Sample records for attenuates ischemic oxidative

  1. Extracts of Crataegus oxyacantha and Rosmarinus officinalis Attenuate Ischemic Myocardial Damage by Decreasing Oxidative Stress and Regulating the Production of Cardiac Vasoactive Agents.

    PubMed

    Cuevas-Durán, Raúl Enrique; Medrano-Rodríguez, Juan Carlos; Sánchez-Aguilar, María; Soria-Castro, Elizabeth; Rubio-Ruíz, María Esther; Del Valle-Mondragón, Leonardo; Sánchez-Mendoza, Alicia; Torres-Narvaéz, Juan Carlos; Pastelín-Hernández, Gustavo; Ibarra-Lara, Luz

    2017-11-14

    Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha ( Co ) and Rosmarinus officinalis ( Ro ) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI- Ro ); (d) Co extract-treated myocardial infarction (MI- Co ); or (e) Ro+Co -treated myocardial infarction (MI- Ro+Co ). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu 2+ /Zn 2+ , SOD-Mn 2+ , and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1-7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.

  2. Extracts of Crataegus oxyacantha and Rosmarinus officinalis Attenuate Ischemic Myocardial Damage by Decreasing Oxidative Stress and Regulating the Production of Cardiac Vasoactive Agents

    PubMed Central

    Cuevas-Durán, Raúl Enrique; Medrano-Rodríguez, Juan Carlos; Sánchez-Aguilar, María; Soria-Castro, Elizabeth; Del Valle-Mondragón, Leonardo; Sánchez-Mendoza, Alicia; Torres-Narvaéz, Juan Carlos; Pastelín-Hernández, Gustavo; Ibarra-Lara, Luz

    2017-01-01

    Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co) and Rosmarinus officinalis (Ro) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI-Ro); (d) Co extract-treated myocardial infarction (MI-Co); or (e) Ro+Co-treated myocardial infarction (MI-Ro+Co). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2′-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1–7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators. PMID:29135932

  3. Polyacetylene glycoside attenuates ischemic kidney injury by co-inhibiting inflammation, mitochondria dysfunction and lipotoxicity.

    PubMed

    Zhou, Yijie; Du, Dan; Liu, Shuyun; Zhao, Meng; Yuan, Yujia; Li, Lan; Chen, Younan; Lu, Yanrong; Cheng, Jingqiu; Liu, Jingping

    2018-07-01

    Ischemic acute kidney injury (AKI) is a serious clinical problem and no efficient therapeutics is available in clinic now. Natural polyacetylene glycosides (PGAs) had shown antioxidant and anti-inflammatory properties, but their effects on kidney injury have not been evaluated. This study aimed to investigate the protective effect of PGA on ischemic kidney injury in renal tubular epithelial cells (TECs) and mice. Hypoxic HK-2 cells and renal ischemia/reperfusion injury (IRI) mice were treated with PGA from Coreopsis tinctoria, and the cell viability, renal function, apoptosis, inflammation, mitochondrial injury, lipids metabolism were analyzed. In vitro results showed that PGA improved cell viability and reduced oxidative stress, pro-apoptotic/pro-inflammatory factors expression and NFκB activation in TECs under hypoxia/reperfusion (H/R). Moreover, PGA reduced mitochondria oxidative stress and improved ATP production, ΔΨm and mitochondria biogenesis, and inhibited lipids uptake, biosynthesis and accumulation in hypoxic TECs. In vivo, PGA significantly attenuated kidney injury and reduced blood urea nitrogen (BUN), serum creatinine (CREA) and urinary albumin (Alb), and increased creatinine clearance (CC) in IRI mice. PGA also decreased cell apoptosis, mitochondria oxidative stress, inflammatory response and lipid droplets accumulation, and promoted ATP generation in kidney of IRI mice. Our results proved that PGA ameliorated ischemic kidney injury via synergic anti-inflammation, mitochondria protection and anti-lipotoxicity actions, and it might be a promising multi-target therapy for ischemic AKI. Copyright © 2018. Published by Elsevier Inc.

  4. Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment.

    PubMed

    Chao, Dongman; Wang, Qinyu; Balboni, Gianfranco; Ding, Guanghong; Xia, Ying

    2016-12-01

    Perinatal hypoxic-ischemic (HI) brain injury results in death or profound long-term neurologic disability in both children and adults. However, there is no effective pharmacological therapy due to a poor understanding of HI events, especially the initial triggers for hypoxic-ischemic injury such as disrupted ionic homeostasis and the lack of effective intervention strategy. In the present study, we showed that neonatal brains undergo a developmental increase in the disruption of K + homeostasis during simulated ischemia, oxygen-glucose deprivation (OGD) and neonatal HI cortex has a triple phasic response (earlier attenuation, later enhancement, and then recovery) of disrupted K + homeostasis to OGD. This response partially involves the activity of the δ-opioid receptor (DOR) since the earlier attenuation of ischemic disruption of K + homeostasis could be blocked by DOR antagonism, while the later enhancement was reversed by DOR activation. Similar to DOR activation, acupuncture, a strategy to promote DOR activity, could partially reverse the later enhanced ischemic disruption of K + homeostasis in the neonatal cortex. Since maintaining cellular K + homeostasis and inhibiting excessive K + fluxes in the early phase of hypoxic-ischemic insults may be of therapeutic benefit in the treatment of ischemic brain injury and related neurodegenerative conditions, and since many neurons and other cells can be rescued during the "window of opportunity" after HI insults, our first findings regarding the role of acupuncture and DOR in attenuating ischemic disruption of K + homeostasis in the neonatal HI brain suggest a potential intervention therapy in the treatment of neonatal brain injury, especially hypoxic-ischemic encephalopathy.

  5. Tert-butylhydroquinone post-treatment attenuates neonatal hypoxic-ischemic brain damage in rats.

    PubMed

    Zhang, Juan; Tucker, Lorelei Donovan; DongYan; Lu, Yujiao; Yang, Luodan; Wu, Chongyun; Li, Yong; Zhang, Quanguang

    2018-06-01

    Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    PubMed

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. α-Lipoic Acid Promotes Neurological Recovery After Ischemic Stroke by Activating the Nrf2/HO-1 Pathway to Attenuate Oxidative Damage.

    PubMed

    Lv, Chengmei; Maharjan, Surendra; Wang, Qingqing; Sun, Yongxin; Han, Xu; Wang, Shan; Mao, Zhengchun; Xin, Yanming; Zhang, Bing

    2017-01-01

    Alpha-lipoic acid (α-LA) has been demonstrated to be protective against cerebral ischemia injury. Herein, we investigate the neuroprotective effect and underlying mechanisms of α-LA. In vivo study, α-LA was administered intravenously upon reperfusion of transient middle cerebral artery occlusion. Garcia score was used to evaluate neurologic recovery. Infarct volume was examined by TTC staining, and oxidative damage was evaluated by ELISA assay. In an in vitro study, neurons were pretreated with α-LA at different doses and then subjected to OGD. Lentiviral vectors were applied to knockdown nuclear factor-erythroid 2-related factor-2 (Nrf2) or heme oxygenase-1 (HO-1). Cell viability was measured using CCK8. Protein expression was evaluated using western blot, and immunofluorescence staining was assessed. α-LA significantly reduced the infarct volume, brain edema, and oxidative damage and promoted neurologic recovery in rats. Pretreatment of α-LA caused an obvious increase in cell viability and a decrease in intracellular reactive oxygen species. Western blot analyses and immunofluorescence staining demonstrated a distinct increase in Nrf2 and HO-1 protein expression. Conversely, knockdown of Nrf2 or HO-1 resulted in the down-regulation of HO-1 protein and inhibited the neuroprotective effect of α-LA. α-LA treatment is neuroprotective and promotes functional recovery after ischemic stroke by attenuating oxidative damage, which is partially mediated by the Nrf2/HO-1 pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke.

    PubMed

    Chen, Sheng-Hsien; Lin, Mao-Tsun; Chang, Ching-Ping

    2013-03-01

    The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1

  9. [Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart].

    PubMed

    Peng, Long-yun; Ma, Hong; He, Jian-gui; Gao, Xiu-ren; Zhang, Yan; He, Xiao-hong; Zhai, Yuan-sheng; Zhang, Xue-jiao

    2006-08-01

    To explore the effects of ischemic postconditioning on ischemia/reperfusion injury in isolated hypertrophied rat heart and investigate the signal transduction pathway changes induced by ischemia postconditioning. Cardiac hypertrophy was induced in rats by abdominal aortic banding, and isolated hypertrophied rat heart ischemia/reperfusion model was made by Langendorff technique to evaluate the effects of ischemia postconditioning on left ventricular systole pressure, coronary artery flow, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) release, myocardial infarction size, and the level of myocardial phospho-protein kinase B/Akt (Ser473), phospho-glycogen synthase kinase-3beta (Ser9). Following groups were studied (n = 12 each group): IR, 30 min ischemia (I)/60 min Reperfusion (R); Post: 30 min ischemia, 6 circles of 10 s I/10 s R followed by 60 min R; Post Wort: 30 min ischemia, 6 circles of 10 s I/10 s R, wortmannin (10(-7) mol/L) followed by 60 min R; Wort: 30 min ischemia, wortmannin (10(-7) mol/L) followed by 60 min R. Left ventricular systolic pressure and coronary artery flow were significantly increased, myocardial infarction size and the release of CPK, LDH significantly reduced in Post group compared to that in IR group. Phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) levels were also significantly higher in Post group than that in IR group. Phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the increase of phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) induced by ischemic postconditioning, but only partly abolished the cardioprotection of ischemic postconditioning. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart. The cardioprotective effects of ischemic postconditioning were partly mediated through PI3K/Akt/GSK-3beta signaling pathway.

  10. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  11. Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.

    PubMed

    Lavani, Romeen; Chang, Wei-Tien; Anderson, Travis; Shao, Zuo-Hui; Wojcik, Kimberly R; Li, Chang-Qing; Pietrowski, Robert; Beiser, David G; Idris, Ahamed H; Hamann, Kimm J; Becker, Lance B; Vanden Hoek, Terry L

    2007-07-01

    Acute changes in tissue CO2 and pH during reperfusion of the ischemic heart may affect ischemia/reperfusion injury. We tested whether gradual vs. acute decreases in CO2 after cardiomyocyte ischemia affect reperfusion oxidants and injury. Comparative laboratory investigation. Institutional laboratory. Embryonic chick cardiomyocytes. Microscope fields of approximately 500 chick cardiomyocytes were monitored throughout 1 hr of simulated ischemia (PO2 of 3-5 torr, PCO2 of 144 torr, pH 6.8), followed by 3 hrs of reperfusion (PO2 of 149 torr, PCO2 of 36 torr, pH 7.4), and compared with cells reperfused with relative hypercarbia (PCO2 of 71 torr, pH 6.8) or hypocarbia (PCO2 of 7 torr, pH 7.9). The measured outcomes included cell viability (via propidium iodide) and oxidant generation (reactive oxygen species via 2',7'-dichlorofluorescin oxidation and nitric oxide [NO] via 4,5-diaminofluorescein diacetate oxidation). Compared with normocarbic reperfusion, hypercarbia significantly reduced cell death from 54.8% +/- 4.0% to 26.3% +/- 2.8% (p < .001), significantly decreased reperfusion reactive oxygen species (p < .05), and increased NO at a later phase of reperfusion (p < .01). The NO synthase inhibitor N-nitro-L-arginine methyl ester (200 microM) reversed this oxidant attenuation (p < .05), NO increase (p < .05), and the cardioprotection conferred by hypercarbic reperfusion (increasing death to 54.3% +/- 6.0% [p < .05]). Conversely, hypocarbic reperfusion increased cell death to 80.4% +/- 4.5% (p < .01). It also increased reactive oxygen species by almost two-fold (p = .052), without affecting the NO level thereafter. Increased reactive oxygen species was attenuated by the mitochondrial complex III inhibitor stigmatellin (20 nM) when given at reperfusion (p < .05). Cell death also decreased from 85.9% +/- 4.5% to 52.2% +/- 6.5% (p < .01). The nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin (300 microM) had no effect on reperfusion reactive oxygen

  12. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury.

    PubMed

    Nowak, Grazyna; Takacsova-Bakajsova, Diana; Megyesi, Judit

    2017-01-01

    Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. Copyright © 2017 the American Physiological Society.

  13. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury

    PubMed Central

    Takacsova-Bakajsova, Diana; Megyesi, Judit

    2016-01-01

    Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. PMID:27760765

  14. Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure.

    PubMed

    Foster, Gary P; Westerdahl, Daniel E; Foster, Laura A; Hsu, Jeffrey V; Anholm, James D

    2011-12-15

    Ischemic pre-condition of an extremity (IPC) induces effects on local and remote tissues that are protective against ischemic injury. To test the effects of IPC on the normal hypoxic increase in pulmonary pressures and exercise performance, 8 amateur cyclists were evaluated under normoxia and hypoxia (13% F(I)O(2)) in a randomized cross-over trial. IPC was induced using an arterial occlusive cuff to one thigh for 5 min followed by deflation for 5 min for 4 cycles. In the control condition, the resting pulmonary artery systolic pressure (PASP) increased from a normoxic value of 25.6±2.3 mmHg to 41.8±7.2 mmHg following 90 min of hypoxia. In the IPC condition, the PASP increased to only 32.4±3.1 mmHg following hypoxia, representing a 72.8% attenuation (p=0.003). No significant difference was detected in cycle ergometer time trial duration between control and IPC conditions with either normoxia or hypoxia. IPC administered prior to hypoxic exposure was associated with profound attenuation of the normal hypoxic increase of pulmonary artery systolic pressure. Published by Elsevier B.V.

  15. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    PubMed

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation.

    PubMed

    Koh, Phil-Ok

    2011-07-08

    Nicotinamide protects cortical neuronal cells against cerebral ischemic injury through activation of various cytoprotective mechanisms. Here, this study confirmed the neuroprotective effects of nicotinamide in focal cerebral ischemic injury and investigated whether nicotinamide modulates a crucial survival pathway, Akt and its downstream targets. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2h after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24h after MCAO and infarct volumes were analyzed. Nicotinamide significantly reduced the infarct volume in the cerebral cortex. Potential activation was measured by phosphorylation of PDK1 at Ser(241), Akt at Ser(473), and Bad at Ser(136) using Western blot analysis. Nicotinamide prevented the injury-induced decrease of pPDK1, pAkt, and pBad levels. 14-3-3 levels were not different between vehicle- and nicotinamide-treated animals. However, pBad and 14-3-3 interaction levels decreased during MCAO, but were maintained in the presence of nicotinamide, compared to levels in control animals. These findings suggest that nicotinamide attenuates cell death due to focal cerebral ischemic injury and that neuroprotective effects are mediated through the Akt signaling pathway, thus enhancing neuronal survival. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. MORIN MITIGATES OXIDATIVE STRESS, APOPTOSIS AND INFLAMMATION IN CEREBRAL ISCHEMIC RATS

    PubMed Central

    Chen, Yanrong; Li, Yanke; Xu, Huali; Li, Gang; Ma, Yunxia; Pang, Yu Jun

    2017-01-01

    Background: Morin is a flavanoid which exhibits potent antioxidant activity in various oxidative stress related diseases. The current study was attempted to scrutinize the preclinical bio-efficacy of morin on focal ischemia. Methods: The animal model of focal cerebral ischemic injury was done by midbrain carotid artery occlusion (MCAO) method, followed by Morin (30mg/kg) administration for seven days. Results: The outcome of the study showed that treatment with morin displayed positive effects in reducing the focal cerebral ischemia. This effect was evident with the improvements in neurological deficits, reduction in MDA content and elevation of antioxidant levels (SOD, GSH and Gpx). Furthermore, protein expression of Bax and caspase-3 were effectively down-regulated, whilst the expression of Bcl-2 was significantly elevated. On the other hand, the mRNA expression of proinflammatory cytokines was significantly reduced in focal cerebral ischemic rats upon morin intervention. Conclusion: Thus, the beneficial effects of morin on cerebral ischemia assault may result from the reduction of oxidative stress, inhibition of apoptosis and inflammation. The neuroprotective effects of morin supplement may serve as potent adjuvant in the amelioration of ischemic stroke. PMID:28573251

  18. FOXO4-Knockdown Suppresses Oxidative Stress-Induced Apoptosis of Early Pro-Angiogenic Cells and Augments Their Neovascularization Capacities in Ischemic Limbs

    PubMed Central

    Nakayoshi, Takaharu; Sasaki, Ken-ichiro; Kajimoto, Hidemi; Koiwaya, Hiroshi; Ohtsuka, Masanori; Ueno, Takafumi; Chibana, Hidetoshi; Itaya, Naoki; Sasaki, Masahiro; Yokoyama, Shinji; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2014-01-01

    The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stress. Accordingly, we assessed whether FOXO4-knockdown EPCs (FOXO4KD-EPCs) could suppress the oxidative stress-induced apoptosis and augment the neovascularization capacity in ischemic limbs. We transfected small interfering RNA targeted against FOXO4 of human EPCs to generate FOXO4KD-EPCs and confirmed a successful knockdown. FOXO4KD-EPCs gained resistance to apoptosis in response to hydrogen peroxide in vitro. Oxidative stress stained by dihydroethidium was stronger for the immunodeficient rat ischemic limb tissue than for the rat non-ischemic one. Although the number of apoptotic EPCs injected into the rat ischemic limb was greater than that of apoptotic EPCs injected into the rat non-ischemic limb, FOXO4KD-EPCs injected into the rat ischemic limb brought less apoptosis and more neovascularization than EPCs. Taken together, the use of FOXO4KD-EPCs with resistance to oxidative stress-induced apoptosis may be a new strategy to augment the effects of therapeutic angiogenesis by intramuscular injection of EPCs. PMID:24663349

  19. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment. PMID:23691263

  20. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice.

    PubMed

    Rehni, Ashish K; Singh, Nirmal

    2007-01-01

    The present study has been designed to pharmacologically investigate the role of phosphoinositide 3-kinase in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion-induced behavioral dysfunction in mice. Bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in mice. Short-term memory was evaluated using the elevated plus maze test. The inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced impaired short-term memory, motor co-ordination and lateral push response. Three episodes of carotid artery occlusion for a period of 10 s and reperfusion of 10 s (ischemic postconditioning) significantly prevented ischemia-reperfusion-induced behavioral deficit measured in terms of loss of short-term memory, motor coordination and lateral push response. Wortmannin (2 mg/kg, iv), a phosphoinositide 3-kinase inhibitor given 10 min before ischemia attenuated the beneficial effects of ischemic postconditioning. It may be concluded that beneficial effects of ischemic postconditioning on global cerebral ischemia and reperfusion-induced behavioral deficits may involve activation of phosphoinositide 3-kinase-linked pathway.

  1. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

    PubMed

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.

  2. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation.

    PubMed

    Rong, Song; Hueper, Katja; Kirsch, Torsten; Greite, Robert; Klemann, Christian; Mengel, Michael; Meier, Matthias; Menne, Jan; Leitges, Michael; Susnik, Nathan; Meier, Martin; Haller, Hermann; Shushakova, Nelli; Gueler, Faikah

    2014-09-15

    Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H(2b) PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H(2d) recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI. Copyright © 2014 the American Physiological Society.

  3. Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke.

    PubMed

    Chen, Bin; Wang, Guoxiang; Li, Weiwei; Liu, Weilin; Lin, Ruhui; Tao, Jing; Jiang, Min; Chen, Lidian; Wang, Yun

    2017-02-15

    Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca 2+ ), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Limb remote ischemic preconditioning attenuates liver ischemia reperfusion injury by activating autophagy via modulating PPAR-γ pathway].

    PubMed

    Ruan, Wei; Liu, Qing; Chen, Chan; Li, Suobei; Xu, Junmei

    2016-09-28

    To investigate the effect of limb remote ischemic preconditioning (RIPC) on hepatic ischemia/reperfusion (IR) injury and the underlying mechanisms.
 Rats were subjected to partial hepatic IR (60 min ischemia followed by 24 hours reperfusion) with or without RIPC, which was achieved by 3 cycles of 10 min-occlusion and 10 min-
reperfusion at the bilateral femoral arteries interval 30 min before ischemia. Some rats were treated with a new PPAR-γ inhibitor, T0070907, before RIPC.
 At the end of reperfusion, liver injury was significantly increased (increases in Suzike's injury score, AST and ALT release), concomitant with elevated oxidative stress (increases in MDA formation, MPO activity, as well as the decrease in SOD activity) and inflammation (increases in TNF-α and IL-6 levels, decrease in IL-10 content). RIPC improved liver function and reduced histologic damage, accompanied by the increased PPAR-γ activation and autophagosome formation as well as the reduced autophagosome clearance. The beneficial effects of RIPC were markedly attenuated by T0070907, an inhibitor of PPAR-γ.
 RIPC exerts the protective effects on liver by activation of autophagy via PPAR-γ.

  5. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet–Fed Mice

    PubMed Central

    Ryan, Terence E.; Schmidt, Cameron A.; Green, Thomas D.; Spangenburg, Espen E.; Neufer, P. Darrell

    2016-01-01

    Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD. PMID:27284110

  6. G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco

    PubMed Central

    Diakite, Brehima; Hamzi, Khalil; Slassi, Ilham; EL Yahyaoui, Mohammed; EL Alaoui, Moulay M.F.; Habbal, Rachida; Sellama, Nadifi

    2014-01-01

    Nitric oxide plays a major role in the regulation of cerebral blood flow and loss of its function leads to alteration of the vascular relaxation given its central role in the physiology of the vascular system. G894T eNOS polymorphism could have adverse effects on the expression and activity of endothelial nitric oxide synthase, which can result in functional impairment of the endothelium and contribute to the development of ischemic stroke in the different models of transmission. In this study, genotyping with PCR-RFLP and HRM (high resolution melting) methods were conducted on 165 ischemic stroke patients as well as 182 controls. The goal here was to compare genotyping with PCR-RLFP primer sequences of eNOS gene (size < 300 bp) to HRM. Our data suggests a statistically significant association between G894T eNOS polymorphism and ischemic stroke in recessive, dominant and additive models with P < 0.05 and odds ratio of 2.68 (1.08–6.70), 1.78 (1.16–2.73), and 1.71 (1.21–2.43) respectively. In sum, although the sample size is relatively small, it suggests that G894T eNOS polymorphism could be a potentially important genetic marker of ischemic stroke in the Moroccan population. Future studies should be conducted in this direction taking into consideration the functional activity of eNOS. PMID:25606419

  7. Ferulic Acid Attenuates the Injury-Induced Decrease of Protein Phosphatase 2A Subunit B in Ischemic Brain Injury

    PubMed Central

    Koh, Phil-Ok

    2013-01-01

    Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830

  8. Influence of remote ischemic conditioning and tramadol hydrochloride on oxidative stress in kidney ischemia/reperfusion injury in rats.

    PubMed

    Oliveira, Rita de Cássia Silva de; Brito, Marcus Vinicius Henriques; Ribeiro, Rubens Fernando Gonçalves; Oliveira, Leonam Oliver Durval; Monteiro, Andrew Moraes; Brandão, Fernando Mateus Viegas; Cavalcante, Lainy Carollyne da Costa; Gouveia, Eduardo Henrique Herbster; Henriques, Higor Yuri Bezerra

    2017-03-01

    To evaluate the effects of tramadol hydrochloride associated to remote ischemic perconditioning on oxidative stress. Twenty five male rats (Wistar) underwent right nephrectomy and were distributed into five groups: Sham group (S); Ischemia/Reperfusion group (I/R) with 30 minutes of renal ischemia; Remote ischemic perconditioning group (Per) with three cycles of 10 minutes of I/R performed during kidney ischemia; Tramadol group (T) treated with tramadol hydrochloride (40mg/kg); remote ischemic perconditioning + Tramadol group (Per+T) with both treatments. Oxidative stress was assessed after 24 hours of reperfusion. Statistical differences were observed in MDA levels between I/R group with all groups (p<0.01), in addition there was difference between Tramadol with Sham, Per and Per+T groups (p<0.05), both in plasma and renal tissue. Remote ischemic perconditioning was more effective reducing renal ischemia-reperfusion injury than administration of tramadol or association of both treatments.

  9. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  10. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

    PubMed

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann; Wensvoort, Gert; Rong, Song

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.

  11. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice.

    PubMed

    Sahni, Prateek V; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S; Ten, Vadim S

    2018-02-01

    BackgroundReverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate.MethodsNeonatal mice were subjected to Rice-Vannucci model of hypoxic-ischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H 2 O 2 generation rate in the ischemic brain.ResultsWhile brain mitochondria from control mice exhibited a rotenone-sensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H 2 O 2 emission rate in HI-mice compared to controls. At 60 min of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls.ConclusionThese data are the first ex vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion.

  12. Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment.

    PubMed

    Mahfoudh-Boussaid, Asma; Zaouali, Mohamed Amine; Hauet, Thierry; Hadj-Ayed, Kaouther; Miled, Abdel-Hédi; Ghoul-Mazgar, Sonia; Saidane-Mosbahi, Dalila; Rosello-Catafau, Joan; Ben Abdennebi, Hassen

    2012-08-01

    Endoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia. Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of ischemia/reperfusion (10-s each cycle) just after 60-min of warm ischemia (IPostC group, n = 6), or to i.p. injection of TMZ (3 mg/kg) 30-min before ischemia (TMZ group, n = 6), or to the combination of both treatments (IPostC+TMZ group, n = 6). The results of these experimental groups were compared to those of a sham-operated group in which rat renal pedicles were only dissected. Sodium reabsorption rate, creatinine clearance lactate deshydrogenase (LDH) activity in plasma, and concentration of malonedialdehyde (MDA) in tissue were determined. In addition, Western blot analysis was performed to identify the amounts of cytochrome c, c-JunNH2-terminal kinase (JNK), voltage-dependent anion channel (VDAC), glycogen synthase kinase 3-beta (GSK3-β), and ER stress parameters. IPostC or/and TMZ significantly decreased cytolysis, oxidative stress and improved renal function in comparison to I/R group. IPostC but not TMZ significantly attenuated ER stress parameters versus I/R group. Indeed, it down-regulated the glucose-regulated protein 78 (GRP78), the activating transcription factor 4 (ATF4), the RNA activated protein kinase (PKR)-like ER kinas (PERK), the X box binding protein-1 (XBP-1) and the caspase12 protein levels. TMZ treatment significantly augmented GSK3-β phosphorylation and reduced levels of cytochrome c and VDAC phosphorylation in comparison to IPostC application. The combination of both treatments gave a synergetic effect. It significantly improved the survival rate, attenuated

  13. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture.

    PubMed

    Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua

    2014-11-01

    Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg methyllycaconitine (α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68(+) , M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of nuclear factor kappa b in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN(+) TUNEL(+) ), fewer CD68(+) and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of nuclear factor kappa b p65. Methyllycaconitine had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. Bone fracture at the acute stage of stroke exacerbates neuroinflammation, oxidative stress, and brain injury, and our study has shown that the α-7 nAchR agonist, PHA (PHA 568487), attenuates neuroinflammation, oxidative stress, and brain injury in mice with stroke and bone fracture. Hence, PHA could provide an opportunity to develop a new strategy to reduce brain injury in patients suffering from stroke and bone fracture. © 2014 International Society for Neurochemistry.

  14. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  15. Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes.

    PubMed

    Shao, Zuo-Hui; Becker, Lance B; Vanden Hoek, Terry L; Schumacker, Paul T; Li, Chang-Qing; Zhao, Danhong; Wojcik, Kim; Anderson, Travis; Qin, Yimin; Dey, Lucy; Yuan, Chun-Su

    2003-06-01

    This study sought to test whether grape seed proanthocyanidin extract (GSPE) attenuates exogenous and endogenous oxidant stress induced in chick cardiomyocytes and whether this cytoprotection is mediated by PKC activation, mito K(ATP) channel opening, NO production, oxidant scavenging, or iron chelating effects. Cells were exposed to hydrogen peroxide (H(2)O(2)) (exogenous oxidant stress, 0.5mM) or antimycin A (endogenous oxidant stress, 100 micro M) for 2h following pretreatment with GSPE at various concentrations for 2h. Cells were also pretreated with GSPE or with inhibitors of PKC (chelerytherine), mito K(ATP) channel (5-hydroxydecanoate), nitric oxide synthase (nitro-L-arginine methyl ester) for 2h. Oxidant stress was measured by 2',7'-dichlorofluorescin diacetate and cell viability was assessed using propidium iodide. Free radical scavenging and iron chelating ability was tested in vitro. GSPE dose-dependently attenuated oxidant formation and significantly improved cell survival and contractile function. However, inhibitors of PKC, mito K(ATP) channel or NO synthase failed to abolish the protective action of GSPE during H(2)O(2) or antimycin A exposure. In vitro studies suggested that GSPE scavenges H(2)O(2), hydroxyl radical and superoxide, and may chelate iron. These results indicate that GSPE confers cardioprotection against exogenous H(2)O(2)- or antimycin A-induced oxidant injury. Its effect does not require PKC, mito K(ATP) channel, or NO synthase, presumably because it acts by reactive oxygen species scavenging and iron chelating directly.

  16. Elevated Glucose Oxidation, Reduced Insulin Secretion, and a Fatty Heart May Be Protective Adaptions in Ischemic CAD.

    PubMed

    Hannukainen, J C; Lautamäki, R; Mari, A; Pärkkä, J P; Bucci, M; Guzzardi, M A; Kajander, S; Tuokkola, T; Knuuti, J; Iozzo, P

    2016-07-01

    Insulin resistance, β-cell dysfunction, and ectopic fat deposition have been implicated in the pathogenesis of coronary artery disease (CAD) and type 2 diabetes, which is common in CAD patients. We investigated whether CAD is an independent predictor of these metabolic abnormalities and whether this interaction is influenced by superimposed myocardial ischemia. We studied CAD patients with (n = 8) and without (n = 14) myocardial ischemia and eight non-CAD controls. Insulin sensitivity and secretion and substrate oxidation were measured during fasting and oral glucose tolerance testing. We used magnetic resonance imaging/spectroscopy, positron emission and computerized tomography to characterize CAD, cardiac function, pericardial and abdominal adipose tissue, and myocardial, liver, and pancreatic triglyceride contents. Ischemic CAD was characterized by elevated oxidative glucose metabolism and a proportional decline in β-cell insulin secretion and reduction in lipid oxidation. Cardiac function was preserved in CAD groups, whereas cardiac fat depots were elevated in ischemic CAD compared to non-CAD subjects. Liver and pancreatic fat contents were similar in all groups and related with surrounding adipose masses or systemic insulin sensitivity. In ischemic CAD patients, glucose oxidation is enhanced and correlates inversely with insulin secretion. This can be seen as a mechanism to prevent glucose lowering because glucose is required in oxygen-deprived tissues. On the other hand, the accumulation of cardiac triglycerides may be a physiological adaptation to the limited fatty acid oxidative capacity. Our results underscore the urgent need of clinical trials that define the optimal/safest glycemic range in situations of myocardial ischemia.

  17. Elevated Glucose Oxidation, Reduced Insulin Secretion, and a Fatty Heart May Be Protective Adaptions in Ischemic CAD

    PubMed Central

    Hannukainen, J. C.; Lautamäki, R.; Mari, A.; Pärkkä, J. P.; Bucci, M.; Guzzardi, M. A.; Kajander, S.; Tuokkola, T.; Knuuti, J.

    2016-01-01

    Background: Insulin resistance, β-cell dysfunction, and ectopic fat deposition have been implicated in the pathogenesis of coronary artery disease (CAD) and type 2 diabetes, which is common in CAD patients. We investigated whether CAD is an independent predictor of these metabolic abnormalities and whether this interaction is influenced by superimposed myocardial ischemia. Methods and Results: We studied CAD patients with (n = 8) and without (n = 14) myocardial ischemia and eight non-CAD controls. Insulin sensitivity and secretion and substrate oxidation were measured during fasting and oral glucose tolerance testing. We used magnetic resonance imaging/spectroscopy, positron emission and computerized tomography to characterize CAD, cardiac function, pericardial and abdominal adipose tissue, and myocardial, liver, and pancreatic triglyceride contents. Ischemic CAD was characterized by elevated oxidative glucose metabolism and a proportional decline in β-cell insulin secretion and reduction in lipid oxidation. Cardiac function was preserved in CAD groups, whereas cardiac fat depots were elevated in ischemic CAD compared to non-CAD subjects. Liver and pancreatic fat contents were similar in all groups and related with surrounding adipose masses or systemic insulin sensitivity. Conclusions: In ischemic CAD patients, glucose oxidation is enhanced and correlates inversely with insulin secretion. This can be seen as a mechanism to prevent glucose lowering because glucose is required in oxygen-deprived tissues. On the other hand, the accumulation of cardiac triglycerides may be a physiological adaptation to the limited fatty acid oxidative capacity. Our results underscore the urgent need of clinical trials that define the optimal/safest glycemic range in situations of myocardial ischemia. PMID:27045985

  18. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuatedmore » the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.« less

  19. Association between oxidized low-density lipoprotein and cognitive impairment in patients with ischemic stroke.

    PubMed

    Wang, A; Liu, J; Meng, X; Li, J; Wang, H; Wang, Y; Su, Z; Zhang, N; Dai, L; Wang, Y; Wang, Y

    2018-01-01

    The association between oxidized low-density lipoprotein (oxLDL) and cognitive impairment is unclear. This study aimed to investigate the potential association between oxLDL and cognitive impairment among patients with acute ischemic stroke. We measured the levels of oxLDL and recorded the Mini-Mental State Examination (MMSE) score in patients with acute ischemic stroke who were recruited from the Study of Oxidative Stress in Patients with Acute Ischemic Stroke. Cognitive impairment was defined as an MMSE score of <24. The association between oxLDL and cognitive impairment was assessed by multivariate logistic or linear regression analysis. Other clinical variables of interest were also studied. A total of 3726 patients [1287 (34.54%) female] were included in this study, with a mean age of 63.62 ± 11.96 years. After adjusting for potential confounders in our logistic regression model, each SD increase in oxLDL was associated with a 26% increase in the prevalence of cognitive impairment (odds radio, 1.26; 95% confidence interval, 1.13-1.39; P < 0.0001). Similarly, higher oxLDL was associated with lower MMSE scores, with a 0.56-point decrease in MMSE score for every SD increase in oxLDL in a linear regression analysis (β = -0.56; 95% confidence interval, -0.81 to -0.32; P < 0.0001). There were no significant interactions between oxLDL and age, sex or education levels for cognitive impairment (all interactions, P > 0.05). Elevated levels of oxLDL were associated with a higher prevalence of cognitive impairment in patients with ischemic stroke. © 2017 EAN.

  20. Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.

    PubMed

    Jeong, Hoon Jae; Kim, Dae Won; Kim, Mi Jin; Woo, Su Jung; Kim, Hye Ri; Kim, So Mi; Jo, Hyo Sang; Hwang, Hyun Sook; Kim, Duk Soo; Cho, Sung Woo; Won, Moo Ho; Han, Kyu Hyung; Park, Jin Seu; Eum, Won Sik; Choi, Soo Young

    2012-10-31

    Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a doseand time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.

  1. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  2. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia-reperfusion in rats.

    PubMed

    Bonetto, Jéssica Hellen Poletto; Fernandes, Rafael Oliveira; Seolin, Bruna Gazzi de Lima; Müller, Dalvana Daneliza; Teixeira, Rayane Brinck; Araujo, Alex Sander; Vassallo, Dalton; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane

    2016-05-01

    Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg(-1)·day(-1)) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.

  3. Allogeneic Cardiospheres Delivered via Percutaneous Transendocardial Injection Increase Viable Myocardium, Decrease Scar Size, and Attenuate Cardiac Dilatation in Porcine Ischemic Cardiomyopathy

    PubMed Central

    Tseliou, Eleni; Cheng, Ke; Luthringer, Daniel J.; Ho, Chak-Sum; Takayama, Kentaro; Minamino, Naoto; Dawkins, James F.; Chowdhury, Supurna; Duong, Doan Trang; Seinfeld, Jeffrey; Middleton, Ryan C.; Dharmakumar, Rohan; Li, Debiao; Marbán, Linda; Makkar, Raj R.; Marbán, Eduardo

    2014-01-01

    Background Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI), but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy. Methods and Results We studied a total of 89 minipigs; 63 completed the specified protocols. After NOGA-guided transendocardial injection, we quantified engraftment of escalating doses of allogeneic cardiospheres or cardiosphere-derived cells in minipigs (n = 22) post-MI. Next, a dose-ranging, blinded, randomized, placebo-controlled (“dose optimization”) study of transendocardial injection of the better-engrafting product was performed in infarcted minipigs (n = 16). Finally, the superior product and dose (150 million cardiospheres) were tested in a blinded, randomized, placebo-controlled (“pivotal”) study (n = 22). Contrast-enhanced cardiac MRI revealed that all cardiosphere doses preserved systolic function and attenuated remodeling. The maximum feasible dose (150 million cells) was most effective in reducing scar size, increasing viable myocardium and improving ejection fraction. In the pivotal study, eight weeks post-injection, histopathology demonstrated no excess inflammation, and no myocyte hypertrophy, in treated minipigs versus controls. No alloreactive donor-specific antibodies developed over time. MRI showed reduced scar size, increased viable mass, and attenuation of cardiac dilatation with no effect on ejection fraction in the treated group compared to placebo. Conclusions Dose-optimized injection of allogeneic cardiospheres is safe, decreases scar size, increases viable myocardium, and attenuates cardiac dilatation in porcine chronic ischemic cardiomyopathy. The decreases in scar size, mirrored by increases in viable myocardium, are consistent with therapeutic regeneration

  4. Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart

    PubMed Central

    Narang, Deepak; Sood, Subeena; Thomas, Mathew Kadali; Dinda, Amit Kumar; Maulik, Subir Kumar

    2004-01-01

    Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Antioxidants have potent therapeutic effects on both ischemic heart disease and ischemic-reperfusion injury. Information on the effect of PO on ischemic-reperfusion injury is, however, lacking. In the present study, the effect of dietary palm olein oil on oxidative stress associated with IRI was investigated in an isolated rat heart model. Wistar rats (150–200 gm) of either sex were divided into three different groups (n = 16). Rats were fed with palm olein oil supplemented commercial rat diet, in two different doses [5% v / w (PO 5) and 10% v / w (PO 10) of diet] for 30 days. Control rats (C) were fed with normal diet. After 30 days, half the rats from each group were subjected to in vitro myocardial IRI (20 min of global ischemia, followed by 40 min of reperfusion). Hearts from all the groups were then processed for biochemical and histopathological studies. One way ANOVA followed by Bonferroni test was applied to test for significance and values are expressed as mean ± SE (p < 0.05). Results There was a significant increase in myocardial catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities with no significant change in myocardial thiobarbituric acid reactive substances (TBARS) only in group PO 5 as compared to group C. There was no light microscopic evidence of tissue injury. A significant rise in myocardial TBARS and depletion of myocardial endogenous antioxidants (SOD, CAT and GPx) along with significant myocyte injury was observed in

  5. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway

    PubMed Central

    Wu, Jingxian; Li, Qiong; Wang, Xiaoyan; Yu, Shanshan; Li, Lan; Wu, Xuemei; Chen, Yanlin; Zhao, Jing; Zhao, Yong

    2013-01-01

    Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage. PMID:23555802

  6. Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes.

    PubMed

    Ahmed, Shahid; Adamidis, Ananea; Jan, Louis C; Gibbons, Nora; Mattana, Joseph

    2003-10-01

    In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.

  7. Mitochondrial complex I and NAD(P)H oxidase are major sources of exacerbated oxidative stress in pressure-overloaded ischemic-reperfused hearts.

    PubMed

    Mozaffari, Mahmood S; Baban, Babak; Liu, Jun Yao; Abebe, Worku; Sullivan, Jennifer C; El-Marakby, Ahmed

    2011-03-01

    We tested the hypothesis that pressure overload exacerbates oxidative stress associated with augmented mitochondrial permeability transition (MPT) pore opening and cell death in ischemic-reperfused hearts. Pressure overload decreased the level of reduced glutathione but increased nitrotyrosine and 8-hydroxydeoxyguanosine levels in ischemic-reperfused hearts. The activity of catalase, but not superoxide dismutase (SOD), was lower in ischemic-reperfused hearts perfused at higher pressure. Mitochondria from ischemic-reperfused hearts subjected to higher perfusion pressure displayed significantly greater [³H]-2-deoxyglucose-6-P entrapment suggestive of greater MPT pore opening and consistent with greater necrosis and apoptosis. Tempol (SOD mimetic) reduced infarct size in both groups but it remained greater in the higher pressure group. By contrast, uric acid (peroxynitrite scavenger) markedly reduced infarct size at higher pressure, effectively eliminating the differential between the two groups. Inhibition of xanthine oxidase, with allopurinol, reduced infarct size but did not eliminate the differential between the two groups. However, amobarbital (inhibitor of mitochondrial complex I) or apocynin [inhibitor of NAD(P)H oxidase] reduced infarct size at both pressures and also abrogated the differential between the two groups. Consistent with the effect of apocynin, pressure-overloaded hearts displayed significantly higher NAD(P)H oxidase activity. Furthermore, pressure-overloaded hearts displayed increased nitric oxide synthase activity which, along with increased propensity to superoxide generation, may underlie uric acid-induced cardioprotection. In conclusion, increased oxidative and nitrosative stress, coupled with lack of augmented SOD and catalase activities, contributes importantly to the exacerbating impact of pressure overload on MPT pore opening and cell death in ischemic-reperfused hearts.

  8. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    USDA-ARS?s Scientific Manuscript database

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  9. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning

    PubMed Central

    Rossbach, Andreas; Halestrap, Andrew P

    2016-01-01

    Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescence and reflectance of Langendorff-perfused rat hearts at multiple wavelengths, with simultaneous measurements of hemodynamic function. Potential interference by motion artefacts and internal filtering was assessed and minimised. Re-oxidation of NAD(P)H and flavoproteins on reperfusion (detected using autofluorescence) was rapid (t0.5 < 15 s) and significantly slower following ischemic preconditioning (IP). This argues against superoxide production from reduced Complex 1 being a critical mediator of initial mPTP opening during early reperfusion. Furthermore, MitoPY1 (a mitochondria-targeted H2O2-sensitive fluorescent probe) and aconitase activity measurements failed to detect matrix ROS increases during early reperfusion. However, two different fluorescent cytosolic ROS probes did detect ROS increases after 2–3 min of reperfusion, which was shown to be after initiation of mPTP opening. Cyclosporin A (CsA) and IP attenuated these responses and reduced infarct size. [Ca2+]i (monitored with Indo-1) increased progressively during ischemia, but dropped rapidly within 90 s of reperfusion when total mitochondrial [Ca2+] was shown to be increased. These early changes in [Ca2+] were not attenuated by IP, but substantial [Ca2+] increases were observed after 2–3 min reperfusion and these were prevented by both IP and CsA. Our data suggest that the major increases in ROS and [Ca2+] detected later in reperfusion are secondary to mPTP opening. If earlier IP-sensitive changes occur that might trigger initial mPTP opening they are below our limit of detection. Rather, we suggest that IP

  10. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning.

    PubMed

    Andrienko, Tatyana; Pasdois, Philippe; Rossbach, Andreas; Halestrap, Andrew P

    2016-01-01

    Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescence and reflectance of Langendorff-perfused rat hearts at multiple wavelengths, with simultaneous measurements of hemodynamic function. Potential interference by motion artefacts and internal filtering was assessed and minimised. Re-oxidation of NAD(P)H and flavoproteins on reperfusion (detected using autofluorescence) was rapid (t0.5 < 15 s) and significantly slower following ischemic preconditioning (IP). This argues against superoxide production from reduced Complex 1 being a critical mediator of initial mPTP opening during early reperfusion. Furthermore, MitoPY1 (a mitochondria-targeted H2O2-sensitive fluorescent probe) and aconitase activity measurements failed to detect matrix ROS increases during early reperfusion. However, two different fluorescent cytosolic ROS probes did detect ROS increases after 2-3 min of reperfusion, which was shown to be after initiation of mPTP opening. Cyclosporin A (CsA) and IP attenuated these responses and reduced infarct size. [Ca2+]i (monitored with Indo-1) increased progressively during ischemia, but dropped rapidly within 90 s of reperfusion when total mitochondrial [Ca2+] was shown to be increased. These early changes in [Ca2+] were not attenuated by IP, but substantial [Ca2+] increases were observed after 2-3 min reperfusion and these were prevented by both IP and CsA. Our data suggest that the major increases in ROS and [Ca2+] detected later in reperfusion are secondary to mPTP opening. If earlier IP-sensitive changes occur that might trigger initial mPTP opening they are below our limit of detection. Rather, we suggest that IP may

  11. Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy.

    PubMed

    Gao, Yunan; Yang, Hongxiao; Chi, Jing; Xu, Qiannan; Zhao, Luqi; Yang, Weijia; Liu, Weifan; Yang, Wei

    2017-01-01

    To study the effect of inhaling hydrogen gas on myocardial ischemic/reperfusion(I/R) injury in rats. Seventy male Wistar albino rats were divided into five groups at random as the sham group (Sham). The I/R group (I/R), The ischemic postconditioning group (IPo), The I/R plus hydrogen group (IH2) and the ischemic postconditioning plus hydrogen group (IPoH2). The Sham group was without coronary occlusion. In I/R group, Ischemic/reperfusion injury was induced by coronary occlusion for 1 hour. Followed by 2 hours of reperfusion. In the IPo and IPoH2 group, four cycles of 1 min reperfusion/1 min ischemia was given at the end of 1 hour coronary occlusion. While 2% hydrogen was administered by inhalation 5 min before reperfusion till 2 hours after reperfusion in both the IPoH2 and IH2 group. The heart and blood samples were harvested at the end of the surgical protocol. Then the myocardium cell endoplasmic reticulum(ER) stress and autophagy was observed by electron microscope. In addition, the cardiac ER stress and autophagy related proteins expression were detected by Western blotting analysis. Both inhaling 2% hydrogen and ischemic postconditioning treatment reduced the ischemic size and serum troponin I level in rats with I/R injury, and inhaling hydrogen showed a more curative effect compared with ischemic postconditioning treatment. Meanwhile inhaling hydrogen showed a better protective effect in attenuating tissue reactive oxygen species. Malondialdehyde levels and immunoreactivities against 8-hydroxy-2'-deoxyguanosine and inhibiting cardiac endoplasmic reticulum stress and down-regulating autophagy as compared with ischemic postconditioning treatment. These results revealed a better protective effect of hydrogen on myocardial ischemic/reperfusion injury in rats by attenuating endoplasmic reticulum stress and down-regulating autophagy compared with ischemic postconditioning treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Heme oxygenase-1 induction improves ischemic renal failure: role of nitric oxide and peroxynitrite.

    PubMed

    Salom, Miguel G; Cerón, Susana Nieto; Rodriguez, Francisca; Lopez, Bernardo; Hernández, Isabel; Martínez, José Gil; Losa, Adoración Martínez; Fenoy, Francisco J

    2007-12-01

    The present study evaluated the effects of heme oxygenase-1 (HO-1) induction on the changes in renal outer medullary nitric oxide (NO) and peroxynitrite levels during 45-min renal ischemia and 30-min reperfusion in anesthetized rats. Glomerular filtration rate (GFR), outer medullary blood flow (OMBF), HO and nitric oxide synthase (NOS) isoform expression, and renal low-molecular-weight thiols (-SH) were also determined. During ischemia significant increases in NO levels and peroxynitrite signal were observed (from 832.1 +/- 129.3 to 2,928.6 +/- 502.0 nM and from 3.8 +/- 0.7 to 9.0 +/- 1.6 nA before and during ischemia, respectively) that dropped to preischemic levels during reperfusion. OMBF and -SH significantly decreased after 30 min of reperfusion. Twenty-four hours later, an acute renal failure was observed (GFR 923.0 +/- 66.0 and 253.6 +/- 55.3 microl.min(-1).g kidney wt(-1) in sham-operated and ischemic kidneys, respectively; P < 0.05). The induction of HO-1 (CoCl(2) 60 mg/kg sc, 24 h before ischemia) decreased basal NO concentration (99.7 +/- 41.0 nM), although endothelial and neuronal NOS expression were slightly increased. CoCl(2) administration also blunted the ischemic increase in NO and peroxynitrite (maximum values of 1,315.6 +/- 445.6 nM and 6.3 +/- 0.5 nA, respectively; P < 0.05), preserving postischemic OMBF and GFR (686.4 +/- 45.2 microl.min(-1).g kidney wt(-1)). These beneficial effects of CoCl(2) on ischemic acute renal failure seem to be due to HO-1 induction, because they were abolished by stannous mesoporphyrin, a HO inhibitor. In conclusion, HO-1 induction has a protective effect on ischemic renal failure that seems to be partially mediated by decreasing the excessive production of NO with the subsequent reduction in peroxynitrite formation observed during ischemia.

  13. CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia.

    PubMed

    Wallace, Kedra; Cornelius, Denise C; Scott, Jeremy; Heath, Judith; Moseley, Janae; Chatman, Krystal; LaMarca, Babbette

    2014-11-01

    Preeclampsia is associated with oxidative stress, which is suspected to play a role in hypertension, placental ischemia, and fetal demise associated with the disease. Various cellular sources of oxidative stress, such as neutrophils, monocytes, and CD4(+) T cells have been suggested as culprits in the pathophysiology of preeclampsia. The objective of this study was to examine a role of circulating and placental CD4(+) T cells in oxidative stress in response to placental ischemia during pregnancy. CD4(+) T cells and oxidative stress were measured in preeclamptic and normal pregnant women, placental ischemic and normal pregnant rats, and normal pregnant recipient rats of placental ischemic CD4(+) T cells. Women with preeclampsia had significantly increased circulating (P=0.02) and placental CD4(+) T cells (P=0.0001); lymphocyte secretion of myeloperoxidase (P=0.004); and placental reactive oxygen species (P=0.0004) when compared with normal pregnant women. CD4(+) T cells from placental ischemic rats cause many facets of preeclampsia when injected into normal pregnant recipient rats on gestational day 13. On gestational day 19, blood pressure increased in normal pregnant recipients of placental ischemic CD4(+) T cells (P=0.002) compared with that in normal pregnant rats. Similar to preeclamptic patients, CD4(+) T cells from placental ischemic rats secreted significantly more myeloperoxidase (P=0.003) and induced oxidative stress in cultured vascular cells (P=0.003) than normal pregnant rat CD4(+)Tcells. Apocynin, a nicotinamide adenine dinucleotide phosphate inhibitor, attenuated hypertension and all oxidative stress markers in placental ischemic and normal pregnant recipient rats of placental ischemic CD4(+)Tcells (P=0.05). These data demonstrate an important role for CD4(+) T cells in mediating another factor, oxidative stress, to cause hypertension during preeclampsia. © 2014 American Heart Association, Inc.

  14. Probucol plus cilostazol attenuate hypercholesterolemia‑induced exacerbation in ischemic brain injury via anti-inflammatory effects.

    PubMed

    Kim, Ji Hyun; Hong, Ki Whan; Bae, Sun Sik; Shin, Yong-Il; Choi, Byung Tae; Shin, Hwa Kyoung

    2014-09-01

    Probucol, a lipid-lowering agent with anti-oxidant properties, is involved in protection against atherosclerosis, while cilostazol, an antiplatelet agent, has diverse neuroprotective properties. In this study, we investigated the anti-inflammatory effects of probucol and cilostazol on focal cerebral ischemia with hypercholesterolemia. Apolipoprotein E (ApoE) knockout (KO) mice were fed a high-fat diet (HFD) with or without 0.3% probucol and/or 0.2% cilostazol for 10 weeks. To assess the protective effects of the combined therapy of probucol and cilostazol on ischemic injury, the mice received 40 min of middle cerebral artery occlusion (MCAO). Infarct volumes, neurobehavioral deficits and neuroinflammatory mediators were subsequently evaluated 48 h after reperfusion. Probucol alone and probucol plus cilostazol significantly decreased total- and low-density lipoprotein (LDL)-cholesterol in ApoE KO with HFD. MCAO resulted in significantly larger infarct volumes in ApoE KO mice provided with HFD compared to those fed a regular diet, although these volumes were significantly reduced in the probucol plus cilostazol group. Consistent with a smaller infarct size, probucol alone and the combined treatment of probucol and cilostazol improved neurological and motor function. In addition, probucol alone and probucol plus cilostazol decreased MCP-1 expression and CD11b and GFAP immuno-reactivity in the ischemic cortex. These findings suggested that the inhibitory effects of probucol plus cilostazol in MCP-1 expression in the ischemic brain with hypercholesterolemia allowed the identification of one of the mechanisms responsible for anti-inflammatory action. Probucol plus cilostazol may therefore serve as a therapeutic strategy for reducing the impact of stroke in hypercholesterolemic subjects.

  15. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    PubMed

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  16. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice.

    PubMed

    Long, Fang-Yi; Shi, Meng-Qi; Zhou, Hong-Jing; Liu, Dong-Ling; Sang, Na; Du, Jun-Rong

    2018-02-05

    Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice

    PubMed Central

    Sahni, Prateek V.; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S.; Ten, Vadim S.

    2017-01-01

    Background Reverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate. Methods Neonatal mice were subjected to Rice-Vannucci model of hypoxicischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H2O2 generation rate in the ischemic brain. Results While brain mitochondria from control mice exhibited a rotenonesensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H2O2 emission rate in HI-mice compared to controls. At sixty minutes of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls. Conclusion These data are the first ex-vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion. PMID:29211056

  18. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats.

    PubMed

    He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong

    2007-11-21

    Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.

  19. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocytemore » diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of

  20. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCEmore » exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure

  1. Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse.

    PubMed

    Zaidi, Maria; Krolikowki, John G; Jones, Deron W; Pritchard, Kirkwood A; Struve, Janine; Nandedkar, Sandhya D; Lohr, Nicole L; Pagel, Paul S; Weihrauch, Dorothée

    2013-01-01

    The tight skin mouse (Tsk(-/+)) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low-level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk(-/+) mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk(-/+) mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk(-/+) mice received LLLT (670 nm, 50 mW cm(-2), 30 J cm(-2)) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk(-/+) compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk(-/+) mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk(-/+) mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk(-/+) mice. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  2. AT1 Receptor Modulator Attenuates the Hypercholesterolemia-Induced Impairment of the Myocardial Ischemic Post-Conditioning Benefits.

    PubMed

    Li, Yun-Wei; Li, Yan-Ming; Hon, Yan; Wan, Qi-Lin; He, Rui-Li; Wang, Zhi-Zhong; Zhao, Cui-Hua

    2017-03-01

    Ischemic post-conditioning (PostC) has been demonstrated as a novel strategy to harness nature's protection against myocardial ischemia-reperfusion (I/R). Hypercholesterolemia (HC) has been reported to block the effect of PostC on the heart. Angiotensin II type-1 (AT1) modulators have shown benefits in myocardial ischemia. The present study investigates the effect of a novel inhibitor of AT1, azilsartan in PostC of the heart of normocholesterolemic (NC) and HC rats. HC was induced by the administration of high-fat diet to the animals for eight weeks. Isolated Langendorff's perfused NC and HC rat hearts were exposed to global ischemia for 30 min and reperfusion for 120 min. I/R-injury had been assessed by cardiac hemodynamic parameters, myocardial infarct size, release of tumor necrosis factor-alpha troponin I, lactate dehydrogenase, creatine kinase, nitrite in coronary effluent, thiobarbituric acid reactive species, a reduced form of glutathione, superoxide anion, and left ventricle collagen content in normal and HC rat hearts. Azilsartan post-treatment and six episodes of PostC (10 sec each) afforded cardioprotection against I/R-injury in normal rat hearts. PostC protection against I/R-injury was abolished in HC rat hearts. Azilsartan prevented the HC-mediated impairment of the beneficial effects of PostC in I/R-induced myocardial injury, which was inhibited by L-N 5 -(1-Iminoethyl)ornithinehydrochloride, a potent inhibitor of endothelial nitric oxide synthase (eNOS). Azilsartan treatment has attenuated the HC-induced impairment of beneficial effects of PostC in I/R-injury of rat hearts, by specifically modulating eNOS. Azilsartan may be explored further in I/R-myocardial injury, both in NC and HC conditions, with or without PostC.

  3. AT1 Receptor Modulator Attenuates the Hypercholesterolemia-Induced Impairment of the Myocardial Ischemic Post-Conditioning Benefits

    PubMed Central

    Li, Yun-Wei; Hon, Yan; Wan, Qi-Lin; He, Rui-Li; Wang, Zhi-Zhong; Zhao, Cui-Hua

    2017-01-01

    Background and Objectives Ischemic post-conditioning (PostC) has been demonstrated as a novel strategy to harness nature's protection against myocardial ischemia-reperfusion (I/R). Hypercholesterolemia (HC) has been reported to block the effect of PostC on the heart. Angiotensin II type-1 (AT1) modulators have shown benefits in myocardial ischemia. The present study investigates the effect of a novel inhibitor of AT1, azilsartan in PostC of the heart of normocholesterolemic (NC) and HC rats. Materials and Methods HC was induced by the administration of high-fat diet to the animals for eight weeks. Isolated Langendorff's perfused NC and HC rat hearts were exposed to global ischemia for 30 min and reperfusion for 120 min. I/R-injury had been assessed by cardiac hemodynamic parameters, myocardial infarct size, release of tumor necrosis factor-alpha troponin I, lactate dehydrogenase, creatine kinase, nitrite in coronary effluent, thiobarbituric acid reactive species, a reduced form of glutathione, superoxide anion, and left ventricle collagen content in normal and HC rat hearts. Results Azilsartan post-treatment and six episodes of PostC (10 sec each) afforded cardioprotection against I/R-injury in normal rat hearts. PostC protection against I/R-injury was abolished in HC rat hearts. Azilsartan prevented the HC-mediated impairment of the beneficial effects of PostC in I/R-induced myocardial injury, which was inhibited by L-N5-(1-Iminoethyl)ornithinehydrochloride, a potent inhibitor of endothelial nitric oxide synthase (eNOS). Conclusion Azilsartan treatment has attenuated the HC-induced impairment of beneficial effects of PostC in I/R-injury of rat hearts, by specifically modulating eNOS. Azilsartan may be explored further in I/R-myocardial injury, both in NC and HC conditions, with or without PostC. PMID:28382073

  4. Neuroprotective effects of Alpinia katsumadai against experimental ischemic damage via control of oxidative stress.

    PubMed

    Li, Hua; Park, Joon Ha; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Lee, Choong Hyun; Choi, Jung Hoon; Kim, Jong-Dai; Kang, Il-Jun; Won, Moo-Ho

    2013-02-01

    Alpinia katsumadai (Zingiberaceae) has been identified by the National Plant Quarantine Service in Korea. The extract of Alpinia katsumadai seed (EAKS) has antioxidant activities. We investigated the neuroprotective effects of EAKS on ischemic damage in the gerbil hippocampal CA1 region after transient cerebral ischemia. The ethanol extract of EAKS was obtained by organic solvent, collected in Kangwon province (South Korea) and orally administered using a feeding needle once a day for one week before transient cerebral ischemia in gerbils. We adapted oral administration of 25 and 50 mg/kg EAKS because there are no data about the absorption and metabolism of EKAS. We found a significant neuroprotection in the 50 mg/kg EAKS-treated ischemia group, not in the 25 mg/kg EAKS-treated ischemia group, at 4 days ischemia-reperfusion (I-R). In the 50 mg/kg EAKS-treated ischemia group, about 68% of pyramidal neurons in the CA1 region were immunostained with neuronal nuclei (NeuN) 4 days after I-R, compared to the vehicle-treated ischemia group. 8-Hydroxy-2'-deoxyguanosine (a marker for DNA damage) and 4-hydroxy-2-nonenal (a marker for lipid peroxidation) immunoreactivity in the CA1 region of the EAKS-treated ischemia group were not markedly changed compared to the vehicle-treated ischemia group. In addition, Cu,Zn- and Mn-SOD immunoreactivity in the CA1 region of the EAKS-treated ischemia group were increased compared to the vehicle-treated ischemia group. Repeated supplements of EAKS could protect neurons against ischemic damage, showing that DNA damage and lipid peroxidation are attenuated and SODs are increased in the ischemic CA1 region.

  5. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    PubMed

    Barman, Susmita; Srinivasan, Krishnapura

    2017-02-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  6. Protection of retinal function by sulforaphane following retinal ischemic injury.

    PubMed

    Ambrecht, Lindsay A; Perlman, Jay I; McDonnell, James F; Zhai, Yougang; Qiao, Liang; Bu, Ping

    2015-09-01

    Sulforaphane, a precursor of glucosinolate in cruciferous vegetables such as broccoli and cauliflower, has been shown to protect brain ischemic injury. In this study, we examined the effect of systemic administration of sulforaphane on retinal ischemic reperfusion injury. Intraocular pressure was elevated in two groups of C57BL/6 mice (n = 8 per group) for 45 min to induce retinal ischemic reperfusion injury. Following retinal ischemic reperfusion injury, vehicle (1% DMSO saline) or sulforaphane (25 mg/kg/day) was administered intraperitoneally daily for 5 days. Scotopic electroretinography (ERG) was used to quantify retinal function prior to and one-week after retinal ischemic insult. Retinal morphology was examined one week after ischemic insult. Following ischemic reperfusion injury, ERG a- and b-wave amplitudes were significantly reduced in the control mice. Sulforaphane treatment significantly attenuated ischemic-induced loss of retinal function as compared to vehicle treated mice. In vehicle treated mice, ischemic reperfusion injury produced marked thinning of the inner retinal layers, but the thinning of the inner retinal layers appeared significantly less with sulforaphane treatment. Thus, sulforaphane may be beneficial in the treatment of retinal disorders with ischemic reperfusion injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Magnolol protects against ischemic-reperfusion brain damage following oxygen-glucose deprivation and transient focal cerebral ischemia.

    PubMed

    Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian

    2018-04-01

    In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.

  8. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    PubMed

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  9. Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress.

    PubMed

    Lee, Choong Hyun; Park, Joon Ha; Yoo, Ki-Yeon; Choi, Jung Hoon; Hwang, In Koo; Ryu, Pan Dong; Kim, Do-Hoon; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho

    2011-06-01

    Selective serotonin re-uptake inhibitors (SSRI) have been widely used in treatment of major depression because of their efficacy, safety, and tolerability. Escitalopram, an SSRI, is known to decrease oxidative stress in chronic stress animal models. In the present study, we examined the neuroprotective effects of pre- and post-treatments with 20 mg/kg and 30 mg/kg escitalopram in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia. Pre-treatment with escitalopram protected against ischemia-induced neuronal death in the CA1 after ischemia/reperfusion (I/R). Post-treatment with 30 mg/kg, not 20 mg/kg, escitalopram had a neuroprotective effect against ischemic damage. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram increased brain-derived neurotrophic factor (BDNF) protein levels in the ischemic CA1 compared to vehicle-treated ischemia animals. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram reduced microglia activation and decreased 4-hydroxy-2-nonenal and Cu,Zn-superoxide dismutase immunoreactivity and their levels in the ischemic CA1 compared to vehicle-treated ischemia animals after transient cerebral ischemia. In conclusion, these results indicated that pre- and post-treatments with escitalopram can protect against ischemia-induced neuronal death in the CA1 induced by transient cerebral ischemic damage by increase of BDNF as well as decrease of microglia activation and oxidative stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Neuroprotective properties of nootropic dipeptide GVS-111 in in vitro oxygen-glucose deprivation, glutamate toxicity and oxidative stress.

    PubMed

    Andreeva, N A; Stel'mashuk, E V; Isaev, N K; Ostrovskaya, R U; Gudasheva, T A; Viktorov, I V

    2000-10-01

    Argon anoxia and glucose deprivation were used for modeling of ischemic damage in the cultures of cerebellar granule cells. Protective effect of peptide piracetam analogue GVS-111 was demonstrated. GVS-111 prevented neurodegeneration induced by glutamate and oxidative stress. In contrast to GVS-111, piracetam did not attenuate neurocytotoxic effect of glutamate.

  11. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression.

    PubMed

    Sung, Jin-Hee; Gim, Sang-Ah; Koh, Phil-Ok

    2014-04-30

    Ferulic acid, a phenolic phytochemical compound found in various plants, has a neuroprotective effect through its anti-oxidant and anti-inflammation functions. Peroxiredoxin-2 and thioredoxin play a potent neuroprotective function against oxidative stress. We investigated whether ferulic acid regulates peroxiredoxin-2 and thioredoxin levels in cerebral ischemia. Sprague-Dawley rats (male, 210-230g) were treated with vehicle or ferulic acid (100mg/kg) after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24h after MCAO. Decreases in peroxiredoxin-2 and thioredoxin levels were elucidated in MCAO-operated animals using a proteomics approach. We found that ferulic acid treatment prevented the MCAO-induced decrease in the expression of peroxiredoxin-2 and thioredoxin. RT-PCR and Western blot analyses confirmed that ferulic acid treatment attenuated the MCAO-induced decrease in peroxiredoxin-2 and thioredoxin levels. Moreover, immunoprecipitation analysis showed that the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) decreased during MCAO, whereas ferulic acid prevented the MCAO-induced decrease in this interaction. Our findings suggest that ferulic acid plays a neuroprotective role by attenuating injury-induced decreases in peroxiredoxin-2 and thioredoxin levels in neuronal cell injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Predicting trace organic compound attenuation by ozone oxidation: Development of indicator and surrogate models.

    PubMed

    Park, Minkyu; Anumol, Tarun; Daniels, Kevin D; Wu, Shimin; Ziska, Austin D; Snyder, Shane A

    2017-08-01

    Ozone oxidation has been demonstrated to be an effective treatment process for the attenuation of trace organic compounds (TOrCs); however, predicting TOrC attenuation by ozone processes is challenging in wastewaters. Since ozone is rapidly consumed, determining the exposure times of ozone and hydroxyl radical proves to be difficult. As direct potable reuse schemes continue to gain traction, there is an increasing need for the development of real-time monitoring strategies for TOrC abatement in ozone oxidation processes. Hence, this study is primarily aimed at developing indicator and surrogate models for the prediction of TOrC attenuation by ozone oxidation. To this end, the second-order kinetic equations with a second-phase R ct value (ratio of hydroxyl radical exposure to molecular ozone exposure) were used to calculate comparative kinetics of TOrC attenuation and the reduction of indicator and spectroscopic surrogate parameters, including UV absorbance at 254 nm (UVA 254 ) and total fluorescence (TF). The developed indicator model using meprobamate as an indicator compound and the surrogate models with UVA 254 and TF exhibited good predictive power for the attenuation of 13 kinetically distinct TOrCs in five filtered and unfiltered wastewater effluents (R 2 values > 0.8). This study is intended to help provide a guideline for the implementation of indicator/surrogate models for real-time monitoring of TOrC abatement with ozone processes and integrate them into a regulatory framework in water reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning.

    PubMed

    Dreixler, John C; Shaikh, Afzhal R; Alexander, Michael; Savoie, Brian; Roth, Steven

    2010-12-01

    Ischemic pre-conditioning (IPC) provides neuroprotection in the rat retina from the damaging effects of severe ischemia. Recently, neuroprotection by retinal ischemic post-conditioning (Post-C), i.e., transient ischemia after more lengthy, damaging ischemia, was described, but its mechanisms are not yet known. One possible explanation of the effectiveness of Post-C is that it augments intrinsic neuroprotective mechanisms initiated during ischemia. Increasing duration of the damaging ischemic insult may therefore impact the effectiveness of Post-C. IPC, in contrast, sets in motion a series of neuroprotective events prior to the onset of ischemia. Thus, IPC and Post-C may operate by differing mechanisms. Accordingly, we examined the effect of retinal ischemic duration on post-ischemic outcome in vivo in rats after adding Post-C, and the impact of combining pre- and post-conditioning. Recovery after ischemia performed 24 h after IPC, or after Post-C performed 5 min after ischemia ended, was assessed functionally (electroretinography) and histologically at 7 days after ischemia. Durations of ischemia of 45 and 55 min were studied. Since recovery with IPC or Post-C alone, with 55 min of ischemia, did not achieve the same degree of effect (i.e., not complete recovery) exhibited in our previous studies of IPC using a different ischemia model, we also combined IPC and Post-C to test the hypothesis of the possible additive effects of the IPC and Post-C. We found that the recovery after Post-C was enhanced to a greater degree when ischemia was of longer duration. Post-C led to greater post-ischemic recovery compared to IPC. Both IPC and Post-C also attenuated structural damage to the retina. Contrary to our hypothesis, IPC and Post-C did not combine to enhance recovery after ischemia. In earlier studies, IPC attenuated post-ischemic apoptosis. To begin to examine the mechanism of Post-C, we studied its impact on apoptosis following ischemia. We examined apoptosis by

  14. Ischemic postconditioning: from receptor to end-effector.

    PubMed

    Cohen, Michael V; Downey, James M

    2011-03-01

    Ischemic preconditioning, a robust cardioprotective intervention, has limited clinical efficacy because it must be initiated before myocardial ischemia. Conversely, ischemic postconditioning, repeated brief reocclusions of a coronary artery after release of prolonged coronary occlusion, provides cardioprotection in clinically feasible settings, that is, coronary angioplasty. Ischemic postconditioning's signaling is being investigated to identify pharmacological triggers that could be used without angioplasty. In initial minutes of reperfusion H(+) washes out of previously ischemic cells. pH rises enabling mitochondrial permeability transition pores (MPTPs) to form leading to cessation of ATP production and cell necrosis. Coronary reocclusions maintain sufficient acidosis to keep MPTP closed while signaling is initiated that can generate endogenous antagonists of MPTP formation even after cellular pH normalizes. Reintroduction of oxygen generates reactive oxygen species that activate protein kinase C to increase sensitivity of adenosine A(2b) receptors allowing adenosine released from ischemic cells to bind leading to activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Phosphatidylinositol 3-kinase activation results in phosphorylation of Akt promoting activation of nitric oxide synthase and nitric oxide production, which inhibits glycogen synthase kinase-3β, perhaps the final cytosolic signaling step before inhibition of MPTP formation. Interference with MPTP may be the final step that determines cell salvage.

  15. Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression.

    PubMed

    Koh, Phil-Ok

    2013-07-01

    Intracellular calcium overload is a critical pathophysiological factor in ischemic injury. Hippocalcin is a neuronal calcium sensor protein that buffers intracellular calcium levels and protects cells from apoptotic stimuli. Ferulic acid exerts a neuroprotective effect in cerebral ischemia through its anti-oxidant and anti-inflammation activity. This study investigated whether ferulic acid contributes to hippocalcin expression during cerebral ischemia and glutamate exposure-induced neuronal cell death. Rats were immediately treated with vehicle or ferulic acid (100 mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO and followed by assessment of cerebral infarct. Ferulic acid reduced MCAO-induced infarct regions. A proteomics approach elucidated a decrease in hippocalcin in MCAO-operated animals, ferulic acid attenuates the injury-induced decrease in hippocalcin expression. Reverse transcription-polymerase chain reaction and Western blot analyses confirmed that ferulic acid prevents the injury-induced decrease in hippocalcin. In cultured HT22 hippocampal cells, glutamate exposure increased the intracellular Ca(2+) levels, whereas ferulic acid attenuated this increase. Moreover, ferulic acid attenuated the glutamate toxicity-induced decrease in hippocalcin expression. These findings can suggest the possibility that ferulic acid exerts a neuroprotective effect through modulating hippocalcine expression and regulating intracellular calcium levels. Copyright © 2013 Wiley Periodicals, Inc.

  16. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  17. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia

    PubMed Central

    Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon

    2017-01-01

    Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205

  18. Tadalafil enhances the neuroprotective effects of ischemic postconditioning in mice, probably in a nitric oxide associated manner.

    PubMed

    Gulati, Puja; Singh, Nirmal

    2014-05-01

    This study investigates the modulatory effect of tadalafil, a selective phosphodiesterase (PDE-5) inhibitor, on the neuroprotective effects of ischemic postconditioning (iPoCo) in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion induced cerebral injury. Cerebral infarct size was measured using TTC staining. Memory was assessed using the Morris water maze test. Degree of motor incoordination was evaluated using inclined beam-walking, rota-rod, and lateral push tests. Brain nitrite/nitrate, acetylcholinesterase activity, TBARS, and glutathione levels were also estimated. BCAO followed by reperfusion produced a significant increase in cerebral infarct size, brain nitrite/nitrate and TBARS levels, and acetylcholinesterase activity along with a reduction in glutathione. Marked impairment of memory and motor coordination was also noted. iPoCo consisting of 3 episodes of 10 s carotid artery occlusion and reperfusion instituted immediately after BCAO significantly decreased infarct size, memory impairment, motor incoordination, and altered biochemistry. Pretreatment with tadalafil mimicked the neuroprotective effects of iPoCo. The tadalafil-induced neuroprotective effects were significantly attenuated by l-NAME, a nonselective NOS inhibitor. We concluded that tadalafil mimics the neuroprotective effects of iPoCo, probably through a nitric oxide dependent pathway, and PDE-5 could be a target of interest with respect to the neuroprotective mechanism of iPoCo.

  19. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  20. Severe pain as a possible cause of dropped head syndrome that was attenuated after amputation of an ischemic lower limb.

    PubMed

    Maki, Satoshi; Koda, Masao; Furuya, Takeo; Takahashi, Kazuhisa; Yamazaki, Masashi

    2016-03-02

    Dropped head syndrome (DHS) is defined as weakness of the neck extensor muscles causing a correctable chin-on-the-chest deformity. Here we report the case of a patient with severe pain from lower leg ischemia showing DHS whose symptoms were attenuated by pain relief after amputation of the severely ischemic lower leg. To our knowledge this is the first report indicating that severe pain can cause DHS. A 64-year-old Asian woman was referred to our department with a 1-month history of DHS. She also suffered from severe right foot pain because of limb ischemia. She began to complain of DHS as her gangrenous foot pain worsened. She had neck pain and difficulty with forward gaze. We found no clinical or laboratory findings of neuromuscular disorder or isolated neck extensor myopathy. We amputated her leg below the knee because of progressive foot gangrene. Her severe foot pain resolved after the surgery and her DHS was attenuated. Severe pain can cause DHS. If a patient with DHS has severe pain in another part of the body, we recommend considering aggressive pain relief as a treatment option.

  1. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright

  2. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2017-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL+/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL+/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. PMID:23993974

  3. Positive effects of intermittent fasting in ischemic stroke.

    PubMed

    Fann, David Yang-Wei; Ng, Gavin Yong Quan; Poh, Luting; Arumugam, Thiruma V

    2017-03-01

    Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Endothelin receptor antagonist attenuates oxidative stress in a neonatal sepsis piglet model.

    PubMed

    Goto, Tatenobu; Hussein, Mohamed Hamed; Kato, Shin; Daoud, Ghada Abdel-Hamid; Kato, Takenori; Sugiura, Takahiro; Kakita, Hiroki; Nobata, Masanori; Kamei, Michi; Mizuno, Haruo; Imai, Masaki; Ito, Tetsuya; Kato, Ineko; Suzuki, Satoshi; Okada, Noriko; Togari, Hajime; Okada, Hidechika

    2012-12-01

    Oxidative stress (oxidant-antioxidant imbalance) plays an important role in the pathophysiology of neonatal sepsis. This study evaluated whether an antisense peptide endothelin receptor antagonist, ETR-P1/fl, could attenuate oxidative stress in a neonatal sepsis model. A total of 18 3-d-old piglets were anesthetized and mechanically ventilated. Six piglets received cecal ligation and perforation (CLP group) for induction of sepsis. Six piglets also received continuous infusion (0.05 mg/kg/h) of ETR-P1/fl 30 min after CLP (ETR-P1/fl group). Six piglets received a sham operation. Serum total hydroperoxide (TH), biological antioxidant potentials (BAPs), oxidative stress index (OSI, calculated as TH/BAP), interleukin (IL)-6, serum glutamic oxaloacetic transaminase (GOT), and creatinine were measured before CLP and at 1, 3, and 6 h after CLP. CLP evoked a state of shock resulting in elevated TH, OSI, and IL-6 levels. ETR-P1/fl administration after CLP resulted in lower serum TH at 1 and 3 h after CLP, OSI at 1 and 3 h after CLP, IL-6 at 1 and 3 h after CLP, and GOT at 3 and 6 h after CLP as compared with the CLP group. ETR-P1/fl treatment significantly attenuated the elevation of serum oxidative stress markers (TH and OSI), IL-6, and GOT in a progressive neonatal sepsis CLP model.

  5. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    PubMed Central

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  6. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo.

    PubMed

    Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-05-01

    Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.

  7. Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed.

    PubMed

    Leiva, Eduardo D; Rámila, Consuelo d P; Vargas, Ignacio T; Escauriaza, Cristian R; Bonilla, Carlos A; Pizarro, Gonzalo E; Regan, John M; Pasten, Pablo A

    2014-01-01

    Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.e., > 4000 meters above sea level (masl) and < 310 mm annual rainfall), which are conditions that have rarely been studied. Our model system was the upper Azufre River sub-basin, where the natural attenuation of As from hydrothermal discharge (pH 4-6) was observed. As(III) was actively oxidized by a microbial consortium, leading to a significant decrease in the dissolved As concentrations and a corresponding increase in the sediment's As concentration downstream of the hydrothermal source. In-situ oxidation experiments demonstrated that the As oxidation required biological activity, and microbiological molecular analysis confirmed the presence of As(III)-oxidizing groups (aroA-like genes) in the system. In addition, the pH measurements and solid phase analysis strongly suggested that the As removal mechanism involved adsorption or coprecipitation with Fe-oxyhydroxides. Taken together, these results indicate that the microorganism-mediated As oxidation contributed to the attenuation of As concentrations and the stabilization of As in the solid phase, therefore controlling the amount of As transported downstream. This study is the first to demonstrate the microbial oxidation of As in Altiplano basins and its relevance in the immobilization of As. © 2013.

  8. Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia

    PubMed Central

    Kim, In Hye; Jeon, Yong Hwan; Lee, Tae-Kyeong; Cho, Jeong Hwi; Lee, Jae-Chul; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich-Na; Kim, Yang Hee; Hong, Seongkweon; Yan, Bing Chun; Won, Moo-Ho; Lee, Yun Lyul

    2017-01-01

    Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity. PMID:28761424

  9. [Cellular and molecular biology of ischemic retina].

    PubMed

    Honda, Y

    1996-12-01

    We introduce our studies on the retinal ischemia in light of both pre- and post-Noell viewpoints. For several years now, we have employed in vivo intraretinal microelectrodes for this field of experiments. This series of studies on the cat eye revealed that the sensory retina as well as the retinal pigment epithelium is severely damaged after only a ten-minute stoppage of blood flow. This phenomenon in usually masked in the routine electroretinogram, a mass electrical response of the retina monitored from the ocular surface. Our studies, employing cultured amacrine cells from embryonic rat eyes, revealed that ischemic changes in neural cells are induced by an increase in extracellular glutamate. Among the glutamate analogs, N-methyl-D-aspartate (NMDA) is responsive to this change. An influx of calcium through NMDA receptor channels activates nitric oxide synthase (NOS), inducing intracellular nitric oxide (NO) in selected amacrine cells. Nitric oxide reacts with free radicals in the cell and induces peroxinitrite, which is toxic. This cascade triggered by ischemia is interrupted by extracellular zinc, magnesium, hemoglobin, nitroprusside, s-nitrosocysteine, and some NMDA antagonists. In terms of clinical application, there is a possibility that dihydroxyphenylalanine (DOPA), superoxide dismutase (SOD), and catalase (CAT), as well as vitamins B6 and B12, are important candidates for administration before an ischemic attack for prevention of damage to the retinal neurons. Gene expression of NOS, interleukin (IL)-1, IL-6, tumor necrosing factor (TNF), and transforming growth factor (TGF)-beta in the ischemic retina was investigated in order to discover reaction substances common to ischemic change and inflammation.

  10. Overview of Experimental and Clinical Findings regarding the Neuroprotective Effects of Cerebral Ischemic Postconditioning.

    PubMed

    Ma, Di; Feng, Liangshu; Deng, Fang; Feng, Jia-Chun

    2017-01-01

    Research on attenuating the structural and functional deficits observed following ischemia-reperfusion has become increasingly focused on the therapeutic potential of ischemic postconditioning. In recent years, various methods and animal models of ischemic postconditioning have been utilized. The results of these numerous studies have indicated that the mechanisms underlying the neuroprotective effects of ischemic postconditioning may involve reductions in the generation of free radicals and inhibition of calcium overload, as well as the release of endogenous active substances, alterations in membrane channel function, and activation of protein kinases. Here we review the novel discovery, mechanism, key factors, and clinical application of ischemic postconditioning and discuss its implications for future research and problem of clinical practice.

  11. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis.

    PubMed

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke.

  12. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues

    PubMed Central

    van Lith, R.; Gregory, E.K.; Yang, J.; Kibbe, M.R.; Ameer, G.A.

    2014-01-01

    Oxidative stress plays an important role in the limited biological compatibility of many biomaterials due to inflammation, as well as in various pathologies including atherosclerosis and restenosis as a result of vascular interventions. Engineering antioxidant properties into a material is therefore a potential avenue to improve the biocompatibility of materials, as well as to locally attenuate oxidative stress-related pathologies. Moreover, biodegradable polymers that have antioxidant properties built into their backbone structure have high relative antioxidant content and may provide prolonged, continuous attenuation of oxidative stress while the polymer or its degradation products are present. In this report, we describe the synthesis of poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA), a citric-acid based biodegradable elastomer with native, intrinsic antioxidant properties. The in vitro antioxidant activity of POCA as well as its effects on vascular cells in vitro and in vivo were studied. Antioxidant properties investigated included scavenging of free radicals, iron chelation and the inhibition of lipid peroxidation. POCA reduced reactive oxygen species generation in cells after an oxidative challenge and protected cells from oxidative stress-induced cell death. Importantly, POCA antioxidant properties remained present upon degradation. Vascular cells cultured on POCA showed high viability, and POCA selectively inhibited smooth muscle cell proliferation, while supporting endothelial cell proliferation. Finally, preliminary data on POCA-coated ePTFE grafts showed reduced intimal hyperplasia when compared to standard ePTFE grafts. This biodegradable, intrinsically antioxidant polymer may be useful for tissue engineering application where oxidative stress is a concern. PMID:24976244

  13. ATTENUATION/STABILIZATION OF ARSENIC BY IRON (HYDR)OXIDES IN SOILS/SEDIMENTS: LABORATORY STUDY.

    EPA Science Inventory

    Laboratory studies will be performed to assess the role of naturally occurring soil/sediment iron (hydr)oxides on the attenuation/stabilization of arsenic. Changes in the reversibility of arsenic partitioning will be assessed as a function of aging time using model experimental ...

  14. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women.

    PubMed

    Howard, Timothy D; Giles, Wayne H; Xu, Jianfeng; Wozniak, Marcella A; Malarcher, Ann M; Lange, Leslie A; Macko, Richard F; Basehore, Monica J; Meyers, Deborah A; Cole, John W; Kittner, Steven J

    2005-09-01

    Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (-1468 T>A, -922 G>A, -786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Significant associations with both the -922 G>A and -786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the -922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the -786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D'=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women.

  15. Melatonin Ameliorates Injury and Specific Responses of Ischemic Striatal Neurons in Rats

    PubMed Central

    Ma, Yuxin; Feng, Qiqi; Ma, Jing; Feng, Zhibo; Zhan, Mali; OuYang, Lisi; Mu, Shuhua; Liu, Bingbing; Jiang, Zhuyi; Jia, Yu; Li, Youlan

    2013-01-01

    Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia. PMID:23686363

  16. PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription.

    PubMed

    Wu, Jui-Sheng; Tsai, Hsin-Da; Cheung, Wai-Mui; Hsu, Chung Y; Lin, Teng-Nan

    2016-08-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult.

  17. A pentapeptide monocyte locomotion inhibitory factor protects brain ischemia injury by targeting the eEF1A1/endothelial nitric oxide synthase pathway.

    PubMed

    Zhang, Yuefan; Chen, Jun; Li, Fan; Li, Dong; Xiong, Qinhui; Lin, Yang; Zhang, Dazhi; Wang, Xiao-Fan; Yang, Pengyuan; Rui, Yao-Cheng

    2012-10-01

    Ischemic stroke is a major cause of death worldwide but lacks viable treatment or treatment targets. Monocyte locomotion inhibitory factor (MLIF) is a small heat-stable pentapeptide produced by Entamoeba histolytica in axenic culture, which is supposed to protect the brain from ischemic injury; the mechanism, however, remains unknown. In this study, we further investigated the mechanism underlying the protective role of MLIF in brain ischemia. A middle cerebral artery occlusion model in rats was used for detecting the effect of MLIF in the brain ischemia in vivo. To identify targets of MLIF in brain endothelial cells, we performed immunoprecipitation of biotin-conjugated MLIF and mass spectrometry. MLIF can protect the brain from ischemic injury in vivo, yielding decreased ischemic volume, prolonged survival, and improved neurological outcome. In vitro studies showed that MLIF displayed protective effects through inhibition of expression of pathological inflammatory adhesion molecules and enhancing endothelial nitric oxide synthase expression and nitric oxide release in the cerebrovascular endothelium. The target screening experiments demonstrated binding of MLIF to the ribosomal protein translation elongation factor eEF1A1. MLIF enhanced endothelial nitric oxide synthase expression through stabilization of endothelial nitric oxide synthase mRNA, and eEF1A1 was shown to be necessary for this enhanced expression. Knockdown of eEF1A1 or inhibition of endothelial nitric oxide synthase attenuated MLIF-mediated inhibition of adhesion molecule expression. In this study, we identified a new potential pharmacologically targetable mechanism underlying MLIF's protective effects in brain ischemia through the eEF1A1/endothelial nitric oxide synthase pathway.

  18. Protective effects of incensole acetate on cerebral ischemic injury.

    PubMed

    Moussaieff, Arieh; Yu, Jin; Zhu, Hong; Gattoni-Celli, Sebastiano; Shohami, Esther; Kindy, Mark S

    2012-03-14

    The resin of Boswellia species is a major anti-inflammatory agent that has been used for centuries to treat various conditions including injuries and inflammatory conditions. Incensole acetate (IA), a major constituent of this resin, has been shown to inhibit NF-κB activation and concomitant inflammation, as well as the neurological deficit following head trauma. Here, we show that IA protects against ischemic neuronal damage and reperfusion injury in mice, attenuating the inflammatory nature of ischemic damage. IA given post-ischemia, reduced infarct volumes and improved neurological activities in the mouse model of ischemic injury in a dose dependent fashion. The protection from damage was accompanied by inhibition of TNF-α, IL-1β and TGF-β expression, as well as NF-κB activation following injury. In addition, IA is shown to have a therapeutic window of treatment up to 6h after ischemic injury. Finally, the protective effects of IA were partially mediated by TRPV3 channels as determined by the TRPV3 deficient mice and channel blocker studies. This study suggests that the anti-inflammatory and neuroprotective activities of IA may serve as a novel therapeutic treatment for ischemic and reperfusion injury, and as a tool in the ongoing research of mechanisms for neurological damage. Published by Elsevier B.V.

  19. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  20. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis

    PubMed Central

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-01-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke. PMID:21673716

  1. [Molecular mechanisms of ischemic-reperfusion syndrome and its personalized therapy].

    PubMed

    Grebenchikov, O A; Likhvantsev, V V; Plotnikov, E Iu; Silachev, D N; Pevzner, I B; Zorova, L D; Zorov, D B

    2014-01-01

    Cardiovascular pathologies are the major causes of morbidity and mortality in the world. Cessation of the blood flow in large vessels, supplying tissues with oxygen and substrates, leads to ischemic conditions accompanied by unwanted shifts of oxidative metabolism and rise of the reactive oxygen species (ROS) generation. Small amounts of ROS are essential elements of the cell metabolism, however pathological elevation of ROS jeopardizes the survival of cells, organs and even organisms. Paradoxically, blood flow restoration during prolonged ischemia leads to oxidative stress that is often fatal for a live system. Oxygen paradox appears to be a limiting factor in clinical practice that intuitively seeks for immediate and complete restoration of a damaged blood flow. Mitochondrion is a major ROS source and a key element of pro-apoptotic signaling, however it is clear, that mitochondria are the main target for anti-ischemic treatment. In the present review we consider two ways of such anti-ischemic strategy, bringing ischemic tolerance to the organ through mitochondrial involvement, such as intrinsic, biological, or artificial, pharmacological adaptive systems (preconditioning). The latter is aimed to simulate elements and high efficiency of intrinsic protective system. The role of antioxidants in anti-ischemic therapy and their effects on preconditioning signaling are discussed in the review.

  2. RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia.

    PubMed

    Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping

    2017-10-01

    Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.

  3. Promoter Polymorphisms in the Nitric Oxide Synthase 3 Gene Are Associated With Ischemic Stroke Susceptibility in Young Black Women

    PubMed Central

    Howard, Timothy D.; Giles, Wayne H.; Xu, Jianfeng; Wozniak, Marcella A.; Malarcher, Ann M.; Lange, Leslie A.; Macko, Richard F.; Basehore, Monica J.; Meyers, Deborah A.; Cole, John W.; Kittner, Steven J.

    2006-01-01

    Background and Purpose Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility. Methods We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (−1468 T>A, −922 G>A, −786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4. Results Significant associations with both the −922 G>A and −786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the −922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the −786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D′=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective. Conclusion Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women. PMID:16100023

  4. Delayed Post-ischemic Conditioning Significantly Improves the Outcome after Retinal Ischemia

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Shaikh, Afzhal R.; Alexander, Michael; Tupper, Kelsey Y.; Marcet, Marcus M.; Bernaudin, Myriam; Roth, Steven

    2011-01-01

    In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. These studies showed that post-conditioning effectively prevented damage after retinal ischemia when it was instituted early (within one hour) in the post-ischemic period. While post-ischemic conditioning holds high promise of clinical translation, patients often present late after the onset of retinal ischemia and therefore immediate application of this anti-ischemic maneuver is generally not feasible. In this study, we examined the hypothesis that application of a post-conditioning stimulus at 24 h or greater following the end of prolonged ischemia would decrease the extent of ischemic injury. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 5 minutes of post-conditioning brief ischemia 24 or 48 h after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia and post-conditioning or sham post-conditioning. We found that the brief ischemic stimulus applied 24, but not 48 h after prolonged ischemia significantly improved functional recovery and decreased histological damage induced by prolonged ischemia. We conclude that within a defined time window, delayed post-ischemic conditioning ameliorated post-ischemic injury in rats. Compared to earlier studies, the present work demonstrates for the first time the novel ability of a significantly delayed ischemic stimulus to provide robust neuroprotection in the retina following ischemia. PMID:21501608

  5. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    PubMed

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  6. Anti-inflammatory and pro-angiogenic effects of beta blockers in a canine model of chronic ischemic cardiomyopathy: comparison between carvedilol and metoprolol

    PubMed Central

    Le, D. Elizabeth; Pascotto, Marco; Leong-Poi, Howard; Sari, Ibrahim; Micari, Antonio; Kaul, Sanjiv

    2013-01-01

    There is controversy regarding the superiority of carvedilol (C) over metoprolol (M) in congestive heart failure. We hypothesized that C is superior to M in chronic ischemic cardiomyopathy because of its better anti-inflammatory and pro-angiogenic effects. In order to test our hypothesis we used a chronic canine model of multivessel ischemic cardiomyopathy where myocardial microcatheters were placed from which interstitial fluid was collected over time to measure leukocyte count and cytokine levels. After development of left ventricular dysfunction, the animals were randomized into four groups: sham (n = 7), placebo (n = 8), M (n = 11), and C (n = 10), and followed for 3 months after treatment initiation. Tissue was examined for immunohistochemistry, oxidative stress, and capillary density. At 3 months both rest and stress wall thickening were better in C compared to the other groups. At the end of 3 months of treatment endsystolic wall stress also decreased the most in C. Similarly resting myocardial blood flow (MBF) improved the most in C as did the stress endocardial/epicardial MBF. Myocardial interstitial fluid showed greater attenuation of leukocytosis with C compared to M, which was associated with less fibrosis and oxidative stress. C also had higher IL-10 level and capillary density. In conclusion, in a chronic canine model of multivessel ischemic cardiomyopathy we found 3 months of C treatment resulted in better resting global and regional function as well as better regional function at stress compared to M. These changes were associated with higher myocardial levels of the anti-inflammatory cytokine IL-10 and less myocardial oxidative stress, leukocytosis, and fibrosis. Capillary density and MBF were almost normalized. Thus in the doses used in this study, C appears to be superior to M in a chronic canine model of ischemic cardiomyopathy from beneficial effects on inflammation and angiogenesis. Further studies are required for comparing additional doses

  7. Involvement of atrial natriuretic peptide in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart.

    PubMed

    Vishwakarma, V K; Goyal, A; Gupta, J K; Upadhyay, P K; Yadav, H N

    2018-07-01

    Nitric oxide (NO) is an effective mediator of ischemic preconditioning (IPC)-induced cardioprotection. Atrial natriuretic peptide (ANP) is downregulated after ovariectomy, which results in reduction in the level of NO. The present study deals with the investigation of the role of ANP in abrogated cardioprotective effect of IPC in the ovariectomized rat heart. Heart was isolated from ovariectomized rat and mounted on Langendorff's apparatus, subjected to 30 min of ischemia and 120 min of reperfusion. IPC was given by four cycles of 5 min of ischemia and 5 min of reperfusion with Krebs-Henseleit solution. The myocardial infract size was estimated employing triphenyltetrazolium chloride stain, and coronary effluent was analyzed for creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) release to consider the degree of myocardial injury. The cardiac release of NO was estimated by measuring the level of nitrite in coronary effluent. IPC-mediated cardioprotection was significantly attenuated in ovariectomized rat as compared to normal rat, which was restored by perfusion with ANP. However, this observed cardioprotection was significantly attenuated by perfusion with L-NAME, an endothelial nitric oxide synthase inhibitor, and Glibenclamide, a K ATP channel blocker, alone or in combination noted in terms of increase in myocardial infract size, release of CK-MB and LDH, and also decrease in release of NO. Thus, it is suggested that ANP restores the attenuated cardioprotective effect of IPC in the ovariectomized rat heart which may be due to increase in the availability of NO and consequent increase activation of mitochondrial K ATP channels.

  8. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    NASA Astrophysics Data System (ADS)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  9. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy

    PubMed Central

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Patel, Vivek; Saito, Keita; Matsumoto, Shingo; Kashiwaya, Yoshihiro; Horváth, Béla; Mukhopadhyay, Bani; Becker, Lauren; Haskó, György; Liaudet, Lucas; Wink, David A; Veves, Aristidis; Mechoulam, Raphael; Pacher, Pál

    2010-01-01

    Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by pressure-volume system. Oxidative stress, cell death and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrosative stress, NF-κB and MAPK (JNK and p-38, p38α) activation, enhanced expression of adhesion molecules (ICAM-1, VCAM-1), TNF-α, markers of fibrosis (TGF-β, CTGF, fibronectin, collagen-1, MMP-2 and MMP-9), enhanced cell death (caspase 3/7 and PARP activity, chromatin fragmentation and TUNEL) and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, NF-κB activation and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis. PMID:21144973

  10. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  11. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice.

    PubMed

    Ramanathan, Muthiah; Abdul, Khadar K; Justin, Antony

    2016-10-01

    Glutamate, an excitatory neurotransmitter in the brain, produces excitotoxicity through its agonistic action on postsynaptic N-methyl-D-aspartate receptor, resulting in neurodegeneration. We hypothesized that the administration of low doses of glutamate in cerebral ischemia could attenuate the excitotoxicity in neurons through its autoreceptor regulatory mechanism, and thereby control neurodegeneration. To test the hypothesis, the effect of L-glutamic acid (L-GA) 400 μmol/l/kg was evaluated in a bilateral common carotid artery occlusion-induced global ischemic mouse model. Memantine was used as a positive control. Global ischemia in mice was induced by occlusion of both the common carotid artery (bilateral common carotid artery occlusion) for 20 min, followed by reperfusion injury. L-GA was infused slowly through the tail vein 30 min before the surgery and every 24 h thereafter until the end of the experiment. The time-dependent change in cerebral blood flow was monitored using a laser Doppler image analyzer. The neurotransmitters glutamate and γ-aminobutyric acid (GABA) and the neurobiochemicals ATP, glutathione, and nitric oxide were measured in the different regions of brain at 0, 24, 48, and 72 h after reperfusion injury. L-GA increased locomotor activity, muscle coordination, and cerebral blood flow in ischemic mice at 72 h after ischemic insult. L-GA reduced glutamate levels in the cortex, striatum, and hippocampus at 72 h, whereas GABA levels were elevated in all three brain regions studied. Further, L-GA elevated glutathione levels and attenuated nitric oxide levels, but failed to restore ATP levels 72 h after ischemia-reperfusion. We conclude that the gradual reduction of glutamate along with elevation of GABA in different brain regions could have contributed toward the neuroprotective effect of L-GA. Hence, a slow infusion of a low dose of L-GA could be beneficial in controlling excitotoxicity-induced neurodegeneration following ischemia.

  12. A novel indication of platonin, a therapeutic immunomodulating medicine, on neuroprotection against ischemic stroke in mice

    PubMed Central

    Sheu, Joen-Rong; Chen, Zhih-Cherng; Jayakumar, Thanasekaran; Chou, Duen-Suey; Yen, Ting-Lin; Lee, Hsing-Ni; Pan, Szu-Han; Hsia, Chih-Hsuan; Yang, Chih-Hao; Hsieh, Cheng-Ying

    2017-01-01

    Thrombosis and stroke are major causes of disability and death worldwide. However, the regular antithrombotic drugs may have unsatisfactory results and side effects. Platonin, a cyanine photosensitizing dye, has been used to treat trauma, ulcers and some acute inflammation. Here, we explored the neuroprotective effects of platonin against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in mice. Platonin(200 μg/kg) substantially reduced cerebral infarct volume, brain edema, neuronal cell death and neurological deficit scores, and improved the MCAO-reduced locomotor activity and rotarod performance. Platonin(5–10 μM) potently inhibited platelet aggregation and c-Jun NH2-terminal kinase (JNK) phosphorylation in collagen-activated platelets. The antiaggregation effect did not affect bleeding time but increased occlusion time in platonin(100 and 200 μg/kg)-treated mice. Platonin(2–10 μM) was potent in diminishing collagen- and Fenton reaction-induced ∙OH formation. Platonin(5–10 μM) also suppressed the expression of nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-1β, and JNK phosphorylation in lipopolysaccharide-stimulated macrophages. MCAO-induced expression of 3-nitrotyrosine and Iba1 was apparently attenuated in platonin(200 μg/kg)-treated mice. In conclusion, platonin exhibited remarkable neuroprotective properties against MCAO-induced ischemia in a mouse model through its antiaggregation, antiinflammatory and antiradical properties. The observed therapeutic efficacy of platonin may consider being a novel medcine against ischemic stroke. PMID:28165057

  13. Nutrition for brain recovery after ischemic stroke: an added value to rehabilitation.

    PubMed

    Aquilani, Roberto; Sessarego, Paolo; Iadarola, Paolo; Barbieri, Annalisa; Boschi, Federica

    2011-06-01

    In patients who undergo rehabilitation after ischemic stroke, nutrition strategies are adopted to provide tube-fed individuals with adequate nutrition and/or to avoid the body wasting responsible for poor functional outcome and prolonged stay in the hospital. Investigations have documented that nutrition interventions can enhance the recovery of neurocognitive function in individuals with ischemic stroke. Experimental studies have shown that protein synthesis is suppressed in the ischemic penumbra. In clinical studies on rehabilitation patients designed to study the effects of counteracting or limiting this reduction of protein synthesis by providing protein supplementation, patients receiving such supplementation had enhanced recovery of neurocognitive function. Cellular damage in cerebral ischemia is also partly caused by oxidative damage secondary to free radical formation and lipid peroxidation. Increased oxidative stress negatively affects a patient's life and functional prognosis. Some studies have documented that nutrition supplementation with B-group vitamins may mitigate oxidative damage after acute ischemic stroke. Experimental investigations have also shown that cerebral ischemia changes synaptic zinc release and that acute ischemia increases zinc release, aggravating neuronal injury. In clinical practice, patients with ischemic stroke were found to have a lower than recommended dietary intake of zinc. Patients in whom daily zinc intake was normalized had better recovery of neurological deficits than subjects given a placebo. The aim of this review is to highlight those brain metabolic alterations susceptible to nutrition correction in clinical practice. The mechanisms underlying the relationship between cerebral ischemia and nutrition metabolic conditions are discussed.

  14. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    PubMed

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  15. Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation.

    PubMed

    Yang, Tuo; Sun, Yang; Mao, Leilei; Zhang, Meijuan; Li, Qianqian; Zhang, Lili; Shi, Yejie; Leak, Rehana K; Chen, Jun; Zhang, Feng

    2018-05-06

    Brain ischemic preconditioning (IPC) with mild ischemic episodes is well known to protect the brain against subsequent ischemic challenges. However, the underlying mechanisms are poorly understood. Here we demonstrate the critical role of the master redox transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), in IPC-mediated neuroprotection and blood-brain barrier (BBB) preservation. We report that IPC causes generation of endogenous lipid electrophiles, including 4-hydroxy-2-nonenal (4-HNE), which release Nrf2 from inhibition by Keap1 (via Keap1-C288) and inhibition by glycogen synthase kinase 3β (via GSK3β-C199). Nrf2 then induces expression of its target genes, including a new target, cadherin 5, a key component of adherens junctions of the BBB. These effects culminate in mitigation of BBB leakage and of neurological deficits after stroke. Collectively, these studies are the first to demonstrate that IPC protects the BBB against ischemic injury by generation of endogenous electrophiles and activation of the Nrf2 pathway through inhibition of Keap1- and GSK3β-dependent Nrf2 degradation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. 3H-1,2-Dithiole-3-thione as a novel therapeutic agent for the treatment of ischemic stroke through Nrf2 defense pathway.

    PubMed

    Kuo, Ping-Chang; Yu, I-Chen; Scofield, Barbara A; Brown, Dennis A; Curfman, Eric T; Paraiso, Hallel C; Chang, Fen-Lei; Yen, Jui-Hung

    2017-05-01

    Cerebral ischemic stroke accounts for more than 80% of all stroke cases. During cerebral ischemia, reactive oxygen species produced in brain tissue induce oxidative stress and inflammatory responses. D3T, the simplest compound of the cyclic, sulfur-containing dithiolethiones, is found in cruciferous vegetables and has been reported to induce antioxidant genes and glutathione biosynthesis through activation of Nrf2. In addition to antioxidant activity, D3T was also reported to possess anti-inflammatory effects. In this study, we evaluated the therapeutic potential of D3T for the treatment of ischemic stroke and investigated the mechanisms underlying the protective effects of D3T in ischemic stroke. Mice subjected to transient middle cerebral artery occlusion/reperfusion (tMCAO/R) were administered with vehicle or D3T to evaluate the effect of D3T in cerebral brain injury. We observed D3T reduced infarct size, decreased brain edema, lessened blood-brain barrier disruption, and ameliorated neurological deficits. Further investigation revealed D3T suppressed microglia (MG) activation and inhibited peripheral inflammatory immune cell infiltration of CNS in the ischemic brain. The protective effect of D3T in ischemic stroke is mediated through Nrf2 induction as D3T-attenuated brain injury was abolished in Nrf2 deficient mice subjected to tMCAO/R. In addition, in vitro results indicate the induction of Nrf2 by D3T is required for its suppressive effect on MG activation and cytokine production. In summary, we demonstrate for the first time that D3T confers protection against ischemic stroke, which is mediated through suppression of MG activation and inhibition of CNS peripheral cell infiltration, and that the protective effect of D3T in ischemic stroke is dependent on the activation of Nrf2. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    PubMed

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  18. Endothelial nitric oxide synthase protects neurons against ischemic injury through regulation of brain-derived neurotrophic factor expression.

    PubMed

    Li, Shi-Ting; Pan, Jing; Hua, Xu-Ming; Liu, Hong; Shen, Sa; Liu, Jia-Fu; Li, Bin; Tao, Bang-Bao; Ge, Xiao-Li; Wang, Xu-Hui; Shi, Juan-Hong; Wang, Xiao-Qiang

    2014-02-01

    Several lines of evidence demonstrated that endothelial nitric oxide synthase (eNOS) confers protective effects during cerebral ischemia. In this study, we explored the underlying cellular and molecular mechanisms of neuroprotection by eNOS. A series of in vivo and in vitro ischemic models were employed to study the role of eNOS in maintaining neuronal survival and to identify the downstream factors. The current data showed that pretreatment with a specific eNOS inhibitor, L-N5-(1-iminoethyl) ornithine (L-NIO), aggravated the neuronal loss in the rat cerebral ischemic model, accompanied by reduction in brain-derived neurotrophic factor (BDNF) level, which was consistent with the findings in an oxygen-glucose deprivation model (OGD) with two neuronal cells: primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Furthermore, the extensive neuronal loss induced by L-NIO was totally abolished by exogenous BDNF in both in vitro and in vivo models. On the other hand, eNOS overexpression through an adenoviral vector exerted a prominent protective effect on the neuronal cells subject to OGD, and the protective effect was totally abrogated by a neutralizing anti-BDNF antibody. Collectively, our results indicate that the neuroprotection of neuron-derived eNOS against the cerebral ischemia was mediated through the regulation of BDNF secretion. In conclusion, our discovery provides a novel explanation for the neuroprotective effect of eNOS under pathological ischemic conditions such as stroke. © 2014 John Wiley & Sons Ltd.

  19. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling.

    PubMed

    Rong, Bing; Xie, Fei; Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-10-25

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling.

  20. Investigation of Reperfusion Injury and Ischemic Preconditioning in Microsurgry

    PubMed Central

    Wang, Wei Zhong

    2008-01-01

    Ischemia/reperfusion (I/R) is inevitable in many vascular and musculoskeletal traumas, diseases, free tissue transfers, and during time-consuming reconstructive surgeries in the extremities. Salvage of a prolonged ischemic extremity or flap still remains a challenge for the microvascular surgeon. One of the common complications after microsurgery is I/R-induced tissue death or I/R injury. Twenty years after the discovery, ischemic preconditioning (IPC) has emerged as a powerful method for attenuating I/R injury in a variety of organs or tissues. However, its therapeutic expectations still need to be fulfilled. In this article, the author reviews some important experimental evidences of I/R injury as well as preconditioning-induced protection in the fields relevant to microsurgery. PMID:18946882

  1. Rebamipide, a novel antiulcer agent, attenuates Helicobacter pylori induced gastric mucosal cell injury associated with neutrophil derived oxidants.

    PubMed Central

    Suzuki, M; Miura, S; Mori, M; Kai, A; Suzuki, H; Fukumura, D; Suematsu, M; Tsuchiya, M

    1994-01-01

    The effect of rebamipide, a novel antiulcer compound, on Helicobacter pylori activated neutrophil dependent in vitro gastric epithelial cell injury was investigated. Luminol dependent chemiluminescence (ChL), which detects toxic oxidants from neutrophils exhibited a 12-fold increase when the bacterial suspension of H pylori was added to the isolated human neutrophils. This change was significantly attenuated by rebamipide at a concentration less than 1 mM, showing that rebamipide may inhibit oxidant production from H pylori elicited neutrophils. To assess whether rebamipide attenuates gastric mucosal injury, we tested its inhibitory action on H pylori induced gastric mucosal damage associated with neutrophils in vitro. Rabbit gastric mucosal cells were monolayered in culture wells and coincubated with human neutrophils and H pylori, and the cytotoxicity index was then calculated. Cultured gastric cells were significantly damaged when they were incubated with human neutrophils activated by H pylori. This cellular damage was attenuated by rebamipide in a dose-dependent manner. Furthermore, spectrophotometrical measurement showed that rebamipide (1 mM) inhibits urease activity by 21.7%. As monochloramine (an oxidant yielded by reaction of neutrophil derived chlorinated oxidant and ammonia) is proposed as an important toxic molecule in this model, the current findings suggest that the preventive effect of rebamipide on H pylori elicited neutrophil induced gastric mucosal injury may result from its inhibitory actions on the neutrophilic oxidative burst as well as H pylori derived urease activity. PMID:7959190

  2. Molecular Mechanisms of Action and Therapeutic Uses of Pharmacological Inhibitors of HIF–Prolyl 4-Hydroxylases for Treatment of Ischemic Diseases

    PubMed Central

    Selvaraju, Vaithinathan; Parinandi, Narasimham L.; Adluri, Ram Sudheer; Goldman, Joshua W.; Hussain, Naveed; Sanchez, Juan A.

    2014-01-01

    Abstract Significance: In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. Recent Advances: Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent “oxygen paradox” must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. Critical Issues: Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. Future Directions: This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models. Antioxid. Redox Signal. 20, 2631–2665. PMID:23992027

  3. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats.

    PubMed

    Wang, Wei; Li, Mingchang; Wang, Yuefei; Li, Qian; Deng, Gang; Wan, Jieru; Yang, Qingwu; Chen, Qianxue; Wang, Jian

    2016-12-01

    Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke who are treated with tissue plasminogen activator (tPA). It is associated with high morbidity and mortality, but no effective treatments are currently available to reduce HT risk. Therefore, methods to prevent HT are urgently needed. In this study, we used TWS119, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt/β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke and then were administered rtPA, rtPA combined with TWS119, or vehicle at 4 h. The animals were sacrificed 24 h after infarct induction. Rats treated with rtPA showed evident HT, had more severe neurologic deficit, brain edema, and blood-brain barrier breakdown, and had larger infarction volume than did the vehicle group. Rats treated with TWS119 had significantly improved outcomes compared with those of rats treated with rtPA alone. In addition, Western blot analysis showed that TWS119 increased the protein expression of β-catenin, claudin-3, and ZO-1 while suppressing the expression of GSK-3β. These results suggest that TWS119 reduces rtPA-induced HT and attenuates blood-brain barrier disruption, possibly through activation of the Wnt/β-catenin signaling pathway. This study provides a potential therapeutic strategy to prevent tPA-induced HT after acute ischemic stroke.

  4. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity.

    PubMed

    Li, Minshu; Li, Zhiguo; Yao, Yang; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-01-17

    Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15 tg ) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8 + T and natural killer (NK) cells was augmented in these GFAP-IL-15 tg mice after brain ischemia. Of note, depletion of CD8 + T or NK cells attenuated ischemic brain injury in GFAP-IL-15 tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8 + T and NK cells in GFAP-IL-15 tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8 + T and NK cell-mediated immunity.

  5. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection.

    PubMed

    Kolb, Alexander L; Corridon, Peter R; Zhang, Shijun; Xu, Weimin; Witzmann, Frank A; Collett, Jason A; Rhodes, George J; Winfree, Seth; Bready, Devin; Pfeffenberger, Zechariah J; Pomerantz, Jeremy M; Hato, Takashi; Nagami, Glenn T; Molitoris, Bruce A; Basile, David P; Atkinson, Simon J; Bacallao, Robert L

    2018-04-01

    Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine ( P <0.05) observed in controls and increased the mitochondria membrane potential ( P <0.05), maximal respiratory capacity ( P <0.05), and intracellular ATP levels ( P <0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning. Copyright © 2018 by the American Society of Nephrology.

  6. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis.

    PubMed

    Sun, Jing; Ling, Zongxin; Wang, Fangyan; Chen, Wenqian; Li, Haixiao; Jin, Jiangtao; Zhang, Huiqing; Pang, Mengqi; Yu, Junjie; Liu, Jiaming

    2016-02-02

    Probiotics participate actively in the neuropsychiatric disorders. However, their roles on ischemic stroke remain unclear. This study aims to determine whether Clostridium butyricum (C. butyricum) could attenuate cerebral ischemia/reperfusion (I/R) injury and its possible mechanisms. Male ICR mice were intragastrically pretreated with C. butyricum for 2 successive weeks, and then subjected to cerebral I/R injury induced by the bilateral common carotid artery occlusion (BCCAO) for 20min. After 24h of the reperfusion, neurological deficit scores were evaluated. Histopathological changes of the hippocampus neurons were observed using Hematoxylin and eosin (H&E) and TUNEL staining. Malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the brain were detected. The expression of Caspase-3, Bax and Bcl-2 were investigated by Western blot and immunohistochemistry analysis. The butyrate contents in the brain were determined. Our results showed that cerebral I/R injury led to neurological deficit, increased levels of Caspase-3 and Bax and decreased Bcl-2/Bax ratio. C. butyricum significantly improved neurological deficit, relieved histopathologic change, decreased MDA contents and increased SOD activities in the I/R injury mice. After C. butyricum pretreatment, the expression of Caspase-3 and Bax were significantly decreased, the Bcl-2/Bax ratio was significantly increased, and butyrate contents in the brain were significantly increased. These findings suggested that C. butyricum is able to exert neuroprotective effects against I/R injury mice through anti-oxidant and anti-apoptotic mechanisms, and reversing decrease of butyrate contents in the brain might be involved in its neuroprotection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    PubMed Central

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M.; López-Soriano, Francisco J.

    2017-01-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection), redox balance (protein oxidation and nitration and antioxidants) and muscle proteins (1-dimensional immunoblots), carbonylated proteins (2-dimensional immunoblots), inflammatory cells (immunohistochemistry), and mitochondrial respiratory chain (MRC) complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV). Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius. PMID:29255650

  8. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    PubMed

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    PubMed

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  10. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  11. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway

    PubMed Central

    Mao, Xiao-Yuan; Yu, Jing; Liu, Zhao-Qian; Zhou, Hong-Hao

    2015-01-01

    Our present investigation aimed to determine the neuroprotection of apigenin (API) against diabetes-associated cognitive decline (DACD) a diabetic rat model and exploring its potential mechanism. Diabetic rat model was induced by intraperitoneal injection of streptozotocin. All experiment animals treated with vehicle or API by doses of 10, 20 and 40 mg/kg for seven weeks. Firstly, the body weight and blood glucose levels were detected. We used Morris water maze test to evaluate learning and memory function. The oxidative indicators (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)), cNOS, iNOS, caspase-3 and caspase-9 were measured in cerebral cortex and hippocampus using corresponding commercial kits. API can increase body weight, reduce the blood glucose levels, and improve the cognitive function in rats induced by diabetes. API decrease the MDA content, and increase SOD activity and GSH level of diabetic animals in the cerebral cortex and hippocampus of diabetic rats. Meanwhile, constitutive nitric oxide synthase (cNOS), inducible nitric oxide synthase (iNOS), caspase-3/9 were markedly exhibited in the cerebral cortex and hippocampus of diabetic rats. In summary, our current work discloses that API attenuates DACD in rats via suppressing oxidative stress, nitric oxide and apoptotic cascades synthase pathway. PMID:26629041

  12. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting.

    PubMed

    Taty Zau, José Francisco; Costa Zeferino, Rodrigo; Sandrine Mota, Nádia; Fernandes Martins, Gerez; Manoel Serra, Salvador; Bonates da Cunha, Therezil; Medeiros Lima, Daniel; Bragança Pereira, Basilio de; Matos do Nascimento, Emília; Filho, Danilo Wilhelm; Curi Pedrosa, Rozangela; Pedrosa, Roberto Coury

    2018-12-01

    Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress. The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments. After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents. The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.

  13. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    USGS Publications Warehouse

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.

  14. Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling

    PubMed Central

    Sun, Tao; Hao, Li; Lin, Ming-Jie; Zhong, Jing-Quan

    2016-01-01

    Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by maintaining Cx43 phosphorylation and inhibiting chemical GJ coupling. IPC reduced ischemia-induced myocardial infarction and increased cardiomyocyte survival; phosphorylated Cx43, eNOS, and PKC-ε levels; and chemical GJ uncoupling. Administration of the NO donor SNAP mimicked the effects of IPC both in vivo and in vitro, maintaining Cx43 phosphorylation, promoting chemical GJ uncoupling, and reducing myocardial infarction. Preincubation with the NO synthase inhibitor L-NAME or PKC-ε translocation inhibitory peptide (PKC-ε-TIP) abolished these effects of IPC. Additionally, by inducing NO production, IPC induced translocation of PKC-ε, but not PKC-δ, from the cytosolic to the membrane fraction in primary cardiac myocytes. IPC-induced cardioprotection thus involves increased NO production, PKC-ε translocation, Cx43 phosphorylation, and chemical GJ uncoupling. PMID:27655723

  15. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    PubMed

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  16. Regulation of Therapeutic Hypothermia on Inflammatory Cytokines, Microglia Polarization, Migration and Functional Recovery after Ischemic Stroke in Mice

    PubMed Central

    Lee, Jin Hwan; Wei, Zheng Z; Cao, Wenyuan; Won, Soonmi; Gu, Xiaohuan; Winter, Megan; Dix, Thomas A.; Wei, Ling; Yu, Shan Ping

    2016-01-01

    Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6 hrs) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30 min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16 hrs after OGD. Finally, TH improved functional recovery at 1, 3, and 7 days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization

  17. Implementation of a clinical pathway based on a computerized physician order entry system for ischemic stroke attenuates off-hour and weekend effects in the ED.

    PubMed

    Yang, Jong Min; Park, Yoo Seok; Chung, Sung Phil; Chung, Hyun Soo; Lee, Hye Sun; You, Je Sung; Lee, Shin Ho; Park, Incheol

    2014-08-01

    Admission on weekends and off-hours has been associated with poor outcomes and mortality from acute stroke. The purpose of this study was to investigate whether an organized clinical pathway (CP) for ischemic stroke can effectively reduce the time from arrival to evaluation and treatment in the emergency department (ED) and improve outcomes, regardless of the time from arrival in the ED. We conducted a retrospective analysis of all consecutive patients included in the prospective registry database in the Brain Salvage through Emergency Stroke Therapy program, which uses the computerized physician order entry (CPOE) system. Patients were classified based on their time of arrival in the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Clinical outcomes were categorized according to 30 days in-hospital mortality, in-hospital mortality, and the modified Rankin score during a single length of stay (LOS). No time intervals differed significantly among the 4 patient groups who received intravenous administration of tissue plasminogen activator (IV-tPA). Use of IV-tPA (P = .5110) was not affected by arrival in the ED on off-days or weekends. The overall mortality rate was 3.9%, and the median LOS was 7 days (Interquartile range (IQR), 5-10). By Kaplan-Meier analysis, the cumulative probability of mortality and survival did not differ significantly among the 4 groups over 30 days (P = .1557). An organized CP, based on CPOE, for ischemic stroke can effectively attenuate disparities in the time interval between ED arrival to evaluation and treatment regardless of ED arrival time. This pathway may also help to eliminate off-hour and weekend effects on outcomes from ischemic stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    PubMed

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.

    PubMed

    Hayakawa, Kazuhide; Mishima, Kenichi; Fujiwara, Michihiro

    2010-07-08

    Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol. It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system. In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent. Of the CB₁ receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson's disease, Alzheimer's disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.

  20. A Novel Imaging Technique (X-Map) to Identify Acute Ischemic Lesions Using Noncontrast Dual-Energy Computed Tomography.

    PubMed

    Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi

    2017-01-01

    We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming

    2018-05-01

    Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.

  2. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats.

    PubMed

    Rehni, Ashish K; Shukla, Vibha; Perez-Pinzon, Miguel A; Dave, Kunjan R

    2018-03-15

    Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Heme Oxygenase-1 Gene Therapy Provides Cardioprotection Via Control of Post-Ischemic Inflammation: An Experimental Study in a Pre-Clinical Pig Model.

    PubMed

    Hinkel, Rabea; Lange, Philipp; Petersen, Björn; Gottlieb, Elena; Ng, Judy King Man; Finger, Stefanie; Horstkotte, Jan; Lee, Seungmin; Thormann, Michael; Knorr, Maike; El-Aouni, Chiraz; Boekstegers, Peter; Reichart, Bruno; Wenzel, Philip; Niemann, Heiner; Kupatt, Christian

    2015-07-14

    Heme oxygenase-1 (HO-1) is an inducible stress-responsive enzyme converting heme to bilirubin, carbon monoxide, and free iron, which exerts anti-inflammatory and antiapoptotic effects. Although efficient cardioprotection after HO-1 overexpression has been reported in rodents, its role in attenuating post-ischemic inflammation is unclear. This study assessed the efficacy of recombinant adenoassociated virus (rAAV)-encoding human heme oxygenase-1 (hHO-1) in attenuating post-ischemic inflammation in a murine and a porcine ischemia/reperfusion model. Murine ischemia was induced by 45 min of left anterior descending occlusion, followed by 24 h of reperfusion and functional as well as fluorescent-activated cell sorting analysis. Porcine hearts were subjected to 60 min of ischemia and 24h of reperfusion before hemodynamic and histologic analyses were performed. Human microvascular endothelial cells transfected with hHO-1 displayed an attenuated interleukin-6 and intercellular adhesion molecule 1 expression, resulting in reduced monocytic THP-1 cell recruitment in vitro. In murine left anterior descending occlusion and reperfusion, the post-ischemic influx of CD45(+) leukocytes, Ly-6G(+) neutrophils, and Ly-6C(high) monocytes was further exacerbated in HO-1-deficient hearts and reversed by rAAV.hHO-1 treatment. Conversely, in our porcine model of ischemia, the post-ischemic influx of myeloperoxidase-positive neutrophils and CD14(+) monocytes was reduced by 49% and 87% after rAAV.hHO-1 transduction, similar to hHO-1 transgenic pigs. Functionally, rAAV.hHO-1 and hHO-1 transgenic left ventricles displayed a smaller loss of ejection fraction than control animals. Whereas HO-1 deficiency exacerbates post-ischemic cardiac inflammation in mice, hHO-1 gene therapy attenuates inflammation after ischemia and reperfusion in murine and porcine hearts. Regional hHO-1 gene therapy provides cardioprotection in a pre-clinical porcine ischemia/reperfusion model. Copyright © 2015 American

  4. Effect of non-invasive remote ischemic preconditioning on intra-renal perfusion in volunteers.

    PubMed

    Robert, René; Vinet, Mathieu; Jamet, Angéline; Coudroy, Rémi

    2017-06-01

    Remote ischemic preconditioning may attenuate renal injury and protect the kidney during subsequent inflammatory or ischemic stress. However, the mechanism of such a protection is not well understood. The aim of this study was to investigate the impact of remote ischemic preconditioning on renal resistivity index (RRI) in nine healthy volunteers. In six volunteers, four cycles of 4-min inflation of a blood pressure cuff were applied to one upper arm, followed by 4-min reperfusion with the cuff deflated. RRI was determined using Doppler echography during each cuff deflated period. Measures were also performed in three volunteers without preconditioning. The median value of RRI significantly decreased progressively from 0.59 [0.53-0.62] before the remote conditioning (baseline) to 0.49 [0.46-0.53] at the end of the experiment (p < 0.001) whereas there was no change in controls. In this study, for the first time, we have clearly shown in a small group of subjects that remote ischemic preconditioning can induce a significantly decrease in RRI through increased intra-renal perfusion.

  5. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Bhuvaneshwari; Aggarwal, Aanchal; Sandhir, Rajat

    2013-04-01

    Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50mg/kg body weight) and chromium was administered orally as chromium picolinate (1mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Topical application of nitrosonifedipine, a novel radical scavenger, ameliorates ischemic skin flap necrosis in a mouse model.

    PubMed

    Fukunaga, Yutaka; Izawa-Ishizawa, Yuki; Horinouchi, Yuya; Sairyo, Eriko; Ikeda, Yasumasa; Ishizawa, Keisuke; Tsuchiya, Koichiro; Abe, Yoshiro; Hashimoto, Ichiro; Tamaki, Toshiaki

    2017-04-01

    Ischemic skin flap necrosis can occur in random pattern flaps. An excess amount of reactive oxygen species is generated and causes necrosis in the ischemic tissue. Nitrosonifedipine (NO-NIF) has been demonstrated to possess potent radical scavenging ability. However, there has been no study on the effects of NO-NIF on ischemic skin flap necrosis. Therefore, they evaluated the potential of NO-NIF in ameliorating ischemic skin flap necrosis in a mouse model. A random pattern skin flap (1.0 × 3.0 cm) was elevated on the dorsum of C57BL/6 mice. NO-NIF was administered by topical injection immediately after surgery and every 24 hours thereafter. Flap survival was evaluated on postoperative day 7. Tissue samples from the skin flaps were harvested on postoperative days 1 and 3 to analyze oxidative stress, apoptosis and endothelial dysfunction. The viable area of the flap in the NO-NIF group was significantly increased (78.30 ± 7.041%) compared with that of the control group (47.77 ± 6.549%, p < 0.01). NO-NIF reduced oxidative stress, apoptosis and endothelial dysfunction, which were evidenced by the decrease of malondialdehyde, p22phox protein expression, number of apoptotic cells, phosphorylated p38 MAPK protein expression, and vascular cell adhesion molecule-1 protein expression while endothelial nitric oxide synthase protein expression was increased. In conclusion, they demonstrated that NO-NIF ameliorated ischemic skin flap necrosis by reducing oxidative stress, apoptosis, and endothelial dysfunction. NO-NIF is considered to be a candidate for the treatment of ischemic flap necrosis. © 2017 by the Wound Healing Society.

  7. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

    PubMed

    Cao, Aili; Wang, Li; Chen, Xia; Guo, Hengjiang; Chu, Shuang; Zhang, Xuemei; Peng, Wen

    2016-08-01

    Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects.

  8. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    PubMed Central

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using micro-focused Extended X-ray Absorption Fine Structure (EXAFS) and X-ray fluorescence (μSXRF) mapping , bulk EXAFS, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and micro-focused EXAFS spectra of Zn in the biogenic Mn oxides coating are indicative of Zn forming triple corner sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to decreasing in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in solid to solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating desorption is not controlled by dissolution of secondary Zn phases. In sum, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process in Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present. PMID:24460038

  9. Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway.

    PubMed

    Liu, Rui-Li; Xiong, Qiu-Ju; Shu, Qing; Wu, Wen-Ning; Cheng, Jin; Fu, Hui; Wang, Fang; Chen, Jian-Guo; Hu, Zhuang-Li

    2012-08-21

    Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca(2+)](i) elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Methylene blue attenuates ischemia--reperfusion injury in lung transplantation.

    PubMed

    Abreu, Marcus da Matta; Pazetti, Rogerio; Almeida, Francine Maria de; Correia, Aristides Tadeu; Parra, Edwin Roger; Silva, Laís Pereira da; Vieira, Rodolfo de Paula; Pêgo-Fernandes, Paulo Manuel; Jatene, Fabio Biscegli

    2014-12-01

    Ischemia-reperfusion injury (IRI) is one of the principal obstacles for the lung transplantation (LTx) success. Several strategies have been adopted to minimize the effects of IRI in lungs, including ex vivo conditioning of the grafts and the use of antioxidant drugs, such as methylene blue (MB). We hypothesized that MB could minimize the effects of IRI in a LTx rodent model. Forty rats were divided into four groups (n = 10) according to treatment (saline solution or MB) and graft cold ischemic time (3 or 6 h). All animals underwent unilateral LTx. Recipients received 2 mL of saline or MB intraperitoneally before transplantation. After 2 h of reperfusion, arterial blood and exhaled nitric oxide samples were collected and bronchoalveolar lavage performed. Then animals were euthanized, and histopathology analysis as well as cell counts and cytokine levels measurements in bronchoalveolar lavage fluid were performed. There was a significant decrease in exhaled nitric oxide, neutrophils, interleukin-6, and tumor necrosis factor-α in MB-treated animals. PaO2 and uric acid levels were higher in MB group. MB was able in attenuating IRI in this LTx model. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  12. Ischemic Strokes (Clots)

    MedlinePlus

    ... Month Infographic Stroke Hero F.A.S.T. Quiz Ischemic Strokes (Clots) Updated:May 21,2018 Ischemic stroke accounts for about 87 percent of all cases. View a detailed animation of ischemic stroke . Ischemic strokes occur as a result of an ...

  13. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  14. Statins attenuate but do not eliminate the reverse epidemiology of total serum cholesterol in patients with non-ischemic chronic heart failure.

    PubMed

    Fröhlich, Hanna; Raman, Nandita; Täger, Tobias; Schellberg, Dieter; Goode, Kevin M; Kazmi, Syed; Grundtvig, Morten; Hole, Torstein; Cleland, John G F; Katus, Hugo A; Agewall, Stefan; Clark, Andrew L; Atar, Dan; Frankenstein, Lutz

    2017-07-01

    In patients with chronic heart failure (CHF) increasing levels of total serum cholesterol are associated with improved survival - while statin usage is not. The impact of statin treatment on the "reverse epidemiology" of cholesterol is unclear. 2992 consecutive patients with non-ischemic CHF due to left ventricular systolic dysfunction from the Norwegian CHF Registry and the CHF Registries of the Universities of Hull, UK, and Heidelberg, Germany, were studied. 1736 patients were individually double-matched on both cholesterol levels and the individual propensity scores for statin treatment. All-cause mortality was analyzed as a function of baseline cholesterol and statin use in both the general and the matched sample. 1209 patients (40.4%) received a statin. During a follow-up of 13,740 patient-years, 360 statin users (29.8%) and 573 (32.1%) statin non-users died. When grouped according to total cholesterol levels as low (≤3.6mmol/L), moderate (3.7-4.9mmol/L), high (4.8-6.2mmol/L), and very high (>6.2mmol/L), we found improved survival with very high as compared with low cholesterol levels. This association was present in statin users and non-users in both the general and matched sample (p<0.05 for each group comparison). The negative association of total cholesterol and mortality persisted when cholesterol was treated as a continuous variable (HR 0.83, 95%CI 0.77-0.90, p<0.001 for matched patients), but it was less pronounced in statin users than in non-users (F-test p<0.001). Statins attenuate but do not eliminate the reverse epidemiological association between increasing total serum cholesterol and improved survival in patients with non-ischemic CHF. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats.

    PubMed

    Yang, Long; Dong, Xiujuan

    2017-06-01

    We aimed to evaluate the effect of natural antioxidant crocin in alleviating hemorrhagic shock (HS)-induced organ damages. HS rats were treated with crocin during resuscitation. Mortality at 12h and 24h post resuscitation was documented. HS and resuscitation induced organ injuries, as characterized by elevated wet/dry ratio, quantitative assessment ratio, blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase, whereas rats received crocin treatment demonstrated improvements in all the above characteristics. This protective effect coincided with reduced malondialdehyde and increased glutathione in both serum and lung tissues, indicating attenuated oxidative stress in crocin-treated rats. Myeloperoxide levels in lung, kidney and liver were also reduced. Crocin can potentially be used to protect organs from HS-induced damages during resuscitation due to its anti-oxidative role. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke

    PubMed Central

    Hayakawa, Kazuhide; Mishima, Kenichi; Fujiwara, Michihiro

    2010-01-01

    Cannabis contains the psychoactive component delta9-tetrahydrocannabinol (delta9-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol. It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta9-THC also mediates psychological effects through the activation of the CB1 receptor in the central nervous system. In addition to the CB1 receptor agonists, cannabis also contains therapeutically active components which are CB1 receptor independent. Of the CB1 receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke. PMID:27713349

  17. Neuroprotective Effect of a New Synthetic Aspirin-decursinol Adduct in Experimental Animal Models of Ischemic Stroke

    PubMed Central

    Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. PMID:24073226

  18. Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke.

    PubMed

    Yan, Bing Chun; Park, Joon Ha; Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.

  19. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells.

    PubMed

    Li, Yanwei; Liu, Haifeng; Zeng, Wei; Wei, Jing

    2017-01-01

    An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC.

  20. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells

    PubMed Central

    Li, Yanwei; Liu, Haifeng; Zeng, Wei; Wei, Jing

    2017-01-01

    An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC. PMID:28346481

  1. Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2015-02-19

    Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Neuroprotection Against Hypoxic/Ischemic Injury: δ-Opioid Receptors and BDNF-TrkB Pathway.

    PubMed

    Sheng, Shiying; Huang, Jingzhong; Ren, Yi; Zhi, Feng; Tian, Xuansong; Wen, Guoqiang; Ding, Guanghong; Xia, Terry C; Hua, Fei; Xia, Ying

    2018-05-11

    The delta-opioid receptor (DOR) is one of three classic opioid receptors in the opioid system. It was traditionally thought to be primarily involved in modulating the transmission of messages along pain signaling pathway. Although there were scattered studies on its other neural functions, inconsistent results and contradicting conclusions were found in past literatures, especially in terms of DOR's role in a hypoxic/ischemic brain. Taking inspiration from the finding that the turtle brain exhibits a higher DOR density and greater tolerance to hypoxic/ischemic insult than the mammalian brain, we clarified DOR's specific role in the brain against hypoxic/ischemic injury and reconciled previous controversies in this aspect. Our serial studies have strongly demonstrated that DOR is a unique neuroprotector against hypoxic/ischemic injury in the brain, which has been well confirmed in current research. Moreover, mechanistic studies have shown that during acute phases of hypoxic/ischemic stress, DOR protects the neurons mainly by the stabilization of ionic homeostasis, inhibition of excitatory transmitter release, and attenuation of disrupted neuronal transmission. During prolonged hypoxia/ischemia, however, DOR neuroprotection involves a variety of signaling pathways. More recently, our data suggest that DOR may display its neuroprotective role via the BDNF-TrkB pathway. This review concisely summarizes the progress in this field. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  4. Nobiletin improves propofol-induced neuroprotection via regulating Akt/mTOR and TLR 4/NF-κB signaling in ischemic brain injury in rats.

    PubMed

    Zheng, Yuzhen; Bu, Jinmei; Yu, Liang; Chen, Jun; Liu, Haigen

    2017-07-01

    Stroke is regarded as one of the main health concerns globally, presenting with high mortality and morbidity rates. Cerebral ischemic damage and infarction are critically associated with stroke. Various mechanisms related to inflammation, oxidative stress and excitotoxicity are found to be involved in ischemic damage. Very short time period for treatment has necessitated in development of more effective neuroprotective agents. Study aimed in investigated the effects of nobiletin on experimentally induced ischemic brain injury and also to assess whether nobiletin potentiated the neuroprotective effects of propofol. Male Sprague-Dawley rats were subjected to ischemia/reperfusion (I/R) injury. Induction of cerebral infarction and I/R was done by middle cerebral artery occlusion (MCAO). Nobiletin (100 or 200mg/kg b.wt.) was intragastrically administered to rats for 9 days before ischemia induction and on the day of induction nobiletin was administered an hour prior. Separate group of rats were post-conditioned with propofol (50mg/kg/h; i.v.) for 30min following 24h of reperfusion. Propofol post-conditioning either with or without administration of nobiletin prior I/R injury attenuated pulmonary edema, neuronal apoptosis and reduced cerebral infarct volume. Overproduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and nitric oxide following I/R were reduced. Propofol either alone or with prior nobiletin treatment had down-regulated TLR4 and TLR4-mediated NF-κB signaling and caused activation of Akt/mTOR cascade. Propofol post-conditioning either with nobiletin prior I/R injury was found to be more effective than propofol alone, suggesting the positive effects of nobiletin on propofol-mediated anti-inflammatory and neuroprotective effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Silibinin Attenuates Sulfur Mustard Analog-Induced Skin Injury by Targeting Multiple Pathways Connecting Oxidative Stress and Inflammation

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2012-01-01

    Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants. PMID:23029417

  6. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    PubMed

    Tewari-Singh, Neera; Jain, Anil K; Inturi, Swetha; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2012-01-01

    Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  7. Revisiting the slow force response: the role of the PKG signaling pathway in the normal and the ischemic heart.

    PubMed

    Castro-Ferreira, Ricardo; Neves, João Sérgio; Ladeiras-Lopes, Ricardo; Leite-Moreira, André M; Neiva-Sousa, Manuel; Almeida-Coelho, João; Ferreira-Martins, João; F Leite-Moreira, Adelino

    2014-09-01

    The myocardial response to acute stretch consists of a two-phase increase in contractility: an acute increase by the Frank-Starling mechanism and a gradual and time-dependent increase in force generated known as the slow force response (SFR). The SFR is actively modulated by different signaling pathways, but the role of protein kinase G (PKG) signaling is unknown. In this study we aim to characterize the role of the PKG signaling pathway in the SFR under normal and ischemic conditions. Rabbit papillary muscles were stretched from 92 to 100% of maximum length (Lmax) under basal conditions, in the absence (1) or presence of: a PKG agonist (2) and a PKG inhibitor (3); under ischemic conditions in the absence (4) or presence of: a PKG agonist (5); a nitric oxide (NO) donor (6) and a phosphodiesterase 5 (PDE5) inhibitor (7). Under normoxia, the SFR was significantly attenuated by inhibition of PKG and remained unaltered with PKG activation. Ischemia induced a progressive decrease in myocardial contractility after stretch. Neither the PKG agonist nor the NO donor altered the myocardial response to stretch under ischemic conditions. However, the use of a PDE5 inhibitor in ischemia partially reversed the progressive deterioration in contractility. PKG activity is essential for the SFR. During ischemia, a progressive decline in the force is observed in response to acute myocardial stretch. This dysfunctional response can be partially reversed by the use of PDE5 inhibitors. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  8. MRI Features in a Canine Model of Ischemic Stroke: Correlation between Lesion Volume and Neurobehavioral Status during the Subacute Stage

    PubMed Central

    Kang, Byeong-Teck; Jang, Dong-Pyo; Gu, Su-Hyun; Lee, Jong-Hwan; Jung, Dong-In; Lim, Chae-Young; Kim, Ha-Jung; Kim, Young-Bo; Kim, Hyung-Joong; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung

    2009-01-01

    The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke. PMID:19887030

  9. Role of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase during Early Anesthetic and Ischemic Preconditioning

    PubMed Central

    Amour, Julien; Brzezinska, Anna K.; Weihrauch, Dorothee; Billstrom, Amie R.; Zielonka, Jacek; Krolikowski, John G.; Bienengraeber, Martin W.; Warltier, David C.; Pratt, Philip F.; Kersten, Judy R.

    2009-01-01

    Background Nitric oxide is known to be essential for early anesthetic (APC) and ischemic (IPC) preconditioning of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, we tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Methods Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning with 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pre-treatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or NG-nitro-L-arginine methylester, a non-specific NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or NG-nitro-L-arginine methylester. Interactions between Hsp90 and eNOS, and eNOS activation were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. Results APC and IPC decreased infarct size (50% and 59%, respectively) and this action was abolished by Hsp90 inhibitors. NG-nitro-L-arginine methylester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells, concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes and eNOS was below the level of detection. Conclusion The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signalling during APC. PMID:19194158

  10. Metformin treatment after the hypoxia-ischemia attenuates brain injury in newborn rats

    PubMed Central

    Fang, Mingchu; Jiang, Huai; Ye, Lixia; Cai, Chenchen; Hu, Yingying; Pan, Shulin; Li, Peijun; Xiao, Jian; Lin, Zhenlang

    2017-01-01

    Neonatal hypoxic-ischemic (HI) brain injury is a devastating disease that often leads to death and detrimental neurological deficits. The present study was designed to evaluate the ability of metformin to provide neuroprotection in a model of neonatal hypoxic-ischemic brain injury and to study the associated molecular mechanisms behind these protective effects. Here, we found that metformin treatment remarkably attenuated brain infarct volumes and brain edema at 24 h after HI injury, and the neuroprotection of metformin was associated with inhibition of neuronal apoptosis, suppression of the neuroinflammation and amelioration of the blood brain barrier breakdown. Additionally, metformin treatment conferred long-term protective against brain damage at 7 d after HI injury. Our study indicates that metformin treatment protects against neonatal hypoxic-ischemic brain injury and thus has potential as a therapy for this disease. PMID:29088867

  11. Involvement of Erythropoietin in Retinal Ischemic Preconditioning

    PubMed Central

    Dreixler, John C.; Hagevik, Sarah; Hemmert, Jonathan W.; Shaikh, Afzhal R.; Rosenbaum, Daniel M.; Roth, Steven

    2009-01-01

    Background The purpose of this study was to examine the role of erythropoietin in retinal ischemic preconditioning (IPC). Methods Rats were subjected to retinal ischemia after IPC. Electroretinography assessed functional recovery after ischemia; retinal sections were examined to determine loss of retinal ganglion cells, and Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling was used to assess apoptosis. Levels of downstream mediators were measured in retinal homogenates by Western blotting. To assess the involvement of erythropoietin in IPC, we measured levels of erythropoietin and its receptor (EPO-R) in retinal homogenates following IPC, using Western blotting. To examine erythropoietin’s role in IPC, we studied the impact of blocking erythropoietin via intravitreal injection of soluble EPO-R (sEPO-R) before IPC. Results Erythropoietin levels did not change following IPC, but EPO-R increased. Intravitreal injection of sEPO-R significantly attenuated both the functional and histological neuroprotection produced by IPC in comparison to control injection of denatured sEPO-R. Apoptotic damage after ischemia was enhanced in the sEPO-R treated retinas as indicated by fluorescent Terminal Deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling. Phosphorylated extracellular-signal-regulated kinase (ERK) and heat shock protein 27 (Hsp27), but not protein kinase B (Akt), upregulated in denatured sEPO-R treated retinae, were attenuated in eyes injected with sEPO-R. Conclusions These results indicate that EPO-R upregulation is a critical component of the functional, histological, and anti-apoptotic protective effect of ischemic preconditioning on ischemia in the retina and that several downstream effectors may be involved in the neuroprotective actions of erythropoietin. PMID:19322943

  12. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration.

    PubMed

    Romero, Juan Ignacio; Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Hanschmann, Eva-Maria; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Rodríguez de Fonseca, Fernando; Lillig, Christopher Horst; Capani, Francisco

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  13. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration

    PubMed Central

    Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Lillig, Christopher Horst

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury. PMID:28706574

  14. Neighborhood disadvantage and ischemic stroke: the Cardiovascular Health Study (CHS).

    PubMed

    Brown, Arleen F; Liang, Li-Jung; Vassar, Stefanie D; Stein-Merkin, Sharon; Longstreth, W T; Ovbiagele, Bruce; Yan, Tingjian; Escarce, José J

    2011-12-01

    Neighborhood characteristics may influence the risk of stroke and contribute to socioeconomic disparities in stroke incidence. The objectives of this study were to examine the relationship between neighborhood socioeconomic status and incident ischemic stroke and examine potential mediators of these associations. We analyzed data from 3834 whites and 785 blacks enrolled in the Cardiovascular Health Study, a multicenter, population-based, longitudinal study of adults ages≥65 years from 4 US counties. The primary outcome was adjudicated incident ischemic stroke. Neighborhood socioeconomic status was measured using a composite of 6 census tract variables. Race-stratified multilevel Cox proportional hazard models were constructed adjusted for sociodemographic, behavioral, and biological risk factors. Among whites, in models adjusted for sociodemographic characteristics, stroke hazard was significantly higher among residents of neighborhoods in the lowest compared with the highest neighborhood socioeconomic status quartile (hazard ratio, 1.32; 95% CI, 1.01-1.72) with greater attenuation of the hazard ratio after adjustment for biological risk factors (hazard ratio, 1.16; 0.88-1.52) than for behavioral risk factors (hazard ratio, 1.30; 0.99-1.70). Among blacks, we found no significant associations between neighborhood socioeconomic status and ischemic stroke. Higher risk of incident ischemic stroke was observed in the most disadvantaged neighborhoods among whites, but not among blacks. The relationship between neighborhood socioeconomic status and stroke among whites appears to be mediated more strongly by biological than behavioral risk factors.

  15. Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance

    PubMed Central

    Lehotský, Ján; Tothová, Barbara; Kovalská, Maria; Dobrota, Dušan; Beňová, Anna; Kalenská, Dagmar; Kaplán, Peter

    2016-01-01

    Homocysteine (Hcy) is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy), as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS) and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC) is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signaling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK) protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signaling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors leading to ischemic

  16. Resveratrol-Mediated Expression of KLF15 in the Ischemic Myocardium is Associated with an Improved Cardiac Phenotype.

    PubMed

    Rogers, Russell G; Otis, Jeffrey S

    2017-02-01

    Myocardial infarction results in physiological derangements that lead to structural and functional alterations to the myocardium. In addition, oxidative stress potentiates cardiac remodeling and drives disease progression. Unfortunately, treatment with antioxidants in clinical trials have failed to show any therapeutic benefits despite the positive results reported in animal studies, which warrants further investigation into their mechanism(s) of action. Accordingly, the aim of this study was to elucidate a previously unknown mechanism of action for the antioxidant, resveratrol, in the treatment of the ischemic heart. Male Sprague-Dawley rats underwent four weeks of chronic myocardial ischemia with or without daily resveratrol treatment (10 mg/kg/day). The expression and signaling of Krüppel-like factor 15 (KLF15) were determined by immunoblot and qPCR analyses, respectively. Chronic myocardial ischemia reduced the protein expression of KLF15. In parallel, mRNA transcripts of KLF15 gene targets actively involved in cardiac remodeling were robustly increased in untreated hearts. Importantly, daily treatment with resveratrol stimulated KLF15 expression, which was associated with attenuated gene expression and an improved cardiac phenotype. Additionally, we describe a novel role for KLF15 in the regulation of redox homeostasis. Based on our current findings, it appears that resveratrol treatment induces KLF15 expression, which may, in part, explain its therapeutic efficacy to improve the cardiac phenotype following ischemic injury.

  17. A novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator RS9 attenuates brain injury after ischemia reperfusion in mice.

    PubMed

    Yamauchi, Keita; Nakano, Yusuke; Imai, Takahiko; Takagi, Toshinori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Iwama, Toru; Hara, Hideaki

    2016-10-01

    Recanalization of occluded vessels leads to ischemia-reperfusion injury (IRI), with oxidative stress as one of the main causes of injury, despite the fact that recanalization therapy is the most effective treatment for ischemic stroke. The nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the transcription factors which has an essential role in protection against oxidative stress. RS9 is a novel Nrf2 activator obtained from bardoxolone methyl (BARD), an Nrf2 activator that has already been tested in a clinical trial, using a biotransformation technique. RS9 has been reported to lead to higher Nrf2 activation and less cytotoxicity than BARD. In this study, we investigated the effects of RS9 on IRI. Mice were intraperitoneally treated immediately after 2h of transient middle cerebral artery occlusion (MCAO) with a vehicle solution or 0.2mg/kg of RS9. Post-onset treatment of RS9 attenuated the infarct volume and improved neurological deficits 22h after reperfusion. RS9 activated Nrf2 2 and 6h after reperfusion and activated heme oxygenase-1 at 6 and 22h after reperfusion. RS9 also attenuated the phosphorylation of NF-κB p65 2 and 6h after reperfusion. Finally, RS9 improved the survival rate and neurological deficits 7days after MCAO. Our results suggest that the activation of Nrf2 by RS9 has a neuroprotective effect, mediated by attenuating both oxidative stress and neuroinflammation, and that RS9 is an effective therapeutic candidate for the treatment of IRI. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    PubMed

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  19. Cardioprotective effect of the Hibiscus rosa sinensis flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat

    PubMed Central

    Gauthaman, Karunakaran K; Saleem, Mohamed TS; Thanislas, Peter T; Prabhu, Vinoth V; Krishnamoorthy, Karthikeyan K; Devaraj, Niranjali S; Somasundaram, Jayaprakash S

    2006-01-01

    Background The present study investigates the cardioprotective effects of Hibiscus rosa sinensis in myocardial ischemic reperfusion injury, particularly in terms of its antioxidant effects. Methods The medicinal values of the flowers of Hibiscus rosa sinensis (Chinese rose) have been mentioned in ancient literature as useful in disorders of the heart. Dried pulverized flower of Hibiscus rosa sinensis was administered orally to Wistar albino rats (150–200 gms) in three different doses [125, 250 and 500 mg/kg in 2% carboxy methyl cellulose (CMC)], 6 days per week for 4 weeks. Thereafter, rats were sacrificed; either for the determination of baseline changes in cardiac endogenous antioxidants [superoxide dismutase, reduced glutathione and catalase] or the hearts were subjected to isoproterenol induced myocardial necrosis. Results There was significant increase in the baseline contents of thiobarbituric acid reactive substances (TBARS) [a measure of lipid per oxidation] with both doses of Hibiscus Rosa sinensis. In the 250 mg/kg treated group, there was significant increase in superoxide dismutase, reduced glutathione, and catalase levels but not in the 125 and 500 mg/kg treated groups. Significant rise in myocardial thiobarbituric acid reactive substances and loss of superoxide dismutase, catalase and reduced glutathione (suggestive of increased oxidative stress) occurred in the vehicle treated hearts subjected to in vivo myocardial ischemic reperfusion injury. Conclusion It may be concluded that flower of Hibiscus rosa sinensis (250 mg/kg) augments endogenous antioxidant compounds of rat heart and also prevents the myocardium from isoproterenol induced myocardial injury. PMID:16987414

  20. Oral administration of Bifidobacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin.

    PubMed

    Ishii, Yuki; Sugimoto, Saho; Izawa, Naoki; Sone, Toshiro; Chiba, Katsuyoshi; Miyazaki, Kouji

    2014-07-01

    Recent studies have shown that some probiotics affect not only the gut but also the skin. However, the effects of probiotics on ultraviolet (UV)-induced skin damage are poorly understood. In this study, we aim to examine whether oral administration of live Bifidobacterium breve strain Yakult (BBY), a typical probiotic, can attenuate skin barrier perturbation caused by UV and reactive oxygen species (ROS) in hairless mice. The mice were orally supplemented with a vehicle only or BBY once a day for nine successive days. Mouse dorsal skin was irradiated with UV from days 6 to 9. The day after the final irradiation, the transepidermal water loss (TEWL), stratum corneum hydration, and oxidation-related factors of the skin were evaluated. We elucidated that BBY prevented the UV-induced increase in TEWL and decrease in stratum corneum hydration. In addition, BBY significantly suppressed the UV-induced increase in hydrogen peroxide levels, oxidation of proteins and lipids, and xanthine oxidase activity in the skin. Conversely, antioxidant capacity did not change regardless of whether BBY was administered or not. In parameters we evaluated, there was a positive correlation between the increase in TEWL and the oxidation levels of proteins and lipids. Our results suggest that oral administration of BBY attenuates UV-induced barrier perturbation and oxidative stress of the skin, and this antioxidative effect is not attributed to enhancement of antioxidant capacity but to the prevention of ROS generation.

  1. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury.

    PubMed

    Kim, Jinu

    2017-10-01

    Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.

  2. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian

    Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renalmore » fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders. - Highlights: • Sinomenine has strong potency of inhibiting renal fibrosis in UUO mouse kidney. • Sinomenine attenuates the expression of profibrogenic proteins. • Sinomenine balances renal fibrosis-associated oxidative stress. • Sinomenine mitigates profibrogenic

  3. S-Allylmercaptocysteine Attenuates Cisplatin-Induced Nephrotoxicity through Suppression of Apoptosis, Oxidative Stress, and Inflammation

    PubMed Central

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-01-01

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects. PMID:28230744

  4. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    PubMed

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Lipid Profile Components and Risk of Ischemic Stroke

    PubMed Central

    Willey, Joshua Z.; Xu, Qiang; Boden-Albala, Bernadette; Paik, Myunghee C.; Moon, Yeseon Park; Sacco, Ralph L.; Elkind, Mitchell S. V.

    2010-01-01

    Objective To explore the relationship between lipid profile components and incident ischemic stroke in a stroke-free prospective cohort. Design Population-based prospective cohort study. Setting Northern Manhattan, New York. Patients Stroke-free community residents. Intervention As part of the Northern Manhattan Study, baseline fasting blood samples were collected on stroke-free community residents followed up for a mean of 7.5 years. Main Outcome Measures Cox proportional hazard models were used to calculate hazard ratios and 95% confidence intervals for lipid profile components and ischemic stroke after adjusting for demographic and risk factors. In secondary analyses, we used repeated lipid measures over 5 years from a 10% sample of the population to calculate the change per year of each of the lipid parameters and to impute time-dependent lipid parameters for the full cohort. Results After excluding those with a history of myocardial infarction, 2940 participants were available for analysis. Baseline high-density lipoprotein cholesterol, triglyceride, and total cholesterol levels were not associated with risk of ischemic stroke. Low-density lipoprotein cholesterol (LDL-C) and non–high-density lipoprotein cholesterol levels were associated with a paradoxical reduction in risk of stroke. There was an interaction with use of cholesterol-lowering medication on follow-up, such that LDL-C level was only associated with a reduction in stroke risk among those taking medications. An LDL-C level greater than 130 mg/dL as a time-dependent covariate showed an increased risk of ischemic stroke (adjusted hazard ratio, 3.81; 95% confidence interval, 1.53–9.51). Conclusions Baseline lipid panel components were not associated with an increased stroke risk in this cohort. Treatment with cholesterol-lowering medications and changes in LDL-C level over time may have attenuated the risk in this population, and lipid measurements at several points may be a better marker of

  6. Minoxidil attenuates ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes.

    PubMed

    Takatani, Tomoka; Takahashi, Kyoko; Jin, Chengshi; Matsuda, Takahisa; Cheng, Xinyao; Ito, Takashi; Azuma, Junichi

    2004-06-01

    The effects of minoxidil (a mitochondrial K+(ATP) channel opener) on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia, since mitochondrial K+(ATP) channel openers have been suggested to be involved in the mechanisms of cardioprotective action against ischemia/reperfusion injury. In the absence of minoxidil, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation within 24 to 72 hours. Based on the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. Myocytes treated with 5 microM of minoxidil failed to alter the degree of ischemia-induced CPK loss for 48 to 72 hours. However, minoxidil treatment prevented the loss of beating function in many of the ischemic cells, and attenuated the decline in intracellular ATP content after a 48-hour ischemic incubation. The number of nuclear fragmentation was significantly reduced in minoxidil-treated cells after a 72-hour ischemic insult compared with untreated ischemic cells. This effect was blocked by the mitochondrial K+(ATP) channel antagonist 5-HD. The data suggest that minoxidil renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of minoxidil appear to be related to the opening of mitochondrial K+(ATP) channels.

  7. Urinary cadmium concentration and the risk of ischemic stroke.

    PubMed

    Chen, Cheng; Xun, Pengcheng; Tsinovoi, Cari; McClure, Leslie A; Brockman, John; MacDonald, Leslie; Cushman, Mary; Cai, Jianwen; Kamendulis, Lisa; Mackey, Jason; He, Ka

    2018-06-22

    To examine the association between urinary cadmium levels and the incidence of ischemic stroke and to explore possible effect modifications. A case-cohort study was designed nested in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, including 680 adjudicated incident cases of ischemic stroke and 2,540 participants in a randomly selected subcohort. Urinary creatinine-corrected cadmium concentration was measured at baseline. Multivariable-adjusted hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were estimated with the Barlow weighting method for the Cox proportional hazards regression model. The median urinary cadmium concentration was 0.42 (interquartile range 0.27-0.68) μg/g creatinine. After adjustment for potential confounders, urinary cadmium was associated with increased incidence of ischemic stroke (quintile 5 vs quintile 1: HR 1.50, 95% CI 1.01-2.22, p for trend = 0.02). The observed association was more pronounced among participants in the lowest serum zinc tertile (tertile 3 vs tertile 1: HR 1.82, 95% CI 1.06-3.11, p for trend = 0.004, p for interaction = 0.05) but was attenuated and became nonsignificant among never smokers (tertile 3 vs tertile 1: never smokers: HR 1.27, 95% CI 0.80-2.03, p for trend = 0.29; ever smokers: HR 1.60, 95% CI 1.06-2.43, p for trend = 0.07, p for interaction = 0.51). Findings from this study suggest that cadmium exposure may be an independent risk factor for ischemic stroke in the US general population. Never smoking and maintaining a high serum zinc level may ameliorate the potential adverse effects of cadmium exposure. © 2018 American Academy of Neurology.

  8. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    PubMed Central

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  9. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse.

    PubMed

    Ye, Xinchun; Shen, Tong; Hu, Jinxia; Zhang, Liang; Zhang, Yunshan; Bao, Lei; Cui, Chengcheng; Jin, Guoliang; Zan, Kun; Zhang, Zuohui; Yang, Xinxin; Shi, Hongjuan; Zu, Jie; Yu, Ming; Song, Chengjie; Wang, Yulan; Qi, Suhua; Cui, Guiyun

    2017-06-01

    Previous research has shown that Purinergic 2X7 receptor (P2X7R) and NLRP3 inflammasome contribute to the inflammatory activation. In this study, we investigated whether P2X7R/NLRP3 pathway is involved in the caspase-3 dependent neuronal apoptosis after ischemic stroke by using a focal cortex ischemic stroke model. The expressions of P2X7R, NLRP3 inflammsome components, and cleaved caspase-3 were significantly enhanced in the ischemic brain tissue after stroke. However, the expression of cleaved caspase-3 was significantly attenuated after treatment of stroke with P2X7R antagonist (BBG) or NLRP3 inhibitor (MCC950). The treatment also significantly reduced the infarction volume, neuronal apoptosis, and neurological impairment. In addition, in vitro data also support the hypothesis that P2X7R/NLRP3 pathway plays a vital role in caspase-3 dependent neuronal apoptosis after ischemic stroke. Further investigation of effective regulation of P2X7R and NLRP3 in stroke is warranted. Copyright © 2017. Published by Elsevier Inc.

  10. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule-1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury.

    PubMed

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S; Jordan, Kyra L; Tang, Hui; Zhu, Xiangyang; Lerman, Lilach O

    2018-05-01

    Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell-surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue-derived MSC with antibodies directed against kidney injury molecule-1 (ab-KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab-KIM1-coated MSC (KIM-MSC), or vehicle, were injected systemically into the carotid artery of 2-kidneys, 1-clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab-KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM-MSC compared to untreated MSC and compared to other organs. KIM-MSC-injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab-KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell-based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394-403. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule‐1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury

    PubMed Central

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S.; Jordan, Kyra L.; Tang, Hui

    2018-01-01

    Abstract Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell‐surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue‐derived MSC with antibodies directed against kidney injury molecule‐1 (ab‐KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab‐KIM1‐coated MSC (KIM‐MSC), or vehicle, were injected systemically into the carotid artery of 2‐kidneys, 1‐clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab‐KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM‐MSC compared to untreated MSC and compared to other organs. KIM‐MSC‐injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab‐KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell‐based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394–403 PMID:29446551

  12. Valproic acid attenuates nitric oxide and interleukin-1β production in lipopolysaccharide-stimulated iron-rich microglia.

    PubMed

    Mairuae, Nootchanat; Cheepsunthorn, Poonlarp

    2018-04-01

    Iron accumulation in activated microglia has been consistently reported in neurodegenerative diseases. Previous results suggest that these cells facilitate neuroinflammation leading to neuronal cell death. Therefore, chemical compounds that alleviate the activation of iron-rich microglia may result in neuroprotection. In the present study, the effect of valproic acid (VPA) on microglial activation under iron-rich conditions was investigated. BV-2 microglial cells were exposed to lipopolysaccharide (LPS; 1 µg/ml) and iron (300 µg/ml) with or without VPA (1.6 mM). The results demonstrated that VPA attenuated the activation of iron-rich BV2 cells induced by LPS by down-regulating the mRNA expression of inducible nitric oxide (NO) synthase and interleukin 1β (IL-1β; P<0.01), to ultimately reduce the production of NO and IL-1β (P<0.01). These events were accompanied by an attenuation in the nuclear translocation of nuclear factor-κB p65 subunit (P<0.01). These findings suggest that VPA may be therapeutically useful for attenuating the activation of iron-rich microglia.

  13. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemia-like injury in vitro.

    PubMed

    Panickar, K S; Polansky, M M; Graves, D J; Urban, J F; Anderson, R A

    2012-01-27

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury, including cell swelling, increased free radical production, increased intracellular calcium ([Ca(2+)](i)), mitochondrial dysfunction, and the reduction in glutamate uptake. Astrocyte (glial) swelling is a major component of cytotoxic brain edema in ischemia and, along with vasogenic edema, may contribute to increased intracranial pressure, brain herniation, and additional ischemic injuries. C6 glial cultures were exposed to oxygen-glucose deprivation (OGD) for 5 h, and cell swelling was determined at 90 min after the end of OGD. OGD-induced increases in glial swelling were significantly blocked by trimer 1, but not by the major nonpolyphenol fractions of CE including cinnamaldehyde and coumarin. Increased free radical production, a contributing factor in cell swelling following ischemic injury, was also significantly reduced by trimer 1. Mitochondrial dysfunction, another key feature of ischemic injury, is hypothesized to contribute to glial swelling. Depolarization of the inner mitochondrial membrane potential (ΔΨ(m)) was assessed using a fluorescent dye (tetramethylrhodamine ethyl ester [TMRE]), and was significantly attenuated by trimer 1 as was OGD-induced increased [Ca(2+)](i). Taken together with our previous observation that blockers of [Ca(2+)](i) reduce cell swelling, our results indicate that trimer 1 may attenuate cell swelling by regulating [Ca(2+)](i). Trimer 1 also significantly attenuated the OGD-induced decrease in glutamate uptake. In addition, cyclosporin A, a blocker of the mitochondrial permeability pore (mPT), but not FK506 (that does not block the mPT), reduced the OGD-induced decline in glutamate uptake indicating a role of the mPT in such effects. Thus, the effects of trimer 1 in attenuating the

  14. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis

    PubMed Central

    Fang, Quan; Guo, Songxue; Zhou, Hanlei; Han, Rui; Wu, Pan; Han, Chunmao

    2017-01-01

    Burn-wound progression can occur in the initial or peri-burn area after a deep burn injury. The stasis zone has a higher risk of deterioration mediated by multiple factors but is also considered salvageable. Astaxanthin (ATX), which is extracted from some marine organisms, is a natural compound with a strong antioxidant effect that has been reported to attenuate organ injuries caused by traumatic injuries. Hence, we investigated the potential effects of ATX on preventing early burn-wound progression. A classic “comb” burn rat model was established in this study for histological and biological assessments, which revealed that ATX, particularly higher doses, alleviated histological deterioration in the stasis zone. Additionally, we observed dose-dependent improvements in oxidative stress and the release of inflammatory mediators after ATX treatment. Furthermore, ATX dose-dependently attenuated burn-induced apoptosis in the wound areas, and this effect was accompanied by increases in Akt and Bad phosphorylation and a downregulation of cytochrome C and caspase expression. In addition, the administration of Ly 294002 further verified the effect of ATX. In summary, we demonstrated that ATX protected against early burn-wound progression in a rat deep-burn model. This protection might be mediated by the attenuation of oxidative stress-induced inflammation and mitochondria-related apoptosis. PMID:28128352

  15. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    PubMed

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  16. High-dose estrogen treatment at reperfusion reduces lesion volume and accelerates recovery of sensorimotor function after experimental ischemic stroke.

    PubMed

    Carpenter, Randall S; Iwuchukwu, Ifeanyi; Hinkson, Cyrus L; Reitz, Sydney; Lee, Wonhee; Kukino, Ayaka; Zhang, An; Pike, Martin M; Ardelt, Agnieszka A

    2016-05-15

    Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nitric oxide synthase inhibition attenuates cutaneous vasodilation during the post-menopausal hot flash

    PubMed Central

    Hubing, Kimberly A.; Wingo, Jonathan E.; Brothers, R. Matthew; Coso, Juan Del; Low, David A.; Crandall, Craig G.

    2010-01-01

    Objective The purpose of this study was to test the hypothesis that local inhibition of nitric oxide and prostaglandin synthesis attenuates cutaneous vasodilator responses during post-menopausal hot flashes. Methods Four microdialysis membranes were inserted into forearm skin (dorsal surface) of 8 post-menopausal women (mean ± SD, 51±7 y). Ringers solution (control), 10mM Ketorolac (Keto) to inhibit prostaglandin synthesis, 10mM NG-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase, and a combination of 10mM Keto + 10mM L-NAME were each infused at the separate sites. Skin blood flow at each site was indexed using laser-Doppler flowmetry. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial blood pressure and was expressed as a percentage of the maximal calculated CVC (CVCmax) obtained following infusion of 50mM sodium nitropruside at all sites at the end of the study. Data from 13 hot flashes were analyzed. Results At the control site, the mean ± SD peak increase in CVC was 15.5±6% CVCmax units. This value was not different relative to the peak increase in CVC at the Keto site (13.0±5 % CVCmax units, P = 0.09). However, the peak increase in CVC during the flash was attenuated at the L-NAME and L-NAME + Keto sites (7.4±4 % CVCmax units and 8.7±7 % CVCmax units, respectively) relative to both the control and the Keto sites (P<0.05 for both comparisons). There were no significant differences in the peak increases in sweat rate between any of the sites (P = 0.24). Conclusions These data demonstrate that cutaneous vasodilation during a hot flash has a nitric oxide component. Increases in CVC despite the inhibition of prostaglandin synthesis suggest prostaglandins do not contribute to cutaneous vasodilation during a hot flash. PMID:20505548

  18. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    PubMed Central

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  19. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    PubMed

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Targeting neutrophils in ischemic stroke: translational insights from experimental studies

    PubMed Central

    Jickling, Glen C; Liu, DaZhi; Ander, Bradley P; Stamova, Boryana; Zhan, Xinhua; Sharp, Frank R

    2015-01-01

    Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood–brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions. PMID:25806703

  1. Ischemic Stroke

    MedlinePlus

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  2. Extracellular Spermine Exacerbates Ischemic Neuronal Injury through Sensitization of ASIC1a Channels to Extracellular Acidosis

    PubMed Central

    Duan, Bo; Wang, Yi-Zhi; Yang, Tao; Chu, Xiang-Ping; Yu, Ye; Huang, Yu; Cao, Hui; Hansen, Jillian; Simon, Roger P.; Zhu, Michael X.; Xiong, Zhi-Gang; Xu, Tian-Le

    2011-01-01

    Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca2+ overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine–ASIC interaction. PMID:21307247

  3. Limb Remote Ischemic Conditioning: Mechanisms, Anesthetics, and the Potential for Expanding Therapeutic Options

    PubMed Central

    Chen, Gangling; Thakkar, Mrugesh; Robinson, Christopher; Doré, Sylvain

    2018-01-01

    Novel and innovative approaches are essential in developing new treatments and improving clinical outcomes in patients with ischemic stroke. Remote ischemic conditioning (RIC) is a series of mechanical interruptions in blood flow of a distal organ, following end organ reperfusion, shown to significantly reduce infarct size through inhibition of oxidation and inflammation. Ischemia/reperfusion (I/R) is what ultimately leads to the irreversible brain damage and clinical picture seen in stroke patients. There have been several reports and reviews about the potential of RIC in acute ischemic stroke; however, the focus here is a comprehensive look at the differences in the three types of RIC (remote pre-, per-, and postconditioning). There are some limited uses of preconditioning in acute ischemic stroke due to the unpredictability of the ischemic event; however, it does provide the identification of biomarkers for clinical studies. Remote limb per- and postconditioning offer a more promising treatment during patient care as they can be harnessed during or after the initial ischemic insult. Though further research is needed, it is imperative to discuss the importance of preclinical data in understanding the methods and mechanisms involved in RIC. This understanding will facilitate translation to a clinically feasible paradigm for use in the hospital setting. PMID:29467715

  4. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    -phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.

  5. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  6. Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome.

    PubMed

    Zhang, Shimeng; Jiang, Liangjun; Che, Fengyuan; Lu, Yucheng; Xie, Zhongxiang; Wang, Hao

    2017-11-04

    Arctigenin (ARC), a phenylpropanoid dibenzylbutyrolactone lignan derived from Arctium lappa L, has been reported to protect against cerebral ischemia injury in rats, but the underlying mechanism is unclear. In this study, we investigated whether ARC ameliorated ischemic stroke by inhibiting NLRP3 inflammasome-derived neuroinflammation and whether SIRT1 signaling was involved in this process. ARC (20 mg/kg) or vehicle were intraperitoneally injected to Sprague-Dawley rats for 3 days before middle cerebral artery occlusion (MCAO) surgery performed. The infarct volume, neurological score, brain water content, neuroinflammation, NLRP3 inflammasome activation and SIRT1 protein expression were assessed. Furthermore, we also investigated whether ARC protected against cerebral ischemia via SIRT1-dependent inhibition of NLRP3 inflammasome by administrating EX527, a specific SIRT1 inhibitor, under oxygen-glucose deprivation (OGD) condition. We found that ARC pretreatment decreased infarct volume, neurological score and brain water content. Moreover, ARC treatment effectively inhibited cerebral ischemia induced NLRP3 inflammasome activation and IL-1β, IL-18 secretion both in vivo and in vitro. Futhermore, ARC treatment activated Silent information regulator 1 (SIRT1) singnaling in the brain. Importantly, suppress of SIRT1 reversed the inhibitory effect of ARC on NLRP3 inflammasome activation. Taken together our results demonstrated that ARC may confer protection against ischemic stroke by inhibiting NLRP3 inflammasome activation. The activation of SIRT1 signaling pathway may contribute to the neuroprotection of ARC in MCAO. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats.

    PubMed

    Turan, Inci; Ozacmak, Hale Sayan; Ozacmak, V Haktan; Barut, Figen; Araslı, Mehmet

    2017-11-15

    Oxidative stress and inflammatory response are major factors causing several tissue injuries in intestinal ischemia and reperfusion (I/R). Agmatine has been reported to attenuate I/R injury of various organs. The present study aims to analyze the possible protective effects of agmatine on intestinal I/R injury in rats. Four groups were designed: sham control, agmatine-treated control, I/R control, and agmatine-treated I/R groups. IR injury of small intestine was induced by the occlusion of the superior mesenteric artery for half an hour to be followed by a 3-hour-long reperfusion. Agmatine (10mg/kg) was administered intraperitoneally before reperfusion period. After 180min of reperfusion period, the contractile responses to both carbachol and potassium chloride (KCl) were subsequently examined in an isolated-organ bath. Malondialdehyde (MDA), reduced glutathione (GSH), and the activity of myeloperoxidase (MPO) were measured in intestinal tissue. Plasma cytokine levels were determined. The expression of the intestinal inducible nitric oxide synthase (iNOS) was also assessed by immunohistochemistry. The treatment with agmatine appeared to be significantly effective in reducing the MDA content and MPO activity besides restoring the content of GSH. The treatment also attenuated the histological injury. The increases in the I/R induced expressions of iNOS, IFN-γ, and IL-1α were brought back to the sham control levels by the treatment as well. Our findings indicate that the agmatine pretreatment may ameliorate reperfusion induced injury in small intestine mainly due to reducing inflammatory response and oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ischemic Colitis

    PubMed Central

    Montessori, Gino; Liepa, Egils V.

    1970-01-01

    Twenty cases of ischemic colitis are reviewed; 19 were obtained from autopsy files and the diagnosis in one was made from a surgical specimen. The majority of the patients were elderly with generalized arteriosclerosis. In approximately two-thirds of the patients the ischemic colitis was precipitated by preceding trauma, operation or congestive heart failure. Clinically, ischemic colitis is characterized by abdominal pain, distension and bleeding per rectum. Perforation of large bowel may occur. The lesions tend to be localized around the splenic flexure and junction of the descending and sigmoid colon, and in cases following aortic graft surgery the rectum is involved. Microscopically, there is necrosis, hemorrhage and ulceration. In less severe cases the mucosa only is affected. Cases with perforation show necrosis of all layers. It is considered that ischemic colitis is comparatively frequent and should be distinguished from other inflammatory conditions of the colon. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9 PMID:5308923

  9. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    PubMed

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  10. Mangiferin Protects Retinal Ganglion Cells in Ischemic Mouse Retina via SIRT1.

    PubMed

    Kim, Soo-Jin; Sung, Mi-Sun; Heo, Hwan; Lee, Jae-Hyuk; Park, Sang-Woo

    2016-06-01

    To investigate whether mangiferin can increase the viability of retinal ganglion cells (RGCs) in ischemic mouse retina, and to determine the possible mechanism of neuroprotection. C57BL/6J mice underwent constant elevation of intraocular pressure for 60 min and received saline or mangiferin (30 mg/kg) intraperitoneally once daily until sacrifice. HIF-1α, GFAP and SIRT1 expression was assessed at 1, 4, and 7 days after retinal ischemia. Bax and Bcl-2 expression was also analyzed at 1 and 4 days. RGC survival was assessed by labeling flat-mounted retinas with Brn3a at 2 weeks after retinal ischemia. The effect of co-treatment with mangiferin and sirtinol (SIRT1 inhibitor) was also evaluated. The expression of HIF-1α and GFAP was upregulated in saline-treated retinas within 7 days after ischemia. Mangiferin treatment suppressed this upregulation. The expression of SIRT1 was downregulated in saline-treated ischemic retinas. This downregulation was reversed by mangiferin treatment, resulting in a significant difference from saline-treated ischemic retinas. In mangiferin-treated ischemic retinas, Bax expression was downregulated, whereas Bcl-2 expression was upregulated in comparison with saline-treated ischemic retinas. Mangiferin treatment protected ischemic retinas against RGC loss. Treatment of sirtinol decreased the neuroprotective effect of mangiferin. Our findings suggest that mangiferin has a neuroprotective effect on RGC through downregulation of HIF-1a and GFAP, and upregulation of SIRT1 in ischemic mouse retinas. We suggest that mangiferin might be a potential neuroprotective agent against RGC loss under oxidative stress.

  11. Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex.

    PubMed

    Chao, Dongman; Bazzy-Asaad, Alia; Balboni, Gianfranco; Salvadori, Severo; Xia, Ying

    2008-09-01

    We have recently found that in the mouse cortex, activation of delta-opioid receptor (DOR) attenuates the disruption of K(+) homeostasis induced by hypoxia or oxygen-glucose deprivation. This novel observation suggests that DOR may protect neurons from hypoxic/ischemic insults via the regulation of K(+) homeostasis because the disruption of K(+) homeostasis plays a critical role in neuronal injury under hypoxic/ischemic stress. The present study was performed to explore the ionic mechanism underlying the DOR-induced neuroprotection. Because anoxia causes Na(+) influx and thus stimulates K(+) leakage, we investigated whether DOR protects the cortex from anoxic K(+) derangement by targeting the Na(+)-based K(+) leakage. By using K(+)-sensitive microelectrodes in mouse cortical slices, we showed that 1) lowering Na(+) concentration and substituting with impermeable N-methyl-D-glucamine caused a concentration-dependent attenuation of anoxic K(+) derangement; 2) lowering Na(+) concentration by substituting with permeable Li(+) tended to potentiate the anoxic K(+) derangement; and 3) the DOR-induced protection against the anoxic K(+) responses was largely abolished by low-Na(+) perfusion irrespective of the substituted cation. We conclude that external Na(+) concentration greatly influences anoxic K(+) derangement and that DOR activation likely attenuates anoxic K(+) derangement induced by the Na(+)-activated mechanisms in the cortex.

  12. Transient ischemic attack

    MedlinePlus

    ... artery surgery - discharge Stroke - discharge Taking warfarin (Coumadin) Images Endarterectomy Transient Ischemic attack (TIA) References Biller J, Ruland S, Schneck MJ. Ischemic cerebrovascular disease. In Daroff ...

  13. Protective effect of Esculin in adjuvant-induced arthritic (AIA) rats via attenuating pro-inflammatory cytokines and oxidative stress.

    PubMed

    Zheng, L; Yang, L; Wang, Z; Chen, C; Su, Y

    2015-11-08

    The present study was intended to exemplify the protective effect of Esculin (ES; 6,7-dihydroxycoumarin-6-o-glucoside) on the adjuvant induced arthritis in adult female Sprague Dawley rats. It has been found that, treatment of ES has significantly improved the body weight of rats accompanied with a reduction of paw volume in comparison to arthritic control. In addition, ES exhibit inhibitory effect on various pro-inflammatory cytokines, for instance, IL-1β and TNF-α. The level of oxidative stress markers, i.e., nitric oxide and peroxide was also found suppressed after treatment. The treatment of ES prevents the tissue injury mediated via oxidative stress via up-regulating the level of endogenous GSH in a dose dependent manner. Thus, it has been corroborated that, ES exerts potent anti-arthritic activity via attenuating pro-inflammatory cytokines and oxidative stress.

  14. Differing effects of cyclosporin a on swelling amplitude and time constant of mitochondria from normal and ischemic rat brain.

    PubMed

    Wu, Li-Ping; Shen, Fang; Lu, Yuan; Bruce, Iain; Xia, Qiang

    2005-01-01

    The purpose of this study was to investigate the effect of cyclosporin A on swelling amplitude and time constant of mitochondria isolated from normal and ischemic rat brain and to observe the possible role of the mitochondrial ATP-sensitive potassium channel on mitochondrial permeability transition. Mitochondrial swelling was evaluated by spectrophotometry. Cyclosporin A at 0.5 or 1 microM and diazoxide at 30 microM significantly decreased the swelling amplitude and attenuated the reduction of time constant of mitochondria isolated from normal brain mitochondria induced by 200 microM calcium, an effect abolished by atractyloside at 100 microM. However, cyclosporin A at 5 microM did not affect mitochondrial swelling. In mitochondria from ischemic brain, cyclosporin A at 0.5 microM but not 1 microM significantly decreased mitochondrial swelling amplitude and attenuated the reduction of time constant, which was abolished by atractyloside. Diazoxide had an effect similar to cyclosporin A at 0.5 microM, which was blocked by atractyloside or 5-hydroxydecanoate at 100 microM and 200 microM. Compared with mitochondria isolated from normal brain, those from ischemic brain were more sensitive to cyclosporin A. Activation of the mitochondrial ATP-sensitive potassium channel may be one of the mechanisms by which opening of the mitochondrial permeability transition pore is inhibited.

  15. Association of Vegetable Nitrate Intake With Carotid Atherosclerosis and Ischemic Cerebrovascular Disease in Older Women.

    PubMed

    Bondonno, Catherine P; Blekkenhorst, Lauren C; Prince, Richard L; Ivey, Kerry L; Lewis, Joshua R; Devine, Amanda; Woodman, Richard J; Lundberg, Jon O; Croft, Kevin D; Thompson, Peter L; Hodgson, Jonathan M

    2017-07-01

    A short-term increase in dietary nitrate (NO 3 - ) improves markers of vascular health via formation of nitric oxide and other bioactive nitrogen oxides. Whether this translates into long-term vascular disease risk reduction has yet to be examined. We investigated the association of vegetable-derived nitrate intake with common carotid artery intima-media thickness (CCA-IMT), plaque severity, and ischemic cerebrovascular disease events in elderly women (n=1226). Vegetable nitrate intake, lifestyle factors, and cardiovascular disease risk factors were determined at baseline (1998). CCA-IMT and plaque severity were measured using B-mode carotid ultrasound (2001). Complete ischemic cerebrovascular disease hospitalizations or deaths (events) over 14.5 years (15 032 person-years of follow-up) were obtained from the West Australian Data Linkage System. Higher vegetable nitrate intake was associated with a lower maximum CCA-IMT (B=-0.015, P =0.002) and lower mean CCA-IMT (B=-0.012, P =0.006). This relationship remained significant after adjustment for lifestyle and cardiovascular risk factors ( P ≤0.01). Vegetable nitrate intake was not a predictor of plaque severity. In total 186 (15%) women experienced an ischemic cerebrovascular disease event. For every 1 SD (29 mg/d) higher intake of vegetable nitrate, there was an associated 17% lower risk of 14.5-year ischemic cerebrovascular disease events in both unadjusted and fully adjusted models ( P =0.02). Independent of other risk factors, higher vegetable nitrate was associated with a lower CCA-IMT and a lower risk of an ischemic cerebrovascular disease event. © 2017 American Heart Association, Inc.

  16. Memantine Attenuates Delayed Vasospasm after Experimental Subarachnoid Hemorrhage via Modulating Endothelial Nitric Oxide Synthase.

    PubMed

    Huang, Chih-Yuan; Wang, Liang-Chao; Shan, Yan-Shen; Pan, Chia-Hsin; Tsai, Kuen-Jer

    2015-06-23

    Delayed cerebral vasospasm is an important pathological feature of subarachnoid hemorrhage (SAH). The cause of vasospasm is multifactorial. Impairs nitric oxide availability and endothelial nitric oxide synthase (eNOS) dysfunction has been reported to underlie vasospasm. Memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) blocker has been proven to reduce early brain injury after SAH. This study investigated the effect of memantine on attenuation of vasospasm and restoring eNOS functionality. Male Sprague-Dawley rats weighing 350-450 g were randomly divided into three weight-matched groups, sham surgery, SAH + vehicle, and SAH + memantine groups. The effects of memantine on SAH were evaluated by assessing the severity of vasospasm and the expression of eNOS. Memantine effectively ameliorated cerebral vasospasm by restoring eNOS functionality. Memantine can prevent vasospasm in experimental SAH. Treatment strategies may help combat SAH-induced vasospasm in the future.

  17. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death

    PubMed Central

    Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2011-01-01

    Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor alpha (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, inter-cellular adhesion molecule 1 mRNA levels, tissue neutrophil infiltration, nuclear factor kappa B (NF-KB) activation), stress signaling (p38MAPK and JNK) and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress and cell death, and also attenuated the bacterial endotoxin-triggered NF-KB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecules expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α, and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent from classical CB1/2 receptors. PMID:21362471

  18. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats.

    PubMed

    Yang, Lin; Chen, Jia-Hou; Xu, Tong; Zhou, Ai-Shen; Yang, Hong-Kun

    2012-10-05

    To evaluate the effects of rice protein (RP) on glutathione metabolism and oxidative damage. Seven-week-old male Wistar rats were fed diets containing casein and RP without cholesterol for 3weeks. Plasma and liver lipid levels, hepatic accumulation of total glutathione (T-GSH), oxidized glutathione (GSSG), reduced glutathione (GSH), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In the liver, the total antioxidative capacity (T-AOC), mRNA levels of glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modulatory subunit (GCLM), and the activities of hepatic catalase (CAT), total superoxide dismutase (T-SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSHPx) were also measured. T-AOC, GCLC and GCLM mRNA levels, antioxidative enzyme activities (T-SOD and CAT) and glutathione metabolism related enzyme activities (γ-GCS, GST, GR and GSHPx) were effectively stimulated by RP feeding compared to casein, and RP significantly reduced the hepatic accumulation of MDA and PCO in rats. These results indicate that lipid-lowering activity was induced by RP feeding. The present study demonstrates that RP improves oxidative stress primarily through enzymatic and non-enzymatic antioxidative defense mechanisms, reflected by enhancing the antioxidative status and attenuating the oxidative damage to lipids and proteins. These results suggest that RP can prevent hyperlipidemia in part through modifying glutathione metabolism, and sulfur amino acids may be the main modulator of this antioxidative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria.

    PubMed

    Kiersztan, Anna; Trojan, Nina; Tempes, Aleksandra; Nalepa, Paweł; Sitek, Joanna; Winiarska, Katarzyna; Usarek, Michał

    2017-11-01

    Our recent study has shown that dehydroepiandrosterone (DHEA) administered to rabbits partially ameliorated several dexamethasone (dexP) effects on hepatic and renal gluconeogenesis, insulin resistance and plasma lipid disorders. In the current investigation, we present the data on DHEA protective action against dexP-induced oxidative stress and albuminuria in rabbits. Four groups of adult male rabbits were used in the in vivo experiment: (1) control, (2) dexP-treated, (3) DHEA-treated and (4) both dexP- and DHEA-treated. Administration of dexP resulted in accelerated generation of renal hydroxyl free radicals (HFR) and malondialdehyde (MDA), accompanied by diminished superoxide dismutase (SOD) and catalase activities and a dramatic rise in urinary albumin/creatinine ratio. Treatment with DHEA markedly reduced dexP-induced oxidative stress in kidney-cortex due to a decline in NADPH oxidase activity and enhancement of catalase activity. Moreover, DHEA effectively attenuated dexP-evoked albuminuria. Surprisingly, dexP-treated rabbits exhibited elevation of GSH/GSSG ratio, accompanied by a decrease in glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities as well as an increase in glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment with DHEA resulted in a decline in GSH/GSSG ratio and glutathione reductase (GR) activity, accompanied by an elevation of GPx activity. Interestingly, rabbits treated with both dexP and DHEA remained the control values of GSH/GSSG ratio. As the co-administration of DHEA with dexP resulted in (i) reduction of oxidative stress in kidney-cortex, (ii) attenuation of albuminuria and (iii) normalization of glutathione redox state, DHEA might limit several undesirable renal side effects during chronic GC treatment of patients suffering from allergies, asthma, rheumatoid arthritis and lupus. Moreover, its supplementation might be particularly beneficial for the therapy of patients with glucocorticoid-induced diabetes

  20. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest.

    PubMed

    Bosutti, Alessandra; Salanova, Michele; Blottner, Dieter; Buehlmeier, Judith; Mulder, Edwin; Rittweger, Jörn; Yap, Moi Hoon; Ganse, Bergita; Degens, Hans

    2016-10-01

    The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO 3 ) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO 3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o 2 max ), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles (P < 0.05), and the fiber oxidative capacity (P < 0.001) and V̇o 2 max (P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL (P < 0.001). WP+KHCO 3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles (P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO 3 appears to attenuate disuse-induced reductions in fiber oxidative capacity. Copyright © 2016 the American Physiological Society.

  1. Protective Effect of Ischemic Preconditioning on Myocardium Against Remote Tissue Injury Following Transient Focal Cerebral Ischemia in Diabetic Rats

    PubMed Central

    Kumas, Meltem; Altintas, Ozge; Karatas, Ersin; Kocyigit, Abdurrahim

    2017-01-01

    Background Remote ischemic preconditioning (IPreC) could provide tissue-protective effect at a remote site by anti-inflammatory, neuronal, and humoral signaling pathways. Objectives The aim of the study was to investigate the possible protective effects of remote IPreC on myocardium after transient middle cerebral artery occlusion (MCAo) in streptozotocin- induced diabetic (STZ) and non-diabetic rats. Methods 48 male Spraque Dawley rats were divided into eight groups: Sham, STZ, IPreC, MCAo, IPreC+MCAo, STZ+IPreC, STZ+MCAo and STZ+IPreC+MCAo groups. We induced transient MCAo seven days after STZ-induced diabetes, and performed IPreC 72 hours before transient MCAo. Remote myocardial injury was investigated histopathologically. Bax, Bcl2 and caspase-3 protein levels were measured by Western blot analysis. Total antioxidant status (TAS), total oxidant status (TOS) of myocardial tissue were measured by colorimetric assay. Oxidative stress index(OSI) was calculated as TOS-to-TAS ratio. For all statistical analysis, p values < 0.05 were considered significant. Results We observed serious damage including necrosis, congestion and mononuclear cell infiltration in myocardial tissue of the diabetic and ischemic groups. In these groups TOS and OSI levels were significantly higher; TAS levels were lower than those of IPreC related groups (p < 0.05). IPreC had markedly improved histopathological alterations and increased TAS levels in IPreC+MCAo and STZ+IPreC+MCAo compared to MCAo and STZ+MCAo groups (p < 0.05). In non-diabetic rats, MCAo activated apoptotic cell death via increasing Bax/Bcl2 ratio and caspase-3 levels. IPreC reduced apoptotic cell death by suppressing pro-apoptotic proteins. Diabetes markedly increased apoptotic protein levels and the effect did not reversed by IPreC. Conclusions We could suggest that IPreC attenuates myocardial injury via ameliorating histological findings, activating antioxidant mechanisms, and inducing antiapoptotic activity in diabetic

  2. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex.

    PubMed

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Bazzy-Asaad, Alia; Lazarus, Lawrence H; Balboni, Gianfranco; Kim, Dong H; Xia, Ying

    2012-08-01

    Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Tideglusib, a chemical inhibitor of GSK3β, attenuates hypoxic-ischemic brain injury in neonatal mice.

    PubMed

    Wang, Haitao; Huang, Sammen; Yan, Kuipo; Fang, Xiaoyan; Abussaud, Ahmed; Martinez, Ana; Sun, Hong-Shuo; Feng, Zhong-Ping

    2016-10-01

    Hypoxia-ischemia is an important cause of brain injury and neurological morbidity in the newborn infants. The activity of glycogen synthase kinase-3β (GSK-3β) is up-regulated following neonatal stroke. Tideglusib is a GSK-3β inhibitor which has neuroprotective effects against neurodegenerative diseases in clinical trials. However, the effect of tideglusib on hypoxic-ischemic (HI) brain injury in neonates is still unknown. Postnatal day 7 (P7) mouse pups subjected to unilateral common carotid artery ligation followed by 1h of hypoxia or sham surgery was performed. HI animals were administered tideglusib (5mg/kg) or vehicle intraperitoneally 20min prior to the onset of ischemia. The brain infarct volume and whole brain images, were used in conjunction with Nissl staining to evaluate the protective effects of tideglusib. Protein levels of glial fibrillary acidic protein (GFAP), Notch1, cleaved caspase-3/9, phosphorylated signal transducer and activator of transcription 3 (STAT3), GSK-3β and protein kinase B (Akt) were detected to identify potentially involved molecules. Tideglusib significantly reduced cerebral infarct volume at both 24h and 7days after HI injury. Tideglusib also increased phosphorylated GSK-3β(Ser9) and Akt(Ser473), and reduced the expression of GFAP and p-STAT3(Tyr705). In addition, pretreatment with tideglusib also enhanced the protein level of Notch1. Moreover, tideglusib reduced the cleavage of pro-apoptotic signal caspase proteins, including caspase 3 and caspase 9 following HI. These results indicate that tideglusib shows neuroprotection against hypoxic-ischemic brain injury in neonatal mice. Tideglusib is a potential compound for the prevention or treatment of hypoxic-ischemic brain injury in neonates. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle

    PubMed Central

    Sinnakannu, Joanna R.; Ge, Xiaojia; Ma, Wei; Velan, Sendhil S.; Röder, Pia V.; Zhang, Qiongyi; Sim, Choon Kiat; Wu, Jingyi; Garcia-Miralles, Marta; Xie, Wei; McFarlane, Craig

    2017-01-01

    Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes. PMID:28207742

  5. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury.

    PubMed

    Yang, Yang; Duan, Weixun; Lin, Yan; Yi, Wei; Liang, Zhenxing; Yan, Juanjuan; Wang, Ning; Deng, Chao; Zhang, Song; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Yi, Dinghua; Jin, Zhenxiao

    2013-12-01

    Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling. © 2013 Elsevier Inc. All rights reserved.

  6. Short-Term Exposure to Fine Particulate Matter and Risk of Ischemic Stroke.

    PubMed

    Matsuo, Ryu; Michikawa, Takehiro; Ueda, Kayo; Ago, Tetsuro; Nitta, Hiroshi; Kitazono, Takanari; Kamouchi, Masahiro

    2016-12-01

    There is a strong association between ambient concentrations of particulate matter (PM) and cardiovascular disease. However, it remains unclear whether acute exposure to fine PM (PM 2.5 ) triggers ischemic stroke events and whether the timing of exposure is associated with stroke risk. We, therefore, examined the association between ambient PM 2.5 and occurrence of ischemic stroke. We analyzed data for 6885 ischemic stroke patients from a multicenter hospital-based stroke registry in Japan who were previously independent and hospitalized within 24 hours of stroke onset. Time of symptom onset was confirmed, and the association between PM (suspended PM and PM 2.5 ) and occurrence of ischemic stroke was analyzed by time-stratified case-crossover analysis. Ambient PM 2.5 and suspended PM at lag days 0 to 1 were associated with subsequent occurrence of ischemic stroke (ambient temperature-adjusted odds ratio [95% confidence interval] per 10 μg/m 3 : suspended PM, 1.02 [1.00-1.05]; PM 2.5 , 1.03 [1.00-1.06]). In contrast, ambient suspended PM and PM 2.5 at lag days 2 to 3 or 4 to 6 showed no significant association with stroke occurrence. The association between PM 2.5 at lag days 0 to 1 and ischemic stroke was maintained after adjusting for other air pollutants (nitrogen dioxide, photochemical oxidants, or sulfur dioxide) or influenza epidemics and was evident in the cold season. These findings suggest that short-term exposure to PM 2.5 within 1 day before onset is associated with the subsequent occurrence of ischemic stroke. © 2016 American Heart Association, Inc.

  7. Transient Ischemic Attack

    MedlinePlus Videos and Cool Tools

    Transient Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood ... The only difference between a stroke and TIA is that with TIA the blockage is transient (temporary). ...

  8. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    PubMed

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  9. Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator.

    PubMed

    Shimada, Yoshiaki; Shimura, Hideki; Tanaka, Ryota; Yamashiro, Kazuo; Koike, Masato; Uchiyama, Yasuo; Urabe, Takao; Hattori, Nobutaka

    2018-01-01

    Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are

  10. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    PubMed

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  11. Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

    PubMed Central

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2015-01-01

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892

  12. Enriched Endogenous Omega-3 Polyunsaturated Fatty Acids Protect Cortical Neurons from Experimental Ischemic Injury.

    PubMed

    Shi, Zhe; Ren, Huixia; Luo, Chuanming; Yao, Xiaoli; Li, Peng; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Yuan, Ti-Fei; Su, Huanxing

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential in a variety of neurological disorders, including ischemic stroke. However, the underlying mechanisms still lack investigation. Here, we report that cultured cortical neurons isolated from fat-1 mice with high endogenous n-3 PUFAs were tolerant to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Fat-1 neurons exhibited significantly attenuated reactive oxygen species (ROS) activation induced by OGD/R injury, upregulated antiapoptotic proteins Bcl-2 and Bcl-xL, and reduced cleaved caspase-3. Exogenous administration of docosahexaenoic acid (DHA), a major component of the n-3 PUFA family, resulted in similar protective effects on cultured cortex neurons. We further verified the protective effects of n-3 PUFAs in vivo, using a mini ischemic model with a reproducible cortical infarct and manifest function deficits by occlusion of the distal branch of the middle cerebral artery with focused femtosecond laser pulses. The Fat-1 animals showed decreased ROS expression and higher level of glutathione in the injured brain, associated with improved functional recovery. We therefore provide evidence that n-3 PUFAs exert their protective effects against ischemic injury both in vitro and in vivo, partly through inhibiting ROS activation.

  13. Glyburide is associated with attenuated vasogenic edema in stroke patients

    PubMed Central

    Kimberly, W. Taylor; Battey, Thomas W. K.; Pham, Ly; Wu, Ona; Yoo, Albert J.; Furie, Karen L.; Singhal, Aneesh B.; Elm, Jordan J.; Stern, Barney J.; Sheth, Kevin N.

    2016-01-01

    Background and Purpose Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 (SUR1) and transient receptor potential cation channel subfamily M member 4 (TRPM4). However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Methods Using a case control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the Glyburide Advantage in Malignant Edema and Stroke-Pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 plasma level in large hemispheric stroke. Results We report that IV glyburide was associated with attenuated T2 fluid attenuated inversion recovery (FLAIR) signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood matrix metalloproteinase-9 (MMP-9) level. Conclusions Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial. PMID:24072459

  14. Hypertension and Ischemic Heart Disease in Women.

    PubMed

    Dorobantu, Maria; Onciul, Sebastian; Tautu, Oana Florentina; Cenko, Edina

    2016-01-01

    Ischemic heart disease (IHD) is the most important cause of mortality worldwide. Although the awareness of cardiovascular risk factors and IHD in women has increased over the last decades, mortality rates are still higher in women than in men. Among traditional cardiovascular risk factors, hypertension is associated with a greater risk for IHD in women as compared to men. In this review, discuss gender differences in epidemiology and pathophysiology of hypertension and its impact on the incidence and outcomes of IHD in women. We also, discuss some "women conditions" such as hypertensive disorders in pregnancy (HDP) and polycystic ovarian syndrome (PCOS). Even though this is not a systematic review, English-language studies on MEDLINE and the Cochrane Database of Systematic reviews were searched for consultation and analysis. Hypertension display different epidemiological patterns in men and women. Studies have shown that hypertension has a different proatherogenic effects in men and women. Hypertension has a direct effect on microcirculation, but estrogens have a protective role in this regard in premenopausal women. However, after the decline in estrogen levels, women are exposed to the same cardiovascular risk as males. Postmenopausal women exhibit a greater burden of cardiovascular risk factors, which together with microvascular dysfunction and smaller and stiffer arteries conducts to the worse prognosis observed in women with IHD. "Women specific conditions" such as HDP and PCOS affects 10% of pregnant women and women in reproductive age, respectively. These conditions are associated with increased risk of hypertension and IHD later in life. Although women are more aware of their hypertension, cardiovascular mortality is higher in hypertensive women with comorbid IHD. Yet these gender disparities in outcomes seem to be attenuated with effective therapy. The pathophysiology of IHD is gender specific, women with ischemic symptoms presenting less often with

  15. 5-HMF attenuates striatum oxidative damage via Nrf2/ARE signaling pathway following transient global cerebral ischemia.

    PubMed

    Ya, Bai-Liu; Li, Hong-Fang; Wang, Hai-Ying; Wu, Fei; Xin, Qing; Cheng, Hong-Ju; Li, Wen-Juan; Lin, Na; Ba, Zai-Hua; Zhang, Ru-Juan; Liu, Qian; Li, Ya-Nan; Bai, Bo; Ge, Feng

    2017-01-01

    Recent studies have shown 5-hydroxymethyl-2-furfural (5-HMF) has favorable biological effects, and its neuroprotection in a variety of neurological diseases has been noted. Our previous study showed that treatment of 5-HMF led to protection against permanent global cerebral ischemia. However, the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the neuroprotective effect of 5-HMF and elucidate the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway mechanism in the striatum after transient global cerebral ischemia. C57BL/6 mice were subjected to bilateral common carotid artery occlusion for 20 min and sacrificed 24 h after reperfusion. 5-HMF (12 mg/kg) or an equal volume of vehicle was intraperitoneally injected 30 min before ischemia and 5 min after the onset of reperfusion. At 24 h after reperfusion, neurological function was evaluated by neurological disability status scale, locomotor activity test and inclined beam walking test. Histological injury of the striatum was observed by cresyl violet staining and terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) staining. Oxidative stress was evaluated by the carbonyl groups introduced into proteins, and malondialdehyde (MDA) levels. An enzyme-linked immunosorbent assay (ELISA)-based measurement was used to detect Nrf2 DNA binding activity. Nrf2 and its downstream ARE pathway protein expression such as heme oxygenase-1, NAD (P)H:quinone oxidoreductase 1, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modulatory subunit were detected by western blot. Our results showed that 5-HMF treatment significantly ameliorated neurological deficits, reduced brain water content, attenuated striatum neuronal damage, decreased the carbonyl groups and MDA levels, and activated Nrf2/ARE signaling pathway. Taken together, these results demonstrated that

  16. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets.

    PubMed

    Lu, Kang-Le; Wang, Li-Na; Zhang, Ding-Dong; Liu, Wen-Bin; Xu, Wei-Na

    2017-02-01

    High-fat diets may have favorable effects on growth and cost, but high-fat diets often induce excessive fat deposition, resulting in liver damage. This study aimed to identify the hepatoprotective of a Chinese herb (berberine) for blunt snout bream (Megalobrama amblycephala). Fish were fed with a normal diet (LFD, 5 % fat), high-fat diet (HFD, 15 % fat) or berberine-supplemented diets (BSD, 15 % fat with berberine 50 or 100 mg/kg level) for 8 weeks. After the feeding, histology, oxidative status and mitochondrial function of liver were assessed. The results showed that HFD caused fat accumulation, oxidative stress and apoptosis in hepatocytes of fish. Hepatocytes in HFD group appeared to be hypertrophied, with larger liver cells diameter than these of LFD group. Berberine-supplemented diets could attenuate oxidative stress and hepatocytes apoptosis. HFD induced the decreasing mitochondrial complexes activities and bulk density and surface area density. Berberine improved function of mitochondrial respiratory chain via increasing the complex activities. Moreover, the histological results showed that berberine has the potential to repair mitochondrial ultrastructural damage and elevate the density in cells. In conclusion, our study demonstrated that berberine has attenuated liver damage induced by the high fat mainly via the protection for mitochondria.

  17. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyanohara, Jun; Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp; Sanpei, Kazuaki

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2more » days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO

  18. Aniracetam attenuates apoptosis of astrocytes subjected to simulated ischemia in vitro.

    PubMed

    Gabryel, Bozena; Adamczyk, Jakub; Huzarska, Małgorzata; Pudełko, Anna; Trzeciak, Henryk I

    2002-09-01

    The aim of the present study was to establish whether aniracetam is capable of protecting cultured rat astrocytes against ischemic injury. Treatment of the cultures with aniracetam (1, 10 and 100 mM) during 24 h ischemia simulated in vitro significantly decreased the number of apoptotic cells. The antiapoptotic effects of the drug were confirmed by the increase of intracellular ATP and phosphocreatine (PCr) levels and the inhibition of the caspase-3 activity. Aniracetam also attenuated cellular oxidative stress by decreased production of reactive oxygen species (ROS). These effects were associated with the decrease in levels of c-fos and c-jun mRNA in primary astrocyte cultures exposed to 24 h ischemia. When cultured astrocytes were incubated during 24 h simulated ischemia with wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor or PD98059, a mitogen-activated protein (MAP)/extracellular signal regulated kinase (ERK) (MEK) inhibitor the cell apoptosis was accelerated. This effect was antagonized by adding 100 mM aniracetam to the culture medium. These findings suggest that the protective effect of aniracetam is mediated by PI 3-kinase and MEK pathways in the downstream mechanisms.

  19. Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage.

    PubMed

    Min, Li-Juan; Mogi, Masaki; Tsukuda, Kana; Jing, Fei; Ohshima, Kousei; Nakaoka, Hirotomo; Kan-No, Harumi; Wang, Xiao-Li; Chisaka, Toshiyuki; Bai, Hui-Yu; Iwanami, Jun; Horiuchi, Masatsugu

    2014-08-01

    Stroke is a leading cause of death and disability; however, meta-analysis of randomized controlled trials of blood pressure-lowering drugs in acute stroke has shown no definite evidence of a beneficial effect on functional outcome. Accumulating evidence suggests that angiotensin II type 1 receptor blockade with angiotensin II type 2 (AT2) receptor stimulation could contribute to protection against ischemic brain damage. We examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) initiated even after stroke can prevent ischemic brain damage. Stroke was induced by middle cerebral artery (MCA) occlusion, and the area of cerebral infarction was measured by magnetic resonant imaging. C21 (10 µg/kg/day) treatment was initiated immediately after MCA occlusion by intraperitoneal injection followed by treatment with C21 once daily. We observed that ischemic area was enlarged in a time dependent fashion and decreased on day 5 after MCA occlusion. Treatment with C21 initiated after MCA occlusion significantly reduced the ischemic area, with improvement of neurological deficit in a time-dependent manner without affecting blood pressure. The decrease of cerebral blood flow after MCA occlusion was also ameliorated by C21 treatment. Moreover, treatment with C21 significantly attenuated superoxide anion production and expression of proinflammatory cytokines, monocyte chemoattractant protein 1, and tumor necrosis factor α. Interestingly, C21 administration significantly decreased blood-brain barrier permeability and cerebral edema on the ischemic side. These results provide new evidence that direct AT2 receptor stimulation with C21 is a novel therapeutic approach to prevent ischemic brain damage after acute stroke. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  1. Nitric oxide regulates Angiopoietin1/Tie2 expression after stroke

    PubMed Central

    Zacharek, Alex; Chen, Jieli; Zhang, Chunling; Cui, Xu; Roberts, Cynthia; Jiang, Hao; Teng, Hua; Chopp, Michael

    2009-01-01

    We tested whether the nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio] diazen-1-ium-1,2-diolate (DETA-NONOate), increases expression of Angiopoietin (Ang1)/Tie2, which may play a role in regulating angiogenesis and vascular integrity after stroke in rats. Wistar rats were subjected to middle cerebral artery occlusion and treated with or without DETA-NONOate. Stroke rats treated with DETA-NONOate show significantly increased Ang1, Tie2 and Occludin expression in the ischemic border compared with control stroke animals (p < 0.05). Consistent with in vivo data, DETA-NONOate promotes capillary tube formation in cultured brain endothelial cells. Neutralizing Ang1 antibody attenuates DETA-NONOate-induced capillary tube formation. The data suggest that the Ang1/Tie2 axis promotes DETA-NONOate-induced angiogenesis and stabilizes of angiogenic vessels after stroke. PMID:16762501

  2. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke

    PubMed Central

    AHN, JI YUN; YAN, BING CHUN; PARK, JOON HA; AHN, JI HYEON; LEE, DAE HWAN; KIM, IN HYE; CHO, JEONG-HWI; CHEN, BAI HUI; LEE, JAE-CHUL; CHO, YOUNG SHIN; SHIN, MYOUNG CHUL; CHO, JUN HWI; HONG, SEONGKWEON; WON, MOO-HO; KIM, SUNG KOO

    2015-01-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region. PMID:26668588

  3. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke.

    PubMed

    Ahn, Ji Yun; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Dae Hwan; Kim, In Hye; Cho, Jeong-Hwi; Chen, Bai Hui; Lee, Jae-Chul; Cho, Young Shin; Shin, Myoung Chul; Cho, Jun Hwi; Hong, Seongkweon; Won, Moo-Ho; Kim, Sung Koo

    2015-12-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region.

  4. Melatonin and Ischemic Stroke: Mechanistic Roles and Action.

    PubMed

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2015-01-01

    Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.

  5. Melatonin and Ischemic Stroke: Mechanistic Roles and Action

    PubMed Central

    Andrabi, Syed Suhail; Tabassum, Heena

    2015-01-01

    Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca2+ level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke. PMID:26435711

  6. Fasting and non-fasting triglycerides and risk of ischemic cardiovascular disease in Japanese men and women: the Circulatory Risk in Communities Study (CIRCS).

    PubMed

    Iso, Hiroyasu; Imano, Hironori; Yamagishi, Kazumasa; Ohira, Tetsuya; Cui, Renzhe; Noda, Hiroyuki; Sato, Shinichi; Kiyama, Masahiko; Okada, Takeo; Hitsumoto, Shinichi; Tanigawa, Takeshi; Kitamura, Akihiko

    2014-11-01

    Non-fasting triglycerides were reported to have a greater impact on risk of ischemic cardiovascular events than fasting triglycerides. However, evidence from Asia, where the prevalence of dyslipidemia is generally lower, has been limited. We used 1975-1986 baseline surveys to investigate cohort data of 10,659 (4264 men and 6395 women) residents aged 40-69 years, initially free from ischemic heart disease and stroke, in four Japanese communities. Serum triglyceride concentrations at baseline were obtained for 2424 fasting (≥8 h after meal) and 8235 non-fasting (<8 h after meal) participants. During the 22-year follow-up, 284 (165 men and 119 women) developed ischemic heart disease and 666 (349 men and 317 women) ischemic stroke. After adjustment for age, sex and known cardiovascular risk factors, multivariable hazard ratios (95%CI) of ischemic cardiovascular disease (ischemic heart disease and ischemic stroke) for the highest versus lowest quartiles of triglycerides were 1.71 (1.14-2.59), P for trend = 0.013, for fasting participants and 1.60 (1.25-2.05), P for trend <0.001, for non-fasting participants. The positive associations did not differ between fasting and non-fasting men, while they were strong for non-fasting women. They were stronger for ischemic heart disease than for ischemic stroke. After further adjustment for HDL-cholesterol, these associations were slightly attenuated, but remained statistically significant. Non-fasting as well as fasting triglycerides are predictive of risk of ischemic cardiovascular disease for Japanese men, as are non-fasting triglycerides for women. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Sodium 4-phenylbutyrate protects against cerebral ischemic injury.

    PubMed

    Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki

    2004-10-01

    Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.

  8. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans.

    PubMed

    Bogdanis, G C; Stavrinou, P; Fatouros, I G; Philippou, A; Chatzinikolaou, A; Draganidis, D; Ermidis, G; Maridaki, M

    2013-11-01

    This study investigated the changes in oxidative stress biomarkers and antioxidant status indices caused by a 3-week high-intensity interval training (HIT) regimen. Eight physically active males performed three HIT sessions/week over 3 weeks. Each session included four to six 30-s bouts of high-intensity cycling separated by 4 min of recovery. Before training, acute exercise elevated protein carbonyls (PC), thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPX) activity, total antioxidant capacity (TAC) and creatine kinase (CK), which peaked 24h post-exercise (252 ± 30%, 135 ± 17%, 10 ± 2%, 85 ± 14% and 36 ± 13%, above baseline, respectively; p<0.01), while catalase activity (CAT) peaked 30 min post-exercise (56 ± 18% above baseline; p<0.01). Training attenuated the exercise-induced increase in oxidative stress markers (PC by 13.3 ± 3.7%; TBARS by 7.2 ± 2.7%, p<0.01) and CK activity, despite the fact that total work done was 10.9 ± 3.6% greater in the post- compared with the pre-training exercise test. Training also induced a marked elevation of antioxidant status indices (TAC by 38.4 ± 7.2%; CAT by 26.2 ± 10.1%; GPX by 3.0 ± 0.6%, p<0.01). Short-term HIT attenuates oxidative stress and up-regulates antioxidant activity after only nine training sessions totaling 22 min of high intensity exercise, further supporting its positive effect not only on physical conditioning but also on health promotion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong-Bao; Qin, Da-Nian, E-mail: dnqin@stu.edu.cn; Ma, Le

    The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play a critical role in the generation and maintenance of sympathetic nerve activity. The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. This study was designed to determine whether inhibition of the angiotensin-converting enzyme (ACE) in the PVN modulates cytokines and attenuates oxidative stress (ROS) in the RVLM, and decreases the blood pressure and sympathetic activity in renovascular hypertensive rats. Renovascular hypertension was induced in male Sprague–Dawley rats by the two-kidney one-clip (2K1C) method. Renovascular hypertensive rats received bilateral PVN infusion with ACE inhibitor lisinoprilmore » (LSP, 10 μg/h) or vehicle via osmotic minipump for 4 weeks. Mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma proinflammatory cytokines (PICs) were significantly increased in renovascular hypertensive rats. The renovascular hypertensive rats also had higher levels of ACE in the PVN, and lower level of interleukin-10 (IL-10) in the RVLM. In addition, the levels of PICs, the chemokine MCP-1, the subunit of NAD(P)H oxidase (gp91{sup phox}) and ROS in the RVLM were increased in hypertensive rats. PVN treatment with LSP attenuated those changes occurring in renovascular hypertensive rats. Our findings suggest that the beneficial effects of ACE inhibition in the PVN in renovascular hypertension are partly due to modulation cytokines and attenuation oxidative stress in the RVLM. - Highlights: • Chronic ACE inhibition in PVN on renovascular hypertension was investigated. • 2K1C resulted in sympathoexcitation, increased plasma PICs and hypertension. • 2K1C rats had higher levels of cytokines and reactive oxygen species (ROS) in RVLM. • Chronic inhibiting PVN ACE attenuates cytokines and ROS in RVLM in hypertension.« less

  10. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model.

    PubMed

    Shao, Yi-Ye; Li, Bing; Huang, Yong-Mei; Luo, Qiong; Xie, Yang-Mei; Chen, Ying-Hui

    2017-01-01

    Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

  11. FLAIR vascular hyperintensities predict early ischemic recurrence in TIA.

    PubMed

    Nam, Ki-Woong; Kim, Chi Kyung; Kim, Tae Jung; Oh, Kyungmi; Han, Moon-Ku; Ko, Sang-Bae; Yoon, Byung-Woo

    2018-02-27

    To evaluate the relationship between fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH) and early ischemic lesion recurrence (follow-up diffusion-weighted imaging [FU-DWI] [+]) in patients with lesion-negative TIA. We recruited consecutive patients with lesion-negative TIA within 24 hours of symptom onset, who underwent follow-up MRI during the acute period. FVH was defined as a focal or serpentine high signal intensity on FLAIR images. Other potential confounders were adjusted to evaluate the relationship between FVH and FU-DWI (+). Furthermore, to compare clinical outcomes between the FU-DWI (+) and FU-DWI (-) groups, we assessed 1-year recurrent ischemic stroke or TIA. Among 392 patients with lesion-negative TIA, 82 patients had FU-DWI (+) on the follow-up MRI. In the multivariate analysis, FVH remained an independent predictor of FU-DWI (+) (adjusted odds ratio [aOR] = 4.77, 95% confidence interval [CI] 2.45-9.29, p < 0.001). The time to initial MRI (aOR = 0.49, 95% CI = 0.33-0.70, p < 0.001) and intracranial atherosclerosis (aOR = 2.07, 95% CI = 1.10-3.92, p = 0.025) were also associated with FU-DWI (+), independent of FVH. In clinical outcomes, the FU-DWI (+) group showed more frequent 1-year recurrent ischemic stroke events than the FU-DWI (-) group (10.7% vs 3.1%, respectively, p = 0.007). FVH is associated with FU-DWI (+) in patients with lesion-negative TIA. As FU-DWI (+) frequently occurs during the acute period and has a subsequent worse outcome after discharge, additional radiologic or clinical markers for it are necessary. © 2018 American Academy of Neurology.

  12. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    PubMed

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  13. A multicenter, randomized trial on neuroprotection with remote ischemic per-conditioning during acute ischemic stroke: the REmote iSchemic Conditioning in acUtE BRAin INfarction study protocol.

    PubMed

    Pico, Fernando; Rosso, Charlotte; Meseguer, Elena; Chadenat, Marie-Laure; Cattenoy, Amina; Aegerter, Philippe; Deltour, Sandrine; Yeung, Jennifer; Hosseini, Hassan; Lambert, Yves; Smadja, Didier; Samson, Yves; Amarenco, Pierre

    2016-10-01

    Rationale Remote ischemic per-conditioning-causing transient limb ischemia to induce ischemic tolerance in other organs-reduces final infarct size in animal stroke models. Aim To evaluate whether remote ischemic per-conditioning during acute ischemic stroke (<6 h) reduces brain infarct size at 24 h. Methods and design This study is being performed in five French hospitals using a prospective randomized open blinded end-point design. Adults with magnetic resonance imaging confirmed ischemic stroke within 6 h of symptom onset and clinical deficit of 5-25 according to National Institutes of Health Stroke Scale will be randomized 1:1 to remote ischemic per-conditioning or control (stratified by center and intravenous fibrinolysis use). Remote ischemic per-conditioning will consist of four cycles of electronic tourniquet inflation (5 min) and deflation (5 min) to a thigh within 6 h of symptom onset. Magnetic resonance imaging is repeated 24 h after stroke onset. Sample size estimates For a difference of 15 cm 3 in brain infarct growth between groups, 200 patients will be included for 5% significance and 80% power. Study outcomes The primary outcome will be the difference in brain infarct growth from baseline to 24 h in the intervention versus control groups (by diffusion-weighted image magnetic resonance imaging). Secondary outcomes include: National Institutes of Health Stroke Scale score absolute difference between baseline and 24 h, three-month modified Rankin score and daily living activities, mortality, and tolerance and side effects of remote ischemic per-conditioning. Discussion The only remote ischemic per-conditioning trial in humans with stroke did not show remote ischemic per-conditioning to be effective. REmote iSchemic Conditioning in acUtE BRAin INfarction, which has important design differences, should provide more information on the use of this intervention in patients with acute ischemic stroke.

  14. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo.

    PubMed

    Hsiao, Yai-Ping; Shen, Chien-Chang; Huang, Chung-Hsiung; Lin, Yu-Chin; Jan, Tong-Rong

    2018-05-01

    Iron oxide nanoparticles (IONPs) have been shown to attenuate T helper (Th)1 and Th2 cell-mediated immunity in ovalbumin (OVA)-sensitized mice. The objective of this study is to investigate the effects of IONPs on the immune responses of Th17 cells, a subset of T cells involved in various inflammatory pathologies. For in vivo study, a murine model of delayed-type hypersensitivity (DTH) was employed. BALB/c mice received a single dose of IONPs (0.2-10 mg iron/kg) via the tail vein 1 h prior to ovalbumin (OVA) sensitization. Their footpads were subcutaneously challenged with OVA to induce DTH reactions. The expression of Th17 cell-related molecules in inflamed footpads were examined by immunohistochemistry. For in vitro study, OVA-primed splenocytes were directly exposed to IONPs (1-100 μg iron/mL), and then re-stimulated with OVA in culture. The expression of Th17 cell-related molecules were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. IONP administration attenuated the number of interleukin (IL)-6, IL-17, the transcription factor ROR-γ, and chemokine receptor 6 positive cells in OVA-challenged footpads, whereas the number of transforming growth factor-β, IL-23 and chemokine (C-C motif) ligand 20 positive cells was not altered. Direct exposure of OVA-primed splenocytes to IONPs suppressed the production of IL-6 and IL-17, and the mRNA expression of IL-17 and ROR-γt. These data indicate that exposure to IONPs attenuates Th17 cell responses in vivo and in vitro. Copyright © 2018. Published by Elsevier B.V.

  15. Topical Administration of Oxygenated Hemoglobin Improved Wound Healing in an Ischemic Rabbit Ear Model.

    PubMed

    Xie, Ping; Jia, Shengxian; Tye, Ross; Xu, Wei; Zhong, Aimei; Hong, Seok J; Galiano, Robert D; Mustoe, Thomas A

    2016-02-01

    Localized oxygen deficiency plays a central role in the pathogenesis of chronic wounds; thus, rectifying localized ischemia with oxygen therapy has been postulated to be an integral aspect of the management of chronic wounds. The efficacy of a novel approach for oxygen therapy on chronic wound healing was evaluated. Oxygen was delivered to ischemic wounds by means of the topical application of oxygenated, chemically modified bovine hemoglobin (IKOR 2084) in a validated rabbit ear ischemic wound model. The wound healing was evaluated histologically by measuring epithelial gap and neo-granulation tissue area. In situ expression of endothelial cells (CD31) and proliferative cells (Ki-67) was examined by immunohistochemistry analysis. The mRNA of vascular endothelial growth factor, endothelial nitric oxide synthase, and matrix metalloproteinase-9 was quantified by real-time reverse-transcriptase polymerase chain reaction. The collagen was detected by Sirius red staining. In comparison with topical application of saline, the administration of oxygenated IKOR 2084 increases wound reepithelialization and formation of neo-granulation tissue in a dose-dependent manner, and cellular proliferation (Ki-67). Conversely, the administration of deoxygenated IKOR 2084 aggravated the ischemic wound healing process. Moreover, the topical administration of oxygenated IKOR 2084 induces angiogenesis as evidenced by concomitant increases in CD31 protein and vascular endothelial growth factor and endothelial nitric oxide synthase mRNA expression in treated wounds. Oxygenated IKOR 2084 administration also increased collagen deposition in wounds, with decreases in the expression of matrix metalloproteinase-9 mRNA. This study suggests that the topical application of oxygenated IKOR 2084 ameliorates the reparative progress of ischemic wounds through enhanced angiogenesis, cellular proliferation, and collagen deposition.

  16. Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Ruiz, Asier; Chara, Juan C; Pérez-Samartín, Alberto; Marambaud, Philippe; Matute, Carlos

    2018-06-01

    Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.

  17. TIA (Transient Ischemic Attack)

    MedlinePlus

    ... a TIA . The symptoms are similar to an ischemic stroke, but TIA symptoms usually last less than five ... treated for a blockage-related stroke (called an ischemic stroke), between 7 and 40% report experiencing a TIA ...

  18. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury.

    PubMed

    Cao, Wei; Li, Aiqing; Li, Jiawen; Wu, Chunyi; Cui, Shuang; Zhou, Zhanmei; Liu, Youhua; Wilcox, Christopher S; Hou, Fan Fan

    2017-09-01

    A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p < 0.05). Ischemia-reperfusion-induced renal damage and dysfunction persisted after controlling blood pressure with hydralazine. This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.

  19. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications.

    PubMed

    Hamada, Yasuhiro; Fujii, Hideki; Kitazawa, Riko; Yodoi, Junji; Kitazawa, Sohei; Fukagawa, Masafumi

    2009-05-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture. However, the mechanisms accounting for diabetic bone disorder are unclear. We have previously reported that streptozotocin-induced diabetic mice develop low turnover osteopenia associated with increased oxidative stress in the diabetic condition. To determine the role of oxidative stress in the development of diabetic osteopenia, we presently investigated the effect of overexpression of thioredoxin-1 (TRX), a major intracellular antioxidant, on the development of diabetic osteopenia, using TRX transgenic mice (TRX-Tg). TRX-Tg are C57BL/6 mice that carry the human TRX transgene under the control of beta-actin promoter. Eight-week-old male TRX-Tg mice and wild type (WT) littermates were intraperitoneally injected with either streptozotocin or vehicle. Mice were grouped as 1) non-diabetic WT, 2) non-diabetic TRX-Tg, 3) diabetic WT, and 4) diabetic TRX-Tg. After 12 weeks of streptozotocin treatment, oxidative stress on the whole body and bone was evaluated, and the physical properties of the femora, and histomorphometry parameters of the tibiae were assessed. TRX overexpression did not affect either body weight or hemoglobin A1c levels. There were no significant differences in renal function and in serum levels of calcium, phosphate, and intact parathyroid hormone among the four groups. On the other hand, urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, was significantly elevated in diabetic WT and attenuated in diabetic TRX-Tg. Immunohistochemical staining for 8-OHdG revealed marked intensity in the bone tissue of diabetic WT compared with non-diabetic WT, while staining was attenuated in diabetic TRX-Tg. TRX overexpression partially restored reduced bone mineral density and prevented the suppression of bone formation observed in diabetic WT. Increased oxidative stress in diabetic condition contributes to the development of diabetic osteopenia

  20. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits.

    PubMed

    Wang, Qiang; Ding, Qian; Zhou, Yiming; Gou, Xingchun; Hou, Lichao; Chen, Shaoyang; Zhu, Zhenghua; Xiong, Lize

    2009-06-01

    Ethyl pyruvate (EP) has been reported to offer a protective effect against ischemic injury through its antiinflammatory action. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. This study was designed to investigate the neuroprotective effect of EP against spinal cord ischemic injury and the potential role of HMGB1 in this process. EP was administered at various time points before or after 20 min of spinal cord ischemia in male New Zealand rabbits. All animals were sacrificed at 72 h after reperfusion with modified Tarlov criteria, and the spinal cord segment (L4) was harvested for histopathological examination and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining. The HMGB1 levels in serum and spinal cord tissue were analyzed by enzyme-linked immunosorbent assay. The treatment of EP at 30 min before ischemia or at 6 h after reperfusion significantly improved the hind-limb motor function scores and increased the numbers of normal motor neurons, which was accompanied with reduction of the number of apoptotic neurons and levels of HMGB1 in serum and spinal cord tissue. The HMGB1 contents of spinal cord tissue correlated well with the numbers of apoptotic motor neurons in the anterior spinal cord at 72 h after reperfusion. These results suggest that EP affords a strong protection against the transient spinal cord ischemic injury with a wide therapeutic window through inhibition of HMGB1 release.

  1. Clinical Correlates, Ethnic Differences, and Prognostic Implications of Perivascular Spaces in Transient Ischemic Attack and Ischemic Stroke.

    PubMed

    Lau, Kui-Kai; Li, Linxin; Lovelock, Caroline E; Zamboni, Giovanna; Chan, Tsz-Tai; Chiang, Man-Fung; Lo, Kin-Ting; Küker, Wilhelm; Mak, Henry Ka-Fung; Rothwell, Peter M

    2017-06-01

    Perivascular spaces (PVSs) are considered markers of small vessel disease. However, their long-term prognostic implications in transient ischemic attack/ischemic stroke patients are unknown. Ethnic differences in PVS prevalence are also unknown. Two independent prospective studies were conducted, 1 comprising predominantly whites with transient ischemic attack/ischemic stroke (OXVASC [Oxford Vascular] study) and 1 comprising predominantly Chinese with ischemic stroke (University of Hong Kong). Clinical and imaging correlates, prognostic implications for stroke and death, and ethnic differences in basal ganglia (BG) and centrum semiovale (CS) PVSs were studied with adjustment for age, sex, vascular risk factors, and scanner strength. Whites with transient ischemic attack/ischemic stroke (n=1028) had a higher prevalence of both BG and CS-PVSs compared with Chinese (n=974; >20 BG-PVSs: 22.4% versus 7.1%; >20 CS-PVSs: 45.8% versus 10.4%; P <0.0001). More than 20 BG or CS-PVSs were both associated with increasing age and white matter hyperintensity, although associations with BG-PVSs were stronger (all P <0.0001). During 6924 patient-years of follow-up, BG-PVSs were also independently associated with an increased risk of recurrent ischemic stroke (adjusted hazard ratio compared with <11 PVSs, 11-20 PVSs: HR, 1.15; 95% confidence interval, 0.78-1.68; >20 PVSs: HR, 1.82; 1.18-2.80; P =0.011) but not intracerebral hemorrhage ( P =0.10) or all-cause mortality ( P =0.16). CS-PVSs were not associated with recurrent stroke ( P =0.57) or mortality ( P =0.072). Prognostic associations were similar in both cohorts. Over and above ethnic differences in frequency of PVSs in transient ischemic attack/ischemic stroke patients, BG and CS-PVSs had similar risk factors, but although >20 BG-PVSs were associated with an increased risk of recurrent ischemic stroke, CS-PVSs were not. © 2017 The Authors.

  2. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    PubMed

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  3. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  4. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Xu; Ren, Dongmei; Wei, Xinbing

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependentmore » genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.« less

  5. Ischemic Stroke: Histological Thrombus Composition and Pre-Interventional CT Attenuation Are Associated with Intervention Time and Rate of Secondary Embolism.

    PubMed

    Sporns, Peter B; Hanning, Uta; Schwindt, Wolfram; Velasco, Aglae; Buerke, Boris; Cnyrim, Christian; Minnerup, Jens; Heindel, Walter; Jeibmann, Astrid; Niederstadt, Thomas

    2017-01-01

    The introduction of stent retrievers has made the complete extraction and histological analysis of human thrombi possible. A number of large randomized trials have proven the efficacy of thrombectomy for ischemic stroke; however, thrombus composition could have an impact on the efficacy and risk of the intervention. We therefore investigated the impact of histologic thrombus features on interventional outcome and procedure-related embolisms. For a pre-interventional estimation of histologic features and outcome parameters, we assessed the pre-interventional CT attenuation of the thrombi. We prospectively included all consecutive patients with occlusion of the middle cerebral artery who underwent thrombectomy between December 2013 and February 2016 at our university medical center. Samples were histologically analyzed (H&E, Elastica van Gieson, Prussian blue); additionally, immunohistochemistry for CD3, CD20, and CD68/KiM1P was performed. Main thrombus components (fibrin, erythrocytes, and white blood cells) were determined and compared to intervention time, frequency of secondary embolisms, as well as additional clinical and interventional parameters. Additionally, we assessed the pre-interventional CT attenuation of the thrombi in relation to the unaffected side (rHU) and their association with histologic features. One hundred eighty patients were included; of these, in 168 patients (93.4%), complete recanalization was achieved and 27 patients (15%) showed secondary embolism in the control angiogram. We observed a significant association of high amounts of fibrin (p < 0.001), low percentage of red blood cells (p < 0.001), and lower rHU (p < 0.001) with secondary embolism. Higher rHU values were significantly associated with higher amounts of fibrin (p ≤ 0.001) and low percentage of red blood cells (p ≤ 0.001). Additionally, high amounts of fibrin were associated with longer intervention times (p ≤ 0.001), whereas thrombi with high amounts of

  6. M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury.

    PubMed

    Brickson, S; Ji, L L; Schell, K; Olabisi, R; St Pierre Schneider, B; Best, T M

    2003-09-01

    The purpose of this study was to determine the role of the CD11b-dependent respiratory burst in neutrophil oxidant generation and activation, interleukin-8 (IL-8) production, and myofiber damage after muscle stretch injury by using the monoclonal antibody M1/70 to block this pathway. Twelve male New Zealand White rabbits were randomly assigned to a treatment group: M1/70 (n = 6), IgG isotype control (n = 3), or saline control (n = 3). After intravenous injection of the assigned agent under gas anesthesia, a standardized single-stretch injury was created in the right tibialis anterior, whereas the left tibialis anterior underwent a sham surgery. Blood-borne neutrophil oxidant generation and CD11b receptor density and plasma IL-8 levels were measured pre- and 24 h postinjury. Damage was assessed histologically at the hematoma site by counting torn myofibers. M1/70 group demonstrated decreased blood-borne neutrophil oxidant generation (P < 0.05) and CD11b receptor density (P < 0.05), an increase in plasma IL-8 concentration (P < 0.01), and less torn myofibers (P < 0.01) compared with IgG isotype or saline control groups. These data indicate that 1). CD11b-dependent respiratory burst is a major source of oxidants produced by the neutrophil, and that treatment with M1/70 2). attenuates neutrophil activation status, 3). increases plasma IL-8 concentration, and 4). minimizes myofiber damage 24 h postmuscle stretch injury.

  7. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress

    PubMed Central

    Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng

    2011-01-01

    Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358

  8. Use of estetrol with other steroids for attenuation of neonatal hypoxic-ischemic brain injury: to combine or not to combine?

    PubMed

    Tskitishvili, Ekaterine; Pequeux, Christel; Munaut, Carine; Viellevoye, Renaud; Nisolle, Michelle; Noël, Agnes; Foidart, Jean-Michel

    2016-06-07

    Estetrol (E4), estradiol (E2) and progesterone (P4) have important antioxidative and neuroprotective effects in neuronal system. We aimed to study the consequence of combined steroid therapy in neonatal hypoxic-ischemic encephalopathy (HIE). In vitro the effect of E4 combined with other steroids on oxidative stress and the cell viability in primary hippocampal cultures was evaluated by lactate dehydrogenase and cell survival assays. In vivo neuroprotective and therapeutic efficacy of E4 combined with other steroids was studied in HIE model of immature rats. The rat pups rectal temperature, body and brain weights were evaluated.The hippocampus and the cortex were investigated by histo/immunohistochemistry: intact cell number counting, expressions of markers for early gray matter lose, neuro- and angiogenesis were studied. Glial fibrillary acidic protein was evaluated by ELISA in blood samples. In vitro E4 and combinations of high doses of E4 with P4 and/or E2 significantly diminished the LDH activity and upregulated the cell survival.In vivopretreatment or treatment by different combinations of E4 with other steroids had unalike effects on body and brain weight, neuro- and angiogenesis, and GFAP expression in blood. The combined use of E4 with other steroids has no benefit over the single use of E4.

  9. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis.

    PubMed

    Jiang, Lianxiang; Hu, Meizhu; Lu, Yan; Cao, Ya; Chang, Yan; Dai, Zeping

    2017-08-01

    Intracranial lesions, trauma or surgery-related damage activate immune inflammation and neuroendocrine responses, causing ischemic brain injury. Studies have shown that inflammatory cascade mediated by neuroendocrine hormones and proinflammatory mediators is implicated in the pathophysiology of ischemic brain injury. Alpha2-adrenoceptor agonists, dexmedetomidine, is widely used as neuroprotectants in anesthesia practice. However, it is still lack of a comprehensive meta-analysis to evaluate the neuroprotection of dexmedetomidine against ischemic brain injury via suppressing these two physiological responses. Searched the Cochrane Library, Pub-Med, EMBASE, EBSCO, Ovid, Chinese biological and medical database (CBM). Related literatures published in English or Chinese before January 2017 were enrolled. We assessed the quality of eligible studies and synthesized predefined outcomes with a random-effects model or fixed-effects model. Nineteen Randomized Controlled Trials including 879 patients were included. Findings for meta-analysis of various outcomes were summarised. Primary results shown that compared with placebo, dexmedetomidine reduced a surge of TNF-α [SMD=-2.34, 95%CI (-3.25, -1.44)], IL-6 [SMD=-2.44, 95%CI (-3.40, -1.47)], S100-β [SMD=-2.73, 95%CI (-3.65, -1.82)], NSE [SMD=-1.69, 95%CI (-2.77, -0.61)], cortisol [SMD=-2.48, 95%CI (-3.38, -1.58)] and glucose [SMD=-1.44, 95%CI (-1.85, -1.04)]; maintained the level of SOD [SMD=1.36, 95%CI (0.62, 2.10)]; decreased the rise in CRP level at postoperative one day. In response to stress reaction, dexmedetomidine attenuated the stress-related increasing of MAP, HR and intracranial pressure without significant effects on cerebral oxygen metabolism. Alpha2-adrenoceptor agonists, dexmedetomidine, could reduce the release of inflammatory mediators and neuroendocrine hormones as well as maintain intracranial homoeostasis, alleviating ischemic brain injury and exerting an effect on brain protection. Copyright © 2017

  10. Vinpocetine Inhibits NF-κB-Dependent Inflammation in Acute Ischemic Stroke Patients.

    PubMed

    Zhang, Fang; Yan, Chen; Wei, Changjuan; Yao, Yang; Ma, Xiaofeng; Gong, Zhongying; Liu, Shoufeng; Zang, Dawei; Chen, Jieli; Shi, Fu-Dong; Hao, Junwei

    2018-04-01

    Immunity and inflammation play critical roles in the pathogenesis of acute ischemic stroke. Therefore, immune intervention, as a new therapeutic strategy, is worthy of exploration. Here, we tested the inflammation modulator, vinpocetine, for its effect on the outcomes of stroke. For this multi-center study, we recruited 60 patients with anterior cerebral circulation occlusion and onset of stroke that had exceeded 4.5 h but lasted less than 48 h. These patients, after random division into two groups, received either standard management alone (controls) or standard management plus vinpocetine (30 mg per day intravenously for 14 consecutive days, Gedeon Richter Plc., Hungary). Vinpocetine treatment did not change the lymphocyte count; however, nuclear factor kappa-light-chain-enhancer of activated B cell activation was inhibited as seen not only by the increased transcription of IκBα mRNA but also by the impeded phosphorylation and degradation of IκBα and subsequent induction of pro-inflammatory mediators. These effects led to significantly reduced secondary lesion enlargement and an attenuated inflammation reaction. Compared to controls, patients treated with vinpocetine had a better recovery of neurological function and improved clinical outcomes during the acute phase and at 3-month follow-up. These findings identify vinpocetine as an inflammation modulator that could improve clinical outcomes after acute ischemic stroke. This study also indicated the important role of immunity and inflammation in the pathogenesis of acute ischemic stroke and the significance of immunomodulatory treatment. www.clinicaltrials.gov . Identifier: NCT02878772.

  11. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis.

    PubMed

    Katanić, Jelena; Matić, Sanja; Pferschy-Wenzig, Eva-Maria; Kretschmer, Nadine; Boroja, Tatjana; Mihailović, Vladimir; Stanković, Vesna; Stanković, Nevena; Mladenović, Milan; Stanić, Snežana; Mihailović, Mirjana; Bauer, Rudolf

    2017-01-01

    Filipendula ulmaria, known as meadowsweet, is a perennial herb found in wild and cultivated habitats in Europe and Asia. Usage of F. ulmaria in traditional medicine is based on diuretic, astringent, antirheumatic, and anti-inflammatory properties of this plant. Exposure to cisplatin at a dose of 7.5 mg/kg caused significant increase in serum parameters of liver and kidneys function and tissue oxidative stress markers along with some histopathological changes in liver and kidney tissues of experimental rats, as well as high level of genotoxicity. Administration of F. ulmaria extracts in three different concentrations (100, 200, and 400 mg/kg/day) for 10 days resulted in a reduction of oxidative stress in tissues and decrease of serum parameters. Moreover, tested extracts attenuated the genotoxicity of cisplatin in reverse dose-dependent manner. F. ulmaria extracts had no in vitro cytotoxic activity at all applied concentrations (IC 50  > 50 μg/mL). Tested extracts, rich in polyphenolic compounds, attenuate cisplatin-induced liver and kidney oxidative stress, reduce tissue damage, and enhance the antioxidative status of experimental animals during cisplatin application. Therefore, F. ulmaria extracts may be used as supportive agent for the prevention and amelioration of cisplatin side effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carbamylated low-density lipoprotein attenuates glucose uptake via a nitric oxide-mediated pathway in rat L6 skeletal muscle cells.

    PubMed

    Choi, Hye-Jung; Lee, Kyoung Jae; Hwang, Eun Ah; Mun, Kyo-Cheol; Ha, Eunyoung

    2015-07-01

    Carbamylation is a cyanate-mediated posttranslational modification. We previously reported that carbamylated low-density lipoprotein (cLDL) increases reactive oxygen species and apoptosis via a lectin-like oxidized LDL receptor mediated pathway in human umbilical vein endothelial cells. A recent study reported an association between cLDL and type 2 diabetes mellitus (T2DM). In the current study, the effects of cLDL on glucose transport were explored in skeletal muscle cells. The effect of cLDL on glucose uptake, glucose transporter 4 (GLUT4) translocation, and signaling pathway were examined in cultured rat L6 muscle cells using 2-deoxyglucose uptake, immunofluorescence staining and western blot analysis. The quantity of nitric oxide (NO) was evaluated by the Griess reaction. The effect of native LDL (nLDL) from patients with chronic renal failure (CRF-nLDL) on glucose uptake was also determined. It was observed that cLDL significantly attenuated glucose uptake and GLUT4 translocation to the membrane, which was mediated via the increase in inducible nitric oxide synthase (iNOS)-induced NO production. Tyrosine nitration of the insulin receptor substrate-1 (IRS‑1) was increased. It was demonstrated that CRF-nLDL markedly reduced glucose uptake compared with nLDL from healthy subjects. Collectively, these findings indicate that cLDL, alone, attenuates glucose uptake via NO-mediated tyrosine nitration of IRS‑1 in L6 rat muscle cells and suggests the possibility that cLDL is involved in the pathogenesis of T2DM.

  13. Hypophosphorylation of Ribosomal Protein S6 is a Molecular Mechanism Underlying Ischemic Tolerance Induced by either Hibernation or Preconditioning

    PubMed Central

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D.; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-ja; Hallenbeck, John M.

    2015-01-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions of blood flow and oxygen delivery to brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. PMID:26375300

  14. Averrhoa bilimbi fruits attenuate hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Kurup, Surya B; Mini, S

    2017-04-01

    Hyperglycemia-mediated oxidative stress plays a major role in the development of diabetic complications. Averrhoa bilimbi Linn. (Oxalidaceae) is a medicinal plant with fruits reported to possess antidiabetic activity. This study evaluated the beneficial effects of the ethyl acetate fraction of A. bilimbi fruit (ABAEE) on the antioxidant/oxidant status in diabetes mellitus. Diabetic rats were treated orally with the ethyl acetate fraction of A. bilimbi fruits at a dose of 25 mg/kg body weight for 60 days. Serum glucose, glycated hemoglobin, plasma insulin, hepatic toxicity markers, antioxidant enzymes, lipid peroxidation products, and liver histopathology were assayed checked after 60 days of extract treatment. Diabetic rats administered ABAEE showed a significant decline in serum glucose, glycated hemoglobin, and also significantly increases the level of plasma insulin, as well as a notable attenuation in thiobarbituric acid-reactive substances, conjugated dienes, and hydroperoxides. ABAEE also modulated hepatic antioxidant potential by significantly increasing the activities of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and reducing glutathione content. The results associated with ABAEE were more significant than those observed following treatment with the standard drug metformin. Histopathological observations showed that ABAEE effectively rescued hepatocytes from oxidative damage without affecting cellular function and structural integrity. High-performance liquid chromatography analysis of ABAEE indicated the presence of phenolic compound, quercetin, indicating that the antidiabetic effect of the extract might be related to quercetin. These results demonstrated the potential beneficial effect of ABAEE on streptozotocin-induced diabetes in rats. Copyright © 2016. Published by Elsevier B.V.

  15. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  16. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration.

    PubMed

    Kobayashi, Motomu; Takeda, Yoshimasa; Taninishi, Hideki; Takata, Ken; Aoe, Hisami; Morita, Kiyoshi

    2007-07-01

    Although propofol and thiopental are commonly used as neuroprotective agents, it has not been determined which is more neuroprotective. This study was designed to quantitatively evaluate the neuroprotective effects of thiopental, propofol, and halothane on brain ischemia by determining P50, ischemic time necessary for causing 50% neuronal damage. Gerbils were anesthetized with thiopental, propofol, or halothane and underwent 2-vessel occlusion (0, 3, 5 or 10 min). Direct current potentials were measured in bilateral CA1 regions, in which histologic evaluation was performed 5 days later. In some animals, extracellular glutamate concentrations (microdialysis) were measured during 7.5 minutes of ischemia. P50 in the thiopental, propofol, and halothane groups were estimated to be 8.4, 6.5 (P<0.05, vs. thiopental), and 5.1 (P<0.05) minutes, respectively. Durations of ischemic depolarization were equally reduced in the thiopental and propofol groups compared with that in the halothane group. Severity of neuronal damage with identical duration of ischemic depolarization was attenuated by thiopental compared with the effect of propofol. Maximum glutamate concentrations in the thiopental and propofol group were significantly reduced compared with that in the halothane groups but were comparable. By using P50, we found that the neuroprotective effect of thiopental was greater than that of propofol. Although duration of ischemic depolarization was equally reduced in thiopental and propofol groups, thiopental has a greater suppressive effect on neuronal injury during identical duration of ischemic depolarization than propofol does. Glutamate concentration during brain ischemia tended to be attenuated more by thiopental than by propofol, but it was not statistically significant.

  17. Potent sigma 1-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine provides ischemic neuroprotection without altering dopamine accumulation in vivo in rats.

    PubMed

    Goyagi, Toru; Bhardwaj, Anish; Koehler, Raymond C; Traystman, Richard J; Hurn, Patricia D; Kirsch, Jeffrey R

    2003-02-01

    The in vivo signaling of ischemic neuroprotection provided by sigma-receptor ligands remains unclear. Catecholamines have been implicated in the propagation of ischemic neuronal injury, and previous in vitro studies suggest that sigma ligands modulate dopaminergic neurotransmission. In this study, we tested the hypothesis that the potent sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) attenuates the increase of extracellular dopamine in ischemic striatum. Under controlled physiological conditions, a microdialysis probe was implanted in right caudoputamen (CP) complex of adult male Wistar rats. Rats were subjected to 2 h of transient middle cerebral artery occlusion (MCAO) by the intraluminal suture technique. In a blinded, randomized fashion, rats were divided into five treatment groups: Group 1 (n = 8; saline-saline) continuous i.v. infusion of saline vehicle 30 min before MCAO followed by saline at reperfusion until the end of the experiment; Group 2 (n = 8; PPBP-PPBP) i.v. PPBP 30 min before MCAO followed by 1 micromol x kg(-1) x h(-1) of PPBP; Group 3 (n = 8; saline-PPBP) i.v. saline before MCAO followed by PPBP; Group 4 (n = 4) surgical shams (saline-saline); and Group 5 (n = 4) surgical shams (PPBP-PPBP). Infarction volume at 22 h of reperfusion in the CP complex (percentage of ipsilateral structure) was significantly attenuated in rats treated with PPBP-PPBP (27.3% +/- 9.1%) and saline-PPBP (27.8% +/- 12.7%) compared with saline-saline (59.3% +/- 7.3%) treatment. There was a three- to fourfold increase in dopamine concentrations in the microdialysates within 40 min of the onset of MCAO. Dopamine and its metabolites dihydroxy phenylacetic acid and homovallinic acid levels were similar among the three groups subjected to MCAO. Therefore, PPBP provides significant ischemic neuroprotection in the CP complex without altering the acute accumulation of dopamine in vivo during transient focal ischemia in the rat.

  18. Lubiprostone induced ischemic colitis.

    PubMed

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-14

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding.

  19. Lubiprostone induced ischemic colitis

    PubMed Central

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-01

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding. PMID:23345954

  20. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    PubMed

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  1. Resveratrol promotes neuroprotection and attenuates oxidative and nitrosative stress in the small intestine in diabetic rats.

    PubMed

    Ferreira, Paulo Emilio Botura; Beraldi, Evandro José; Borges, Stephanie Carvalho; Natali, Maria Raquel Marçal; Buttow, Nilza Cristina

    2018-06-12

    Damages to the enteric nervous system caused by diabetes mellitus (DM) are frequently attributed to oxidative and nitrosative stress. We aimed to investigate the effect of Resveratrol (RSV) (10 mg/kg) on oxidative and nitrosative stress in the intestinal wall and morphoquantitative aspects of the myenteric plexus of the duodenum, jejunum and ileum in diabetic rats. Twenty-four rats were distributed into four groups (n = 6/group): control (C group), control treated with RSV (CR group), diabetic (D group), and diabetic treated with RSV (DR group) for 120 days. Immunohistochemical staining techniques for the general neuronal population, nitrergic and calretinin neuronal subpopulations, enteric glial cells and glial fibrillary acid protein were performed in the myenteric plexus. Furthermore, parameters of oxidative and nitrosative stress were analyzed in the intestinal wall. RSV attenuated oxidative and nitrosative stress and prevented neuronal loss and hypertrophy of the HuC/D-IR, nNOS-IR and CALR-IR neuronal subpopulations in the DR group compared with the D group (P < 0.05). In addition, RSV prevented the increase in glial fibrillary acid protein fluorescence in the DR group compared with the D (P < 0.05). These results suggest that RSV has antioxidant and neuroprotective effects in myenteric plexus in rats with experimental DM. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Delayed administration of parecoxib, a specific COX-2 inhibitor, attenuated postischemic neuronal apoptosis by phosphorylation Akt and GSK-3β.

    PubMed

    Ye, Zhi; Wang, Na; Xia, Pingping; Wang, E; Yuan, Yajing; Guo, Qulian

    2012-02-01

    Parecoxib is a recently described novel COX-2 inhibitor whose functional significance and neuroprotective mechanisms remain elusive. Therefore, in this study, we aimed to investigate whether delayed administration of parecoxib inhibited mitochondria-mediated neuronal apoptosis induced by ischemic reperfusion injury via phosphorylating Akt and its downstream target protein, glycogen synthase kinase 3β (GSK-3β). Adult male Sprague-Dawley rats were administered parecoxib (10 or 30 mg kg(-1), IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. Cerebral infarct volume, apoptotic neuron, caspase-3 immunoreactivity and the protein expression of p-Akt, p-GSK-3β and Cytochrome C in cerebral ischemic cortex were evaluated at 96 h after reperfusion. Parecoxib significantly diminished infarct volume and attenuated neuron apoptosis in a dose-independent manner, compared with MCAO group alone. Increased p-Akt and p-GSK-3β was observed in the ischemic penumbra of parecoxib group after stroke. Moreover, parecoxib also reduced the release of Cytochrome C from mitochondrial into cytosol and attenuated the caspase-3 immunoreactivity in the penumbra. Taken together, these results suggested that parecoxib ameliorated postischemic mitochondria-mediated neuronal apoptosis induced by focal cerebral ischemia in rats and this neuroprotective potential is involved in phosphorylation of Akt and GSK-3β.

  3. Clinical Correlates, Ethnic Differences, and Prognostic Implications of Perivascular Spaces in Transient Ischemic Attack and Ischemic Stroke

    PubMed Central

    Lau, Kui-Kai; Li, Linxin; Lovelock, Caroline E.; Zamboni, Giovanna; Chan, Tsz-Tai; Chiang, Man-Fung; Lo, Kin-Ting; Küker, Wilhelm; Mak, Henry Ka-Fung

    2017-01-01

    Background and Purpose— Perivascular spaces (PVSs) are considered markers of small vessel disease. However, their long-term prognostic implications in transient ischemic attack/ischemic stroke patients are unknown. Ethnic differences in PVS prevalence are also unknown. Methods— Two independent prospective studies were conducted, 1 comprising predominantly whites with transient ischemic attack/ischemic stroke (OXVASC [Oxford Vascular] study) and 1 comprising predominantly Chinese with ischemic stroke (University of Hong Kong). Clinical and imaging correlates, prognostic implications for stroke and death, and ethnic differences in basal ganglia (BG) and centrum semiovale (CS) PVSs were studied with adjustment for age, sex, vascular risk factors, and scanner strength. Results— Whites with transient ischemic attack/ischemic stroke (n=1028) had a higher prevalence of both BG and CS-PVSs compared with Chinese (n=974; >20 BG-PVSs: 22.4% versus 7.1%; >20 CS-PVSs: 45.8% versus 10.4%; P<0.0001). More than 20 BG or CS-PVSs were both associated with increasing age and white matter hyperintensity, although associations with BG-PVSs were stronger (all P<0.0001). During 6924 patient-years of follow-up, BG-PVSs were also independently associated with an increased risk of recurrent ischemic stroke (adjusted hazard ratio compared with <11 PVSs, 11–20 PVSs: HR, 1.15; 95% confidence interval, 0.78–1.68; >20 PVSs: HR, 1.82; 1.18–2.80; P=0.011) but not intracerebral hemorrhage (P=0.10) or all-cause mortality (P=0.16). CS-PVSs were not associated with recurrent stroke (P=0.57) or mortality (P=0.072). Prognostic associations were similar in both cohorts. Conclusions— Over and above ethnic differences in frequency of PVSs in transient ischemic attack/ischemic stroke patients, BG and CS-PVSs had similar risk factors, but although >20 BG-PVSs were associated with an increased risk of recurrent ischemic stroke, CS-PVSs were not. PMID:28495831

  4. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart

    PubMed Central

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  5. Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice

    PubMed Central

    Fu, Yongjian; Zhang, SongSong; Ding, Hao; Chen, Jin

    2017-01-01

    In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema. PMID:28912935

  6. Structural Integrity of Normal Appearing White Matter and Sex-Specific Outcomes After Acute Ischemic Stroke.

    PubMed

    Etherton, Mark R; Wu, Ona; Cougo, Pedro; Giese, Anne-Katrin; Cloonan, Lisa; Fitzpatrick, Kaitlin M; Kanakis, Allison S; Boulouis, Gregoire; Karadeli, Hasan H; Lauer, Arne; Rosand, Jonathan; Furie, Karen L; Rost, Natalia S

    2017-12-01

    Women have worse poststroke outcomes than men. We evaluated sex-specific clinical and neuroimaging characteristics of white matter in association with functional recovery after acute ischemic stroke. We performed a retrospective analysis of acute ischemic stroke patients with admission brain MRI and 3- to 6-month modified Rankin Scale score. White matter hyperintensity and acute infarct volume were quantified on fluid-attenuated inversion recovery and diffusion tensor imaging MRI, respectively. Diffusivity anisotropy metrics were calculated in normal appearing white matter contralateral to the acute ischemia. Among 319 patients with acute ischemic stroke, women were older (68.0 versus 62.7 years; P =0.004), had increased incidence of atrial fibrillation (21.4% versus 12.2%; P =0.04), and lower rate of tobacco use (21.1% versus 35.9%; P =0.03). There was no sex-specific difference in white matter hyperintensity volume, acute infarct volume, National Institutes of Health Stroke Scale, prestroke modified Rankin Scale score, or normal appearing white matter diffusivity anisotropy metrics. However, women were less likely to have an excellent outcome (modified Rankin Scale score <2: 49.6% versus 67.0%; P =0.005). In logistic regression analysis, female sex and the interaction of sex with fractional anisotropy, radial diffusivity, and axial diffusivity were independent predictors of functional outcome. Female sex is associated with decreased likelihood of excellent outcome after acute ischemic stroke. The correlation between markers of white matter integrity and functional outcomes in women, but not men, suggests a potential sex-specific mechanism. © 2017 American Heart Association, Inc.

  7. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice

    PubMed Central

    ZHAO, PENG; ZHOU, RU; ZHU, XIAO-YUN; HAO, YIN-JU; LI, NAN; WANG, JIE; NIU, YANG; SUN, TAO; LI, YU-XIANG; YU, JIAN-QIANG

    2015-01-01

    Matrine, an active constituent of the Chinese herb, Sophora flavescens Ait., and it is known for its antioxidant, anti-inflammatory and antitumor activities. It has been demonstrated that matrine exerts protective effects against heart failure by decreasing the expression of caspase-3 and Bax, and increasing Bcl-2 levels. In this study, we aimed to determine whether these protective effects of matrine can be applied to cerebral ischemia. Following 7 successive days of treatment with matrine (7.5, 15 and 30 mg/kg) and nimodipine (1 mg/kg) by intraperitoneal injection, male Institute of Cancer Research (ICR) mice were subjected to middle cerebral artery occlusion (MCAO). Following reperfusion, the neurobehavioral score and brain infarct volume were estimated, and morphological changes were analyzed by hematoxylin and eosin (H&E) staining and electron microscopy. The percentage of apoptotic neurons was determined by flow cytometry. The levels of oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and the total antioxidant capacity (T-AOC). Western blot analysis and immunofluorescence staining were used to examine the expression of the apoptosis-related proteins, caspase-3, Bax and Bcl-2. Our results revealed that pre-treatment with matrine significantly decreased the infarct volume and improved the neurological scores. Matrine also reduced the percentage of apoptotic neurons and relieved neuronal morphological damage. Furthermore, matrine markedly decreased the MDA levels, and increased SOD, GSH-Px and CAT activity, and T-AOC. Western blot analysis and immunofluorescence staining revealed a marked decrease in caspase-3 expression and an increase in the Bcl-2/Bax ratio in the group pre-treated with matrine (30 mg/kg) as compared with the vehicle-treated group. The findings of the present study demonstrate that matrine exerts neuroprotective effects against

  8. M1 polarization bias and subsequent nonalcoholic steatohepatitis progression is attenuated by nitric oxide donor DETA NONOate via inhibition of CYP2E1-induced oxidative stress in obese mice.

    PubMed

    Seth, Ratanesh Kumar; Das, Suvarthi; Pourhoseini, Sahar; Dattaroy, Diptadip; Igwe, Stephen; Ray, Julie Basu; Fan, Daping; Michelotti, Gregory A; Diehl, Anna Mae; Chatterjee, Saurabh

    2015-01-01

    Activation of M1 macrophages in nonalcoholic steatohepatitis (NASH) is produced by several external or endogenous factors: inflammatory stimuli, oxidative stress, and cytokines are known. However, any direct role of oxidative stress in causing M1 polarization in NASH has been unclear. We hypothesized that CYP2E1-mediated oxidative stress causes M1 polarization in experimental NASH, and that nitric oxide (NO) donor administration inhibits CYP2E1-mediated inflammation with concomitant attenuation of M1 polarization. Because CYP2E1 takes center stage in these studies, we used a toxin model of NASH that uses a ligand and a substrate of CYP2E1 for inducing NASH. Subsequently, we used a methionine and choline-deficient diet-induced rodent NASH model where the role of CYP2E1 in disease progression has been shown. Our results show that CYP2E1 causes M1 polarization bias, which includes a significant increase in interleukin-1β (IL-1β) and IL-12 in both models of NASH, whereas CYP2E1-null mice or diallyl sulfide administration prevented it. Administration of gadolinium chloride (GdCl3), a macrophage toxin, attenuated both the initial M1 response and the subsequent M2 response, showing that the observed increase in cytokine levels is primarily from macrophages. Based on the evidence of an adaptive NO increase, the NO donor administration in vivo that mechanistically inhibited CYP2E1 catalyzed the oxidative stress during the entire study in NASH-abrogated M1 polarization and NASH progression. The results obtained show the association of CYP2E1 in M1 polarization, and that inhibition of CYP2E1 catalyzed oxidative stress by an NO donor (DETA NONOate [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate]) can be a promising therapeutic strategy in NASH. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. M1 Polarization Bias and Subsequent Nonalcoholic Steatohepatitis Progression Is Attenuated by Nitric Oxide Donor DETA NONOate via Inhibition of CYP2E1-Induced Oxidative Stress in Obese Mice

    PubMed Central

    Seth, Ratanesh Kumar; Das, Suvarthi; Pourhoseini, Sahar; Dattaroy, Diptadip; Igwe, Stephen; Ray, Julie Basu; Fan, Daping; Michelotti, Gregory A.; Diehl, Anna Mae

    2015-01-01

    Activation of M1 macrophages in nonalcoholic steatohepatitis (NASH) is produced by several external or endogenous factors: inflammatory stimuli, oxidative stress, and cytokines are known. However, any direct role of oxidative stress in causing M1 polarization in NASH has been unclear. We hypothesized that CYP2E1-mediated oxidative stress causes M1 polarization in experimental NASH, and that nitric oxide (NO) donor administration inhibits CYP2E1-mediated inflammation with concomitant attenuation of M1 polarization. Because CYP2E1 takes center stage in these studies, we used a toxin model of NASH that uses a ligand and a substrate of CYP2E1 for inducing NASH. Subsequently, we used a methionine and choline–deficient diet-induced rodent NASH model where the role of CYP2E1 in disease progression has been shown. Our results show that CYP2E1 causes M1 polarization bias, which includes a significant increase in interleukin-1β (IL-1β) and IL-12 in both models of NASH, whereas CYP2E1-null mice or diallyl sulfide administration prevented it. Administration of gadolinium chloride (GdCl3), a macrophage toxin, attenuated both the initial M1 response and the subsequent M2 response, showing that the observed increase in cytokine levels is primarily from macrophages. Based on the evidence of an adaptive NO increase, the NO donor administration in vivo that mechanistically inhibited CYP2E1 catalyzed the oxidative stress during the entire study in NASH-abrogated M1 polarization and NASH progression. The results obtained show the association of CYP2E1 in M1 polarization, and that inhibition of CYP2E1 catalyzed oxidative stress by an NO donor (DETA NONOate [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate]) can be a promising therapeutic strategy in NASH. PMID:25347994

  10. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation.

    PubMed

    Klaus, S; Pültz, S; Thöne-Reineke, C; Wolfram, S

    2005-06-01

    To examine the antiobesity effect of epigallocatechin gallate (EGCG), a green tea bioactive polyphenol in a mouse model of diet-induced obesity. Obesity was induced in male New Zealand black mice by feeding of a high-fat diet. EGCG purified from green tea (TEAVIGO) was supplemented in the diet (0.5 and 1%). Body composition (quantitative magnetic resonance), food intake, and food digestibility were recorded over a 4-week period. Animals were killed and mRNA levels of uncoupling proteins (UCP1-3), leptin, malic enzyme (ME), stearoyl-CoA desaturase-1 (SCD1), glucokinase (GK), and pyruvate kinase (PK) were analysed in different tissues. Also investigated were acute effects of orally administered EGCG (500 mg/kg) on body temperature, activity (transponders), and energy expenditure (indirect calorimetry). Dietary supplementation of EGCG resulted in a dose-dependent attenuation of body fat accumulation. Food intake was not affected but faeces energy content was slightly increased by EGCG, indicating a reduced food digestibility and thus reduced long-term energy absorption. Leptin and SCD1 gene expression in white fat was reduced but SCD1 and UCP1 expression in brown fat was not changed. In liver, gene expression of SCD1, ME, and GK was reduced and that of UCP2 increased. Acute oral administration of EGCG over 3 days had no effect on body temperature, activity, and energy expenditure, whereas respiratory quotient during night (activity phase) was decreased, supportive of a decreased lipogenesis and increased fat oxidation. Dietary EGCG attenuated diet-induced body fat accretion in mice. EGCG apparently promoted fat oxidation, but its fat-reducing effect could be entirely explained by its effect in reducing diet digestibility.

  11. Evaluation of the Effects of Atorvastatin and Ischemic Postconditioning Preventing on the Ischemia and Reperfusion Injury: Experimental Study in Rats

    PubMed Central

    Pontes, Henrique Budib Dorsa; Pontes, José Carlos Dorsa Vieira; de Azevedo Neto, Euler; Vendas, Giovanna Serra da Cruz; Miranda, João Victor Cunha; Dias, Letícia do Espírito Santos; Oliva, João Victor Durães Gomes; de Almeida, Murilo Henrique Martins; Chaves, Ian de Oliveira; Sampaio, Tricia Luna; dos Santos, Carlos Henrique Marques; Dourado, Doroty Mesquita

    2018-01-01

    Introduction Reperfusion injury leads to systemic morphological and functional pathological alterations. Some techniques are already estabilished to attenuate the damage induced by reperfusion. Ischemic preconditioning is one of the standard procedures. In the last 20 years, several experimental trials demonstrated that the ischemic postconditioning presents similar effectiveness. Recently experimental trials demonstrated that statins could be used as pharmacological preconditioning. Methods 41 Wistar rats (Rattus norvegicus albinus) were distributed in 5 groups: Ischemia and Reperfusion (A), Ischemic Postconditioning (B), Statin (C), Ischemic Postconditioning + Statins (D) and SHAM (E). After euthanasia, lungs, liver, kidneys and ileum were resected and submitted to histopathological analysis. Results The average of lung parenchymal injury was A=3.6, B=1.6, C=1.2, D=1.2, E=1 (P=0.0029). The average of liver parenchymal injury was A=3, B=1.5, C=1.2, D=1.2, E = 0 (P<0.0001). The average of renal parenchymal injury was A=4, B=2.44, C=1.22, D=1.11, E=1 (P<0.0001). The average of intestinal parenchymal injury was A=2, B=0.66, C=0, D=0, E=0 (P=0.0006). The results were submitted to statistics applying Kruskal-Wallis test, estabilishing level of significance P<0.05. Conclusion Groups submitted to ischemic postconditioning, to pre-treatment with statins and both methods associated demonstrated less remote reperfusion injuries, compared to the group submitted to ischemia and reperfusion without protection. PMID:29617505

  12. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Podlutsky, Andrej; Kaminski, Pawel M.; Wolin, Michael S.; Zhang, Cuihua; Mukhopadhyay, Partha; Pacher, Pal; Hu, Furong; de Cabo, Rafael; Ballabh, Praveen; Ungvari, Zoltan

    2008-01-01

    The dietary polyphenolic compound resveratrol, by activating the protein deacetylase enzyme silent information regulator 2/sirtuin 1 (SIRT1), prolongs life span in evolutionarily distant organisms and may mimic the cytoprotective effects of dietary restriction. The present study was designed to elucidate the effects of resveratrol on cigarette smoke-induced vascular oxidative stress and inflammation, which is a clinically highly relevant model of accelerated vascular aging. Cigarette smoke exposure of rats impaired the acetylcholine-induced relaxation of carotid arteries, which could be prevented by resveratrol treatment. Smoking and in vitro treatment with cigarette smoke extract (CSE) increased reactive oxygen species production in rat arteries and cultured coronary arterial endothelial cells (CAECs), respectively, which was attenuated by resveratrol treatment. The smoking-induced upregulation of inflammatory markers (ICAM-1, inducible nitric oxide synthase, IL-6, and TNF-α) in rat arteries was also abrogated by resveratrol treatment. Resveratrol also inhibited CSE-induced NF-κB activation and inflammatory gene expression in CAECs. In CAECs, the aforementioned protective effects of resveratrol were abolished by knockdown of SIRT1, whereas the overexpression of SIRT1 mimicked the effects of resveratrol. Resveratrol treatment of rats protected aortic endothelial cells against cigarette smoking-induced apoptotic cell death. Resveratrol also exerted antiapoptotic effects in CSE-treated CAECs, which could be abrogated by knockdown of SIRT1. Resveratrol treatment also attenuated CSE-induced DNA damage in CAECs (comet assay). Thus resveratrol and SIRT1 exert antioxidant, anti-inflammatory, and antiapoptotic effects, which protect the endothelial cells against the adverse effects of cigarette smoking-induced oxidative stress. The vasoprotective effects of resveratrol will likely contribute to its anti-aging action in mammals and may be especially beneficial in patho

  13. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress.

    PubMed

    Lin, Yu Wen; Chen, Tsung Ying; Hung, Chia Yang; Tai, Shih Huang; Huang, Sheng Yang; Chang, Che Chao; Hung, Hsin Yi; Lee, E Jian

    2018-07-01

    Endoplasmic reticulum (ER) stress plays a vital role in mediating ischemic reperfusion damage in brain. In this study, we evaluated whether melatonin inhibits ER stress in cultured neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to transient focal cerebral ischemia. Sprague-Dawley rats were treated with melatonin (5 mg/kg) or control at reperfusion onset after transient occlusion of the right middle cerebral artery (MCA) for 90 min. Brain infarction and hemorrhage within infarcts were measured. The expression of ER stress proteins of phosphorylation of PRKR‑like endoplasmic reticulum kinase (p-PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by western blotting and immunohistochemistry analysis. The terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) method, cleaved caspase-3 and cytochrome c were used to investigate cell apoptosis in OGD-induced cultured neurons. Our results demonstrated that animals treated with melatonin had significantly reduced infarction volumes and individual cortical lesion sizes as well as increased numbers of surviving neurons. Melatonin can significantly modulate protein levels by decreasing both p-PERK and p-eIF2α in the ischemic core and penumbra. Moreover, the expressions of ATF4 and CHOP were restrained in the ischemic core and penumbra, respectively. Furthermore, pretreatment with melatonin at 10-100 µM effectively reduced the levels of p-PERK and p-eIF2α in cultured neurons after OGD injury. Melatonin treatment also effectively decreased neuron apoptosis resulting from OGD-induced neuron injury. These results indicate that melatonin effectively attenuated post-ischemic ER stress after ischemic stroke.

  14. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  15. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  16. Mild Hypothermia Attenuates Mitochondrial Oxidative Stress by Protecting Respiratory Enzymes and Upregulating MnSOD in a Pig Model of Cardiac Arrest

    PubMed Central

    Gong, Ping; Li, Chun-Sheng; Hua, Rong; Zhao, Hong; Tang, Zi-Ren; Mei, Xue; Zhang, Ming-Yue; Cui, Juan

    2012-01-01

    Mild hypothermia is the only effective treatment confirmed clinically to improve neurological outcomes for comatose patients with cardiac arrest. However, the underlying mechanism is not fully elucidated. In this study, our aim was to determine the effect of mild hypothermia on mitochondrial oxidative stress in the cerebral cortex. We intravascularly induced mild hypothermia (33°C), maintained this temperature for 12 h, and actively rewarmed in the inbred Chinese Wuzhishan minipigs successfully resuscitated after 8 min of untreated ventricular fibrillation. Cerebral samples were collected at 24 and 72 h following return of spontaneous circulation (ROSC). We found that mitochondrial malondialdehyde and protein carbonyl levels were significantly increased in the cerebral cortex in normothermic pigs even at 24 h after ROSC, whereas mild hypothermia attenuated this increase. Moreover, mild hypothermia attenuated the decrease in Complex I and Complex III (i.e., major sites of reactive oxygen species production) activities of the mitochondrial respiratory chain and increased antioxidant enzyme manganese superoxide dismutase (MnSOD) activity. This increase in MnSOD activity was consistent with the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein expressions, and with the increase of Nrf2 nuclear translocation in normothermic pigs at 24 and 72 h following ROSC, whereas mild hypothermia enhanced these tendencies. Thus, our findings indicate that mild hypothermia attenuates mitochondrial oxidative stress in the cerebral cortex, which may be associated with reduced impairment of mitochondrial respiratory chain enzymes, and enhancement of MnSOD activity and expression via Nrf2 activation. PMID:22532848

  17. Aging alters the immunological response to ischemic stroke.

    PubMed

    Ritzel, Rodney M; Lai, Yun-Ju; Crapser, Joshua D; Patel, Anita R; Schrecengost, Anna; Grenier, Jeremy M; Mancini, Nickolas S; Patrizz, Anthony; Jellison, Evan R; Morales-Scheihing, Diego; Venna, Venugopal R; Kofler, Julia K; Liu, Fudong; Verma, Rajkumar; McCullough, Louise D

    2018-05-11

    The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls

  18. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries.

    PubMed

    Nael, Kambiz; Khan, Rihan; Choudhary, Gagandeep; Meshksar, Arash; Villablanca, Pablo; Tay, Jennifer; Drake, Kendra; Coull, Bruce M; Kidwell, Chelsea S

    2014-07-01

    If magnetic resonance imaging (MRI) is to compete with computed tomography for evaluation of patients with acute ischemic stroke, there is a need for further improvements in acquisition speed. Inclusion criteria for this prospective, single institutional study were symptoms of acute ischemic stroke within 24 hours onset, National Institutes of Health Stroke Scale ≥3, and absence of MRI contraindications. A combination of echo-planar imaging (EPI) and a parallel acquisition technique were used on a 3T magnetic resonance (MR) scanner to accelerate the acquisition time. Image analysis was performed independently by 2 neuroradiologists. A total of 62 patients met inclusion criteria. A repeat MRI scan was performed in 22 patients resulting in a total of 84 MRIs available for analysis. Diagnostic image quality was achieved in 100% of diffusion-weighted imaging, 100% EPI-fluid attenuation inversion recovery imaging, 98% EPI-gradient recalled echo, 90% neck MR angiography and 96% of brain MR angiography, and 94% of dynamic susceptibility contrast perfusion scans with interobserver agreements (k) ranging from 0.64 to 0.84. Fifty-nine patients (95%) had acute infarction. There was good interobserver agreement for EPI-fluid attenuation inversion recovery imaging findings (k=0.78; 95% confidence interval, 0.66-0.87) and for detection of mismatch classification using dynamic susceptibility contrast-Tmax (k=0.92; 95% confidence interval, 0.87-0.94). Thirteen acute intracranial hemorrhages were detected on EPI-gradient recalled echo by both observers. A total of 68 and 72 segmental arterial stenoses were detected on contrast-enhanced MR angiography of the neck and brain with k=0.93, 95% confidence interval, 0.84 to 0.96 and 0.87, 95% confidence interval, 0.80 to 0.90, respectively. A 6-minute multimodal MR protocol with good diagnostic quality is feasible for the evaluation of patients with acute ischemic stroke and can result in significant reduction in scan time rivaling that

  19. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Serafín, Anna; Roselló-Catafau, Joan; Prats, Neus; Xaus, Carme; Gelpí, Emilio; Peralta, Carmen

    2002-01-01

    Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after 60 minutes of ischemia compared with lean rats. Fatty livers showed a degree of neutrophil accumulation and microcirculatory alterations similar to that of normal livers. However, in presence of steatosis, an increased lipid peroxidation that could be reduced with glutathione-ester pretreatment was observed after hepatic reperfusion. Ischemic preconditioning reduced hepatic injury and increased animal survival. Both in normal and fatty livers, this endogenous protective mechanism was found to control lipid peroxidation, hepatic microcirculation failure, and neutrophil accumulation, reducing the subsequent hepatic injury. These beneficial effects could be mediated by nitric oxide, because the inhibition of nitric oxide synthesis and nitric oxide donor pretreatment abolished and simulated, respectively, the benefits of preconditioning. Thus, ischemic preconditioning could be an effective surgical strategy to reduce the hepatic ischemia-reperfusion injury in normal and fatty livers under normothermic conditions, including hepatic resections, and liver transplantation. PMID:12163383

  20. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    PubMed

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  1. Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF-κB/p65 Activation

    PubMed Central

    Jiang, Wenkai; Zhou, Lin

    2016-01-01

    Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies. PMID:27818721

  2. Ischemic conditioning-induced endogenous brain protection: Applications Pre-, Per- or Post-Stroke

    PubMed Central

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H.

    2015-01-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre- or post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stoke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post- ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those

  3. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.

    PubMed

    Tan, Sih Min; Deliyanti, Devy; Figgett, William A; Talia, Dean M; de Haan, Judy B; Wilkinson-Berka, Jennifer L

    2015-07-01

    Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  5. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract, and resveratrol in vitro.

    PubMed

    Panickar, Kiran S; Qin, Bolin; Anderson, Richard A

    2015-10-01

    Polyphenols possess antioxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular unit. Endothelial cell swelling may contribute to a leaky blood-brain barrier which may result in vasogenic edema in the continued presence of the existing cytotoxic edema. We investigated the protective effects of polyphenols on cytotoxic cell swelling in bEND3 endothelial cultures subjected to 5 hours oxygen-glucose deprivation (OGD). A polyphenol trimer from cinnamon (cinnamtannin D1), a polyphenol-rich extract from green tea, and resveratrol prevented the OGD-induced rise in mitochondrial free radicals, cell swelling, and the dissipation of the inner mitochondrial membrane potential. Monocyte chemoattractant protein (also called CCL2), a chemokine, but not tumor necrosis factor-α or interleukin-6, augmented the cell swelling. This effect of monochemoattractant protein 1-1 was attenuated by the polyphenols. Cyclosporin A, a blocker of the mitochondrial permeability transition pore, did not attenuate cell swelling but BAPTA-AM, an intracellular calcium chelator did, indicating a role of [Ca(2+)]i but not the mPT in cell swelling. These results indicate that the polyphenols reduce mitochondrial reactive oxygen species and subsequent cell swelling in endothelial cells following ischemic injury and thus may reduce brain edema and associated neural damage in ischemia. One possible mechanism by which the polyphenols may attenuate endothelial cell swelling is through the reduction in [Ca(2+)]i.

  6. Nitric Oxide Donor Upregulation of SDF1/CXCR4 and Ang1/Tie2 Promotes Neuroblast Cell Migration After Stroke

    PubMed Central

    Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael

    2008-01-01

    We tested the hypothesis that a nitric oxide donor, DETA-NONOate upregulates Stromal cell-Derived Factor-1 (SDF1) and Angiopoietin 1 (Ang1) in the ischemic brain and their, respective, receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and 24 hours later DETA-NONOate (0.4 mg/kg) or phosphate buffered solution were intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate induced SVZ migration after stroke, SDF1α, Ang1 peptide and a specific antagonist of CXCR4 (AMD3100) and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percent area of doublecortin (a marker of migrating neuroblasts) immunoreactive-cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and upregulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo alone animals. In vitro, SDF1α and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate induced SVZ cell migration. Our data indicated that treatment of stroke with a nitric oxide donor upregulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. PMID:18711749

  7. Hydroquinone Strongly Alleviates Focal Ischemic Brain Injury via Blockage of Blood-Brain Barrier Disruption in Rats.

    PubMed

    Ha Park, Joon; Yoo, Ki-Yeon; Hye Kim, In; Cho, Jeong-Hwi; Lee, Jae-Chul; Hyeon Ahn, Ji; Jin Tae, Hyun; Chun Yan, Bing; Won Kim, Dae; Kyu Park, Ok; Kwon, Seung-Hae; Her, Song; Su Kim, Jin; Hoon Choi, Jung; Hyun Lee, Choong; Koo Hwang, In; Youl Cho, Jae; Hwi Cho, Jun; Kwon, Young-Guen; Ryoo, Sungwoo; Kim, Young-Myeong; Won, Moo-Ho; Jun Kang, Il

    2016-12-01

    Hydroquinone (HQ), a major benzene metabolite, occurs naturally in various plants and is manufactured for commercial use. Although HQ displays various biological effects, its neuroprotective effects following ischemic insults have not been investigated. In this study, we first examined neuroprotective effects of HQ in a rat model of transient focal cerebral ischemia. Animals were subjected to transient middle cerebral artery occlusion for 120 min. HQ (50 or 100 mg/kg) or vehicle was intraperitoneally administered once at 30 min after ischemia-reperfusion. Neuroprotection by treatment with 100 mg/kg of HQ was shown using evaluation of neurological deficits, positron-emission tomography (PET) and 2,3,5-triphenyltetrazoliumchloride (TTC) staining. In addition, HQ treatment significantly attenuated ischemia-induced Evans blue dye extravasation from blood vessels and significantly increased immunoreactivities of SMI-71 (an endothelial BBB marker) and glucose transporter-1 (GLUT-1, an endothelial cell marker) in ischemic cortex compared to the vehicle-treated ischemia-operated group. Confocal microscopy and western blot analysis also showed that HQ treatment maintained expressions of tight junction proteins (zonula occludens-1 and occludin) in the ischemic cortex. Post-treatment with HQ protected neurons from transient focal cerebral ischemic injury and the neuroprotective effect of HQ might be closely associated with prevention of BBB disruption via maintaining SMI-71 and GLUT-1 expressions as well as prevention of the degradation of zonula occludens-1 and occludin proteins. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Identification of ischemic regions in a rat model of stroke.

    PubMed

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W; Frahm, Christiane

    2009-01-01

    Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study.

  9. Identification of Ischemic Regions in a Rat Model of Stroke

    PubMed Central

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W.; Frahm, Christiane

    2009-01-01

    Background Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Methodology/Principal Findings Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. Conclusions/Significance TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study. PMID:19274095

  10. Pretreatment of 6-shogaol attenuates oxidative stress and inflammation in middle cerebral artery occlusion-induced mice.

    PubMed

    Na, Ji-Young; Song, Kibbeum; Lee, Ju-Woon; Kim, Sokho; Kwon, Jungkee

    2016-10-05

    6-Shogaol can be extracted from ginger and has been shown to exert anti-inflammatory and antioxidant activities, which are potentially relevant to the treatment of central nervous system disorders. Oxidative stress and inflammation are closely associated with ischemic injury and can eventually result in neuronal death. The aim of this study was to evaluate if 6-shogaol exerts neuroprotective activity. To this end, we determined its effects on oxidative stress and inflammation in a mouse model of middle cerebral artery occlusion (MCAO)-induced brain damage. In this model, MCAO was induced in C57BL/6 mice (30-35g, 9 weeks) for 1h, followed by 24h reperfusion. Mice were treated orally with 6-shogaol (0.1ml, 5 or 20mg/kg) once daily for 7 consecutive days prior to MCAO. We found that 6-shogaol significantly reduced neurological deficit scores and the mean infarct area. Moreover, 6-shogaol improved the behavioral deficits in the MCAO group. In addition, 6-shogaol pretreatment dampened MCAO-mediated production of reactive oxygen species and inflammatory cytokines. Mechanistic studies revealed that 6-shogaol inhibits the cysteinyl leukotriene 1 receptor (CysLT1R) and mitogen-activated protein kinase (MAPK) signaling proteins, thus providing a potential pharmacological mechanism for our observations. These results suggest that 6-shogaol can ameliorate the outcomes of MCAO and could thus be used as a potential preventive of stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Iron Sulfide Attenuates the Methanogenic Toxicity of Elemental Copper and Zinc Oxide Nanoparticles and their Soluble Metal Ion Analogs

    PubMed Central

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A.

    2016-01-01

    Elemental copper (Cu0) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu0 and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25–75 µm) and coarse (500 to 1200 µm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu0 and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu0 NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excesses of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu0 and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  12. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension.

    PubMed

    Hou, Entai; Sun, Na; Zhang, Fuchang; Zhao, Chenyang; Usa, Kristie; Liang, Mingyu; Tian, Zhongmin

    2017-05-23

    Fumarase catalyzes the interconversion of fumarate and L-malate in the tricarboxylic acid cycle. The Dahl salt-sensitive (SS) rat, a model of salt-sensitive hypertension, exhibits fumarase insufficiencies. To investigate the mechanism mediating the effect of fumarase-related metabolites on hypertension, we considered the pathway in which L-malate can be converted to oxaloacetate, aspartate, argininosuccinate, and L-arginine, the substrate of nitric oxide (NO) synthase. The levels of aspartate, citrulline, L-arginine, and NO were significantly decreased in the kidneys of SS rats compared to salt-insensitive consomic SS.13 BN rats. Knockdown of fumarase in human kidney cells and vascular endothelial cells resulted in decreased levels of malate, aspartate, L-arginine, and NO. Supplementation of aspartate or malate increased renal levels of L-arginine and NO and attenuated hypertension in SS rats. These findings reveal a multi-step metabolic pathway important for hypertension in which malate and aspartate may modulate blood pressure by altering levels of L-arginine and NO. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity

    PubMed Central

    Khan, Md. Abdul Hye; Liu, Jing; Kumar, Ganesh; Skapek, Stephen X.; Falck, John R.; Imig, John D.

    2013-01-01

    Nephrotoxicity severely limits the use of the anticancer drug cisplatin. Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress contribute to cisplatin-induced nephrotoxicity. We developed novel orally active epoxyeicosatrienoic acid (EET) analogs and investigated their prophylactic effect in cisplatin-induced nephrotoxicity in rats. Cisplatin-induced nephrotoxicity was manifested by increases in blood urea nitrogen, plasma creatinine, urinary N-acetyl-β-(d)-glucosaminidase activity, kidney injury molecule 1, and histopathology. EET analogs (10 mg/kg/d) attenuated cisplatin-induced nephrotoxicity by reducing these renal injury markers by 40–80% along with a 50–70% reduction in renal tubular cast formation. This attenuated renal injury is associated with reduced oxidative stress, inflammation, and ER stress evident from reduction in related biomarkers and in the renal expression of genes involved in these pathways. Moreover, we demonstrated that the attenuated nephrotoxicity correlated with decreased apoptosis that is associated with 50–90% reduction in Bcl-2 protein family mediated proapoptotic signaling, reduced renal caspase-12 expression, and a 50% reduction in renal caspase-3 activity. We further demonstrated in vitro that the protective activity of EET analogs does not compromise the anticancer effects of cisplatin. Collectively, our data provide evidence that EET analogs attenuate cisplatin-induced nephrotoxicity by reducing oxidative stress, inflammation, ER stress, and apoptosis without affecting the chemotherapeutic effects of cisplatin.—Khan, Md. A. H., Liu, J., Kumar, G., Skapek, S. X., Falck, J. R., Imig, J. D. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. PMID:23603837

  14. Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke.

    PubMed

    Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael

    2009-01-01

    We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. 2008 Wiley-Liss, Inc.

  15. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  16. Comparison of characteristics and healing course of diabetic foot ulcers by etiological classification: neuropathic, ischemic, and neuro-ischemic type.

    PubMed

    Yotsu, Rie Roselyne; Pham, Ngoc Minh; Oe, Makoto; Nagase, Takeshi; Sanada, Hiromi; Hara, Hisao; Fukuda, Shoji; Fujitani, Junko; Yamamoto-Honda, Ritsuko; Kajio, Hiroshi; Noda, Mitsuhiko; Tamaki, Takeshi

    2014-01-01

    To identify differences in the characteristics of patients with diabetic foot ulcers (DFUs) according to their etiological classification and to compare their healing time. Over a 4.5-year period, 73 patients with DFUs were recruited. DFUs were etiologically classified as being of neuropathic, ischemic, or neuro-ischemic origin. Descriptive analyses were performed to characterize study subjects, foot-related factors, and healing outcome and time. Duration of healing was assessed using the Kaplan-Meier method. Healing time among the three types was compared using the log rank test. The number of patients manifesting neuropathic, ischemic, and neuro-ischemic ulcers was 30, 20, and 14, respectively. Differences were identified for age, diabetes duration, body mass index, hypertension, and estimated glomerular filtration rate. Patients with neuro-ischemic ulcers had better ankle-brachial index, skin perfusion pressure (SPP), and transcutaneous oxygen pressure values compared to those with ischemic ulcers. The average time in which 50% of patients had healed wounds was 70, 113, and 233 days for neuropathic, neuro-ischemic, and ischemic ulcers, respectively. Main factors associated with healing were age and SPP values. Based on the etiological ulcer type, DFU healing course and several patient factors differed. Failure to consider the differences in DFU etiology may have led to heterogeneity of results in previous studies on DFUs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke.

    PubMed

    Shabanzadeh, A P; D'Onofrio, P M; Monnier, P P; Koeberle, P D

    2015-11-05

    Previous studies show that caspase-6 and caspase-8 are involved in neuronal apoptosis and regenerative failure after trauma of the adult central nervous system (CNS). In this study, we evaluated whether caspase-6 or -8 inhibitors can reduce cerebral or retinal injury after ischemia. Cerebral infarct volume, relative to appropriate controls, was significantly reduced in groups treated with caspase-6 or -8 inhibitors. Concomitantly, these treatments also reduced neurological deficits, reduced edema, increased cell proliferation, and increased neurofilament levels in the injured cerebrum. Caspase-6 and -8 inhibitors, or siRNAs, also increased retinal ganglion cell survival at 14 days after ischemic injury. Caspase-6 or -8 inhibition also decreased caspase-3, -6, and caspase-8 cleavage when assayed by western blot and reduced caspase-3 and -6 activities in colorimetric assays. We have shown that caspase-6 or caspase-8 inhibition decreases the neuropathological consequences of cerebral or retinal infarction, thereby emphasizing their importance in ischemic neuronal degeneration. As such, caspase-6 and -8 are potential targets for future therapies aimed at attenuating the devastating functional losses that result from retinal or cerebral stroke.

  18. Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2.

    PubMed

    Wang, Peijian; Li, Binghu; Cai, Guocai; Huang, Mingqing; Jiang, Licheng; Pu, Jing; Li, Lu; Wu, Qi; Zuo, Li; Wang, Qiulin; Zhou, Peng

    2014-12-01

    Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.

  19. [Blood coagulation and fibrinolysis in ischemic heart disease].

    PubMed

    Sakamoto, T; Ogawa, H; Miyao, Y; Yasue, H

    1994-01-01

    Intracoronary thrombus formation has been thought to play an important role in the genesis of acute myocardial infarction an unstable angina. To examine whether the coagulation and fibrinolytic systems are altered in such ischemic heart diseases, the plasma levels of fibrinopeptide A (FPA) and plasminogen activator (PAI) were measured. The plasma level of FPA was increased in patients with variant angina as compared with those with stable exertional angina and there was a significant circadian variation in the plasma level of FPA in parallel with that of the frequency of the attacks with the peak level occurring from midnight to early morning in patients with variant angina. The plasma FPA level increased in patients with coronary spastic angina after the ischemic attack induced by hyperventilation. Furthermore, FPA was released into the coronary circulation after the anginal attack induced by intracoronary injection of acetylcholine. These findings suggest that the coronary artery spasm may induce thrombin generation and trigger thrombus formation in the coronary artery. On the other hand, the plasma level of PAI activity was higher in patients with unstable angina and coronary spastic angina than in those with stable exertional angina. Moreover, the PAI activity in patients with unstable angina decreased to the level in patients with stable exertional angina after the stabilization of their symptoms by drugs. Our findings suggest that the increased plasma PAI activity may reduce fibrinolytic activity and attenuate removal of the thrombus and may ultimately lead to acute myocardial infarction in some patients with unstable angina and coronary spastic angina.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis.

    PubMed

    Periasamy, Srinivasan; Chien, Se-Ping; Chang, Po-Cheng; Hsu, Dur-Zong; Liu, Ming-Yie

    2014-02-01

    Nonalcoholic fatty liver disease, the most common chronic liver disorder worldwide, comprises conditions from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is associated with an increased risk of hepatocellular carcinoma. Sesame oil, a healthful food, increases resistance to oxidative stress, inflammation and protects against multiple organ injury in various animal models. We investigated the protective effect of sesame oil against nutritional steatohepatitis in mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 28 days to induce NASH. Sesame oil (1 and 2 ml/kg) was treated from 22nd to 28th day. Body weight, steatosis, triglycerides, aspartate transaminase, alanine transaminase, nitric oxide, malondialdehyde, tumor necrosis factor-α, interlukin-6, interleukin-1β, leptin, and transforming growth factor-β1 (TGF-β1) were assessed after 28 days. All tested parameters were higher in MCD-fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, oxidative stress, and necrotic inflammation. In sesame-oil-treated mice, all tested parameters were significantly attenuated compared with MCD-alone mice. Sesame oil inhibited oxidative stress, inflammatory cytokines, leptin, and TGF-β1 in MCD-fed mice. In addition, histological analysis showed that sesame oil provided significant protection against fibrotic collagen. We conclude that sesame oil protects against steatohepatitic fibrosis by decreasing oxidative stress, inflammatory cytokines, leptin and TGF-β1. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Dabigatran Etexilate Reduces Thrombin-Induced Inflammation and Thrombus Formation in Experimental Ischemic Stroke.

    PubMed

    Dittmeier, Melanie; Wassmuth, Kathrin; Schuhmann, Michael K; Kraft, Peter; Kleinschnitz, Christoph; Fluri, Felix

    2016-01-01

    Dabigatran etexilate (DE), a direct-acting, oral inhibitor of thrombin, significantly reduces the risk of stroke compared with traditional anticoagulants, without increasing the risk of major bleeding. However, studies on the fate of cerebral tissue after ischemic stroke in patients receiving DE are sparse and the role of dabigatran-mediated reduction of thrombin in this context has not yet been investigated. Here, we investigated whether pretreatment with DE reduces thrombin-mediated pro-inflammatory mechanisms and leakage of the blood-brain barrier (BBB) following ischemic stroke in rats. Male Wistar rats received DE (15 mg/kg) or a vehicle solution 1 hour before transient middle cerebral artery occlusion (tMCAO) for 90 minutes. Infarct volume, neurologic outcome and intracranial hemorrhage (ICH) were determined after tMCAO. Thrombin generation was indirectly assessed by measuring thrombin/antithrombin III complex. Microvascular patency was evaluated histologically. Cytokine expression and immunoreactivity of cluster of differentiation (CD) 68 were examined to characterize inflammatory processes after pretreatment with DE. BBB integrity was examined by quantifying brain edema. Rats given DE revealed a significant reduction in infarct size without an increase in ICH and significant recovery of neurologic deficits compared to controls. Administration of DE decreased thrombin generation and thrombus formation, dampened the CD68-immunoreactivity and attenuated pro-inflammatory cytokine expression in the cerebral parenchyma ipsilateral to the ischemic lesion. BBB permeability was unaltered following treatment with DE. In summary, prophylactic anticoagulation with DE improves stroke outcome by reducing thrombin-induced inflammation and thrombus formation without increasing the rate of ICH.

  2. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response.

  3. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama.

    PubMed

    Bayard, Vicente; Chamorro, Fermina; Motta, Jorge; Hollenberg, Norman K

    2007-01-27

    Substantial data suggest that flavonoid-rich food could help prevent cardiovascular disease and cancer. Cocoa is the richest source of flavonoids, but current processing reduces the content substantially. The Kuna living in the San Blas drink a flavanol-rich cocoa as their main beverage, contributing more than 900 mg/day and thus probably have the most flavonoid-rich diet of any population. We used diagnosis on death certificates to compare cause-specific death rates from year 2000 to 2004 in mainland and the San Blas islands where only Kuna live. Our hypothesis was that if the high flavanoid intake and consequent nitric oxide system activation were important the result would be a reduction in the frequency of ischemic heart disease, stroke, diabetes mellitus, and cancer--all nitric oxide sensitive processes. There were 77,375 deaths in mainland Panama and 558 deaths in the San Blas. In mainland Panama, as anticipated, cardiovascular disease was the leading cause of death (83.4 +/- 0.70 age adjusted deaths/100,000) and cancer was second (68.4 +/- 1.6). In contrast, the rate of CVD and cancer among island-dwelling Kuna was much lower (9.2 +/- 3.1) and (4.4 +/- 4.4) respectively. Similarly deaths due to diabetes mellitus were much more common in the mainland (24.1 +/- 0.74) than in the San Blas (6.6 +/- 1.94). This comparatively lower risk among Kuna in the San Blas from the most common causes of morbidity and mortality in much of the world, possibly reflects a very high flavanol intake and sustained nitric oxide synthesis activation. However, there are many risk factors and an observational study cannot provide definitive evidence.

  4. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    PubMed Central

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; P<0.05). Glycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (P<0.01) in the ipsilateral hemisphere (24 hours post-stroke), which corresponded with a 48% reduction in cAMP-dependent protein kinase A (PKA) activity (P<0.01). In addition, glycogen debranching enzyme expression 24 hours post-stroke was 77% (P<0.01) and 72% lower (P<0.01) at the protein and mRNA level, respectively. In cultured rat primary cerebellar astrocytes, hypoxia and inhibition of PKA activity significantly reduced glycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has

  5. High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Ideris, Aini; Abdullah, Maizaton Atmadini

    2015-10-24

    Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body. We hypothesized that dietary supplementation with N-acetylneuraminic acid (Neu5Ac), a type of sialic acid, will have profound effects on high fat diet- (HFD-) induced inflammation and oxidative stress in view of the widespread incorporation of sialic acid into glycoprotein structures in the body. HFD-fed rats with or without simvastatin or Neu5Ac (50 and 400 mg/kg/day) were followed up for 12 weeks. Lipid profiles, and markers of inflammation (C-reactive protein, interleukin-6, and tumor necrosis factor alpha), insulin resistance (serum insulin and adiponectin, oral glucose tolerance test and homeostatic model of insulin resistance) and oxidative stress (total antioxidant status and thiobarbituric acid reactive species) in the serum and liver were determined, while mRNA levels of hepatic antioxidant and inflammation genes were also quantified. Serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine and uric acid were also assessed. HFD feeding caused hyperlipidemia and insulin resistance, and worsened liver and kidney functions. HFD feeding also potentiated inflammation and oxidative stress, partly through modulation of hepatic gene expression, while Neu5Ac especially at higher doses and simvastatin attenuated HFD-induced changes, although Neu5Ac showed better outcomes. Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases

  6. Ischemic-Anoxia of the Central Nervous System: Iron Dependent Oxidative Injury during Reperfusion.

    DTIC Science & Technology

    1986-10-15

    much deeper tissue acidosis and augmented injury is seen in contrast to complete ischemic-anoxia. 4 8. The delocalized iron catalyzes the production of...of deep metabolic acidosis (HCO5 at about 10 meq/L). OCCM maintained good oxygenation, ventilation and acid base balance. The blood gas differences to...lactic acidosis which occurs in the brain under the influence of such low flow rates. 4 3. Siesjo’s study of the pH dependence of lipid peroxidation in

  7. Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    PubMed Central

    Wang, Liangrong; Chen, Baihui; Lin, Bi; Ye, Yuzhu; Bao, Caiying; Zhao, Xiyue; Jin, Lida

    2018-01-01

    Objective This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. Methods Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1β and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. Results Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1β and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1β and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. Conclusion Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress. PMID:29713238

  8. Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress.

    PubMed

    Song, Xiaoyu; Zhou, Biao; Cui, Lingyu; Lei, Di; Zhang, Pingping; Yao, Guodong; Xia, Mingyu; Hayashi, Toshihiko; Hattori, Shunji; Ushiki-Kaku, Yuko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-04-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that inflammatory response, oxidative stress and autophagy are involved in amyloid β (Aβ)-induced memory deficits. Silibinin (silybin), a flavonoid derived from the herb milk thistle, is well known for its hepatoprotective activities. In this study, we investigated the neuroprotective effect of silibinin on Aβ 25-35 -injected rats. Results demonstrated that silibinin significantly attenuated Aβ 25-35 -induced memory deficits in Morris water maze and novel object-recognition tests. Silibinin exerted anxiolytic effect in Aβ 25-35 -injected rats as determined in elevated plus maze test. Silibinin attenuated the inflammatory responses, increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels, and upregulated autophagy levels in the Aβ 25-35 -injected rats. In conclusion, silibinin is a potential candidate for AD treatment because of its anti-inflammatory, antioxidant and autophagy regulating activities.

  9. Population-based case-control study of white matter changes on brain imaging in transient ischemic attack and ischemic stroke.

    PubMed

    Li, Linxin; Simoni, Michela; Küker, Wilhelm; Schulz, Ursula G; Christie, Sharon; Wilcock, Gordon K; Rothwell, Peter M

    2013-11-01

    White matter changes (WMC) are a common finding on brain imaging and are associated with an increased risk of ischemic stroke. They are most frequent in small vessel stroke; however, in the absence of comparisons with normal controls, it is uncertain whether WMC are also more frequent than expected in other stroke subtypes. Therefore, we compared WMC in pathogenic subtypes of ischemic stroke versus controls in a population-based study. We evaluated the presence and severity of WMC on computed tomography and on magnetic resonance brain imaging using modified Blennow/Fazekas scale and age-related white matter changes scale, respectively, in a population-based study of patients with incident transient ischemic attack or ischemic stroke (Oxford Vascular Study) and in a study of local controls (Oxford Project to Investigate Memory and Ageing) without history of transient ischemic attack or ischemic stroke, with stratification by stroke pathogenesis (Trial of Org10172 in Acute Stroke Treatment classification). Among 1601 consecutive eligible patients with first-ever ischemic events, 1453 patients had computed tomography brain imaging, 562 had magnetic resonance imaging, and 414 patients had both. Compared with 313 controls (all with computed tomography and 131 with magnetic resonance imaging) and after adjustment for age, sex, diabetes mellitus, and hypertension, moderate/severe WMC (age-related white matter changes scale) were more frequent in patients with small vessel events (odds ratio, 3.51 [95% confidence interval, 2.13-5.76]; P<0.0001) but not in large artery (odds ratio, 1.03 [95% confidence interval, 0.64-1.67]), cardioembolic (odds ratio, 0.87 [95% confidence interval, 0.56-1.34]), or undetermined (odds ratio, 0.90 [95% confidence interval, 0.62-1.30]) subtypes. Results were consistent for ischemic stroke and transient ischemic attack, for other scales, and for magnetic resonance imaging and computed tomography separately. In contrast to small vessel ischemic

  10. Cyclical blood flow restriction resistance exercise: a potential parallel to remote ischemic preconditioning?

    PubMed

    Sprick, Justin D; Rickards, Caroline A

    2017-11-01

    Remote ischemic preconditioning (RIPC) is characterized by the cyclical application of limb blood flow restriction and reperfusion and has been shown to protect vital organs during a subsequent ischemic insult. Blood flow restriction exercise (BFRE) similarly combines bouts of blood flow restriction with low-intensity exercise and thus could potentially emulate the protection demonstrated by RIPC. One concern with BFRE, however, is the potential for an augmented rise in sympathetic outflow due to greater activation of the exercise pressor reflex. Because of the use of lower workloads, however, we hypothesized that BFRE would elicit an attenuated increase in sympathetic outflow [assessed via plasma norepinephrine (NE) and mean arterial pressure (MAP)] and middle cerebral artery velocity (MCAv) when compared with conventional exercise (CE). Fifteen subjects underwent two leg press exercise interventions: 1 ) BFRE-220 mmHg bilateral thigh occlusion at 20% 1 rep-max (1RM), and 2 ) CE-65% 1RM without occlusion. Each condition consisted of 4 × 5-min cycles of exercise, with 3 × 10-reps in each cycle. Five minutes of rest and reperfusion (for BFRE) followed each cycle. MAP increased with exercise ( P < 0.001) and was 4-5 mmHg higher with CE versus BFRE ( P ≤ 0.09). Mean MCAv also increased with exercise ( P < 0.001) and was higher with CE compared with BFRE during the first bout of exercise only ( P = 0.07). Plasma NE concentration increased with CE only ( P < 0.001) and was higher than BFRE throughout exercise ( P ≤ 0.02). The attenuated sympathetic response, combined with similar cerebrovascular responses, suggest that cyclical BFRE could be explored as an alternative to CE in the clinical setting. Copyright © 2017 the American Physiological Society.

  11. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    PubMed

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    PubMed

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  13. N-Acetylcysteine and Allopurinol Confer Synergy in Attenuating Myocardial Ischemia Injury via Restoring HIF-1α/HO-1 Signaling in Diabetic Rats

    PubMed Central

    Mao, Xiaowen; Wang, Tingting; Liu, Yanan; Irwin, Michael G.; Ou, Jing-song; Liao, Xiao-long; Gao, Xia; Xu, Yuan; Ng, Kwok F. J.; Vanhoutte, Paul M.; Xia, Zhengyuan

    2013-01-01

    Objectives To determine whether or not the antioxidants N-acetylcysteine (NAC) and allopurinol (ALP) confer synergistic cardioprotection against myocardial ischemia/reperfusion (MI/R) injury by stabilizing hypoxia inducible factor 1α (HIF-1α)/heme oxygenase 1 (HO-1) signaling in diabetic myocardium. Methods Control or diabetic [streptozotocin (STZ)-induced] Sprague Dawley rats received vehicle or NAC, ALP or their combination for four weeks starting one week after STZ injection. The animals were then subjected to thirty minutes of coronary artery occlusion followed by two hours reperfusion in the absence or presence of the selective HO-1 inhibitor, tin protoporphyrin-IX (SnPP-IX) or the HIF-1α inhibitor 2-Methoxyestradiol (2ME2). Cardiomyocytes exposed to high glucose were subjected to hypoxia/re-oxygenation in the presence or absence of HIF-1α and HO-1 achieved by gene knock-down with related siRNAs. Results Myocardial and plasma levels of 15-F2t-isoprostane, an index of oxidative stress, were significantly increased in diabetic rats while cardiac HO-1 protein and activity were reduced; this was accompanied with reduced cardiac protein levels of HIF-1α, and increased post-ischemic myocardial infarct size and cellular injury. NAC and ALP given alone and in particular their combination normalized cardiac levels of HO-1 and HIF-1α protein expression and prevented the increase in 15-F2t-isoprostane, resulting in significantly attenuated post-ischemic myocardial infarction. NAC and ALP also attenuated high glucose-induced post-hypoxic cardiomyocyte death in vitro. However, all the above protective effects of NAC and ALP were cancelled either by inhibition of HO-1 or HIF-1α with SnPP-IX and 2ME2 in vivo or by HO-1 or HIF-1α gene knock-down in vitro. Conclusion NAC and ALP confer synergistic cardioprotection in diabetes via restoration of cardiac HIF-1α and HO-1 signaling. PMID:23874823

  14. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  15. White Matter Hyperintensity Volume and Outcome of Mechanical Thrombectomy With Stentriever in Acute Ischemic Stroke.

    PubMed

    Atchaneeyasakul, Kunakorn; Leslie-Mazwi, Thabele; Donahue, Kathleen; Giese, Anne-Katrin; Rost, Natalia S

    2017-10-01

    Finding of white matter hyperintensity (WMH) has been associated with an increased risk of parenchymal hematoma and poor clinical outcomes after mechanical thrombectomy using old-generation endovascular devices. Currently, no data exist with regard to the risk of mechanical thrombectomy using stentriever devices in patients with significant WMH. We hypothesized that WMH volume will not affect the hemorrhagic and clinical outcome in patients with acute ischemic stroke undergoing thrombectomy using new-generation devices. A retrospective cohort of consecutive acute ischemic stroke patients >18-year-old receiving mechanical thrombectomy with stentriever devices at a single academic center was examined. WMH volume was assessed by a semiautomated volumetric analysis on T2 fluid attenuated inversion recovery-magnetic resonance imaging. Outcomes included the rate of any intracerebral hemorrhage, 90-day modified Rankin Score (mRS), the rate of good outcome (discharge mRS ≤2), and the rate of successful reperfusion (thrombolysis in cerebral ischemia score 2b or 3). Between June 2012 and December 2015, 56 patients with acute ischemic stroke met the study criteria. Median WMH volume was 6.76 cm 3 (4.84-16.09 cm 3 ). Increasing WMH volume did not significantly affect the odds of good outcome (odds ratio [OR], 0.811; 95% confidence interval [CI], 0.456-1.442), intracerebral hemorrhage (OR, 1.055; 95% CI, 0.595-1.871), parenchymal hematoma (OR, 0.353; 95% CI, 0.061-2.057), successful recanalization (OR, 1.295; 95% CI, 0.704-2.383), or death (OR, 1.583; 95% CI, 0.84-2.98). Mechanical thrombectomy using stentrievers seems to be safe in selected patients with acute ischemic stroke with large vessel occlusion, nonwithstanding the severity of WMH burden in this population. Larger prospective studies are warranted to validate these findings. © 2017 American Heart Association, Inc.

  16. The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains.

    PubMed

    Chen, Li; Zhu, Yan-Mei; Li, Yu-Nong; Li, Peng-Yan; Wang, Di; Liu, Yu; Qu, You-Yang; Zhu, Da-Ling; Zhu, Yu-Lan

    2017-09-01

    Angiogenesis promotes neurobehavioral recovery after cerebral ischemic stroke. 15(S)-hydroxyeicosatetraenoic acid (15-HETE) is one of the major metabolites of arachidonic acid by 15-lipoxygenase (15-LO) and stimulates the production of vascular endothelial growth factor (VEGF), thus, inducing autocrine-mediated angiogenesis. The present study aimed to investigate the role of 15-LO/15-HETE system on VEGF expression and angiogenesis in brain ischemia. Rat cerebral arterial vascular endothelial cells were used to set up a cell injury model of oxygen-glucose deprivation and reoxygenation (OGD/R), mimicking a condition of brain ischemia. A mouse model of middle cerebral artery occlusion (MCAO) was established. Oxygen-glucose deprivation increased cellular expression of 15-LO-1 and VEGF. Transfection of 15-LO-1 siRNA depleted cells of 15-LO-1, and sequentially induced downregulation of VEGF expression; while, incubation of 15-HETE increased the expression of VEGF. Incubation of 15-HETE attenuated the reduction in cell viability induced by oxygen-glucose deprivation, and promoted cell migration, while transfection of 15-LO-1 siRNA showed an opposite effect. In animal experiments, the density of microvessels in hypoxic regions of brains was significantly increased after MCAO, while intracerebroventricular delivery of 15-LO-1 siRNA significantly reduced the density of microvessels, and downregulates VEGF expression. The results indicate that the 15-LO-1/15-HETE system promotes angiogenesis in ischemic brains by upregulation of VEGF, representing a potential target for improving neurobehavioral recovery after cerebral ischemic stroke.

  17. Furoxans (Oxadiazole-4 N-oxides) with Attenuated Reactivity are Neuroprotective, Cross the Blood Brain Barrier, and Improve Passive Avoidance Memory.

    PubMed

    Horton, Austin; Nash, Kevin; Tackie-Yarboi, Ethel; Kostrevski, Alexander; Novak, Adam; Raghavan, Aparna; Tulsulkar, Jatin; Alhadidi, Qasim; Wamer, Nathan; Langenderfer, Bryn; Royster, Kalee; Ducharme, Maxwell; Hagood, Katelyn; Post, Megan; Shah, Zahoor A; Schiefer, Isaac T

    2018-05-07

    Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the central nervous system. Furoxan 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP-dependent neuroprotection was observed, and 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 h after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.

  18. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    PubMed

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  19. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): A Randomized Controlled Phase 2 Trial.

    PubMed

    Smith, Craig J; Hulme, Sharon; Vail, Andy; Heal, Calvin; Parry-Jones, Adrian R; Scarth, Sylvia; Hopkins, Karen; Hoadley, Margaret; Allan, Stuart M; Rothwell, Nancy J; Hopkins, Stephen J; Tyrrell, Pippa J

    2018-05-01

    The proinflammatory cytokine IL-1 (interleukin-1) has a deleterious role in cerebral ischemia, which is attenuated by IL-1 receptor antagonist (IL-1Ra). IL-1 induces peripheral inflammatory mediators, such as interleukin-6, which are associated with worse prognosis after ischemic stroke. We investigated whether subcutaneous IL-1Ra reduces the peripheral inflammatory response in acute ischemic stroke. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke) was a single-center, double-blind, randomized, placebo-controlled phase 2 trial of subcutaneous IL-1Ra (100 mg administered twice daily for 3 days) in patients presenting within 5 hours of ischemic stroke onset. Randomization was stratified for baseline National Institutes of Health Stroke Scale score and thrombolysis. Measurement of plasma interleukin-6 and other peripheral inflammatory markers was undertaken at 5 time points. The primary outcome was difference in concentration of log(interleukin-6) as area under the curve to day 3. Secondary outcomes included exploratory effect of IL-1Ra on 3-month outcome with the modified Rankin Scale. We recruited 80 patients (mean age, 72 years; median National Institutes of Health Stroke Scale, 12) of whom 73% received intravenous thrombolysis with alteplase. IL-1Ra significantly reduced plasma interleukin-6 ( P <0.001) and plasma C-reactive protein ( P <0.001). IL-1Ra was well tolerated with no safety concerns. Allocation to IL-1Ra was not associated with a favorable outcome on modified Rankin Scale: odds ratio (95% confidence interval)=0.67 (0.29-1.52), P =0.34. Exploratory mediation analysis suggested that IL-1Ra improved clinical outcome by reducing inflammation, but there was a statistically significant, alternative mechanism countering this benefit. IL-1Ra reduced plasma inflammatory markers which are known to be associated with worse clinical outcome in ischemic stroke. Subcutaneous IL-1Ra is safe and well tolerated. Further experimental

  20. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  1. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    PubMed

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia.

  2. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Kernan, Walter N; Viscoli, Catherine M; Furie, Karen L; Young, Lawrence H; Inzucchi, Silvio E; Gorman, Mark; Guarino, Peter D; Lovejoy, Anne M; Peduzzi, Peter N; Conwit, Robin; Brass, Lawrence M; Schwartz, Gregory G; Adams, Harold P; Berger, Leo; Carolei, Antonio; Clark, Wayne; Coull, Bruce; Ford, Gary A; Kleindorfer, Dawn; O'Leary, John R; Parsons, Mark W; Ringleb, Peter; Sen, Souvik; Spence, J David; Tanne, David; Wang, David; Winder, Toni R

    2016-04-07

    Patients with ischemic stroke or transient ischemic attack (TIA) are at increased risk for future cardiovascular events despite current preventive therapies. The identification of insulin resistance as a risk factor for stroke and myocardial infarction raised the possibility that pioglitazone, which improves insulin sensitivity, might benefit patients with cerebrovascular disease. In this multicenter, double-blind trial, we randomly assigned 3876 patients who had had a recent ischemic stroke or TIA to receive either pioglitazone (target dose, 45 mg daily) or placebo. Eligible patients did not have diabetes but were found to have insulin resistance on the basis of a score of more than 3.0 on the homeostasis model assessment of insulin resistance (HOMA-IR) index. The primary outcome was fatal or nonfatal stroke or myocardial infarction. By 4.8 years, a primary outcome had occurred in 175 of 1939 patients (9.0%) in the pioglitazone group and in 228 of 1937 (11.8%) in the placebo group (hazard ratio in the pioglitazone group, 0.76; 95% confidence interval [CI], 0.62 to 0.93; P=0.007). Diabetes developed in 73 patients (3.8%) and 149 patients (7.7%), respectively (hazard ratio, 0.48; 95% CI, 0.33 to 0.69; P<0.001). There was no significant between-group difference in all-cause mortality (hazard ratio, 0.93; 95% CI, 0.73 to 1.17; P=0.52). Pioglitazone was associated with a greater frequency of weight gain exceeding 4.5 kg than was placebo (52.2% vs. 33.7%, P<0.001), edema (35.6% vs. 24.9%, P<0.001), and bone fracture requiring surgery or hospitalization (5.1% vs. 3.2%, P=0.003). In this trial involving patients without diabetes who had insulin resistance along with a recent history of ischemic stroke or TIA, the risk of stroke or myocardial infarction was lower among patients who received pioglitazone than among those who received placebo. Pioglitazone was also associated with a lower risk of diabetes but with higher risks of weight gain, edema, and fracture. (Funded by

  3. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1.

    PubMed

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury.

  4. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1

    PubMed Central

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Introduction: Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Methods: Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Results: In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Conclusions: Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury. PMID:26884836

  5. Antiplatelet Treatment After Transient Ischemic Attack and Ischemic Stroke in Patients With Cerebral Microbleeds in 2 Large Cohorts and an Updated Systematic Review.

    PubMed

    Lau, Kui Kai; Lovelock, Caroline E; Li, Linxin; Simoni, Michela; Gutnikov, Sergei; Küker, Wilhelm; Mak, Henry Ka Fung; Rothwell, Peter M

    2018-06-01

    In patients with transient ischemic attack/ischemic stroke, microbleed burden predicts intracerebral hemorrhage (ICH), and ischemic stroke, but implications for antiplatelet treatment are uncertain. Previous cohort studies have had insufficient follow-up to assess the time course of risks, have not stratified risks by antithrombotic use, and have not reported extracranial bleeds or functional outcome of ICH versus ischemic stroke. In 2 independent prospective cohorts with transient ischemic attack/ischemic stroke (Oxford Vascular Study/mainly white; University of Hong Kong/mainly Chinese), antiplatelet treatment was started routinely irrespective of microbleed burden. Risks, time course and outcome of ICH, extracranial bleeds, and recurrent ischemic events were determined and stratified by microbleed burden (0 versus 1, 2-4, and ≥5), adjusting for age, sex, and vascular risk factors. Microbleeds were more frequent in the Chinese cohort (450 of 1003 versus 165 of 1080; P <0.0001), but risk associations were similar during 7433 patient-years of follow-up. Among 1811 patients on antiplatelet drugs, risk of major extracranial bleeds was unrelated to microbleed burden ( P trend =0.87), but the 5-year risk of ICH was steeply related ( P trend <0.0001), with 11 of 15 (73%) of ICH in 140 of 1811 (7.7%) patients with ≥5 microbleeds. However, risk of ischemic stroke also increased with microbleed burden ( P trend =0.013), such that risk of ischemic stroke and coronary events exceeded ICH and major extracranial bleeds during the first year, even among patients with ≥5 microbleeds (11.6% versus 3.9%). However, this ratio changed over time, with risk of hemorrhage (11.2%) matching that of ischemic events (12.0%) after 1 year. Moreover, whereas the association between microbleed burden and risk of ischemic stroke was due mainly to nondisabling events ( P trend =0.007), the association with ICH was accounted for ( P trend <0.0001) by disabling/fatal events (≥5 microbleeds

  6. Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia.

    PubMed

    Cruzat, Vinicius Fernandes; Bittencourt, Aline; Scomazzon, Sofia Pizzato; Leite, Jaqueline Santos Moreira; de Bittencourt, Paulo Ivo Homem; Tirapegui, Julio

    2014-05-01

    The aim of the present study was to determine the effects of oral supplementation with L-glutamine plus L-alanine (GLN+ALA), both in the free form and L-alanyl-L-glutamine dipeptide (DIP) in endotoxemic mice. B6.129 F2/J mice were subjected to endotoxemia (Escherichia coli lipopolysaccharide [LPS], 5 mg/kg, LPS group) and orally supplemented for 48 h with either L-glutamine (1 g/kg) plus L-alanine (0.61 g/kg) (GLN+ALA-LPS group) or 1.49 g/kg DIP (DIP-LPS group). Plasma glutamine, cytokines, and lymphocyte proliferation were measured. Liver and skeletal muscle glutamine, glutathione (GSH), oxidized GSH (GSSG), tissue lipoperoxidation (TBARS), and nuclear factor (NF)-κB-interleukin-1 receptor-associated kinase 1 (IRAK1)-Myeloid differentiation primary response gene 88 pathway also were determined. Endotoxemia depleted plasma (by 71%), muscle (by 44%), and liver (by 49%) glutamine concentrations (relative to the control group), which were restored in both GLN+ALA-LPS and DIP-LPS groups (P < 0.05). Supplemented groups reestablished GSH content, intracellular redox status (GSSG/GSH ratio), and TBARS concentration in muscle and liver (P < 0.05). T- and B-lymphocyte proliferation increased in supplemented groups compared with controls and LPS group (P < 0.05). Tumor necrosis factor-α, interleukin (IL)-6, IL-1 β, and IL-10 increased in LPS group but were attenuated by the supplements (P < 0.05). Endotoxemic mice exhibited higher muscle gene expression of components of the NF-κB pathway, with the phosphorylation of IκB kinase-α/β. These returned to basal levels (relative to the control group) in both GLN+ALA-LPS and DIP-LPS groups (P < 0.05). Higher mRNA of IRAK1 and MyD88 were observed in muscle of LPS group compared with the control and supplemented groups (P < 0.05). Oral supplementations with GLN+ALA or DIP are effective in attenuating oxidative stress and the proinflammatory responses induced by endotoxemia in mice. Copyright © 2014 Elsevier Inc. All rights

  7. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    PubMed Central

    González-Pacheco, Héctor; Méndez-Domínguez, Aurelio; Hernández, Salomón; López-Marure, Rebeca; Vazquez-Mellado, Maria J.; Aguilar, Cecilia; Rocha-Zavaleta, Leticia

    2014-01-01

    Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes. PMID:24578622

  8. Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction.

    PubMed

    Li, YanGuang; Chen, FuKun; Deng, Long; Lin, Kun; Shi, Xiangmin; Zhaoliang, Shan; Wang, YuTang

    2017-01-01

    Paroxysmal atrial fibrillation (PAF) can increase thrombogenesis risk, especially in the left atrium (LA). The exact mechanism is still unclear. We assessed the effects of PAF on endothelial function, and investigated if febuxostat (FX) can attenuate endothelial dysfunction by inhibition of xanthine oxidase (XO). Eighteen male New Zealand white rabbits were divided randomly into sham-operated (S), PAF (P) or FX+pacing (FP) groups. Group P and group FP received rapid atrial pacing (RAP). Group FP was administered febuxostat (FX) for 7days before RAP. Post-procedure, blood samples were collected from the LA, right atrium (RA) and peripheral circulation. Tissues from the LA and RA were obtained. Endothelial dysfunction (thrombomodulin [TM], von Willebrand factor [VWF], asymmetric dimethylarginine [ADMA]), and indirect thrombin generation (thrombin-antithrombin complex [TAT], prothrombin fragment 1+2 [F1.2]) and oxidative stress in atrial tissue (xanthine oxidase [XO], superoxide dismutase [SOD], malondialdehyde [MDA]) were measured using an Enzyme-linked immunosorbent assay. Atrial endothelial expression of TM and VWF was measured by histology/western blotting. Endothelial dysfunction (TM, VWF, ADMA), TAT generation and oxidative stress (XO, SOD, MDA) in group P were more significant compared with that in group S (p<0.05, respectively). In group P, all of these changes occurred to a greater extent in the LA compared with those in the RA or peripheral circulation. In group FP, FX attenuated endothelial dysfunction and reduced TAT levels by inhibition of XO-mediated oxidative stress. PAF can lead to endothelial dysfunction and TAT generation by XO-mediated oxidative stress. The LA is more susceptible to these effects. FX can attenuate these changes by inhibition XO and XO-mediated oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  9. Genetics of ischemic stroke: future clinical applications.

    PubMed

    Wang, Michael M

    2006-11-01

    Ischemic stroke has long been thought to have a genetic component that is independent of conventional vascular risk factors. It has been estimated that over one half of stroke risk is determined by inherited genes. However, until recently, strong evidence of genetic influence on ischemic stroke has been subject to criticism because the risk factors for stroke are also inherited and because previous studies suffered from limitations imposed by this highly heterogeneous neurological disorder. Recent advances in molecular genetics have led to the identification of specific genetic loci that impart susceptibility to ischemic stroke. We review the studies of these genes and discuss the future potential applications of genetic markers on the management of ischemic stroke patients.

  10. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging.

    PubMed

    Michallek, Florian; Dewey, Marc

    2017-04-01

    To introduce a novel hypothesis and method to characterise pathomechanisms underlying myocardial ischemia in chronic ischemic heart disease by local fractal analysis (FA) of the ischemic myocardial transition region in perfusion imaging. Vascular mechanisms to compensate ischemia are regulated at various vascular scales with their superimposed perfusion pattern being hypothetically self-similar. Dedicated FA software ("FraktalWandler") has been developed. Fractal dimensions during first-pass (FD first-pass ) and recirculation (FD recirculation ) are hypothesised to indicate the predominating pathomechanism and ischemic severity, respectively. Twenty-six patients with evidence of myocardial ischemia in 108 ischemic myocardial segments on magnetic resonance imaging (MRI) were analysed. The 40th and 60th percentiles of FD first-pass were used for pathomechanical classification, assigning lesions with FD first-pass  ≤ 2.335 to predominating coronary microvascular dysfunction (CMD) and ≥2.387 to predominating coronary artery disease (CAD). Optimal classification point in ROC analysis was FD first-pass  = 2.358. FD recirculation correlated moderately with per cent diameter stenosis in invasive coronary angiography in lesions classified CAD (r = 0.472, p = 0.001) but not CMD (r = 0.082, p = 0.600). The ischemic transition region may provide information on pathomechanical composition and severity of myocardial ischemia. FA of this region is feasible and may improve diagnosis compared to traditional noninvasive myocardial perfusion analysis. • A novel hypothesis and method is introduced to pathophysiologically characterise myocardial ischemia. • The ischemic transition region appears a meaningful diagnostic target in perfusion imaging. • Fractal analysis may characterise pathomechanical composition and severity of myocardial ischemia.

  11. Chronic aspirin via dose-dependent and selective inhibition of cardiac proteasome possibly contributed a potential risk to the ischemic heart.

    PubMed

    Tan, Chunjiang; Chen, Wenlie; Wu, Yanbin; Lin, Jiumao; Lin, Ruhui; Tan, Xuerui; Chen, Songming

    2013-08-01

    Impaired cardiac proteasome has been reported in ischemic heart and heart failure. Recent data highlighted aspirin as an inhibitor of the ubiquitin-proteasome system, however, it's unclear whether it affects cardiac proteasome functions. Myocardial infarction (MI), sham or normal male SD rats were injected intraperitoneally with high (300 mg/kg), low (5 mg/kg) aspirin or saline (control) once a day for seven weeks. Parallel experiments were performed in the hypoxia/reoxygenated human ventricular myocytes. Dose-related increases in heart and ventricular weight, and impaired cardiac functions, were found more exacerbated in the aspirin-treated MI rat hearts than the saline-treated MI counterparts. The activity of 26S, 20S and 19S declined by about 30%, or the 20S proteasome subunits β5, β2 and β1 decreased by 40%, 20% and 30%, respectively, in the MI rats compared with the non-MI rats (P<0.05). Compared with the saline-treated MI rats, 26S and 20S in high or low dose aspirin-treated MI rats further decreased by 30% and 20%, β5 by 30% and 12%, and β1 by 40% and 30%, respectively, and the lost activity was correlated with the compromised cardiac functions or the decreased cell viability. The dose-related and selective inhibition of 26S and 20S proteasome, or the 20S proteasome subunits β5 and β1 by aspirin was comparable to their protein expressions in the MI rats and in the cultured cells. The impaired cardiac proteasome, enhanced by chronic aspirin treatment, attenuated the removal of oxidative and ubiquitinated proteins, and chronic aspirin treatment via selective and dose-dependent inhibition of cardiac proteasome possibly constituted a potential risk to ischemic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Common Variants within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage

    PubMed Central

    Anderson, Christopher D.; Biffi, Alessandro; Nalls, Michael A.; Devan, William J.; Schwab, Kristin; Ayres, Alison M.; Valant, Valerie; Ross, Owen A.; Rost, Natalia S.; Saxena, Richa; Viswanathan, Anand; Worrall, Bradford B.; Brott, Thomas G.; Goldstein, Joshua N.; Brown, Devin; Broderick, Joseph P.; Norrving, Bo; Greenberg, Steven M.; Silliman, Scott L.; Hansen, Björn M.; Tirschwell, David L.; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Selim, Magdy; Roquer, Jaume; Montaner, Joan; Singleton, Andrew B.; Kidwell, Chelsea S.; Woo, Daniel; Furie, Karen L.; Meschia, James F.; Rosand, Jonathan

    2013-01-01

    Background and Purpose Prior studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods This association study employed a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis (GSEA) was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing GSEA were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio (OR)=1.17, p=0.008) and Complex I (OR=1.06, p=0.050). Among IS subtypes, small vessel (SV) stroke showed association with OXPHOS (OR=1.16, p=0.007), Complex I (OR=1.13, p=0.027) and Complex IV (OR 1.14, p=0.018). To further explore this SV association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and Complex IV (OR=1.08, p=0.008). Conclusions This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for SV stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. PMID:23362085

  13. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  14. Oxidative stress and kidney injury in trans-radial catheterization.

    PubMed

    Tsarouhas, Konstantinos; Tsitsimpikou, Christina; Papantoni, Xrisoula; Lazaridou, Dimitra; Koutouzis, Michael; Mazzaris, Savvas; Rezaee, Ramin; Mamoulakis, Charalambos; Georgoulias, Panagiotis; Nepka, Charitini; Rentoukas, Elias; Kyriakides, Zenon; Tsatsakis, Aristidis; Spandidos, Demetrios A; Kouretas, Demetrios

    2018-05-01

    Oxidative stress is linked to coronary artery disease and is a major mechanism in contrast-induced nephropathy. Trans-radial approach in coronary angiography (CA) with minimized peri-procedural bleeding is expected to reduce acute kidney injury incidence. In the present study, oxidative stress patterns observed in radial CA and their associations with early manifestations of kidney injury are described. A total of 20 stable coronary disease patients submitted to CA and 17 sex-matched patients undergoing computed tomography for myoskeletal reasons were enrolled. Reduced glutathione, catalase, thiobarbituric acid reactive species (TBARS) levels and total anti-oxidant status were measured at various time points postangiography. In ischemic patients baseline TBARS levels were 2-fold lower compared to controls, while carbonyls levels were 35% higher. Glutathione was almost 4-fold lower than the control group. Glutathione and lipid peroxidation in ischemic patients gradually increased after contrast medium administration and reached 180% (P<0.001) and 20% (P=0.021) after 4-6 h, respectively. Four patients presented early evidence of contrast-induced nephropathy postangiography, while no control patient developed acute kidney injury. In the multiple logistic regression analysis, only the creatinine levels at baseline influenced the frequency of early contrast-induced nephropathy development (β =0.36, 95% CI: 0.285-0.438, P=0.01). Glutathione low levels were dominant in the baseline values of ischemic patients who developed contrast-induced nephropathy. Glutathione levels rapidly increased while protein oxidation decreased at the expense of lipid peroxidation. In conclusion, early oxidative stress changes occur in trans-radial CA patients with a mild profile, sufficient to mobilize patient antioxidant defenses.

  15. Low-ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways

    PubMed Central

    Reyes-Gordillo, Karina; Shah, Ruchi; Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.

    2016-01-01

    Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways. PMID:28074114

  16. Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation.

    PubMed

    Ma, Li; Pan, Xia; Zhou, Fang; Liu, Kang; Wang, Long

    2018-01-01

    Hyperforin, a pharmacologically active component of the medicinal plant Hypericum perforatum (St. John's wort), has been shown to be neuroprotective against acute ischemic stroke. However, the underlying mechanisms are still unclear and need to be fully elucidated. C57BL/6 wildtype (WT) mice or interleukin (IL)-17A knock-out mice were subjected to middle cerebral artery occlusion (60min) followed by reperfusion for 72h. Hyperforin (0.5μg) was injected slowly into the right ventricle of WT mice 1, 24 and 48h after middle cerebral artery occlusion (MCAO) onset. Here, we found that hyperforin treatment decreased the mRNA and protein expression of IL-17A at 72h after MCAO onset. Hyperforin reduced infarct volumes and increased neurologic scores accompanied by a decrease in microglial activation and a shift from M1 to M2 phenotypes in the peri-infarct striatum. Furthermore, we revealed that IL-17A was essential to the microglial activation in the acute phase of ischemic stroke. IL-17A knock-out (il-17a -/- ) or anti-IL-17 A monoclonal antibody treatment markedly decreased the microglial activation and induced a shift from M1 to M2 phenotypes of activated microglia. In addition, treatment with recombinant mouse IL-17A abolished the protective effects of hyperforin on acute ischemic brain injury, attenuated the inhibitory effects of hyperforin on the microglial activation, and inhibited the enhanced shift from M1 to M2 phenotypes mediated by hyperforin. In conclusion, our results clearly showed that hyperforin could protect against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation and polarization of microglia to M2 phenotype. Copyright © 2017. Published by Elsevier B.V.

  17. D-propranolol attenuates lysosomal iron accumulation and oxidative injury in endothelial cells.

    PubMed

    Mak, I Tong; Chmielinska, Joanna J; Nedelec, Lucie; Torres, Armida; Weglicki, William B

    2006-05-01

    The influence of selected beta-receptor blockers on iron overload and oxidative stress in endothelial cells (ECs) was assessed. Confluent bovine ECs were loaded with iron dextran (15 muM) for 24 h and then exposed to dihydroxyfumarate (DHF), a source of reactive oxygen species, for up to 2 h. Intracellular oxidant formation, monitored by fluorescence of 2',7'-dichlorofluorescin (DCF; 30 microM), increased and peaked at 30 min; total glutathione decreased by 52 +/- 5% (p < 0.01) at 60 min. When the ECs were pretreated 30 min before iron loading with 1.25 to 10 microM d-propranolol, glutathione losses were attenuated 15 to 80%, with EC(50) = 3.1 microM. d-Propranolol partially inhibited the DCF intensity increase, but atenolol up to 10 microM was ineffective. At 2 h, caspase 3 activity was elevated 3.2 +/- 0.3-fold (p < 0.01) in the iron-loaded and DHF-treated ECs, and cell survival, determined 24 h later, decreased 47 +/- 6% (p < 0.01). Ten micromoles of d-propranolol suppressed the caspase 3 activation by 63% (p < 0.05) and preserved cell survival back to 88% of control (p < 0.01). In separate experiments, 24-h iron loading resulted in a 3.6 +/- 0.8-fold increase in total EC iron determined by atomic absorption spectroscopy; d-propranolol at 5 microM reduced this increase to 1.5 +/- 0.4-fold (p < 0.01) of controls. Microscopic observation by Perls' staining revealed that the excessive iron accumulated in vesicular endosomal/lysosomal structures, which were substantially diminished by d-propranolol. We previously showed that propranolol could readily concentrate into the lysosomes and raise the intralysosomal pH; it is suggested that the lysosomotropic properties of d-propranolol retarded the EC iron accumulation and thereby conferred the protective effects against iron load-mediated cytotoxicity.

  18. [Keap1-tat peptide attenuates oxidative stress damage in hippocampal CA1 region and learning and memory deficits following global cerebral ischemia].

    PubMed

    Tu, Jing-yi; Zhu, Ying; Shang, Shu-ling; Zhang, Xi; Tang, Hui; Wang, Rui-min

    2016-02-18

    To design Keap1-tat peptide and explore its neuroprotective role on hipocampal CA1 neuron, as well as the effect on spacial learning and memory function following global cerebral ischemia. Adult male Sprague Dawley (SD) rats were subjected to global cerebral ischemia (GCI) by four-vessel occlusion for 15 min and randomly divided into five groups: sham, sham+Keap1-tat, ischemia/reperfusion (I/R), Keap1-tat peptide- and vehicle-administrated groups. For Keap1-tat or vehicle groups, the rats were treated with Keap1-tat (30, 50, 100 μg in 5 μL 0.9% saline) or the same volume vehicle by intracerebroventricular injection (icv) 30 min prior to ischemia. Cresyl violet staining was used to observe the surviving neurons and 4-hydroxy-2-noneal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunostaining were used to detect the change of markers response to oxidative stress in hippocampal CA1 region. The spatial learning and memory function of the rats was evaluated using Morris water maze. Compared with sham group, the number of surviving neurons in ischemia-reperfusion and vehicle groups significantly decreased in the hippocampal CA1 region (P<0.05), while administration of Keap1-tat significantly decreased the damage following GCI (P<0.05), and the dose of 50 μg existed the most effective neuroprotective role. Furthermore, immunostaining intensity of 4-HNE and 8-OHdG, markers of oxidative stress damage attenuated by Keap1-tat peptide as compared with vehicle group in CA1 region. Of significant interest, the time of finding underwater platform in Keap1-tat group animals was significantly short, and after removing the platform, the probe time of Keap1-tat group animals in the original quadrant where the platform was significantly increased compared with that of vehicle and I/R group animals (P<0.05). Keap1-tat peptide can effectively attenuate neuronal damage in hippocampal CA1 region and improve learning and memory function, which might bedue to the attenuation of

  19. Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes.

    PubMed

    Seyama, Takahiro; Kamei, Yoshimasa; Iriyama, Takayuki; Imada, Shinya; Ichinose, Mari; Toshimitsu, Masatake; Fujii, Tomoyuki; Asou, Hiroaki

    2018-04-01

    Antenatal maternal administration of magnesium sulfate (MgSO 4 ) reduces cerebral palsy in preterm infants. However, it remains controversial as to whether it also reduces occurrence of white matter damage, or periventricular leukomalacia. We assessed the effect of MgSO 4 against white matter damage induced by hypoxic-ischemic insult using a neonatal rat model and culture of premyelinating oligodendrocytes (pre-OL). Rat pups at postnatal day (P) 6 were administered either MgSO 4 or vehicle intraperitoneally before hypoxic-ischemic insult (unilateral ligation of the carotid artery followed by 6% oxygen for 1 h). The population of oligodendrocyte (OL) markers and CD-68-positive microglia at P11, and TdT-mediated biotin-16-dUTP nick-end labeling (TUNEL)-positive cells at P8 were evaluated in pericallosal white matter. Primary cultures of mouse pre-OL were subjected to oxygen glucose deprivation condition, and the lactate dehydrogenase release from culture cells was evaluated to assess cell viability. Pretreatment with MgSO 4 attenuated the loss of OL markers, such as myelin basic protein and Olig2, in ipsilateral pericallosal white matter and decreased the number of CD-68-positive microglia and TUNEL-positive cells in vivo. Pretreatment with MgSO 4 also inhibited lactate dehydrogenase release from pre-OL induced by oxygen glucose deprivation in vitro. Pretreatment with MgSO 4 attenuates white matter damage by preventing cell death of pre-OL. © 2018 Japan Society of Obstetrics and Gynecology.

  20. Suppressive effects of 17β-estradiol on tributyltin-induced neuronal injury via Akt activation and subsequent attenuation of oxidative stress.

    PubMed

    Ishihara, Yasuhiro; Fujitani, Noriko; Kawami, Tomohito; Adachi, Chika; Ishida, Atsuhiko; Yamazaki, Takeshi

    2014-03-18

    Neuroactive steroids are reported to protect neurons from various harmful compounds; however, the protective mechanisms remain largely unclear. In this study, we examined the suppressive effects of 17β-estradiol (E2) on tributyltin (TBT)-induced neurotoxicity. Organotypic hippocampal slices were prepared from neonatal rats and then cultured. Cell death was assayed by propidium iodide uptake. Levels of reactive oxygen species (ROS) were determined by dihydroethidium staining. Protein phosphorylation was evaluated by immunoblotting. Pretreatment of the slices with E2 dose-dependently attenuated the neuronal injury induced by TBT. An estrogen receptor antagonist, ICI182,780 abrogated these neuroprotective effects. The de novo protein synthesis inhibitors actinomycin D and cycloheximide showed no effects on the neuroprotective mechanism, indicating that a nongenomic pathway acting via the estrogen receptor may be involved in the neuroprotection conferred by E2. E2 suppressed the ROS production and lipid peroxidation induced by TBT, and these effects were almost completely canceled by ICI182,780. TBT decreased Akt phosphorylation, and this reduction was suppressed by E2. An Akt inhibitor, triciribine, attenuated the decreases in both the ROS production and neuronal injury mediated by E2. E2 enhances the phosphorylation of Akt, thereby attenuating the oxidative stress and subsequent neuronal injury induced by TBT. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

    PubMed

    Okamura, Koichi; Tsubokawa, Tamiji; Johshita, Hiroo; Miyazaki, Hiroshi; Shiokawa, Yoshiaki

    2014-01-01

    Thrombolysis due to acute ischemic stroke is associated with the risk of hemorrhagic infarction, especially after reperfusion. Recent experimental studies suggest that the main mechanism contributing to hemorrhagic infarction is oxidative stress caused by disruption of the blood-brain barrier. Edaravone, a free radical scavenger, decreases oxidative stress, thereby preventing hemorrhagic infarction during ischemia and reperfusion. In this study, we investigated the effects of edaravone on hemorrhagic infarction in a rat model of hemorrhagic transformation. We used a previously established hemorrhagic transformation model of rats with hyperglycemia. Hyperglycemia was induced by intraperitoneal injection of glucose to all rats (n  =  20). The rats with hyperglycemia showed a high incidence of hemorrhagic infarction. Middle cerebral artery occlusion (MCAO) for 1.5 hours followed by reperfusion for 24 hours was performed in edaravone-treated rats (n  =  10) and control rats (n  =  10). Upon completion of reperfusion, both groups were evaluated for infarct size and hemorrhage volume and the results obtained were compared. Edaravone significantly decreased infarct volume, with the average infarct volume in the edaravone-treated rats (227.6 mm(3)) being significantly lower than that in the control rats (264.0 mm(3)). Edaravone treatment also decreased the postischemic hemorrhage volumes (53.4 mm(3) in edaravone-treated rats vs 176.4 mm(3) in controls). In addition, the ratio of hemorrhage volume to infarct volume was lower in the edaravone-treated rats (23.5%) than in the untreated rats (63.2%). Edaravone attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

  2. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    PubMed

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Arsenic attenuation by oxidized aquifer sediments in Bangladesh

    USGS Publications Warehouse

    Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.; Yount, J.C.; Whitney, J.W.; Foster, A.L.; Uddin, M.N.; Majumder, R.K.; Ahmed, N.

    2007-01-01

    Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50??m and has maximum As concentrations in groundwater of 900????g/L. At depths greater than 50??m, geochemical conditions are more oxidizing and groundwater has < 5????g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO3) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these

  4. Neuroprotective Mechanisms of Taurine against Ischemic Stroke.

    PubMed

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-06-03

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.

  5. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    PubMed Central

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429

  6. Is the long-term prognosis of transient ischemic attack or minor ischemic stroke affected by the occurrence of nonfocal symptoms?

    PubMed

    Compter, Annette; van der Worp, H Bart; van Gijn, Jan; Kappelle, L Jaap; Koudstaal, Peter J; Algra, Ale

    2014-05-01

    In patients with a transient ischemic attack or ischemic stroke, nonfocal neurological symptoms, such as confusion and nonrotatory dizziness, may be associated with a higher risk of vascular events. We assessed the relationship between nonfocal symptoms and the long-term risk of vascular events or death in patients with a transient ischemic attack or minor ischemic stroke. We related initial symptoms with outcome events in 2409 patients with a transient ischemic attack (n=723) or minor ischemic stroke (n=1686), included in the Life Long After Cerebral ischemia cohort. All patients underwent a standardized interview on the occurrence of focal and nonfocal neurological symptoms during the qualifying event. The primary outcome was the composite of any stroke, myocardial infarction, or vascular death. Secondary outcomes were all-cause death, vascular death, cardiac death, myocardial infarction, and stroke. Hazard ratios were calculated with Cox regression. Focal symptoms were accompanied by nonfocal symptoms in 739 (31%) patients. During a mean follow-up of 10.1 years, the primary outcome occurred in 1313 (55%) patients. There was no difference in the risk of the primary outcome between patients with both focal and nonfocal symptoms and patients with focal symptoms alone (adjusted hazard ratio, 0.97; 95% confidence interval, 0.86-1.09; P=0.60). The risk of each of the secondary outcomes was also similar in both groups. About one third of the patients with a transient ischemic attack or minor ischemic stroke has both focal and nonfocal neurological symptoms. Nonfocal symptoms are not associated with an increased long-term risk of vascular events or death. This trial was not registered because enrollment began before July 1, 2005.

  7. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect bymore » suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in

  8. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, P.-W.; Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan; Liu, S.-H.

    2006-09-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatinmore » exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na{sup +}, K{sup +}-ATPase and Ca{sup 2+}-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na{sup +}, K{sup +}-ATPase and Ca{sup 2+}-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property.« less

  9. Predictive variables for mortality after acute ischemic stroke.

    PubMed

    Carter, Angela M; Catto, Andrew J; Mansfield, Michael W; Bamford, John M; Grant, Peter J

    2007-06-01

    Stroke is a major healthcare issue worldwide with an incidence comparable to coronary events, highlighting the importance of understanding risk factors for stroke and subsequent mortality. In the present study, we determined long-term (all-cause) mortality in 545 patients with ischemic stroke compared with a cohort of 330 age-matched healthy control subjects followed up for a median of 7.4 years. We assessed the effect of selected demographic, clinical, biochemical, hematologic, and hemostatic factors on mortality in patients with ischemic stroke. Stroke subtype was classified according to the Oxfordshire Community Stroke Project criteria. Patients who died 30 days or less after the acute event (n=32) were excluded from analyses because this outcome is considered to be directly attributable to the acute event. Patients with ischemic stroke were at more than 3-fold increased risk of death compared with the age-matched control cohort. In multivariate analyses, age, stroke subtype, atrial fibrillation, and previous stroke/transient ischemic attack were predictive of mortality in patients with ischemic stroke. Albumin and creatinine and the hemostatic factors von Willebrand factor and beta-thromboglobulin were also predictive of mortality in patients with ischemic stroke after accounting for demographic and clinical variables. The results indicate that subjects with acute ischemic stroke are at increased risk of all-cause mortality. Advancing age, large-vessel stroke, atrial fibrillation, and previous stroke/transient ischemic attack predict mortality; and analysis of albumin, creatinine, von Willebrand factor, and beta-thromboglobulin will aid in the identification of patients at increased risk of death after stroke.

  10. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    PubMed

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  11. Glyburide is associated with attenuated vasogenic edema in stroke patients.

    PubMed

    Kimberly, W Taylor; Battey, Thomas W K; Pham, Ly; Wu, Ona; Yoo, Albert J; Furie, Karen L; Singhal, Aneesh B; Elm, Jordan J; Stern, Barney J; Sheth, Kevin N

    2014-04-01

    Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 and transient receptor potential cation channel subfamily M member 4. However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Using a case-control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the glyburide advantage in malignant edema and stroke-pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 (MMP-9) plasma level in large hemispheric stroke. We report that IV glyburide was associated with T2 fluid-attenuated inversion recovery signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood MMP-9 level. Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial.

  12. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats.

    PubMed

    Tam, Jacqueline Chor-Wing; Ko, Chun-Hay; Lau, Kit-Man; To, Ming-Ho; Kwok, Hin-Fai; Chan, Yuet-Wa; Siu, Wing-Sum; Etienne-Selloum, Nelly; Lau, Ching-Po; Chan, Wai-Yee; Leung, Ping-Chung; Fung, Kwok-Pui; Schini-Kerth, Valérie B; Lau, Clara Bik-San

    2014-01-01

    Diabetic foot ulcer is closely associated with peripheral vascular disease. Enhancement of tissue oxidative stress, reduction of nitric oxide (NO) and angiogenic growth factors, and abnormal matrix metalloproteinase (MMP) activity are pathophysiological factors in post-ischemic neovascularization and diabetic wound healing. Our previous study demonstrated that the Chinese 2-herb formula, NF3, showed significant wound healing effects on diabetic foot ulcer rats. A novel rat diabetic foot ulcer with hindlimb ischemia model was established in order to strengthen our claims on the diabetic wound healing and post-ischemic neovascularization effects of NF3. Our results demonstrate that NF3 can significantly reduce the wound area of the diabetic foot ulcer rat with hindlimb ischemia by 21.6% (p<0.05) compared with the control group. In addition, flow cytometric analysis revealed that NF3 could boost circulating EPC levels for local wound vessel incorporation. Immunohistochemical analysis showed that NF3 could significantly augment blood vessel density, VEGF and eNOS expression, and attenuate tissue oxidative stress of ischemic muscles (p<0.001). NF3 significantly stimulated MMP activity involved in angiogenesis. Our study shows, for the first time, the beneficial effects of NF3 in wound healing and post-ischemic neovascularization in diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    PubMed

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  14. Antenatal betamethasone attenuates the angiotensin-(1-7)-Mas receptor-nitric oxide axis in isolated proximal tubule cells.

    PubMed

    Su, Yixin; Bi, Jianli; Pulgar, Victor M; Chappell, Mark C; Rose, James C

    2017-06-01

    We previously reported a sex-specific effect of antenatal treatment with betamethasone (Beta) on sodium (Na + ) excretion in adult sheep whereby treated males but not females had an attenuated natriuretic response to angiotensin-(1-7) [Ang-(1-7)]. The present study determined the Na + uptake and nitric oxide (NO) response to low-dose Ang-(1-7) (1 pM) in renal proximal tubule cells (RPTC) from adult male and female sheep antenatally exposed to Beta or vehicle. Data were expressed as percentage of basal uptake or area under the curve for Na + or percentage of control for NO. Male Beta RPTC exhibited greater Na + uptake than male vehicle cells (433 ± 28 vs. 330 ± 26%; P < 0.05); however, Beta exposure had no effect on Na + uptake in the female cells (255 ± 16 vs. 255 ± 14%; P > 0.05). Ang-(1-7) significantly inhibited Na + uptake in RPTC from vehicle male (214 ± 11%) and from both vehicle (190 ± 14%) and Beta (209 ± 11%) females but failed to attenuate Na + uptake in Beta male cells. Beta exposure also abolished stimulation of NO by Ang-(1-7) in male but not female RPTC. Both the Na + and NO responses to Ang-(1-7) were blocked by Mas receptor antagonist d-Ala 7 -Ang-(1-7). We conclude that the tubular Ang-(1-7)-Mas-NO pathway is attenuated in males and not females by antenatal Beta exposure. Moreover, since primary cultures of RPTC retain both the sex and Beta-induced phenotype of the adult kidney in vivo they appear to be an appropriate cell model to examine the effects of fetal programming on Na + handling by the renal tubules. Copyright © 2017 the American Physiological Society.

  15. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke

    PubMed Central

    Bonaventura, Aldo; Liberale, Luca; Vecchié, Alessandra; Casula, Matteo; Carbone, Federico; Dallegri, Franco; Montecucco, Fabrizio

    2016-01-01

    After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies. PMID:27898011

  16. Herbal Medicine in Ischemic Stroke: Challenges and Prospective.

    PubMed

    Gaire, Bhakta Prasad

    2018-04-01

    Herbal medicines, mainly of plant source, are invaluable source for the discovery of new therapeutic agents for all sorts of human ailments. The complex pathogenesis of stroke and multifactorial effect of herbal medicine and their active constituents may suggest the promising future of natural medicine for stroke treatment. Anti-oxidant, anti-inflammatory, anti-apoptotic, neuroprotective and vascular protective effect of herbal medicines are believed to be efficacious in stroke treatment. Herbs typically have fewer reported side effects than allopathic medicine, and may be safer to use over longer period of time. Herbal medicines are believed to be more effective for the longstanding health complaints, such as stroke. Several medicinal plants and their active constituents show the promising results in laboratory research. However failure in transformation of laboratory animal research to the clinical trials has created huge challenge for the use of herbal medicine in stroke. Until and unless scientifically comprehensive evidence of the efficacy and safety of herbal medicine in ischemic stroke patients is available, efforts should be made to continue implementing treatment strategies of proven effectiveness. More consideration should be paid to natural compounds that can have extensive therapeutic time windows, perfect pharmacological targets with few side effects. Herbal medicine has excellent prospective for the treatment of ischemic stroke, but a lot of effort should be invested to transform the success of animal research to human use.

  17. Flavonoid-rich fraction of the Monodora tenuifolia seed extract attenuates behavioural alterations and oxidative damage in forced-swim stressed rats.

    PubMed

    Ekeanyanwu, Raphael Chukwuma; Njoku, Obioma Uzoma

    2015-03-01

    The antidepressant effects of the flavonoid-rich fraction of Monodora tenuifolia seed extract were examined by assessing the extent of attenuation of behavioural alterations and oxidative damage in the rats that were stressed by forced swim test. Compared with the model control group, the altered behavioural parameters were attenuated significantly (P < 0.05) in the group treated with the flavonoid-rich fraction (100 and 200 mg·kg(-1)), comparable to the group treated with the standard drug, fluoxetine (10 mg·kg(-1)). The flavonoid-rich fraction and fluoxetine improved significantly (P < 0.05) the activities of the antioxidant enzymes such as superoxide dismutase and catalase as well as other biochemical parameters such as reduced glutathione, protein, and nitrite in the brain of the stressed rats. These results suggested that the flavonoid-rich fraction of Monodora tenuifolia seed extract exerted the antidepressant-like effects which could be useful in the management of stress induced disease. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. A Small Nonerythropoietic Helix B Surface Peptide Based upon Erythropoietin Structure Is Cardioprotective against Ischemic Myocardial Damage

    PubMed Central

    Ahmet, Ismayil; Tae, Hyun-Jin; Juhaszova, Magdalena; Riordon, Daniel R; Boheler, Kenneth R; Sollott, Steven J; Brines, Michael; Cerami, Anthony; Lakatta, Edward G; Talan, Mark I

    2011-01-01

    Strong cardioprotective properties of erythropoietin (EPO) reported over the last 10 years have been difficult to translate to clinical applications for ischemic cardioprotection owing to undesirable parallel activation of erythropoiesis and thrombogenesis. A pyroglutamate helix B surface peptide (pHBP), recently engineered to include only a part of the EPO molecule that does not bind to EPO receptor and thus, is not erythropoietic, retains tissue protective properties of EPO. Here we compared the ability of pHBP and EPO to protect cardiac myocytes from oxidative stress in vitro and cardiac tissue from ischemic damage in vivo. HBP, similar to EPO, increased the reactive oxygen species (ROS) threshold for induction of the mitochondrial permeability transition by 40%. In an experimental model of myocardial infarction induced by permanent ligation of a coronary artery in rats, a single bolus injection of 60 μg/kg of pHBP immediately after coronary ligation, similar to EPO, reduced apoptosis in the myocardial area at risk, examined 24 h later, by 80% and inflammation by 34%. Myocardial infarction (MI) measured 24 h after coronary ligation was similarly reduced by 50% in both pHBP- and EPO-treated rats. Two wks after surgery, left ventricular remodeling (ventricular dilation) and functional decline (fall in ejection fraction) assessed by echocardiography were significantly and similarly attenuated in pHBP- and EPO-treated rats, and MI size was reduced by 25%. The effect was retained during the 6-wk follow-up. A single bolus injection of pHBP immediately after coronary ligation was effective in reduction of MI size in a dose as low as 1 μg/kg, but was ineffective at a 60 μg/kg dose if administered 24 h after MI induction. We conclude that pHBP is equally cardioprotective with EPO and deserves further consideration as a safer alternative to rhEPO in the search for therapeutic options to reduce myocardial damage following blockade of the coronary circulation. PMID

  19. Small vessel hematocrit in ischemic myocardium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumm, D.C.; Cooper, S.M.; Marcus, M.L.

    1986-03-01

    As blood enters the microvasculature of normally perfused myocardium, there is a progressive decrease in small vessel hematocrit (SV Hct) due to RBC streaming in smaller branching vessels and the Fahraeus-Lindqvist effect. We hypothesized that if the coronary collateral circulation was composed of very small vessels branching from large parent vessels, plasma streaming would result in a further decrease of SV Hct in ischemic myocardium. Six open chest anesthetized dogs were studied. Plasma was labelled with /sup 59/FeCl siderophilin and RBC's with /sup 99/mTc to estimate SV Hct from myocardial biopsies. The LAD was occluded and cannulated for measurement ofmore » retrograde flow (arising presumably from proximal collaterals). The ischemic region was identified using the microsphere shadow technique. Collateral flow after LAD occlusion was 30 +- 12 ml/min 100g (x +- SE). Systemic Hct was 40 +- 1%. The Hct of blood from retrograde flow was 39 +- 1% (p = NS). Activity of /sup 59/FeCl and /sup 99/mTc in known quantities of blood were compared to myocardial biopsies to estimate SV Hct. Ischemic SV Hct was 23 +- 2% and non-ischemic SV Hct was 21 +- 1% (p = NS). We conclude that the size and branching pattern of coronary collaterals is such that plasma streaming in collaterals does not result in an additional decrease in SV Hct in ischemic myocardium.« less

  20. Arsenic Attenuation By Oxidized Aquifer Sediments in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stollenwerk, K.G.; Breit, G.N.; Welch, A.H.

    2007-07-13

    Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 {micro}g/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwatermore » has < 5 {micro}g/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO{sub 3}) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO3, and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes

  1. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xia; Center for New Drugs Evaluation, Shandong University, Jinan 250012; Qu, Xian-Jun

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at dosesmore » of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.« less

  2. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection

    PubMed Central

    Sun, Yu-Yo; Li, Yikun; Wali, Bushra; Li, Yuancheng; Lee, Jolly; Heinmiller, Andrew; Abe, Koji; Stein, Donald G.; Mao, Hui; Sayeed, Iqbal; Kuan, Chia-Yi

    2015-01-01

    Background and Purpose Hypoperfusion-induced thrombosis is an important mechanism for post-surgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. Methods Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-min occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid state NMR and Morris water maze. The effects on infarct size by Edaravone application at different time-points after tHI were also compared. Results Prophylactic administration of Edaravone (4.5 mg/kg × 2, IP, 1 h before and 1 h after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, while reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. Conclusions Acute application of Edaravone may be a useful strategy to prevent post-surgery stroke and cognitive impairment, especially in patients with severe carotid stenosis. PMID:26060244

  3. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection.

    PubMed

    Sun, Yu-Yo; Li, Yikun; Wali, Bushra; Li, Yuancheng; Lee, Jolly; Heinmiller, Andrew; Abe, Koji; Stein, Donald G; Mao, Hui; Sayeed, Iqbal; Kuan, Chia-Yi

    2015-07-01

    Hypoperfusion-induced thrombosis is an important mechanism for postsurgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-minute occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid-state NMR, and Morris water maze. The effects on infarct size by Edaravone application at different time points after tHI were also compared. Prophylactic administration of Edaravone (4.5 mg/kg×2, IP, 1 hour before and 1 hour after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. Acute application of Edaravone may be a useful strategy to prevent postsurgery stroke and cognitive impairment, especially in patients with severe carotid stenosis. © 2015 American Heart Association, Inc.

  4. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.

    PubMed

    Zhou, Xin; Patel, Darshan; Sen, Sabyasachi; Shanmugam, Victoria; Sidawy, Anton; Mishra, Lopa; Nguyen, Bao-Ngoc

    2017-04-01

    Chronic nonhealing wounds are a major health problem for patients in the United States and worldwide. Diabetes and ischemia are two major risk factors behind impaired healing of chronic lower extremity wounds. Poly-ADP-ribose polymerase (PARP) is found to be overactivated with both ischemic and diabetic conditions. This study seeks a better understanding of the role of PARP in ischemic and diabetic wound healing, with a specific focus on angiogenesis and vasculogenesis. Ischemic and diabetic wounds were created in FVB/NJ mice and an in vitro scratch wound model. PARP inhibitor PJ34 was delivered to the animals at 10 mg/kg/d through implanted osmotic pumps or added to the culture medium, respectively. Animal wound healing was assessed by daily digital photographs. Animal wound tissues, peripheral blood, and bone marrow cells were collected at different time points for further analysis with Western blot and flow cytometry. Scratch wound migration and invasion angiogenesis assays were performed using human umbilical vein endothelial cells (HUVECs). Measurements were reported as mean ± standard deviation. Continuous measurements were compared by t-test. P < .05 was considered statistically significant. A significant increase in PARP activity was observed under ischemic and diabetic conditions that correlated with delayed wound healing and slower HUVEC migration. The beneficial effect of PARP inhibition with PJ34 on ischemic and diabetic wound healing was observed in both animal and in vitro models. In the animal model, the percentage of wound healing was significantly enhanced from 43% ± 6% to 71% ± 9% (P < .05) by day 7 with the addition of PJ34. PARP inhibition promoted angiogenesis at the ischemic and diabetic wound beds as evidenced by significantly higher levels of endothelial cell markers (vascular endothelial growth factor receptor 2 [VEGFR2] and endothelial nitric oxide synthase) in mice treated with PJ34 compared with controls. Flow cytometry

  5. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway.

    PubMed

    Liu, Chao; Wu, Jiliang; Xu, Kui; Cai, Fei; Gu, Jun; Ma, Liqun; Chen, Jianguo

    2010-03-01

    Recently more evidences support baicalein (Bai) is neuroprotective in models of ischemic stroke. This study was conducted to determine the molecular mechanisms involved in this effect. Either permanent or transient (2 h) middle cerebral artery occlusion (MCAO) was induced in rats in this study. Permanent MCAO led to larger infarct volumes in contrast to transient MCAO. Only in transient MCAO, Bai administration significantly reduced infarct size. Baicalein also markedly reduced apoptosis in the penumbra of transient MCAO rats. Additionally, oxygen and glucose deprivation (OGD) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular reactive oxygen species level and nitrotyrosine formation induced by OGD was counteracted by Bai, which is parallel with attenuated cell injury. The reduction of phosphorylation Akt and glycogen synthase kinase-3beta (GSK3beta) induced by OGD was restored by Bai, which was associated with preserved levels of phosphorylation of PTEN, the phophatase that negatively regulates Akt. As a consequence, Bcl-2/Bcl-xL-associated death protein phosphorylation was increased and the protein level of Bcl-2 in motochondria was maintained, which subsequently antagonize cytochrome c released in cytosol. LY294002 blocked the increase in phospho-AKT evoked by Bai and abolished the associated protective effect. Together, these findings provide evidence that Bai protects neurons against ischemia injury and this neuroprotective effect involves PI3K/Akt and PTEN pathway.

  6. SIRT2 Inhibition Confers Neuroprotection by Downregulation of FOXO3a and MAPK Signaling Pathways in Ischemic Stroke.

    PubMed

    She, David T; Wong, Lap Jack; Baik, Sang-Ha; Arumugam, Thiruma V

    2018-04-14

    Sirtuin 2 (SIRT2) is a family member of nicotinamide adenine dinucleotide (NAD + )-dependent deacetylases which appears to have detrimental roles in an array of neurological disorders such as Parkinson's disease (PD) and Huntington's disease (HD). In light of the recently emerging roles of sirtuins in normal physiology and pathological conditions such as ischemic stroke, we investigated the role of SIRT2 in ischemic stroke-induced neuronal cell death. Primary cortical neurons were subjected to oxygen-glucose deprivation (OGD) under in vitro ischemic conditions, and subsequently tested for the efficacy of SIRT2 inhibitors AK1 and AGK2 in attenuating apoptotic cell death caused by OGD. We have also evaluated the effect of SIRT2 inhibition in C57BL/6 mice subjected to 1 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion, which is a model for ischemic reperfusion injury in vivo. Significant reductions in apoptotic cell death were noted in neurons treated with AK1 or AGK2, as evidenced by reduced cleaved caspase-3 and other apoptotic markers such as Bim and Bad. In addition, downregulation of phosphorylated-AKT and FOXO3a proteins of the AKT/FOXO3a pathway, as well as a marked reduction of JNK activity and its downstream target c-Jun, were also observed. When tested in animals subjected to MCAO, the neuroprotective effects of AGK2 in vivo were evidenced by a substantial reduction in ipsilateral infarct area and a significant improvement in neurological outcomes. A similar reduction in the levels of pro-apoptotic proteins in the infarct tissue, as well as downregulation of AKT/FOXO3a and JNK pathway, were also noted. In summary, the current study demonstrated the neuroprotective effects of SIRT2 inhibition in ischemic stroke, and identified the downregulation of AKT/FOXO3a and MAPK pathways as intermediary mechanisms which may contribute to the reduction in apoptotic cell death by SIRT2 inhibition.

  7. Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome

    PubMed Central

    Kharbanda, Kusum K.; Todero, Sandra L.; King, Adrienne L.; Osna, Natalia A.; McVicker, Benita L.; Tuma, Dean J.; Wisecarver, James L.; Bailey, Shannon M.

    2012-01-01

    Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10 mg/mL) for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE) revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAM : S-adenosylhomocysteine (SAH) ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection. PMID:22187660

  8. New perspectives on the pharmacotherapy of ischemic stroke.

    PubMed

    Bradberry, J Chris; Fagan, Susan C; Gray, David R; Moon, Yong S K

    2004-01-01

    To provide an overview of the impact of ischemic stroke and the steps that can be taken to reduce its burden through greater awareness of the disease, improved diagnosis and better treatment, with emphasis on the use of antiplatelet agents. Recent (1995-2003) published scientific literature, as identified by the authors through Medline searches, using the terms stroke, transient ischemic attack, cerebrovascular disease, atherothrombosis, risk factors, pharmacotherapy, prevention, and reviews on treatment. Recent systematic English-language review articles and reports of controlled randomized clinical trials were screened for inclusion. Ischemic stroke is generally the result of an atherothrombotic process leading to vessel obstruction or narrowing. Of the two types of ischemic stroke, thrombotic stroke is caused by a thrombus that develops within the cerebral vasculature, while embolic stroke arises from a distant embolus that lodges in a cerebral artery. The neurologic manifestations of stroke depend on the location of injury in the brain and the degree of ischemia or infarction. Symptoms may be reversible or irreversible and range from sensory deficits to hemiplegia. Risk factors for development of ischemic stroke include hypertension, diabetes, dyslipidemia, smoking, atrial fibrillation, prior stroke, and transient ischemic attack. Tissue plasminogen activator is currently the only available drug treatment for acute ischemic stroke. Stroke recurrence rates are high (about 40% over 5 years), and all ischemic stroke patients should receive antithrombotic therapy (unless contraindicated) for secondary prevention. Of the oral antiplatelet therapies, aspirin, clopidogrel (Plavix--Bristol-Myers Squibb/Sanofi Pharmaceuticals Partnership), and the extended-release dipyridamole plus aspirin combination are acceptable first-line agents, while anticoagulants (warfarin) are preferred in patients with atrial fibrillation. Lifestyle changes and drug therapy are important

  9. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil.

    PubMed

    Wan, Rui; Wang, Zhao; Xie, Shuguang

    2014-02-15

    Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Age-related reduction of cerebral ischemic preconditioning: myth or reality?

    PubMed Central

    Della-Morte, David; Cacciatore, Francesco; Salsano, Elisa; Pirozzi, Gilda; Genio, Maria Teresa Del; D’Antonio, Iole; Gargiulo, Gaetano; Palmirotta, Raffaele; Guadagni, Fiorella; Rundek, Tatjana; Abete, Pasquale

    2013-01-01

    Stroke is one of the leading causes of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. The “cerebral” ischemic preconditioning mechanism is characterized by a brief episode of ischemia that renders the brain more resistant against subsequent longer ischemic events. This ischemic tolerance has been shown in numerous experimental models of cerebral ischemia. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators released and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Agents able to mimic the “cerebral” preconditioning effect may represent a new powerful tool for the treatment of acute ischemic stroke in the elderly. In this article, animal and human cerebral ischemic preconditioning, its age-related difference, and its potential therapeutical applications are discussed. PMID:24204128

  11. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  12. Post-Ischemic Bowel Stricture: CT Features in Eight Cases

    PubMed Central

    Kim, Jin Sil; Hong, Seung-Mo; Park, Seong Ho; Lee, Jong Seok; Kim, Ah Young; Ha, Hyun Kwon

    2017-01-01

    Objective To investigate the characteristic radiologic features of post-ischemic stricture, which can then be implemented to differentiate that specific disease from other similar bowel diseases, with an emphasis on computed tomography (CT) features. Materials and Methods Eight patients with a diagnosis of ischemic bowel disease, who were also diagnosed with post-ischemic stricture on the basis of clinical or pathologic findings, were included. Detailed clinical data was collected from the available electronic medical records. Two radiologists retrospectively reviewed all CT images. Pathologic findings were also analyzed. Results The mean interval between the diagnosis of ischemic bowel disease and stricture formation was 57 days. The severity of ischemic bowel disease was variable. Most post-ischemic strictures developed in the ileum (n = 5), followed by the colon (n = 2) and then the jejunum (n = 1). All colonic strictures developed in the “watershed zone.” The pathologic features of post-ischemic stricture were deep ulceration, submucosal/subserosal fibrosis and chronic transmural inflammation. The mean length of the post-ischemic stricture was 7.4 cm. All patients in this study possessed one single stricture. On contrast-enhanced CT, most strictures possessed concentric wall thickening (87.5%), with moderate enhancement (87.5%), mucosal enhancement (50%), or higher enhancement in portal phase than arterial phase (66.7%). Conclusion Post-ischemic strictures develop in the ileum, jejunum and colon after an interval of several weeks. In the colonic segment, strictures mainly occur in the “watershed zone.” Typical CT findings include a single area of concentric wall thickening of medium length (mean, 7.4 cm), with moderate and higher enhancement in portal phase and vasa recta prominence. PMID:29089826

  13. Cardiac Myocyte-specific Knock-out of Calcium-independent Phospholipase A2γ (iPLA2γ) Decreases Oxidized Fatty Acids during Ischemia/Reperfusion and Reduces Infarct Size *

    PubMed Central

    Moon, Sung Ho; Mancuso, David J.; Sims, Harold F.; Liu, Xinping; Nguyen, Annie L.; Yang, Kui; Guan, Shaoping; Dilthey, Beverly Gibson; Jenkins, Christopher M.; Weinheimer, Carla J.; Kovacs, Attila; Abendschein, Dana; Gross, Richard W.

    2016-01-01

    Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca2+-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca2+ by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion. PMID:27453526

  14. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells.

    PubMed

    Panickar, Kiran S; Polansky, Marilyn M; Anderson, Richard A

    2009-04-01

    Astrocyte swelling is an integral component of cytotoxic brain edema in ischemic injury. While mechanisms underlying astrocyte swelling are likely multifactorial, oxidative stress and mitochondrial dysfunction are hypothesized to contribute to such swelling. We investigated the protective effects of cinnamon polyphenol extract (CPE) that has anti-oxidant and insulin-potentiating effects on cell swelling and depolarization of the inner mitochondrial membrane potential (DeltaPsi(m)) in ischemic injury. C6 glial cells were subjected to oxygen-glucose deprivation (OGD) and cell volume determined using the 3-O-methyl-[3H]-glucose method at 90 min after the end of OGD. When compared with controls, OGD increased cell volume by 34%. This increase was blocked by CPE or insulin but not by blockers of oxidative/nitrosative stress including vitamin E, resveratrol, N-nitro-L-arginine methyl ester (L-NAME) or uric acid. Mitochondrial dysfunction, a key component of ischemic injury, contributes to cell swelling. Changes in DeltaPsi(m) were assessed at the end of OGD with tetramethylrhodamine ethyl ester (TMRE), a potentiometric dye. OGD induced a 39% decline in DeltaPsi(m) and this decline was blocked by CPE as well as insulin. To test the involvement of the mitochondrial permeability transition (mPT), we used Cyclosporin A (CsA), an immunosuppressant and a blocker of the mPT pore. CsA blocked cell swelling and the decline in DeltaPsi(m) but FK506, an immunosuppressant that does not block the mPT, did not. Our results show that CPE reduces OGD-induced cell swelling as well as the decline in DeltaPsi(m) in cultures and some of its protective effects may be through inhibiting the mPT.

  15. Activation of proteolytic enzymes and depression of the sarcolemmal Na+/K+-ATPase in ischemia-reperfused heart may be mediated through oxidative stress.

    PubMed

    Singh, Raja B; Hryshko, Larry; Freed, Darren; Dhalla, Naranjan S

    2012-02-01

    We tested whether the activation of proteolytic enzymes, calpain, and matrix metalloproteinases (MMPs) during ischemia-reperfusion (I/R) is mediated through oxidative stress. For this purpose, isolated rat hearts were subjected to a 30 min global ischemia followed by a 30 min reperfusion. Cardiac function was monitored and the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, calpain, and MMP were measured. Depression of cardiac function and Na(+)/K(+)-ATPase activity in I/R hearts was associated with increased calpain and MMP activities. These alterations owing to I/R were similar to those observed in hearts perfused with hypoxic medium, H(2)O(2) and xanthine plus xanthine oxidase. The I/R-induced changes were attenuated by ischemic preconditioning as well as by perfusing the hearts with N-acetylcysteine or mercaptopropionylglycine. Inhibition of MMP activity in hearts treated with doxycycline depressed the I/R-induced changes in cardiac function and Na(+)/K(+)-ATPase activity without affecting the calpain activation. On the other hand, inhibition of calpain activity upon treatment with leupeptin or MDL 28170 significantly reduced the MMP activity in addition to attenuating the I/R-induced alterations in cardiac function and Na(+)/K(+)-ATPase activity. These results suggest that the I/R-induced depression in Na(+)/K(+)-ATPase and cardiac function may be a consequence of the increased activities of both calpain and MMP because of oxidative stress in the heart.

  16. Demonstration of the Rat Ischemic Skin Wound Model

    PubMed Central

    Sherwood, Jacob; Wu, Mack; Gould, Lisa J.

    2015-01-01

    The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models. PMID:25866964

  17. Demonstration of the rat ischemic skin wound model.

    PubMed

    Trujillo, Andrea N; Kesl, Shannon L; Sherwood, Jacob; Wu, Mack; Gould, Lisa J

    2015-04-01

    The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.

  18. Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70.

    PubMed

    Sun, Xiao-Cai; Xian, Xiao-Hui; Li, Wen-Bin; Li, Li; Yan, Cai-Zhen; Li, Qing-Jun; Zhang, Min

    2010-08-01

    This study investigates whether activation of p38 MAPK by the up-regulation of HSP 70 participates in the induction of brain ischemic tolerance by limb ischemic preconditioning (LIP). Western blot and immunohistochemical assays indicated that p38 MAPK activation occurred earlier than HSP 70 induction in the CA1 region of the hippocampus after LIP. P-p38 MAPK expression was up-regulated at 6h and reached its peak 12h after LIP, while HSP 70 expression was not significantly increased until 1 day and peaked 2 days after LIP. Neuropathological evaluation by thionin staining showed that quercetin (4 ml/kg, 50mg/kg, intraperitoneal injection), an inhibitor of HSP 70, blocked the protective effect of LIP against delayed neuronal death that is normally induced by lethal brain ischemic insult, indicating that HSP 70 participates in the induction of brain ischemic tolerance by LIP. Furthermore, SB 203580, an inhibitor of HSP 70, inhibited HSP 70 activation in the CA1 region of the hippocampus induced by LIP either with or without the presence of subsequent brain ischemic insult. Based on the above results, it can be concluded that activation of p38 MAPK participates in the brain ischemic tolerance induced by LIP at least partly by the up-regulation of HSP 70 expression. (c) 2010 Elsevier Inc. All rights reserved.

  19. Ischemic strokes in Pakistan: observations from the national acute ischemic stroke database.

    PubMed

    Khealani, Bhojo A; Khan, Maria; Tariq, Muhammad; Malik, Abdul; Siddiqi, Alam I; Awan, Safia; Wasay, Mohammad

    2014-07-01

    The objective of this study was to establish a multicenter ischemic stroke registry, first of its kind in Pakistan, to provide insight into the epidemiology, subtypes, and risk factors of ischemic strokes in this country. Four academic centers (3 urban and 1 rural) participated in this project. The inclusion criteria for subjects included adults (>14 years) with acute neurologic deficit, consistent with clinical diagnosis of ischemic stroke and supported by neuroimaging. Data were available for 874 subjects. Mean age of the subjects was 59.7 years, 60.5% were males, and 18% were young. Large vessel strokes were the most common subtype found in 31.7% subjects, followed by small vessel disease (25.7%) and cardioembolic strokes (10.4%). Almost 32% subjects had ill-defined etiology for their ischemic stroke. Dyslipidemia was a most common risk factor present in 83% patients. Data related to in-hospital complications were available for 808 subjects, of which 233 complications were recorded. Pneumonia was the most common of these seen in 105 (13%) subjects, followed by urinary tract infection (7.2%). Outcome at discharge was recorded for 697 subjects. Ninety-two had died during their hospital stay (13.2%). Only 36% subjects had a favorable outcome at discharge defined as a modified Rankin Scale (mRS) score of 2 or less. A total of 446 of 697 subjects had poor outcome at discharge (defined as an mRS score≥3). Hypertension and dyslipidemia were the most common risk factors and large vessel atherosclerosis was the most common stroke etiology. Elderly patients were significantly more likely to have in-hospital complications, die during their hospital stay, and have a higher mRS score at discharge. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. SIMVASTATIN RESTORES ISCHEMIC PRECONDITIONING IN THE PRESENCE OF HYPERGLYCEMIA THROUGH A NITRIC OXIDE-MEDIATED MECHANISM

    PubMed Central

    Gu, Weidong; Kehl, Franz; Krolikowski, John G.; Pagel, Paul S.; Warltier, David C.; Kersten, Judy R.

    2015-01-01

    Background A growing body of evidence indicates that statins decrease perioperative cardiovascular risk and that these drugs may be particularly efficacious in diabetes. Diabetes or hyperglycemia abolish the cardioprotective effects of ischemic preconditioning (IPC). We tested the hypothesis that simvastatin restores the beneficial effects of IPC during hyperglycemia through a nitric oxide (NO)-mediated mechanism. Methods Myocardial infarct size was measured in dogs (n=76) subjected to coronary artery occlusion and reperfusion in the presence or absence of hyperglycemia (300 mg/dl) with or without IPC in separate groups. Additional dogs received simvastatin (20 mg orally daily for 3 days) in the presence or absence of IPC and hyperglycemia. Other dogs were pretreated with N-nitro-L-arginine methyl ester (L-NAME; 30 mg intracoronary) with or without IPC, hyperglycemia and simvastatin. Results IPC significantly (P<0.05) reduced infarct size (n=7, 7±2%) as compared to control (n=7, 29±3%). Hyperglycemia (n=7), simvastatin (n=7) and L-NAME alone (n=7), and simvastatin with hyperglycemia (n=6) did not alter infarct size. Hyperglycemia (n=7, 24±2%), but not L-NAME (n=5, 10±1%), blocked the protective effects of IPC. Simvastatin restored the protective effects of IPC in the presence of hyperglycemia (n=7, 14±1%), and this beneficial action was blocked by L-NAME (n=7, 29±4%). Conclusions The results indicate that simvastatin restored the cardioprotective effects of IPC during hyperglycemia by NO-mediated signaling. The results also suggest that enhanced cardioprotective signaling could be a mechanism for statin-induced decreases in perioperative cardiovascular risk. PMID:18362595

  1. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction.

    PubMed

    Howangyin, Kiave Yune; Silvestre, Jean-Sébastien

    2014-06-01

    In patients with diabetes mellitus, the ability of ischemic tissue to synchronize the molecular and cellular events leading to restoration of tissue perfusion in response to the atherosclerotic occlusion of a patent artery is markedly impaired. As a consequence, adverse tissue remodeling and the extent of ischemic injury are intensified, leading to increased morbidity and mortality. Growing evidence from preclinical and clinical studies has implicated alterations in hypoxia-inducible factor 1 levels in the abrogation of proangiogenic pathways, including vascular endothelial growth factor A/phosphoinositide 3' kinase/AKT/endothelial nitric oxide synthase and in the activation of antiangiogenic signals characterized by accumulation of advanced glycation end products, reactive oxygen species overproduction, and endoplasmic reticulum stress. In addition, the diabetic milieu shows a switch toward proinflammatory antiregenerative pathways. Finally, the mobilization, subsequent recruitment, and the proangiogenic potential of the different subsets of angiogenesis-promoting bone marrow-derived cells are markedly impaired in the diabetic environment. In this review, we will give an overview of the current understanding on the signaling molecules contributing to the diabetes mellitus-induced impairment of postischemic revascularization mainly in the setting of myocardial infarction or critical limb ischemia. © 2014 American Heart Association, Inc.

  2. α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide.

    PubMed

    Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza

    2016-02-01

    Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production.

  3. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  5. Inhibition of Inducible Nitric Oxide Synthase Attenuates Monosodium Urate-induced Inflammation in Mice

    PubMed Central

    Ju, Tae-Jin; Dan, Jin-Myoung; Cho, Young-Je

    2011-01-01

    The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-α, and IL-1β were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation. PMID:22359474

  6. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. © The Author(s) 2015.

  7. Protective effect of hexane extracts of Uncaria sinensis against photothrombotic ischemic injury in mice.

    PubMed

    Park, Sun Haeng; Kim, Ji Hyun; Park, Se Jin; Bae, Sun Sik; Choi, Young Whan; Hong, Jin Woo; Choi, Byung Tae; Shin, Hwa Kyoung

    2011-12-08

    Uncaria sinensis (US) has been used in traditional Korean medicine to treat vascular disease and to relieve various neurological symptoms. Scientific evidence related to the effectiveness or action mechanism of US on cerebrovascular disease has not been examined experimentally. Here, we investigated the cerebrovascular protective effect of US extracts on photothrombotic ischemic injury in mice. US hexane extracts (HEUS), ethyl acetate extracts (EAEUS) and methanol extracts (MEUS) were administered intraperitoneally 30 min before ischemic insults. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, neurological score and the activation of Akt and eNOS in ischemic brain. HEUS more significantly reduced infarct volume and edema than did EAEUS and MEUS following photothrombotic cortical occlusion. HEUS produced decreased infarct volume and edema size, and improved neurological function in a concentration-dependent manner (10, 50, and 100 mg/kg). However, HEUS did not reduce brain infarction in eNOS KO mice, suggesting that the protective effect of HEUS is primarily endothelium-dependent. Furthermore, HEUS (10-300 μg/ml) produced a concentration-dependent relaxation in mouse aorta and rat basilar artery, which was not seen in eNOS KO mouse aorta, suggesting that HEUS cause vasodilation via an eNOS-dependent mechanism. This correlated with increased phosphorylation of Akt and eNOS in the brains of HEUS-treated mice. HEUS prevent cerebral ischemic damage by regulating Akt/eNOS signaling. US, herbal medicine, may be the basis of a novel strategy for the therapy of stroke. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Ischemic Stroke Patients Demonstrate Increased Carotid Plaque Microvasculature Compared to (Ocular) Transient Ischemic Attack Patients

    PubMed Central

    van Hoof, Raf H.M.; Schreuder, Floris H.B.M.; Nelemans, Patty; Truijman, Martine T.B.; van Orshoven, Narender P.; Schreuder, Tobien H.; Mess, Werner H.; Heeneman, Sylvia; van Oostenbrugge, Robert J.; Wildberger, Joachim E.; Kooi, M. Eline

    2017-01-01

    Background Patients with a recent ischemic stroke have a higher risk of recurrent stroke compared to (ocular) transient ischemic attack (TIA) patients. Plaque microvasculature is considered as a feature of plaque vulnerability and can be quantified with carotid dynamic contrast-enhanced MRI (DCE-MRI). The purpose of this cross-sectional study was to explore the association between plaque microvasculature and the type of recent cerebrovascular events in symptomatic patients with mild-to-moderate carotid stenosis. Methods A total of 87 symptomatic patients with a recent stroke (n = 35) or (ocular) TIA (n = 52) underwent carotid DCE-MRI examination. Plaque microvasculature was studied in the vessel wall and adventitia using DCE-MRI and the pharmacokinetic modeling parameter Ktrans. Statistical analysis was performed with logistic regression, correcting for associated clinical risk factors. Results The 75th percentile adventitial (OR 1.97, 95% CI 1.18–3.29) Ktrans was significantly associated with a recent ischemic stroke compared to (ocular) TIA in multivariate analysis, while clinical risk factors were not significantly associated with the type of event. Conclusions This study indicates a positive association of leaky plaque microvasculature with a recent ischemic stroke compared to (ocular) TIA. Prospective longitudinal studies are needed to investigate whether Ktrans or other plaque characteristics may serve as an imaging marker for predicting (the type of) future cerebrovascular events. PMID:28946147

  9. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study.

    PubMed

    Olson, N C; Cushman, M; Judd, S E; Kissela, B M; Safford, M M; Howard, G; Zakai, N A

    2017-06-01

    Essentials Coagulation factors (F) IX and XI have been implicated in cardiovascular disease (CVD) risk. We studied associations of FIX and FXI with incident coronary heart disease (CHD) and stroke. Higher FIX antigen was associated with incident CHD risk in blacks but not whites. Higher levels of FIX antigen may be a CHD risk factor among blacks. Background Recent studies have suggested the importance of coagulation factor IX and FXI in cardiovascular disease (CVD) risk. Objectives To determine whether basal levels of FIX or FXI antigen were associated with the risk of incident coronary heart disease (CHD) or ischemic stroke. Patients/Methods The REasons for Geographic And Racial Differences in Stroke (REGARDS) study recruited 30 239 participants across the contiguous USA between 2003 and 2007. In a case-cohort study within REGARDS, FIX and FXI antigen were measured in participants with incident CHD (n = 609), in participants with incident ischemic stroke (n = 538), and in a cohort random sample (n = 1038). Hazard ratios (HRs) for CHD and ischemic stroke risk were estimated with Cox models per standard deviation higher FIX or FXI level, adjusted for CVD risk factors. Results In models adjusting for CHD risk factors, higher FIX levels were associated with incident CHD risk (HR 1.19; 95% confidence interval [CI] 1.01-1.40) and the relationship of higher FXI levels was slightly weaker (HR 1.15; 95% CI 0.97-1.36). When stratified by race, the HR of FIX was higher in blacks (HR 1.39; 95% CI 1.10-1.75) than in whites (HR 1.06; 95% CI 0.86-1.31). After adjustment for stroke risk factors, there was no longer an association of FIX levels with ischemic stroke, whereas the association of FXI levels with ischemic stroke was slightly attenuated. Conclusions Higher FIX antigen levels were associated with incident CHD in blacks but not in whites. FIX levels may increase CHD risk among blacks. © 2017 International Society on Thrombosis and Haemostasis.

  10. Mechanisms of Arsenic Mobilization and Attenuation in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    O'Day, P. A.; Illera, V.; Root, R.; Choi, S.; Vlassopoulos, D.

    2007-12-01

    This talk will review molecular mechanisms of As mobilization and attenuation in subsurface sediments using examples from recent field studies that represent a range in oxidation-redox (redox) potential. As a ubiquitous trace element in sediments, As speciation and fate is linked to the abundance and biogeochemical behavior of the generally more abundant redox-active elements Fe, S, and Mn. All four elements are subject to oxidation, reduction, and pH-dependent processes such as sorption, desorption, precipitation, and dissolution, and which may include both biotic and abiotic reaction steps. We have used spectroscopic interrogation and geochemical modeling to characterize As speciation in subsurface sediments in several contrasting environments, including high and low S and Fe settings. Aquifers most at risk for contamination by As include those that are rich in organic matter and nutrients, stimulating high rates of microbial reduction and creating anoxic conditions, but limited in labile or available S and/or Fe that remove As by precipitation or adsorption. In subsurface sediments with low labile S and Fe, laboratory experiments and spectroscopic studies suggest that sediment Mn minerals are important in the oxidation of sorbed As(III) to As(V), but that they have a limited oxidation capacity. Arsenic attenuation and mobilization in the subsurface are affected by seasonal variations when hydraulic conditions are influenced by surface infiltration, which may induce transitions from oxidized to reduced conditions (or vice versa) in porewater.

  11. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes

    PubMed Central

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures. PMID:26246694

  12. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes.

    PubMed

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.

  13. New Treatments for Nonarteritic Anterior Ischemic Optic Neuropathy.

    PubMed

    Foroozan, Rod

    2017-02-01

    Despite increasing knowledge about the risk factors and clinical findings of nonarteritic anterior ischemic optic neuropathy (NAION), the treatment of this optic neuropathy has remained limited and without clear evidence-based benefit. Historical treatments of NAION are reviewed, beginning with the Ischemic Optic Neuropathy Decompression Trial. More recent treatments are placed within the historical context and illustrate the need for evidence-based therapy for ischemic optic neuropathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Primary emergencies: management of acute ischemic stroke].

    PubMed

    Leys, Didier; Goldstein, Patrick

    2012-01-01

    The emergency diagnostic strategy for acute ischemic stroke consists of:--identification of stroke, based on clinical examination (sudden onset of a focal neurological deficit);--identification of the ischemic or hemorrhagic nature by MRI or CT;--determination of the early time-course (clinical examination) and the cause. In all strokes (ischemic or hemorrhagic), treatment consists of:--the same general management (treatment of a life-threatening emergency, ensuring normal biological parameters except for blood pressure, and prevention of complications);--decompressive surgery in the rare cases of intracranial hypertension. For proven ischemic stroke, other therapies consist of: rt-PA for patients admitted with 4.5 hours of stroke onset who have no contraindications, and aspirin (160 to 300 mg) for patients who are not eligible for rt-PA. These treatments should be administered within a few hours. A centralized emergency call system (phone number 15 in France) is the most effective way of achieving this objective.

  15. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation.

    PubMed

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Sivarama Raju, K; Wahajuddin, Mu; Singh, Sarika

    2018-03-12

    Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death

  16. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation

    PubMed Central

    Gao, Li; Wu, Wei-Feng; Dong, Lei; Ren, Gui-Ling; Li, Hai-Di; Yang, Qin; Li, Xiao-Feng; Xu, Tao; Li, Zeng; Wu, Bao-Ming; Ma, Tao-Tao; Huang, Cheng; Huang, Yan; Zhang, Lei; Lv, Xiongwen; Li, Jun; Meng, Xiao-Ming

    2016-01-01

    Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress, and programmed cell death of renal tubular epithelial cells, all of which lead to high mortality rates in patients. In this study, we examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients receiving cisplatin treatment. PMID:27999546

  17. Elevation of Autoantibody in Patients with Ischemic Stroke.

    PubMed

    Yoshida, Yoichi; Hiwasa, Takaki; Machida, Toshio; Kobayashi, Eiichi; Mine, Seiichiro; Matsushima, Jun; Takiguchi, Masaki; Iwadate, Yasuo

    2018-05-31

    Recent clinical research has revealed a significant correlation between atherosclerosis, one of the primary etiologies of ischemic stroke, and the immune system. Assuming that "disease-specific autoantibodies are produced in the sera of patients with ischemic stroke," we investigated multiple arteriosclerosis-related antibodies using the serological identification of antigens by recombinant cDNA expression cloning (SEREX), an established method for identifying antigenic proteins. We either screened a human aortic endothelial cell cDNA library or conducted protein array screening using the sera from patients with ischemic stroke, such as carotid artery stenosis or transient ischemic attack (TIA). Next, we measured serum antibody levels using amplified luminescent proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) in patient/healthy donor (HD) cohorts and identified several antigens, the antibody levels of which were significantly higher in patients with ischemic stroke than in HDs. This review introduced the method of identifying antigens by the SEREX and protein microarray and summarized antigenic proteins. In particular, it focused on anti-replication protein A2 antibody and anti-programmed cell death 11 antibody, which are significantly related to atherosclerotic plaque and ischemic brain tissue, respectively, and proposed the mechanism of elevated autoantibody levels against them. Furthermore, this review suggests a possibility of clinical application as an atherosclerotic disease diagnostic marker for TIA or cerebral infarction.

  18. Relationship Between Ischemic Heart Disease and Sexual Satisfaction.

    PubMed

    Ghanbari Afra, Leila; Taghadosi, Mohsen; Gilasi, Hamid Reza

    2015-06-10

    Ischemic heart disease is a life-threatening condition. Considerable doubts exist over the effects of this disease on patients' sexual activity and satisfaction. The aim of this study was to evaluate the relationship between ischemic heart disease and sexual satisfaction. In a retrospective cohort study, the convenience sample of 150 patients exposure with ischemic heart disease and 150 people without exposure it was drawn from Shahid Beheshti hospital, Kashan, Iran. Sampling was performed from March to September 2014. We employed the Larson's Sexual Satisfaction Questionnaire for gathering the data. Data were analyzed using descriptive statistics and Chi-square, t-test and linear regression analysis. The means of sexual satisfaction in patients exposure with ischemic heart disease and among the subjects without exposure it were 101.47±13.42 and 100.91±16.52, respectively. There was no significant difference between the two groups regarding sexual satisfaction. However, sexual satisfaction was significantly correlated with gender and the use of cardiac medications (P value<0.05). The level of sexual satisfaction in patients with exposure ischemic heart disease is similar to the people without exposure it. Moreover, the men and the patients who do not receive cardiac medications have higher levels of sexual satisfaction. Nurses who are providing care to patients with ischemic heart disease need to pay closer attention to patient education about sexual issues.

  19. Usefulness of colonoscopy in ischemic colitis.

    PubMed

    Lozano-Maya, M; Ponferrada-Díaz, A; González-Asanza, C; Nogales-Rincón, O; Senent-Sánchez, C; Pérez-de-Ayala, V; Jiménez-Aleixandre, P; Cos-Arregui, E; Menchén-Fernández-Pacheco, P

    2010-07-01

    the ischemic colitis is intestinal the most frequent cause of ischemia. With this work we determine the demographic and clinical characteristics, and the usefulness of the colonoscopy in the patients with ischemic colitis diagnosed in our centre in relation to a change of therapeutic attitude. retrospective study in which were selected 112 patients diagnosed with ischemic colitis by colonoscopy and biopsy, in a period of five years. It was analyzed: age, sex, reason for examination, factors of cardiovascular risk, endoscopic degree of ischemia, change in the therapeutic attitude, treatment and outcome. the average age was of 73.64 + or - 12.10 years with an equal incidence in women (50.9%) and the men (49.1%). The associated factors were the HTA (61.1%), tobacco (37.2%) and antecedents of cardiovascular episode (52.2%). The most frequent reason for colonoscopy was rectorrhagia (53.6%) followed of the abdominal pain (30.4%), being urgent the 65.3%. Colonoscopy allowed a change in the therapeutic attitude in the 50 increasing in the urgent one to the 65.75%. Global mortality was of 27.67%. The serious ischemic colitis (25%) was more frequent in men (64.3%) in urgent indication (85.71%) and attends with high mortality (53.57%). Surgical treatment in the 57.14% was made with a good evolution in the 50%, whereas the patients with mild or moderate ischemic colitis had a better prognosis (favourable evolution in 80.95%) with smaller requirement of the surgical treatment (4.76%), p < 0.05. the colitis ischemic are more frequent in the older age. The most frequent symptoms are the rectorrhagia and the abdominal pain. The colonoscopy is a useful technique to evaluate the gravity and it induces a change of attitude according to the result of the same one. The evidence of a serious colitis supposed an increase of the necessity of surgery and worse prognosis.

  20. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury

    PubMed Central

    Liu, Yunen; Tan, Dehong; Shi, Lin; Liu, Xinwei; Zhang, Yubiao; Tong, Changci; Song, Dequn; Hou, Mingxiao

    2015-01-01

    We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE) on cyclophosphamide (CTX)-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE. PMID:26133371

  1. Neuroprotective Effects of Peptides during Ischemic Preconditioning.

    PubMed

    Zarubina, I V; Shabanov, P D

    2016-02-01

    Experiments on rats showed that neurospecific protein preparations reduce the severity of neurological deficit, restore the structure of individual behavior of the animals with different hypoxia tolerance, and exert antioxidant action during chronic ischemic damage to the brain unfolding during the early and late phases of ischemic preconditioning.

  2. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    PubMed

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P < 0.05). Dex significantly decreased apoptotic cells compared with that of vehicle control cells by 50% (P < 0.05). Necrosis was not significantly different between treatment groups. Mechanistically, Dex treatment significantly increased phosphorylated Akt (P < 0.05), but protective effects of Dex were eliminated by an alpha-2a antagonist or Akt inhibitor (P < 0.05). Using a novel spinal cord neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats.

    PubMed

    Zhou, Zi-Yi; Tang, Yu-Ping; Xiang, Jun; Wua, Pin; Jin, Hui-Ming; Wang, Zhong; Mori, Masao; Cai, Ding-Fang

    2010-08-19

    To investigate the neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides (GLPS) on cerebral ischemic injury in rats, and to explore the involved mechanisms. Two models [middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats and oxygen and glucose deprivation (OGD) in primary cultured rat cortical neurons] were employed to mimic ischemia-reperfusion (I/R) damage, in vivo and in vitro, respectively. Cerebral infarct area was measured by tetrazolium staining, and neurological functional deficits were assessed at 24h after I/R. Neuronal apoptosis was studied by Nissl staining and DNA fragmentation assay. Neuronal injury was assessed by morphological examination using phase-contrast microscopy and quantified by measuring the amount of lactate dehydrogenase (LDH) leakage, cell viability was measured by sodium 3'-1- (phenylaminocarbonyl)-3, 4-tetrazolium-bis (4-methoxy-6-nitro) benzene sulfonic acid (XTT) reduction. Neuronal apoptosis was determined by flow cytometry, and electron microscopy was used to study morphological changes of neurons. Caspase-3, -8 and -9 activation and Bcl-2, Bax protein expression were determined by western blot analysis. Oral administration of GLPS (100, 200 and 400mg/kg) significantly reduced cerebral infarct area, attenuated neurological functional deficits, and reduced neuronal apoptosis in ischemic cortex. In OGD model, GLSP (0.1, 1 and 10 microg/ml) effectively reduced neuronal cell death and relieved cell injury. Moreover, GLPS decreased the percentage of apoptotic neurons, relieved neuronal morphological damage, suppressed overexpression of active caspases-3, -8 and -9 and Bax, and inhibited the reduction of Bcl-2 expression. Our findings indicate that GLPS protects against cerebral ischemic injury by inhibiting apoptosis by downregulating caspase-3 activation and modulating the Bcl-2/Bax ratio. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  4. NOTCH3 variants and risk of ischemic stroke.

    PubMed

    Ross, Owen A; Soto-Ortolaza, Alexandra I; Heckman, Michael G; Verbeeck, Christophe; Serie, Daniel J; Rayaprolu, Sruti; Rich, Stephen S; Nalls, Michael A; Singleton, Andrew; Guerreiro, Rita; Kinsella, Emma; Wszolek, Zbigniew K; Brott, Thomas G; Brown, Robert D; Worrall, Bradford B; Meschia, James F

    2013-01-01

    Mutations within the NOTCH3 gene cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). CADASIL mutations appear to be restricted to the first twenty-four exons, resulting in the gain or loss of a cysteine amino acid. The role of other exonic NOTCH3 variation not involving cysteine residues and mutations in exons 25-33 in ischemic stroke remains unresolved. All 33 exons of NOTCH3 were sequenced in 269 Caucasian probands from the Siblings With Ischemic Stroke Study (SWISS), a 70-center North American affected sibling pair study and 95 healthy Caucasian control subjects. Variants identified by sequencing in the SWISS probands were then tested for association with ischemic stroke using US Caucasian controls collected at the Mayo Clinic (n=654), and further assessed in a Caucasian (n=802) and African American (n=298) patient-control series collected through the Ischemic Stroke Genetics Study (ISGS). Sequencing of the 269 SWISS probands identified one (0.4%) with small vessel type stroke carrying a known CADASIL mutation (p.R558C; Exon 11). Of the 19 common NOTCH3 variants identified, the only variant significantly associated with ischemic stroke after multiple testing adjustment was p.R1560P (rs78501403; Exon 25) in the combined SWISS and ISGS Caucasian series (Odds Ratio [OR] 0.50, P=0.0022) where presence of the minor allele was protective against ischemic stroke. Although only significant prior to adjustment for multiple testing, p.T101T (rs3815188; Exon 3) was associated with an increased risk of small-vessel stroke (OR: 1.56, P=0.008) and p.P380P (rs61749020; Exon 7) was associated with decreased risk of large-vessel stroke (OR: 0.35, P=0.047) in Caucasians. No significant associations were observed in the small African American series. Cysteine-affecting NOTCH3 mutations are rare in patients with typical ischemic stroke, however our observation that common NOTCH3 variants may be associated with risk of ischemic

  5. Identification of active compounds from Aurantii Immatri Pericarpium attenuating brain injury in a rat model of ischemia-reperfusion.

    PubMed

    Yang, Eun-Ju; Lim, Sun Ha; Song, Kyung-Sik; Han, Hyung Soo; Lee, Jongwon

    2013-05-01

    Ischemic stroke is caused by brain injury due to prolonged ischemia by occlusion of cerebral arteries. In this study, we isolated active compounds from an ethanol extract of Aurantii Immatri Pericarpium (HY5356). We first showed by DNA fragmentation assay that HY5356 improved human hepatocellular carcinoma cells (HepG2) under hypoxic conditions by inhibiting apoptosis. When HY5356 was fractionated with dichloromethane (MC), ethyl acetate (EA) and n-butanol (BU), the MC fraction improved cell viability at the lowest concentration (100 μg/ml). Intraperitoneal injection of HY5356 (200 mg/kg) or the MC fraction (200 mg/kg) to rats prior to occlusion attenuated brain injury significantly in a rat model of ischemia-reperfusion. Adopting cell viability under hypoxic conditions as an activity screening system, we isolated nobiletin and tangeretin as active compounds. The results suggest that intake of Aurantii Immatri Pericarpium containing nobiletin and tangeretin as active compounds might be beneficial for preventing ischemic stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    PubMed Central

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially

  7. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  8. External Validation of Risk Scores for Major Bleeding in a Population-Based Cohort of Transient Ischemic Attack and Ischemic Stroke Patients.

    PubMed

    Hilkens, Nina A; Li, Linxin; Rothwell, Peter M; Algra, Ale; Greving, Jacoba P

    2018-03-01

    The S 2 TOP-BLEED score may help to identify patients at high risk of bleeding on antiplatelet drugs after a transient ischemic attack or ischemic stroke. The score was derived on trial populations, and its performance in a real-world setting is unknown. We aimed to externally validate the S 2 TOP-BLEED score for major bleeding in a population-based cohort and to compare its performance with other risk scores for bleeding. We studied risk of bleeding in 2072 patients with a transient ischemic attack or ischemic stroke on antiplatelet agents in the population-based OXVASC (Oxford Vascular Study) according to 3 scores: S 2 TOP-BLEED, REACH, and Intracranial-B 2 LEED 3 S. Performance was assessed with C statistics and calibration plots. During 8302 patient-years of follow-up, 117 patients had a major bleed. The S 2 TOP-BLEED score showed a C statistic of 0.69 (95% confidence interval [CI], 0.64-0.73) and accurate calibration for 3-year risk of major bleeding. The S 2 TOP-BLEED score was much more predictive of fatal bleeding than nonmajor bleeding (C statistics 0.77; 95% CI, 0.69-0.85 and 0.50; 95% CI, 0.44-0.58). The REACH score had a C statistic of 0.63 (95% CI, 0.58-0.69) for major bleeding and the Intracranial-B 2 LEED 3 S score a C statistic of 0.60 (95% CI, 0.51-0.70) for intracranial bleeding. The ratio of ischemic events versus bleeds decreased across risk groups of bleeding from 6.6:1 in the low-risk group to 1.8:1 in the high-risk group. The S 2 TOP-BLEED score shows modest performance in a population-based cohort of patients with a transient ischemic attack or ischemic stroke. Although bleeding risks were associated with risks of ischemic events, risk stratification may still be useful to identify a subgroup of patients at particularly high risk of bleeding, in whom preventive measures are indicated. © 2018 The Authors.

  9. Transient Ischemic Attack

    MedlinePlus

    A transient ischemic attack (TIA) is a stroke that lasts only a few minutes. It happens when the blood supply to part of the brain is briefly blocked. Symptoms of a TIA are like other stroke symptoms, but do not ...

  10. Mitogen Activated Protein Kinase Phosphatase-1 (MKP-1) in Retinal Ischemic Preconditioning

    PubMed Central

    Dreixler, John C.; Bratton, Anthony; Du, Eugenie; Shaikh, Afzhal R.; Savoie, Brian; Michael, Alexander; Marcet, Marcus; Roth, Steven

    2011-01-01

    We previously described the phenomenon of retinal ischemic preconditioning (IPC) and we have shown the role of various signaling proteins in the protective pathways, including the mitogen-activated protein kinase p38. In this study we examined the role in IPC of mitogen-activated protein kinase phosphatase-1 (MKP-1), which inactivates p38. Ischemia was produced by elevation of intraocular pressure above systolic arterial blood pressure in adult Wistar rats. Preconditioning was produced by transient retinal ischemia for 5 min, 24 h prior to ischemia. Small interfering RNA (siRNA) to MKP-1 or a control non-silencing siRNA, was injected into the vitreous 6 h prior to IPC. Recovery was assessed by electroretinography (ERG) and histology. The a- and b-waves, and oscillatory potentials (OPs), measured before and 1 week after ischemia, were then normalized relative to pre-ischemic baseline, and corrected for diurnal variation in the normal non-ischemic eye. The P2, or post-photoreceptor component of the ERG (which reflects function of the rod bipolar cells in the inner retina), was derived using the Hood-Birch model. MKP-1 was localized in specific retinal cells using immunohistochemistry; levels of mitogen-activated protein kinases were measured using Western blotting. Injection of siRNA to MKP-1 significantly attenuated the protective effect of IPC as reflected by decreased recovery of the electroretinogram a- and b-waves and the P2 after ischemia. The injection of siRNA to MKP-1 reduced the number of cells in the retinal ganglion cell and outer nuclear layers after IPC and ischemia. Blockade of MKP-1 by siRNA also increased the activation of p38 at 24 h following IPC. MKP-1 siRNA did not alter the levels of phosphorylated jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) after IPC. The results suggest the involvement of dual-specificity phosphatase MKP-1 in IPC and that MKP-1 is involved in IPC by regulating levels of activated MAPK p38. PMID

  11. The effect of brain death in rat steatotic and non-steatotic liver transplantation with previous ischemic preconditioning.

    PubMed

    Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen

    2015-01-01

    Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by

  12. Atrial fibrillation is not uncommon among patients with ischemic stroke and transient ischemic stroke in China.

    PubMed

    Yang, Xiaomeng; Li, Shuya; Zhao, Xingquan; Liu, Liping; Jiang, Yong; Li, Zixiao; Wang, Yilong; Wang, Yongjun

    2017-12-04

    Atrial fibrillation (AF) is reported to be a less frequent cause of ischemic stroke in China than in Europe and North America, but it is not clear whether this is due to underestimation. Our aim was to define the true frequency of AF-associated stroke, to determine the yield of 6-day Holter ECG to detect AF in Chinese stroke patients, and to elucidate predictors of newly detected AF. Patients with acute ischemic stroke or transient ischemic attack (TIA) were enrolled in a prospective, multicenter cohort study of 6-day Holter monitoring within 7 days after stroke onset at 20 sites in China between 2013 and 2015. Independent predictors of newly-detected AF were determined by multivariate analysis. Among 1511 patients with ischemic stroke and TIA (mean age 63 years, 33.1% women), 305 (20.2%) had either previously known (196, 13.0%) or AF newly-detected by electrocardiography (53, 3.5%) or by 6-day Holter monitoring (56/1262, 4.4%). A history of heart failure (OR = 4.70, 95%CI, 1.64-13.5), advanced age (OR = 1.06, 95%CI, 1.04-1.09), NIHSS at admission (OR = 1.06, 95%CI, 1.02-1.10), blood high density lipoprotein (HDL) (OR = 1.52, 95%CI, 1.09-2.13), together with blood triglycerides (OR = 0.64, 95%CI, 0.45-0.91) were independently associated with newly-detected AF. Contrary to previous reports, AF-associated stroke is frequent (20%) in China if systemically sought. Prolonged noninvasive cardiac rhythm monitoring importantly increases AF detection in patients with recent ischemic stroke and TIA in China. Advanced age, history of heart failure, and higher admission NIHSS and higher level of HDL were independent indicators of newly-detected AF. NCT02156765 (June 5, 2014).

  13. Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China.

    PubMed

    Li, Tiantian; Horton, Radley M; Bader, Daniel A; Liu, Fangchao; Sun, Qinghua; Kinney, Patrick L

    2018-03-01

    Changing climates have been causing variations in the number of global ischemic heart disease and stroke incidences, and will continue to affect disease occurrence in the future. To project temperature-related mortality for acute ischemic heart disease, and ischemic and hemorrhagic stroke with concomitant climate warming. We estimated the exposure-response relationship between daily cause-specific mortality and daily mean temperature in Beijing. We utilized outputs from 31 downscaled climate models and two representative concentration pathways (RCPs) for the 2020s, 2050s, and 2080s. This strategy was used to estimate future net temperature along with heat- and cold-related deaths. The results for predicted temperature-related deaths were subsequently contrasted with the baseline period. In the 2080s, using the RCP8.5 and no population variation scenarios, the net total number of annual temperature-related deaths exhibited a median value of 637 (with a range across models of 434-874) for ischemic stroke; this is an increase of approximately 100% compared with the 1980s. The median number of projected annual temperature-related deaths was 660 (with a range across models of 580-745) for hemorrhagic stroke (virtually no change compared with the 1980s), and 1683 (with a range across models of 1351-2002) for acute ischemic heart disease (a slight increase of approximately 20% compared with the 1980s). In the 2080s, the monthly death projection for hemorrhagic stroke and acute ischemic heart disease showed that the largest absolute changes occurred in summer and winter while the largest absolute changes for ischemic stroke occurred in summer. We projected that the temperature-related mortality associated with ischemic stroke will increase dramatically due to climate warming. However, projected temperature-related mortality pertaining to acute ischemic heart disease and hemorrhagic stroke should remain relatively stable over time. Copyright © 2017 Elsevier Ltd. All rights

  14. White Matter Hyperintensities Improve Ischemic Stroke Recurrence Prediction.

    PubMed

    Andersen, Søren Due; Larsen, Torben Bjerregaard; Gorst-Rasmussen, Anders; Yavarian, Yousef; Lip, Gregory Y H; Bach, Flemming W

    2017-01-01

    Nearly one in 5 patients with ischemic stroke will invariably experience a second stroke within 5 years. Stroke risk stratification schemes based solely on clinical variables perform only modestly in non-atrial fibrillation (AF) patients and improvement of these schemes will enhance their clinical utility. Cerebral white matter hyperintensities are associated with an increased risk of incident ischemic stroke in the general population, whereas their association with the risk of ischemic stroke recurrence is more ambiguous. In a non-AF stroke cohort, we investigated the association between cerebral white matter hyperintensities and the risk of recurrent ischemic stroke, and we evaluated the predictive performance of the CHA2DS2VASc score and the Essen Stroke Risk Score (clinical scores) when augmented with information on white matter hyperintensities. In a registry-based, observational cohort study, we included 832 patients (mean age 59.6 (SD 13.9); 42.0% females) with incident ischemic stroke and no AF. We assessed the severity of white matter hyperintensities using MRI. Hazard ratios stratified by the white matter hyperintensities score and adjusted for the components of the CHA2DS2VASc score were calculated based on the Cox proportional hazards analysis. Recalibrated clinical scores were calculated by adding one point to the score for the presence of moderate to severe white matter hyperintensities. The discriminatory performance of the scores was assessed with the C-statistic. White matter hyperintensities were significantly associated with the risk of recurrent ischemic stroke after adjusting for clinical risk factors. The hazard ratios ranged from 1.65 (95% CI 0.70-3.86) for mild changes to 5.28 (95% CI 1.98-14.07) for the most severe changes. C-statistics for the prediction of recurrent ischemic stroke were 0.59 (95% CI 0.51-0.65) for the CHA2DS2VASc score and 0.60 (95% CI 0.53-0.68) for the Essen Stroke Risk Score. The recalibrated clinical scores showed

  15. Ischemic colitis related to sumatriptan overuse.

    PubMed

    Hodge, Joshua A; Hodge, Katherine D

    2010-01-01

    Serotonin-1 5-hydroxytryptamine (5-HT 1) receptor agonists are first line agents for migraine headaches. Patients with refractory headaches may use supratherapeutic doses of these medications. Described is a case of ischemic colitis related to overuse of sumatriptan. A 35-year-old woman presented with severe abdominal pain without diarrhea or hematochezia. For several days prior she had been self-treating a refractory migraine headache with frequent doses of sumatriptan. She is a nonsmoker and took no oral contraceptives or other serotonin agonists. A computed tomography scan of the abdomen revealed left-sided colitis. A colonoscopy with biopsy confirmed ischemic colitis and excluded inflammatory bowel disease (IBD). Previously published case reports have suggested an association between 5-HT 1 receptor agonists and ischemic colitis. These reports have been dismissed because the patients were taking oral contraceptives, serotonin agonists, or had other comorbidities. This healthy patient lacked risk factors for ischemia, is the youngest to be reported, and is the first without hematochezia. 5-HT 1 receptor agonists are generally considered safe. Ischemic colitis is a potentially serious complication of these agents. A retrospective review of 5-HT 1 receptor agonist users who have presented with acute onset abdominal pain or hematochezia is necessary to elucidate the incidence of this adverse event.

  16. The mechanism of muscle injury in the crush syndrome: ischemic versus pressure-stretch myopathy.

    PubMed

    Better, O S; Abassi, Z; Rubinstein, I; Marom, S; Winaver, Y; Silberman, M

    1990-01-01

    Crush injuries are ubiquitous, common sequelae in victims of seismic, industrial and military catastrophes, and were considered to be mainly due to ischemia of the affected limbs. Our clinical experience suggests that early in the crush syndrome, interference with the circulation may occur but is rare. The predominant earliest lesion in the crush syndrome is postulated to be pressure-stretch myopathy, rather than ischemic myopathy. It is proposed that at the membrane level, stretch increases sarcoplasmic influx of Na, Cl, H2O and Ca down their electrochemical gradient. Energy-requiring cationic extrusion pumps work at maximal capacity, but are unable to cope with the increased load. This results in cell swelling and increase in cytosolic and mitochondrial calcium with activation of autolytic destructive processes and interference with cellular respiration. Extensive muscle swelling may cause late muscle tamponade and myoneural ischemic damage (compartmental syndrome). Thus, whereas prevalent theory suggests that the sarcolemmal cationic pump activity is attenuated in the crush syndrome due to early ischemia, we propose that the cationic extrusion pump is maximally activated as in the amphotericin B model. Because the cationic pump is maximally activated in the stretched muscle and in cells exposed to amphotericin, these models rapidly deplete their scarce ATP stores and are susceptible to hypoxia in the face of initially normal circulation.

  17. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    PubMed

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply. Copyright

  18. Transcriptomic analysis of neuregulin-1 regulated genes following ischemic stroke by computational identification of promoter binding sites: A role for the ETS-1 transcription factor.

    PubMed

    Surles-Zeigler, Monique C; Li, Yonggang; Distel, Timothy J; Omotayo, Hakeem; Ge, Shaokui; Ford, Byron D

    2018-01-01

    Ischemic stroke is a major cause of mortality in the United States. We previously showed that neuregulin-1 (NRG1) was neuroprotective in rat models of ischemic stroke. We used gene expression profiling to understand the early cellular and molecular mechanisms of NRG1's effects after the induction of ischemia. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Rats were allocated to 3 groups: (1) control, (2) MCAO and (3) MCAO + NRG1. Cortical brain tissues were collected three hours following MCAO and NRG1 treatment and subjected to microarray analysis. Data and statistical analyses were performed using R/Bioconductor platform alongside Genesis, Ingenuity Pathway Analysis and Enrichr software packages. There were 2693 genes differentially regulated following ischemia and NRG1 treatment. These genes were organized by expression patterns into clusters using a K-means clustering algorithm. We further analyzed genes in clusters where ischemia altered gene expression, which was reversed by NRG1 (clusters 4 and 10). NRG1, IRS1, OPA3, and POU6F1 were central linking (node) genes in cluster 4. Conserved Transcription Factor Binding Site Finder (CONFAC) identified ETS-1 as a potential transcriptional regulator of NRG1 suppressed genes following ischemia. A transcription factor activity array showed that ETS-1 activity was increased 2-fold, 3 hours following ischemia and this activity was attenuated by NRG1. These findings reveal key early transcriptional mechanisms associated with neuroprotection by NRG1 in the ischemic penumbra.

  19. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress

    PubMed Central

    Lin, Jianguo; Tang, Youcai; Kang, Qiaohua; Feng, Yunfeng; Chen, Anping

    2012-01-01

    BACKGROUND AND PURPOSE Diabetes is characterized by hyperglycaemia, which facilitates the formation of advanced glycation end-products (AGEs). Type 2 diabetes mellitus is commonly accompanied by non-alcoholic steatohepatitis, which could lead to hepatic fibrosis. Receptor for AGEs (RAGE) mediates effects of AGEs and is associated with increased oxidative stress, cell growth and inflammation. The phytochemical curcumin inhibits the activation of hepatic stellate cells (HSCs), the major effectors during hepatic fibrogenesis. The aim of this study was to explore the underlying mechanisms of curcumin in the elimination of the stimulating effects of AGEs on the activation of HSCs. We hypothesize that curcumin eliminates the effects of AGEs by suppressing gene expression of RAGE. EXPERIMENTAL APPROACH Gene promoter activities were evaluated by transient transfection assays. The expression of rage was silenced by short hairpin RNA. Gene expression was analysed by real-time PCR and Western blots. Oxidative stress was evaluated. KEY RESULTS AGEs induced rage expression in cultured HSCs, which played a critical role in the AGEs-induced activation of HSCs. Curcumin at 20 µM eliminated the AGE effects, which required the activation of PPARγ. In addition, curcumin attenuated AGEs-induced oxidative stress in HSCs by elevating the activity of glutamate-cysteine ligase and by stimulating de novo synthesis of glutathione, leading to the suppression of gene expression of RAGE. CONCLUSION AND IMPLICATIONS Curcumin suppressed gene expression of RAGE by elevating the activity of PPARγ and attenuating oxidative stress, leading to the elimination of the AGE effects on the activation of HSCs. LINKED ARTICLE This article is commented on by Stefanska, pp. 2209–2211 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01959.x PMID:22352842

  20. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    PubMed

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  1. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia

    PubMed Central

    Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2010-01-01

    Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450

  2. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke.

    PubMed

    Wu, Hai-Yin; Tang, Ying; Gao, Li-Yan; Sun, Wei-Xiang; Hua, Yao; Yang, Shi-Bao; Zhang, Zheng-Ping; Liao, Gao-Yong; Zhou, Qi-Gang; Luo, Chun-Xia; Zhu, Dong-Ya

    2014-10-05

    Free radical production contributes to the early ischemic response and the neuroinflammatory response to injury initiates the second wave of cell death following ischemic stroke. Edaravone is a free radical scavenger, and borneol has shown anti-inflammatory effect. We investigated the synergistic effect of these two drugs in the rat model of transient cerebral ischemia. Edaravone scavenged OH, NO and ONOO─ concentration-dependently, and borneol inhibited ischemia/reperfusion-induced tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) expressions. In the rat model of transient cerebral ischemia and reperfusion, the combination of edaravone and borneol significantly ameliorated ischemic damage with an optimal proportion of 4:1. Emax (% inhibition) of edaravone, borneol and two drugs in combination was 55.7%, 65.8% and 74.3% respectively. ED50 of edaravone and borneol was 7.17 and 0.36 mg/kg respectively. When two drugs in combination, ED50 was 0.484 mg/kg, in which edaravone was 0.387 mg/kg (ineffective dose) and borneol was 0.097 mg/kg (ineffective dose). Combination index (CI)<1 among effects observed in experiments, suggesting a significant synergistic effect. Reduced levels of pro-inflammatory mediators and free radicals were probably associated with the synergistic effect of edaravone and borneol. The combination exhibited a therapeutic time window of 6h in ischemia/reperfusion model, and significantly ameliorated damages in permanent ischemia model. Moreover, two drugs in combination promoted long-term effect, including improved elemental vital signs, sensorimotor functions and spatial cognition. Our results suggest that the combination of edaravone and borneol have a synergistic effect for treating ischemic stroke. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.

    PubMed

    Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y

    2015-01-01

    Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.

    PubMed

    Rayner, Cassie L; Bottle, Steven E; Gole, Glen A; Ward, Micheal S; Barnett, Nigel L

    2016-01-01

    Nitroxides have been exploited as profluorescent probes for the detection of oxidative stress. In addition, they deliver potent antioxidant action and attenuate reactive oxygen species (ROS) in various models of oxidative stress, with these results ascribed to superoxide dismutase or redox and radical-scavenging actions. Our laboratory has developed a range of novel, biostable, isoindoline nitroxide-based antioxidants, DCTEIO and CTMIO. In this study we compared the efficiency of these novel compounds as antioxidant therapies in reducing ROS both in vivo (rat model) and in vitro (661W photoreceptor cells), with the established antioxidant resveratrol. By assessing changes in fluorescence intensity of a unique redox-responsive probe in the rat retina in vivo, we evaluated the ability of antioxidant therapy to (1) ameliorate ROS production and (2) reverse the accumulation of ROS after complete, acute ischemia followed by reperfusion (I/R). I/R injury induced a marked decrease in fluorescence intensity over 60 min of reperfusion, which was successfully ameliorated with each of the antioxidants. DCTEIO and CTMIO reversed the accumulation of ROS when administered intraocularly post ischemic insult, whereas, the effect of resveratrol was not significant. We also investigated our novel agents' capacity to prevent ROS-mediated metabolic dysfunction in the 661W photoreceptor cell line. Cellular stress induced by the oxidant, tert-butyl hydroperoxide, resulted in a loss of spare mitochondrial respiratory capacity (SMRC) and in the extracellular acidification rate in 661W cells. DCTEIO antioxidant administration successfully reduced the loss of SMRC. Together, these findings show we can quantify dynamic changes in cellular oxidative status in vivo and suggest that nitroxide-based antioxidants may provide greater protection against oxidative stress than the current state-of-the-art antioxidant treatments for ROS-mediated diseases. Copyright © 2015 Elsevier Ltd. All rights

  5. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  6. Glutamine with probiotics attenuates intestinal inflammation and oxidative stress in a rat burn injury model through altered iNOS gene aberrant methylation

    PubMed Central

    Gong, Zhen-Yu; Yuan, Zhi-Qiang; Dong, Zhi-Wei; Peng, Yi-Zhi

    2017-01-01

    Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model. PMID:28560003

  7. Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia.

    PubMed

    Zhang, Qi; Zhang, Jingjun; Yan, Yuzhong; Zhang, Pengyue; Zhang, Wei; Xia, Rong

    2017-11-01

    Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.

  8. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.

    PubMed

    Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun

    2012-11-09

    Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  9. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection

    PubMed Central

    Aubert, Yann; Widemann, Emilie; Miesch, Laurence; Pinot, Franck; Heitz, Thierry

    2015-01-01

    Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1–JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity. PMID:25903915

  10. Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease.

    PubMed

    He, Zhangping; Tang, Yanyan; Qin, Chao

    2017-06-01

    Circulating leukocyte-derived microparticles act as proinflammatory mediators that reflect vascular inflammation. In this study, we examined the hypothesis that the quantity of leukocyte-derived microparticles is increased in patients with ischemic cerebrovascular diseases, and investigated utility of various phenotypes of leukocyte-derived microparticles as specific biomarkers of vascular inflammation injury. Additionally we focused on identifying leukocyte-derived microparticles that may be correlated with stroke severity in acute ischemic stroke patients. The plasma concentration of leukocyte-derived microparticles obtained by a series of centrifugations of 76 consecutive patients with ischemic cerebrovascular diseases and 70 age-, sex-, and race-matched healthy controls were determined by flow cytometry. Significantly elevated numbers of leukocyte (CD45+), monocyte (CD14+), lymphocyte (CD4+), granulocyte (CD15+) derived microparticles were found in the plasma samples of patients ischemic cerebrovascular diseases, compared to healthy controls (p<0.05). Furthermore, the plasma levels of CD14+ microparticles were significantly correlated with stroke severity (r=0.355, p=0.019), cerebral vascular stenosis severity (r=0.255, p=0.025) and stroke subtype (r=0.242, p=0.036). No association with stroke was observed for other leukocyte-derived phenotypes. These results demonstrate that circulating leukocyte-derived microparticles amounts are increased in patients with ischemic cerebrovascular diseases, compared with healthy controls. As proinflammatory mediators, leukocyte-derived microparticles may contribute to vascular inflammatory and the inflammatory process in acute ischemic stroke. Levels of CD14+ microparticles may be a promising biomarker of ischemic severity and outcome of stroke in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Autonomic Nervous System and Stress to Predict Secondary Ischemic Events after Transient Ischemic Attack or Minor Stroke: Possible Implications of Heart Rate Variability.

    PubMed

    Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E

    2018-01-01

    Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye's fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or "stressors," respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke.

  12. Autonomic Nervous System and Stress to Predict Secondary Ischemic Events after Transient Ischemic Attack or Minor Stroke: Possible Implications of Heart Rate Variability

    PubMed Central

    Guan, Ling; Collet, Jean-Paul; Mazowita, Garey; Claydon, Victoria E.

    2018-01-01

    Transient ischemic attack (TIA) and minor stroke have high risks of recurrence and deterioration into severe ischemic strokes. Risk stratification of TIA and minor stroke is essential for early effective treatment. Traditional tools have only moderate predictive value, likely due to their inclusion of the limited number of stroke risk factors. Our review follows Hans Selye’s fundamental work on stress theory and the progressive shift of the autonomic nervous system (ANS) from adaptation to disease when stress becomes chronic. We will first show that traditional risk factors and acute triggers of ischemic stroke are chronic and acute stress factors or “stressors,” respectively. Our first review shows solid evidence of the relationship between chronic stress and stroke occurrence. The stress response is tightly regulated by the ANS whose function can be assessed with heart rate variability (HRV). Our second review demonstrates that stress-related risk factors of ischemic stroke are correlated with ANS dysfunction and impaired HRV. Our conclusions support the idea that HRV parameters may represent the combined effects of all body stressors that are risk factors for ischemic stroke and, thus, may be of important predictive value for the risk of subsequent ischemic events after TIA or minor stroke. PMID:29556209

  13. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.

    PubMed

    Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-06-01

    Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.

  14. Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice

    PubMed Central

    Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Wei, Ling

    2015-01-01

    Apelin is a peptide originally isolated from bovine stomach tissue extracts and identified as an endogenous ligand of the APJ receptor; recent work showed that apelin ameliorates the ischemic injury in the heart and the brain. Being an analogue to the angiotensin II receptor, the apelin/APJ signaling may mediate angiogenesis process. We explored the noninvasive intranasal brain delivery method and investigated therapeutic effects of apelin-13 in a focal ischemic stroke model of mice. Intranasal administration of apelin-13 (4 mg/kg) was given 30 min after the onset of stroke and repeated once daily. Three days after stroke, mice received apelin-13 had significantly reduced infarct volume and less neuronal death in the penumbra. Western blot analyses showed upregulated levels of apelin, apelin receptor APLNR, and Bcl-2 and decreased caspase-3 activation in the apelin-13-treated brain. The proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1β, and chemokine monocyte chemoattractant protein-1 mRNA increased in the ischemic brain, which were significantly attenuated by apelin-13. Apelin-13 remarkably reduced microglia recruitment and activation in the penumbra according to morphological features of Iba-1-positive cells 3 days after ischemia. Apelin-13 significantly increased the expression of angiogenic factor vascular endothelial growth factor and matrix metalloproteinase-9 14 days after stroke. Angiogenesis illustrated by collagen IV + /5-bromo-2′-deoxyuridin + colabeled cells was significantly increased by the apelin-13 treatment 21 days after stroke. Finally, apelin-13 promoted the local cerebral blood flow restoration and long-term functional recovery. This study demonstrates a noninvasive intranasal delivery of apelin-13 after stroke, suggesting that the reduced inflammatory activities, decreased cell death, and increased angiogenesis contribute to the therapeutic benefits of apelin-13. PMID:26391329

  15. The Siblings With Ischemic Stroke Study (SWISS) Protocol

    PubMed Central

    Meschia, James F; Brown, Robert D; Brott, Thomas G; Chukwudelunzu, Felix E; Hardy, John; Rich, Stephen S

    2002-01-01

    Background Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. Methods Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. Discussion Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members. PMID:11882254

  16. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    PubMed

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  17. Hospital costs of ischemic stroke and TIA in the Netherlands.

    PubMed

    Buisman, Leander R; Tan, Siok Swan; Nederkoorn, Paul J; Koudstaal, Peter J; Redekop, William K

    2015-06-02

    There have been no ischemic stroke costing studies since major improvements were implemented in stroke care. We therefore determined hospital resource use and costs of ischemic stroke and TIA in the Netherlands for 2012. We conducted a retrospective cost analysis using individual patient data from a national diagnosis-related group registry. We analyzed 4 subgroups: inpatient ischemic stroke, inpatient TIA, outpatient ischemic stroke, and outpatient TIA. Costs of carotid endarterectomy and costs of an extra follow-up visit were also estimated. Unit costs were based on reference prices from the Dutch Healthcare Insurance Board and tariffs provided by the Dutch Healthcare Authority. Linear regression analysis was used to examine the association between hospital costs and various patient and hospital characteristics. A total of 35,903 ischemic stroke and 21,653 TIA patients were included. Inpatient costs were €5,328 ($6,845) for ischemic stroke and €2,470 ($3,173) for TIA. Outpatient costs were €495 ($636) for ischemic stroke and €587 ($754) for TIA. Costs of carotid endarterectomy were €6,836 ($8,783). Costs of inpatient days were the largest contributor to hospital costs. Age, hospital type, and region were strongly associated with hospital costs. Hospital costs are higher for inpatients and ischemic strokes compared with outpatients and TIAs, with length of stay (LOS) the most important contributor. LOS and hospital costs have substantially declined over the last 10 years, possibly due to improved hospital stroke care and efficient integrated stroke services. © 2015 American Academy of Neurology.

  18. Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions.

    PubMed

    Kim, Bum Joon; Kim, Yong-Hwan; Kim, Yeon-Jung; Ahn, Sung Ho; Lee, Deok Hee; Kwon, Sun U; Kim, Sang Joon; Kim, Jong S; Kang, Dong-Wha

    2014-09-01

    Diffusion-weighted image fluid-attenuated inversion recovery (FLAIR) mismatch has been considered to represent ischemic lesion age. However, the inter-rater agreement of diffusion-weighted image FLAIR mismatch is low. We hypothesized that color-coded images would increase its inter-rater agreement. Patients with ischemic stroke <24 hours of a clear onset were retrospectively studied. FLAIR signal change was rated as negative, subtle, or obvious on conventional and color-coded FLAIR images based on visual inspection. Inter-rater agreement was evaluated using κ and percent agreement. The predictive value of diffusion-weighted image FLAIR mismatch for identification of patients <4.5 hours of symptom onset was evaluated. One hundred and thirteen patients were enrolled. The inter-rater agreement of FLAIR signal change improved from 69.9% (k=0.538) with conventional images to 85.8% (k=0.754) with color-coded images (P=0.004). Discrepantly rated patients on conventional, but not on color-coded images, had a higher prevalence of cardioembolic stroke (P=0.02) and cortical infarction (P=0.04). The positive predictive value for patients <4.5 hours of onset was 85.3% and 71.9% with conventional and 95.7% and 82.1% with color-coded images, by each rater. Color-coded FLAIR images increased the inter-rater agreement of diffusion-weighted image FLAIR recovery mismatch and may ultimately help identify unknown-onset stroke patients appropriate for thrombolysis. © 2014 American Heart Association, Inc.

  19. Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro.

    PubMed

    Liu, Lihua; Zuo, Zhongfu; Lu, Sijing; Liu, Aihua; Liu, Xuezheng

    2017-07-01

    Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 80 mg/kg/day) was intraperitoneally injected into the diabetic rats for twelve weeks. Glial fibrillary acidic protein (GFAP) level, thickness of ganglion cell layer (GCL) and ganglion cell counts were assessed in diabetic retina in vivo . Naringin (50 μM) that significantly inhibited high glucose (HG, 25 mM)-induced cell proliferation was used to treat rat Muller cell line (rMC1) in vitro . Inflammatory response, oxidative stress and activation of nuclear factor kappa B (NF-κB) p65 were evaluated in retina in vivo and in rMC1 cells in vitro . Naringin alleviated DR symptoms as evidenced by the increased retinal ganglion cells and decreased GFAP level in rat retina. Naringin exhibited anti-inflammatory and antioxidative effects as confirmed by the down-regulated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the up-regulated antioxidants, glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in DR rats. Moreover, we found that naringin inhibited HG-induced proliferation, abnormal inflammatory response and oxidative stress in rMC1 cells. In addition, the enhanced nuclear translocation of NF-κB p65 in diabetic rat retina and HG-induced rMC1 cells was suppressed by naringin. Naringin attenuates inflammatory response, oxidative stress and NF-κB activation in experimental models of DR.

  20. Docosahexaenoic Acid Attenuates Hepatic Inflammation, Oxidative Stress, and Fibrosis without Decreasing Hepatosteatosis in a Ldlr−/− Mouse Model of Western Diet-Induced Nonalcoholic Steatohepatitis123

    PubMed Central

    Depner, Christopher M.; Philbrick, Kenneth A.; Jump, Donald B.

    2013-01-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) has increased in parallel with the incidence of obesity. While both NAFLD and NASH are characterized by hepatosteatosis, NASH is characterized by hepatic damage, inflammation, oxidative stress, and fibrosis. We previously reported that feeding Ldlr−/− mice a high-fat, high-cholesterol diet containing menhaden oil attenuated several markers of NASH, including hepatosteatosis, inflammation, and fibrosis. Herein, we test the hypothesis that DHA [22:6 (n-3)] is more effective than EPA [20:5 (n-3)] at preventing Western diet (WD)-induced NASH in Ldlr−/− mice. Mice were fed the WD supplemented with either olive oil (OO), EPA, DHA, or EPA + DHA for 16 wk. WD + OO feeding induced a severe NASH phenotype, characterized by robust hepatosteatosis, inflammation, oxidative stress, and fibrosis. Whereas none of the C20–22 (n-3) fatty acid treatments prevented WD-induced hepatosteatosis, all 3 (n-3) PUFA-containing diets significantly attenuated WD-induced inflammation, fibrosis, and hepatic damage. The capacity of dietary DHA to suppress hepatic markers of inflammation (Clec4F, F4/80, Trl4, Trl9, CD14, Myd88), fibrosis (Procol1α1, Tgfβ1), and oxidative stress (NADPH oxidase subunits Nox2, p22phox, p40phox, p47phox, p67phox) was significantly greater than dietary EPA. The effects of DHA on these markers paralleled DHA-mediated suppression of hepatic Fads1 mRNA abundance and hepatic arachidonic acid content. Because DHA suppression of NASH markers does not require a reduction in hepatosteatosis, dietary DHA may be useful in combating NASH in obese humans. PMID:23303872

  1. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    PubMed

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  2. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Nair, Anand R; Mariappan, Nithya; Stull, April J; Francis, Joseph

    2017-11-15

    Blueberries (BB) have been shown to improve insulin sensitivity and endothelial function in obese and pre-diabetic humans, and decrease oxidative stress and inflammation, and ameliorate cardio-renal damage in rodents. This indicates that blueberries have a systemic effect and are not limited to a particular organ system. In order for blueberries to exert beneficial effects on the whole body, the mechanism would logically have to operate through modulation of cellular humoral factors. This study investigated the role of blueberries in modulating immune cell levels and attenuating circulatory and monocyte inflammation and oxidative stress in metabolic syndrome (MetS) subjects. A double-blind, randomized and placebo-controlled study was conducted in adults with MetS, in which they received a blueberry (22.5 g freeze-dried) or placebo smoothie twice daily for six weeks. Free radical production in the whole blood and monocytes, dendritic cell (DC) levels, expression of cytokines in monocytes and serum inflammatory markers were assessed pre- and post-intervention. Baseline free radical levels in MetS subjects' samples were not different between groups. Treatment with blueberries markedly decreased superoxide and total reactive oxygen species (ROS) in whole blood and monocytes compared to the placebo (p ≤ 0.05). The baseline DC numbers in MetS subjects' samples in both groups were not different, however treatment with blueberries significantly increased myeloid DC (p ≤ 0.05) and had no effect on plasmacytoid cells. Blueberry treatment decreased monocyte gene expression of TNFα, IL-6, TLR4 and reduced serum GMCSF in MetS subjects when compared to the placebo treatment (p ≤ 0.05). The findings of the current study demonstrate that blueberries exert immunomodulatory effects and attenuate oxidative stress and inflammation in adults with MetS.

  3. Recurrent Stroke in Minor Ischemic Stroke or Transient Ischemic Attack With Metabolic Syndrome and/or Diabetes Mellitus.

    PubMed

    Chen, Weiqi; Pan, Yuesong; Jing, Jing; Zhao, Xingquan; Liu, Liping; Meng, Xia; Wang, Yilong; Wang, Yongjun

    2017-06-01

    We aimed to determine the risk conferred by metabolic syndrome (METS) and diabetes mellitus (DM) to recurrent stroke in patients with minor ischemic stroke or transient ischemic attack from the CHANCE (Clopidogrel in High-risk patients with Acute Non-disabling Cerebrovascular Events) trial. In total, 3044 patients were included. Patients were stratified into 4 groups: neither, METS only, DM only, or both. METS was defined using the Chinese Diabetes Society (CDS) and International Diabetes Foundation (IDF) definitions. The primary outcome was new stroke (including ischemic and hemorrhagic) at 90 days. A multivariable Cox regression model was used to assess the relationship of METS and DM status to the risk of recurrent stroke adjusted for potential covariates. Using the CDS criteria of METS, 53.2%, 17.2%, 19.8%, and 9.8% of patients were diagnosed as neither, METS only, DM only, and both, respectively. After 90 days of follow-up, there were 299 new strokes (293 ischemic, 6 hemorrhagic). Patients with DM only (16.1% versus 6.8%; adjusted hazard ratio 2.50, 95% CI 1.89-3.39) and both (17.1% versus 6.8%; adjusted hazard ratio 2.76, 95% CI 1.98-3.86) had significantly increased rates of recurrent stroke. No interaction effect of antiplatelet therapy by different METS or DM status for the risk of recurrent stroke ( P =0.82 for interaction in the fully adjusted model of CDS) was observed. Using the METS (IDF) criteria demonstrated similar results. Concurrent METS and DM was associated with an increased risk of recurrent stroke in patients with minor stroke and transient ischemic attack. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: advances and uncertainties

    PubMed Central

    Cerasuolo, Joshua O.; Cipriano, Lauren E.; Sposato, Luciano A.

    2017-01-01

    Purpose of review Atrial fibrillation is being increasingly diagnosed after ischemic stroke and transient ischemic attack (TIA). Patient characteristics, frequency and duration of paroxysms, and the risk of recurrent ischemic stroke associated with atrial fibrillation detected after stroke and TIA (AFDAS) may differ from atrial fibrillation already known before stroke occurrence. We aim to summarize major recent advances in the field, in the context of prior evidence, and to identify areas of uncertainty to be addressed in future research. Recent findings Half of all atrial fibrillations in ischemic stroke and TIA patients are AFDAS, and most of them are asymptomatic. Over 50% of AFDAS paroxysms last less than 30 s. The rapid initiation of cardiac monitoring and its duration are crucial for its timely and effective detection. AFDAS comprises a heterogeneous mix of atrial fibrillation, possibly including cardiogenic and neurogenic types, and a mix of both. Over 25 single markers and at least 10 scores have been proposed as predictors of AFDAS. However, there are considerable inconsistencies across studies. The role of AFDAS burden and its associated risk of stroke recurrence have not yet been investigated. Summary AFDAS may differ from atrial fibrillation known before stroke in several clinical dimensions, which are important for optimal patient care strategies. Many questions remain unanswered. Neurogenic and cardiogenic AFDAS need to be characterized, as it may be possible to avoid some neurogenic cases by initiating timely preventive treatments. AFDAS burden may differ in ischemic stroke and TIA patients, with distinctive diagnostic and treatment implications. The prognosis of AFDAS and its risk of recurrent stroke are still unknown; therefore, it is uncertain whether AFDAS patients should be treated with oral anticoagulants. PMID:27984303

  5. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors.

    PubMed

    Privalova, Larisa I; Katsnelson, Boris A; Loginova, Nadezhda V; Gurvich, Vladimir B; Shur, Vladimir Y; Valamina, Irene E; Makeyev, Oleg H; Sutunkova, Marina P; Minigalieva, Ilzira A; Kireyeva, Ekaterina P; Rusakov, Vadim O; Tyurnina, Anastasia E; Kozin, Roman V; Meshtcheryakova, Ekaterina Y; Korotkov, Artem V; Shuman, Eugene A; Zvereva, Anastasia E; Kostykova, Svetlana V

    2014-07-14

    In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles<100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism's resistance to their impact. A stable suspension of copper oxide particles with mean (±SD) diameter 20±10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a "bio-protective complex" (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism's status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with the help

  6. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors

    PubMed Central

    Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Valamina, Irene E.; Makeyev, Oleg H.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Kireyeva, Ekaterina P.; Rusakov, Vadim O.; Tyurnina, Anastasia E.; Kozin, Roman V.; Meshtcheryakova, Ekaterina Y.; Korotkov, Artem V.; Shuman, Eugene A.; Zvereva, Anastasia E.; Kostykova, Svetlana V.

    2014-01-01

    In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles <100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism’s resistance to their impact. A stable suspension of copper oxide particles with mean (±SD) diameter 20 ± 10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a “bio-protective complex” (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism’s status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with

  7. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.

    PubMed

    Famurewa, Ademola C; Ufebe, Odomero G; Egedigwe, Chima A; Nwankwo, Onyebuchi E; Obaje, Godwin S

    2017-03-01

    The emerging health benefit of virgin coconut oil (VCO) has been associated with its potent natural antioxidants; however, the antioxidant and hepatoprotective effect of VCO against methotrexate-induced liver damage and oxidative stress remains unexplored. The study explored the antioxidant and hepatoprotective effects of VCO against oxidative stress and liver damage induced by anticancer drug methotrexate (MTX) in rats. Liver damage was induced in Wistar rats pretreated with dietary supplementation of VCO (5% and 15%) by intraperitoneal administration of MTX (20mg/kg bw) on day 10 only. After 12days of treatment, assays for serum liver biomarkers (aminotransferases), alkaline phosphatase, albumin and total protein as well as hepatic content of malondialdehyde, reduced glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) were carried out. Liver was used to examine histopathological changes. MTX administration induced significant increase in serum liver enzymes along with marked decrease in albumin and total protein compared to control group. Hepatic activities of antioxidant enzymes were significantly decreased, while malondialdehyde increased significantly. Treatment with VCO supplemented diet prior to MTX administration attenuated MTX-induced liver injury and oxidative stress evidenced by significant improvements in serum liver markers, hepatic antioxidant enzymes and malondialdehyde comparable to control group. Histopathological alterations were prevented and correlated well with the biochemical indices. The study suggests antioxidant and hepatoprotective effects of VCO supplementation against hepatotoxicity and oxidative damage via improving antioxidant defense system in rats. Our findings may have beneficial application in the management of hepatotoxicity associated with MTX cancer chemotherapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. S-Allylmercaptocysteine Attenuates  Cisplatin-Induced Nephrotoxicity through  Suppression of Apoptosis, Oxidative Stress, and  Inflammation.

    PubMed

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-02-20

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects.

  9. The Migraine-Ischemic Stroke Relation in Young Adults

    PubMed Central

    Pezzini, Alessandro; Del Zotto, Elisabetta; Giossi, Alessia; Volonghi, Irene; Costa, Paolo; Dalla Volta, Giorgio; Padovani, Alessandro

    2011-01-01

    In spite of the strong epidemiologic evidence linking migraine and ischemic stroke in young adults, the mechanisms explaining this association remain poorly understood. The observation that stroke occurs more frequently during the interictal phase of migraine prompts to speculation that an indirect relation between the two diseases might exist. In this regard, four major issues might be considered which may be summarized as follows: (1) the migraine-ischemic stroke relation is influenced by specific risk factors such as patent foramen ovale or endothelial dysfunction and more frequent in particular conditions like spontaneous cervical artery dissection; (2) migraine is associated with an increased prevalence of cardiovascular risk factors; (3) the link is caused by migraine-specific drugs; (4) migraine and ischemic vascular events are linked via a genetic component. In the present paper, we will review epidemiological studies, discuss potential mechanisms of migraine-induced stroke and comorbid ischemic stroke, and pose new research questions. PMID:21197470

  10. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  11. No influence of ischemic preconditioning on running economy.

    PubMed

    Kaur, Gungeet; Binger, Megan; Evans, Claire; Trachte, Tiffany; Van Guilder, Gary P

    2017-02-01

    Many of the potential performance-enhancing properties of ischemic preconditioning suggest that the oxygen cost for a given endurance exercise workload will be reduced, thereby improving the economy of locomotion. The aim of this study was to identify whether ischemic preconditioning improves exercise economy in recreational runners. A randomized sham-controlled crossover study was employed in which 18 adults (age 27 ± 7 years; BMI 24.6 ± 3 kg/m 2 ) completed two, incremental submaximal (65-85% VO 2max ) treadmill running protocols (3 × 5 min stages from 7.2-14.5 km/h) coupled with indirect calorimetry to assess running economy following ischemic preconditioning (3 × 5 min bilateral upper thigh ischemia) and sham control. Running economy was expressed as mlO 2 /kg/km and as the energy in kilocalories required to cover 1 km of horizontal distance (kcal/kg/km). Ischemic preconditioning did not influence steady-state heart rate, oxygen consumption, minute ventilation, respiratory exchange ratio, energy expenditure, and blood lactate. Likewise, running economy was similar (P = 0.647) between the sham (from 201.6 ± 17.7 to 204.0 ± 16.1 mlO 2 /kg/km) and ischemic preconditioning trials (from 202.8 ± 16.2 to 203.1 ± 15.6 mlO 2 /kg/km). There was no influence (P = 0.21) of ischemic preconditioning on running economy expressed as the caloric unit cost (from 0.96 ± 0.12 to 1.01 ± 0.11 kcal/kg/km) compared with sham (from 1.00 ± 0.10 to 1.00 ± 0.08 kcal/kg/km). The properties of ischemic preconditioning thought to affect exercise performance at vigorous to severe exercise intensities, which generate more extensive physiological challenge, are ineffective at submaximal workloads and, therefore, do not change running economy.

  12. Studies on the neuroprotective action of kynurenine mono-oxygenase inhibitors in post-ischemic brain damage.

    PubMed

    Moroni, Flavio; Carpenedo, Raffaella; Cozzi, Andrea; Meli, Elena; Chiarugi, Alberto; Pellegrini-Giampietro, Domenico E

    2003-01-01

    Kynurenine 3-mono-oxygenase (KMO) inhibitors facilitate kynurenic acid (KYNA) neosynthesis and reduce the formation of 3OH-kynurenine (3-HK) and quinolinic acid (QUIN). They also attenuate post-ischemic brain damage and decrease glutamate (Glu) content in brain extracellular spaces. To investigate KMO mechanism(s) of neuroprotection, we performed experiments in gerbils subjected to bilateral carotid occlusion and in organotypic rat hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD). In gerbils, direct application of KYNA (100 nM, through reverse microdialysis in the hippocampus) completely prevented the increase in Glu output induced by transient (5 min) occlusion of the carotids. In rat hippocampal slices exposed for 30 min to OGD, KMO inhibitors (m-nitrobenzoyl)-alanine (mNBA, 30-100 microM) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048, 1-10 microM) reduced post-ischemic neuronal death and increased KYNA concentrations in the incubation medium. KYNA may antagonize glycineb or alpha7 nicotinic acetylcholine receptors but the concentrations in the incubation medium never reached values that could efficiently antagonize receptor function. On the contrary, 3-HK (1-10 microM) added to slices exposed to OGD in the presence of KMO inhibitors completely prevented the neuroprotective effects of the inhibitors. Our findings suggest that KMO inhibitors reduce OGD-induced pyramidal cell death by decreasing 3-HK (and possibly QUIN) synthesis.

  13. Effect of melatonin on kidney cold ischemic preservation injury

    PubMed Central

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  14. [Ischemic brain injury and hepatocyte growth factor].

    PubMed

    Takeo, Satoshi; Takagi, Norio; Takagi, Keiko

    2007-11-01

    Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.

  15. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    PubMed Central

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  16. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Brookes, Rebecca L; Crichton, Siobhan; Wolfe, Charles D A; Yi, Qilong; Li, Linxin; Hankey, Graeme J; Rothwell, Peter M; Markus, Hugh S

    2018-01-01

    A variant in the histone deacetylase 9 ( HDAC9 ) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P =0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3-0.7; P =0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29-0.77; P =0.003). These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. © 2017 The Authors.

  17. [Preditive clinical factors for epileptic seizures after ischemic stroke].

    PubMed

    Fukujima, M M; Cardeal, J O; Lima, J G

    1996-06-01

    Preditive clinical factors for epileptic seizures after ischemic stroke. Clinical features of 35 patients with ischemic stroke who developed epilepsy (Group 1) were compared with those of 35 patients with ischemic stroke without epilepsy (Group 2). The age of the patients did not differ between the groups. There were more men than women and more white than other races in both groups. Diabetes melitus, hypertension, transient ischemic attack, previous stroke, migraine, Chagas disease, cerebral embolism of cardiac origin and use of oral contraceptive did not differ between the groups. Smokers and alcohol users were more frequent in Group 1 (p < 0.05). Most patients of Group 1 presented with hemiparesis; none presented cerebellar or brainstem involvement. Perhaps strokes in smokers have some different aspects, that let them more epileptogenic than in non smokers.

  18. Sexual dimorphism in ischemic stroke: lessons from the laboratory

    PubMed Central

    Manwani, Bharti; McCullough, Louise D

    2011-01-01

    Ischemic stroke is emerging as a major health problem for elderly women. Women have lower stroke incidence than men until an advanced age, when the epidemiology of ischemic stroke shifts and incidence rises dramatically in women. Experimental models of rodent stroke have replicated this clinical epidemiology, with exacerbated injury in older compared with young female rodents Many of the detrimental effects of aging on ischemic stroke outcome in females can be replicated by ovariectomy, suggesting that hormones such as estrogen play a neuroprotective role. However, emerging data suggest that the molecular mechanisms leading to ischemic cell death differ in the two sexes, and these effects may be independent of circulating hormone levels. This article highlights recent clinical and experimental literature on sex differences in stroke outcomes and mechanisms. PMID:21612353

  19. εPKC confers acute tolerance to cerebral ischemic reperfusion injury

    PubMed Central

    Bright, Rachel; Sun, Guo-Hua; Yenari, Midori A.; Steinberg, Gary K.; Mochly-Rosen, Daria

    2008-01-01

    In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that εPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of ψεRACK, an εPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of εPKC by ψεRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient εPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection. PMID:18586397

  20. Apoptosis and Acute Brain Ischemia in Ischemic Stroke.

    PubMed

    Radak, Djordje; Katsiki, Niki; Resanovic, Ivana; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Mousad, Shaker A; Isenovic, Esma R

    2017-01-01

    Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Mesenchymal Stem Cells Attenuate Cisplatin-Induced Nephrotoxicity in iNOS-Dependent Manner

    PubMed Central

    Simovic Markovic, Bojana; Gazdic, Marina; Arsenijevic, Aleksandar; Jovicic, Nemanja; Jeremic, Jovana; Djonov, Valentin; Arsenijevic, Nebojsa; Lukic, Miodrag L.

    2017-01-01

    Mesenchymal stem cells (MSCs) are, due to their immunomodulatory characteristics, utilized in therapy of immune-mediated diseases. We used murine model of cisplatin nephrotoxicity to explore the effects of MSCs on immune cells involved in the pathogenesis of this disease. Intraperitoneal application of MSCs significantly attenuated cisplatin nephrotoxicity, decreased inflammatory cytokines TNF-α and IL-17, and increased anti-inflammatory IL-10, IL-6, nitric oxide (NO), and kynurenine in sera of cisplatin-treated mice. MSC treatment significantly attenuated influx of leukocytes, macrophages, dendritic cells (DCs), neutrophils, CD4+ T helper (Th), and CD8+ cytotoxic T lymphocytes (CTLs) in damaged kidneys and attenuated the capacity of renal-infiltrated DCs, CD4+ Th, and CD8+ CTLs to produce TNF-α and IL-17. Similar effects were observed after intraperitoneal injection of MSC-conditioned medium (MSC-CM) indicating that MSCs exert their beneficial effects in paracrine manner. Inhibition of inducible nitric oxide synthase (iNOS) in MSC-CM resulted with increased number of TNF-α-producing DCs and IL-17-producing CTLs, decreased number of IL-10-producing tolerogenic DCs and regulatory CD4+FoxP3+ T cells, and completely diminished renoprotective effects of MSC-CM. In conclusion, MSCs, in iNOS-dependent manner, attenuated inflammation in cisplatin nephrotoxicity by reducing the influx and capacity of immune cells, particularly DCs and T lymphocytes, to produce inflammatory cytokines. PMID:28828008

  2. Risk of ischemic stroke after atrial fibrillation diagnosis: A national sample cohort

    PubMed Central

    Son, Mi Kyoung; Lim, Nam-Kyoo; Kim, Hyung Woo

    2017-01-01

    Atrial fibrillation (AF) is a major risk factor for ischemic stroke and associated with a 5-fold higher risk of stroke. In this retrospective cohort study, the incidence of and risk factors for ischemic stroke in patients with AF were identified. All patients (≥30 years old) without previous stroke who were diagnosed with AF in 2007–2013 were selected from the National Health Insurance Service-National Sample Cohort. To identify factors that influenced ischemic stroke risk, Cox proportional hazard regression analysis was conducted. During a mean follow-up duration of 3.2 years, 1022 (9.6%) patients were diagnosed with ischemic stroke. The overall incidence rate of ischemic stroke was 30.8/1000 person-years. Of all the ischemic stroke that occurred during the follow-up period, 61.0% occurred within 1-year after AF diagnosis. Of the patients with CHA2DS2-VASc score of ≥2, only 13.6% were receiving warfarin therapy within 30 days after AF diagnosis. Relative to no antithrombotic therapy, warfarin treatment for >90 days before the index event (ischemic stroke in stroke patients and death/study end in non-stroke patients) associated with decreased ischemic stroke risk (Hazard Ratio = 0.41, 95%confidence intervals = 0.32–0.53). Heart failure, hypertension, and diabetes mellitus associated with greater ischemic stroke risk. AF patients in Korea had a higher ischemic stroke incidence rate than patients in other countries and ischemic stroke commonly occurred at early phase after AF diagnosis. Long-term (>90 days) continuous warfarin treatment may be beneficial for AF patients. However, warfarin treatment rates were very low. To prevent stroke, programs that actively detect AF and provide anticoagulation therapy are needed. PMID:28636620

  3. Specificities of Ischemic Stroke Risk Factors in Arab-Speaking Countries.

    PubMed

    Abboud, Halim; Sissani, Leila; Labreuche, Julien; Arauz, Antonio; Bousser, Marie-Germaine; Bryer, Alain; Chamorro, Angel; Fisher, Marc; Ford, Ian; Fox, Kim M; Hennerici, Michael G; Lavados, Pablo M; Massaro, Ayrton; Mattle, Heinrich P; Munoz Collazos, Mario; Rothwell, Peter M; Steg, Philippe Gabriel; Vicaut, Eric; Yamouth, Bassem; Amarenco, Pierre

    2017-01-01

    Stroke is largely preventable, and therefore, a better understanding of risk factors is an essential step in reducing the population stroke rate and resulting disease burden in Arab countries. We performed 2 separate analyses in 2 similar populations of patients with noncardioembolic ischemic stroke. This first involved 3,635 patients in the Outcomes in Patients with TIA and Cerebrovascular disease (OPTIC) registry (followed for 2 years), with baseline collection of the usual risk factors and 5 socioeconomic variables (unemployment status, residence in rural area, living in fully serviced accommodation, no health-insurance coverage, and low educational level). The second involved patients in the PERFORM trial (n = 19,100 followed up for 2 years), with baseline collection of the usual risk factors and 1 socioeconomic variable (low educational level). The primary outcome was a composite of nonfatal stroke, nonfatal myocardial infarction, or cardiovascular death. Stroke risk factors were more prevalent in patients in Arab countries. The incidence of major cardiovascular events (MACE; age- and gender-adjusted) was higher in Arab countries (OPTIC, 18.5 vs. 13.3%; PERFORM, 18.4 vs. 9.7%; both p ≤ 0.0001). These results remained significant after adjustment on risk factors and were attenuated in OPTIC after further adjustment on socioeconomic variables (hazard ratio 1.24; 95% CI 0.98-1.55; p = 0.07). Key Messages: Patients with ischemic stroke living in Arab countries had a lower mean socioeconomic status, a much higher prevalence of diabetes mellitus, and a higher rate of MACE compared with patients from non-Arab countries. This finding is partly explained by a higher prevalence of risk factors and also by a high prevalence of poverty and low educational level. © 2017 S. Karger AG, Basel.

  4. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    PubMed Central

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (<20°C). During reperfusion, the levels of hypoxanthine and xanthine (free radical substrates) were >90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial

  5. Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice.

    PubMed

    Gulati, Puja; Muthuraman, Arunachalam; Kaur, Parneet

    2015-04-01

    The present study was designed to investigate the role of flunarizine (a non-selective calcium channel blocker) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Bilateral carotid artery occlusion of 12min followed by reperfusion for 24h was given to induce cerebral injury in male Swiss mice. The assessment of learning & memory was performed by Morris water maze test; motor in-coordination was evaluated by rota rod, lateral push and inclined beam walking tests; cerebral infarct size was quantified by triphenyltetrazolium chloride staining. In addition, reduced glutathione (GSH), total calcium and acetylcholinesterase (AChE) activity were also estimated in aged brain tissue. Donepezil treated group served as a positive control in this study. Ischemia reperfusion (I/R) injury produced significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Further, I/R injury also produced significant increase in levels of total calcium, AChE activity and decrease in GSH levels. Pretreatment of flunarizine significantly attenuated I/R induced infarct size, behavioral and biochemical changes. Hence, it may be concluded that, a non-selective calcium channel blocker can be useful in I/R associated cognitive dysfunction due to its anti-oxidant, anti-infarct and modulatory actions of neurotransmitters & calcium channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy.

    PubMed

    Silveira, Rita C; Procianoy, Renato S

    2015-01-01

    Therapeutic hypothermia reduces cerebral injury and improves the neurological outcome secondary to hypoxic ischemic encephalopathy in newborns. It has been indicated for asphyxiated full-term or near-term newborn infants with clinical signs of hypoxic-ischemic encephalopathy (HIE). A search was performed for articles on therapeutic hypothermia in newborns with perinatal asphyxia in PubMed; the authors chose those considered most significant. There are two therapeutic hypothermia methods: selective head cooling and total body cooling. The target body temperature is 34.5 °C for selective head cooling and 33.5 °C for total body cooling. Temperatures lower than 32 °C are less neuroprotective, and temperatures below 30 °C are very dangerous, with severe complications. Therapeutic hypothermia must start within the first 6h after birth, as studies have shown that this represents the therapeutic window for the hypoxic-ischemic event. Therapy must be maintained for 72 h, with very strict control of the newborn's body temperature. It has been shown that therapeutic hypothermia is effective in reducing neurologic impairment, especially in full-term or near-term newborns with moderate hypoxic-ischemic encephalopathy. Therapeutic hypothermia is a neuroprotective technique indicated for newborn infants with perinatal asphyxia and hypoxic-ischemic encephalopathy. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    PubMed

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  8. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Thyroid hormone-induced oxidative stress.

    PubMed

    Venditti, P; Di Meo, S

    2006-02-01

    Hypermetabolic state in hyperthyroidism is associated with tissue oxidative injury. Available data indicate that hyperthyroid tissues exhibit an increased ROS and RNS production. The increased mitochondrial ROS generation is a side effect of the enhanced level of electron carriers, by which hyperthyroid tissues increase their metabolic capacity. Investigations of antioxidant defence system have returned controversial results. Moreover, other thyroid hormone-linked biochemical changes increase tissue susceptibility to oxidative challenge, which exacerbates the injury and dysfunction they suffer under stressful conditions. Mitochondria, as a primary target for oxidative stress, might account for hyperthyroidism linked tissue dysfunction. This is consistent with the inverse relationship found between functional recovery of ischemic hyperthyroid hearts and mitochondrial oxidative damage and respiration impairment. However, thyroid hormone-activated mitochondrial mechanisms provide protection against excessive tissue dysfunction, including increased expression of uncoupling proteins, proteolytic enzymes and transcriptional coactivator PGC-1, and stimulate opening of permeability transition pores.

  10. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1.

    PubMed

    Shen, Yu; Ward, Natalie C; Hodgson, Jonathan M; Puddey, Ian B; Wang, Yutang; Zhang, Di; Maghzal, Ghassan J; Stocker, Roland; Croft, Kevin D

    2013-12-01

    Several lines of evidence indicate that quercetin, a polyphenol derived in the diet from fruit and vegetables, contributes to cardiovascular health. We aimed to investigate the effects of dietary quercetin on endothelial function and atherosclerosis in mice fed a high-fat diet. Wild-type C57BL/6 (WT) and apolipoprotein E gene knockout (ApoE(-/-)) mice were fed: (i) a high-fat diet (HFD) or (ii) a HFD supplemented with 0.05% w/w quercetin (HFD+Q), for 14 weeks. Compared with animals fed HFD, HFD+Q attenuated atherosclerosis in ApoE(-/-) mice. Treatment with the HFD+Q significantly improved endothelium-dependent relaxation of aortic rings isolated from WT but not ApoE(-/-) mice and attenuated hypochlorous acid-induced endothelial dysfunction in aortic rings of both WT and ApoE(-/-) mice. Mechanistic studies revealed that HFD+Q significantly improved plasma F2-isoprostanes, 24h urinary nitrite, and endothelial nitric oxide synthase activity, and increased heme oxygenase-1 (HO-1) protein expression in the aortas of both WT and ApoE(-/-) mice (P<0.05). HFD+Q also resulted in small changes in plasma cholesterol (P<0.05 in WT) and plasma triacylglycerols (P<0.05 in ApoE (-/-)mice). In a separate experiment, quercetin did not protect against hypochlorite-induced endothelial dysfunction in arteries obtained from heterozygous HO-1 gene knockout mice with low expression of HO-1 protein. Quercetin protects mice fed a HFD against oxidant-induced endothelial dysfunction and ApoE(-/-) mice against atherosclerosis. These effects are associated with improvements in nitric oxide bioavailability and are critically related to arterial induction of HO-1. © 2013 Elsevier Inc. All rights reserved.

  11. Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro

    PubMed Central

    Liu, Lihua; Zuo, Zhongfu; Lu, Sijing; Liu, Aihua; Liu, Xuezheng

    2017-01-01

    Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 80 mg/kg/day) was intraperitoneally injected into the diabetic rats for twelve weeks. Glial fibrillary acidic protein (GFAP) level, thickness of ganglion cell layer (GCL) and ganglion cell counts were assessed in diabetic retina in vivo. Naringin (50 μM) that significantly inhibited high glucose (HG, 25 mM)-induced cell proliferation was used to treat rat Muller cell line (rMC1) in vitro. Inflammatory response, oxidative stress and activation of nuclear factor kappa B (NF-κB) p65 were evaluated in retina in vivo and in rMC1 cells in vitro. Results: Naringin alleviated DR symptoms as evidenced by the increased retinal ganglion cells and decreased GFAP level in rat retina. Naringin exhibited anti-inflammatory and antioxidative effects as confirmed by the down-regulated pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the up-regulated antioxidants, glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in DR rats. Moreover, we found that naringin inhibited HG-induced proliferation, abnormal inflammatory response and oxidative stress in rMC1 cells. In addition, the enhanced nuclear translocation of NF-κB p65 in diabetic rat retina and HG-induced rMC1 cells was suppressed by naringin. Conclusion: Naringin attenuates inflammatory response, oxidative stress and NF-κB activation in experimental models of DR. PMID:28852447

  12. Ischemic acute kidney injury and klotho in renal transplantation.

    PubMed

    Panah, Fatemeh; Ghorbanihaghjo, Amir; Argani, Hassan; Asadi Zarmehri, Maryam; Nazari Soltan Ahmad, Saeed

    2018-05-01

    Post-transplant ischemic acute kidney injury (AKI), secondary to ischemia reperfusion injury (IRI), is a major problem influencing on the short and long term graft and patient survival. Many molecular and cellular modifications are observed during IRI, for example, tissue damage result production of reactive oxygen species (ROS), cytokines, chemokines, and leukocytes recruitment which are activated by NF-κB (nuclear factor kappa B) signaling pathway. Therefore, inhibiting these processes can significantly protect renal parenchyma from tissue damage. Klotho protein, mainly produced in distal convoluted tubules (DCT), is an anti-senescence protein. There is increasing evidence to confirm a relationship between Klotho levels and renal allograft function. Many studies have also demonstrated that expression of the Klotho gene would be down regulated with IRI, so it will be used as an early biomarker for acute kidney injury after renal transplantation. Other studies suggest that Klotho may have a renoprotective effect for attenuating of kidney injury. In this review, we will discuss pathophysiology of IRI-induced acute kidney injury and its relation with klotho level in renal transplantation procedure. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Hydrophilic Polymer-associated Ischemic Enterocolitis.

    PubMed

    Chavez, Jesus A; Chen, Wei; Frankel, Wendy L; Arnold, Christina A

    2017-02-01

    Hydrophilic polymer coating of medical devices serves to lubricate the device and prevent device-related complications. The coating can be mechanically disrupted and result in downstream injury via presumed thromboembolism. This process has been reported in the brain, heart, lung, and skin, and has been replicated through animal studies and in vitro histologic processing of the polymer coating. We report the first description of hydrophilic polymer-associated ischemic enterocolitis in a series of 7 specimens (small bowel=2, colon=4, aortic thrombus=1) from 3 patients. We report a 4% incidence among all patients with an ischemic bowel resection between April 29, 2014 and August 8, 2016. All patients developed bowel ischemia within 1 day of aortic repair, and all bowel resection specimens showed polymers, mainly in the submucosal vessels in areas of extensive ischemia. The polymers appeared as basophilic, intravascular, serpiginous structures. In a patient who developed acute paralysis after the aortic repair, identical polymers were identified in the aortic thrombus and the ischemic bowel segment. We demonstrate that the polymers display an altered morphology over time and with various graft types, and that the degrading polymers are associated with a foreign body giant cell reaction. Special stains can aid in diagnosis, with the polymers turquoise on a colloidal iron stain, pink on von Kossa and mucicarmine stains, and pale blue on trichrome. Clinical follow-up was available up to 115 weeks: 1 patient died, and 2 are alive and well. In summary, we report a new diagnostic entity to be considered in the differential diagnosis of iatrogenic ischemic injuries in the gastrointestinal tract. Awareness of this entity is important to elucidate the cause of ischemia and to prevent misdiagnosis of the polymers and their associated giant cell reaction as a parasitic infection, granulomatous vasculitis, sarcoidosis, and idiopathic inflammatory bowel disease.

  14. The Role of Extracellular Adenosine Triphosphate in Ischemic Organ Injury.

    PubMed

    Zhao, Hailin; Kilgas, Susan; Alam, Azeem; Eguchi, Shiori; Ma, Daqing

    2016-05-01

    Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.

  15. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis.

    PubMed

    Kishore, Amit; Vail, Andy; Majid, Arshad; Dawson, Jesse; Lees, Kennedy R; Tyrrell, Pippa J; Smith, Craig J

    2014-02-01

    Atrial fibrillation (AF) confers a high risk of recurrent stroke, although detection methods and definitions of paroxysmal AF during screening vary. We therefore undertook a systematic review and meta-analysis to determine the frequency of newly detected AF using noninvasive or invasive cardiac monitoring after ischemic stroke or transient ischemic attack. Prospective observational studies or randomized controlled trials of patients with ischemic stroke, transient ischemic attack, or both, who underwent any cardiac monitoring for a minimum of 12 hours, were included after electronic searches of multiple databases. The primary outcome was detection of any new AF during the monitoring period. We prespecified subgroup analysis of selected (prescreened or cryptogenic) versus unselected patients and according to duration of monitoring. A total of 32 studies were analyzed. The overall detection rate of any AF was 11.5% (95% confidence interval, 8.9%-14.3%), although the timing, duration, method of monitoring, and reporting of diagnostic criteria used for paroxysmal AF varied. Detection rates were higher in selected (13.4%; 95% confidence interval, 9.0%-18.4%) than in unselected patients (6.2%; 95% confidence interval, 4.4%-8.3%). There was substantial heterogeneity even within specified subgroups. Detection of AF was highly variable, and the review was limited by small sample sizes and marked heterogeneity. Further studies are required to inform patient selection, optimal timing, methods, and duration of monitoring for detection of AF/paroxysmal AF.

  16. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure

    PubMed Central

    Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K.

    2015-01-01

    This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15–21 (E15–E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15–E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure. PMID:21424555

  17. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis.

    PubMed

    Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M

    2018-02-01

    Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state.

    PubMed

    Hasegawa, Masashi; Ogihara, Tohru; Tamai, Hiroshi; Hiroi, Mayo

    2009-08-04

    Recent clinical trials have demonstrated the efficacy and safety of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy (HIE). We previously reported that the levels of non-protein-bound iron and ascorbic acid (AA) are increased in the CSF of infants with HIE. In this study, we investigated the effect of hypothermia on the combined cytotoxicity of Fe and AA for differentiated PC12 cells. The optimal settings for hypothermic treatment were a temperature of 30-32 degrees C, rescue time window of less than 6 h, and minimum duration of at least 24 h. Hypothermia effectively prevented the loss of the mitochondrial transmembrane potential from 6 h to 72 h (end of the study period) and attenuated the release of apoptotic proteins (cytochrome c and apoptosis-inducing factor) at 6 h of exposure to Fe-AA. Activation of caspase-3 was also delayed until 24 h. Akt was transiently activated, although no influence of temperature was observed. Elevation of oxidative stress markers, including ortho-, meta-, and di-tyrosine (markers of protein oxidation) and 4-hydroxynonenal (lipid peroxidation) was significantly attenuated when the temperature was reduced by 5 degrees C. The half-cell reduction potential (Ehc) of GSSG/2GSH redox couple ranged from -220 to -180 mV in unstressed differentiated PC12 cells, and apoptosis was triggered when Ehc exceeded -180 mV. Hypothermia prevented Ehc from rising above -180 mV within 24 h of exposure to Fe-AA. In conclusion, hypothermia prevented cell death due to Fe-AA toxicity by inhibiting apoptotic pathways through maintenance of a reduced cellular environment, as well as by alleviating oxidative stress.

  19. Self-perceived psychological stress and ischemic stroke: a case-control study

    PubMed Central

    Jood, Katarina; Redfors, Petra; Rosengren, Annika; Blomstrand, Christian; Jern, Christina

    2009-01-01

    Background A growing body of evidence suggests that psychological stress contributes to coronary artery disease. However, associations between stress and stroke are less clear. In this study, we investigated the possible association between ischemic stroke and self-perceived psychological stress, as measured by a single-item questionnaire, previously reported to be associated with myocardial infarction. Methods In the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), 600 consecutive patients with acute ischemic stroke (aged 18 to 69 years) and 600 age-matched and sex-matched population controls were recruited. Ischemic stroke subtype was determined according to Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. Self-perceived psychological stress preceding stroke was assessed retrospectively using a single-item questionnaire. Results Permanent self-perceived psychological stress during the last year or longer was independently associated with overall ischemic stroke (multivariate adjusted odds ratio (OR) 3.49, 95% confidence interval (CI) 2.06 to 5.93). Analyses by stroke subtype showed that this association was present for large vessel disease (OR 3.91, 95% CI 1.58 to 9.67), small vessel disease (OR 3.20, 95% CI 1.64 to 6.24), and cryptogenic stroke (OR 4.03, 95% CI 2.34 to 6.95), but not for cardioembolic stroke (OR 1.48, 95% CI 0.64 to 3.39). Conclusion In this case-control study, we found an independent association between self-perceived psychological stress and ischemic stroke. A novel finding was that this association differed by ischemic stroke subtype. Our results emphasize the need for further prospective studies addressing the potential role for psychological stress as a risk factor for ischemic stroke. In such studies ischemic stroke subtypes should be taken into consideration. PMID:19796376

  20. Phospholipase C as a potential target for cardioprotection during oxidative stress.

    PubMed

    Tappia, Paramjit S; Asemu, Girma; Rodriguez-Leyva, Delfin

    2010-03-01

    Cardiac dysfunction due to ischemia-reperfusion (I/R) is associated with marked changes in membrane function and subsequent Ca2+-handling abnormalities in cardiomyocytes. The membrane abnormalities in hearts subjected to I/R arise primarily from oxidative stress as a consequence of increased formation of reactive oxygen species and other oxidants, as well as reduced antioxidant defenses. Little is known, however, about the nature and mechanisms of the sarcolemmal membrane changes with respect to phospholipase C (PLC)-related signaling events. In addition, the mechanisms involved in protection of the postischemic myocardium and in ischemic preconditioning with respect to PLC function need to be established. Accordingly, this article reviews the historical and current information on PLC-mediated signal transduction mechanisms in I/R, as well as outlining future directions that should be addressed. Such information will extend our knowledge of ischemic heart disease and help improve its therapy.