Koung Hoon
2013-08-01
The aim of this study was to determine the effect of pirfenidone on interleukin (IL)-1β-induced cyclooxygenase (COX)-2 and prostaglandin (PG)E2 expression in orbital fibroblasts from patients with thyroid-associated ophthalmopathy (TAO). Primary cultures of orbital fibroblasts from patients with TAO (n = 4) and non-TAO subjects (n = 4) were prepared. The level of PGE2 in orbital fibroblasts treated with IL-1β in the presence or absence of pirfenidone was measured using an enzyme-linked immunosorbent assay. The effect of pirfenidone on IL-1β-induced COX-2 expression in orbital fibroblasts from patients with TAO was evaluated by reverse transcription-polymerase chain reaction (PCR) and quantitative real-time PCR analyses, and verified by Western blot. Activation of nuclear factor-κB (NF-κB) was evaluated by immunoblotting for inhibitor of κB (IκB)α and phosphorylated IκBα, and DNA-binding activity of p50/p65 NF-κB was analyzed by electrophoretic mobility shift assay. In addition, IL-1 receptor type 1 (IL-1R1) expression was assessed by RT-PCR in IL-1β-treated cells with or without pirfenidone. Pirfenidone significantly attenuated IL-1β-induced PGE2 release in both TAO and non-TAO cells. IL-1β-induced COX-2 mRNA and protein expression decreased significantly following co-treatment with pirfenidone. IL-1β-induced IκBα phosphorylation and degradation decreased in the presence of pirfenidone and led to decreased nuclear translocation and DNA binding of the active NF-κB complex. In our system, neither IL-1β nor pirfenidone co-treatment influenced IL-1R1 expression. Our results suggest that pirfenidone attenuates the IL-1β-induced PGE2/COX-2 production in TAO orbital fibroblasts, which is related with suppression of the NF-κB activation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matsuda, Manabu; Kurosaki, Keiko; Okamura, Naomichi
2014-01-01
Exposure of mice to a high dose of estrogens including diethylstilbestrol (DES) during the neonatal period modifies the developmental plan of the genital tract, which leads to various permanent changes in physiology, morphology and gene expression. These changes include development of an abnormal vaginal epithelium lined with hyperplastic mucinous cells accompanied by Tff1 gene expression in mice. Here, the influence of vitamin D on the direct effect of estrogen on the developing mouse vagina was examined. The mid-vagina of neonatal mice was cultured in a serum-free medium containing estradiol-17β (E2) and various concentrations of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) ex vivo and then was transplanted under the renal capsule of ovariectomized host mice for 35 days. Exposure to E2 alone caused the vaginal tissue to develop estrogen-independent epithelial hyperplasia and to express TFF1 mRNA, while addition of a low nanomolar amount of 1,25(OH)2D added at the same time as E2 to the culture medium attenuated the effects of estrogen. Expression of vitamin D receptor was also evident in the neonatal mouse vagina. Interestingly, addition of 25-hydroxyvitamin D3, a pro-activated form of vitamin D, at the micromolar level was found to be potent in disrupting the developmental effects of E2, while cholecalciferol was not at least at the dose examined. Correspondingly, expression of Cyp27B1, a kidney-specific 25-hydroxyvitamin D hydroxylase, was evident in the neonatal mouse vagina when examined by RT-PCR. In addition, simultaneous administration of 1,25(OH)2D successfully attenuated DES-induced ovary-independent hyperplasia in the vagina in neonatal mice in vivo. Thus, manipulation of vitamin D influenced the harmful effects of estrogens on mouse vaginal development.
MATSUDA, Manabu; KUROSAKI, Keiko; OKAMURA, Naomichi
2014-01-01
Exposure of mice to a high dose of estrogens including diethylstilbestrol (DES) during the neonatal period modifies the developmental plan of the genital tract, which leads to various permanent changes in physiology, morphology and gene expression. These changes include development of an abnormal vaginal epithelium lined with hyperplastic mucinous cells accompanied by Tff1 gene expression in mice. Here, the influence of vitamin D on the direct effect of estrogen on the developing mouse vagina was examined. The mid-vagina of neonatal mice was cultured in a serum-free medium containing estradiol-17β (E2) and various concentrations of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) ex vivo and then was transplanted under the renal capsule of ovariectomized host mice for 35 days. Exposure to E2 alone caused the vaginal tissue to develop estrogen-independent epithelial hyperplasia and to express TFF1 mRNA, while addition of a low nanomolar amount of 1,25(OH)2D added at the same time as E2 to the culture medium attenuated the effects of estrogen. Expression of vitamin D receptor was also evident in the neonatal mouse vagina. Interestingly, addition of 25-hydroxyvitamin D3, a pro-activated form of vitamin D, at the micromolar level was found to be potent in disrupting the developmental effects of E2, while cholecalciferol was not at least at the dose examined. Correspondingly, expression of Cyp27B1, a kidney-specific 25-hydroxyvitamin D hydroxylase, was evident in the neonatal mouse vagina when examined by RT-PCR. In addition, simultaneous administration of 1,25(OH)2D successfully attenuated DES-induced ovary-independent hyperplasia in the vagina in neonatal mice in vivo. Thus, manipulation of vitamin D influenced the harmful effects of estrogens on mouse vaginal development. PMID:24769840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Chi-Tai; Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan; Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
2012-05-15
In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29more » cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.« less
Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried
2016-01-01
ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574
Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M
1996-10-01
Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.
Jang, Min A; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae
2017-01-01
α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.
A Novel Self-Replicating Chimeric Lentivirus-Like Particle
Young, Kelly R.; Madden, Victoria J.; Johnson, Philip R.; Johnston, Robert E.
2012-01-01
Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4+ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation. PMID:22013035
A novel self-replicating chimeric lentivirus-like particle.
Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E
2012-01-01
Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.
ZHOU, HENG; YUAN, YUAN; LIU, YUAN; DENG, WEI; ZONG, JING; BIAN, ZHOU-YAN; DAI, JIA; TANG, QI-ZHU
2014-01-01
Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2′,7′-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways. PMID:24940396
Huang, Huey-Chun; Wei, Chien-Mei; Siao, Jen-Hung; Tsai, Tsang-Chi; Ko, Wang-Ping; Chang, Kuei-Jen; Hii, Choon-Hoon; Chang, Tsong-Min
2016-01-01
The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE) in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS). The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1-10 mg/mL) and its major fatty acids such as linoleic acid and oleic acid (6.25-50 μM) effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K/Akt), and mitogen-activated protein kinases (MAPK) signaling pathways, which may be due to linoleic acid and oleic acid.
Huang, Wen-Chung; Lai, Ching-Long; Liang, Yuan-Ting; Hung, Hui-Chih; Liu, Hui-Chia; Liou, Chian-Jiun
2016-11-01
Phloretin, which can be isolated from apple trees, has demonstrable anti-inflammatory and anti-oxidant effects in macrophages. We previously reported that phloretin could inhibit the inflammatory response and reduce intercellular adhesion molecule 1 (ICAM-1) expression in interleukin (IL)-1β-activated human lung epithelial cells. In the present study we now evaluate whether phloretin exposure could ameliorate lipopolysaccharide (LPS)-induced acute lung injury in mice. Intra-peritoneal injections of phloretin were administered to mice for 7 consecutive days, prior to the induction of lung injury by intra-tracheal administration of LPS. Our subsequent analyses demonstrated that phloretin could significantly suppress LPS-induced neutrophil infiltration of lung tissue, and reduce the levels of IL-6 and tumor necrosis factor (TNF)-α in serum and bronchoalveolar lavage fluid. We also found that phloretin modulated myeloperoxidase activity and superoxide dismutase activity, with decreased gene expression levels for chemokines, proinflammatory cytokines, and ICAM-1 in inflamed lung tissue. Phloretin also significantly reduced the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), thus limiting the inflammatory response, while promoting expression of heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2, both of which are cytoprotective. Our findings suggest that, mechanistically, phloretin attenuates the inflammatory and oxidative stress pathways that accompany lung injury in mice via blockade of the NF-κB and MAPK pathways. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joo-Man; Kim, Tae-Hyun; Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752
Research highlights: {yields} Insulin-suppression of PEPCK and G6Pase gene expression is counteracted by resveratrol. {yields} Resveratrol upregulates hepatic gluconeogenic genes by attenuating insulin signaling and deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively. {yields} Resveratrol increases the binding activity of Foxo1 to the IRE of PEPCK and G6Pase. -- Abstract: During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation ofmore » insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.« less
Liu, Hao; Li, Wei; Ge, Xiyuan; Jia, Shengnan; Li, Binbin
2016-12-01
Puerarin is a phytoestrogen that shows osteogenic effects. Meanwhile, zinc stimulates bone formation and inhibits bone resorption. The study aims to investigate the effects of coadministration of puerarin (low dose) and zinc on bone formation in ovariectomized rats. Co-administration or use alone of puerarin (low dose) and/or zinc were gavaged in OVX rats. The estrogen-like effects were detected by the uterus weight, the histologic observation and the IGF-1 protein expression. The osteogenic effects were determined by bone histomorphometric and mechanical parameters, osteogenic and adipogenic blood markers, and so on. The results showed that oral administration of puerarin (low dose) plus zinc didn't significantly increase uterus weight. The glandular epithelial of endometrium had no proliferation and no protein expression of IGF-1. Moreover, co-administration attenuated bone loss and biomechanical decrease more than single use of puerarin or zinc (p<0.05). Next, combined administration of puerarin and zinc promoted the serological level of osteocalcin, bone marrow stromal cell (BMSC) proliferation, and the expression of alkaline phosphatase (ALP), and suppressed the serological level of adiponectin and adiposity in bone marrow (BM). In conclusion, co-administrated puerarin (low dose) and zinc can partially reverse OVX-induced bone loss and suppress the adiposity of BM in rats, which shed light on the potential use of puerarin and zinc in the treatment of osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1
Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling
2015-01-01
As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels. PMID:26537450
Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna
2017-02-01
Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young male rats. These results suggest that caution may be warranted when recommending intermittent fasting, especially one-meal-per-day fasting, for people with compromised glucose metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.
Gong, Ping; Li, Chun-Sheng; Hua, Rong; Zhao, Hong; Tang, Zi-Ren; Mei, Xue; Zhang, Ming-Yue; Cui, Juan
2012-01-01
Mild hypothermia is the only effective treatment confirmed clinically to improve neurological outcomes for comatose patients with cardiac arrest. However, the underlying mechanism is not fully elucidated. In this study, our aim was to determine the effect of mild hypothermia on mitochondrial oxidative stress in the cerebral cortex. We intravascularly induced mild hypothermia (33°C), maintained this temperature for 12 h, and actively rewarmed in the inbred Chinese Wuzhishan minipigs successfully resuscitated after 8 min of untreated ventricular fibrillation. Cerebral samples were collected at 24 and 72 h following return of spontaneous circulation (ROSC). We found that mitochondrial malondialdehyde and protein carbonyl levels were significantly increased in the cerebral cortex in normothermic pigs even at 24 h after ROSC, whereas mild hypothermia attenuated this increase. Moreover, mild hypothermia attenuated the decrease in Complex I and Complex III (i.e., major sites of reactive oxygen species production) activities of the mitochondrial respiratory chain and increased antioxidant enzyme manganese superoxide dismutase (MnSOD) activity. This increase in MnSOD activity was consistent with the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein expressions, and with the increase of Nrf2 nuclear translocation in normothermic pigs at 24 and 72 h following ROSC, whereas mild hypothermia enhanced these tendencies. Thus, our findings indicate that mild hypothermia attenuates mitochondrial oxidative stress in the cerebral cortex, which may be associated with reduced impairment of mitochondrial respiratory chain enzymes, and enhancement of MnSOD activity and expression via Nrf2 activation. PMID:22532848
Lu, Xiuxian; Sun, Chao; Zheng, Daofeng; Liu, Rui; Wei, Xufu; Wu, Zhongjun
2017-04-01
Objective To study the effect of microRNA-21 (miR-21) on hypoxia/reoxygenation (H/R)-treated primary hepatocytes from C57BL/6J mice and analyze its possible molecular mechanism. Methods The H/R model of primary hepatocytes was established and the expression of miR-21 was detected by the quantitative real-time PCR. Western blotting was used to detect protein expression levels of phosphatase and tension homology deleted on chromosome 10 (PTEN), phosphorylated AKT (p-AKT), Bcl-2 and Bax. Flow cytometry was performed to observe the hepatocyte apoptosis. Results The expression of miR-21 in primary hepatocytes decreased after H/R injury. After transfected with exogenous miR-21 mimics, the expression of PTEN decreased, while the expressions of p-AKT and Bcl-2 and the ratio of Bcl-2/Bax increased in hepatocytes; the apoptotic level of hepatocytes was downregulated. The inhibition of AKT phosphorylation could downregulate the expression of Bcl-2 and the ratio of Bcl-2/Bax, and upregulate the level of hepatocyte apoptosis. Conclusion The miR-21 can alleviate the hepatocyte apoptosis by inhibiting the PTEN/PI3K/AKT signaling pathway in the process of H/R.
Xu, Xilin; Lv, Hang; Li, Xiaodong; Su, Hui; Zhang, Xiaofeng; Yang, Jun
2017-12-01
Danshen (Salvia miltiorrhiza) is a traditional Chinese medicine herb that can alleviate the symptoms of osteoarthritis (OA) (Söder et al. 2006) in animals. However, the underlying mechanisms remain poorly understood and require further investigation. In this study, rabbits with experimentally induced OA were given an intra-articular injection of danshen (0.7 mL/day) for 5 weeks. In addition to attenuating the cartilage degeneration of OA in the rabbits, danshen decreased the expression and activity of matrix metalloproteinase 9 (MMP-9) and MMP-13, and increased the expression of their natural inhibitors: tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and TIMP-2. Apoptosis in osteoarthritic cartilage tissues was attenuated by danshen, accompanied with increased expression of B cell lymphoma 2 (Bcl-2) and decreased levels of Bcl-2-associated X protein (Bax). Further, danshen inhibited the nuclear accumulation of nuclear factor kappa-B (NF-κB) p65 in osteoarthritic cartilage. The therapeutic effects of danshen in vivo were comparable to that of sodium hyaluronate, which is a drug used clinically for the treatment OA. In vitro, sodium nitroprusside (SNP) was used to stimulate apoptosis in primary rabbit chondrocytes. We found that the SNP-induced apoptosis was mitigated by danshen. BAY11-7028, an inhibitor of the NF-κB pathway, augmented danshen's anti-apoptotic effects in cells exposed to SNP. When these results are considered together, they indicate that danshen alleviates the cartilage injury in rabbit OA through inhibition of the NF-κB signaling pathway.
Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M; Sari, Youssef
2015-06-01
Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol-vehicle-treated rats (ethanol-vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior. © 2015 Wiley Periodicals, Inc.
Wang, Yun-Feng; Sun, Yong-Ke; Tian, Zhan-Cheng; Shi, Xing-Ming; Tong, Guang-Zhi; Liu, Sheng-Wang; Zhi, Hai-Dong; Kong, Xian-Gang; Wang, Mei
2009-11-23
A fowlpox virus expressing the chicken infectious bronchitis virus (IBV) S1 gene of the LX4 strain (rFPV-IBVS1) and a fowlpox virus co-expressing the S1 gene and the chicken type II interferon gene (rFPV-IBVS1-ChIFNgamma) were constructed. These viruses were assessed for their immunological efficacy on specific-pathogen-free (SPF) chickens challenged with a virulent IBV. Although the antibody levels in the rFPV-IBVS1-ChIFNgamma-vaccinated group were lower than those in the attenuated live IB vaccine H120 group and the rFPV-IBVS1 group, the rFPV-IBVS1-ChIFNgamma provided the strongest protection against an IBV LX4 virus challenge (15 out of 16 chickens immunized with rFPV-IBVS1-ChIFNgamma were protected), followed by the attenuated live IB vaccine (13/16 protected) and the rFPV-IBVS1 (12/16 protected). Compared to those of the rFPV-IBVS1 and the attenuated live IB vaccine groups, chickens in the rFPV-IBVS1-ChIFNgamma group eliminated virus more quickly and decreased the presence of viral antigen more significantly in renal tissue. Examination of affected tissues revealed abnormalities in the liver, spleen, kidney, lung and trachea of chickens vaccinated with the attenuated live IB vaccine and the rFPV-IBVS1 vaccine. In rFPV-IBVS1-ChIFNgamma-vaccinated chickens, pathological changes were also observed in those organs, but were milder and lasted shorter. The lesions in the mock control group were the most severe and lasted for at least 20 days. This study demonstrated that chicken type II interferon increased the immunoprotective efficacy of rFPV-IBVS1-ChIFNgamma and normal weight gain in vaccinated chickens although it inhibited serum antibody production.
Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing
2015-01-01
Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy. PMID:26648693
Wu, Jichao; Tian, Zhiliang; Sun, Yu; Lu, Cuicui; Liu, Ning; Gao, Zhaopeng; Zhang, Linxue; Dong, Shiyun; Yang, Fan; Zhong, Xin; Xu, Changqing; Lu, Fanghao; Zhang, Weihua
2017-01-01
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. Hydrogen sulphide (H2S), a newly found gaseous signalling molecule, has an important role in many regulatory functions. The purpose of this study is to investigate the effects of exogenous H2S on autophagy and its possible mechanism in DCM induced by type II diabetes (T2DCM). In this study, we found that sodium hydrosulphide (NaHS) attenuated the augment in left ventricular (LV) mass and increased LV volume, decreased reactive oxygen species (ROS) production and ameliorated H2S production in the hearts of db/db mice. NaHS facilitated autophagosome content degradation, reduced the expression of P62 (a known substrate of autophagy) and increased the expression of microtubule-associated protein 1 light chain 3 II. It also increased the expression of autophagy-related protein 7 (ATG7) and Beclin1 in db/db mouse hearts. NaHS increased the expression of Kelch-like ECH-associated protein 1 (Keap-1) and reduced the ubiquitylation level in the hearts of db/db mice. 1,4-Dithiothreitol, an inhibitor of disulphide bonds, increased the ubiquitylation level of Keap-1, suppressed the expression of Keap-1 and abolished the effects of NaHS on ubiquitin aggregate clearance and ROS production in H9C2 cells treated with high glucose and palmitate. Overall, we concluded that exogenous H2S promoted ubiquitin aggregate clearance via autophagy, which might exert its antioxidative effect in db/db mouse myocardia. Moreover, exogenous H2S increased Keap-1 expression by suppressing its ubiquitylation, which might have an important role in ubiquitin aggregate clearance via autophagy. Our findings provide new insight into the mechanisms responsible for the antioxidative effects of H2S in the context of T2DCM. PMID:28796243
Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD
Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming
2011-01-01
Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517
Ramp, Kristina; Skiba, Martin; Karger, Axel; Mettenleiter, Thomas C; Römer-Oberdörfer, Angela
2011-02-01
Members of the order Mononegavirales express their genes in a transcription gradient from 3' to 5'. To assess how this impacts on expression of a foreign transgene, the haemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) A/chicken/Vietnam/P41/05 (subtype H5N1) was inserted between the phosphoprotein (P) and matrix protein (M), M and fusion protein (F), or F and haemagglutinin-neuraminidase protein (HN) genes of attenuated Newcastle disease virus (NDV) Clone 30. In addition, the gene encoding the neuraminidase of HPAIV A/duck/Vietnam/TG24-01/05 (subtype H5N1) was inserted into the NDV genome either alone or in combination with the HA gene. All recombinants replicated well in embryonated chicken eggs. The expression levels of HA-specific mRNA and protein were quantified by Northern blot analysis and mass spectrometry, with good correlation. HA expression levels differed only moderately and were highest in the recombinant carrying the HA insertion between the F and HN genes of NDV.
Perturbed effects at radiation physics
NASA Astrophysics Data System (ADS)
Külahcı, Fatih; Şen, Zekâi
2013-09-01
Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.
Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen
2017-11-15
Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017. Published by Elsevier Inc.
Zhang, Sai-Nan; Yang, Nai-Bin; Ni, Shun-Lan; Dong, Jin-Zhong; Shi, Chun-Wei; Li, Shan-Shan; Zhang, Sheng-Guo; Tang, Xin-Yue; Lu, Ming-Qin
2016-01-01
Endotoxin tolerance (ET) is suggested to attenuate the severity of acute liver failure (ALF) in mice, possibly through both innate and adaptive immunity. However, the involvement of regulatory dendritic cells (DCregs) in ET has not been fully elucidated. In this study, their effect on ALF in mice was investigated. Splenic DCregs from ET-exposed mice (ET-DCregs) showed lower expression levels of CD40, CD80, and MHC-II markers and stronger inhibition of allogenic T cells and regulation of IL-10 and IL-12 secretion than splenic DCregs from normal mice (nDCregs). Moreover, the mRNA and protein levels of TNF-α and P65 in splenic ET-DCregs were significantly lower than those in the splenic nDCregs. The survival rate was significantly increased and liver injury was mitigated in mice with ALF treated with splenic ET-DCregs. In addition, A20 expression was decreased in the liver of ALF mice, but elevated after infusion of splenic nDCregs and ET-DCregs, and a much higher elevation was observed after infusing the latter cells. The functionality of splenic DCregs was altered after ET exposure, contributing to protection of the livers against D-GalN/LPS-induced ALF. PMID:27625297
Zhang, Ran; Kubo, Masayuki; Murakami, Ikuo; Setiawan, Heri; Takemoto, Kei; Inoue, Kiyomi; Fujikura, Yoshihisa; Ogino, Keiki
2015-05-01
Changes in l-arginine metabolism, including increased arginase levels and decreased nitric oxide production, are involved in the pathophysiology of asthma. In this study, using an intranasal mite-induced NC/Nga mouse model of asthma, we examined whether administration of l-arginine ameliorated airway hyperresponsiveness and inflammation by altering l-arginine metabolism. Experimental asthma was induced in NC/Nga mice via intranasal administration of mite crude extract (50 µg/day) on 5 consecutive days (days 0-4, sensitization) and on day 11 (challenge). Oral administration of l-arginine (250 mg/kg) was performed twice daily on days 5-10 for prevention or on days 11-13 for therapy. On day 14, we evaluated the inflammatory airway response (airway hyperresponsiveness, the number of cells in the bronchoalveolar lavage fluid, and the changes in pathological inflammation of the lung), arginase expression and activity, l-arginine bioavailability, and the concentration of NOx, the end products of nitric oxide. Treatment with l-arginine ameliorated the mite-induced inflammatory airway response. Furthermore, l-arginine administration attenuated the increases in arginase expression and activity and elevated the NOx levels by enhancing l-arginine bioavailability. These findings indicate that l-arginine administration may contribute to the improvement of asthmatic symptoms by altering l-arginine metabolism.
Afifi, Nehal A; Ibrahim, Marwa A; Galal, Mona K
2018-06-01
Despite all the studies performed to date, therapy choices for liver injuries are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries remains a challenge. Quercetin (QR) and ellagic acid (EA) had potent antioxidant and anti-inflammatory activities. The current study aimed at evaluating the potential hepatoprotective influence of QR and EA against thioacetamide (TAA)-induced liver toxicity in rats and the underlying mechanism using silymarin as a reference drug. Fifty mature male rats were orally treated daily with EA and QR in separate groups for 45 consecutive days, and then were injected with TAA twice with 24 h intervals in the last 2 days of the experiment. Administration of TAA resulted in marked elevation of liver indices, alteration in oxidative stress parameters, and significant elevation in expression level of fibrosis-related genes (MMP9 and MMP2). Administration of QR and EA significantly attenuated the hepatic toxicity through reduction of liver biomarkers, improving the redox status of the tissue, as well as hampering the expression level of fibrosis-related genes. In this study, QR and EA were proved to attenuate the hepatotoxicity through their antioxidant, metal-chelating capacity, and anti-inflammatory effects.
Gao, Liansheng; Xu, Weilin; Fan, Shuangbo; Li, Tao; Zhao, Tengfei; Ying, Guangyu; Zheng, Jingwei; Li, Jianru; Zhang, Zhongyuan; Yan, Feng; Zhu, Yongjian; Chen, Gao
2018-05-24
The aim of this study was to investigate the potential effect and mechanism of action of MANF in attenuating neuronal apoptosis following t-SCI. A clip compressive model was used to induce a crush injury of the spinal cord in a total of 230 rats. The Basso, Beattie, and Bresnahan (BBB) score, spinal cord water content, and blood spinal cord barrier (BSCB) permeability were evaluated. The expression levels of MANF and its downstream proteins were examined by western blotting. Immunofluorescence staining of MANF, NeuN, GFAP, Iba-1, cleaved caspase-3, and TUNEL staining were also performed. Cells were counted in six randomly selected fields in the gray matter regions of the sections from two spinal cord sites (2 mm rostral and caudal to the epicenter of the injury) per sample. A cell-based mechanical injury model was also conducted using SH-SY5Y cells. Cell apoptosis and viability were assessed by flow cytometry, an MTT assay, and trypan blue staining. Subcellular structures were observed by transmission electron microscopy. MANF was mainly expressed in neurons. The expression levels of MANF, and its downstream target, p-Akt, were gradually increased and after t-SCI. Treatment with MANF increased Bcl-2 and decreased Bax and CC-3 levels; these effects were reversed on treatment with MK2206. The BBB score, spinal cord water content, and BSCB destruction were also ameliorated by MANF treatment. MANF decreases neuronal apoptosis and improves neurological function through Akt/MDM-2/p53 pathway after t-SCI. Therefore, MANF might be a potential treatment for patients with t-SCI.© 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
Festuccia, William T.; Blanchard, Pierre-Gilles; Oliveira, Thiago B.; Magdalon, Juliana; Paschoal, Vivian A.; Richard, Denis
2012-01-01
Here, we investigated whether pharmacological PPARγ activation modulates key early events in brown adipose tissue (BAT) recruitment induced by acute cold exposure with the aim of unraveling the interrelationships between sympathetic and PPARγ signaling. Sprague-Dawley rats treated or not with the PPARγ ligand rosiglitazone (15 mg·kg−1·day−1, 7 days) were kept at 23°C or exposed to cold (5°C) for 24 h and evaluated for BAT gene expression, sympathetic activity, thyroid status, and adrenergic signaling. Rosiglitazone did not affect the reduction in body weight gain and the increase in feed efficiency, V̇o2, and BAT sympathetic activity induced by 24-h cold exposure. Rosiglitazone strongly attenuated the increase in serum total and free T4 and T3 levels and BAT iodothyronine deiodinase type 2 (D2) and PGC-1α mRNA levels and potentiated the reduction in BAT thyroid hormone receptor (THR) β mRNA levels induced by cold. Administration of T3 to rosiglitazone-treated rats exacerbated the cold-induced increase in energy expenditure but did not restore a proper activation of D2 and PGC-1α, nor further increased uncoupling protein 1 expression. Regarding adrenergic signaling, rosiglitazone did not affect the changes in BAT cAMP content and PKA activity induced by cold. Rosiglitazone alone or in combination with cold increased CREB binding to DNA, but it markedly reduced the expression of one of its major coactivators, CREB binding protein. In conclusion, pharmacological PPARγ activation impairs short-term cold elicitation of BAT adrenergic and thyroid signaling, which may result in abnormal tissue recruitment and thermogenic activity. PMID:23100029
Xu, Tubing; Wang, Xiaojun; Chen, Geng; He, Yu; Bie, Ping
2013-10-01
To investigate the efficacy of autologous bone marrow stem cell (BMSC) transplantation in the treatment of hepatic injury in ex vivo liver resection and liver autotransplantation (ELRLA). Rat hepatic fibrosis was induced by intraperitoneal injection of 50% CCl4-olive oil solution at a dose of 2 mL/kg twice weekly for 4 wk. ELRLA was performed 3 d post the last injection of CCl4. Six rats in each group were killed 12, 24, 48, 72, and 168 h after the operation. Hepatocyte apoptosis was determined by TUNEL assay. The expression of Bcl-2, Bax, transforming growth factor (TGF) β1, TGFβ1 receptor1/2, and phosphorylated p38 MAPK were determined by Western blot. Autologous BMSC transplantation significantly inhibited the increase of alanine aminotransferease and aspartate aminotransferase at 12, 24, and 48 h post operation and attenuated ELRLA-induced hepatocyte apoptosis. In BMSC-treated rats, the expression of Bcl-2 was significantly upregulated, whereas there were no obvious changes in Bax level. The expression of TGFβ1 was significantly upregulated in the rat liver after the surgery. Autologous BMSC transplantation significantly downregulated the TGFβ1 levels at 48, 72, and 168 h post surgery. However, autologous BMSC transplantation showed little effect on the levels of TGFβ receptor 1/2 at all the time points observed. Furthermore, autologous BMSC transplantation significantly inhibited the activation of p38 MAPK. Autologous BMSC transplantation may reduce ELRLA-induced liver injury and improve survival rates in hepatic fibrosis rats. Autologous BMSC transplantation may be useful to improve the outcome of patients who undergo ELRLA. Copyright © 2013 Elsevier Inc. All rights reserved.
Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen
2015-06-01
Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
Nixon, Elena; Glazebrook, Cris; Hollis, Chris; Jackson, Georgina M
2014-03-01
In light of descriptive accounts of attenuating effects of physical activity on tics, we used an experimental design to assess the impact of an acute bout of aerobic exercise on tic expression in young people (N = 18) with Tourette Syndrome (TS). We compared video-based tic frequency estimates obtained during an exercise session with tic rates obtained during pre-exercise (baseline) and post-exercise interview-based sessions. Results showed significantly reduced tic rates during the exercise session compared with baseline, suggesting that acute exercise has an attenuating effect on tics. Tic rates also remained reduced relative to baseline during the post-exercise session, likely reflecting a sustained effect of exercise on tic reduction. Parallel to the observed tic attenuation, exercise also had a beneficial impact on self-reported anxiety and mood levels. The present findings provide novel empirical evidence for the beneficial effect of exercise on TS symptomatology bearing important research and clinical implications. © The Author(s) 2014.
A New Approach to Establish a Cell Line with Reduced Risk of Endogenous Retroviruses
Fukuma, Aiko; Yoshikawa, Rokusuke; Miyazawa, Takayuki; Yasuda, Jiro
2013-01-01
Endogenous retroviruses (ERVs) are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells). The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV. PMID:23585909
A new approach to establish a cell line with reduced risk of endogenous retroviruses.
Fukuma, Aiko; Yoshikawa, Rokusuke; Miyazawa, Takayuki; Yasuda, Jiro
2013-01-01
Endogenous retroviruses (ERVs) are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells). The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV.
Xia, Zhengyuan; Liu, Min; Wu, Yong; Sharma, Vijay; Luo, Tao; Ouyang, Jingping; McNeill, John H
2006-11-21
The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.
Du, Yinping; Liu, Ping; Xu, Tongda; Pan, Defeng; Zhu, Hong; Zhai, Nana; Zhang, Yanbin; Li, Dongye
2018-01-01
The myocardial sarcoplasmic reticulum calcium ATPase (SERCA2a) is a pivotal pump responsible for calcium cycling in cardiomyocytes. The present study investigated the effect of luteolin (Lut) on restoring SERCA2a protein level and stability reduced by myocardial ischemia/reperfusion (I/R) injury. We verified a hypothesis that Lut protected against myocardial I/R injury by regulating SERCA2a SUMOylation. The hemodynamic data, myocardial infarct size of intact hearts, apoptotic analysis, mitochondrial membrane potential (ΔΨm), the level of SERCA2a SUMOylation, and the activity and expression of SERCA2a were examined in vivo and in vitro to clarify the cardioprotective effects of Lut after SUMO1 was knocked down or over-expressed. The putative SUMO conjugation sites in mouse SERCA2a were investigated as the possible regulatory mechanism of Lut. Initially, we found that Lut reversed the SUMOylation and stability of SERCA2a as well as the expression of SUMO1, which were reduced by I/R injury in vitro. Furthermore, Lut increased the expression and activity of SERCA2a partly through SUMO1, thus improving ΔΨm and reducing apoptotic cells in vitro and promoting the recovery of heart function and reducing infarct size in vivo. We also demonstrated that SUMO acceptor sites in mouse SERCA2a involving lysine 585, 480 and 571. Among the three acceptor sites, Lut enhanced SERCA2a stability via lysine 585. Our results suggest that Lut regulates SERCA2a through SUMOylation at lysine 585 to attenuate myocardial I/R injury. © 2018 The Author(s). Published by S. Karger AG, Basel.
Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury
Zhu, Wen Si; Guo, Wei; Zhu, Jie Ning; Tang, Chun Mei; Fu, Yong Heng; Lin, Qiu Xiong; Tan, Ning; Shan, Zhi Xin
2016-01-01
The role of microRNA-1 (miR-1) in ischemia/reperfusion (I/R)-induced injury is not well illustrated. The present study aimed to investigate the expression and potential target of miR-1 in the myocardium of a rat model of I/R. The apoptosis of cardiomyocytes in the ischemic rat myocardium increased on day 1, then attenuated on day 3 and day 7 post-I/R. Heat shot protein 90 (Hsp90) aa1 mRNA expression was decreased post-I/R, and Hsp90aa1 protein level was decreased on day1 post-I/R, but was reversed on day 3 and day 7 post-I/R. MiR-1 was downregulated post-I/R, and repression of miR-1 in cultured neonatal rat ventricular cells (NRVCs) led to an increase of Bcl-2 and decreases of Bax and active caspase-3. Dual luciferase reporter assays revealed that miR-1 interacted with the 310–315 nt site at the 3′UTR of Hsp90aa1, and miR-1 was verified to inhibit Hsp90aa1 expression at the posttranscriptional level. Over-expression of Hsp90aa1 could attenuate oxygen-glucose deprivation (OGD)-induced apoptosis of NRVCs. Additionally, miR-1 mimic, in parallel to Hsp90aa1 siRNA, could enhance OGD-induced apoptosis of NRVCs. Taken together, our results reveal that Hsp90aa1 is a novel target of miR-1, and repression of miR-1 may contribute to the recovery of Hsp90aa1 during myocardial I/R. PMID:27076094
Dong, Ling; Smith, Jenell R; Winkelstein, Beth A
2013-05-15
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.
Dong, Ling; Smith, Jenell R.
2013-01-01
Abstract Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain. PMID:23126437
Ma, Lingman; Qian, Lifen; Ying, Qidi; Zhang, Yan; Zhou, Changlin; Wu, Guanzhong
2017-01-15
Here, we investigated whether I 4 , which was initially developed as a hypoglycemic agent, possesses anti-atherosclerotic activity and attempted to elucidate the probable mechanism of action underlying this activity. ApoE -/- mice were fed a Western diet and simultaneously administered I 4 , glimepiride, or pioglitazone once daily for 12 weeks, and the atherosclerotic vascular lesions, lipid content, and expression levels of LOX-1, ICAM-1, VCAM-1 and Bax/Bcl-2 in mouse aortas were assessed. RAW264.7 macrophage-derived foam cells were obtained via ox-LDL stimulation to investigate the lipid-lowering, anti-atherosclerotic inflammation and anti-apoptotic effect of I 4 . The data indicated that I 4 significantly decreased the lipid accumulation in the circulation and tissue, especially for TG and FFA levels (p < 0.05 vs model group), alleviating the arterial and liver lesions induced by lipotoxicity. Its lipid-reducing effects may due to LOX-1and CD36 expression suppression. I 4 , at doses of 20 mg/kg and 10 mg/kg, significantly decreased serum IL-6, IL-1β, and TNF-α production and suppressed the expression of p-ERK, p-p38, VCAM-1 and ICAM-1 protein. I 4 attenuated atherosclerotic inflammation by blocking NF-κB nuclear translocation, suppressing MAPK/NF-κB signaling pathway and diminishing NF-κB-VCAM-1 promoter region binding. Additionally, I 4 suppressed p-p53 and cleaved-caspase-3 expression to inhibit foam cell apoptosis induced by ox-LDL uptake. Overall, I 4 exerts potent inhibitory effects on atherosclerosis onset and development. Copyright © 2016. Published by Elsevier Ireland Ltd.
Galectin-3 Inhibition Is Associated with Neuropathic Pain Attenuation after Peripheral Nerve Injury
Ai, Zisheng; Zheng, Yongjun
2016-01-01
Neuropathic pain remains a prevalent and persistent clinical problem because it is often poorly responsive to the currently used analgesics. It is very urgent to develop novel drugs to alleviate neuropathic pain. Galectin-3 (gal3) is a multifunctional protein belonging to the carbohydrate-ligand lectin family, which is expressed by different cells. Emerging studies showed that gal3 elicits a pro-inflammatory response by recruiting and activating lymphocytes, macrophages and microglia. In the study we investigated whether gal3 inhibition could suppress neuroinflammation and alleviate neuropathic pain following peripheral nerve injury. We found that L5 spinal nerve ligation (SNL) increases the expression of gal3 in dorsal root ganglions at the mRNA and protein level. Intrathecal administration of modified citrus pectin (MCP), a gal3 inhibitor, reduces gal3 expression in dorsal root ganglions. MCP treatment also inhibits SNL-induced gal3 expression in primary rat microglia. SNL results in an increased activation of autophagy that contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of MCP significantly suppresses SNL-induced autophagy activation. MCP also inhibits lipopolysaccharide (LPS)-induced autophagy in cultured microglia in vitro. MCP further decreases LPS-induced expression of proinflammatory mediators including IL-1β, TNF-α and IL-6 by regulating autophagy. Intrathecal administration of MCP results in adecreased mechanical and cold hypersensitivity following SNL. These results demonstrated that gal3 inhibition is associated with the suppression of SNL-induced inflammatory process andneurophathic pain attenuation. PMID:26872020
7α-Hydroxycholesterol Elicits TLR6-Mediated Expression of IL-23 in Monocytic Cells.
Seo, Hyun Chul; Kim, Sun-Mi; Eo, Seong-Kug; Rhim, Byung-Yong; Kim, Koanhoi
2015-01-01
We investigated the question of whether 7-oxygenated cholesterol derivatives could affect inflammatory and/or immune responses in atherosclerosis by examining their effects on expression of IL-23 in monocytic cells. 7α-Hydroxycholesterol (7αOHChol) induced transcription of the TLR6 gene and elevated the level of cell surface TLR6 protein in THP-1 monocytic cells. Addition of an agonist of TLR6, FSL-1, to TLR6-expressing cells by treatment with 7αOHChol resulted in enhanced production of IL-23 and transcription of genes encoding the IL-23 subunit α (p19) and the IL-12 subunit β (p40). However, treatment with 7-ketocholesterol (7K) and 7β-hydroxycholesterol (7βOHChol) did not affect TLR6 expression, and addition of FSL-1 to cells treated with either 7K or 7βOHChol did not influence transcription of the genes. Pharmacological inhibition of ERK, Akt, or PI3K resulted in attenuated transcription of TLR6 induced by 7αOHChol as well as secretion of IL-23 enhanced by 7αOHChol plus FSL-1. Inhibition of p38 MAPK or JNK resulted in attenuated secretion of IL-23. These results indicate that a certain type of 7-oxygenated cholesterol like 7αOHChol can elicit TLR6-mediated expression of IL-23 by monocytic cells via PI3K/Akt and MAPKs pathways.
7α-Hydroxycholesterol Elicits TLR6-Mediated Expression of IL-23 in Monocytic Cells
Seo, Hyun Chul; Kim, Sun-Mi; Eo, Seong-Kug; Rhim, Byung-Yong; Kim, Koanhoi
2015-01-01
We investigated the question of whether 7-oxygenated cholesterol derivatives could affect inflammatory and/or immune responses in atherosclerosis by examining their effects on expression of IL-23 in monocytic cells. 7α-Hydroxycholesterol (7αOHChol) induced transcription of the TLR6 gene and elevated the level of cell surface TLR6 protein in THP-1 monocytic cells. Addition of an agonist of TLR6, FSL-1, to TLR6-expressing cells by treatment with 7αOHChol resulted in enhanced production of IL-23 and transcription of genes encoding the IL-23 subunit α (p19) and the IL-12 subunit β (p40). However, treatment with 7-ketocholesterol (7K) and 7β-hydroxycholesterol (7βOHChol) did not affect TLR6 expression, and addition of FSL-1 to cells treated with either 7K or 7βOHChol did not influence transcription of the genes. Pharmacological inhibition of ERK, Akt, or PI3K resulted in attenuated transcription of TLR6 induced by 7αOHChol as well as secretion of IL-23 enhanced by 7αOHChol plus FSL-1. Inhibition of p38 MAPK or JNK resulted in attenuated secretion of IL-23. These results indicate that a certain type of 7-oxygenated cholesterol like 7αOHChol can elicit TLR6-mediated expression of IL-23 by monocytic cells via PI3K/Akt and MAPKs pathways. PMID:25593648
Fujita, Tomoyoshi; Hirooka, Kazuyuki; Nakamura, Takehiro; Itano, Toshifumi; Nishiyama, Akira; Nagai, Yukiko; Shiraga, Fumio
2012-06-26
To investigate the mechanism of the neuroprotective effects of the angiotensin II type 1 receptor (AT1-R) blocker against retinal ischemia-reperfusion injury in the rat. Retinal ischemia was induced by increasing intraocular pressure. Glutamate release from the rat retina and intravitreal PO(2) (partial pressure of oxygen) profiles were monitored during and after ischemia using a microdialysis biosensor and oxygen-sensitive microelectrodes. ELISA was used to measure changes in the expression of AT1-R. Retinal mRNA expressions of p47phox and p67phox were measured by real-time polymerase chain reaction. Reactive oxygen species (ROS) were measured using dihydroethidium. Administration of candesartan, which is an AT1-R blocker (ARB), suppressed ischemia-induced increases in the extracellular glutamate. Candesartan also attenuated the increase in intravitreal PO(2) during reperfusion. AT1-R expression peaked at 12 hours after reperfusion. Although there was an increase in the retinal mRNA expression of p47phox and p64phox at 12 hours after the reperfusion, administration of candesartan suppressed these expressions. The production of ROS that was detected at 12 hours after reperfusion was also suppressed by the administration of candesartan or apocynin. NADPH oxidase-mediated ROS production increased at 12 hours after reperfusion. Candesartan may protect neurons by decreasing extracellular glutamate immediately after reperfusion and by attenuating oxidative stress via a modulation of the AT1-R signaling that occurs during ischemic insult.
Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.
Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon
2017-06-01
Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Moon, Bo Reum; Kim, A Reum; Kang, Suna; Park, Sunmin
2016-05-23
Artemisia princeps Pamp (APP), Leonurus japonicas Houtt (LJH), and Gardenia jasminoides Ellis fruit (GJE) have been traditionally used in East Asia to treat women's diseases related to reproductive system. They may attenuate the deterioration of energy, lipid, glucose and bone metabolism by estrogen deficiency. The present study explored the combination of APP, LJH, and GJE to overcome the symptoms of estrogen deficiency and the mechanism was explored. Ovariectomized (OVX) rats were divided into five groups and fed high-fat diets supplemented with 2 % dextrin (control), 2 % APP, 2 % APP + LJH (15:5), APP + LJH + GJE (10:5:5) or 17β-estradiol (30 μg/kg bw/day) for 8 weeks. After 8 weeks of their consumption, energy, lipid, glucose and bone metabolisms were investigated and hepatic insulin signaling and fatty acid metabolism were determined. APP + LJH + GJE, but not APP itself, improved energy metabolism and attenuated a decrease in energy expenditure by the same amount as estrogen. Moreover, APP + LJH + GJE reduced visceral fat and intramuscular fat and increased lean body mass measured by DEXA by as much as the positive-control. APP itself suppressed increased LDL cholesterol and triglyceride levels in OVX rats and APP + LJH + GJE alleviated dyslipidemia in OVX rats. Overnight-fasted serum insulin levels and HOMA-IR were reduced in the descending order of APP, APP + LJH, APP + LJH + GJE, positive-control in OVX rats. APP and APP + LJH elevated insulin secretion in the 1st part of OGTT to decrease serum glucose levels while APP + LJH + GJE reduced serum glucose levels without increasing serum insulin levels during OGTT. APP + LJH + GJE decreased insulin resistance during ITT in OVX rats more than the positive-control. The APP + LJH + GJE group exhibited increased hepatic peroxisomal proliferator-activated receptor-γ coactivator-1α expression, which increased the number of genes involved in fatty acid oxidation and decreased fatty acid synthesis. Hepatic insulin signaling (pAkt and pGSK-1β) was also potentiated to reduce phosphoenolpyruvate carboxykinase proteins. The combination of APP + LJH + GJE attenuated various menopausal symptoms in OVX rats. Thus, it may have potential as a therapeutic agent for the treatment of postmenopausal symptoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu; The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033; Alam, Samina, E-mail: sra116@psu.edu
2014-02-15
Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects ofmore » PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.« less
Kamat, Pradip K.; Kalani, Anuradha; Givvimani, Srikanth; Sathnur, PB; Tyagi, Suresh C.; Tyagi, Neetu
2014-01-01
High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) are associated with neurovascular diseases. H2S, a metabolite of Hcy, has a potent anti-oxidant and anti-inflammatory activity; however, the effect of H2S has not been explored in Hcy (IC) induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild type (WT) males ages 8–10 weeks, WT+ artificial cerebrospinal fluid (aCSF), WT+ Hcy (0.5μmol/μl) intracerebral injection (I.C., one time only prior to NaHS treatment), WT+Hcy +NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected intra-peritoneally (I.P.) once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased MDA, nitrite level, acetylcholinestrase activity, TNFα, IL1β, GFAP, iNOS, eNOS and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF treated groups. Further, increased expression of NSE, S100B and decreased expression of (PSD95, SAP97) synaptic protein indicated neurodegeneration. Brain sections of Hcy treated mice showed damage in the cortical area and periventricular cells. TUNEL positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of MMP9, MMP2 and decreased expression of TIMP-1, TIMP-2, tight junction proteins (ZO1, Occuldin) in Hcy treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction. PMID:23912038
Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways.
Zhang, Hui; Sun, Qingfeng; Xu, Tingyan; Hong, Liang; Fu, Rongquan; Wu, Jinguo; Ding, Jiguang
2016-01-01
Liver fibrosis is a wound-healing response to chronic liver injury that results in the accumulation of extracellular matrix proteins. It eventually leads to cirrhosis of the liver and liver failure, and it is a critical threat to the health and lives of patients with chronic liver diseases. No effective treatment is currently available. Resveratrol is a polyphenol with antioxidant, anti‑cancer and anti‑inflammatory properties. It has been reported that resveratrol prevents liver fibrosis, possibly by inhibiting NF‑κB activation. The present study investigated the mechanisms by which resveratrol prevented liver fibrosis, focusing on the possible involvement of the NF‑κB pathway. Mice with carbon tetrachloride (CCl4)‑induced liver fibrosis were treated with various concentrations of resveratrol. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and tumor necrosis factor (TNF)‑α were detected by ELISAs. Expression of α‑smooth muscle actin (α‑SMA), collagen I, inhibitor of NF‑κB (IκB) and NF‑κB were detected by western blot analysis. In addition, the present study examined the effects of resveratrol on the expression of fibrosis markers in LX‑2 cells. Western blot analysis was further used to detect the levels of Akt and phosphorylated Akt, as well as the nuclear levels of IκB, phosphorylated IκB and NF‑κB p65. The expression of α‑SMA in resveratrol‑treated LX‑2 cells was detected by immunofluorescence and flow cytometry, which demonstrated that resveratrol decreased the expression of α‑SMA in LX‑2 cells. Resveratrol also decreased CCl4‑induced upregulation of serum AST, ALT, TNF‑α, α‑SMA and collagen I. Finally, resveratrol prevented the activation of NF‑κB and Akt. The results of the present study therefore indicated that resveratrol attenuates liver fibrosis via the Akt/NF-κB pathways.
Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E
2013-12-01
Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. © 2013 Elsevier Ltd. All rights reserved.
Fuchs, Claudia Daniela; Paumgartner, Gustav; Mlitz, Veronika; Kunczer, Victoria; Halilbasic, Emina; Leditznig, Nadja; Wahlström, Annika; Ståhlman, Marcus; Thüringer, Andrea; Kashofer, Karl; Stojakovic, Tatjana; Marschall, Hanns-Ulrich; Trauner, Michael
2018-04-10
Interruption of the enterohepatic circulation of bile acids (BAs) may protect against BA-mediated cholestatic liver and bile duct injury. BA sequestrants are established to treat cholestatic pruritus, but their impact on the underlying cholestasis is still unclear. We aimed to explore the therapeutic effects and mechanisms of the BA sequestrant colesevelam in a mouse model of sclerosing cholangitis. Mdr2 -/- mice received colesevelam for 8 weeks. Gene expression profiles of BA homeostasis, inflammation and fibrosis were explored in liver, intestine and colon. Hepatic and faecal BA profiles and gut microbiome were analysed. Glucagon-like peptide 1 (GLP-1) levels in portal blood were measured by ELISA. Furthermore, Mdr2 -/- mice as well as wild-type 3,5-diethoxy-carbonyl-1,4-dihydrocollidine-fed mice were treated with GLP-1-receptor agonist exendin-4 for 2 weeks prior to analysis. Colesevelam reduced serum liver enzymes, BAs and expression of proinflammatory and profibrogenic markers. Faecal BA profiling revealed increased levels of secondary BAs after resin treatment, while hepatic and biliary BA composition showed a shift towards more hydrophilic BAs. Colonic GLP-1 secretion, portal venous GLP-1 levels and intestinal messenger RNA expression of gut hormone Proglucagon were increased, while ileal Fgf15 expression was abolished by colesevelam. Exendin-4 treatment increased bile duct mass without promoting a reactive cholangiocyte phenotype in mouse models of sclerosing cholangitis. Microbiota analysis showed an increase of the phylum δ-Proteobacteria after colesevelam treatment and a shift within the phyla Firmicutes from Clostridiales to Lactobacillus . Colesevelam increases faecal BA excretion and enhances BA conversion towards secondary BAs, thereby stimulating secretion of GLP-1 from enteroendocrine L-cells and attenuates liver and bile duct injury in Mdr2 -/- mice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wang, Yong; Huo, Yazhen; Zhao, Liang; Lu, Feng; Wang, Ou; Yang, Xue; Ji, Baoping; Zhou, Feng
2016-07-01
Cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and a potential nutritional supplement for preventing retinal degeneration. However, the protective mechanism of C3G and its metabolites, protocatechuic acid (PCA) and ferulic acid (FA), remain unclear. The molecular mechanisms of C3G and its metabolites against retinal photooxidative damage in vivo are investigated. Pigmented rabbits were orally administered C3G, PCA, and FA (0.11 mmol/kg/day) for 3 weeks. Electroretinography, histological analysis, and TUNEL assay showed that C3G and its metabolites attenuated retinal cell apoptosis. The expression of oxidative stress markers were upregulated after light exposure but attenuated by C3G and FA, which may be attributed to the elevated secretion and expression of heme oxygenase (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2). C3G, PCA, and FA attenuated the secretion or expression of inflammation-related genes; FA suppressed nuclear factor kappa B (NF-κB) activation. The treatments attenuated the light-induced changes on certain apoptotic proteins and angiogenesis-related cytokines. C3G and FA reduced light-induced retinal oxidative stress by activating the Nrf2/HO-1 antioxidant pathway. FA attenuated the light-induced retinal inflammation by suppressing NF-κB activation. C3G and its metabolites attenuated the photooxidation-induced apoptosis and angiogenesis in the retina. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hwangpo, Tracy Anh; Jordan, J Dedrick; Premsrirut, Prem K; Jayamaran, Gomathi; Licht, Jonathan D; Iyengar, Ravi; Neves, Susana R
2012-04-20
Gα(o/i) interacts directly with GRIN (G protein-regulated inducer of neurite outgrowth). Using the yeast two-hybrid system, we identified Sprouty2 as an interacting partner of GRIN. Gα(o) and Sprouty2 bind to overlapping regions of GRIN, thus competing for GRIN binding. Imaging experiments demonstrated that Gα(o) expression promoted GRIN translocation to the plasma membrane, whereas Sprouty2 expression failed to do so. Given the role of Sprouty2 in the regulation of growth factor-mediated MAPK activation, we examined the contribution of the GRIN-Sprouty2 interaction to CB1 cannabinoid receptor regulation of FGF receptor signaling. In Neuro-2A cells, a system that expresses all of the components endogenously, modulation of GRIN levels led to regulation of MAPK activation. Overexpression of GRIN potentiated FGF activation of MAPK and decreased tyrosine phosphorylation of Sprouty2. Pretreatment with G(o/i)-coupled CB1 receptor agonist attenuated subsequent FGF activation of MAPK. Decreased expression of GRIN both diminished FGF activation of MAPK and blocked CB1R attenuation of MAPK activation. These observations indicate that Gα(o) interacts with GRIN and outcompetes GRIN from bound Sprouty. Free Sprouty then in turn inhibits growth factor signaling. Thus, here we present a novel mechanism of how G(o/i)-coupled receptors can inhibit growth factor signaling to MAPK.
Zhang, Lingkai; Li, Yongfeng; Xie, Libao; Wang, Xiao; Gao, Xulei; Sun, Yuan; Qiu, Hua-Ji
2017-01-01
Bivalent vaccines based on live attenuated viruses expressing a heterologous protein are an attractive strategy to address co-infections with various pathogens in the field. Considering the excellent efficacy and safety of the lapinized live attenuated vaccine C-strain (HCLV strain) of classical swine fever virus (CSFV), we proposed that C-strain has the potential as a viral vector for developing bivalent vaccines. To this end, we generated three recombinant viruses based on C-strain, one expressing the capsid (Cap) gene of porcine circovirus type 2 (PCV2) with the nuclear localization signal (NLS) (rHCLV-2ACap), and the other two expressing the PCV2 Cap gene without the NLS yet containing the signal peptide of the prolactin gene (rHCLV-pspCap) or that of the ubiquitin-specific peptidase gene (rHCLV-uspCap). All the recombinant viruses exhibited phenotypes similar to those of the parental virus and produced high-level anti-CSFV neutralizing antibodies (NAbs) in rabbits. Interestingly, rHCLV-uspCap and rHCLV-pspCap, but not rHCLV-2ACap, elicited detectable anti-Cap and -PCV2 NAbs in rabbits. Taken together, our data demonstrate that C-strain can be used as a viral vector to develop bivalent vaccines. PMID:29035292
Zhang, Lingkai; Li, Yongfeng; Xie, Libao; Wang, Xiao; Gao, Xulei; Sun, Yuan; Qiu, Hua-Ji
2017-10-16
Bivalent vaccines based on live attenuated viruses expressing a heterologous protein are an attractive strategy to address co-infections with various pathogens in the field. Considering the excellent efficacy and safety of the lapinized live attenuated vaccine C-strain (HCLV strain) of classical swine fever virus (CSFV), we proposed that C-strain has the potential as a viral vector for developing bivalent vaccines. To this end, we generated three recombinant viruses based on C-strain, one expressing the capsid ( Cap ) gene of porcine circovirus type 2 (PCV2) with the nuclear localization signal (NLS) (rHCLV-2ACap), and the other two expressing the PCV2 Cap gene without the NLS yet containing the signal peptide of the prolactin gene (rHCLV-pspCap) or that of the ubiquitin-specific peptidase gene (rHCLV-uspCap). All the recombinant viruses exhibited phenotypes similar to those of the parental virus and produced high-level anti-CSFV neutralizing antibodies (NAbs) in rabbits. Interestingly, rHCLV-uspCap and rHCLV-pspCap, but not rHCLV-2ACap, elicited detectable anti-Cap and -PCV2 NAbs in rabbits. Taken together, our data demonstrate that C-strain can be used as a viral vector to develop bivalent vaccines.
Dopaminergic Modulation of Risky Decision-Making
Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry
2012-01-01
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407
Niu, Haichen; Zheng, Yingwei; Huma, Tanzeel; Rizak, Joshua D; Li, Ling; Wang, Guimei; Ren, He; Xu, Liqi; Yang, Jianzhen; Ma, Yuanye; Lei, Hao
2013-01-01
Previous studies have shown that olfactory impairment by disrupting the olfactory epithelium prior to morphine administration attenuated the development addiction-related behaviors. However, it is unclear whether olfactory impairment will affect the expression of already established addiction-related behaviors. To address this issue, mice were conditioned with morphine to induce behavioral sensitization and condition placed preference (CPP). After an abstinence period, the animals were subjected to either an intranasal ZnSO(4) effusion (ZnE) or sham treatment with saline. Behavioral sensitization and CPP reinstatement were evaluated 24h later, as well as the expression of c-Fos protein, a marker of activated neural sites, in brain regions of interest. It was found that ZnE treatment attenuated morphine-induced behavioral sensitization and reinstatement of CPP. Compared to the saline-treated ones, the ZnE-treated animals showed reduced c-Fos expression in the nucleus accumbens (NAc) associated with behavioral sensitization, and in the NAc, cingulate cortex, dentate gyrus, amygdala, lateral hypothalamus and ventral tegmental area associated with CPP reinstatement. Together, these results demonstrated that acute olfactory impairment could attenuate already established addiction-related behaviors and expression of c-Fos in drug addiction related brain regions, perhaps by affecting the coordination between reward and motivational systems in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.
Hepatic hepcidin gene expression in dogs with a congenital portosystemic shunt.
Frowde, P E; Gow, A G; Burton, C A; Powell, R; Lipscomb, V J; House, A K; Mellanby, R J; Tivers, M S
2014-01-01
Microcytic anemia is common in dogs with a congenital portosystemic shunt (cPSS) and typically resolves after surgical attenuation of the anomalous vessel. However, the pathophysiology of the microcytic anemia remains poorly understood. Hepcidin has been a key role in controlling iron transport in both humans and animals and in mediating anemia of inflammatory disease in humans. The role of hepcidin in the development of microcytic anemia in dogs with a cPSS has not been examined. To determine whether hepatic hepcidin mRNA expression decreases, while red blood cell count (RBC) and mean corpuscular volume (MCV) increase in dogs after surgical attenuation of a cPSS. Eighteen client-owned dogs with confirmed cPSS undergoing surgical attenuation. Prospective study. Red blood cell count (RBC) and mean corpuscular volume (MCV), together with hepatic gene expression of hepcidin, were measured in dogs before and after partial attenuation of a cPSS. There was a significant increase in both RBC (median pre 6.17 × 10(12) /L, median post 7.08 × 10(12) /L, P < .001) and MCV (median pre 61.5fl, median post 65.5fl, P = .006) after partial surgical attenuation of the cPSS. Despite the increase in both measured red blood cell parameters, hepatic gene expression of hepcidin remained unchanged. This study found no evidence that dysregulated production of hepcidin was associated with anemia in dogs with a cPSS. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Li, Xiaolan; Han, Xinjia; Bao, Junjie; Liu, Yuanyuan; Ye, Aihua; Thakur, Mukesh; Liu, Huishu
2016-07-01
A considerable number of studies have demonstrated that nicotine, a α7-nicotinic acetylcholine receptor (α7-nAChR) agonist, can dampen immune response through the cholinergic anti-inflammatory pathway. Evidence suggests that inflammation plays a critical role in eclampsia, which contributes to maternal and fetal morbidity and mortality. In the present study, possible anti-inflammation and neuro-protective effects of nicotine via α7-nAChRs have been investigated after inducing eclampsia-like seizures in rats. Rat eclampsia-like models were established by administering lipopolysaccharide (LPS) plus pentylenetetrazol (PTZ) in pregnant rats. Rats were given nicotine from gestation day (GD) 14-19. Then, clinical symptoms were detected. Seizure severity was recorded by behavioral tests, serum levels of inflammatory cytokines were measured by Luminex assays, microglia and astrocyte expressions were detected by immunofluorescence, and changes in neuronal number in the hippocampal CA1 region among different groups were detected by Nissl staining. Our results revealed that nicotine effectively improved fetal outcomes. Furthermore, it significantly decreased systolic blood pressure, and maternal serum levels of Th1 cytokines (TNF-α, IL-1β, IL-6 and IL-12P70) and an IL-17 cytokine (IL-17A), and dramatically increased eclampsia-like seizure threshold. Moreover, this attenuated neuronal loss and decreased the expression of microglial activation markers of the hippocampal CA1 region in the eclampsia-like group. Additionally, pretreatment with α-bungarotoxin, a selective α7-nAChR antagonist could prevent the protective effects of nicotine in eclampsia-like model rats. Our findings indicate that the administration of nicotine may attenuate microglial activity and increase eclampsia-like seizure threshold in rat hippocampus through the α7 nicotinic receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Byung Hee; Vellimana, Ananth Kesav; Zhou, Meng-Liang; Milner, Eric; Zipfel, Gregory Joseph
2014-01-01
Background Cerebral vasospasm is an independent predictor of poor outcome after subarachnoid hemorrhage (SAH). The nitric oxide-cyclic GMP (NO-cGMP) vasodilatory pathway is strongly implicated in its pathophysiology. Preliminary studies suggest that phosphodiesterase 5 (PDE5) – an enzyme that degrades cGMP – may play a role, as the PDE5 inhibitor sildenafil was found to reduce vasospasm after SAH. However, several questions that are critical when considering translational studies remain unanswered. Objective To elucidate the mechanism of action of sildenafil against vasospasm, and to assess whether sildenafil attenuates SAH-induced neuronal cell death, improves functional outcome after SAH, or causes significant physiological side effects when administered at therapeutically relevant doses. Methods SAH was induced via endovascular perforation in male C57BL6 mice. Beginning two hours later, mice received sildenafil citrate (0.7, 2 or 5mg/kg P.O. BID) or vehicle. Neurological outcome was assessed daily. Vasospasm was determined on post-SAH Day 3. Brain PDE5 expression and activity, cGMP content, neuronal cell death, arterial blood pressure (BP), and intracranial pressure (ICP) were examined. Results We found that PDE5 activity (but not expression) is increased after SAH, leading to decreased cGMP levels. Sildenafil attenuates this increase in PDE5 activity and restores cGMP levels after SAH. Post-SAH initiation of sildenafil was found to reduce vasospasm, decrease neuronal cell death, and markedly improve neurological outcome, without causing significant physiological side effects. Conclusion Sildenafil–an FDA-approved drug with a proven track record of safety in humans –is a promising new therapy for vasospasm and neurological deficits following SAH. PMID:21796010
Pereira, Bruna L B; Reis, Patrícia P; Severino, Fábio E; Felix, Tainara F; Braz, Mariana G; Nogueira, Flávia R; Silva, Renata A C; Cardoso, Ana C; Lourenço, Maria A M; Figueiredo, Amanda M; Chiuso-Minicucci, Fernanda; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F
2017-08-01
The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; P<.001]. We also examined left ventricle miRNA expression; when compared to the S group, the MIL group uniquely down-regulated the expression of eight miRNAs. No miRNA was found to be up-regulated uniquely in the MIT and MIL groups. In conclusion, tomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze
2017-01-01
Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL+/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL+/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. PMID:23993974
Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase1
Borsig, Lubor; Vlodavsky, Israel; Ishai-Michaeli, Rivka; Torri, Giangiacomo; Vismara, Elena
2011-01-01
Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs) endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation. PMID:21532885
Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying
2017-01-01
Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects. PMID:28230744
Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.
2008-05-10
Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunizationmore » with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.« less
Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Zhao, Ling; Liu, Mengyu
Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in vitro. • Hydrogen molecules have direct effect on the modulation of AChE activity in vitro.« less
O'Sullivan, Sinead A; Gasparini, Fabrizio; Mir, Anis K; Dev, Kumlesh K
2016-08-22
The fractalkine (CX3CR1) ligand is expressed in astrocytes and reported to be neuroprotective. When cleaved from the membrane, soluble fractalkine (sCX3CL1) activates the receptor CX3CR1. Although somewhat controversial, CX3CR1 is reported to be expressed in neurons and microglia. The membrane-bound form of CX3CL1 additionally acts as an adhesion molecule for microglia and infiltrating white blood cells. Much research has been done on the role of fractalkine in neuronal cells; however, little is known about the regulation of the CX3CL1 ligand in astrocytes. The mechanisms involved in the up-regulation and cleavage of CX3CL1 from human astrocytes were investigated using immunocytochemistry, Q-PCR and ELISA. All statistical analysis was performed using GraphPad Prism 5. A combination of ADAM17 (TACE) and ADAM10 protease inhibitors was found to attenuate IL-1β-, TNF-α- and IFN-γ-induced sCX3CL1 levels in astrocytes. A specific ADAM10 (but not ADAM17) inhibitor also attenuated these effects, suggesting ADAM10 proteases induce release of sCX3CL1 from stimulated human astrocytes. A p38 MAPK inhibitor also attenuated the levels of sCX3CL1 upon treatment with IL-1β, TNF-α or IFN-γ. In addition, an IKKβ inhibitor significantly reduced the levels of sCX3CL1 induced by IL-1β or TNF-α in a concentration-dependent manner, suggesting a role for the NF-kB pathway. In conclusion, this study shows that the release of soluble astrocytic fractalkine is regulated by ADAM10 proteases with p38 MAPK also playing a role in the fractalkine shedding event. These findings are important for understanding the role of CX3CL1 in healthy and stimulated astrocytes and may benefit our understanding of this pathway in neuro-inflammatory and neurodegenerative diseases.
Ji, Jianjian; Fan, Hongye; Li, Fanlin; Li, Xiaojing; Dong, Guanjun; Gong, Wei; Song, Yuxian; Liu, Fei; Hua, Chunyan; Tan, Renxiang; Dou, Huan; Hou, Yayi
2015-12-01
Systemic lupus erythematosus (SLE) is an autoimmune disease with prominent chronic inflammatory aspects. Plasmacytoid dendritic cells (pDCs), which are the principal interferon-α (IFN-α)-producing cells, have known to be critically involved in SLE pathogenesis. Our previous research demonstrated that a benzenediamine derivative FC-99 possessed anti-inflammatory activities. However, the effects of FC-99 on SLE have not been investigated to date. In this study, we found that FC-99 attenuated lupus-like pathological symptoms and lupus nephritis as well as the expression of pro-inflammatory cytokines in kidneys of MRL/lpr mice. FC-99 also decreased both the total IgM, total IgG and anti-dsDNA IgG levels in sera and the activation of B cells in the PBMCs and spleens of MRL/lpr mice. Moreover, FC-99 inhibited the abnormal activation and number of pDCs from PBMCs and spleens and levels of IFN-α in MRL/lpr mice. Notably, FC-99 significantly suppressed the expression of IFN-inducible genes in peripheral blood mononuclear cells (PBMCs) and spleens from MRL/lpr mice. As expected, in vitro experiments demonstrated that FC-99 decreased both the activation and IFN-α production of pDCs and inhibited IRAK4 phosphorylation in pDCs upon TLR7 and TLR9 stimulation. We further confirm that the inhibition of FC-99 on B cell activation depended on level of pDCs-secreting IFN-α. These data indicate that FC-99 attenuated lupus-like syndrome in MRL/lpr mice related to suppression of pDC activation, especially pDCs-secreting IFN-α. This study suggests that FC-99 may be a potential therapeutic candidate for the treatment of SLE. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Seo, Min-Jong; Hong, Jeong-Min; Kim, Seok-Joo; Lee, Sun-Mee
2017-10-05
Acute liver failure (ALF) is a life-threatening syndrome resulting from massive inflammation and hepatocyte death. Necroptosis, a programmed cell death controlled by receptor-interacting protein kinase (RIP) 1 and RIP3, has been shown to play an important role in regulating inflammation via crosstalk between other intracellular signaling. The inflammasome is a major intracellular multiprotein that induces inflammatory responses by mediating immune cell infiltration, thus potentiating injury. Genipin, a major active compound of the gardenia fruit, exhibits anti-inflammatory, antioxidant, and anti-apoptotic properties. This study investigated the hepatoprotective mechanisms of genipin on d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced ALF, particularly focusing on interaction between necroptosis and inflammasome. Mice were given an intraperitoneal injection of genipin (25, 50, and 100mg/kg) or necrostatin-1 (Nec-1, a necroptosis inhibitor; 1.8mg/kg) 1h prior to GalN (800mg/kg)/LPS (40μg/kg) injection and were killed 3h after GalN/LPS injection. Genipin improved the survival rate and attenuated increases in serum aminotransferase activities and inflammatory cytokines after GalN/LPS injection. Genipin reduced GalN/LPS-induced increases in RIP3, phosphorylated RIP1 and RIP3 protein expression, and RIP1/RIP3 necrosome complex, similar to the effects of Nec-1. GalN/LPS significantly increased serum levels of high-mobility group box 1 and interleukin (IL)-33, which were attenuated by genipin and Nec-1. Moreover, similar to Nec-1, genipin attenuated GalN/LPS-induced increases in the protein expression levels of NLRP3, ASC, and caspase-1, inflammasome components, and levels of liver and serum IL-1β. Taken together, our findings suggest that genipin ameliorates GalN/LPS-induced hepatocellular damage by suppressing necroptosis-mediated inflammasome signaling. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il
2014-01-01
Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice were divided into three groups and fed HFD alone, HFD with omega-3 or HFD with omega-3 in combination with UDCA for another 24 weeks. Feeding mice an HFD and administering omega-3 improved histologically assessed liver fibrosis, and UDCA in combination with omega-3 further attenuated this disease. The assessment of collagen α1(I) expression agreed with the histological evaluation. Omega-3 in combination with UDCA resulted in a significant attenuation of inflammation whereas administering omega-3 alone failed to improve histologically assessed liver inflammation. Quantitative analysis of tumor necrosis factor α showed an additive effect of omega-3 and UDCA on liver inflammation. HFD-induced hepatic triglyceride accumulation was attenuated by omega-3 and adding UDCA accentuated this effect. In accordance with this result, the expression of sterol regulatory binding protein-1c decreased after omega-3 administration and adding UDCA further diminished SREBP-1c expression. The expression of inducible nitric oxide synthase (iNOS), which may reflect oxidative stress-induced tissue damage, was suppressed by omega-3 administration and adding UDCA further attenuated iNOS expression. These results demonstrated an additive effect of omega-3 and UDCA for alleviating fibrosis, inflammation and steatosis in diet-induced NASH. PMID:25523099
Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae
2017-01-01
α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367
Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il
2014-12-19
Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice were divided into three groups and fed HFD alone, HFD with omega-3 or HFD with omega-3 in combination with UDCA for another 24 weeks. Feeding mice an HFD and administering omega-3 improved histologically assessed liver fibrosis, and UDCA in combination with omega-3 further attenuated this disease. The assessment of collagen α1(I) expression agreed with the histological evaluation. Omega-3 in combination with UDCA resulted in a significant attenuation of inflammation whereas administering omega-3 alone failed to improve histologically assessed liver inflammation. Quantitative analysis of tumor necrosis factor α showed an additive effect of omega-3 and UDCA on liver inflammation. HFD-induced hepatic triglyceride accumulation was attenuated by omega-3 and adding UDCA accentuated this effect. In accordance with this result, the expression of sterol regulatory binding protein-1c decreased after omega-3 administration and adding UDCA further diminished SREBP-1c expression. The expression of inducible nitric oxide synthase (iNOS), which may reflect oxidative stress-induced tissue damage, was suppressed by omega-3 administration and adding UDCA further attenuated iNOS expression. These results demonstrated an additive effect of omega-3 and UDCA for alleviating fibrosis, inflammation and steatosis in diet-induced NASH.
NASA Astrophysics Data System (ADS)
Yang, J.; Lee, K.; Bae, G.
2004-12-01
In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.
MicroRNA100 Inhibits Self-Renewal of Breast Cancer Stem–like Cells and Breast Tumor Development
Deng, Lu; Shang, Li; Bai, Shoumin; Chen, Ji; He, Xueyan; Martin-Trevino, Rachel; Chen, Shanshan; Li, Xiao-yan; Meng, Xiaojie; Yu, Bin; Wang, Xiaolin; Liu, Yajing; McDermott, Sean P.; Ariazi, Alexa E.; Ginestier, Christophe; Ibarra, Ingrid; Ke, Jia; Luther, Tahra; Clouthier, Shawn G.; Xu, Liang; Shan, Ge; Song, Erwei; Yao, Herui; Hannon, Gregory J.; Weiss, Stephen J.; Wicha, Max S.; Liu, Suling
2015-01-01
miRNAs are essential for self-renewal and differentiation of normal and malignant stem cells by regulating the expression of key stem cell regulatory genes. Here, we report evidence implicating the miR100 in self-renewal of cancer stem-like cells (CSC). We found that miR100 expression levels relate to the cellular differentiation state, with lowest expression in cells displaying stem cell markers. Utilizing a tetracycline-inducible lentivirus to elevate expression of miR100 in human cells, we found that increasing miR100 levels decreased the production of breast CSCs. This effect was correlated with an inhibition of cancer cell proliferation in vitro and in mouse tumor xenografts due to attenuated expression of the CSC regulatory genes SMARCA5, SMARCD1, and BMPR2. Furthermore, miR100 induction in breast CSCs immediately upon their orthotopic implantation or intracardiac injection completely blocked tumor growth and metastasis formation. Clinically, we observed a significant association between miR100 expression in breast cancer specimens and patient survival. Our results suggest that miR100 is required to direct CSC self-renewal and differentiation. PMID:25217527
Li, Yi-Qi; Wang, Jun-Yi; Qian, Zhi-Qiang; Li, Ye-Li; Li, Wen-Na; Gao, Yang; Yang, Dan-Li
2017-09-15
Osthole (7-methoxy-8-isopentenoxy-coumarin), a compound extracted from Cnidiummonnieri (L.) Cusson seeds, has been found to exhibit potent therapeutic effects in cancer due to its ability to inhibit inflammation and cell proliferation. However, its effects on arterial wall hypertrophy-related diseases remain unclear. Therefore, in this study, we aimed to investigate the effects of Osthole on intimal hyperplasia in a rat model of carotid artery balloon injury. We established the balloon-induced carotid artery injury rat model in male Sprague-Dawley rats, after which we administered Osthole (20mg/kg/day or 40mg/kg/day) or volume-matched normal saline orally by gavage for 14 consecutive days. Intimal hyperplasia and the degree of vascular smooth muscle cell proliferation were then evaluated by histopathological examination of the changes in the carotid artery, as well as by examination of proliferating cell nuclear antigen (PCNA) expression. Tumour necrosis factor-ɑ (TNF-α), interleukin-1β (IL-1β), transforming growth factor-beta (TGF-β1) and PCNA mRNA expression levels were examined by real-time RT-PCR, while nuclear factor-κB (NF-κB (p65)), IκB-α, TGF-β1 and phospho-Smad2 (p-Smad2) protein expression levels were analysed by immunohistochemistry or western blot analysis. We found that Osthole significantly attenuated neointimal thickness and decreased the elevations in PCNA protein expression induced by balloon injury. Moreover, Osthole down-regulated the pro-inflammatory factors TNF-α and IL-1β and NF-κB (p65), whose expression had been upregulated after balloon injury. Moreover, IκB-α protein expression levels increased following Osthole treatment. In addition, the elevations in TGF-β1 and p-Smad2 protein expression induced by balloon injury were both significantly attenuated by Osthole administration. We concluded that Osthole significantly inhibited neointimal hyperplasia in balloon-induced rat carotid artery injury and that the mechanism by which this occurs may involve NF-κB, IL-1β and TNF-ɑ down-regulation, which alleviates the inflammatory response, and TGF-β1/Smad2 signalling pathway inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.
Reduced levels of Cacna1c attenuate mesolimbic dopamine system function.
Terrillion, C E; Dao, D T; Cachope, R; Lobo, M K; Puche, A C; Cheer, J F; Gould, T D
2017-06-01
Genetic variation in CACNA1C, which codes for the L-type calcium channel (LTCC) Ca v 1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic-dopamine (ML-DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA-mediated behaviors elicited by psychomotor stimulants. Using fast-scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild-type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML-DA system function. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jeong A.
Loss of pericytes, considered an early hallmark of diabetic retinopathy, is thought to involve abnormal activation of protein kinase C (PKC). We previously showed that the anti-amyotrophic lateral sclerosis (ALS) drug riluzole functions as a PKC inhibitor. Here, we examined the effects of riluzole on pathological changes in diabetic retinopathy. Pathological endpoints examined in vivo included the number of pericytes and integrity of retinal vessels in streptozotocin (STZ)-induced diabetic mice. In addition, PKC activation and the induction of monocyte chemotactic protein (MCP1) were assessed in diabetic mice and in human retinal pericytes exposed to advanced glycation end product (AGE) ormore » modified low-density lipoprotein (mLDL). The diameter of retinal vessels and the number of pericytes were severely reduced, and the levels of MCP1 and PKC were increased in STZ-induced diabetic mice. Administration of riluzole reversed all of these changes. Furthermore, the increased expression of MCP1 in AGE- or mLDL-treated cultured retinal pericytes was inhibited by treatment with riluzole or the PKC inhibitor GF109203X. In silico modeling showed that riluzole fits well within the catalytic pocket of PKC. Taken together, our results demonstrate that riluzole attenuates both MCP1 induction and pericyte loss in diabetic retinopathy, likely through its direct inhibitory effect on PKC. - Highlights: • The effects of riluzole were examined in streptozotocin-induced diabetic mice. • The diameter of retinal vessels and the number of pericytes were severely reduced. • The levels of MCP1 and PKC were increased, while riluzole reversed all changes. • Riluzole attenuated the level of MCP1 in AGE- or mLDL-treated retinal pericytes. • Riluzole attenuated both MCP1 induction and pericyte loss in diabetic retinopathy.« less
Li, Yanwei; Liu, Haifeng; Zeng, Wei; Wei, Jing
2017-01-01
An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC.
Li, Yanwei; Liu, Haifeng; Zeng, Wei; Wei, Jing
2017-01-01
An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC. PMID:28346481
Gertel, Smadar; Mahagna, Hussein; Karmon, Gidi; Watad, Abdulla; Amital, Howard
2017-11-01
Rheumatoid arthritis (RA) is an autoimmune disease characterized by pronounced inflammation and leukocyte infiltration in affected joints. Tofacitinib is new agent, a selective inhibitor of Janus kinase (JAK) signaling pathways mediated by JAK1 and JAK3 and inhibits the key transcription factors STAT1 and STAT3. We investigated the action mechanisms of tofacitinib in rats with adjuvant-induced-arthritis (AIA). AIA-rats were treated orally with tofacitinib or with methotrexate. Arthritis severity and serum C-reactive protein (CRP) levels were evaluated, splenic cells were examined by flow cytometry and cytokines were analyzed by real-time PCR. Tofacitinib markedly reduced the clinical status of treated rats in comparison to control group. Reduced joints inflammation and down-regulated serum CRP levels reflected the clinical manifestations of the treated rats. Tofacitinib down-regulated significantly the frequency of CD4 + IFN-γ + T cells and reduced IL-1β mRNA expression levels in the spleen of the treated rats. These results show that tofacitinib attenuated arthritis severity, modified splenic populations and cytokine imbalance. Copyright © 2017. Published by Elsevier Inc.
Yang, Gui-Zhen; Xue, Fu-Shan; Liu, Ya-Yang; Li, Hui-Xian; Liu, Qing; Liao, Xu
2018-04-01
The available evidence shows that perioperative oral thyroid hormone can significantly attenuate the postoperative decline in the serum hormone level and improve postoperative hemodynamic and prognostic parameters. However, there has been no study assessing the effects of preoperative oral different-dose thyroid hormone on serum hormone levels and myocardial ischemia-reperfusion injury (IRI) after cardiac surgery. Forty-eight healthy Wistar rats, aged 35 days, were randomly allocated into six groups: Group BC, Group C and four pretreatment groups in which the rats were given levothyroxine-sodium of 10 μg, 20 μg, 40 μg and 80 μg/100 g. On the eighth day, the serum thyroid hormone levels were determined and then an isolated heart ischemia-reperfusion model was established with a Langendorff apparatus. Compared with Groups BC and C, serum thyroid hormone levels on the eighth day did not significantly change in Group 10 μg, but were significantly increased in Groups 20 μg, 40 μg and 80 μg. The cardiac enzyme myocardial-bound creatine kinase levels in the coronary effluent during reperfusion were significantly lower in Groups 10 μg and 20 μg and 40 μg than in Group C. The recovery rates of + dp/dt max and - dp/dt max at 30 min during reperfusion were significantly lower in Groups 40 μg and 80 μg than in Groups 10 μg and 20 μg. Compared with Group C, myocardial expressions of heat shock protein 70 and myosin heavy chain α were increased in the four experiment groups and myocardial expression of thyroid hormone receptor α1 was significantly increased in Groups 20 μg, 40 μg and 80 μg. The pretreatment with enterally smaller doses levothyroxine-sodium does not significantly affect serum thyroid hormone levels and produces protection against myocardial IRI, whereas pretreatment with enterally larger doses of levothyroxine-sodium can only provide an attenuated or insignificant cardioprotection because of hyperthyroxinemia. Cardioprotection by levothyroxine-sodium pretreatment is probably attributable to increased myocardial expression of heat shock protein 70 and myosin heavy chain α.
Choi, Dae Eun; Jeong, Jin Young; Choi, Hyunsu; Chang, Yoon Kyung; Ahn, Moon Sang; Ham, Young Rok; Na, Ki Ryang; Lee, Kang Wook
2017-02-01
Although hypothermia attenuates the renal injury induced by ischemia-reperfusion, the detailed molecular pathway(s) involved remains unknown. ERK phosphorylation is known to protect against ischemia-reperfusion injury. Also, it has been reported that hypothermia may induce ERK phosphorylation in the heart and brain. We evaluated the role played by ERK in hypothermic protection against renal ischemia-reperfusion injury. C57Bl/6 mice were divided into the following groups: sham-operated (cold, 32°C) vs normal temperature (37°C); ischemia-reperfusion mice (32°C vs 37°C); and PD98059- or vehicle-treated ischemia-reperfusion mice (32°C). Kidneys were harvested 10 and 27 minutes after induction of renal ischemia and 24 hours after ischemia-reperfusion injury. Functional and molecular markers of kidney injury were evaluated. To explore the molecular mechanism involved the expression levels of renal HIF-1 and associated proteins were evaluated. The blood urea nitrogen (BUN) and serum creatinine (s-Cr) levels and the histologic renal injury scores were significantly lower in 32°C ischemia-reperfusion than 37°C ischemia-reperfusion kidneys (all P values < .05). The expression levels of Bax and caspase-3 and the extent of TUNEL and 8-OHdG cell positivity decreased, whereas the renal Bcl-2 level increased, in 32°C ischemia-reperfusion compared to 37°C ischemia-reperfusion mice. The extent of renal ERK phosphorylation was significantly higher in ischemia-reperfusion than sham-operated kidneys. Also, ERK phosphorylation was significantly increased in the kidneys of 32°C compared to 37°C ischemia-reperfusion mice. PD98059 treatment of 32°C ischemia-reperfusion mice significantly decreased the renal HIF-1 level (P < .05) and increased the BUN, s-Cr, renal Bax, and caspase-3 expression levels; the tissue injury score; and the proportions of TUNEL- and 8-OHdG-positive cells. PD98059 also increased the renal Bcl-2 level in such mice. Hypothermia attenuates the renal apoptosis and oxidative stress induced by ischemia-reperfusion via a mechanism involving ERK phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.
Khan, Nemat; Muralidharan, Arjun; Smith, Maree T.
2017-01-01
Recent preclinical and proof-of-concept clinical studies have shown promising analgesic efficacy of selective small molecule angiotensin II type 2 (AT2) receptor antagonists in the alleviation of peripheral neuropathic pain. However, their cellular and molecular mechanism of action requires further investigation. To address this issue, groups of adult male Sprague–Dawley rats with fully developed unilateral hindpaw hypersensitivity, following chronic constriction injury (CCI) of the sciatic nerve, received a single intraperitoneal bolus dose of the small molecule AT2 receptor antagonist, EMA300 (10 mg kg-1), or vehicle. At the time of peak EMA300-mediated analgesia (∼1 h post-dosing), groups of CCI-rats administered either EMA300 or vehicle were euthanized. A separate group of rats that underwent sham surgery were also included. The lumbar (L4–L6) dorsal root ganglia (DRGs) were obtained from all experimental cohorts and processed for immunohistochemistry and western blot studies. In vehicle treated CCI-rats, there was a significant increase in the expression levels of angiotensin II (Ang II), but not the AT2 receptor, in the ipsilateral lumbar DRGs. The elevated levels of Ang II in the ipsilateral lumbar DRGs of CCI-rats were at least in part contributed by CD3+ T-cells, satellite glial cells (SGCs) and subsets of neurons. Our findings suggest that the analgesic effect of EMA300 in CCI-rats involves multimodal actions that appear to be mediated at least in part by a significant reduction in the otherwise increased expression levels of Ang II as well as the number of Ang II-expressing CD3+ T-cells in the ipsilateral lumbar DRGs of CCI-rats. Additionally, the acute anti-allodynic effects of EMA300 in CCI-rats were accompanied by rescue of the otherwise decreased expression of mature nerve growth factor (NGF) in the ipsilateral lumbar DRGs of CCI-rats. In contrast, the increased expression levels of TrkA and glial fibrillary acidic protein in the ipsilateral lumbar DRGs of vehicle-treated CCI-rats were not attenuated by a single bolus dose of EMA300. Consistent with our previous findings, there was also a significant decrease in the augmented levels of the downstream mediators of Ang II/AT2 receptor signaling, i.e., phosphorylated-p38 mitogen-activated protein kinase (MAPK) and phosphorylated-p44/p42 MAPK, in the ipsilateral lumbar DRGs. PMID:29200998
Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis
Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Mehta, Jawahar L.
2013-01-01
Our studies in HUVECs show that ox-LDL induced autophagy and damaged mtDNA leading to TLR9 expression. LOX-1 antibody or the ROS inhibitor apocynin attenuated ox-LDL-mediated autophagy, mtDNA damage and TLR9 expression, suggesting that these events are LOX-1 and ROS-dependent phenomena. Experiments using siRNA to DNase II indicated that DNase II digests mtDNA to protect the tissue from inflammation. Next, we studied and found intense autophagy, TLR9 expression and inflammatory signals (CD45 and CD68) in the aortas of LDLR knockout mice fed high cholesterol diet. Deletion of LOX-1 (LDLR/LOX-1 double knockout mice) attenuated autophagy, TLR9 expression as well as CD45 and CD68. Damaged mtDNA signal was also very high in LDLR knockout mice aortas, and this signal was attenuated by LOX-1 deletion. Thus, it appears that oxidative stress-mediated damaged mtDNA that escapes autophagy induces a potent inflammatory response in atherosclerosis. PMID:23326634
Parsons, Joshua B.; Kukula, Maciej; Jackson, Pamela; Pulse, Mark; Simecka, Jerry W.; Valtierra, David; Weiss, William J.; Kaplan, Nachum
2013-01-01
This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC0–48]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria. PMID:23459481
Petersen, Pia S; Lei, Xia; Wolf, Risa M; Rodriguez, Susana; Tan, Stefanie Y; Little, Hannah C; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E; Wong, G William
2017-04-01
Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. Copyright © 2017 the American Physiological Society.
Xu, Lixing; Li, Yuebi; Fu, Qiang; Ma, Shiping
2014-11-07
Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, has anti-inflammatory effects. Few studies have examined the neuroprotective effect of PAH on stroke. So the aim of our study is to investigate the effect of PAH on ischemia-reperfusion-induced injury in the rat brain cortex. Middle cerebral artery occlusion (MCAO) model was selected to make cerebral ischemia-reperfusion injury. Rats were assigned randomly to groups of sham, MCAO, and two treatment groups by PAH at 36.0, 72.0mg/kg. Disease model was set up after intragastrically (i.g.) administering for 7 consecutive days. The neurological deficit, the cerebral infarct size, biochemical parameters and the relative mRNA and protein levels were examined. The results showed that the NO level, the iNOS activity, the neurological deficit scores, the cerebral infarct size and the expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were significantly decreased by PAH treatment. PAH also increased the Phospho-Akt level and decrease the Phospho-JNK level by Western blot analysis. Meanwhile, the PAH groups exhibited a dramatically decrease of apoptosis-related mRNA expression such as Bax and caspase-3. Our findings shown that PAH attenuates cerebral ischemia/reperfusion injury in the rat brain cortex, and suggest its neuroprotective effect is relate to regulating the inflammatory response through Akt /JNK pathway. The activation of this signalling pathway eventually inhibits apoptotic cell death induced by cerebral ischemia-reperfusion. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E.; Lau, Gee W.
2015-01-01
Summary The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 “late” competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. Graphical abstract During genetic transformation of pneumococcus, the alternative sigma factor ComX regulates expression of 14 late competence genes important for virulence. The constitutive baseline expression of some of these genes is important for bacteremia and acute pneumonia infections. In contrast, elevated expression of DprA, CbpD, CibAB, and Cinbox are dependent on competence development, enhancing the release of pneumolysin. These results distinguish the role of basal expression versus competence induction in virulence determinants regulated by ComX. PMID:25846124
Li, Jianhua; Bai, Caiyan; Guo, Junxia; Liang, Wanqian; Long, Jingning
2017-07-01
Myocardial ischaemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as mitochondrial dysfunction. The aims of the present study were to investigate whether NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2 (NDUFA4L2) on myocardial ischaemia-reperfusion (I/R) injury and the underlying molecular mechanism. The hypoxia-reperfusion (H/R) model was established in vitro using H9c2 cells to simulate I/R injury. NDUFA4L2 and complex I expression levels were detected using RT-PCR and western blot. The apoptosis of H9c2 cells was evaluated by flow cytometry and the expression of Bax and Bcl-2 was detected by western blot. The mitochondrial function was assessed by ATP concentration, mPTP opening and cytochrome c (cyto C) expression. Our data indicated that NDUFA4L2 expression was significantly down-regulated in myocardial H/R injury. Overexpression of NDUFA4L2 led to a dramatic prevention of H/R-induced apoptosis accompanied by a decrease in the expression of Bax and an increase in the expression of Bcl-2. Meanwhile, augmentation of NDUFA4L2 dramatically prevented mitochondrial dysfunction caused by H/R as reflecting in the increased ATP concentration, delayed mPTP opening, as well as down-regulated cyto C expression. Moreover, complex I activation was heightened and negatively regulated by NDUFA4L2. Silencing complex I conspicuously attenuated cell apoptosis and mitochondrial dysfunction. Taken together, our findings demonstrated that NDUFA4L2 protects against H/R injury by preventing myocardium apoptosis and mitochondrial dysfunction via the complex I, and may be a potential therapeutic approach for attenuating myocardial I/R injury. © 2017 John Wiley & Sons Australia, Ltd.
Jin, Yao; Huang, Zhen-Lin; Li, Li; Yang, Yang; Wang, Chang-Hong; Wang, Zheng-Tao; Ji, Li-Li
2018-06-19
Toosendanin (TSN) is the main active compound in Toosendan Fructus and Meliae Cortex, two commonly used traditional Chinese medicines. TSN has been reported to induce hepatotoxicity, but its mechanism remains unclear. In this study, we demonstrated the critical role of nuclear factor erythroid 2-related factor 2 (Nrf2) in protecting against TSN-induced hepatotoxicity in mice and human normal liver L-02 cells. In mice, administration of TSN (10 mg/kg)-induced acute liver injury evidenced by increased serum alanine/aspartate aminotransferase (ALT/AST) and alkaline phosphatase (ALP) activities, and total bilirubin (TBiL) content as well as the histological changes. Furthermore, TSN markedly increased liver reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased liver glutathione (GSH) content and Nrf2 expression. In L-02 cells, TSN (2 μM) time-dependently reduced glutamate-cysteine ligase (GCL) activity and cellular expression of the catalytic/modify subunit of GCL (GCLC/GCLM). Moreover, TSN reduced cellular GSH content and the increased ROS formation, and time-dependently decreased Nrf2 expression and increased the expression of the Nrf2 inhibitor protein kelch-like ECH-associated protein-1 (Keap1). Pre-administration of quercetin (40, 80 mg/kg) effectively inhibited TSN-induced liver oxidative injury and reversed the decreased expression of Nrf2 and GCLC/GCLM in vivo and in vitro. In addition, the quercetin-provided protection against TSN-induced hepatotoxicity was diminished in Nrf2 knock-out mice. In conclusion, TSN decreases cellular GSH content by reducing Nrf2-mediated GCLC/GCLM expression via decreasing Nrf2 expression. Quercetin attenuates TSN-induced hepatotoxicity by inducing the Nrf2/GCL/GSH antioxidant signaling pathway. This study implies that inducing Nrf2 activation may be an effective strategy to prevent TSN-induced hepatotoxicity.
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo
2016-01-01
Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun
2016-11-01
Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.
Vishwakarma, Vikalp; Pati, Niladri Bhusan; Ray, Shilpa; Das, Susmita; Suar, Mrutyunjay
2014-01-01
Non-typhoidal Salmonella (NTS) infections are emerging as leading problem worldwide and the variations in host immune status append to the concern of NTS. Salmonella enterica serovar Typhimurium is one of the causative agents of NTS infections and has been extensively studied. The inactivation of Salmonella pathogenicity island 2 (SPI2) encoded type-III secretion system 2 (TTSS2) has been reported rendering the strain incapable for systemic dissemination to host sites and has also been proposed as live-attenuated vaccine. However, infections from TTSS2-deficient Salmonella have also been reported. In this study, mutant strain MT15 was developed by inactivation of the hemolysin expression modulating protein (hha) in TTSS2-deficient S. Typhimurium background. The MT15 strain showed significant level of attenuation in immune-deprived murine colitis model when tested in iNos−/−, IL10−/−, and CD40L−/− mice groups in C57BL/6 background. Further, the mutation in hha does not implicate any defect in bacterial colonization to the host gut. The long-term infection of developed mutant strain conferred protective immune responses to suitably immunized streptomycin pre-treated C57BL/6 mice. The immunization enhanced the CD4+ and CD8+ cell types involved in bacterial clearance. The serum IgG and luminal secretory IgA (sIgA) was also found to be elevated after the due course of infection. Additionally, the immunized C57BL/6 mice were protected from the subsequent lethal infection of Salmonella Typhimurium. Collectively, these findings implicate the involvement of hemolysin expression modulating protein (Hha) in establishment of bacterial infection. In light of the observed attenuation of the developed mutant strain, this study proposes the possible significance of SPI2-deficient hha mutant as an alternative live-attenuated vaccine strain for use against lethal Salmonella infections. PMID:24401482
Broadbent, Andrew J.; Santos, Celia P.; Anafu, Amanda; Wimmer, Eckard; Mueller, Steffen; Subbarao, Kanta
2015-01-01
Codon-pair bias de-optimization (CPBD) of viruses involves re-writing viral genes using statistically underrepresented codon pairs, without any changes to the amino acid sequence or codon usage. Previously, this technology has been used to attenuate the influenza A/Puerto Rico/8/34 (H1N1) virus. The de-optimized virus was immunogenic and protected inbred mice from challenge. In order to assess whether CPBD could be used to produce a live vaccine against a clinically relevant influenza virus, we generated an influenza A/California/07/2009 pandemic H1N1 (2009 pH1N1) virus with de-optimized HA and NA gene segments (2009 pH1N1-(HA+NA)Min), and evaluated viral replication and protein expression in MDCK cells, and attenuation, immunogenicity, and efficacy in outbred ferrets. The 2009 pH1N1-(HA+NA)Min virus grew to a similar titer as the 2009 pH1N1 wild type (wt) virus in MDCK cells (~106 TCID50/ml), despite reduced HA and NA protein expression on western blot. In ferrets, intranasal inoculation of 2009 pH1N1-(HA+NA)Min virus at doses ranging from 103 to 105 TCID50 led to seroconversion in all animals and protection from challenge with the 2009 pH1N1 wt virus 28 days later. The 2009 pH1N1-(HA+NA)Min virus did not cause clinical illness in ferrets, but replicated to a similar titer as the wt virus in the upper and lower respiratory tract, suggesting that de-optimization of additional gene segments may be warranted for improved attenuation. Taken together, our data demonstrate the potential of using CPBD technology for the development of a live influenza virus vaccine if the level of attenuation is optimized. PMID:26655630
Is Social Anhedonia related to Emotional Responsivity and Expressivity? A laboratory study in Women
Leung, Winnie W.; Couture, Shannon M.; Blanchard, Jack J.; Lin, Stephanie; Llerena, Katiah
2010-01-01
Social anhedonia is an important feature of schizophrenia and it is a promising indicator of schizotypy. Although social anhedonia is defined as an affective construct (less pleasure derived from social encounters), little is known about the emotional responsivity and expressivity of individuals with high levels of social anhedonia. After screening a large sample of female undergraduate students (N = 1 085), a cohort of psychometrically identified individuals with high levels of social anhedonia (n = 34) and normally hedonic controls (n = 45) participated in laboratory assessments involving trait affectivity, self-reported dispositional emotional expressiveness, and the expression and experience of emotion in response to neutral, nonaffiliative (i.e., comedy) and affiliative film clips. Results revealed that individuals with high levels of social anhedonia are characterized by lower positive affect, both as a trait and in response to emotionally evocative stimuli, and are less facially expressive, both by their own self-report and in response to film clips. Attenuated positive affect was observed across film stimuli, indicating a general reduction in affective response rather than a specific decrease in responsivity for affiliative stimuli. Future work should continue to investigate whether there is a unique role for social stimuli in the emotional lives of individuals with high levels of social anhedonia or whether these individuals tend to experience anhedonia more broadly regardless of social context. PMID:20620020
IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling.
Timper, Katharina; Denson, Jesse Lee; Steculorum, Sophie Marie; Heilinger, Christian; Engström-Ruud, Linda; Wunderlich, Claudia Maria; Rose-John, Stefan; Wunderlich, F Thomas; Brüning, Jens Claus
2017-04-11
Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ghrelin improves vascular autophagy in rats with vascular calcification.
Xu, Mingming; Liu, Lin; Song, Chenfang; Chen, Wei; Gui, Shuyan
2017-06-15
This study aimed to investigate whether ghrelin ameliorated vascular calcification (VC) through improving autophagy. VC model was induced by nicotine plus vitamin D 3 in rats and β-glycerophosphate in vascular smooth muscle cell (VSMC). Calcium deposition was detected by von Kossa staining or alizarin red S staining. ALP activity was also detected. Western blot was used to assess the protein expression. Ghrelin treatment attenuated the elevation of calcium deposition and ALP activity in VC model both in vivo and in vitro. Interesting, the protein levels of autophagy markers, LC3 and beclin1 were significantly upregulated by ghrelin in VC model. An autophagy inhibitor, 3-methyladenine blocks the ameliorative effect of ghrelin on VC. Furthermore, protein expressions of phosphate-AMPK were increased by ghrelin treatment both in calcified aorta and VSMC. The effect of ghrelin on autophagy induction and VC attenuation was prevented by AMPK inhibitor, compound C. Our results suggested that ghrelin improved autophagy through AMPK activation, which was resulted in VC amelioration. These data maybe throw light on prevention and therapy of VC. Copyright © 2016 Elsevier Inc. All rights reserved.
Chaussee, Michael S.; Sandbulte, Heather R.; Schuneman, Margaret J.; DePaula, Frank P.; Addengast, Leslie A.; Schlenker, Evelyn H.; Huber, Victor C.
2011-01-01
Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with S. pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue to levels that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete. PMID:21440037
Tan, Jianzhuang; Applegate, Todd J; Liu, Shasha; Guo, Yuming; Eicher, Susan D
2014-10-14
The present study investigated the effects of dietary arginine (Arg) supplementation on intestinal structure and functionality in broiler chickens subjected to coccidial challenge. The present study was a randomised complete block design employing a 3 × 2 factorial arrangement (n 8) with three dietary concentrations of Arg (11·1, 13·3 and 20·2 g/kg) with or without coccidial vaccine challenge (unchallenged and coccidial challenge). On day 14, birds were orally administered with coccidial vaccine or saline. On day 21, birds were killed to obtain jejunal tissue and mucosal samples for histological, gene expression and mucosal immunity measurements. Within 7 d of the challenge, there was a decrease in body-weight gain and feed intake, and an increase in the feed:gain ratio (P< 0·05). Jejunal inflammation was evidenced by villus damage, crypt dilation and goblet cell depletion. Coccidial challenge increased mucosal secretory IgA concentration and inflammatory gene (iNOS, IL-1β, IL-8 and MyD88) mRNA expression levels (P< 0·05), as well as reduced jejunal Mucin-2, IgA and IL-1RI mRNA expression levels (P< 0·05). Increasing Arg concentration (1) increased jejunal villus height (P< 0·05) and linearly increased jejunal crypt depth (P< 0·05); (2) quadratically increased mucosal maltase activity (P< 0·05) and linearly decreased mucosal secretory IgG concentration (P< 0·05) within the coccidiosis-challenged groups; and (3) linearly decreased jejunal Toll-like receptor 4 (TLR4) mRNA expression level (P< 0·05) within the coccidiosis-challenged groups. The mRNA expression of mechanistic target of rapamycin (mTOR) complex 1 pathway genes (mTOR and RPS6KB1) and the anti-apoptosis gene Bcl-2 quadratically responded to increasing dietary Arg supplementation (P< 0·05). These results indicate that dietary Arg supplementation attenuates intestinal mucosal disruption in coccidiosis-challenged chickens probably through suppressing TLR4 and activating mTOR complex 1 pathways.
Lin, Jiaqiong; Chen, Meiji; Liu, Donghong; Guo, Ruixian; Lin, Kai; Deng, Haiou; Zhi, Ximei; Zhang, Weijie; Feng, Jianqiang; Wu, Wen
2018-03-01
Hyperglycemia is a key factor in the development of diabetic complications, including the processes of atherosclerosis. Receptor‑interacting protein 3 (RIP3), a mediator of necroptosis, is implicated in atherosclerosis development. Additionally, hydrogen sulfide (H2S) protects the vascular endothelium against hyperglycemia‑induced injury and attenuates atherosclerosis. On the basis of these findings, the present study aimed to confirm the hypothesis that necroptosis mediates high glucose (HG)‑induced injury in human umbilical vein endothelial cells (HUVECs), and that the inhibition of necroptosis contributes to the protective effect of exogenous H2S against this injury. The results revealed that exposure of HUVECs to 40 mM HG markedly enhanced the expression level of RIP3, along with multiple injuries, including a decrease in cell viability, an increase in the number of apoptotic cells, an increase in the expression level of cleaved caspase‑3, generation of reactive oxygen species (ROS), as well as dissipation of the mitochondrial membrane potential (MMP). Treatment of the cells with sodium hydrogen sulfide (NaHS; a donor of H2S) prior to exposure to HG significantly attenuated the increased RIP3 expression and the aforementioned injuries by HG. Notably, treatment of cells with necrostatin‑1 (Nec‑1), an inhibitor of necroptosis, prior to exposure to HG ameliorated the HG‑induced injuries, leading to a decrease in ROS generation and a loss of MMP. However, pre‑treatment of the cells with Nec‑1 enhanced the HG‑induced increase in the expression levels of cleaved caspases‑3 and ‑9. By contrast, pre‑treatment with Z‑VAD‑FMK, a pan ‑caspase inhibitor, promoted the increased expression of RIP3 by HG. Taken together, the findings of the present study have demonstrated, to the best of our knowledge for the first time, that exogenous H2S protects HUVECs against HG‑induced injury through inhibiting necroptosis. The present study has also provided novel evidence that there is a negative interaction between necroptosis and apoptosis in the HG‑treated HUVECs.
Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.
Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung
2016-10-01
Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.
Bai, Ma-Kang-Zhuo; Guo, Yan; Bian, Ba-Dun-Zhu; Dong, Hai; Wang, Tao; Luo, Feng; Wen, Fu-Qiang; Cui, Chao-Ying
2011-04-25
The aim of this study was to investigate the effect of integripetal rhodiola herb on pulmonary arterial remodeling and expression of vascular endothelial growth factor (VEGF) in high altitude pulmonary hypertension in rats. Fifty healthy male Wistar rats were divided into five groups randomly: Plain control group (LC group), 10-day plateau group (H(10) group), 30-day plateau group (H(30) group), 10-day rhodiola-treated plateau group (R(10) group), and 30-day rhodiola-treated plateau group (R(30) group). Each group included 10 rats. The rats in LC group were kept in Chengdu (500 meters above sea level), and rats in H and R groups were kept in Lhasa (3 700 meters above sea level). The rats in R group were daily treated with integripetal rhodiola herb extract (24%, 10 mL/kg) intragastrically for 10 d or 30 d, while rats in LC and H groups were treated with the same volume of saline. Mean pulmonary arterial pressure (mPAP) was detected via a catheter in the pulmonary artery by pressure waveform monitoring. The ratio value of right ventricle weight to left ventricle plus septum weight [RV/(LV + S)] was measured. The microstructure of pulmonary arterioles was examined by electron microscopy. The expression of VEGF in the lung was investigated using immunohistochemistry. The results showed that mPAP and [RV/(LV + S)] in H(10) group and H(30) group were higher than those in LC group (P < 0.05); but there was no significant difference between H(10) group and R(10) group (P < 0.05); and mPAP and [RV/(LV + S)] in H(30) group were lower than those in H(30) group (P < 0.05). Electron microscopy showed that compared to LC group, arteriolar endothelial cells were arranged in a columnar or palisading form, protruding into the lumen, accompanied with luminal stenosis, irregular internal elastic membrane, and proliferation of vascular smooth muscle cells in H groups, which was more obvious in H(30) group than in H(10) group; while these pathological changes were attenuated in the R groups compared to H groups. The levels of VEGF protein in H groups were also higher than those in LC group (P < 0.05); while the expression of VEGF in R(30) group was lower than that in H(30) group. In summary, the results show that the integripetal rhodiola herb can attenuate high altitude-induced pulmonary arterial remodeling in rats, and the inhibition of VEGF protein expression by rhodiola may be one of the mechanisms.
Gamma frequency entrainment attenuates amyloid load and modifies microglia
Iaccarino, Hannah F.; Singer, Annabelle C.; Martorell, Anthony J.; Rudenko, Andrii; Gao, Fan; Gillingham, Tyler Z.; Mathys, Hansruedi; Seo, Jinsoo; Kritskiy, Oleg; Abdurrob, Fatema; Adaikkan, Chinnakkaruppan; Canter, Rebecca G.; Rueda, Richard; Brown, Emery N.; Boyden, Edward S.; Tsai, Li-Huei
2017-01-01
Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma and cellular pathologies is unclear. Here, we show reduced behaviorally-driven gamma before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease (AD). Optogenetically driving FS-PV-interneurons at gamma (40 Hz), but not other frequencies, reduced levels of amyloid-β (A β)1-40 and A β1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia and histological analysis confirmed increased microglia co-localization with A β. Subsequently, we designed a non-invasive 40 Hz light-flickering paradigm that reduced A β1-40 and A β1-42 levels in visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate AD-associated pathology. PMID:27929004
Yu, Xiao-Yu; Fu, Fei; Kong, Wen-Na; Xuan, Qian-Kun; Wen, Dong-Hua; Chen, Xiao-Qing; He, Yong-Ming; He, Li-Hua; Guo, Jian; Zhou, Ai-Ping; Xi, Yang-Hong; Ni, Li-Jun; Yao, Yu-Feng; Wu, Wen-Juan
2018-01-01
Streptococcus agalactiae and Candida albicans often co-colonize the female genital tract, and under certain conditions induce mucosal inflammation. The role of the interaction between the two organisms in candidal vaginitis is not known. In this study, we found that co-infection with S. agalactiae significantly attenuated the hyphal development of C. albicans , and that EFG1 -Hwp1 signal pathway of C. albicans was involved in this process. In a mouse model of vulvovaginal candidiasis (VVC), the fungal burden and the levels of pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α showed a increase on co-infection with S. agalactiae , while the level of TH17 T cells and IL-17 in the cervicovaginal lavage fluid were significantly decreased. Our results indicate that S. agalactiae inhibits C. albicans hyphal development by downregulating the expression of EFG1 -Hwp1. The interaction between S. agalactiae and C. albicans may attenuate host vaginal mucosal TH17 immunity and contribute to mucosal colonization by C. albicans .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Atsuo; Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp; Ogata, Takehiro
Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expressionmore » was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.« less
4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress.
Zheng, Peili; Lin, Yu; Wang, Feifei; Luo, Renfei; Zhang, Tiezheng; Hu, Shan; Feng, Pinning; Liang, Xinling; Li, Chunling; Wang, Weidong
2016-10-01
Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells. Copyright © 2016 the American Physiological Society.
Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi
2012-12-01
Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of l-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2',7'-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
Chandel, Nirupama; Sharma, Bipin; Husain, Mohammad; Salhan, Divya; Singh, Tejinder; Rai, Partab; Mathieson, Peter W.; Saleem, Moin A.; Malhotra, Ashwani
2013-01-01
Alterations in the podocyte actin cytoskeleton have been implicated in the development of proteinuric kidney diseases. In the present study, we evaluated the effect of HIV on the podocyte actin cytoskeleton and the mechanism involved. We hypothesized that HIV may be compromising the actin cytoskeleton via downregulation of the vitamin D receptor (VDR) of conditionally immortalized differentiated human podocytes (CIDHPs). HIV-transduced podocytes (HIV/CIDHPs) not only displayed downregulation of VDR but also showed activation of the renin-angiotensin system (RAS) in the form of enhanced expression of renin and increased production of ANG II. Moreover, CIDHPs lacking VDR displayed enhanced ANG II production, and treatment of HIV/CIDHPs with EB1089 (vitamin D3; VD) attenuated ANG II production. HIV/CIDHPs as well as ANG II-treated CIDHPs exhibited enhanced expression of cathepsin (CTS) L. Additionally, losartan (an ANG II type I receptor blocker) inhibited both HIV- and ANG II-induced podocyte cathepsin L expression. Furthermore, VD downregulated HIV-induced podocyte CTSL expression. Both losartan and free radical scavengers attenuated HIV- and ANG II-induced podocyte reactive oxygen species (ROS) generation. HIV also led to cytosolic CTSL accumulation through enhancement of podocyte lysosomal membrane permeabilization; on the other hand, VD, losartan, and superoxide dismutase (SOD) attenuated HIV-induced enhanced podocyte cytosolic CTSL accumulation. Morphological evaluation of HIV/CIDHPs revealed sparse actin filaments and attenuated expression of dynamin. Interestingly, podocytes lacking CTSL displayed enhanced dynamin expression, and HIV/CIDHPs expressing CTSL exhibited downregulation of dynamin. These findings indicate that HIV-induced downregulation of podocyte VDR and associated RAS activation and cytosolic CTSL accumulation compromised the actin cytoskeleton. PMID:23467424
Chen, Wei; Mao, Liuqun; Xing, Huanhuan; Xu, Lei; Fu, Xiang; Huang, Liyingzi; Huang, Dongling; Pu, Zhijun; Li, Qinghua
2015-11-03
Growing evidence suggests concentration of lycopene was reduced in plasma of patients with Alzheimer disease (AD). Lycopene, a member of the carotenoid family, has been identified as an antioxidant to attenuate oxidative damage and has neuroprotective role in several AD models. However, whether lycopene is involved in the pathogenesis of AD and molecular underpinnings are elusive. In this study, we found that lycopene can significantly delay paralysis in the Aβ1-42-transgenic Caenorhabditis elegans strain GMC101. Lycopene treatment reduced Aβ1-42 secretion in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw). Next, we found lycopene can down-regulate expression level of β-amyloid precursor protein(APP) in APPsw cells. Moreover, lycopene treatment can not change endogenous reactive oxygen species level and apoptosis in APPsw cells. However, lycopene treatment protected against H2O2-induced oxidative stress and copper-induced damage in APPsw cells. Collectively, our data support that elevated lycopene contributes to the lower pathogenesis of AD. Our findings suggest that increasing lycopene in neurons may be a novel approach to attenuate onset and development of AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.
Wen, Shih-Tao; Chen, Wei; Chen, Hsiao-Ling; Lai, Cheng-Wei; Yen, Chih-Ching; Lee, Kun-Hsiung; Wu, Shinn-Chih; Chen, Chuan-Mu
2013-01-01
High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs) in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α) and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI), for which efficient treatments are currently unavailable.
Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats.
Shibaguchi, Tsubasa; Yamaguchi, Yusuke; Miyaji, Nobuyuki; Yoshihara, Toshinori; Naito, Hisashi; Goto, Katsumasa; Ohmori, Daijiro; Yoshioka, Toshitada; Sugiura, Takao
2016-08-01
Astaxanthin is a carotenoid pigment and has been shown to be an effective inhibitor of oxidative damage. We tested the hypothesis that astaxanthin intake would attenuate immobilization-induced muscle atrophy in rats. Male Wistar rats (14-week old) were fed for 24 days with either astaxanthin or placebo diet. After 14 days of each experimental diet intake, the hindlimb muscles of one leg were immobilized in plantar flexion position using a plaster cast. Following 10 days of immobilization, both the atrophic and the contralateral plantaris muscles were removed and analyzed to determine the level of muscle atrophy along with measurement of the protein levels of CuZn-superoxide dismutase (CuZn-SOD) and selected proteases. Compared with placebo diet animals, the degree of muscle atrophy in response to immobilization was significantly reduced in astaxanthin diet animals. Further, astaxanthin supplementation significantly prevented the immobilization-induced increase in the expression of CuZn-SOD, cathepsin L, calpain, and ubiquitin in the atrophied muscle. These results support the postulate that dietary astaxanthin intake attenuates the rate of disuse muscle atrophy by inhibiting oxidative stress and proteolysis via three major proteolytic pathways. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L
2002-08-09
Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng
2016-04-15
In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less
Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.
2015-01-01
Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789
Naville, Magali; Gautheret, Daniel
2010-01-01
Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.
Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko
2017-01-01
A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.
Chang, Mingtao; Li, Yang; Liu, Dong; Zhang, Lianyang; Zhang, Hongguang; Tang, Hao; Zhang, Huayu
2016-08-01
Exogenous administration of melatonin has been demonstrated to down-regulate inflammatory responses and attenuate organ damage in various models. However, the salutary effect of melatonin against secondary intra-abdominal hypertension (IAH) remains unclear. This study sought to test the influence of melatonin on secondary IAH in a pathophysiological rat model and the underlying mechanisms involved. Before resuscitation, male rats underwent a combination of induced portal hypertension, applying an abdominal restraint device, and hemorrhaging to mean arterial pressure (MAP) of 40mmHg for 2h. After blood reinfusion, the rats were treated with lactated Ringer solution (LR) (30mL/h), melatonin (50mg/kg) +LR, and SB-203580 (10μmol/kg)+LR. LR was continuously infused for 6h. MAP, the inferior vena cava pressure and urine output were monitored. Histopathological examination, immunofluorescence of tight junction proteins, and transmission electron microscopy were administered. Intestinal permeability, myeloperoxidase activity, malondialdehyde, glutathione peroxidase, and levels of TNF-a, IL-2, and IL-6, were assessed. The expression of extracellular signal-regulated kinase, p38, c-Jun NH2-terminal kinase, translocation of nuclear factor kappa B subunit, signal transducers and activators of transcription and tight junction proteins were detected by Western blot. We found that melatonin inhibited the inflammatory responses, decreased expression of p38 MAPK, attenuated intestinal injury, and prevented secondary IAH. Moreover, administration of SB203580 abolished the increase in p38 MAPK and also attenuated intestinal injury. These data indicate that melatonin exerts a protective effect in intestine in secondary IAH primarily by attenuating the inflammatory responses which are in part attributable to p38 MAPK inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K
2015-10-22
We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.
Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui
2017-11-01
To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p < .05) and ameliorated the contrast-induced acute kidney injury (p < .05) and significantly reduced Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (Myd88), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression and relative mRNA expression levels (p < .05) and significantly decreased expression levels of downstream inflammatory factors (p < .05). Different atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.
Increased retinol-free RBP4 contributes to insulin resistance in gestational diabetes mellitus.
Chen, Yanmin; Lv, Ping; Du, Mengkai; Liang, Zhaoxia; Zhou, Menglin; Chen, Danqing
2017-07-01
Retinol-binding protein 4 (RBP4) is a circulating retinol transporter that is strongly associated with insulin resistance. The aim of this study was to evaluate the RBP4 and retinol level in rat model of gestational diabetes mellitus and the relationship between retinol-free RBP4 (apo-RBP4), retinol-bound RBP4 (holo-RBP4) and insulin resistance. Pregnant rats were administered streptozotocin to induce diabetes. The RBP4 and retinol levels were evaluated in GDM and normal pregnant rats. After then, normal pregnant rats were divided into two groups to receive either apo-RBP4 or vehicle injection. The metabolic parameters and insulin signaling in adipose tissue, skeletal muscle and liver were determined in apo-RBP4 and control groups. Primary human adipocytes were cultured in vitro with different proportions of apo-RBP4 and holo-RBP4 for 24 h. The interaction between RBP4 and STRA6 was assessed by co-immunoprecipitation, and the expression of JAK-STAT pathway and insulin signaling were detected by Western blotting and immunofluorescence. We found increases in serum RBP4 levels and the RBP4:retinol ratio but not in the retinol levels in GDM rats. Exogenous apo-RBP4 injection attenuated insulin sensitivity in pregnant rats. In vitro, a prolonged interaction between RBP4 and STRA6 was observed when apo-RBP4 was present. In response to increased apo-RBP4 levels, cells showed elevated activation of the JAK2/STAT5 cascade and SOCS3 expression, decreased phosphorylation of IR and IRS1, and attenuated GLUT4 translocation and glucose uptake upon insulin stimulation. Apo-RBP4 is a ligand that activates the STRA6 signaling cascade, inducing insulin resistance in GDM.
Li, Lei; Yu, Liling; Kong, Qingxia
2013-11-01
One of the major pathological characteristics of Alzheimer's disease (AD) is the presence of enhanced deposits of beta-amyloid peptide (Aβ). The neuropeptide galanin (GAL) and its receptors are overexpressed in degenerating brain regions in AD. The functional consequences of galaninergic systems plasticity in AD are unclear. The objective of the present study was to investigate whether exogenous galanin could attenuate spatial memory impairment and hippocampal Aβ aggregation in rat model of AD. The effects of Aβ, galanin, galanin receptor 1 agonist M617 and galanin receptor 2 agonist AR-M1896 on spatial memory were tested by Morris water maze. The effects of Aβ, galanin, M617 and AR-M1896 on hippocampal Aβ protein expression were evaluated by western blot assay. The expression of galanin, galanin receptors 1 and 2 in rats' hippocampus were detected by real time PCR and western blot assay. The results showed that (1) Galanin administration was effective in improving the spatial memory and decreasing hippocampal Aβ levels after intracerebroventricular injection of Aβ; (2) AR-M1896 rather than M617 could imitate these effects of galanin; (3) GAL and GALR2 mRNA and protein levels increased significantly in hippocampus after Aβ administration, while GALR1 mRNA and protein levels did not change; (4) GAL, AR-M1896 and M617 administration did not show significant effect on GAL, GalR1 and GalR2 mRNA and protein levels in hippocampus after Aβ administration. These results implied that galanin receptor 2, but not receptor 1 was involved in the protective effects against spatial memory impairment and hippocampal Aβ aggregation.
Guimarães, Danielle A.; Rizzi, Elen; Ceron, Carla S.; Martins-Oliveira, Alisson; Gerlach, Raquel F.; Shiva, Sruti; Tanus-Santos, Jose E.
2015-01-01
Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. PMID:26343345
Ameliorative effects of Panax quinquefolium on experimentally induced reflux oesophagitis in rats
Singh, Pratibha; Singh, Neetu; Sengupta, Shibani; Palit, Gautam
2012-01-01
Background & objectives: Reflux oesophagitis (RE), is one of the most prevalent chronic gastrointestinal disorders commonly referred to as gastroesophageal reflux disease (GERD) and requires long term therapy. The present study was designed to investigate the protective effects of Panax quinquefolium (PQ), administered with variable doses, on experimentally induced reflux oesophagitis (RE) in rats. Methods: Forty two female Sprague-Dawley (180-220 g) rats were randomly divided to receive standardized root powder of PQ (50-200mg/kg, po), standard anti-reflux (omeprazole, 5 mg/kg, ip) and anti-oxidant (α-tocopherol, 16 mg/kg, po). After 45 min drug pretreatment, RE was produced in rats by simultaneous ligation of the pyloric end and forestomach. Several parameters, including macroscopic lesion index, glutathione system, lipid peroxidation (LPO) and tissue myeloperoxidase (MPO) activity were measured. Alterations in ICAM-1, CINC-2 and MCP-1 gene expression were examined through reverse transcriptase polymerase chain reaction (RT-PCR). Results: PQ significantly attenuated the severity of the macroscopic signs of RE-induced tissue damage, replenished the depleted GSH level and reduced the RE-associated LPO levels dose dependently. In contrast, omeprazole though effectively improved the mucosal damage, it failed to bring significant attenuation of RE-associated changes in LPO, GSH level and MPO activity. α-Tocopherol significantly ameliorated RE-induced tissue injury and improved LPO level and GSH/GSSG ratio but failed to counteract RE-induced MPO activity. PQ at dose of 100 mg/kg significantly downregulated ICAM-1 and CINC-2 expression whereas it showed no effect over MCP-1 expression. Interpretation & conclusions: The present data indicate that PQ protects against RE-induced oesophageal damage via a mechanism that inhibits the influx of inflammatory cell to oesophagus and a consequence excessive oxidative load, opening the avenue to its promising protective role in patients with gastroesophageal reflux disease (GERD). PMID:22561630
O'Farrell, C. L.; Strom, M.S.
1999-01-01
Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5, to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of rosa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization, and total p57 expression between 33209 anti MT 239 are not due to differences in rosa sequence or differences in steady state transcript levels.
Kajta, Malgorzata; Wnuk, Agnieszka; Rzemieniec, Joanna; Litwa, Ewa; Lason, Wladyslaw; Zelek-Molik, Agnieszka; Nalepa, Irena; Rogóż, Zofia; Grochowalski, Adam; Wojtowicz, Anna K
2017-07-01
Several lines of evidence suggest that exposures to Endocrine Disrupting Chemicals (EDCs) such as pesticides increase the risks of neuropsychiatric disorders. Despite extended residual persistence of dichlorodiphenyltrichloroethane (DDT) in the environment, the mechanisms of perinatal actions of DDT that could account for adult-onset of depression are largely unknown. This study demonstrated the isomer-specific induction of depressive-like behavior and impairment of Htr1a/serotonin signaling in one-month-old mice that were prenatally exposed to DDT. The effects were reversed by the antidepressant citalopram as evidenced in the forced swimming (FST) and tail suspension (TST) tests in the male and female mice. Prenatally administered DDT accumulated in mouse brain as determined with gas chromatography and tandem mass spectrometry, led to global DNA hypomethylation, and altered the levels of methylated DNA in specific genes. The induction of depressive-like behavior and impairment of Htr1a/serotonin signaling were accompanied by p,p'-DDT-specific decrease in the levels of estrogen receptors i.e. ESR1 and/or GPER1 depending on sex. In contrast, o,p'-DDT did not induce depressive-like effects and exhibited quite distinct pattern of biochemical alterations that was related to aryl hydrocarbon receptor (AHR), its nuclear translocator ARNT, and ESR2. Exposure to o,p'-DDT increased AHR expression in male and female brains, and reduced expression levels of ARNT and ESR2 in the female brains. The evolution of p,p'-DDT-induced depressive-like behavior was preceded by attenuation of Htr1a and Gper1/GPER1 expression as observed in the 7-day-old mouse pups. Because p,p'-DDT caused sex- and age-independent attenuation of GPER1, we suggest that impairment of GPER1 signaling plays a key role in the propagation of DDT-induced depressive-like symptoms. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianjun; Gao, Fei; Feng, Sifang
2015-08-28
MicroRNAs have been shown to act as crucial modulators during carcinogenesis. Recent studies have implied that miR-134 expression associated with epithelial-to-mesenchymal transition phenotype and invasive potential of NSCLC cells. Our study investigated the pathogenic implications of miR-134 in small cell lung cancer (SCLC). Overexpression or inhibition MiR-134 expression by miR-134 mimics or miR-134 inhibitors (anti-miR-134) in SCLC cell lines was detected using qRT-PCR. Lactate dehydrogenase (LDH) assay, MTT assays and flow cytometry were performed in order to clarify the growth and apoptosis of SCLC cells which had been transfected with miR-134 mimics or anti-miR-134. WWOX expression in H69 cells wasmore » detected by qRT-PCR and western blot, respectively. The results showed that overexpression miR-134 was significantly promoting SCLC cells growth and inhibit its apoptosis. In addition, reduced miR-134 expression was significantly correlated with cell growth inhibition and apoptosis promotion. Furthermore, transfection of miR-134 mimics into the SCLC cells markedly down-regulated the level of WWOX, whereas, anti-miR-134 up-regulated WWOX expression. We also found that overexpression WWOX attenuate miR-134 induced H69 cells growth, and promote cell apoptosis. Moreover, miR-134 promoted cell proliferation and inhibit apoptosis via the activation of ERK1/2 pathway. These findings suggest that miR-134 may be an ideal diagnostic and prognostic marker, and may be attributed to the molecular therapy of SCLC. - Highlights: • MiR-134 play roles in small cell lung cancer cell growth and apoptosis. • MiR-134 negative regulated the level of WWOX in H69 cells. • WWOX overexpression attenuate miR-134 induced H69 cells growth. • MiR-134 promotes cell growth via the activation of ERK1/2 pathway.« less
Tripathi, Yamini B; Shukla, Rashmi; Pandey, Nidhi; Pandey, Vivek; Kumar, Mohan
2017-02-01
Currently, no drug is available to directly target the signaling molecules involved in the pathogenesis of diabetic nephropathy (DN); only antihypertensive and antidiabetic drugs are in clinical use. In the present study, the therapeutic effects of a active fraction of tubers from Pueraria tuberosa (hereafter referred to as PTY-2) were investigated in streptozotocin (STZ)-diabetic rats with DN, with particular emphasis on its effects on extracellular matrix (ECM) accumulation and matrix metalloproteinase (Mmp)-9 expression in kidney tissue. Rats were injected with 55 mg/kg, i.p., STZ. After 40 days, rats were divided into groups as follows (n = 6 per group): Group 1, age-matched rats not injected with STZ (non-diabetic control); Group 2, STZ-diabetic DN rats; and Group 3, PTY-2 (30 mg/100 g, p.o.)-treated DN rats. After 20 days treatment, the effects of PTY-2 on serum urea and creatinine concentrations, urinary levels of glucose, creatinine, protein, and ketone bodies, and urine pH were determined. Kidney tissue was evaluated for Mmp-9 expression and histological changes. Blood glucose, serum urea, creatinine, and urine protein levels were significantly higher, and creatinine clearance was significantly lower, in Group 2 versus Group 1 rats. There was a higher degree of glomerulosclerosis, expansion of the mesangial matrix, and excess ECM deposition and eosinophilic casts in kidneys from Group 2 versus Group 1 rats. Furthermore, Mmp-9 activity and expression were significantly reduced in kidney homogenate of Group 2 versus Group 1 rats. Interestingly, PTY-2 treatment significantly reversed all these changes in DN rats. Treatment of DN rats with PTY-2 significantly attenuated the severity of DN by increasing the expression and activity of Mmp-9, consequently degrading the ECM accumulated in kidney tissue. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Zou, Leilei; Liu, Rui; Zhang, Xiaohui; Chu, Renyuan; Dai, Jinhui; Zhou, Hao
2014-01-01
Purpose Scleral remodeling is an important mechanism underlying the development of myopia. Atropine, an antagonist of G protein-coupled muscarinic receptors, is currently used as an off-label treatment for myopia. Regulator of G-protein signaling 2 (RGS2) functions as an intracellular selective inhibitor of muscarinic receptors. In this study we measured scleral RGS2 expression and scleral remodeling in an animal model of myopia in the presence or absence of atropine treatment. Methods Guinea pigs were assigned to four groups: normal (free of form deprivation), form deprivation myopia (FDM) for 4 weeks, FDM treated with saline, and FDM treated with atropine. Biometric measurements were then performed. RGS2 expression levels and scleral remodeling, including scleral thickness and collagen type I expression, were compared among the four groups. Results Compared with normal eyes and contralateral control eyes, the FDM eyes had the most prominent changes in refraction, axial length, and scleral remodeling, indicating myopia. There was no significant difference between control and normal eyes. Hematoxylin and eosin staining showed that the scleral thickness was significantly thinner in the posterior pole region of FDM eyes compared to normal eyes. Real-time PCR and western blot analysis showed a significant decrease in posterior scleral collagen type I mRNA and protein expression in the FDM eyes compared to the normal eyes. The FDM eyes also had increased levels of RGS2 mRNA and protein expression in the sclera. Atropine treatment attenuated the FDM-induced changes in refraction, axial length, and scleral remodeling. Interestingly, atropine treatment significantly increased collagen type I mRNA expression but decreased RGS2 mRNA and protein expression in the sclera of the FDM eyes. Conclusions We identified a significant RGS2 upregulation and collagen type I downregulation in the sclera of FDM eyes, which could be partially attenuated by atropine treatment. Our data suggest that targeting dysregulated RGS2 may provide a novel strategy for development of therapeutic agents to suppress myopia progression. PMID:25018620
Shishkina, G T; Kalinina, T S; Dygalo, N N
2004-01-01
Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain development may be involved in early-life programming of anxiety-related behavior.
HPV 5 and 8 E6 Expression Reduces ATM Protein Levels and Attenuates LINE-1 Retrotransposition
Wallace, Nicholas A.; Gasior, Stephen L.; Faber, Zachary J.; Howie, Heather L.; Deininger, Prescott L.; Galloway, Denise A.
2013-01-01
The expression of the E6 protein from certain members of the HPV genus β (β HPV 5 and 8 E6) can disrupt p53 signaling by diminishing the steady state levels of two p53 modifying enzymes, ATR and p300. Here, we show that β-HPV 5 and 8 E6 are also capable of reducing the steady state levels of another p53 modifying enzyme, ATM, and as a result restrict LINE-1 retrotransposition. Furthermore, we show that the reduction of both ATM and LINE-1 retrotransposition is dependent upon the ability of β-HPV 8 E6 to bind and degrade p300. We use inhibitors and dominant negative mutants to confirm that ATM is needed for efficient LINE-1 retrotransposition. Furthermore, neither sensitivity to LINE-1 expression nor LINE-1 induced DSB formation is altered in an ATM deficient background. Together, these data illustrate the broad impact some β-HPVs have on DNA damage signaling by promoting p300 degradation. PMID:23706308
Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping
2015-01-01
Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries. PMID:26501264
Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M
2013-08-01
Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.