Science.gov

Sample records for attenuates liver fibrosis

  1. Saikosaponin-d attenuates the development of liver fibrosis by preventing hepatocyte injury.

    PubMed

    Fan, Jianghong; Li, Xin; Li, Ping; Li, Ning; Wang, Tailing; Shen, Hong; Siow, Yaw; Choy, Patrick; Gong, Yuewen

    2007-04-01

    Treatment of liver fibrosis and cirrhosis remains a challenging field. Hepatocyte injury and the activation of hepatic stellate cells are the 2 major events in the development of liver fibrosis and cirrhosis. It is known that several Chinese herbs have significant beneficial effects on the liver; therefore, the purpose of the present study was to investigate the therapeutic effect of saikosaponin-d (SSd) on liver fibrosis and cirrhosis. A rat model of liver fibrosis was established using the dimethylnitrosamine method. Liver tissue and serum were used to examine the effect of SSd on liver fibrosis. A hepatocyte culture was also used to investigate how SSd can protect hepatocytes from oxidative injury induced by carbon tetrachloride. The results showed that SSd significantly reduced collagen I deposition in the liver and alanine aminotransferase level in the serum. Moreover, SSd decreased the content of TGF-beta1 in the liver, which was significantly elevated after dimethylnitrosamine induced liver fibrosis. Furthermore, SSd was able to alleviate hepatocyte injury from oxidative stress. In conclusion, SSd could postpone the development of liver fibrosis by attenuating hepatocyte injury.

  2. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  3. Ghrelin Attenuates Liver Fibrosis through Regulation of TGF-β1 Expression and Autophagy.

    PubMed

    Mao, Yuqing; Zhang, Shaoren; Yu, Fujun; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-09-10

    maintaining the balance between MMP2 and TIMP1. Our results demonstrated that ghrelin attenuates liver fibrosis via inhibition of the TGF-β1/Smad3 and NF-κB signaling pathways, as well as autophagy suppression.

  4. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis.

  5. Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation

    PubMed Central

    Wang, Qiu-Ming; Du, Jian-Ling; Duan, Zhi-Jun; Guo, Shi-Bin; Sun, Xiao-Yu; Liu, Zhen

    2013-01-01

    AIM: To investigate the effects of the heme oxygenase (HO)-1/carbon monoxide system on iron deposition and portal pressure in rats with hepatic fibrosis induced by bile duct ligation (BDL). METHODS: Male Sprague-Dawley rats were divided randomly into a Sham group, BDL group, Fe group, deferoxamine (DFX) group, zinc protoporphyrin (ZnPP) group and cobalt protoporphyrin (CoPP) group. The levels of HO-1 were detected using different methods. The serum carboxyhemoglobin (COHb), iron, and portal vein pressure (PVP) were also quantified. The plasma and mRNA levels of hepcidin were measured. Hepatic fibrosis and its main pathway were assessed using Van Gieson’s stain, hydroxyproline, transforming growth factor-β1 (TGF-β1), nuclear factor-E2-related factor 2 (Nrf2), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1). RESULTS: Serum COHb and protein and mRNA expression levels of HO-1 and Nrf2 were increased in the BDL group compared with the Sham group and were much higher in the CoPP group. The ZnPP group showed lower expression of HO-1 and Nrf2 and lower COHb. The levels of iron and PVP were enhanced in the BDL group but were lower in the ZnPP and DFX groups and were higher in the CoPP and Fe groups. Hepcidin levels were higher, whereas superoxide dismutase levels were increased and malonaldehyde levels were decreased in the ZnPP and DFX groups. The ZnPP group also showed inhibited TGF-β1 expression and regulated TIMP-1/MMP-2 expression, as well as obviously attenuated liver fibrosis. CONCLUSION: Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and regulating PVP. PMID:23704825

  6. Improved noninvasive prediction of liver fibrosis by liver stiffness measurement in patients with nonalcoholic fatty liver disease accounting for controlled attenuation parameter values.

    PubMed

    Petta, Salvatore; Wong, Vincent Wai-Sun; Cammà, Calogero; Hiriart, Jean-Baptiste; Wong, Grace Lai-Hung; Marra, Fabio; Vergniol, Julien; Chan, Anthony Wing-Hung; Di Marco, Vito; Merrouche, Wassil; Chan, Henry Lik-Yuen; Barbara, Marco; Le-Bail, Brigitte; Arena, Umberto; Craxì, Antonio; de Ledinghen, Victor

    2017-04-01

    Liver stiffness measurement (LSM) frequently overestimates the severity of liver fibrosis in nonalcoholic fatty liver disease (NAFLD). Controlled attenuation parameter (CAP) is a new parameter provided by the same machine used for LSM and associated with both steatosis and body mass index, the two factors mostly affecting LSM performance in NAFLD. We aimed to determine whether prediction of liver fibrosis by LSM in NAFLD patients is affected by CAP values. Patients (n = 324) were assessed by clinical and histological (Kleiner score) features. LSM and CAP were performed using the M probe. CAP values were grouped by tertiles (lower 132-298, middle 299-338, higher 339-400 dB/m). Among patients with F0-F2 fibrosis, mean LSM values, expressed in kilopascals, increased according to CAP tertiles (6.8 versus 8.6 versus 9.4, P = 0.001), and along this line the area under the curve of LSM for the diagnosis of F3-F4 fibrosis was progressively reduced from lower to middle and further to higher CAP tertiles (0.915, 0.848-0.982; 0.830, 0.753-0.908; 0.806, 0.723-0.890). As a consequence, in subjects with F0-F2 fibrosis, the rates of false-positive LSM results for F3-F4 fibrosis increased according to CAP tertiles (7.2% in lower versus 16.6% in middle versus 18.1% in higher). Consistent with this, a decisional flowchart for predicting fibrosis was suggested by combining both LSM and CAP values.

  7. Biomarkers for liver fibrosis

    DOEpatents

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  8. Transient Elastography and Controlled Attenuation Parameter for Diagnosing Liver Fibrosis and Steatosis in Ontario: An Economic Analysis

    PubMed Central

    Thavorn, K; Coyle, D

    2015-01-01

    Background Liver fibrosis is characterized by a buildup of connective tissue due to chronic liver damage. Steatosis is the collection of excessive amounts of fat inside liver cells. Liver biopsy remains the gold standard for the diagnosis of liver fibrosis and steatosis, but its use as a diagnostic tool is limited by its invasive nature and high cost. Objectives To evaluate the cost-effectiveness and budget impact of transient elastography (TE) with and without controlled attenuation parameter (CAP) for the diagnosis of liver fibrosis or steatosis in patients with hepatitis B, hepatitis C, alcoholic liver disease, and nonalcoholic fatty liver disease. Data Sources An economic literature search was performed using computerized databases. For primary economic and budget impact analyses, we obtained data from various sources, such as the Health Quality Ontario evidence-based analysis, published literature, and the Institute for Clinical Evaluative Sciences. Review Methods A systematic review of existing TE cost-effectiveness studies was conducted, and a primary economic evaluation was undertaken from the perspective of the Ontario Ministry of Health and Long-Term Care. Decision analytic models were used to compare short-term costs and outcomes of TE compared to liver biopsy. Outcomes were expressed as incremental cost per correctly diagnosed cases gained. A budget impact analysis was also conducted. Results We included 10 relevant studies that evaluated the cost-effectiveness of TE compared to other noninvasive tests and to liver biopsy; no cost-effectiveness studies of TE with CAP were identified. All studies showed that TE was less expensive but associated with a decrease in the number of correctly diagnosed cases. TE also improved quality-adjusted life-years in patients with hepatitis B and hepatitis C. Our primary economic analysis suggested that TE led to cost savings but was less effective than liver biopsy in the diagnosis of liver fibrosis. TE became more

  9. Reversibility of liver fibrosis.

    PubMed

    Sun, Mengxi; Kisseleva, Tatiana

    2015-09-01

    Liver fibrosis is a serious health problem worldwide, which can be induced by a wide spectrum of chronic liver injuries. However, until today, there is no effective therapy available for liver fibrosis except the removal of underlying etiology or liver transplantation. Recent studies indicate that liver fibrosis is reversible when the causative agent(s) is removed. Understanding of mechanisms of liver fibrosis regression will lead to the identification of new therapeutic targets for liver fibrosis. This review summarizes recent research progress on mechanisms of reversibility of liver fibrosis. While most of the research has been focused on HSCs/myofibroblasts and inflammatory pathways, the crosstalk between different organs, various cell types and multiple signaling pathways should not be overlooked. Future studies that lead to fully understanding of the crosstalk between different cell types and the molecular mechanism underlying the reversibility of liver fibrosis will definitely give rise to new therapeutic strategies to treat liver fibrosis.

  10. Herbal supplement attenuation of cardiac fibrosis in rats with CCl₄-induced liver cirrhosis.

    PubMed

    Chang, Hsiao-Chuan; Chiu, Yung-Wei; Lin, Yueh-Min; Chen, Ray-Jade; Lin, James A; Tsai, Fuu-Jen; Tsai, Chang-Hai; Kuo, Yu-Chun; Liu, Jer-Yuh; Huang, Chih-Yang

    2014-02-28

    Previously we found carbon tetrachloride (CCl₄) induced cirrhosis associated cardiac hypertrophy and apoptosis. The purpose of this study is to determine whether further CCl₄ treatment would induce cardiac cell fibrosis. The cardiac tissues were analyzed by H&E. histological staining, Trichrome Masson staining and Western blotting. The results showed that the CCl₄-treated-only group exhibits more trichrome staining, meaning that more fibrosis is present. Moreover, CCl₄ could further induce cardiac-fibrosis via TGF-β-p-Smad2/3-CTGF pathway. However, our data showed that the CCl₄- indcued cardiac abnormalities were attenuated by Ocimum gratissimum extract (OGE) and silymarin co- treatments. In conclusion, our results indicated that the OGE and silymarin may be a potential traditional herb for the protection of cardiac tissues from the CCl4 induced cirrhosis associated cardiac fibrosis through modulating the TGF-β signaling pathway.

  11. Platycodi Radix attenuates dimethylnitrosamine-induced liver fibrosis in rats by inducing Nrf2-mediated antioxidant enzymes.

    PubMed

    Choi, Jae Ho; Jin, Sun Woo; Kim, Hyung Gyun; Khanal, Tilak; Hwang, Yong Pil; Lee, Kyung Jin; Choi, Chul Yung; Chung, Young Chul; Lee, Young Chun; Jeong, Hye Gwang

    2013-06-01

    The purpose of this study was to investigate the anti-fibrotic effects of the aqueous extract of the Platycodi Radix root (Changkil: CK) on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. DMN treatment for 4 weeks led to marked liver fibrosis as assessed by serum biochemistry, histopathological examination, and hepatic lipid peroxidation and collagen content. CK significantly inhibited DMN-induced increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, fibrosis score, and hepatic malondialdehyde and collagen content. CK also inhibited DMN-induced reductions in rat body and liver weights. Reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses revealed that CK inhibited DMN-induced increases in matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and tumor necrosis factor-α (TNF-α) mRNA, and collagen type I and α-smooth muscle actin protein. DMN-induced cyclooxygenase-2 (COX-2) expression and nuclear factor-kappa B (NF-κB) activation was reduced by CK treatment. Furthermore, CK induced activation of nuclear erythroid 2-related factor 2 (Nrf2)-mediated antioxidant enzymes such as γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutathione-S-transferase (GST) in HepG2 cells. These results demonstrated that CK attenuates DMN-induced liver fibrosis through the activation of Nrf2-mediated antioxidant enzymes.

  12. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-05

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases.

  13. BMP-7 attenuates liver fibrosis via regulation of epidermal growth factor receptor.

    PubMed

    Wang, Li-Ping; Dong, Jin-Zhong; Xiong, Li-Jun; Shi, Ke-Qing; Zou, Zhuo-Lin; Zhang, Sai-Nan; Cao, Su-Ting; Lin, Zhuo; Chen, Yong-Ping

    2014-01-01

    The aim of this study was to elucidate the effect of bone morphogenetic protein-7 (BMP-7) on liver fibrosis induced by carbon tetrachloride (CCl4) in vivo and on the hepatic stellate cells (HSC) activation in vitro. In vivo, thirty male ICR mice were randomly allocated to three groups, the control group (n = 6), the CCl4 group (n = 18) and the BMP-7+CCl4 group (n = 6). The model of liver fibrosis was induced by intraperitoneal injection with CCl4 three times per week lasting for 12 weeks in CCl4 group and the BMP-7+CCl4 group. After 8 weeks injection with CCl4, mice were intraperitoneal injected with human recombinant BMP-7 in BMP-7+CCl4 group. Meanwhile, mice in the CCl4 group were only intraperitoneal injection with equal amount of saline. The degree of liver fibrosis was assessed by HE and Masson's staining. PCR and western blot were used to detect mRNA and protein levels. In BMP-7+CCl4 group, serum levels of alanine aminotransferase (ALT) and aminotransferase (AST) were decreased and serum albumin (Alb) was increased. Meanwhile, the expressions of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) were down-regulated by BMP-7 intervention as compared to the CCl4 group (P < 0.05). Furthermore, BMP-7 also suppressed the expression of epidermal growth factor receptor (EGFR) and phosphorylated-epidermal growth factor receptor (pEGFR). HE and Masson stain showed that liver damage was alleviated in BMP-7+CCl4 group. In vitro study, expression of EGFR, TGF-β1 and α-SMA were down regulated by BMP-7 dose-dependently, indicating it might effect on suppression of HSC activation. Therefore, our data indicate BMP-7 was capable of inhibiting liver fibrosis and suppressing HSCs activation, and these effects might rely on its crosstalk with EGFR and TGF-β1. We suggest that BMP-7 may be a potential reagentfor the prevention and treatment of liver fibrosis.

  14. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation.

    PubMed

    Yu, Fujun; Lu, Zhongqiu; Chen, Bicheng; Wu, Xiaoli; Dong, Peihong; Zheng, Jianjian

    2015-11-01

    Epithelial-mesenchymal transition (EMT) was reported to be involved in the activation of hepatic stellate cells (HSCs), contributing to the development of liver fibrosis. Epithelial-mesenchymal transition can be promoted by the Hedgehog (Hh) pathway. Patched1 (PTCH1), a negative regulatory factor of the Hh signalling pathway, was down-regulated during liver fibrosis and associated with its hypermethylation status. MicroRNAs (miRNAs) are reported to play a critical role in the control of various HSCs functions. However, miRNA-mediated epigenetic regulations in EMT during liver fibrosis are seldom studied. In this study, Salvianolic acid B (Sal B) suppressed the activation of HSCs in CCl4 -treated mice and mouse primary HSCs, leading to inhibition of cell proliferation, type I collagen and alpha-smooth muscle actin. We demonstrated that the antifibrotic effects caused by Sal B were, at least in part, via inhibition of EMT and the Hh pathway. In particular, up-regulation of PTCH1 was associated with decreased DNA methylation level after Sal B treatment. Accordingly, DNA methyltransferase 1 (DNMT1) was attenuated by Sal B in vivo and in vitro. The knockdown of DNMT1 in Sal B-treated HSCs enhanced PTCH1 expression and its demethylation level. Interestingly, increased miR-152 in Sal B-treated cells was responsible for the hypomethylation of PTCH1 by Sal B. As confirmed by the luciferase activity assay, DNMT1 was a direct target of miR-152. Further studies showed that the miR-152 inhibitor reversed Sal B-mediated PTCH1 up-regulation and DNMT1 down-regulation. Collectively, miR-152 induced by Sal B, contributed to DNMT1 down-regulation and epigenetically regulated PTCH1, resulting in the inhibition of EMT in liver fibrosis.

  15. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation

    PubMed Central

    Yu, Fujun; Lu, Zhongqiu; Chen, Bicheng; Wu, Xiaoli; Dong, Peihong; Zheng, Jianjian

    2015-01-01

    Epithelial-mesenchymal transition (EMT) was reported to be involved in the activation of hepatic stellate cells (HSCs), contributing to the development of liver fibrosis. Epithelial-mesenchymal transition can be promoted by the Hedgehog (Hh) pathway. Patched1 (PTCH1), a negative regulatory factor of the Hh signalling pathway, was down-regulated during liver fibrosis and associated with its hypermethylation status. MicroRNAs (miRNAs) are reported to play a critical role in the control of various HSCs functions. However, miRNA-mediated epigenetic regulations in EMT during liver fibrosis are seldom studied. In this study, Salvianolic acid B (Sal B) suppressed the activation of HSCs in CCl4-treated mice and mouse primary HSCs, leading to inhibition of cell proliferation, type I collagen and alpha-smooth muscle actin. We demonstrated that the antifibrotic effects caused by Sal B were, at least in part, via inhibition of EMT and the Hh pathway. In particular, up-regulation of PTCH1 was associated with decreased DNA methylation level after Sal B treatment. Accordingly, DNA methyltransferase 1 (DNMT1) was attenuated by Sal B in vivo and in vitro. The knockdown of DNMT1 in Sal B-treated HSCs enhanced PTCH1 expression and its demethylation level. Interestingly, increased miR-152 in Sal B-treated cells was responsible for the hypomethylation of PTCH1 by Sal B. As confirmed by the luciferase activity assay, DNMT1 was a direct target of miR-152. Further studies showed that the miR-152 inhibitor reversed Sal B-mediated PTCH1 up-regulation and DNMT1 down-regulation. Collectively, miR-152 induced by Sal B, contributed to DNMT1 down-regulation and epigenetically regulated PTCH1, resulting in the inhibition of EMT in liver fibrosis. PMID:26257392

  16. Attenuating Effect of Ginkgo biloba Leaves Extract on Liver Fibrosis Induced by Thioacetamide in Mice

    PubMed Central

    Al-Attar, Atef M.

    2012-01-01

    The purpose of this study is to investigate the effect of Ginkgo biloba leaves extract on experimental liver fibrosis induced by thioacetamide (TAA) in male albino mice. The experimental mice were divided into four groups. The mice of the first group were served as control. The experimental animals of the second group were given 150 mg/kg body weight of TAA by intraperitoneal injection, twice weekly, for 9 weeks. The mice of the third group were exposed to TAA and supplemented with G. biloba leaves extract. The animals of the fourth group were supplemented with G. biloba leaves extract. The levels of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, triglycerides, cholesterol, and low-density lipoprotein cholesterol were statistically increased while the levels of plasma total protein, albumin, glucose, and high-density lipoprotein cholesterol were significantly decreased. The levels of liver superoxide dismutase, glutathione, glycogen and total protein were notably declined, whereas the level of total lipid was increased in mice of the second group. Furthermore, microscopic examination of liver sections from mice treated with TAA showed an abnormal morphology characterized by nodular transformations in liver parenchyma which surrounded by fibrous septa. Administration of G. biloba leaves extract reduced extent and development of fibrous septa, liver cells change, and biochemical alterations in mice exposed to TAA. This study showed that G. biloba leaves extract has a potential activity against TAA-induced liver fibrosis and suggested that the chemical constituents of G. biloba are effective in modulation of oxidative stress induced by TAA. PMID:23091357

  17. Polyphenols from Camellia sinenesis attenuate experimental cholestasis-induced liver fibrosis in rats.

    PubMed

    Zhong, Zhi; Froh, Matthias; Lehnert, Mark; Schoonhoven, Robert; Yang, Liu; Lind, Henrik; Lemasters, John J; Thurman, Ronald G

    2003-11-01

    Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.

  18. Angiogenesis and liver fibrosis

    PubMed Central

    Elpek, Gülsüm Özlem

    2015-01-01

    Recent data indicate that hepatic angiogenesis, regardless of the etiology, takes place in chronic liver diseases (CLDs) that are characterized by inflammation and progressive fibrosis. Because anti-angiogenic therapy has been found to be efficient in the prevention of fibrosis in experimental models of CLDs, it is suggested that blocking angiogenesis could be a promising therapeutic option in patients with advanced fibrosis. Consequently, efforts are being directed to revealing the mechanisms involved in angiogenesis during the progression of liver fibrosis. Literature evidences indicate that hepatic angiogenesis and fibrosis are closely related in both clinical and experimental conditions. Hypoxia is a major inducer of angiogenesis together with inflammation and hepatic stellate cells. These profibrogenic cells stand at the intersection between inflammation, angiogenesis and fibrosis and play also a pivotal role in angiogenesis. This review mainly focuses to give a clear view on the relevant features that communicate angiogenesis with progression of fibrosis in CLDs towards the-end point of cirrhosis that may be translated into future therapies. The pathogenesis of hepatic angiogenesis associated with portal hypertension, viral hepatitis, non-alcoholic fatty liver disease and alcoholic liver disease are also discussed to emphasize the various mechanisms involved in angiogenesis during liver fibrogenesis. PMID:25848465

  19. Herbal formula, Scutellariae radix and Rhei rhizoma attenuate dimethylnitrosamine-induced liver fibrosis in a rat model.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Huang, Chun-Hsun; Leu, Yann-Lii; Wu, Tung-Ho; Wu, Yun-Ru; You, Jyh-Sheng

    2015-07-02

    The bioactive components extracted from Scutellariae radix and Rhei rhizoma (SR) have been commonly used to treat liver diseases. The aim of this study was to verify the underlying mechanisms and antifibrotic effects of ethanol extract from the herbal combinatorial formula (SRE) in a dimethylnitrosamine (DMN)-administered rat model, with functional proteome tools. Our results indicated that the hepatic collagen content and alpha-smooth muscle actin expression were obviously alleviated by treatment with SRE. Comprehensive proteomics revealed global protein changes, and the network analysis implied that SRE application would attenuate oxidative stress and cytoskeleton dysregulation caused by DMN exposure. Next, marked downregulation of antioxidant enzymes mediated by DMN treatment was restored in the presence of SRE, while SRE treatment contributed to decreased MDA content. Moreover, protein carbonylation and DNA adduction induced by oxidative stress finally leading to liver injury were also reduced under SRE administration. These findings demonstrate that SRE could effectively prevent hepatic fibrosis mainly through regulating the redox status, and subsequently modulating the modification of intracellular molecules. Our experiments might help in developing novel therapeutic strategies against oxidation-caused liver diseases.

  20. Herbal formula, Scutellariae radix and Rhei rhizoma attenuate dimethylnitrosamine-induced liver fibrosis in a rat model

    PubMed Central

    Pan, Tai-Long; Wang, Pei-Wen; Huang, Chun-Hsun; Leu, Yann-Lii; Wu, Tung-Ho; Wu, Yun-Ru; You, Jyh-Sheng

    2015-01-01

    The bioactive components extracted from Scutellariae radix and Rhei rhizoma (SR) have been commonly used to treat liver diseases. The aim of this study was to verify the underlying mechanisms and antifibrotic effects of ethanol extract from the herbal combinatorial formula (SRE) in a dimethylnitrosamine (DMN)-administered rat model, with functional proteome tools. Our results indicated that the hepatic collagen content and alpha-smooth muscle actin expression were obviously alleviated by treatment with SRE. Comprehensive proteomics revealed global protein changes, and the network analysis implied that SRE application would attenuate oxidative stress and cytoskeleton dysregulation caused by DMN exposure. Next, marked downregulation of antioxidant enzymes mediated by DMN treatment was restored in the presence of SRE, while SRE treatment contributed to decreased MDA content. Moreover, protein carbonylation and DNA adduction induced by oxidative stress finally leading to liver injury were also reduced under SRE administration. These findings demonstrate that SRE could effectively prevent hepatic fibrosis mainly through regulating the redox status, and subsequently modulating the modification of intracellular molecules. Our experiments might help in developing novel therapeutic strategies against oxidation-caused liver diseases. PMID:26133262

  1. Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-β1/Smad3 pathway and induction of autophagy pathway.

    PubMed

    Yang, Ning; Dang, Shuangsuo; Shi, Juanjuan; Wu, Fengping; Li, Mei; Zhang, Xin; Li, Yaping; Jia, Xiaoli; Zhai, Song

    2017-02-10

    Caffeic acid phenethyl ester (CAPE) has been reported to possess the hepatoprotective effect. This study was to investigate the mechanism underlying CAPE against liver fibrosis in a liver fibrosis model induced by toxic carbon tetrachloride (CCl4) in male Sprague-Dawley rats and in vitro in CAPE (5 μM, 10 μM, 15 μM) treated hepatic stellate cells (HSC-T6). We found that CAPE treatment remarkably attenuated CCl4-induced liver fibrosis by blocking the activation of HSCs as determined by the expression alternation of transforming growth factor (TGF)-β1, phosphorylated Smad3 (p-Smad3), collage I, α-smooth muscle actin (α-SMA), matrix metalloproteinases (MMPs) 2, tissue inhibitor of matrix metalloproteinases (TIMPs) 1. The hepatoprotective effects of CAPE were also associated with upregulation of autophasomes in HSCs as determined by transmission electron microscopy (TEM) detection. The in vitro study further confrimed that CAPE attenuated liver fibrogenesis via inducing authophagic markers including LC3, ATG5, Beclin 1 expressions, while inhibiting AKT/mTOR signaling in HSC-T6 cells. Thus, the protective effects of CAPE against liver fibrosis might due to the inhibition of TGF-β1/Smad3 signaling and induction of authophagy in HSCs.

  2. Adenovirus-mediated expression of orphan nuclear receptor NR4A2 targeting hepatic stellate cell attenuates liver fibrosis in rats

    PubMed Central

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Yang, Quanjun; Huang, Jinlu; Gan, Run; Guo, Cheng

    2016-01-01

    Liver fibrosis is a wound-healing response characterized with the accumulation of extracellular matrix (ECM). And hepatic stellate cells (HSCs) are the principal cell source of ECM. NR4A2 (Nurr1) is a member of orphan nuclear receptor NR4A family and acts as transcription factor. It participates in regulating cell differentiation, proliferation and apoptosis. We previously demonstrated that NR4A2 expression in fibrotic liver reduced significantly compared with normal liver and NR4A2 knockout in HSCs promoted ECM production. In the present study we explored the role of NR4A2 on liver fibrosis. Studies in cultured HSCs demonstrated that NR4A2 over-expression suppressed the activation of HSCs, such as ECM production and invasion ability. Moreover cell cycle was arrested, cell apoptosis was promoted and cell signaling pathway was influenced. Adenovirus-mediated delivery of NR4A2 in rats ameliorated significantly dimethylnitrosamine (DMN) induced liver fibrosis. The In vivo experiments produced results consistent with in vitro experiments. Taken together these results demonstrate NR4A2 enhancement attenuates liver fibrosis via suppressing the activation of HSCs and NR4A2 may be an ideal target for anti-fibrotic therapy. PMID:27646469

  3. Hydrodynamics-based transfection of rat interleukin-10 gene attenuates porcine serum-induced liver fibrosis in rats by inhibiting the activation of hepatic stellate cells.

    PubMed

    Huang, Yue-Hong; Chen, Yun-Xin; Zhang, Li-Juan; Chen, Zhi-Xin; Wang, Xiao-Zhong

    2014-09-01

    Liver fibrosis is the common pathological outcome for the majority of chronic liver diseases. Interleukin-10 (IL-10) is a cytokine that downregulates proinflammatory responses and has a modulatory effect on liver fibrogenesis. However, little is known regarding the effect of rat interleukin‑10 (rIL‑10) gene by hydrodynamics-based transfection (HBT) on liver fibrosis in rats. The aim of this study was to investigate the effect of the rIL-10 gene by HBT on the progression of liver fibrosis induced by porcine serum (PS) in rats and explore its possible mechanism. Plasmid‑expressing rIL-10 was transferred into rats by HBT and immunohistochemistry and RT-PCR were used to detect the major organ expressing rIL-10. Liver fibrosis was induced in rats by intraperitoneal administration of PS for 8 weeks. Plasmid pcDNA3-rIL-10 solution was administered weekly by HBT starting at the 5th week. Liver function and hepatic histology were examined. The possible molecular mechanisms of rIL-10 gene therapy were assessed in liver tissue and hepatic stellate cells (HSCs) co-cultured with BRL cells (a hepatocyte line) in vitro. The results showed rIL-10 expression occurred mainly in the liver following rIL-10 gene transfer by HBT. Maintaining a stable expression of rIL-10 in serum was assessed by repeated administration. The rIL-10 gene treatment attenuated liver inflammation and fibrosis in PS-induced fibrotic rats, reduced the deposition of collagen and the expression of α-smooth muscle actin (α-SMA) in fibrotic rats. The in vitro experiment showed that the expression of a-SMA and procollagen type I in HSCs co-cultured with the BRL‑transfected rIL-10 gene were significantly decreased. These findings indicate that rIL-10 gene therapy by HBT attenuates PS-induced liver fibrosis in rats and that its mechanism is associated with rIL-10 inhibiting the activation of HSCs and promoting the degeneration of collagen.

  4. A standardized extract from Paeonia lactiflora and Astragalus membranaceus attenuates liver fibrosis induced by porcine serum in rats.

    PubMed

    Sun, Wu-Yi; Wang, Ling; Liu, Hao; Li, Xiang; Wei, Wei

    2012-03-01

    Paeonia lactiflora and Astragalus membranaceus are two popular traditional Chinese medicines, commonly used in Chinese herb prescription to treat liver disease. The extract prepared from the roots of Paeonia lactiflora and Astragalus membranaceus (PAE) demonstrated better hepatoprotective activity than the herbs used individually as shown in our previous studies. This study was carried out to investigate the effects of PAE on liver fibrosis induced by porcine serum (PS) in rats and to explore its possible mechanisms. Liver fibrosis was induced in male Wistar rats by injection with PS intraperitoneally. The rats were randomly divided into a normal control group, a liver fibrosis model group and a PAE (40, 80, 160 mg•kg-1) treated group. After a 16-week treatment, PAE-treated rats showed significantly reduced liver damage and symptoms of liver fibrosis upon pathological examination. Administration of PAE significantly decreased serum HA, PC III levels, and content of hydroxyproline in the liver tissue of fibrotic rats. It also restored the decrease in SOD and GSH-Px activities and inhibited the formation of lipid peroxidative products during PS treatment. In vitro, PAE also significantly decreased [3H]-thymidine incorporation in hepatic stellate cells (HSCs) stimulated with platelet-derived growth factor-B subunit homodimer (PDGF-BB). Moreover, PAE significantly decreased the expression of PDGF receptor beta (PDGFR-β) and p-ERK1/2, p-p38, p-JNK. The results showed that PAE displays antifibrotic effects in rats induced by PS, the mechanism by which might be associated with its ability to scavenge free radicals, decreasing the expression of PDGFR-β, inhibition of HSC proliferation and MAPK activation. These findings indicate that PAE is a potential agent for the prevention of liver fibrosis.

  5. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways.

    PubMed

    Li, Xi; Jin, Qianwen; Yao, Qunyan; Xu, Beili; Li, Zheng; Tu, Chuantao

    2016-11-02

    This study aimed to investigate the effects of quercetin on liver fibrogenesis in mice and to elucidate the underlying molecular mechanisms. Mice were administered with carbon tetrachloride (CCl4) for eight weeks to induce liver fibrosis and concomitantly orally treated with quercetin (50mgkg(-1)day(-1)). Here, we demonstrated that quercetin dramatically ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl4. Quercetin also inhibited the activation of hepatic stellate cells (HSC) in vivo and in vitro, as evaluated by α-smooth muscle actin (α-SMA) expression, which is a specific marker of HSC activation. Moreover, reduced fibrosis was associated with decreased high-mobility group box 1 (HMGB1), toll like receptor (TLR) 2 and TLR4 genes, and protein expression. Quercetin also inhibited the cytoplasmic translocation of HMGB1 in hepatocytes of fibrotic livers. Further investigation demonstrated that quercetin treatment significantly attenuated CCl4-induced nuclear translocation of the nuclear factor-κB (NF-κB) p65 and inhibited degradation of IκBα (an inhibitor of NF-κB) expression in the liver compared with vehicle-treated fibrotic mice. Considered together, our data indicate that quercetin has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be involved in modulating the HMGB1-TLR2/4-NF-κB signaling pathways.

  6. S-nitroso-N-acetylcysteine attenuates liver fibrosis in experimental nonalcoholic steatohepatitis

    PubMed Central

    Mazo, Daniel FC; de Oliveira, Marcelo G; Pereira, Isabel VA; Cogliati, Bruno; Stefano, José T; de Souza, Gabriela FP; Rabelo, Fabíola; Lima, Fabiana R; Alves, Venâncio A Ferreira; Carrilho, Flair J; de Oliveira, Claudia PMS

    2013-01-01

    S-Nitroso-N-acetylcysteine (SNAC) is a water soluble primary S-nitrosothiol capable of transferring and releasing nitric oxide and inducing several biochemical activities, including modulation of hepatic stellate cell activation. In this study, we evaluated the antifibrotic activity of SNAC in an animal model of nonalcoholic steatohepatitis (NASH) induced in Sprague-Dawley rats fed with a choline-deficient, high trans fat diet and exposed to diethylnitrosamine for 8 weeks. The rats were divided into three groups: SNAC, which received oral SNAC solution daily; NASH, which received the vehicle; and control, which received standard diet and vehicle. Genes related to fibrosis (matrix metalloproteinases [MMP]-13, -9, and -2), transforming growth factor β-1 [TGFβ-1], collagen-1α, and tissue inhibitors of metalloproteinase [TIMP-1 and -2] and oxidative stress (heat-shock proteins [HSP]-60 and -90) were evaluated. SNAC led to a 34.4% reduction in the collagen occupied area associated with upregulation of MMP-13 and -9 and downregulation of HSP-60, TIMP-2, TGFβ-1, and collagen-1α. These results indicate that oral SNAC administration may represent a potential antifibrotic treatment for NASH. PMID:23843692

  7. Experimental models of liver fibrosis.

    PubMed

    Crespo Yanguas, Sara; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini; Leclercq, Isabelle; Vinken, Mathieu

    2016-05-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.

  8. Management strategies for liver fibrosis.

    PubMed

    Altamirano-Barrera, Alejandra; Barranco-Fragoso, Beatriz; Méndez-Sánchez, Nahum

    2017-01-01

    Liver fibrosis resulting from chronic liver injury are major causes of morbidity and mortality worldwide. Among causes of hepatic fibrosis, viral infection is most common (hepatitis B and C). In addition, obesity rates worldwide have accelerated the risk of liver injury due to nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Also liver fibrosis is associated with the consumption of alcohol, or autoimmune hepatitis and chronic cholangiophaties. The response of hepatocytes to inflammation plays a decisive role in the physiopathology of hepatic fibrosis, which involves the recruitment of both pro- and anti-inflammatory cells such as monocytes and macrophages. As well as the production of other cytokines and chemokines, which increase the stimulus of hepatic stellate cells by activating proinflammatory cells. The aim of this review is to identify the therapeutic options available for the treatment of the liver fibrosis, enabling the prevention of progression when is detected in time.

  9. Transient elastography (FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease - Where do we stand?

    PubMed Central

    Mikolasevic, Ivana; Orlic, Lidija; Franjic, Neven; Hauser, Goran; Stimac, Davor; Milic, Sandra

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Currently, the routinely used modalities are unable to adequately determine the levels of steatosis and fibrosis (laboratory tests and ultrasonography) or cannot be applied as a screening procedure (liver biopsy). Among the non-invasive tests, transient elastography (FibroScan®, TE) with controlled attenuation parameter (CAP) has demonstrated good accuracy in quantifying the levels of liver steatosis and fibrosis in patients with NAFLD, the factors associated with the diagnosis and NAFLD progression. The method is fast, reliable and reproducible, with good intra- and interobserver levels of agreement, thus allowing for population-wide screening and disease follow-up. The initial inability of the procedure to accurately determine fibrosis and steatosis in obese patients has been addressed with the development of the obese-specific XL probe. TE with CAP is a viable alternative to ultrasonography, both as an initial assessment and during follow-up of patients with NAFLD. Its ability to exclude patients with advanced fibrosis may be used to identify low-risk NAFLD patients in whom liver biopsy is not needed, therefore reducing the risk of complications and the financial costs. PMID:27621571

  10. Rhus verniciflua Stokes attenuates cholestatic liver cirrhosis-induced interstitial fibrosis via Smad3 down-regulation and Smad7 up-regulation

    PubMed Central

    Gil, Mi Na; Choi, Du Ri; Yu, Kwang Sik; Jeong, Ji Heun; Bak, Dong-Ho; Kim, Do-Kyung; Lee, Nam-Seob; Lee, Je-Hun; Jeong, Young-Gil; Na, Chun Soo; Na, Dae Seung

    2016-01-01

    Cholestatic liver cirrhosis (CLC) eventually proceeds to end-stage liver failure by mediating overwhelming deposition of collagen, which is produced by activated interstitial myofibroblasts. Although the beneficial effects of Rhus verniciflua Stokes (RVS) on various diseases are well-known, its therapeutic effect and possible underlying mechanism on interstitial fibrosis associated with CLC are not elucidated. This study was designed to assess the protective effects of RVS and its possible underlying mechanisms in rat models of CLC established by bile duct ligation (BDL). We demonstrated that BDL markedly elevated the serological parameters such as aspartate aminotransferase, alanine transaminase, total bilirubin, and direct bilirubin, all of which were significantly attenuated by the daily uptake of RVS (2 mg/kg/day) for 28 days (14 days before and after operation) via intragastric route. We observed that BDL drastically induced the deterioration of liver histoarchitecture and excessive deposition of extracellular matrix (ECM), both of which were significantly attenuated by RVS. In addition, we revealed that RVS inhibited BDL-induced proliferation and activation of interstitial myofibroblasts, a highly suggestive cell type for ECM production, as shown by immunohistochemical and semi-quantitative detection of α-smooth muscle actin and vimentin. Finally, we demonstrated that the anti-fibrotic effect of RVS was associated with the inactivation of Smad3, the key downstream target of a major fibrogenic cytokine, i.e., transforming growth factor β (TGF-β). Simultaneously, we also found that RVS reciprocally increased the expression of Smad7, a negative regulatory protein of the TGF-β/Smad3 pathway. Taken together, these results suggested that RVS has a therapeutic effect on CLC, and these effects are, at least partly, due to the inhibition of liver fibrosis by the downregulation of Smad3 and upregulation of Smad7. PMID:27722012

  11. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    PubMed Central

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  12. Doxazosin Treatment Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Hamsters through a Decrease in Transforming Growth Factor β Secretion

    PubMed Central

    Muñoz-Ortega, Martin Humberto; Llamas-Ramírez, Raúl Wiliberto; Romero-Delgadillo, Norma Isabel; Elías-Flores, Tania Guadalupe; de Jesus Tavares-Rodríguez, Edgar; del Rosario Campos-Esparza, María; Cervantes-García, Daniel; Muñoz-Fernández, Luis; Gerardo-Rodríguez, Martin; Ventura-Juárez, Javier

    2016-01-01

    Background/Aims The development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model. Methods Cirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor β (TGF-β) immunohistochemistry was analyzed. Results Biochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-β-secreting cells. Conclusions Taken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-β via the blockage of α1- and β-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved. PMID:26573293

  13. [Non-invasive assessment of liver fibrosis].

    PubMed

    Cohen-Ezra, Oranit; Ben-Ari, Ziv

    2015-03-01

    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages.

  14. [SWE elastography in assessment of liver fibrosis].

    PubMed

    Zaleska-Dorobisz, Urszula; Pawluś, Aleksander; Kucharska, Marta; Inglot, Marcin

    2015-02-15

    Liver fibrosis is a relatively common consequence of chronic liver diseases, especially chronic viral hepatitis B and C. Biopsy still remains the gold standard in the assessment of liver fibrosis. However, due to its invasiveness and possible complications, less or even non-invasive methods are being developed, e.g. using biochemical parameters (Fibrotest) or elastography. Elastography is a new diagnostic tool that aims to evaluate stiffness of the tissues. Elastography techniques that are used in the assessment of liver fibrosis are transient elastography (TE), acoustic radiation force impulse (ARFI) and shear-wave elastography (SWE). SWE is a novel real-time two-dimensional elastography technique, which allows one to estimate stiffness quantitatively in kilopascals (kPa). Moreover, lapping elastography over regular B-mode allows precise choice of the region of interest. Therefore SWE creates the opportunity for accurate assessment of liver fibrosis. In this paper we describe processes leading to liver fibrosis as well as methods of liver fibrosis assessment, e.g. liver biopsy, biochemical tests or elastography. The main goal of this paper is to present the SWE technique, its role in liver fibrosis assessment and a short review of the most important clinical studies on SWE. We also present several examples of SWE examinations performed on patients with different stages of liver fibrosis - F0 to F4 on the METAVIR scale.

  15. HIV Infection Accelerates Hepatitis C-Related Liver Fibrosis

    MedlinePlus

    ... Liver Fibrosis HIV Infection Accelerates Hepatitis C–Related Liver Fibrosis Email Facebook Twitter January 21, 2014 By ... Contributing Writer Hepatitis C virus (HCV) infection causes liver fibrosis that worsens as patients age, potentially progressing ...

  16. Toward surface quantification of liver fibrosis progression

    NASA Astrophysics Data System (ADS)

    He, Yuting; Kang, Chiang Huen; Xu, Shuoyu; Tuo, Xiaoye; Trasti, Scott; Tai, Dean C. S.; Raja, Anju Mythreyi; Peng, Qiwen; So, Peter T. C.; Rajapakse, Jagath C.; Welsch, Roy; Yu, Hanry

    2010-09-01

    Monitoring liver fibrosis progression by liver biopsy is important for certain treatment decisions, but repeated biopsy is invasive. We envision redefinition or elimination of liver biopsy with surface scanning of the liver with minimally invasive optical methods. This would be possible only if the information contained on or near liver surfaces accurately reflects the liver fibrosis progression in the liver interior. In our study, we acquired the second-harmonic generation and two-photon excitation fluorescence microscopy images of liver tissues from bile duct-ligated rat model of liver fibrosis. We extracted morphology-based features, such as total collagen, collagen in bile duct areas, bile duct proliferation, and areas occupied by remnant hepatocytes, and defined the capsule and subcapsular regions on the liver surface based on image analysis of features. We discovered a strong correlation between the liver fibrosis progression on the anterior surface and interior in both liver lobes, where biopsy is typically obtained. The posterior surface exhibits less correlation with the rest of the liver. Therefore, scanning the anterior liver surface would obtain similar information to that obtained from biopsy for monitoring liver fibrosis progression.

  17. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats.

    PubMed

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways.

  18. Epithelial-mesenchymal transition in liver fibrosis

    PubMed Central

    ZHAO, YA-LEI; ZHU, RONG-TAO; SUN, YU-LING

    2016-01-01

    Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial-mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation-induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis. PMID:26998262

  19. Targeting the PDGF-B/PDGFR-β Interface with Destruxin A5 to Selectively Block PDGF-BB/PDGFR-ββ Signaling and Attenuate Liver Fibrosis.

    PubMed

    Wang, Xingqi; Wu, Xuefeng; Zhang, Aihua; Wang, Shiyu; Hu, Chunhui; Chen, Wei; Shen, Yan; Tan, Renxiang; Sun, Yang; Xu, Qiang

    2016-05-01

    PDGF-BB/PDGFR-ββ signaling plays very crucial roles in the process of many diseases such as liver fibrosis. However, drug candidates with selective affinities for PDGF-B/PDGFR-β remain deficient. Here, we identified a natural cyclopeptide termed destruxin A5 that effectively inhibits PDGF-BB-induced PDGFR-β signaling. Interestingly and importantly, the inhibitory mechanism is distinct from the mechanism of tyrosine kinase inhibitors because destruxin A5 does not have the ability to bind to the ATP-binding pocket of PDGFR-β. Using Biacore T200 technology, thermal shift technology, microscale thermophoresis technology and computational analysis, we confirmed that destruxin A5 selectively targets the PDGF-B/PDGFR-β interaction interface to block this signaling. Additionally, the inhibitory effect of destruxin A5 on PDGF-BB/PDGFR-ββ signaling was verified using in vitro, ex vivo and in vivo models, in which the extent of liver fibrosis was effectively alleviated by destruxin A5. In summary, destruxin A5 may represent an efficacious and more selective inhibitor of PDGF-BB/PDGFR-ββ signaling.

  20. [Therapeutical targets for revert liver fibrosis].

    PubMed

    García B, Leonel; Gálvez G, Javier; Armendáriz B, Juan

    2007-06-01

    Liver fibrosis is the common response to chronic liver injury, ultimately leading to cirrhosis and its complications: portal hypertension, liver failure, hepatic encephalopathy, and hepatocellular carcinoma and others. Efficient and well-tolerated antifibrotic drugs are still lacking, and current treatment of hepatic fibrosis is limited to withdrawal of the noxious agent. Efforts over the past decade have mainly focused on fibrogenic cells generating the scarring response, although promising data on inhibition of parenchymal injury or reduction of liver inflammation have also been obtained. A large number of approaches have been validated in culture studies and in animal models, and several clinical trials are underway or anticipated for a growing number of molecules. This review highlight recent advances in the molecular mechanisms of liver fibrosis and discusses mechanistically based strategies that have recently emerged.

  1. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  2. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

    PubMed

    Liu, Susan B; Ikenaga, Naoki; Peng, Zhen-Wei; Sverdlov, Deanna Y; Greenstein, Andrew; Smith, Victoria; Schuppan, Detlef; Popov, Yury

    2016-04-01

    Collagen stabilization through irreversible cross-linking is thought to promote hepatic fibrosis progression and limit its reversibility. However, the mechanism of this process remains poorly defined. We studied the functional contribution of lysyl oxidase (LOX) to collagen stabilization and hepatic fibrosis progression/reversalin vivousing chronic administration of irreversible LOX inhibitor β-aminopropionitrile (BAPN, or vehicle as control) in C57Bl/6J mice with carbon tetrachloride (CCl4)-induced fibrosis. Fibrotic matrix stability was directly assessed using a stepwise collagen extraction assay and fibrotic septae morphometry. Liver cells and fibrosis were studied by histologic, biochemical methods and quantitative real-time reverse-transcription PCR. During fibrosis progression, BAPN administration suppressed accumulation of cross-linked collagens, and fibrotic septae showed widening and collagen fibrils splitting, reminiscent of remodeling signs observed during fibrosis reversal. LOX inhibition attenuated hepatic stellate cell activation markers and promoted F4/80-positive scar-associated macrophage infiltration without an increase in liver injury. In reversal experiments, BAPN-treated fibrotic mice demonstrated accelerated fibrosis reversal after CCl4withdrawal. Our findings demonstrate for the first time that LOX contributes significantly to collagen stabilization in liver fibrosis, promotes fibrogenic activation of attenuated hepatic stellate cells, and limits fibrosis reversal. Our data support the concept of pharmacologic targeting of LOX pathway to inhibit liver fibrosis and promote its resolution.-Liu, S. B., Ikenaga, N., Peng, Z.-W., Sverdlov, D. Y., Greenstein, A., Smith, V., Schuppan, D., Popov, Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

  3. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106

  4. Enhanced Liver Fibrosis (ELF) test accurately identifies liver fibrosis in patients with chronic hepatitis C.

    PubMed

    Parkes, J; Guha, I N; Roderick, P; Harris, S; Cross, R; Manos, M M; Irving, W; Zaitoun, A; Wheatley, M; Ryder, S; Rosenberg, W

    2011-01-01

    Assessment of liver fibrosis is important in determining prognosis and evaluating interventions. Due to limitations of accuracy and patient hazard of liver biopsy, non-invasive methods have been sought to provide information on liver fibrosis, including the European liver fibrosis (ELF) test, shown to have good diagnostic accuracy for the detection of moderate and severe fibrosis. Access to independent cohorts of patients has provided an opportunity to explore if this test could be simplified. This paper reports the simplification of the ELF test and its ability to identity severity of liver fibrosis in external validation studies in patients with chronic hepatitis C (CHC). Paired biopsy and serum samples from 347 naïve patients with CHC in three independent cohorts were analysed. Diagnostic performance characteristics were derived (AUROC, sensitivity and specificity, predictive values), and clinical utility modelling performed to determine the proportion of biopsies that could have been avoided if ELF test was used in this patient group. It was possible to simplify the original ELF test without loss of performance and the new algorithm is reported. The simplified ELF test was able to predict severe fibrosis [pooled AUROC of 0.85 (95% CI 0.81-0.89)] and using clinical utility modelling to predict severe fibrosis (Ishak stages 4-6; METAVIR stages 3 and 4) 81% of biopsies could have been avoided (65% correctly). Issues of spectrum effect in diagnostic test evaluations are discussed. In chronic hepatitis C a simplified ELF test can detect severe liver fibrosis with good accuracy.

  5. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies

    PubMed Central

    Martínez, Allyson K.; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T.; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S.

    2014-01-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  6. Noninvasive Measures of Liver Fibrosis and Severity of Liver Disease

    PubMed Central

    Lucero, Catherine; Brown, Robert S.

    2016-01-01

    Determining the degree of fibrosis is an important step in the assessment of disease severity in patients with chronic liver disease. Liver biopsy has been the gold standard for estimating the extent of inflammation and fibrosis, although the procedure has limitations such as sampling error and variability. Noninvasive testing has been shown to be equally predictive in ruling out fibrosis or ruling in advanced fibrosis. Serum biomarkers and imaging-based tests have more limited predictive ability when classifying intermediate stages, but these tools can help identify which patients should receive antiviral treatment sooner and require ongoing cancer surveillance without the need for biopsy. Using a combination of serum markers and imaging tests may also be helpful in providing functional assessment of portal hypertension in patients with chronic liver disease. PMID:27330502

  7. An ω-3-enriched diet alone does not attenuate CCl4-induced hepatic fibrosis.

    PubMed

    Harris, Todd R; Kodani, Sean; Yang, Jun; Imai, Denise M; Hammock, Bruce D

    2016-12-01

    Exposure to the halogenated hydrocarbon carbon tetrachloride (CCl4) leads to hepatic lipid peroxidation, inflammation and fibrosis. Dietary supplementation of ω-3 fatty acids has been increasingly advocated as being generally anti-inflammatory, though its effect in models of liver fibrosis is mixed. This raises the question of whether diets high in ω-3 fatty acids will result in a greater sensitivity or resistance to liver fibrosis as a result of environmental toxicants like CCl4. In this study, we fed CCl4-treated mice a high ω-3 diet (using a mix of docosahexaenoic acid and eicosapentaenoic acid ethyl esters). We also co-administered an inhibitor of soluble epoxide hydrolase, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which has been shown to boost anti-inflammatory epoxy fatty acids that are produced from both ω-3 and ω-6 dietary lipids. We showed that soluble epoxide inhibitors reduced CCl4-induced liver fibrosis. Three major results were obtained. First, the ω-3-enriched diet did not attenuate CCl4-induced liver fibrosis as judged by collagen deposition and collagen mRNA expression. Second, the ω-3-enriched diet raised hepatic tissue levels of several inflammatory lipoxygenase metabolites and prostaglandins, including PGE2. Third, treatment with TPPU in drinking water in conjunction with the ω-3-enriched diet resulted in a reduction in liver fibrosis compared to all other groups. Taken together, these results indicate that dietary ω-3 supplementation alone did not attenuate CCl4-induced liver fibrosis. Additionally, oxylipin signaling molecules may play role in the CCl4-induced liver fibrosis in the high ω-3 diet groups.

  8. Macrophage heterogeneity in liver injury and fibrosis.

    PubMed

    Tacke, Frank; Zimmermann, Henning W

    2014-05-01

    Hepatic macrophages are central in the pathogenesis of chronic liver injury and have been proposed as potential targets in combatting fibrosis. Recent experimental studies in animal models revealed that hepatic macrophages are a remarkably heterogeneous population of immune cells that fulfill diverse functions in homeostasis, disease progression, and regression from injury. These range from clearance of pathogens or cellular debris and maintenance of immunological tolerance in steady state conditions; central roles in initiating and perpetuating inflammation in response to injury; promoting liver fibrosis via activating hepatic stellate cells in chronic liver damage; and, finally, resolution of inflammation and fibrosis by degradation of extracellular matrix and release of anti-inflammatory cytokines. Cellular heterogeneity in the liver is partly explained by the origin of macrophages. Hepatic macrophages can either arise from circulating monocytes, which are recruited to the injured liver via chemokine signals, or from self-renewing embryo-derived local macrophages, termed Kupffer cells. Kupffer cells appear essential for sensing tissue injury and initiating inflammatory responses, while infiltrating Ly-6C(+) monocyte-derived macrophages are linked to chronic inflammation and fibrogenesis. In addition, proliferation of local or recruited macrophages may possibly further contribute to their accumulation in injured liver. During fibrosis regression, monocyte-derived cells differentiate into Ly-6C (Ly6C, Gr1) low expressing 'restorative' macrophages and promote resolution from injury. Understanding the mechanisms that regulate hepatic macrophage heterogeneity, either by monocyte subset recruitment, by promoting restorative macrophage polarization or by impacting distinctive macrophage effector functions, may help to develop novel macrophage subset-targeted therapies for liver injury and fibrosis.

  9. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation.

    PubMed

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis.

  10. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation

    PubMed Central

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis. PMID:27766037

  11. Cystic fibrosis-associated liver disease.

    PubMed

    Herrmann, Ulrike; Dockter, Gerd; Lammert, Frank

    2010-10-01

    Liver disease is increasingly common in cystic fibrosis (CF). As new therapeutic options emerge, life expectancy increases and common hepatobiliary manifestations impact on quality of life and survival of CF patients. Hepatobiliary abnormalities in CF vary in nature and range from defects attributable to the underlying CFTR gene defect to those related to systemic disease and malnutrition. Today complications of liver disease represent the third most frequent cause of disease-related death in patients with CF. Here we review molecular and clinical genetics of CF, including genetic modifiers of CF-associated liver disease, and provide practical recommendations for genetic testing, diagnosis and treatment of hepatobiliary manifestations in CF.

  12. Effects of Angiotensin Converting Enzyme Inhibitors on Liver Fibrosis in HIV and Hepatitis C Coinfection.

    PubMed

    Reese, Lindsey J; Tider, Diane S; Stivala, Alicia C; Fishbein, Dawn A

    2012-01-01

    Background. Liver fibrosis is accelerated in HIV and hepatitis C coinfection, mediated by profibrotic effects of angiotensin. The objective of this study was to determine if angiotensin converting enzyme inhibitors (ACE-Is) attenuate liver fibrosis in coinfection. Methods. A retrospective review of 156 coinfected subjects was conducted to analyze the association between exposure to ACE-Is and liver fibrosis. Noninvasive indices of liver fibrosis (APRI, FIB-4, Forns indices) were compared between subjects who had taken ACE-Is and controls who had not taken them. Linear regression was used to evaluate ACE-I use as an independent predictor of fibrosis. Results. Subjects taking ACE-Is for three years were no different than controls on the APRI and the FIB-4 but had significantly higher scores than controls on the Forns index, indicating more advanced fibrosis. The use of ACE-Is for three years remained independently associated with an elevated Forns score when adjusted for age, race, and HIV viral load (P < 0.001). There were significant associations between all of the indices and significant fibrosis, as determined clinically and radiologically. Conclusions. There was not a protective association between angiotensin inhibition and liver fibrosis in coinfection. These noninvasive indices may be useful for ruling out significant fibrosis in coinfection.

  13. [Utility of Fibroscan in the evaluation of liver fibrosis].

    PubMed

    Carrión, José A

    2009-01-01

    Chronic liver diseases produce a progressive accumulation of collagenous fiber in the liver parenchyma. For years, liver biopsy has been the gold standard to quantify liver fibrosis. Currently, non-invasive alternatives are available to quantify fibrosis. Transient elastography (TE) or Fibroscan quantifies liver rigidity, which is proportional to the grade of liver fibrosis. Studies are available that have evaluated the reliability and limitations of TE in healthy individuals, in patients with acute hepatitis, in distinct chronic liver diseases and in liver transplant recipients. TE is reliable for the diagnosis of liver cirrhosis (F4) and significant fibrosis (F2) but its values may vary according to the patient's characteristics and the etiology of the disease. TE can avoid liver biopsy in 90% of patients with cirrhosis and in up to 70% of those with significant fibrosis when combined with other non-invasive methods.

  14. Promising Therapy Candidates for Liver Fibrosis

    PubMed Central

    Wang, Ping; Koyama, Yukinori; Liu, Xiao; Xu, Jun; Ma, Hsiao-Yen; Liang, Shuang; Kim, In H.; Brenner, David A.; Kisseleva, Tatiana

    2016-01-01

    Liver fibrosis is a wound-healing process in response to repeated and chronic injury to hepatocytes and/or cholangiocytes. Ongoing hepatocyte apoptosis or necrosis lead to increase in ROS production and decrease in antioxidant activity, which recruits inflammatory cells from the blood and activate hepatic stellate cells (HSCs) changing to myofibroblasts. Injury to cholangiocytes also recruits inflammatory cells to the liver and activates portal fibroblasts in the portal area, which release molecules to activate and amplify cholangiocytes. No matter what origin of myofibroblasts, either HSCs or portal fibroblasts, they share similar characteristics, including being positive for α-smooth muscle actin and producing extracellular matrix. Based on the extensive pathogenesis knowledge of liver fibrosis, therapeutic strategies have been designed to target each step of this process, including hepatocyte apoptosis, cholangiocyte proliferation, inflammation, and activation of myofibroblasts to deposit extracellular matrix, yet the current therapies are still in early-phase clinical development. There is an urgent need to translate the molecular mechanism of liver fibrosis to effective and potent reagents or therapies in human. PMID:26909046

  15. Reduction of hepatic fibrosis by overexpression of von Hippel–Lindau protein in experimental models of chronic liver disease

    PubMed Central

    Wang, Jizhou; Lu, Zhaoyang; Xu, Zhilin; Tian, Pei; Miao, Hui; Pan, Shangha; Song, Ruipeng; Sun, Xueying; Zhao, Baolei; Wang, Dawei; Ma, Yong; Song, Xuan; Zhang, Shugeng; Liu, Lianxin; Jiang, Hongchi

    2017-01-01

    Hypoxia-inducible factor (HIF)-1α and HIF-2α play an important role in liver fibrosis. von Hippel–Lindau protein (VHL), a key mediator of HIF-α, regulates fibrosis in an organ- and cell-specific way. In this study, human liver samples were collected from hepatitis C-, alcoholic-, and cholestatic-associated fibrotic and healthy individuals. Two mouse models of liver fibrosis were established: bile duct ligation and carbon tetrachloride injection. We constructed adenovirus vectors to overexpress VHL, normoxia-active HIF-α, and lentiviral vectors to silence HIF-α. The results showed that liver sections from fibrosis patients had a lower level of VHL and higher levels of HIF-1α and HIF-2α compared with healthy sections, a finding which was confirmed in mice. Overexpression of VHL attenuated liver fibrosis, downregulated fibrogenic genes, and inhibited liver inflammation, apoptosis, and angiogenesis. Overexpression of VHL was more successful at inhibiting fibrosis compared with silencing HIF-1α plus HIF-2α. Normoxia-active HIF-1α or HIF-2α prevented the inhibitory effect of VHL on liver fibrosis, indicating that attenuating fibrosis via VHL is HIF-1α- and HIF-2α-dependent to some extent. In addition, overexpression of VHL inhibited mouse hepatic stellate cells activation and proliferation and promoted apoptosis. Taken together, VHL may be considered a new target to inhibit liver fibrosis. PMID:28112200

  16. Stage scoring of liver fibrosis using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2016-10-01

    Liver fibrosis is a common pathological process of varied chronic liver diseases including alcoholic hepatitis, virus hepatitis, and so on. Accurate evaluation of liver fibrosis is necessary for effective therapy and a five-stage grading system was developed. Currently, experienced pathologists use stained liver biopsies to assess the degree of liver fibrosis. But it is difficult to obtain highly reproducible results because of huge discrepancy among different observers. Polarization imaging technique has the potential of scoring liver fibrosis since it is capable of probing the structural and optical properties of samples. Considering that the Mueller matrix measurement can provide comprehensive microstructural information of the tissues, in this paper, we apply the Mueller matrix microscope to human liver fibrosis slices in different fibrosis stages. We extract the valid regions and adopt the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters for quantitative analysis. We also use the Monte Carlo simulation to analyze the relationship between the microscopic Mueller matrix parameters and the characteristic structural changes during the fibrosis process. The experimental and Monte Carlo simulated results show good consistency. We get a positive correlation between the parameters and the stage of liver fibrosis. The results presented in this paper indicate that the Mueller matrix microscope can provide additional information for the detections and fibrosis scorings of liver tissues and has great potential in liver fibrosis diagnosis.

  17. Liver fibrosis identification based on ultrasound images.

    PubMed

    Cao, Guitao; Shi, Pengfei; Hu, Bing

    2005-01-01

    Diagnostic ultrasound is one of useful and noninvasive tools for clinical medicine. However, due to its qualitative, subjective and experience-based nature, ultrasound images can be influenced by image conditions such as scanning frequency and machine settings. In this paper, a novel method is proposed to extract the liver features using the joint features of fractal dimension and the entropies of texture edge co-occurrence matrix based on ultrasound images, which is not sensitive to changes in emission frequency and gain. Then, Fisher linear classifier and Support Vector Machine are employed to test on a group of 99 liver fibrosis images from 18 patients, as well as other 273 healthy liver images from 18 specimens.

  18. Using ultrasound Nakagami imaging to assess liver fibrosis in rats.

    PubMed

    Ho, Ming-Chih; Lin, Jen-Jen; Shu, Yu-Chen; Chen, Chiung-Nien; Chang, King-Jen; Chang, Chien-Cheng; Tsui, Po-Hsiang

    2012-02-01

    This study explored the feasibility of using the ultrasound Nakagami image to assess the degree of liver fibrosis in rats. The rat has been widely used as a model in investigations of liver fibrosis. Ultrasound grayscale imaging makes it possible to observe fibrotic rat livers in real time. Statistical analysis of the envelopes of signals backscattered from rat livers may provide useful clues about the degree of liver fibrosis. The Nakagami-model-based image has been shown to be useful for characterizing scatterers in tissues by reflecting the echo statistics, and hence the Nakagami image may serve as a functional imaging tool for quantifying rat liver fibrosis. To validate this idea, fibrosis was induced in each rat liver (n=21) by an intraperitoneal injection of 0.5% dimethylnitrosamine. Livers were excised from rats for in vitro ultrasound scanning using a single-element transducer. The backscattered-signal envelopes of the acquired raw ultrasound signals were used for Nakagami imaging. The Metavir score determined by a pathologist was used to histologically quantify the degree of liver fibrosis. It was found that the Nakagami image could be used to distinguish different degrees of liver fibrosis in rats, since the average Nakagami parameter increased from 0.55 to 0.83 as the fibrosis score increased from 0 (i.e., normal) to 4. This correlation may be due to liver fibrosis in rats involving an increase in the concentration of local scatterers and the appearance of the periodic structures or clustering of scatterers that would change the backscattering statistics. The current findings indicate that the ultrasound Nakagami image has great potential as a functional imaging tool to complement the use of the conventional B-scan in animal studies of liver fibrosis.

  19. Chinese medicines as a resource for liver fibrosis treatment

    PubMed Central

    2009-01-01

    Liver fibrosis is a condition of abnormal proliferation of connective tissue due to various types of chronic liver injury often caused by viral infection and chemicals. Effective therapies against liver fibrosis are still limited. In this review, we focus on research on Chinese medicines against liver fibrosis in three categories, namely pure compounds, composite formulae and combination treatment using single compounds with composite formulae or conventional medicines. Action mechanisms of the anti-fibrosis Chinese medicines, clinical application, herbal adverse events and quality control are also reviewed. Evidence indicates that some Chinese medicines are clinically effective on liver fibrosis. Strict quality control such as research to identify and monitor the manufacturing of Chinese medicines enables reliable pharmacological, clinical and in-depth mechanism studies. Further experiments and clinical trials should be carried out on the platforms that conform to international standards. PMID:19695098

  20. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice

    PubMed Central

    Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T.; Wissmueller, Max; Lesley, Scott A.; Miyamoto, Yukiko; Eckmann, Lars; Dhungana, Suraj; Pathmasiri, Wimal; Sumner, Susan; Westwater, Caroline; Brenner, David A.; Schnabl, Bernd

    2015-01-01

    Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis.—Mazagova, M., Wang, L., Anfora, A. T., Wissmueller, M., Lesley, S. A., Miyamoto, Y., Eckmann, L., Dhungana, S., Pathmasiri, W., Sumner, S., Westwater, C., Brenner, D. A., Schnabl, B. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. PMID:25466902

  1. The PDGF system and its antagonists in liver fibrosis.

    PubMed

    Borkham-Kamphorst, Erawan; Weiskirchen, Ralf

    2016-04-01

    Platelet derived growth factor (PDGF) signaling plays an important role in activated hepatic stellate cells and portal fibroblast proliferation, chemotaxis, migration and cell survival. PDGF receptors and ligands are upregulated in experimental liver fibrotic models as well as in human liver fibrotic diseases. Blocking of PDGF signaling ameliorates experimental liver fibrogenesis. The plurality of molecular and cellular activities of PDGF and its involvement in initiation, progression and resolution of hepatic fibrogenesis offers an infinite number of therapeutic possibilities. These include the application of therapeutic antibodies (e.g. AbyD3263, MOR8457) which specifically sequester individual PDGF isoforms or the inhibition of PDGF isoforms by synthetic aptamers. In particular, the isolation of innovative slow off-rate modified aptamers (e.g., SOMAmer SL1 and SL5) that carry functional groups absent in natural nucleic acids by the Systematic Evolution of Ligands by EXponential (SELEX) enrichment technique offers the possibility to design high affinity aptamers that target PDGF isoforms for clinical purposes. Dominant-negative soluble PDGF receptors are also effective in attenuation of hepatic stellate cell proliferation and hepatic fibrogenesis. Moreover, some multikinase inhibitors targeting PDGF signaling have been intensively tested during the last decade and are on the way into advanced preclinical studies and clinical trials. This narrative review aims to gauge the recent progression of research into PDGF systems and liver fibrosis.

  2. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  3. Positive feedback loop of YB-1 interacting with Smad2 promotes liver fibrosis.

    PubMed

    Xiong, Panpan; Zhang, Jun; Xu, Diannan; Zhu, Jie; Li, Wenshuai; Liu, Jie; Liu, Fei

    2017-03-18

    Y-box binding protein (YB-1), known as a multifunctional cellular protein in various biological processes, was recently reported to be associated with liver fibrosis. The critical role of TGF-β/Smad signaling pathway in stimulating the transcription of fibrotic genes in fibroblasts have already been identified, however, whether and how YB-1 modulated liver fibrosis via TGF-β/Smad signaling pathway remains largely unknown. In our previous study, we proved that ectopic TGF-β was associated with YB-1 expression. Herein, by combining in vitro experiments in LX2 human hepatic stellate cells and in vivo studies by building CCl4 based mice liver fibrosis model, we showed that YB-1 and p-YB-1 were upregulated in liver fibrosis tissue, and YB-1 promoted the deposition of excess extracellular matrix. Mechanistically, Smad2, a key member in TGF-β signaling pathway, acted as a transcription factor that triggered YB-1 promoter, while on the other hand, p-YB-1 stabilized Smad2 by attenuating its ubiquitination. Knockdown of Smad2 could reduce YB-1 expression, which in turn shorter the half time of Smad2. Furthermore, the serine102 residue of YB-1 both affected its binding and stabilizing activity to Smad2. These finding demonstrated that YB-1 and Smad2 played as a positive feedback loop in promoting liver fibrosis. In conclusion, TGF-β signaling pathway may influence liver fibrosis by incorporating with YB-1, indicating that YB-1 could be a potential target for therapies against liver fibrosis.

  4. Staging Liver Fibrosis with Statistical Observers

    NASA Astrophysics Data System (ADS)

    Brand, Jonathan Frieman

    Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.

  5. Congenital hepatic fibrosis, liver cell carcinoma and adult polycystic kidneys.

    PubMed

    Manes, J L; Kissane, J M; Valdes, A J

    1977-06-01

    In reviewing the literature, we found no liver cell carcinoma (LCC) or well-documented adult polycystic kidneys (APK) associated with congenital hepatic fibrosis (CHF). We report a 69-year-old man with CHF, LCC, APK, duplication cyst of distal portion of stomach, two calcified splenic artery aneurysms, myocardial fibrosis and muscular hypertrophy of esophagus. The LCC was grossly predunculated and microscopically showed prominent fibrosis and hyaline intracytoplasmic inclusions in the tumor cells.

  6. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    PubMed Central

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  7. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    PubMed Central

    Iyer, Malliga R.; Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1–/– but not in nos2–/– mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis. PMID:27525312

  8. Evolving strategies for liver fibrosis staging: Non-invasive assessment

    PubMed Central

    Stasi, Cristina; Milani, Stefano

    2017-01-01

    Transient elastography and the acoustic radiation force impulse techniques may play a pivotal role in the study of liver fibrosis. Some studies have shown that elastography can detect both the progression and regression of fibrosis. Similarly, research results have been analysed and direct and indirect serum markers of hepatic fibrosis have shown high diagnostic accuracy for advanced fibrosis/cirrhosis. The prognosis of different stages of cirrhosis is well established and various staging systems have been proposed, largely based on clinical data. However, it is still unknown if either non-invasive markers of liver fibrosis or elastography may contribute to a more accurate staging of liver cirrhosis, in terms of prognosis and fibrosis regression after effective therapy. In fact, not enough studies have shown both the fibrosis regression in different cirrhosis stages and the point beyond which the prognosis does not change - even in the event of fibrosis regression. Therefore, future studies are needed to validate non-invasive methods in predicting the different phases of liver cirrhosis. PMID:28127192

  9. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis

    PubMed Central

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-01-01

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell–derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occured when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4. PMID:26643997

  10. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis.

    PubMed

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-12-08

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell-derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occurred when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4.

  11. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets

    PubMed Central

    Li, Hai; You, Hong; Fan, Xu; Jia, Jidong

    2016-01-01

    Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages. PMID:27252881

  12. Evaluation of liver fibrosis: "Something old, something new…".

    PubMed

    Almpanis, Zannis; Demonakou, Maria; Tiniakos, Dina

    2016-01-01

    Hepatic fibrogenesis may gradually result to cirrhosis due to the accumulation of extracellular matrix components as a response to liver injury. Thus, therapeutic decisions in chronic liver disease, regardless of the cause, should first and foremost be guided by an accurate quantification of hepatic fibrosis. Detection and assessment of the extent of hepatic fibrosis represent a challenge in modern Hepatology. Although traditional histological staging systems remain the "best standard", they are not able to quantify liver fibrosis as a dynamic process and may not accurately substage cirrhosis. This review aims to compare the currently used non-invasive methods of measuring liver fibrosis and provide an update in current tissue-based digital techniques developed for this purpose, that may prove of value in daily clinical practice.

  13. Alleviation of Carbon-Tetrachloride-Induced Liver Injury and Fibrosis by Betaine Supplementation in Chickens

    PubMed Central

    Tsai, Meng-Tsz; Chen, Ching-Yi; Pan, Yu-Hui; Wang, Siou-Huei; Mersmann, Harry J.; Ding, Shih-Torng

    2015-01-01

    Betaine is a food component with well-reported hepatoprotection effects. However, the effects and mechanisms of betaine on liver fibrosis development are still insufficient. Because metabolic functions of chicken and human liver is similar, we established a chicken model with carbon Tetrachloride- (CCl4-) induced fibrosis for studying antifibrotic effect of betaine in vivo and in vitro. Two-week-old male chicks were supplemented with betaine (1%, w/v) in drinking water for 2 weeks prior to the initiation of CCl4 treatment (i.p.) until sacrifice. Primary chicken hepatocytes were treated with CCl4 and betaine to mimic the in vivo supplementation. The supplementation of betaine significantly alleviated liver fibrosis development along with the inhibition of lipid peroxidation, hepatic inflammation cytokine, and transforming growth factor-β1 expression levels. These inhibitive effects were also accompanied with the attenuation of hepatic stellate cell activation. Furthermore, our in vitro studies confirmed that betaine provides antioxidant capacity for attenuating the hepatocyte necrosis by CCl4. Altogether, our results highlight the antioxidant ability of betaine, which alleviates CCl4-induced fibrogenesis process along with the suppression of hepatic stellate cells activation. Since betaine is a natural compound without toxicity, we suggest betaine can be used as a potent nutritional or therapeutic factor for reducing liver fibrosis. PMID:26491462

  14. Preventive Effect of Halofuginone on Concanavalin A-Induced Liver Fibrosis

    PubMed Central

    Liang, Jie; Zhang, Bei; Shen, Ruo-wu; Liu, Jia-Bao; Gao, Mei-hua; Li, Ying; Li, Yuan-Yuan; Zhang, Wen

    2013-01-01

    Halofuginone (HF) is an active component of extracts derived from the plant alkaloid febrifugine and has shown therapeutic promise in animal models of fibrotic disease. Our main objectives were to clarify the suppressive effect of HF on concanavalin A (ConA)-induced liver fibrosis. ConA injection into the tail vein caused a great increase in the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, while orally administration of HF significantly decreased the levels of the transaminases. In addition, the levels of hyaluronic acid (HA), procollagen III (PCIII) and TGF-β1 in the serum and collagen I, α-SMA, tissue inhibitors of metalloproteinase 2 (TIMP2) and Smad3 in the liver tissue were significantly lowered with the treatment of HF. Histological examination also demonstrated that HF significantly reduced the severity of liver fibrosis. Since ConA-induced liver fibrosis is caused by the repeated activation of T cells, immunomodulatory substances might be responsible for the suppressive effect of HF. We found that the production of nuclear factor (NF)-kB in the serum was increased in ConA-treated group, while decreased significantly with the treatment of HF. The changes of inflammatory cytokines tumor necrosis factor (TNF-α), IL-6 and IL-1β in the serum followed the same rhythm. All together, our findings indicate that orally administration HF (10ppm) would attenuate the liver fibrosis by suppressing the synthesis of collagen I and inflammation-mediated liver injury. PMID:24358159

  15. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats.

    PubMed

    Hamza, Alaaeldin A

    2010-01-01

    This study was carried out to evaluate the effect of Moringa oleifera Lam (Moringa) seed extract on liver fibrosis. Liver fibrosis was induced by the oral administration of 20% carbon tetrachloride (CCl(4)), twice weekly and for 8 weeks. Simultaneously, M.oleifera Lam seed extract (1g/kg) was orally administered daily. The biochemical and histological results showed that Moringa reduced liver damage as well as symptoms of liver fibrosis. The administration of Moringa seed extract decreased the CCl(4)-induced elevation of serum aminotransferase activities and globulin level. The elevations of hepatic hydroxyproline content and myeloperoxidase activity were also reduced by Moringa treatment. Furthermore, the immunohistochemical study showed that Moringa markedly reduced the numbers of smooth muscle alpha-actin-positive cells and the accumulation of collagens I and III in liver. Moringa seed extract showed significant inhibitory effect on 1,1-diphenyl-2-picrylhydrazyl free radical, as well as strong reducing antioxidant power. The activity of superoxide dismutase as well as the content of both malondialdehyde and protein carbonyl, which are oxidative stress markers, were reversed after treatment with Moringa. Finally, these results suggested that Moringa seed extract can act against CCl(4)-induced liver injury and fibrosis in rats by a mechanism related to its antioxidant properties, anti-inflammatory effect and its ability to attenuate the hepatic stellate cells activation.

  16. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Malhotra, Ashim; Henning, Justin R; Ibrahim, Junaid; Vera, Valery; Cieza-Rubio, Napoleon E; Hassan, Burhan U; Pachter, H Leon; Cohen, Steven; Frey, Alan B; Miller, George

    2010-08-15

    The normal liver is characterized by immunologic tolerance. Primary mediators of hepatic immune tolerance are liver sinusoidal endothelial cells (LSECs). LSECs block adaptive immunogenic responses to Ag and induce the generation of T regulatory cells. Hepatic fibrosis is characterized by both intense intrahepatic inflammation and altered hepatic immunity. We postulated that, in liver fibrosis, a reversal of LSEC function from tolerogenic to proinflammatory and immunogenic may contribute to both the heightened inflammatory milieu and altered intrahepatic immunity. We found that, after fibrotic liver injury from hepatotoxins, LSECs become highly proinflammatory and secrete an array of cytokines and chemokines. In addition, LSECs gain enhanced capacity to capture Ag and induce T cell proliferation. Similarly, unlike LSECs in normal livers, in fibrosis, LSECs do not veto dendritic cell priming of T cells. Furthermore, whereas in normal livers, LSECs are active in the generation of T regulatory cells, in hepatic fibrosis LSECs induce an immunogenic T cell phenotype capable of enhancing endogenous CTLs and generating potent de novo CTL responses. Moreover, depletion of LSECs from fibrotic liver cultures mitigates the proinflammatory milieu characteristic of hepatic fibrosis. Our findings offer a critical understanding of the role of LSECs in modulating intrahepatic immunity and inflammation in fibro-inflammatory liver disease.

  17. Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats.

    PubMed

    Kim, Sang K; Seo, Jung M; Chae, Yu R; Jung, Young S; Park, Jae H; Kim, Young C

    2009-02-12

    Previous studies suggested that betaine intake might antagonize the induction of oxidative stress-mediated acute liver injury through regulation of the sulfur-amino acid metabolism. In this study we examined the protective effects of betaine on chronic liver injury and fibrosis induced by dimethylnitrosamine (DMN). Male rats were supplemented with betaine (1%, w/v) in drinking water from 2 weeks prior to the initiation of DMN treatment (10mg/(kg day), i.p., 3 days/week, for 1, 2, or 4 weeks) until sacrifice. Induction of liver injury was determined by quantifying serum alanine aminotransferase, aspartate aminotransferase activities, bilirubin levels, hepatic xenobiotic-metabolizing capacity, histopathological changes and 4-hydroxyproline levels. Development of oxidative injury was estimated by malondialdehyde (MDA) levels and total oxyradical scavenging capacity (TOSC) of liver and serum toward hydroxyl, peroxyl radicals, and peroxynitrite. Progressive changes in the parameters of liver injury and fibrosis were evident in the rats challenged with DMN. Elevation of MDA levels in liver was significant before the onset of a change in any parameters determined in this study. Betaine supplementation markedly attenuated the induction of hepatotoxicity and fibrosis by DMN. Elevation of MDA and the reduction of TOSC were also depressed significantly. Development of liver injury corresponded well with the induction of oxidative stress in rats treated with DMN, both of which are inhibited effectively by betaine supplementation. It is suggested that betaine may protect liver from fibrogenesis by maintaining the cellular antioxidant capacity.

  18. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  19. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis.

    PubMed

    Chu, Po-Yin; Walder, Ken; Horlock, Duncan; Williams, David; Nelson, Erin; Byrne, Melissa; Jandeleit-Dahm, Karin; Zimmet, Paul; Kaye, David M

    2015-01-01

    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach.

  20. Carvedilol Attenuates the Progression of Hepatic Fibrosis Induced by Bile Duct Ligation

    PubMed Central

    Tian, Xiaopeng; Zhao, Chunhong; Guo, Jinbo; Xie, Shurui; Yin, Fengrong; Huo, Xiaoxia

    2017-01-01

    Background. The sympathetic nervous system (SNS) is responsible for hepatic stellate cells (HSCs) activation and the accumulation of collagen that occurs in hepatic fibrogenesis. Carvedilol has been widely used for the complication of hepatic cirrhosis in the clinic. Furthermore, it has powerful antioxidant properties. We assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may further enhance its clinical benefits. Methods. Using a bile duct ligation rat model of hepatic fibrosis, we studied the effects of carvedilol on the fibrosis, collagen deposition, and oxidative stress based on histology, immunohistochemistry, western blot, and RT-PCR analyses. Results. Carvedilol attenuated liver fibrosis, as evidenced by reduced hydroxyproline content and the accumulation of collagen, downregulated TIMP-1 and TIMP-2, and upregulated MMP-13. MMP-2 was an exception, which was decreased after carvedilol treatment for 2 weeks and upregulated after carvedilol treatment for 4 weeks. Carvedilol reduced the activation of HSCs, decreased the induction of collagen, transforming growth factor-β1, and MDA content, and strengthened the SOD activity. The antifibrotic effects were augmented as dosages increased. Conclusions. The study indicates that carvedilol attenuated hepatic fibrosis in a dose-dependent manner. It can decrease collagen accumulation and HSCs activation by the amelioration of oxidative stress.

  1. Effects of bicyclol on dimethylnitrosamine-induced liver fibrosis in mice and its mechanism of action.

    PubMed

    Hu, Qing-Wei; Liu, Geng-Tao

    2006-07-04

    The aim was to investigate the suppressive effect of bicyclol on hepatic fibrosis induced by dimethylnitrosamine (DMN) in mice and the mechanism of its action. Hepatic fibrosis was established by intraperitoneal injection of 8 mg kg(-1) day(-1) on three consecutive days of each week for 4 or 5 weeks. In the prophylactic experiment, bicyclol (100 and 200mg.kg(-1)) was administered by gavage in association with DMN injection. For the therapeutic experiment, mice were firstly injected with DMN for 5 weeks as in the prophylactic experiment, and then the mice in drug groups were orally administered bicyclol (100 and 200mg.kg(-1)) once daily for 5 weeks. As a result, the levels of alanine aminotransferase (ALT), total bilirubin, hydroxyproline (Hyp), prolidase, tumor necrosis factor-alpha (TNFalpha), transforming growth factor beta-1 (TGFbeta(1)), type I collagen in serum and the score of liver fibrosis all significantly increased in the hepatic fibrosis model group in comparison with those in control group. The treatment with bicyclol markedly reduced all the above criteria. Bicyclol also attenuated the decrease of body weight of mice, serum total protein and albumin. In addition, bicyclol treatment inhibited liver TGFbeta(1) and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA expression in the prophylactic experiment. Similarly, bicyclol reduced TIMP-1 levels in liver and serum and increased collagenase activity in the liver in the therapeutic experiment. The result suggest that bicyclol attenuates DMN-induced hepatic fibrosis in mice. Its mechanisms of action may be related to the hepatoprotective and anti-inflammation properties, the down-regulation of liver TGFbeta(1) and TIMP-1 expression and the increase of net collagenase activity in liver.

  2. Liver fibrosis in non-alcoholic fatty liver disease - diagnostic challenge with prognostic significance.

    PubMed

    Stål, Per

    2015-10-21

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the Western world, with a prevalence of 20%. In a subgroup of patients, inflammation, ballooning degeneration of hepatocytes and a varying degree of fibrosis may develop, a condition named non-alcoholic steatohepatitis. Advanced liver fibrosis (stage F3) and cirrhosis (stage F4) are histologic features that most accurately predict increased mortality in both liver-related and cardiovascular diseases. Patients with advanced fibrosis or cirrhosis are at risk for complications such as hepatocellular carcinoma and esophageal varices and should therefore be included in surveillance programs. However, liver disease and fibrosis are often unrecognized in patients with NAFLD, possibly leading to a delayed diagnosis of complications. The early diagnosis of advanced fibrosis in NAFLD is therefore crucial, and it can be accomplished using serum biomarkers (e.g., the NAFLD Fibrosis Score, Fib-4 Index or BARD) or non-invasive imaging techniques (transient elastography or acoustic radiation force impulse imaging). The screening of risk groups, such as patients with obesity and/or type 2 diabetes mellitus, for NAFLD development with these non-invasive methods may detect advanced fibrosis at an early stage. Additionally, patients with a low risk for advanced fibrosis can be identified, and the need for liver biopsies can be minimized. This review focuses on the diagnostic challenge and prognostic impact of advanced liver fibrosis in NAFLD.

  3. Treatment with 4-Methylpyrazole Modulated Stellate Cells and Natural Killer Cells and Ameliorated Liver Fibrosis in Mice

    PubMed Central

    Lee, Young-Sun; Jung, Ju Yeon; Park, Seol-Hee; Park, Keun-Gyu; Choi, Hueng-Sik; Suh, Jae Myoung; Jeong, Won-Il

    2015-01-01

    Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis

  4. Transient Elastography for Assessment of Liver Fibrosis and Steatosis: An Evidence-Based Analysis

    PubMed Central

    Brener, S

    2015-01-01

    Background Liver fibrosis is a sign of advanced liver disease and is often an indication for treatment. The current standard for diagnosing liver fibrosis and steatosis is biopsy, but noninvasive alternatives are available; one of the most common is transient elastography (FibroScan). Objectives The objective of this analysis was to assess the diagnostic accuracy and clinical utility of transient elastography alone for liver fibrosis and with controlled attenuation parameter (CAP) for steatosis in patients with hepatitis C virus, hepatitis B virus, nonalcoholic fatty liver disease, alcoholic liver disease, or cholestatic diseases. The analysis also aimed to compare the diagnostic accuracy of transient elastography with two alternative noninvasive technologies: FibroTest and acoustic force radiation impulse (ARFI). Data Sources Ovid MEDLINE, Ovid MEDLINE In-Process, Ovid Embase, and all EBM databases were searched for all studies published prior to October 2, 2014. Review Methods An overview of reviews was conducted using a systematic search and assessment approach. The results of the included systematic reviews were summarized, analyzed, and reported for outcomes related to diagnostic accuracy and clinical utility as a measure of impact on diagnoses, therapeutic decisions, and patient outcomes. Results Fourteen systematic reviews were included, summarizing more than 150 studies. The reviews demonstrated that transient elastography (with or without CAP) has good diagnostic accuracy compared to biopsy for the assessment of liver fibrosis and steatosis. Acoustic force radiation impulse and FibroTest were not superior to transient elastography. Limitations None of the included systematic reviews reported on the clinical utility of transient elastography. Conclusions Transient elastography (with or without CAP) offers a noninvasive alternative to biopsy for the assessment of liver fibrosis and steatosis, given its comparable diagnostic accuracy. PMID:26664664

  5. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers.

    PubMed

    Guha, Indra Neil; Parkes, Julie; Roderick, Paul; Chattopadhyay, Dipanker; Cross, Richard; Harris, Scott; Kaye, Philip; Burt, Alastair D; Ryder, Steve D; Aithal, Guruprasad P; Day, Christopher P; Rosenberg, William M

    2008-02-01

    The detection of fibrosis within nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis and the stratification of patients for emerging therapeutic intervention. We validated the Original European Liver Fibrosis panel (OELF) and a simplified algorithm not containing age, the Enhanced Liver fibrosis panel (ELF), in an independent cohort of patients with NAFLD. Furthermore, we explored whether the addition of simple markers to the existing panel test could improve diagnostic performance. One hundred ninety-six consecutively recruited patients from 2 centers were included in the validation study. The diagnostic accuracy of the discriminant scores of the ELF panel, simple markers, and a combined panel were compared using receiver operator curves, predictive values, and a clinical utility model. The ELF panel had an area under the curve (AUC) of 0.90 for distinguishing severe fibrosis, 0.82 for moderate fibrosis, and 0.76 for no fibrosis. Simplification of the algorithm by removing age did not alter diagnostic performance. Addition of simple markers to the panel improved diagnostic performance with AUCs of 0.98, 0.93, and 0.84 for the detection of severe fibrosis, moderate fibrosis, and no fibrosis, respectively. The clinical utility model showed that 82% and 88% of liver biopsies could be potentially avoided for the diagnosis of severe fibrosis using ELF and the combined panel, respectively. The ELF panel has good diagnostic accuracy in an independent validation cohort of patients with NAFLD. The addition of established simple markers augments the diagnostic performance across different stages of fibrosis, which will potentially allow superior stratification of patients with NAFLD for emerging therapeutic strategies.

  6. Follistatin attenuates radiation-induced fibrosis in a murine model

    PubMed Central

    Forrester, Helen B.; de Kretser, David M.; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N.

    2017-01-01

    Purpose Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. Experimental design C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Results Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Conclusions Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer. PMID:28301516

  7. Mechanisms of Accelerated Liver Fibrosis Progression during HIV Infection

    PubMed Central

    Debes, Jose D.; Bohjanen, Paul R.; Boonstra, Andre

    2016-01-01

    Abstract With the introduction of antiretroviral therapy (ART), a dramatic reduction in HIV-related morbidity and mortality has been observed. However, it is now becoming increasingly clear that liver-related complications, particularly rapid fibrosis development from ART as well as from the chronic HIV infection itself, are of serious concern to HIV patients. The pathophysiology of liver fibrosis in patients with HIV is a multifactorial process whereby persistent viral replication, and bacterial translocation lead to chronic immune activation and inflammation, which ART is unable to fully suppress, promoting production of fibrinogenic mediators and fibrosis. In addition, mitochondrial toxicity, triggered by both ART and HIV, contributes to intrahepatic damage, which is even more severe in patients co-infected with viral hepatitis. In recent years, new insights into the mechanisms of accelerated fibrosis and liver disease progression in HIV has been obtained, and these are detailed and discussed in this review. PMID:28097102

  8. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis.

    PubMed

    Kang, Jung-Woo; Hong, Jeong-Min; Lee, Sun-Mee

    2016-05-01

    Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4-mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment.

  9. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  10. [Biomarkers for liver fibrosis: advances, advantages and disadvantages].

    PubMed

    Cequera, A; García de León Méndez, M C

    2014-01-01

    Liver cirrhosis in Mexico is one of the most important causes of death in persons between the ages of 25 and 50 years. One of the reasons for therapeutic failure is the lack of knowledge about the molecular mechanisms that cause liver disorder and make it irreversible. One of its prevalent anatomical characteristics is an excessive deposition of fibrous tissue that takes different forms depending on etiology and disease stage. Liver biopsy, traditionally regarded as the gold standard of fibrosis staging, has been brought into question over the past decade, resulting in the proposal for developing non-invasive technologies based on different, but complementary, approaches: a biological one that takes the serum levels of products arising from the fibrosis into account, and a more physical one that evaluates scarring of the liver by methods such as ultrasound and magnetic resonance elastography; some of the methods were originally studied and validated in patients with hepatitis C. There is great interest in determining non-invasive markers for the diagnosis of liver fibrosis, since at present there is no panel or parameter efficient and reliable enough for diagnostic use. In this paper, we describe the biomarkers that are currently being used for studying liver fibrosis in humans, their advantages and disadvantages, as well as the implementation of new-generation technologies and the evaluation of their possible use in the diagnosis of fibrosis.

  11. Utility of Noninvasive Markers of Fibrosis in Cholestatic Liver Diseases.

    PubMed

    Corpechot, Christophe

    2016-02-01

    Methods of liver fibrosis assessment have changed considerably in the last 20 years, and noninvasive markers now have been recognized as major first-line tools in the management of patients with chronic viral hepatitis infection. But what about the efficiency and utility of these surrogate indices for the more uncommon chronic cholestatic liver diseases, namely primary biliary cirrhosis and primary sclerosing cholangitis? This article provides clinicians with a global overview of what is currently known in the field. Both diagnostic and prognostic aspects of noninvasive markers of fibrosis in cholestatic liver diseases are presented and discussed.

  12. Th2-Associated Alternative Kupffer Cell Activation Promotes Liver Fibrosis without Inducing Local Inflammation

    PubMed Central

    López-Navarrete, Giuliana; Ramos-Martínez, Espiridión; Suárez-Álvarez, Karina; Aguirre-García, Jesús; Ledezma-Soto, Yadira; León-Cabrera, Sonia; Gudiño-Zayas, Marco; Guzmán, Carolina; Gutiérrez-Reyes, Gabriela; Hernández-Ruíz, Joselín; Camacho-Arroyo, Ignacio; Robles-Díaz, Guillermo; Kershenobich, David; Terrazas, Luis I.; Escobedo, Galileo

    2011-01-01

    Cirrhosis is the final outcome of liver fibrosis. Kupffer cell-mediated hepatic inflammation is considered to aggravate liver injury and fibrosis. Alternatively-activated macrophages are able to control chronic inflammatory events and trigger wound healing processes. Nevertheless, the role of alternative Kupffer cell activation in liver harm is largely unclear. Thus, we evaluated the participation of alternatively-activated Kupffer cells during liver inflammation and fibrosis in the murine model of carbon tetrachloride-induced hepatic damage. To stimulate alternative activation in Kupffer cells, 20 Taenia crassiceps (Tc) larvae were inoculated into BALBc/AnN female mice. Six weeks post-inoculation, carbon tetrachloride or olive oil were orally administered to Tc-inoculated and non-inoculated mice twice per week during other six weeks. The initial exposure of animals to T. crassiceps resulted in high serum concentrations of IL-4 accompanied by a significant increase in the hepatic mRNA levels of Ym-1, with no alteration in iNOS expression. In response to carbon tetrachloride, recruitment of inflammatory cell populations into the hepatic parenchyma was 5-fold higher in non-inoculated animals than Tc-inoculated mice. In contrast, carbon tetrachloride-induced liver fibrosis was significantly less in non-inoculated animals than in the Tc-inoculated group. The latter showed elevated IL-4 serum levels and low IFN-γ concentrations during the whole experiment, associated with hepatic expression of IL-4, TGF-β, desmin and α-sma, as well as increased mRNA levels of Arg-1, Ym-1, FIZZ-1 and MMR in Kupffer cells. These results suggest that alternative Kupffer cell activation is favored in a Th2 microenvironment, whereby such liver resident macrophages could exhibit a dichotomic role during chronic hepatic damage, being involved in attenuation of the inflammatory response but at the same time exacerbation of liver fibrosis. PMID:22110380

  13. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation

    PubMed Central

    Lan, Tian; Kisseleva, Tatiana; Brenner, David A.

    2015-01-01

    Reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX) play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs) as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4) to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), or sonic hedgehog (Shh) in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days). Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC. PMID:26222337

  14. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis

    PubMed Central

    Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio

    2016-01-01

    Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284

  15. Noninvasive Biomarkers of Liver Fibrosis: Clinical Applications and Future Directions

    PubMed Central

    Motola, Daniel L.; Caravan, Peter; Chung, Raymond T.

    2014-01-01

    Chronic liver disease is a significant cause of morbidity and mortality worldwide. Current strategies for assessing prognosis and treatment rely on accurate assessment of disease stage. Liver biopsy is the gold standard for assessing fibrosis stage but has many limitations. Noninvasive biomarkers of liver fibrosis have been extensively designed, studied, and validated in a variety of liver diseases. With the advent of direct acting antivirals and the rise in obesity-related liver disease, there is a growing need to establish these noninvasive methods in the clinic. In addition, it has become increasingly clear over the last few years that noninvasive biomarkers can also be used to monitor response to antifibrotic therapies and predict liver outcomes, including hepatocellular carcinoma development. This review highlights the most well-established noninvasive biomarkers to-date, with a particular emphasis on serum and imaging-based methodologies. PMID:25396099

  16. Remission of liver fibrosis by interferon-alpha 2b.

    PubMed

    Moreno, M G; Muriel, P

    1995-08-08

    Fibrosis is a dynamic process associated with the continuous deposition and resorption of connective tissue, mainly collagen. Therapeutic strategies are emerging by which this dynamic process can be modulated. Since interferons are known to inhibit collagen production, the aim of this study was to investigate if the administration of interferon-alpha 2b (IFN-alpha) can restore the normal hepatic content of collagen in rats with established fibrosis. Fibrosis was induced by prolonged bile duct ligation. IFN-alpha (100,000 IU/rat/day; s.c.) was administered to fibrotic rats for 15 days. Bile duct ligation increased liver collagen content 6-fold. In addition, serum and liver markers of hepatic injury increased significantly; liver histology showed an increase in collagen deposition, and the normal architecture was lost, with large zones of necrosis being observed frequently. IFN-alpha administration reversed to normal the values of all the biochemical markers measured and restored the normal architecture of the liver. Our results demonstrated that IFN-alpha is useful in reversing fibrosis and liver damage induced by biliary obstruction in the rat. However, further investigations are required to evaluate the therapeutic relevance of interferons on non-viral fibrosis and cholestasis.

  17. Antifibrotic effect of heparin on liver fibrosis model in rats

    PubMed Central

    Shah, Binita; Shah, Gaurang

    2012-01-01

    AIM: To evaluate the effect of chronic thrombin inhibition by heparin on experimentally induced chronic liver injury (liver fibrosis) in rats. METHODS: Chronic liver injury (liver fibrosis) was induced in Wistar rats by oral administration of carbon tetrachloride (CCl4) for 7 wk, an animal model with persistent severe hepatic fibrosis. Intravenous administration of the thrombin antagonist (heparin) started 1 wk after the start of CCl4 intoxication for 6 wk. After completion of treatment (7 wk), markers of hepatic dysfunction were measured and changes evaluated histopathologically. RESULTS: Higher serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), total, direct and indirect bilirubin levels, as well as lower fibrinogen levels, were found in CCl4 intoxicated rats. Heparin, silymarin and combination of drug (heparin and silymarin) treatment for 6 wk prevented a rise in SGOT, SGPT, ALP, total, direct and indirect bilirubin levels and improved fibrinogen levels. Deterioration in hepatic function determined by the fibrosis area was retarded, as evident from hepatic histopathology. Total protein levels were not changed in all groups. CONCLUSION: Heparin, a thrombin antagonist, preserved hepatic function and reduced severity of hepatic dysfunction/fibrogenesis. Combination of heparin and silymarin produced additional benefits on liver fibrosis. PMID:23494756

  18. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    PubMed Central

    Martin, Katherine; Pritchett, James; Llewellyn, Jessica; Mullan, Aoibheann F.; Athwal, Varinder S.; Dobie, Ross; Harvey, Emma; Zeef, Leo; Farrow, Stuart; Streuli, Charles; Henderson, Neil C.; Friedman, Scott L.; Hanley, Neil A.; Piper Hanley, Karen

    2016-01-01

    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis. PMID:27535340

  19. Non-invasive Markers of Liver Fibrosis: Adjuncts or Alternatives to Liver Biopsy?

    PubMed Central

    Chin, Jun L.; Pavlides, Michael; Moolla, Ahmad; Ryan, John D.

    2016-01-01

    Liver fibrosis reflects sustained liver injury often from multiple, simultaneous factors. Whilst the presence of mild fibrosis on biopsy can be a reassuring finding, the identification of advanced fibrosis is critical to the management of patients with chronic liver disease. This necessity has lead to a reliance on liver biopsy which itself is an imperfect test and poorly accepted by patients. The development of robust tools to non-invasively assess liver fibrosis has dramatically enhanced clinical decision making in patients with chronic liver disease, allowing a rapid and informed judgment of disease stage and prognosis. Should a liver biopsy be required, the appropriateness is clearer and the diagnostic yield is greater with the use of these adjuncts. While a number of non-invasive liver fibrosis markers are now used in routine practice, a steady stream of innovative approaches exists. With improvement in the reliability, reproducibility and feasibility of these markers, their potential role in disease management is increasing. Moreover, their adoption into clinical trials as outcome measures reflects their validity and dynamic nature. This review will summarize and appraise the current and novel non-invasive markers of liver fibrosis, both blood and imaging based, and look at their prospective application in everyday clinical care. PMID:27378924

  20. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography

    PubMed Central

    Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis. PMID:28107385

  1. Contemporary use of elastography in liver fibrosis and portal hypertension.

    PubMed

    Thiele, Maja; Kjaergaard, Maria; Thielsen, Peter; Krag, Aleksander

    2015-10-13

    The risk and speed of progression from fibrosis to compensated and decompensated cirrhosis define the prognosis in liver diseases. Therefore, early detection and preventive strategies affect outcomes. Patients with liver disease have traditionally been diagnosed at an advanced stage of disease, in part due to lack of non-invasive markers. Ultrasound elastography to measure liver stiffness can potentially change this paradigm. The purpose of this review was therefore to summarize advances in the field of ultrasound elastography with focus on diagnosis of liver fibrosis, cirrhosis and clinically significant portal hypertension, techniques and limitations. Four types of ultrasound elastography exist, but there is scarce evidence comparing the different techniques. The majority of experience concern transient elastography for diagnosing fibrosis and cirrhosis in patients with chronic viral hepatitis C. That said, the role of elastography in other aetiologies such as alcoholic- and non-alcoholic liver fibrosis still needs clarification. Although elastography can be used to diagnose liver fibrosis and cirrhosis, its true potential lies in the possibility of multiple, repeated measurements that allow for treatment surveillance, continuous risk stratification and monitoring of complications. As such, elastography may be a powerful tool for personalized medicine. While elastography is an exciting technique, the nature of ultrasound imaging limits its applicability, due to the risk of failures and unreliable results. Key factors that limit the applicability of liver stiffness measurements are as follows: liver vein congestion, cholestasis, a recent meal, inflammation, obesity, observer experience and ascites. The coming years will show whether elastography will be widely adapted in general care.

  2. Nanotechnology applications for the therapy of liver fibrosis.

    PubMed

    Giannitrapani, Lydia; Soresi, Maurizio; Bondì, Maria Luisa; Montalto, Giuseppe; Cervello, Melchiorre

    2014-06-21

    Chronic liver diseases represent a major global health problem both for their high prevalence worldwide and, in the more advanced stages, for the limited available curative treatment options. In fact, when lesions of different etiologies chronically affect the liver, triggering the fibrogenesis mechanisms, damage has already occurred and the progression of fibrosis will have a major clinical impact entailing severe complications, expensive treatments and death in end-stage liver disease. Despite significant advances in the understanding of the mechanisms of liver fibrinogenesis, the drugs used in liver fibrosis treatment still have a limited therapeutic effect. Many drugs showing potent antifibrotic activities in vitro often exhibit only minor effects in vivo because insufficient concentrations accumulate around the target cell and adverse effects result as other non-target cells are affected. Hepatic stellate cells play a critical role in liver fibrogenesis , thus they are the target cells of antifibrotic therapy. The application of nanoparticles has emerged as a rapidly evolving area for the safe delivery of various therapeutic agents (including drugs and nucleic acid) in the treatment of various pathologies, including liver disease. In this review, we give an overview of the various nanotechnology approaches used in the treatment of liver fibrosis.

  3. Molecular mechanisms of liver fibrosis in HIV/HCV coinfection.

    PubMed

    Mastroianni, Claudio M; Lichtner, Miriam; Mascia, Claudia; Zuccalà, Paola; Vullo, Vincenzo

    2014-05-26

    Chronic hepatitis C virus (HCV) infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV). Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.

  4. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease.

    PubMed

    Traber, Peter G; Chou, Hsin; Zomer, Eliezer; Hong, Feng; Klyosov, Anatole; Fiel, Maria-Isabel; Friedman, Scott L

    2013-01-01

    Galectin-3 protein is critical to the development of liver fibrosis because galectin-3 null mice have attenuated fibrosis after liver injury. Therefore, we examined the ability of novel complex carbohydrate galectin inhibitors to treat toxin-induced fibrosis and cirrhosis. Fibrosis was induced in rats by intraperitoneal injections with thioacetamide (TAA) and groups were treated with vehicle, GR-MD-02 (galactoarabino-rhamnogalaturonan) or GM-CT-01 (galactomannan). In initial experiments, 4 weeks of treatment with GR-MD-02 following completion of 8 weeks of TAA significantly reduced collagen content by almost 50% based on Sirius red staining. Rats were then exposed to more intense and longer TAA treatment, which included either GR-MD-02 or GM-CT-01 during weeks 8 through 11. TAA rats treated with vehicle developed extensive fibrosis and pathological stage 6 Ishak fibrosis, or cirrhosis. Treatment with either GR-MD-02 (90 mg/kg ip) or GM-CT-01 (180 mg/kg ip) given once weekly during weeks 8-11 led to marked reduction in fibrosis with reduction in portal and septal galectin-3 positive macrophages and reduction in portal pressure. Vehicle-treated animals had cirrhosis whereas in the treated animals the fibrosis stage was significantly reduced, with evidence of resolved or resolving cirrhosis and reduced portal inflammation and ballooning. In this model of toxin-induced liver fibrosis, treatment with two galectin protein inhibitors with different chemical compositions significantly reduced fibrosis, reversed cirrhosis, reduced galectin-3 expressing portal and septal macrophages, and reduced portal pressure. These findings suggest a potential role of these drugs in human liver fibrosis and cirrhosis.

  5. Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis

    PubMed Central

    Xu, Si-Chi; Ma, Zhen-Guo; Wei, Wen-Ying; Yuan, Yu-Pei

    2017-01-01

    Background. Peroxisome proliferator-activated receptor-α (PPAR-α) is closely associated with the development of cardiac hypertrophy. Previous studies have indicated that bezafibrate (BZA), a PPAR-α agonist, could attenuate insulin resistance and obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy. Methods. Mice were orally given BZA (100 mg/kg) for 7 weeks beginning 1 week after aortic banding (AB) surgery. Cardiac hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular cardiomyocytes (NRVMs) were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results. Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment also reduced the phosphorylation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinases (MAPKs). BZA suppressed phenylephrine- (PE-) induced hypertrophy of cardiomyocyte in vitro. The protective effects of BZA were abolished by the treatment of the PPAR-α antagonist in vitro. Conclusions. BZA could attenuate pressure overload-induced cardiac hypertrophy and fibrosis. PMID:28127304

  6. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis

    PubMed Central

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-01-01

    AIM To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. METHODS Liver stiffness was measured in sixty-eight rabbits with CCl4-induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points to assess liver function and degree of fibrosis. Thirty-one rabbits with complete data that underwent splenectomy at different stages of liver fibrosis were then included for dynamic monitoring of changes in liver stiffness by ElastPQ and liver function according to blood tests. RESULTS LSM by ElastPQ was significantly correlated with histologic fibrosis stage (r = 0.85, P < 0.001). The optimal cutoff values by ElastPQ were 11.27, 14.89, and 18.21 kPa for predicting minimal fibrosis, moderate fibrosis, and cirrhosis, respectively. Longitudinal monitoring of the changes in liver stiffness by ElastPQ showed that early splenectomy (especially F1) may delay liver fibrosis progression. CONCLUSION ElastPQ is an available, convenient, objective and non-invasive technique for assessing liver stiffness in rabbits with CCl4-induced liver fibrosis. In addition, liver stiffness measurements using ElastPQ can dynamically monitor the changes in liver stiffness in rabbit models, and in patients, after splenectomy. PMID:28028365

  7. Low vitamin D status is associated with advanced liver fibrosis in patients with nonalcoholic fatty liver disease.

    PubMed

    Yang, Bing-Bing; Chen, Yuan-Hua; Zhang, Cheng; Shi, Chang-E; Hu, Kai-Feng; Zhou, Ju; Xu, De-Xiang; Chen, Xi

    2017-02-01

    Several studies explored the association between vitamin D status and nonalcoholic fatty liver disease with contradictory results. We aimed to investigate the association between vitamin D status, inflammatory cytokines and liver fibrosis in nonalcoholic fatty liver disease patients. Two hundred nineteen nonalcoholic fatty liver disease patients and 166 age- and gender- matched healthy controls were recruited for this study. Serum 25(OH)D was measured by radioimmunoassay. Serum interleukin-8 and transforming growth factor-β1 were measured using ELISA. Serum 25(OH)D was only marginally decreased in nonalcoholic fatty liver disease patients. Interestingly, serum 25(OH)D was markedly reduced in nonalcoholic fatty liver disease patients with advanced liver fibrosis compared to nonalcoholic fatty liver disease patients with indeterminate liver fibrosis and no advanced fibrosis. Logistic regression analysis showed that there was an inverse association between serum 25(OH)D and severity of liver fibrosis in nonalcoholic fatty liver disease patients. Further analysis showed that serum interleukin-8 was elevated in nonalcoholic fatty liver disease patients, the highest interleukin-8 in patients with advanced fibrosis. An inverse correlation between serum 25(OH)D and interleukin-8 was observed in nonalcoholic fatty liver disease patients with and without liver fibrosis. Although serum transforming growth factor-β1 was slightly elevated in nonalcoholic fatty liver disease patients, serum transforming growth factor-β1 was reduced in nonalcoholic fatty liver disease patients with advanced fibrosis. Unexpectedly, a positive correlation between serum 25(OH)D and transforming growth factor-β1 was observed in nonalcoholic fatty liver disease patients with advanced fibrosis. In conclusion, low vitamin D status is associated with advanced liver fibrosis in nonalcoholic fatty liver disease patients. Interleukin-8 may be an important mediator for hepatic fibrosis in nonalcoholic

  8. Adverse outcome pathway development from protein alkylation to liver fibrosis.

    PubMed

    Horvat, Tomislav; Landesmann, Brigitte; Lostia, Alfonso; Vinken, Mathieu; Munn, Sharon; Whelan, Maurice

    2017-04-01

    In modern toxicology, substantial efforts are undertaken to develop alternative solutions for in vivo toxicity testing. The adverse outcome pathway (AOP) concept could facilitate knowledge-based safety assessment of chemicals that does not rely exclusively on in vivo toxicity testing. The construction of an AOP is based on understanding toxicological processes at different levels of biological organisation. Here, we present the developed AOP for liver fibrosis and demonstrate a linkage between hepatic injury caused by chemical protein alkylation and the formation of liver fibrosis, supported by coherent and consistent scientific data. This long-term process, in which inflammation, tissue destruction, and repair occur simultaneously, results from the complex interplay between various hepatic cell types, receptors, and signalling pathways. Due to the complexity of the process, an adequate liver fibrosis cell model for in vitro evaluation of a chemical's fibrogenic potential is not yet available. Liver fibrosis poses an important human health issue that is also relevant for regulatory purposes. An AOP described with enough mechanistic detail might support chemical risk assessment by indicating early markers for downstream events and thus facilitating the development of an in vitro testing strategy. With this work, we demonstrate how the AOP framework can support the assembly and coherent display of distributed mechanistic information from the literature to support the use of alternative approaches for prediction of toxicity. This AOP was developed according to the guidance document on developing and assessing AOPs and its supplement, the users' handbook, issued by the Organisation for Economic Co-operation and Development.

  9. Macrophage autophagy protects against liver fibrosis in mice.

    PubMed

    Lodder, Jasper; Denaës, Timothé; Chobert, Marie-Noële; Wan, JingHong; El-Benna, Jamel; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2015-01-01

    Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5(fl/fl) LysM-Cre mice, referred to as atg5(-/-)) and their wild-type (Atg5(fl/fl), referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5(-/-) mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5(-/-) mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5(-/-) mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5(-/-) mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5(-/-) macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5(-/-) mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.

  10. Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease.

    PubMed

    Shoji, Hirotaka; Yoshio, Sachiyo; Mano, Yohei; Kumagai, Erina; Sugiyama, Masaya; Korenaga, Masaaki; Arai, Taeang; Itokawa, Norio; Atsukawa, Masanori; Aikata, Hiroshi; Hyogo, Hideyuki; Chayama, Kazuaki; Ohashi, Tomohiko; Ito, Kiyoaki; Yoneda, Masashi; Nozaki, Yuichi; Kawaguchi, Takumi; Torimura, Takuji; Abe, Masanori; Hiasa, Yoichi; Fukai, Moto; Kamiyama, Toshiya; Taketomi, Akinobu; Mizokami, Masashi; Kanto, Tatsuya

    2016-07-01

    Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic non-viral liver disease. Activation of macrophages and hepatic stellate cells is a critical step that promotes liver fibrosis. We aimed to explore the feasibility of interleukin-34 (IL-34), a key regulator of macrophages, as a fibrosis marker in patients with NAFLD. We enrolled 197 liver biopsy-proven NAFLD patients. We evaluated the serum levels of IL-34, macrophage-colony stimulating factor (M-CSF), soluble CD163 (sCD163), 40 cytokines/chemokines, hyaluronic acid, type IV collagen 7s, and clinically-approved fibrosis scores. IL-34 increased with the progression of fibrosis and was an independent marker for liver fibrosis. Immunostaining experiments, using resected liver specimens from NAFLD patients, revealed that IL-34 was mainly expressed on liver fibroblasts. IL-34 based fibrosis score (0.0387*IL-34 (pg/ml) + 0.3623*type IV collagen 7s (ng/ml) + 0.0184*age (year)-1.1850) was a practical predictive model of liver fibrosis. Using receiver-operating characteristic analyses, the area under the curve, sensitivity, and specificity of IL-34 based fibrosis score were superior or comparable to the other fibrosis biomarkers and scores. In conclusion, the IL-34 based fibrosis score, including serum IL-34, type IV collagen 7s and age, is a feasible diagnostic marker of liver fibrosis in NAFLD patients.

  11. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    PubMed

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  12. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.

    PubMed

    Ippolito, Danielle L; AbdulHameed, Mohamed Diwan M; Tawa, Gregory J; Baer, Christine E; Permenter, Matthew G; McDyre, Bonna C; Dennis, William E; Boyle, Molly H; Hobbs, Cheryl A; Streicker, Michael A; Snowden, Bobbi S; Lewis, John A; Wallqvist, Anders; Stallings, Jonathan D

    2016-01-01

    Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology.

  13. Pathogenesis of liver fibrosis: role of oxidative stress.

    PubMed

    Poli, G

    2000-06-01

    In the liver, the progressive accumulation of connective tissue, a complex and dynamic process termed fibrosis, represents a very frequent event following a repeated or chronic insult of sufficient intensity to trigger a "wound healing"-like reaction. The fibrotic process recognises the involvement of various cells and different factors in bringing about an excessive fibrogenesis with disruption of intercellular contacts and interactions and of extracellular matrix composition. However, Kupffer cells, together with recruited mononuclear cells, and hepatic stellate cells are by far the key-players in liver fibrosis. Their cross-talk is triggered and favoured by a series of chemical mediators, with a prominent role played by the transforming growth factor beta. Both expression and synthesis of this inflammatory and pro-fibrogenic cytokine are mainly modulated through redox-sensitive reactions. Further, involvement of reactive oxygen species and lipid peroxidation products can be clearly demonstrated in other fundamental events of hepatic fibrogenesis, like activation and effects of stellate cells, expression of metalloproteinases and of their specific inhibitors. The important outcome of such findings as regards the pathogenesis of liver fibrosis derives from the observation of a consistent and marked oxidative stress condition in many if not all chronic disease processes affecting hepatic tissue. Hence, reactive oxidant species likely contribute to both onset and progression of fibrosis as induced by alcohol, viruses, iron or copper overload, cholestasis, hepatic blood congestion.

  14. Common pathway signature in lung and liver fibrosis

    PubMed Central

    Makarev, Eugene; Izumchenko, Evgeny; Aihara, Fumiaki; Wysocki, Piotr T.; Zhu, Qingsong; Buzdin, Anton; Sidransky, David; Zhavoronkov, Alex; Atala, Anthony

    2016-01-01

    ABSTRACT Fibrosis, a progressive accumulation of extracellular matrix components, encompasses a wide spectrum of distinct organs, and accounts for an increasing burden of morbidity and mortality worldwide. Despite the tremendous clinical impact, the mechanisms governing the fibrotic process are not yet understood, and to date, no clinically reliable therapies for fibrosis have been discovered. Here we applied Regeneration Intelligence, a new bioinformatics software suite for qualitative analysis of intracellular signaling pathway activation using transcriptomic data, to assess a network of molecular signaling in lung and liver fibrosis. In both tissues, our analysis detected major conserved signaling pathways strongly associated with fibrosis, suggesting that some of the pathways identified by our algorithm but not yet wet-lab validated as fibrogenesis related, may be attractive targets for future research. While the majority of significantly disrupted pathways were specific to histologically distinct organs, several pathways have been concurrently activated or downregulated among the hepatic and pulmonary fibrosis samples, providing new evidence of evolutionary conserved pathways that may be relevant as possible therapeutic targets. While future confirmatory studies are warranted to validate these observations, our platform proposes a promising new approach for detecting fibrosis-promoting pathways and tailoring the right therapy to prevent fibrogenesis. PMID:27267766

  15. Incidence and Predictors of Advanced Liver Fibrosis by a Validated Serum Biomarker in Liver Transplant Recipients

    PubMed Central

    Rollet-Kurhajec, Kathleen C.; Bhat, Aparna; Farag, Amanda; Deschenes, Marc; Wong, Philip; Sebastiani, Giada

    2017-01-01

    Background and Aims. Serum fibrosis biomarkers have shown good accuracy in the liver transplant (LT) population. We employed a simple serum biomarker to elucidate incidence and predictors of advanced fibrosis after LT over a long follow-up period. Methods. We included 440 consecutive patients who underwent LT between 1991 and 2013. Advanced liver fibrosis was defined as FIB-4 > 3.25 beyond 12 months after LT. Results. Over 2030.5 person-years (PY) of follow-up, 189 (43%) developed FIB-4 > 3.25, accounting for an incidence of 9.3/100 PY (95% confidence interval [CI], 8.1–10.7). Advanced fibrosis was predicted by chronic HCV infection (adjusted hazard ratio (aHR) = 3.96, 95% CI 2.92–5.36, p < 0.001), hypoalbuminemia (aHR = 2.31, 95% CI 1.72–3.09; p < 0.001), and hyponatremia (aHR = 1.48, 95% CI 1.09–2.01; p = 0.01). LT recipients with more than 1 predictor had a higher incidence of advanced fibrosis, the highest being when all 3 predictors coexisted (log-rank: p < 0.001). Conclusions. Chronic HCV infection, hypoalbuminemia, and hyponatremia predict progression to advanced liver fibrosis following LT. Patients with these risk factors should be serially monitored using noninvasive fibrosis biomarkers and prioritized for interventions.

  16. Clinical Advancements in the Targeted Therapies against Liver Fibrosis

    PubMed Central

    Nagórniewicz, Beata; Prakash, Jai

    2016-01-01

    Hepatic fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins leading to liver dysfunction, is a growing cause of mortality worldwide. Hepatocellular damage owing to liver injury leads to the release of profibrotic factors from infiltrating inflammatory cells that results in the activation of hepatic stellate cells (HSCs). Upon activation, HSCs undergo characteristic morphological and functional changes and are transformed into proliferative and contractile ECM-producing myofibroblasts. Over recent years, a number of therapeutic strategies have been developed to inhibit hepatocyte apoptosis, inflammatory responses, and HSCs proliferation and activation. Preclinical studies have yielded numerous targets for the development of antifibrotic therapies, some of which have entered clinical trials and showed improved therapeutic efficacy and desirable safety profiles. Furthermore, advancements have been made in the development of noninvasive markers and techniques for the accurate disease assessment and therapy responses. Here, we focus on the clinical developments attained in the field of targeted antifibrotics for the treatment of liver fibrosis, for example, small molecule drugs, antibodies, and targeted drug conjugate. We further briefly highlight different noninvasive diagnostic technologies and will provide an overview about different therapeutic targets, clinical trials, endpoints, and translational efforts that have been made to halt or reverse the progression of liver fibrosis. PMID:27999454

  17. Development of liver fibrosis during aging: effects of caloric restriction.

    PubMed

    Horrillo, D; Gallardo, N; Lauzurica, N; Barrus, M T; San Frutos, M G; Andres, A; Ros, M; Fernandez-Agullo, T

    2013-01-01

    Liver is the central metabolic organ of the body and diet is considered one of the main environmental factors that can impact on aging liver. In the elderly stage liver function is relatively well conserved although there are a variety of not well defined morphological changes related to liver fibrosis which is commonly associated with an inflammatory state. The aim of this paper is to study these alterations during the physiological process of aging in Wistar rats and also test if caloric restriction (CR) could ameliorate them. As fibrosis is associated to hepatic stellate cell (HSC) function we also analyzed these cells during aging. Livers from five groups of male Wistar rats (3-, 8-, 24-months old ad libitum and 8- and 24-months caloric restricted rats) were used in this study. Histological analysis, expression of genes implicated in liver fibrosis and the status of inflammatory step-pathways as p38 mitogen-activated protein kinase (p38-MAPK), c-Jun N-terminal kinase (JNK) and the nuclear factor kappa B (NFkB) isoforms, p50 and p65, in cytosolic and nuclear fractions were performed. During elderly, associated with morphological change of HSC, there is a progressive increase in collagen deposition due to an inhibition in collagen degradation. Higher expression of cytokines and the activation of inflammatory pathways are associated with aging. CR ameliorates these circumstances being more effective when it started in middle age. In conclusion elderly stage is associated to a mild fibrotic and inflammatory state in the liver which could be ameliorated after CR.

  18. Systems Level Analysis and Identification of Pathways and Networks Associated with Liver Fibrosis

    DTIC Science & Technology

    2014-11-07

    Systems Level Analysis and Identification of Pathways and Networks Associated with Liver Fibrosis Mohamed Diwan M. AbdulHameed1, Gregory J. Tawa1...Toxic liver injury causes necrosis and fibrosis, which may lead to cirrhosis and liver failure. Despite recent progress in understanding the...mechanism of liver fibrosis, our knowledge of the molecular-level details of this disease is still incomplete. The elucidation of networks and pathways

  19. Performance of Enhanced Liver Fibrosis test and comparison with transient elastography in the identification of liver fibrosis in patients with chronic hepatitis B infection.

    PubMed

    Trembling, P M; Lampertico, P; Parkes, J; Tanwar, S; Viganò, M; Facchetti, F; Colombo, M; Rosenberg, W M

    2014-06-01

    Assessment of liver fibrosis is important in determining prognosis, disease progression and need for treatment in patients with chronic hepatitis B (CHB). Limitations to the use of liver biopsy in assessing fibrosis are well recognized, and noninvasive tests are being increasingly evaluated including transient elastography (TE) and serum markers such as the Enhanced Liver Fibrosis (ELF) test. We assessed performance of ELF and TE in detecting liver fibrosis with reference to liver histology in a cohort of patients with CHB (n = 182), and compared the performance of these modalities. Median age was 46 and mean AST 70 IU/L. Cirrhosis was reported in 20% of liver biopsies. Both modalities performed well in assessing fibrosis at all stages. Area under receiver operator characteristic (AUROC) curves for detecting METAVIR fibrosis stages F ≥ 1, F ≥ 2, F ≥ 3 and F4 were 0.77, 0.82, 0.80 and 0.83 for ELF and 0.86, 0.86, 0.90 and 0.95 for TE. TE performed significantly better in the assessment of severe fibrosis (AUROC 0.80 for ELF and 0.90 for TE, P < 0.01) and cirrhosis (0.83 for ELF and 0.95 for TE, P < 0.01). This study demonstrates that ELF has good performance in detection of liver fibrosis in patients with CHB, and when compared, TE performs better in detection of severe fibrosis/cirrhosis.

  20. Performance of Enhanced Liver Fibrosis test and comparison with transient elastography in the identification of liver fibrosis in patients with chronic hepatitis B infection

    PubMed Central

    Trembling, P M; Lampertico, P; Parkes, J; Tanwar, S; Viganò, M; Facchetti, F; Colombo, M; Rosenberg, W M

    2014-01-01

    Assessment of liver fibrosis is important in determining prognosis, disease progression and need for treatment in patients with chronic hepatitis B (CHB). Limitations to the use of liver biopsy in assessing fibrosis are well recognized, and noninvasive tests are being increasingly evaluated including transient elastography (TE) and serum markers such as the Enhanced Liver Fibrosis (ELF) test. We assessed performance of ELF and TE in detecting liver fibrosis with reference to liver histology in a cohort of patients with CHB (n = 182), and compared the performance of these modalities. Median age was 46 and mean AST 70 IU/L. Cirrhosis was reported in 20% of liver biopsies. Both modalities performed well in assessing fibrosis at all stages. Area under receiver operator characteristic (AUROC) curves for detecting METAVIR fibrosis stages F ≥ 1, F ≥ 2, F ≥ 3 and F4 were 0.77, 0.82, 0.80 and 0.83 for ELF and 0.86, 0.86, 0.90 and 0.95 for TE. TE performed significantly better in the assessment of severe fibrosis (AUROC 0.80 for ELF and 0.90 for TE, P < 0.01) and cirrhosis (0.83 for ELF and 0.95 for TE, P < 0.01). This study demonstrates that ELF has good performance in detection of liver fibrosis in patients with CHB, and when compared, TE performs better in detection of severe fibrosis/cirrhosis. PMID:24750297

  1. CROI 2016: Viral Hepatitis and Liver Fibrosis.

    PubMed

    Luetkemeyer, Anne F; Wyles, David L

    2016-01-01

    At the 2016 Conference on Retroviruses and Opportunistic Infections (CROI) in Boston, Massachusetts, hepatitis C virus (HCV) infection remained a major theme in the context of HIV-associated liver disease, although other causes of liver disease garnered increased attention, including fatty liver disease, hepatitis B, and the impact of HIV disease itself on the liver. Although no data from phase III studies of HCV direct-acting antiviral (DAA) drugs for the treatment of HIV/HCV coinfection were presented at CROI 2016, a broad range of HCV DAA-related topics were presented, including accumulating experience with real-world performance of DAA-based regimens outside of clinical trials, drug interactions between DAA and antiretroviral drugs, treatment of acute HCV infection, and retreatment of individuals whose DAA-based regimens failed and those in whom resistance to DAA drugs emerged. A summary of select abstracts from CROI 2016 is presented, including discussion of clinical relevance where appropriate and areas for future research.

  2. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    PubMed Central

    Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245

  3. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine

    PubMed Central

    Warzecha, Klaudia Theresa; Tacke, Frank

    2014-01-01

    Nanomedicine constitutes the emerging field of medical applications for nanotechnology such as nanomaterial-based drug delivery systems. This technology may hold exceptional potential for novel therapeutic approaches to liver diseases. The specific and unspecific targeting of macrophages, hepatic stellate cells (HSC), hepatocytes, and liver sinusoidal endothelial cells (LSEC) using nanomedicine has been developed and tested in preclinical settings. These four major cell types in the liver are crucially involved in the complex sequence of events that occurs during the initiation and maintenance of liver inflammation and fibrosis. Targeting different cell types can be based on their capacity to ingest surrounding material, endocytosis, and specificity for a single cell type can be achieved by targeting characteristic structures such as receptors, sugar moieties or peptide sequences. Macrophages and especially the liver-resident Kupffer cells are in the focus of nanomedicine due to their highly efficient and unspecific uptake of most nanomaterials as well as due to their critical pathogenic functions during inflammation and fibrogenesis. The mannose receptor enables targeting macrophages in liver disease, but macrophages can also become activated by certain nanomaterials, such as peptide-modified gold nanorods (AuNRs) that render them proinflammatory. HSC, the main collagen-producing cells during fibrosis, are currently targeted using nanoconstructs that recognize the mannose 6-phosphate and insulin-like growth factor II, peroxisome proliferator activated receptor 1, platelet-derived growth factor (PDGF) receptor β, or integrins. Targeting of the major liver parenchymal cell, the hepatocyte, has only recently been achieved with high specificity by mimicking apolipoproteins, naturally occurring nanoparticles of the body. LSEC were found to be targeted most efficiently using carboxy-modified micelles and their integrin receptors. This review will summarize important

  4. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis

    PubMed Central

    TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI

    2016-01-01

    The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413

  5. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis

    PubMed Central

    Saneyasu, Takaoki; Akhtar, Riaz

    2016-01-01

    Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM) influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis. PMID:27800489

  6. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis.

  7. Treatment of fibrosis in nonalcoholic fatty liver disease.

    PubMed

    Hoteit, Maarouf A; Anania, Frank A

    2007-03-01

    Nonalcoholic steatohepatitis (NASH) is one of the most common liver disorders in North America. The mechanism of liver injury in NASH involves insulin resistance and oxidative stress as well as cytokine release. Therapeutic interventions aimed at enhancing insulin sensitivity or reducing oxidative stress have been studied. The role of peptide hormones secreted by adipose tissue--adipocytokines--in the potential pathogenesis of NASH is an area of intense research. As the function of adipokines in modulating hepatic inflammation and fibrosis is elucidated, the potential for novel treatment strategies in patients with NASH is likely to be realized.

  8. Zingiber officinale acts as a nutraceutical agent against liver fibrosis

    PubMed Central

    2011-01-01

    Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:21689445

  9. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis.

    PubMed

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-03-21

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD.

  10. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve

    PubMed Central

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-01-01

    AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures

  11. Systems Level Analysis and Identification of Pathways and Networks Associated with Liver Fibrosis

    PubMed Central

    AbdulHameed, Mohamed Diwan M.; Tawa, Gregory J.; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Toxic liver injury causes necrosis and fibrosis, which may lead to cirrhosis and liver failure. Despite recent progress in understanding the mechanism of liver fibrosis, our knowledge of the molecular-level details of this disease is still incomplete. The elucidation of networks and pathways associated with liver fibrosis can provide insight into the underlying molecular mechanisms of the disease, as well as identify potential diagnostic or prognostic biomarkers. Towards this end, we analyzed rat gene expression data from a range of chemical exposures that produced observable periportal liver fibrosis as documented in DrugMatrix, a publicly available toxicogenomics database. We identified genes relevant to liver fibrosis using standard differential expression and co-expression analyses, and then used these genes in pathway enrichment and protein-protein interaction (PPI) network analyses. We identified a PPI network module associated with liver fibrosis that includes known liver fibrosis-relevant genes, such as tissue inhibitor of metalloproteinase-1, galectin-3, connective tissue growth factor, and lipocalin-2. We also identified several new genes, such as perilipin-3, legumain, and myocilin, which were associated with liver fibrosis. We further analyzed the expression pattern of the genes in the PPI network module across a wide range of 640 chemical exposure conditions in DrugMatrix and identified early indications of liver fibrosis for carbon tetrachloride and lipopolysaccharide exposures. Although it is well known that carbon tetrachloride and lipopolysaccharide can cause liver fibrosis, our network analysis was able to link these compounds to potential fibrotic damage before histopathological changes associated with liver fibrosis appeared. These results demonstrated that our approach is capable of identifying early-stage indicators of liver fibrosis and underscore its potential to aid in predictive toxicity, biomarker identification, and to generally identify

  12. Protective Effects of Norursodeoxycholic Acid Versus Ursodeoxycholic Acid on Thioacetamide-induced Rat Liver Fibrosis

    PubMed Central

    Buko, Vyacheslav U.; Lukivskaya, Oxana Y.; Naruta, Elena E.; Belonovskaya, Elena B.; Tauschel, Horst-Dietmar

    2014-01-01

    Background/objectives Effects of norursodeoxycholic acid (norUDCA) and ursodeoxycholic acid (UDCA) on liver fibrosis progression and liver fibrosis reversal in thioacetamide (TAA)-treated rats were studied. Methods Advanced liver fibrosis was induced by TAA treatment (200 mg/kg, i.p.) for 12 weeks. In the second experiment resolution of liver fibrosis was assessed after 8 weeks of TAA withdrawal. During 8 last weeks of each trial, fibrotic rats were daily administered with UDCA (80 mg/kg) and norUDCA (equimolar to 80 mg/kg of UDCA) by oral gavage. Liver fibrosis was assessed by Sirius red staining, liver hydroxyproline and serum fibrosis markers determination. Results The TAA treatment resulted in advanced fibrosis and increase in liver hydroxyproline content and serum fibrosis markers. These signs of fibrosis were less pronounced in rats after TAA withdrawal. Treatment with of norUDCA significantly decreased the total and relative liver hydroxyproline contents in rats with fibrosis reversal, whereas UDCA did not change these parameters. Both compounds decreased serum TGFβ and type IV collagen contents, whereas other serum markers did not differ from the placebo group. In the fibrosis progression model the square of connective tissue was decreased by norUDCA. Serum type IV collagen and procollagen III-NT contents in these experiments were lowered by both UDCA and norUDCA, whereas rest of serum fibrosis markers were diminished only by norUDCA. Conclusions Both norUDCA and UDCA showed therapeutic and prophylactic antifibrotic effect in rats with TAA-induced liver fibrosis. For most of tested parameters norUDCA was more effective than UDCA, especially in the experiment with liver fibrosis regression. PMID:25755576

  13. The association between indirect bilirubin levels and liver fibrosis due to chronic hepatitis C virus infection.

    PubMed

    Cengiz, Mustafa; Yılmaz, Guldal; Ozenirler, Seren

    2014-08-01

    We proposed to evaluate the association between serum indirect bilirubin levels and liver fibrosis in patients with chronic hepatitis C (CHC) genotype 1b. Biopsy proven CHC genotype 1b patients' demographics, clinical and histopathological characteristics were evaluated. Logistic regression analysis was done to evaluate the clinical, laboratory and demographic features of the histologically proven liver fibrosis in CHC patients. A total of 112 biopsy proven CHC genotype 1b patients were enrolled into the study. Liver fibrosis scores were measured by using Ishak fibrosis scores and were divided into two groups; fibrosis scores ≤ 2 were categorized as mild fibrosis, 82 patients (73.2%), whereas fibrosis scores >2 were categorized as advanced fibrosis group, 30 patients (26.8%). Patients with advanced fibrosis had lower indirect bilirubin levels than the mild fibrosis group (0.28 ± 0.02 mg/dl vs. 0.44 ± 0.032 mg/dl, p<0.001, respectively). Indirect bilirubin level was negatively correlated with advanced fibrosis scores (r=-0.416 and p<0.001). In multivariate logistic regression analysis, low indirect bilirubin level was an independent predicting factor of advanced liver fibrosis (OR: 0.001, 95% CI: 0.0-0.005, p<0.001). There is an inverse relationship between indirect bilirubin levels and advanced liver fibrosis caused by CHC genotype 1b.

  14. A Case Study of Hemochromatosis and Conflicting Point Shear Wave Measurements in the Assessment of Liver Fibrosis.

    PubMed

    Cohen, Tal; Barr, Richard G

    2017-01-09

    There are multiple factors that affect the shear wave speed in the assessment of liver stiffness. In this case report, we present a case of hemochromatosis that has elevated liver stiffness suggestive of significant fibrosis or cirrhosis; however on liver biopsy, no fibrosis was identified. This article will discuss the possibility that liver iron deposition may affect SWE measurements of the liver, leading to inaccurate assessment of liver fibrosis. In these cases, a liver biopsy may be required for accurate liver assessment.

  15. Human platelets inhibit liver fibrosis in severe combined immunodeficiency mice

    PubMed Central

    Takahashi, Kazuhiro; Murata, Soichiro; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2013-01-01

    AIM: To investigate the role of human platelets in liver fibrosis. METHODS: Severe combined immunodeficiency (SCID) mice were administered CCl4 and either phosphate-buffered saline (PBS group) or human platelet transfusions (hPLT group). Concentrations of hepatocyte growth factor (HGF), matrix metallopeptidases (MMP)-9, and transforming growth factor-β (TGF-β) in the liver tissue were compared between the PBS and the hPLT groups by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effects of a human platelet transfusion on liver fibrosis included the fibrotic area, hydroxyproline content, and α-smooth muscle actin (α-SMA) expression, which were evaluated by picrosirius red staining, ELISA, and immunohistochemical staining using an anti-mouse α-SMA antibody, respectively. Phosphorylations of mesenchymal-epithelial transition factor (Met) and SMAD3, downstream signals of HGF and TGF-β, were compared between the two groups by Western blotting and were quantified using densitometry. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Furthermore, the accumulation of human platelets in the liver 2 h after platelet transfusion was compared between normal and fibrotic livers by immunohistochemical staining using an anti-human CD41 antibody. RESULTS: The fibrotic area and hydroxyproline content in the liver were both significantly lower in the hPLT group when compared to the PBS group (fibrotic area, 1.7% ± 0.6% vs 2.5% ± 0.6%, P = 0.03; hydroxyproline content, 121 ± 26 ng/g liver vs 156 ± 47 ng/g liver, P = 0.04). There was less α-smooth muscle actin staining in the hPLT group than in the PBS group (0.5% ± 0.1% vs 0.8% ± 0.3%, P = 0.02). Hepatic expression levels of mouse HGF and MMP-9 were significantly higher in the hPLT group than in the PBS group (HGF, 109 ± 13 ng/g liver vs 88 ± 22 ng/g liver, P = 0.03; MMP-9, 113% ± 7%/GAPDH vs 92% ± 11%/GAPDH, P = 0.04). In contrast, the

  16. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  17. Reversibility and heritability of liver fibrosis: Implications for research and therapy

    PubMed Central

    Atta, Hussein M

    2015-01-01

    Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy. If the etiology cannot be eliminated, liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy; both are associated with a fatal outcome. Liver transplantation, the only curative therapy, is still mostly unavailable. Liver fibrosis was shown to be a reversible process; however, complete reversibility remains debatable. Recently, the molecular markers of liver fibrosis were shown to be transmitted across generations. Epigenetic mechanisms including DNA methylation, histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis. Furthermore, epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations. However, the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated. This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers. The fact that epigenetic changes, unlike genetic mutations, are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis, to prevent the development of malignancy and to regulate heritability of fibrosis phenotype. PMID:25954087

  18. Bone marrow-derived fibrocytes contribute to liver fibrosis

    PubMed Central

    Xu, Jun

    2015-01-01

    Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. Hepatic stellate cells are considered to be the major1 but not the only source of myofibroblasts in the injured liver.2 Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells, and fibrocytes.3 Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, this bone marrow (BM)-derived collagen Type I-producing CD45+ cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury and their biological function. Furthermore, fibrocytes were implicated in the pathogenesis of sepsis and were shown to possess antimicrobial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with the high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here, we summarize our current understanding of the role of CD45+Collagen Type I+ BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses. PMID:25966982

  19. Non-invasive assessment of liver fibrosis in patients with alcoholic liver disease

    PubMed Central

    Lombardi, Rosa; Buzzetti, Elena; Roccarina, Davide; Tsochatzis, Emmanuel A

    2015-01-01

    Alcoholic liver disease (ALD) consists of a broad spectrum of disorders, ranging from simple steatosis to alcoholic steatohepatitis and cirrhosis. Fatty liver develops in more than 90% of heavy drinkers, however only 30%-35% of them develop more advanced forms of ALD. Therefore, even if the current “gold standard” for the assessment of the stage of alcohol-related liver injury is histology, liver biopsy is not reasonable in all patients who present with ALD. Currently, although several non-invasive fibrosis markers have been suggested as alternatives to liver biopsy in patients with ALD, none has been sufficiently validated. As described in other liver disease, the diagnostic accuracy of such tests in ALD is acceptable for the diagnosis of significant fibrosis or cirrhosis but not for lesser fibrosis stages. Existing data suggest that the use of non-invasive tests could be tailored to first tier screening of patients at risk, in order to diagnose early patients with progressive liver disease and offer targeted interventions for the prevention of decompensation. We review these tests and critically appraise the existing evidence. PMID:26494961

  20. Steatohepatitis and liver fibrosis are predicted by the characteristics of very low density lipoprotein in nonalcoholic fatty liver disease

    PubMed Central

    Jiang, Zhenghui G.; Tapper, Elliot B.; Connelly, Margery A.; Pimentel, Carolina F. M. G.; Feldbrügge, Linda; Kim, Misung; Krawczyk, Sarah; Afdhal, Nezam; Robson, Simon C.; Herman, Mark A.; Otvos, James D.; Mukamal, Kenneth J.; Lai, Michelle

    2016-01-01

    Background & Aims A major challenge in the management of nonalcoholic fatty liver disease (NAFLD) is to identify patients with nonalcoholic steatohepatitis (NASH) and early liver fibrosis. The progression of NAFLD is accompanied by distinctive changes in very low density lipoprotein (VLDL), a lipoprotein particle produced exclusively in the liver. Herein, we sought to determine the characteristics of VLDL profiles associated with NASH and liver fibrosis. Methods We evaluated VLDL profiles of 128 patients from a single centre NAFLD registry, and examined VLDL size, total and subclass VLDL concentrations in relation to NAFLD activity score (NAS), steatohepatitis and liver fibrosis as determined by liver biopsy. Results A near linear relationship was observed between mean VLDL particle size and NAFLD activity score (NAS). In multivariate models, VLDL particle size was significantly associated with both NAS and NASH, after adjustment for BMI and diabetes. A decrease in small VLDL particle concentration was associated with more advanced liver fibrosis. In receiver operative characteristic analyses, mean VLDL size performed similarly to cytokeratin 18 in predicting NASH, whereas small VLDL particle concentration had similar performance to NAFLD fibrosis score in predicting stage 2 or above liver fibrosis. Conclusions The increase in mean VLDL size in NASH and decrease in small VLDL particle concentration in liver fibrosis likely reflect changes in the number and state of hepatocytes associated with NASH and fibrosis. In addition to its value in risk stratification of cardiovascular diseases, circulating VLDL profile may provide information for the staging of NAFLD disease severity. PMID:26815314

  1. Periacinar liver fibrosis caused by Tephrosia cinerea in sheep.

    PubMed

    Riet-Correa, F; Carvalho, K S; Riet-Correa, G; Barros, S S; Simões, S V D; Soares, M P; Medeiros, R M T

    2013-08-01

    Tephrosia cinerea has been associated with ascites and liver fibrosis in sheep in Brazil. The dried plant was fed ad libitum to three sheep for 55-80 days. Three additional sheep were used as controls. All the treated sheep presented with hypoalbuminemia and increased γ-glutamyltransferase and aspartate aminotransferase activities. Anorexia, apathy, rough coat, ascites, and emaciation were observed after 45-60 days of feeding with T. cinerea. At necropsy 55-80 days after feeding of the plant commenced, the treated sheep had ascites, hydrothorax and hydropericardium, and their livers were firm and whitish, with a nodular surface. Histologically, the main hepatic lesions were periacinar fibrosis associated with hemorrhages and necrosis. On electron microscopy, a severe swelling of sinusoidal endothelial cells, frequently obstructing the lumen of the sinusoid was observed. The space of Disse was compressed by the swollen endothelial cells and microvilli usually present on the surface of hepatocytes adjacent to the space of Disse were not apparent. Dense bundles of collagen fibers were present in the spaces of Disse and within the sinusoids between profiles of swollen endothelial cells. It is concluded that T. cinerea causes periacinar fibrosis, similar to poisoning by Galenia africana in sheep and goats and veno-occlusive disease in different species.

  2. Tetramethylpyrazine attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic angiogenesis in rats.

    PubMed

    Zhao, Shifeng; Zhang, Zili; Qian, Linnan; Lin, Qiuyi; Zhang, Chenxi; Shao, Jiangjuan; Zhang, Feng; Zheng, Shizhong

    2017-02-01

    Liver fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with abnormalities of angiogenesis in the liver. Capillarization of liver sinusoidal endothelial cell (LSEC) is the pivotal event during liver angiogenesis. In the current study, we sought to investigate the effect of tetramethylpyrazine (TMP) on carbon tetrachloride (CCl4)-induced liver injury and fibrosis in rats, and to further examine the molecular mechanisms of TMP-induced anti-angiogenic effect. We found that TMP significantly ameliorated histopathological feature of liver fibrosis characterized by decreased collagen deposition, hepatocyte apoptosis, and expression of biochemical indicators, such as aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Moreover, TMP appeared to play an essential role in controlling pathological angiogenesis. In addition, TMP attenuated angiogenesis by downregulation of vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor receptor 2 (VEGF-R2), platelet-derived growth factor-BB (PDGF-BB), and platelet-derived growth factor-β receptor (PDGF-βR), four important factors transmitting pro-angiogenic pathways. Besides, TMP inhibited LSEC capillarization in CCl4-induced liver fibrotic model with the morphological features of increasing sinusoidal fenestrae. Importantly, we found that disruption of angiogenesis is required for TMP to inhibit hepatocyte apoptosis in rats. Treatment with TMP significantly inhibited the expression of Bax, and up-regulated Bcl-2 expression. Interestingly, treatment with angiogenesis-inducer AngII dramatically eliminated the effect of TMP on Bax/Bcl-2 axis. Overall, these results provide novel perspectives to reveal the protective effect of TMP on liver, opening up the possibility of using TMP based anti-angiogenic drugs for the liver diseases.

  3. Role of Noncoding RNAs as Biomarker and Therapeutic Targets for Liver Fibrosis

    PubMed Central

    Teng, Kun-Yu; Ghoshal, Kalpana

    2015-01-01

    Noncoding RNAs (ncRNAs) including microRNAs (miRNAs) regulate gene expression at the posttranscriptional level, whereas long coding RNAs (lncRNAs) modulate gene expression both at transcriptional and post-transcriptional levels in mammals. Accumulated evidence demonstrates the widespread aberrations in ncRNA expression associated with almost all types of liver disease. However, the role of ncRNAs in liver fibrosis is poorly understood. Liver fibrosis is the process of excessive accumulation of extracellular matrix (ECM) proteins in the liver that lead to organ dysfunction and tumorigenesis. In this review, we summarize the current knowledge on the role of ncRNAs in promoting or repressing liver fibrosis caused by nonviral agents, potential use of circulating miRNAs as biomarkers of liver fibrosis, and therapeutic approaches to treat liver fibrosis by targeting the dysregulated miRNAs. PMID:26637395

  4. The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Hong, Sang-Won; Jung, Kyung Hee; Zheng, Hong-Mei; Lee, Hee-Seung; Suh, Jun-Kyu; Park, In-Suh; Lee, Don-Haeng; Hong, Soon-Sun

    2010-04-01

    Oxidative stress in liver injury is a major pathogenetic factor in progress of liver fibrosis. Resveratrol, a representative antioxidant derived from grapes, has been reported to show widespread pharmacological properties. In this study, we investigated the protective effects of resveratrol on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Rats were treated with resveratrol daily by oral gavage for seven days after a single intraperitoneal injection of DMN (40 mg/kg). Resveratrol remarkably recovered body and liver weight loss due to DMN-induced liver fibrosis. Liver histology showed that resveratrol alleviated the infiltration of inflammatory cells and fibrosis of liver tissue. Resveratrol decreased the level of malondialdehyde and increased the levels of glutathione peroxidase and superoxide dismutase. Also, resveratrol significantly inhibited the mRNA expression of inflammatory mediators including inducible nitric oxide, tumor necrosis factor-alpha and interleukin-1beta. In addition, resveratrol showed not only reduced mRNA expression of fibrosis-related genes such as transforming growth factor beta 1, collagen type I, and alpha-smooth muscle actin, but also a significant decrease of hydroxyproline in rats with DMN-induced liver fibrosis. Our results suggest that resveratrol could be used to treat liver injury and fibrosis and be useful in preventing the development of liver fibrosis and cirrhosis.

  5. Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages.

    PubMed

    Olaso, Elvira; Arteta, Beatriz; Benedicto, Aitor; Crende, Olatz; Friedman, Scott L

    2011-12-01

    Hepatic stellate cells (HSCs) interact with fibrillar collagen through the discoidin domain receptor 2 (DDR2) in acute hepatic injury, generating increased fibrosis. However, the contribution of DDR2 signaling to chronic liver fibrosis in vivo is unclear, despite its relevance to chronic human liver disease. We administered carbon tetrachloride (CCl(4)) to DDR2(+/+) and DDR2(-/-) mice twice weekly, and liver tissues and isolated HSCs were analyzed. In contrast to changes seen in acute injury, after chronic CCl(4) administration, DDR2(-/-) livers had increased collagen deposition, gelatinolytic activity, and HSC density. Increased basal gene expression of osteopontin, transforming growth factor-β1, monocyte chemoattractant protein-1, and IL-10 and reduced basal gene expression of matrix metalloproteinase-2, matrix metalloproteinase-13, and collagen type I in quiescent DDR2(-/-) HSCs were amplified further after chronic CCl(4). In concordance, DDR2(-/-) HSCs isolated from chronically injured livers had enhanced in vitro migration and proliferation, but less extracellular matrix degradative activity. Macrophages from chronic CCl(4)-treated DDR2(-/-) livers showed stronger chemoattractive activity toward DDR2(-/-) HSCs than DDR2(+/+) macrophages, increased extracellular matrix degradation, and higher cytokine mRNA expression. In conclusion, loss of DDR2 promotes chronic liver fibrosis after CCl(4) injury. The fibrogenic sinusoidal milieu generated in chronic DDR2(-/-) livers recruits more HSCs to injured regions, which enhances fibrosis. Together, these findings suggest that DDR2 normally orchestrates gene programs and paracrine interactions between HSCs and macrophages that together attenuate chronic hepatic fibrosis.

  6. Noninvasive assessment of liver fibrosis in patients with chronic hepatitis B

    PubMed Central

    Enomoto, Masaru; Morikawa, Hiroyasu; Tamori, Akihiro; Kawada, Norifumi

    2014-01-01

    Infection with hepatitis B virus is an important health problem worldwide: it affects more than 350 million people and is a leading cause of liver-related morbidity, accounting for 1 million deaths annually. Hepatic fibrosis is a consequence of the accumulation of extracellular matrix components in the liver. An accurate diagnosis of liver fibrosis is essential for the management of chronic liver disease. Liver biopsy has been considered the gold standard for diagnosing disease, grading necroinflammatory activity, and staging fibrosis. However, liver biopsy is unsuitable for repeated evaluations because it is invasive and can cause major complications, including death. Several noninvasive evaluations have been introduced for the assessment of liver fibrosis: serum biomarkers, combined indices or scores, and imaging techniques including transient elastography, acoustic radiation force impulse, real-time tissue elastography, and magnetic resonance elastography. Here, we review the recent progress of noninvasive assessment of liver fibrosis in patients with chronic hepatitis B. Most noninvasive evaluations for liver fibrosis have been validated first in patients with chronic hepatitis C, and later in those with chronic hepatitis B. The establishment of a noninvasive assessment of liver fibrosis is urgently needed to aid in the management of this leading cause of chronic liver disease. PMID:25232240

  7. Usefulness of Non-invasive Markers for Predicting Significant Fibrosis in Patients with Chronic Liver Disease

    PubMed Central

    Lee, Han Hyo; Seo, Yeon Seok; Won, Nam Hee; Yoo, Hanna; Jung, Eun Suk; Kwon, Yong Dae; Park, Sanghoon; Keum, Bora; Kim, Yong Sik; Yim, Hyung Joon; Jeen, Yoon Tae; Chun, Hoon Jai; Kim, Chang Duck; Ryu, Ho Sang

    2010-01-01

    The purpose of this prospective study was to verify and compare the strengths of various blood markers and fibrosis models in predicting significant liver fibrosis. One hundred fifty-eight patients with chronic liver disease who underwent liver biopsy were enrolled. The mean age was 41 yr and male patients accounted for 70.2%. The common causes of liver disease were hepatitis B (67.7%) and C (16.5%) and fatty liver (9.5%). Stages of liver fibrosis (F0-4) were assessed according to the Batts and Ludwig scoring system. Significant fibrosis was defined as ≥F2. Sixteen blood markers were measured along with liver biopsy, and estimates of hepatic fibrosis were calculated using various predictive models. Predictive accuracy was evaluated with a receiver-operating characteristics (ROC) curve. Liver biopsy revealed significant fibrosis in 106 cases (67.1%). On multivariate analysis, α2-macroglobulin, hyaluronic acid, and haptoglobin were found to be independently related to significant hepatic fibrosis. A new predictive model was constructed based on these variables, and its area under the ROC curve was 0.91 (95% confidence interval, 0.85-0.96). In conclusion, α2-macroglobulin, hyaluronic acid, and haptoglobin levels are independent predictors for significant hepatic fibrosis in chronic liver disease. PMID:20052350

  8. Liver transplantation for hepatic cirrhosis in cystic fibrosis.

    PubMed Central

    Noble-Jamieson, G; Valente, J; Barnes, N D; Friend, P J; Jamieson, N V; Rasmussen, A; Calne, R Y

    1994-01-01

    Five children with cystic fibrosis complicated by hepatic cirrhosis received liver grafts. They all had portal hypertension with varices and three had variceal bleeding; respiratory function was only moderately impaired, but four were colonised with pseudomonas and one with aspergillus. Liver transplantation was well tolerated and there was no increase in respiratory or other early postoperative complications. Four of the children were fully well from 14 to 35 months after transplantation; the most recently transplanted had problems from a biliary stricture. In spite of the need for immunosuppression there was no increase in infection and respiratory function improved or remained stable. Once the children were stabilised after transplantation their nutrition and general health were greatly improved. PMID:7979532

  9. Staging of liver fibrosis or cirrhosis: The role of hepatic venous pressure gradient measurement

    PubMed Central

    Suk, Ki Tae; Kim, Dong Joon

    2015-01-01

    Liver fibrosis is a common histological change of chronic liver injury and it is closely related with portal hypertension which is hemodynamic complication of chronic liver disease. Currently, liver fibrosis has been known as a reversible dynamic process in previous literatures. Although liver biopsy is a gold standard for assessing the stage of liver fibrosis, it may not completely represent the stage of liver fibrosis because of sampling error or semi-quantative measurement. Recent evidences suggested that histologic, clinical, hemodynamic, and biologic features are closely associated in patients with chronic liver disease. Hepatic venous pressure gradient (HVPG) measurement has been known as a modality to evaluate the portal pressure. The HVPG measurement has been used clinically for fibrosis diagnosis, risk stratification, preoperative screening for liver resection, monitoring the efficacy of medical treatments, and assessing the prognosis of liver fibrosis. Therefore, the HVPG measurement can be used to monitor areas the chronic liver disease but also other important areas of chronic liver disease. PMID:25848485

  10. Lactoferrin Enhanced Apoptosis and Protected Against Thioacetamide-Induced Liver Fibrosis in Rats

    PubMed Central

    Hessin, Alyaa; Hegazy, Rehab; Hassan, Azza; Yassin, Nemat; Kenawy, Sanaa

    2015-01-01

    BACKGROUND: Liver fibrosis is the common pathologic consequence of all chronic liver diseases. AIM: Lactoferrin (Lf) was investigated for its possible hepatoprotective effect against thioacetamide (TAA)-induced liver fibrosis rat model. MATERIAL AND METHODS: Rats received TAA (200 mg/kg/biweekly, ip) for four successive weeks. Lf (200 mg/kg/day, p.o.) or vehicle (VHC) was administered for one month before and another month during TAA injection. Body weight and mortality rate were assessed during the month of TAA-intoxication. Thereafter, serum and liver tissues were analyzed for liver function, oxidative, fibrotic and apoptotic markers. RESULTS: Lf conserved rats against TAA-induced body weight-loss and mortality. Preservation of serum albumin, alkaline phosphatase and total bilirubin levels was also observed. Lf also protected rats against TAA-induced decrease in reduced glutathione and increase in malondialdehyde liver contents. Normal liver contents of hydroxyproline, nuclear factor kappa B and alpha fetoprotein; as markers of fibrosis; were increased with TAA and conserved with Lf-TAA. Lf maintained the normal architecture of the liver and immunohistochemical findings revealed increase in apoptotic bodies compared to TAA that favored necrosis. CONCLUSION: In conclusion, Lf improved liver function, reduced oxidative stress and liver fibrosis, and enhanced apoptosis in rats with liver fibrosis, suggesting it to have useful therapeutic potential in patients with liver fibrosis. PMID:27275221

  11. Inhibition of Notch Signaling Attenuates Schistosomiasis Hepatic Fibrosis via Blocking Macrophage M2 Polarization

    PubMed Central

    Chen, Yixiong; Zheng, Shaojiang; Zheng, Liping; Weng, Zhihong

    2016-01-01

    Macrophages play a key role in the pathogenesis of liver granuloma and fibrosis in schistosomiasis. However, the underlying mechanisms have not been fully characterized. This study revealed that the macrophages infiltrating the liver tissues in a murine model of Schistosoma japonica infection exhibited M2 functional polarization, and Notch1/Jagged1 signaling was significantly upregulated in the M2 polarized macrophages in vivo and in vitro. Furthermore, the blockade of Notch signaling pathway by a γ–secretase inhibitor could reverse macrophage M2 polarization in vitro and alleviate liver granuloma and fibrosis in the murine model of schistosomiasis. These results implied that the Notch1/Jagged1 signaling-dependent M2 polarization of macrophages might play an important role in liver granuloma and fibrosis in schistosomiasis, and the inhibition of Notch1/Jagged1 signaling might provide a novel therapeutic approach to administrate patients with schistosomiasis. PMID:27875565

  12. Pterostilbene inhibits dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Lee, Ming-Fen; Liu, Min-Lung; Cheng, An-Chin; Tsai, Mei-Ling; Ho, Chi-Tang; Liou, Wen-Shiung; Pan, Min-Hsiung

    2013-06-01

    Pterostilbene, found in grapes and berries, exhibits pleiotropic effects, including anti-inflammatory, antioxidant, and anti-proliferative activities. This study was conducted to investigate the effect of pterostilbene on liver fibrosis and the potential underlying mechanism for such effect. Sprague-Dawley rats were intraperitoneally given dimethyl n-nitrosamine (DMN) (10mg/kg) 3 days per week for 4 weeks. Pterostilbene (10 or 20mg/kg) was administered by oral gavage daily. Liver function, morphology, histochemistry, and fibrotic parameters were examined. Pterostilbene supplementation alleviated the DMN-induced changes in the serum levels of alanine transaminase and aspartate transaminase (p<0.05). Fibrotic status and the activation of hepatic stellate cells were improved upon pterostilbene supplementation as evidenced by histopathological examination as well as the expression of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and matrix metalloproteinase 2 (MMP2). These data demonstrated that pterostilbene exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1/Smad signaling.

  13. Contribution of bone marrow-derived fibrocytes to liver fibrosis

    PubMed Central

    Xu, Jun; Cong, Min; Park, Tae Jun; Scholten, David; Brenner, David A.

    2015-01-01

    Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I producing CD45+ cells remain the most fascinating cells of the hematopoietic system. Despite recent reports on the emerging contribution of fibrocytes to fibrosis of parenchymal and non-parenchymal organs and tissues, fibrocytes remain the most understudied pro-fibrogenic cellular population. In the past years fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis by giving rise to collagen type I producing cells/myofibroblasts. Hence, the role of fibrocytes in fibrosis is not well defined since different studies often contain controversial results on the number of fibrocytes recruited to the site of injury versus the number of fibrocyte-derived myofibroblasts in the same fibrotic organ. Furthermore, many studies were based on the in vitro characterization of fibrocytes formed after outgrowth of BM and/or peripheral blood cultures. Therefore, the fibrocyte function(s) still remain(s) lack of understanding, mostly due to (I) the lack of mouse models that can provide complimentary in vivo real-time and cell fate mapping studies of the dynamic differentiation of fibrocytes and their progeny into collagen type I producing cells (and/or possibly, other cell types of the hematopoietic system); (II) the complexity of hematopoietic cell differentiation pathways in response to various stimuli; (III) the high plasticity of hematopoietic cells. Here we summarize the current understanding of the role of CD45+ collagen type I+ BM-derived cells in the pathogenesis of liver injury. Based on data obtained from various organs undergoing fibrogenesis or other type of chronic injury, here we also discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses. PMID:25713803

  14. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    PubMed Central

    Kong, Xiang Y.; Nesset, Cecilie Kasi; Damme, Markus; Løberg, Else-Marit; Lübke, Torben; Mæhlen, Jan; Andersson, Kristin B.; Lorenzo, Petra I.; Roos, Norbert; Thoresen, G. Hege; Rustan, Arild C.; Kase, Eili T.; Eskild, Winnie

    2014-01-01

    Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage. PMID:24487409

  15. Non-invasive diagnosis of liver fibrosis and cirrhosis.

    PubMed

    Lurie, Yoav; Webb, Muriel; Cytter-Kuint, Ruth; Shteingart, Shimon; Lederkremer, Gerardo Z

    2015-11-07

    The evaluation and follow up of liver fibrosis and cirrhosis have been traditionally performed by liver biopsy. However, during the last 20 years, it has become evident that this "gold-standard" is imperfect; even according to its proponents, it is only "the best" among available methods. Attempts at uncovering non-invasive diagnostic tools have yielded multiple scores, formulae, and imaging modalities. All are better tolerated, safer, more acceptable to the patient, and can be repeated essentially as often as required. Most are much less expensive than liver biopsy. Consequently, their use is growing, and in some countries the number of biopsies performed, at least for routine evaluation of hepatitis B and C, has declined sharply. However, the accuracy and diagnostic value of most, if not all, of these methods remains controversial. In this review for the practicing physician, we analyze established and novel biomarkers and physical techniques. We may be witnessing in recent years the beginning of the end of the first phase for the development of non-invasive markers. Early evidence suggests that they might be at least as good as liver biopsy. Novel experimental markers and imaging techniques could produce a dramatic change in diagnosis in the near future.

  16. Resolving fibrosis in the diseased liver: translating the scientific promise to the clinic.

    PubMed

    Muddu, Ajay K; Guha, Indra Neil; Elsharkawy, Ahmed M; Mann, Derek A

    2007-01-01

    Liver fibrosis and its end-stage disease cirrhosis are a major cause of mortality and morbidity throughout the world. Fibrosis is a response to chronic liver injury or infection that if unabated leads to the replacement of normal functional liver tissue with scar tissue. Basic research over the past decade has generated a vastly improved knowledge of the cell and molecular biology of liver fibrosis that provides a framework on which to design and develop therapeutics. The field has also witnessed a genuine paradigm shift from the original dogma that liver fibrosis is only ever a progressive process, to the new understanding that liver fibrosis even in an advanced stage can be reversible. There is therefore renewed optimism that liver fibrosis may be cured providing that we develop therapies that halt the fibrogenic process and encourage the natural regenerative properties of the liver. The key to the design of effective therapeutics will be to exploit the ongoing discoveries pertaining to the biology and function of fibrogenic hepatic myofibroblasts and their interplay with other liver cells and with the hepatic extracellular matrix. This review provides a critique of those discoveries in basic research that provide the most promise for translation to the clinic. In addition, we review the latest developments in the search for minimal invasive diagnostic tests for fibrosis that will be essential for determining the efficacy of anti-fibrotic drugs.

  17. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    PubMed

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.

  18. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    SciTech Connect

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  19. Huangqi decoction inhibits apoptosis and fibrosis, but promotes Kupffer cell activation in dimethylnitrosamine-induced rat liver fibrosis

    PubMed Central

    2012-01-01

    Background Previously, Huangqi decoction (HQD) has been found to have a potential therapeutic effect on DMN-induced liver cirrhosis. Here, the mechanisms of HQD action against liver fibrosis were investigated in relation to hepatocyte apoptosis and hepatic inflammation regulation. Methods Liver fibrosis was induced by DMN administration for 2 or 4 weeks. Hepatocyte apoptosis and of Kupffer cells (KC) and hepatic stellate cells (HSC) interaction were investigated using confocal microscopy. The principle cytokines, fibrogenic proteins and apoptotic factors were investigated using western blot analysis. Results Compared with the DMN-water group, HQD showed decreased hepatocyte apoptosis and reduced expression of apoptotic effectors, cleaved-caspase-3, and fibrotic factors, such as smooth muscle α-actin (α-SMA), transforming growth factor beta-1 (TGF-β1). However, the KC marker CD68 increased significantly in DMN-HQD liver. Confocal microscopy demonstrated widespread adhesion of KCs to HSCs in DMN-water and DMN-HQD rats liver. Conclusions HQD exhibited positive protective effects against liver fibrosis; its mechanism of action was associated with protection from hepatocyte apoptosis and the promotion of CD68 expression in the devolopment of liver fibrosis to cirrhosis development. PMID:22531084

  20. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients.

    PubMed

    Nenadic, Ivan Z; Qiang, Bo; Urban, Matthew W; Zhao, Heng; Sanchez, William; Greenleaf, James F; Chen, Shigao

    2017-01-21

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  1. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  2. Liver Fibrosis in HIV Patients Receiving a Modern cART

    PubMed Central

    Mohr, Raphael; Schierwagen, Robert; Schwarze-Zander, Carolynne; Boesecke, Christoph; Wasmuth, Jan-Christian; Trebicka, Jonel; Rockstroh, Jürgen Kurt

    2015-01-01

    Abstract Liver-related death in human immunodeficiency virus (HIV)-infected individuals is about 10 times higher compared with the general population, and the prevalence of significant liver fibrosis in those with HIV approaches 15%. The present study aimed to assess risk factors for development of hepatic fibrosis in HIV patients receiving a modern combination anti-retroviral therapy (cART). This cross-sectional prospective study included 432 HIV patients, of which 68 (16%) patients were anti-hepatitis C virus (HCV) positive and 23 (5%) were HBsAg positive. Health trajectory including clinical characteristics and liver fibrosis stage assessed by transient elastography were collected at inclusion. Liver stiffness values >7.1 kPa were considered as significant fibrosis, while values >12.5 kPa were defined as severe fibrosis. Logistic regression and Cox regression uni- and multivariate analyses were performed to identify independent factors associated with liver fibrosis. Significant liver fibrosis was detected in 10% of HIV mono-infected, in 37% of HCV co-infected patients, and in 18% of hepatitis B virus co-infected patients. The presence of diabetes mellitus (odds ratio [OR] = 4.6) and FIB4 score (OR = 2.4) were independently associated with presence of significant fibrosis in the whole cohort. Similarly, diabetes mellitus (OR = 5.4), adiposity (OR = 4.6), and the FIB4 score (OR = 3.3) were independently associated with significant fibrosis in HIV mono-infected patients. Importantly, cumulative cART duration protected, whereas persistent HIV viral replication promoted the development of significant liver fibrosis along the duration of HIV infection. Our findings strongly indicate that besides known risk factors like metabolic disorders, HIV may also have a direct effect on fibrogenesis. Successful cART leading to complete suppression of HIV replication might protect from development of liver fibrosis. PMID:26683921

  3. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis*

    PubMed Central

    Guo, Yang; Chen, Bo; Chen, Li-jun; Zhang, Chun-feng; Xiang, Charlie

    2016-01-01

    Liver fibrosis is the end-stage of many chronic liver diseases and is a significant health threat. The only effective therapy is liver transplantation, which still has many problems, including the lack of donor sources, immunological rejection, and high surgery costs, among others. However, the use of cell therapy is becoming more prevalent, and mesenchymal stem cells (MSCs) seem to be a promising cell type for the treatment of liver fibrosis. MSCs have multiple differentiation abilities, allowing them to migrate directly into injured tissue and differentiate into hepatocyte-like cells. Additionally, MSCs can release various growth factors and cytokines to increase hepatocyte regeneration, regress liver fibrosis, and regulate inflammation and immune responses. In this review, we summarize the current uses of MSC therapies for liver fibrosis and suggest potential future applications. PMID:27819130

  4. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets

    PubMed Central

    Zhang, Chong-Yang; Yuan, Wei-Gang; He, Pei; Lei, Jia-Hui; Wang, Chun-Xu

    2016-01-01

    Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells (HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis. PMID:28082803

  5. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    PubMed

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis.

  6. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy

    PubMed Central

    Li, Jingjing; Chen, Kan; Li, Sainan; Feng, Jiao; Liu, Tong; Wang, Fan; Zhang, Rong; Xu, Shizan; Zhou, Yuqing; Zhou, Shunfeng; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Liver fibrosis is a dynamic reversible pathological process in the development of chronic liver disease to cirrhosis. However, the current treatments are not administered for a long term due to their various side effects. Autophagy is initiated to decompose damaged or excess organelles, which had been found to alter the progression of liver fibrosis. In this article, we hypothesized that fucoidan from Fucus vesiculosus may attenuate liver fibrosis in mice by inhibition of the extracellular matrix and autophagy in carbon tetrachloride- and bile duct ligation-induced animal models of liver fibrosis. The results were determined using enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemical staining. Fucoidan from F. vesiculosus could inhibit the activation of hepatic stellate cells and the formation of extracellular matrix and autophagosomes, and its effect may be associated with the downregulation of transforming growth factor beta 1/Smads pathways. Fucoidan, as an autophagy and transforming growth factor beta 1 inhibitor, could be a promising potential therapeutic agent for liver fibrosis. PMID:26929597

  7. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy.

    PubMed

    Li, Jingjing; Chen, Kan; Li, Sainan; Feng, Jiao; Liu, Tong; Wang, Fan; Zhang, Rong; Xu, Shizan; Zhou, Yuqing; Zhou, Shunfeng; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Liver fibrosis is a dynamic reversible pathological process in the development of chronic liver disease to cirrhosis. However, the current treatments are not administered for a long term due to their various side effects. Autophagy is initiated to decompose damaged or excess organelles, which had been found to alter the progression of liver fibrosis. In this article, we hypothesized that fucoidan from Fucus vesiculosus may attenuate liver fibrosis in mice by inhibition of the extracellular matrix and autophagy in carbon tetrachloride- and bile duct ligation-induced animal models of liver fibrosis. The results were determined using enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemical staining. Fucoidan from F. vesiculosus could inhibit the activation of hepatic stellate cells and the formation of extracellular matrix and autophagosomes, and its effect may be associated with the downregulation of transforming growth factor beta 1/Smads pathways. Fucoidan, as an autophagy and transforming growth factor beta 1 inhibitor, could be a promising potential therapeutic agent for liver fibrosis.

  8. Erdosteine treatment attenuates oxidative stress and fibrosis in experimental biliary obstruction.

    PubMed

    Sener, Göksel; Sehirli, A Ozer; Toklu, Hale Z; Yuksel, Meral; Ercan, Feriha; Gedik, Nursal

    2007-03-01

    Oxidative stress, in particular lipid peroxidation, induces collagen synthesis and causes fibrosis. The aim of this study was to assess the antioxidant and antifibrotic effects of erdosteine on liver fibrosis induced by biliary obstruction in rats. Liver fibrosis was induced in Wistar albino rats by bile duct ligation (BDL). Erdosteine (10 mg/kg, orally) or saline was administered for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver functions and tissue damage, respectively. Pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6 and antioxidant capacity (AOC) were assayed in plasma samples. Liver tissues were taken for determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemiluminescence assay. Serum AST, ALT, LDH, and plasma cytokines were elevated in the BDL group as compared to controls and were significantly decreased by erdosteine treatment. Hepatic GSH level and plasma AOC, depressed by BDL, were elevated back to control level with erdosteine treatment. Furthermore, hepatic luminol and lucigenin chemiluminescence (CL), MDA level, MPO activity and collagen content in BDL group increased dramatically compared to control and reduced by erdosteine treatment. Since erdosteine administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic functions, it seems likely that erdosteine with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.

  9. Biliary liver cirrhosis secondary to cystic fibrosis: a rare indication for liver transplantation.

    PubMed

    Sańko-Resmer, J; Paczek, L; Wyzgał, J; Ziółkowski, J; Ciszek, M; Alsharabi, A; Grzelak, I; Paluszkiewicz, R; Patkowski, W; Krawczyk, M

    2006-01-01

    As more effective therapies prolong the lives of patients with cystic fibrosis, there are now more patients in this population diagnosed with liver diseases. Secondary biliary cirrhosis is not a rare complication of mucoviscidosis. It is diagnosed in 20% of patients with mucoviscidosis; in 2% it is accompanied by portal hypertension. On average patients with portal hypertension and its complications are 12 years old. Liver transplantation is an accepted method of treatment for children with cystic fibrosis and portal hypertension. It eliminates the cause of the portal hypertension, decreases life-threatening medical conditions, and improves their nutritional status and quality of life. Despite immunosuppressive treatment they do not seem to beat increased risk of upper respiratory tract infections. On the contrary improved respiratory function and status are generally observed. We present our first case of orthotopic liver transplantation performed in a 29-year-old man with cystic fibrosis. The donor was a 42-year-old woman who died of a ruptured cerebral aneurysm. The surgery was performed in September 2004. The patient received immunosuppression based on steroids, basiliximab, tacrolimus, and mycophenolic acid due to renal insufficiency. Antibiotic (meropenem) and antiviral prophylaxis (gancyclovir) were used. A 6-month period of observation confirmed the clinical data from the pediatric population-a good prognosis with improved nutritional status, respiratory function, and quality of life.

  10. Rupatadine Protects against Pulmonary Fibrosis by Attenuating PAF-Mediated Senescence in Rodents

    PubMed Central

    Lv, Xiao-xi; Wang, Xiao-xing; Li, Ke; Wang, Zi-yan; Li, Zhe; Lv, Qi; Fu, Xiao-ming; Hu, Zhuo-Wei

    2013-01-01

    A similar immune response is implicated in the pathogenesis of pulmonary fibrosis and allergic disorders. We investigated the potential therapeutic efficacy and mechanism of rupatadine, a dual antagonist of histamine and platelet-activation factor (PAF), in bleomycin- (BLM-) and silica-induced pulmonary fibrosis. The indicated dosages of rupatadine were administered in rodents with bleomycin or silica-induced pulmonary fibrosis. The tissue injury, fibrosis, inflammatory cells and cytokines, and lung function were examined to evaluate the therapeutic efficacy of rupatadine. The anti-fibrosis effect of rupatadine was compared with an H1 or PAF receptor antagonist, and efforts were made to reveal rupatadine’s anti-fibrotic mechanism. Rupatadine promoted the resolution of pulmonary inflammation and fibrosis in a dose-dependent manner, as indicated by the reductions in inflammation score, collagen deposition and epithelial-mesenchymal transformation, and infiltration or expression of inflammatory cells or cytokines in the fibrotic lung tissue. Thus, rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988. The anti-fibrotic action of rupatadine might relate to its attenuation of BLM- or PAF-induced premature senescence because rupatadine treatment protected against the in vivo and in vitro activation of the p53/p21-dependent senescence pathway. Our studies indicate that rupatadine promotes the resolution of pulmonary inflammation and fibrosis by attenuating the PAF-mediated senescence response. Rupatadine holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis. PMID:23869224

  11. Magnetic resonance elastography in a rabbit model of liver fibrosis: a 3-T longitudinal validation for clinical translation

    PubMed Central

    Zou, Liqiu; Jiang, Jinzhao; Zhong, Wenxin; Wang, Chunrong; Xing, Wei; Zhang, Zhuoli

    2016-01-01

    This study aimed to determine the relationships between magnetic resonance elastography (MRE) imaging biomarkers and the stages of liver fibrosis in a rabbit model of liver fibrosis, a longitudinal validation for clinical translation. Liver fibrosis was induced in 38 male New Zealand rabbits by weekly subcutaneous injections of 0.1 ml 50% carbon tetrachloride oily solution per kilogram of body weight for 4 to 10 weeks to produced varying degrees of liver fibrosis. The values for the liver stiffness (LS) MRE imaging biomarkers were measured at different stages of liver fibrosis. Masson trichrome staining of liver tissue was used to identify collagen tissue. Among the 38 rabbits, the histological studies showed liver fibrosis stage 1 (F1, n = 11), liver fibrosis stage 2 (F2, n = 8), liver fibrosis stage 3 (F3, n = 7), and liver fibrosis stage 4 (F4, liver cirrhosis, n = 12). Additional healthy rabbits served as controls (F0, n = 15). During liver fibrosis progression, the mean LS values increased during liver fibrosis progression. There were significant differences in LS values between (F0 and F1) and (F2 and F3), (F2 and F3) and (F4), and (F0 and F1) and (F4), which are three clinically relevant fibrosis groups. There was a high correlation between the LS values measured by MRE and the stages of liver fibrosis determined by histology (R2 = 0.67, P < 0.001). MRE imaging has the potential to serve as a noninvasive, unenhanced imaging technique for liver fibrosis diagnosis and staging. PMID:27904692

  12. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling

    PubMed Central

    Hyun, Jeongeun; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis. PMID:27547008

  13. Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis.

    PubMed

    Han, Yuyan; Onori, Paolo; Meng, Fanyin; DeMorrow, Sharon; Venter, Julie; Francis, Heather; Franchitto, Antonio; Ray, Debolina; Kennedy, Lindsey; Greene, John; Renzi, Anastasia; Mancinelli, Romina; Gaudio, Eugenio; Glaser, Shannon; Alpini, Gianfranco

    2014-11-01

    Biliary hyperplasia and liver fibrosis are common features in cholestatic liver disease. Melatonin is synthesized by the pineal gland as well as the liver. Melatonin inhibits biliary hyperplasia of bile duct-ligated (BDL) rats. Since melatonin synthesis (by the enzyme serotonin N-acetyltransferase, AANAT) from the pineal gland increases after dark exposure, we hypothesized that biliary hyperplasia and liver fibrosis are diminished by continuous darkness via increased melatonin synthesis from the pineal gland. Normal or BDL rats (immediately after surgery) were housed with light-dark cycles or complete dark for 1 wk before evaluation of 1) the expression of AANAT in the pineal gland and melatonin levels in pineal gland tissue supernatants and serum; 2) biliary proliferation and intrahepatic bile duct mass, liver histology, and serum chemistry; 3) secretin-stimulated ductal secretion (functional index of biliary growth); 4) collagen deposition, liver fibrosis markers in liver sections, total liver, and cholangiocytes; and 5) expression of clock genes in cholangiocytes. In BDL rats exposed to dark there was 1) enhanced AANAT expression/melatonin secretion in pineal gland and melatonin serum levels; 2) improved liver morphology, serum chemistry and decreased biliary proliferation and secretin-stimulated choleresis; and 4) decreased fibrosis and expression of fibrosis markers in liver sections, total liver and cholangiocytes and reduced biliary expression of the clock genes PER1, BMAL1, CLOCK, and Cry1. Thus prolonged dark exposure may be a beneficial noninvasive therapeutic approach for the management of biliary disorders.

  14. Effect of anluohuaxian tablet combined with gamma-IFN on schistosomal liver fibrosis.

    PubMed

    Huang, Jiaquan; Huang, Haiyan; Jiao, Yuntao; Ai, Guo; Huang, Tiejun; Li, Lan; Yu, Haijing; Ma, Ke; Xiao, Fei

    2009-02-01

    The therapeutic effects of anluohuaxian tablet combined with gamma-IFN on schistosomal liver fibrosis and its mechanism were studied in a murine model and clinical cases of schistosomal liver fibrosis. Fifty Kunming mice were randomly divided into 5 groups: normal control group, infection control group, anluohuaxian tablet-treated group, gamma-IFN-treated group and combined treatment (anluohuaian tablet+gamma-IFN) group. Pathologic changes in liver, including hepatic pigmentation and the size of schistosomal egg granuloma, were observed by HE staining after treatment for 8 weeks. The expression of the type I and collagen III, and TIMP-1 was detected by immunohistochemistry. TGF-beta1 mRNA expression was examined by real-time fluorescent quantitative PCR. Sixty patients with schistosomal liver fibrosis were divided into treatment group and control group. The patients in treatment group were treated with anluohuaxian tablet in combination with gamma-IFN for 6 months. Before and after treatment, the changes of symptoms and signs, liver function, serum liver fibrosis indexes and imaging indexes were observed. The results showed that as compared with infection control group, all forms of treatments relieved the hepatic pathological injury with apparently diminished size of schistosomal egg nodules and decreased percentage of pigmentation (P<0.05). Furthermore, the expression of collagen I and III, TIMP-1, and TGF-beta1 mRNA in combined treatment group was significantly decreased as compared with anluohuaxian tablet-treated and gamma-IFN-treated groups (P<0.05). In the clinical observation, the serum liver fibrosis indexes, the portal vein width as well as the spleen thickness was significantly reduced in treatment group as compared with control group (P<0.05). It was concluded that the combined use of anluohuaxian tablet with gamma-IFN in schistosomal liver fibrosis could protect liver function, alleviate liver fibrosis, and could be used as a choice in treating

  15. Therapeutic effect of Zijin capsule in liver fibrosis in rats

    PubMed Central

    Cai, Da-Yong; Zhao, Gang; Chen, Jia-Chun; Ye, Gan-Mei; Bing, Fei-Hong; Fan, Bu-Wu

    1998-01-01

    AIM: To confirm the therapeutic effect of Zijin capsule on liver fibrosis in rat model. METHODS: Model group: Bovine serum albumin (BSA) Freund’s incomplete adjuvant 0.5 mL was injected subdermally at d1 d15 d22 d29 and d36 for primary sensitization. Seven days after the fifth injection, BSA antibody in the serum was detected by double agar diffusion method. Normal saline of 0.4 mL was injected through cauda vein to BSA antibody-positive rat twice a week for fifteen times. Traditional Chinese medicine (TCM) decoction group and Zijin capsule group: In the attack injection period, Chinese medicinal decoction or Zijin capsule was given ig, the others were the same as in the model group. NS was used in the control group. The collagen content of rat liver was determined by Bergman’s method and expressed as x- ± s. The liver pathological changes were divided into four grades and expressed as the avarage of the total rank sum. RESULTS: The collagen content (mg/g) of the liver in the control group (7.2 ± 1.9) was significantly lower than that in the other groups; it was higher in the model group (31.7 ± 16.6) than that in the two therapeutic groups; and lower in Zijin capsule group (9.7 ± 2.8) than that in the TCM decoction group (11.5 ± 5.3). The pathological changes were more aggravated in the model group (37.4) than those in the two therapeutic groups; and more severe in the TCM decoction group (30.2) than in the Zijin capsule group (22.9). CONCLUSION: The therapeutic effect of Zijin capsule on the model was confirmed. PMID:11819291

  16. 7S Fragment of Type IV Collagen as a Serum Marker of Canine Liver Fibrosis.

    PubMed

    Glińska-Suchocka, K; Orłowska, A; Kubiak, K; Spużak, J; Jankowski, M

    2016-09-01

    The aim of this study was to assess whether the serum levels of the 7S fragment of type IV collagen may aid in diagnosing liver fibrosis in dogs. The study was carried out on 20 dogs with liver disease. Serum levels of the 7S fragment of type IV collagen were measured in all dogs. The analysis showed that healthy dogs and dogs with type 1, 2 and 3 liver fibrosis had low serum concentrations of the 7S fragment of type IV collagen compared to dogs with type 4 liver fibrosis. The study revealed that the assessment of serum levels of the 7S fragment of type IV collagen is useful in the diagnosis of advanced liver fibrosis and cirrhosis.

  17. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis.

  18. Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging.

    PubMed

    Lee, Jang Hyuk; Kim, Jong Chul; Tae, Giyoong; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2013-07-01

    A multimodal multiphoton nonlinear optical (NLO) microspectroscopy imaging system was developed using a femtosecond laser and a photonic crystal fiber. Coherent anti-Stokes Raman scattering (CARS) microspectroscopy was combined with two-photon excitation fluorescence and second-harmonic generation microscopy in one platform and the system was applied to diagnose liver fibrosis. Normal and liver fibrosis tissues were clearly distinguished with the great difference from CARS spectra as well as multimodal multiphoton NLO images. We expect the system to be a rapid diagnosis tool for liver fibrosis at tissue level with label-free imaging of significant biochemical components.

  19. Non-Invasive Assessment of Liver Fibrosis Progression and Prognosis in Primary Biliary Cholangitis.

    PubMed

    Poupon, Raoul

    2015-01-01

    PBC (formerly known as primary biliary cirrhosis and now named primary biliary cholangitis) is a disease with a wide range of severity and variable rate of progression. The diagnosis of advanced liver fibrosis/cirrhosis portends an increased risk of liver-related morbidity and mortality. Because of its invasiveness, liver biopsy tends to be replaced by non-invasive tools for assessing liver fibrosis, making prognosis and optimising risk stratification for selection of patients, requiring new medical approaches. Many direct or indirect biomarkers have been found to correlate with the severity of liver fibrosis in PBC. They are easy to use but lack sensitivity and reproducibility in individuals with early stage disease. Three main radiologic approaches are currently proposed to assess liver fibrosis: vibration controlled transient elastography (VCTE), acoustic radiation force impulse and magnetic resonance elastography. Data using VCTE are available only for the longitudinal evaluation of liver fibrosis and prognosis in PBC. VCTE outperformed all other non-invasive current surrogate markers of liver fibrosis in PBC. Because of its high acceptability and its ability to predict hepatic decompensation, VCTE could be a useful tool to help allocate cirrhotic patients into different categories of risk. None of the radiologic and serum markers have a perfect accuracy in studies so far published. Concordance between VCTE and serum biomarkers is a prerequisite for a correct prognosis assessment in individuals in clinical practice.

  20. DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches

    PubMed Central

    Chen, L; Luo, M; Sun, X; Qin, J; Yu, C; Wen, Y; Zhang, Q; Gu, J; Xia, Q; Kong, X

    2016-01-01

    Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b+Gr-1low macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches. PMID:27277679

  1. GENETIC MODIFIERS OF LIVER DISEASE IN CYSTIC FIBROSIS

    PubMed Central

    Bartlett, Jaclyn R.; Friedman, Kenneth J.; Ling, Simon C.; Pace, Rhonda G.; Bell, Scott C.; Bourke, Billy; Castaldo, Giuseppe; Castellani, Carlo; Cipolli, Marco; Colombo, Carla; Colombo, John L.; Debray, Dominique; Fernandez, Adriana; Lacaille, Florence; Macek, Milan; Rowland, Marion; Salvatore, Francesco; Taylor, Christopher J.; Wainwright, Claire; Wilschanski, Michael; Zemková, Dana; Hannah, William B.; Phillips, M. James; Corey, Mary; Zielenski, Julian; Dorfman, Ruslan; Wang, Yunfei; Zou, Fei; Silverman, Lawrence M.; Drumm, Mitchell L.; Wright, Fred A.; Lange, Ethan M.; Durie, Peter R.; Knowles, Michael R.

    2013-01-01

    Context A subset (~3–5%) of patients with cystic fibrosis (CF) develops severe liver disease (CFLD) with portal hypertension. Objective To assess whether any of 9 polymorphisms in 5 candidate genes (SERPINA1, ACE, GSTP1, MBL2, and TGFB1) are associated with severe liver disease in CF patients. Design, Setting, and Participants A 2-stage design was used in this case–control study. CFLD subjects were enrolled from 63 U.S., 32 Canadian, and 18 CF centers outside of North America, with the University of North Carolina at Chapel Hill (UNC) as the coordinating site. In the initial study, we studied 124 CFLD patients (enrolled 1/1999–12/2004) and 843 CF controls (patients without CFLD) by genotyping 9 polymorphisms in 5 genes previously implicated as modifiers of liver disease in CF. In the second stage, the SERPINA1 Z allele and TGFB1 codon 10 genotype were tested in an additional 136 CFLD patients (enrolled 1/2005–2/2007) and 1088 CF controls. Main Outcome Measures We compared differences in distribution of genotypes in CF patients with severe liver disease versus CF patients without CFLD. Results The initial study showed CFLD to be associated with the SERPINA1 (also known as α1-antiprotease and α1-antitrypsin) Z allele (P value=3.3×10−6; odds ratio (OR) 4.72, 95% confidence interval (CI) 2.31–9.61), and with transforming growth factor β-1 (TGFB1) codon 10 CC genotype (P=2.8×10−3; OR 1.53, CI 1.16–2.03). In the replication study, CFLD was associated with the SERPINA1 Z allele (P=1.4×10−3; OR 3.42, CI 1.54–7.59), but not with TGFB1 codon 10. A combined analysis of the initial and replication studies by logistic regression showed CFLD to be associated with SERPINA1 Z allele (P=1.5×10−8; OR 5.04, CI 2.88–8.83). Conclusion The SERPINA1 Z allele is a risk factor for liver disease in CF. Patients who carry the Z allele are at greater odds (OR ~5) to develop severe liver disease with portal hypertension. PMID:19738092

  2. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis

    PubMed Central

    Haimerl, Michael; Utpatel, Kirsten; Verloh, Niklas; Zeman, Florian; Fellner, Claudia; Nickel, Dominik; Teufel, Andreas; Fichtner-Feigl, Stefan; Evert, Matthias; Stroszczynski, Christian; Wiggermann, Philipp

    2017-01-01

    Gd-EOB-DTPA, a liver-specific contrast agent with T1-shortening effects, is routinely used in clinical routine for detection and characterization of focal liver lesions and has recently received increasing attention as a tool for the quantitative analyses of liver function. We report the relationship between the extent of Gd-EOB-DTPA- induced T1 relaxation and the degree of liver fibrosis, which was assessed according to the METAVIR score. For the T1 relaxometry, a transverse 3D VIBE sequence with inline T1 calculation was acquired prior to and 20 minutes after Gd-EOB-DTPA administration. The reduction rates of the T1 relaxation time (rrT1) between the pre- and postcontrast images were calculated, and the optimal cutoff values for the fibrosis stages were determined with receiver operating characteristic (ROC) curve analyses. The rrT1 decreased with the severity of liver fibrosis and regression analysis revealed a significant correlation of the rrT1 with the stage of liver fibrosis (r = −0.906, p < 0.001). ROC analysis revealed sensitivities ≥78% and specificities ≥94% for the differentiation of different fibrosis stages. Gd-EOB-DTPA–enhanced T1 relaxometry is a reliable tool for both the detection of initial hepatic fibrosis and the staging of hepatic fibrosis. PMID:28128291

  3. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited.

  4. Nanoencapsulated curcumin and praziquantel treatment reduces periductal fibrosis and attenuates bile canalicular abnormalities in Opisthorchis viverrini-infected hamsters.

    PubMed

    Charoensuk, Lakhanawan; Pinlaor, Porntip; Wanichwecharungruang, Supason; Intuyod, Kitti; Vaeteewoottacharn, Kulthida; Chaidee, Apisit; Yongvanit, Puangrat; Pairojkul, Chawalit; Suwannateep, Natthakitta; Pinlaor, Somchai

    2016-01-01

    This study investigated the effects of nanoencapsulated curcumin (NEC) and praziquantel (PZQ) treatment on the resolution of periductal fibrosis (PDF) and bile canalicular (BC) abnormalities in Opisthorchis viverrini infected hamsters. Chronic O. viverrini infection (OV) was initially treated with either PZQ (OP) and subsequently treated with NEC (OP+NEC), curcumin (OP+Cur) or unloaded carriers (OP+carrier) daily for one month. OP+NEC treatment reduced the PDF by suppression of fibrotic markers (hydroxyproline content, α-SMA, CTGF, fibronectin, collagen I and III), cytokines (TGF-β and TNF-α) and TIMP-1, 2, 3 expression and upregulation of MMP-7, 13 genes. Higher activity of NEC in reducing fibrosis compared to curcumin was also demonstrated in in vitro studies. Moreover, OP+NEC also prevented BC abnormalities and upregulated several genes involved in bile acid metabolism. These results demonstrate that NEC and PZQ treatment reduces PDF and attenuates BC defect in experimental opisthorchiasis. From the Clinical Editor: Infection by Opisthorchis viverrini leads to liver fibrosis and affects population in SE Asia. Currently, praziquantel (PZQ) is the drug of choice but this drug has significant side effects. In this study, the authors combined curcumin (NEC) and praziquantel in a nanocarrier to test the anti-oxidative effect of curcumin in an animal model. The encouraging results may pave a way for better treatment in the future.

  5. Panel of three novel serum markers predicts liver stiffness and fibrosis stages in patients with chronic liver disease

    PubMed Central

    Krawczyk, Marcin; Zimmermann, Simone; Hess, Georg; Holz, Robert; Dauer, Marc; Raedle, Jochen; Lammert, Frank; Grünhage, Frank

    2017-01-01

    Latest data suggest that placental growth factor (PLGF), growth differentiation factor-15 (GDF-15) and hepatic growth factor (HGF) are involved in hepatic fibrogenesis. Diagnostic performance of these markers for non-invasive liver fibrosis prediction was evaluated based on liver histology and stiffness. In total 834 patients were recruited. Receiver-operating-characteristics were used to define cut-offs for markers correlating to fibrosis stages. Odds-ratios were calculated for the presence/absence of fibrosis/cirrhosis and confirmed in the sub-group of patients phenotyped by elastography only. Logistic and uni- and multivariate regression analyses were used to test for association of markers with liver fibrosis stages and for independent prediction of liver histology and stiffness. Marker concentrations correlated significantly (P<0.001) with histology and stiffness. Cut-offs for liver fibrosis (≥F2) were PLGF = 20.20 pg/ml, GDF15 = 1582.76 pg/ml and HGF = 2598.00 pg/ml. Logistic regression confirmed an increase of ORs from 3.6 over 33.0 to 108.4 with incremental (1–3) markers positive for increased liver stiffness (≥12.8kPa; all P<0.05). Subgroup analysis revealed associations with advanced fibrosis for HCV (three markers positive: OR = 59.9, CI 23.4–153.4, P<0.001) and non-HCV patients (three markers positive: OR = 144, CI 59–3383, P<0.001). Overall, serum markers identified additional 50% of patients at risk for advanced fibrosis presenting with low elastography results. In conclusion, this novel combination of markers reflects the presence of significant liver fibrosis detected by elastography and histology and may also identify patients at risk presenting with low elastography values. PMID:28301573

  6. Hepatocyte Growth Factor Mediates the Antifibrogenic Action of Ocimum bacilicum Essential Oil against CCl4-Induced Liver Fibrosis in Rats.

    PubMed

    Ogaly, Hanan A; Eltablawy, Nadia A; El-Behairy, Adel M; El-Hindi, Hatim; Abd-Elsalam, Reham M

    2015-07-23

    The current investigation aimed to evaluate the antifibrogenic potential of Ocimum basilicum essential oil (OBE) and further to explore some of its underlying mechanisms. Three groups of rats were used: group I (control), group II (CCl4 model) and group III (OBE-treated) received CCl4 and OBE 2 weeks after the start of CCl4 administration. Oxidative damage was assessed by the measurement of MDA, NO, SOD, CAT, GSH and total antioxidant capacity (TAC). Liver fibrosis was assessed histopathologically by Masson's trichrome staining and α-smooth muscle actin (α-SMA) immunostaining. Expression of hepatocyte growth factor (HGF) and cytochrome P450 (CYP2EI isoform) was estimated using real-time PCR and immunohistochemistry. OBE successfully attenuated liver injury, as shown by histopathology, decreased serum transaminases and improved oxidative status of the liver. Reduced collagen deposition and α-SMA immuopositive cells indicated an abrogation of hepatic stellate cell activation by OBE. Furthermore, OBE was highly effective in stimulating HGF mRNA and protein expression and inhibiting CCl4-induced CYP2E1 down-regulation. The mechanism of antifibrogenic action of OBE is hypothesized to proceed via scavenging free radicals and activating liver regeneration by induction of HGF. These data suggest the use of OBE as a complementary treatment in liver fibrosis.

  7. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  8. Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin

    SciTech Connect

    Domitrovic, Robert; Jakovac, Hrvoje; Tomac, Jelena; Sain, Ivana

    2009-12-15

    Hepatic fibrosis is effusive wound healing process in which excessive connective tissue builds up in the liver. Because specific treatments to stop progressive fibrosis of the liver are not available, we have investigated the effects of luteolin on carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Male Balb/C mice were treated with CCl{sub 4} (0.4 ml/kg) intraperitoneally (i.p.), twice a week for 6 weeks. Luteolin was administered i.p. once daily for next 2 weeks, in doses of 10, 25, and 50 mg/kg of body weight. The CCl{sub 4} control group has been observed for spontaneous reversion of fibrosis. CCl{sub 4}-intoxication increased serum aminotransferase and alkaline phosphatase levels and disturbed hepatic antioxidative status. Most of these parameters were spontaneously normalized in the CCl{sub 4} control group, although the progression of liver fibrosis was observed histologically. Luteolin treatment has increased hepatic matrix metalloproteinase-9 levels and metallothionein (MT) I/II expression, eliminated fibrinous deposits and restored architecture of the liver in a dose-dependent manner. Concomitantly, the expression of glial fibrillary acidic protein and alpha-smooth muscle actin indicated deactivation of hepatic stellate cells. Our results suggest the therapeutic effects of luteolin on CCl{sub 4}-induced liver fibrosis by promoting extracellular matrix degradation in the fibrotic liver tissue and the strong enhancement of hepatic regenerative capability, with MTs as a critical mediator of liver regeneration.

  9. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update

    PubMed Central

    Elpek, Gülsüm Özlem

    2014-01-01

    There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis. PMID:24966597

  10. Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

    2013-10-01

    We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

  11. Association between Noninvasive Fibrosis Markers and Chronic Kidney Disease among Adults with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Sesti, Giorgio; Fiorentino, Teresa Vanessa; Arturi, Franco; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco

    2014-01-01

    Evidence suggests that nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with an increased risk of chronic kidney disease (CKD). In this study we aimed to evaluate whether the severity of liver fibrosis estimated by NAFLD fibrosis score is associated with higher prevalence of CKD in individuals with NAFLD. To this end NAFLD fibrosis score and estimated glomerular filtration rate (eGFR) were assessed in 570 White individuals with ultrasonography-diagnosed NAFLD. As compared with subjects at low probability of liver fibrosis, individuals at high and intermediate probability showed an unfavorable cardio-metabolic risk profile having significantly higher values of waist circumference, insulin resistance, high sensitivity C-reactive protein, fibrinogen, uric acid and lower insulin-like growth factor-1 levels. Individuals at high and intermediate probability of liver fibrosis have lower eGFR after adjustment for gender, smoking, glucose tolerance status, homeostasis model assessment index of insulin resistance (HOMA-IR index), diagnosis of metabolic syndrome, statin therapy, anti-diabetes and anti-hypertensive treatments (P = 0.001). Individuals at high probability of liver fibrosis had a 5.1-fold increased risk of having CKD (OR 5.13, 95%CI 1.13–23.28; P = 0.03) as compared with individuals at low probability after adjustment for age, gender, and BMI. After adjustment for glucose tolerance status, statin therapy, and anti-hypertensive treatment in addition to gender, individuals at high probability of liver fibrosis had a 3.9-fold increased risk of CKD (OR 3.94, 95%CI 1.11–14.05; P = 0.03) as compared with individuals at low probability. In conclusion, advanced liver fibrosis, determined by noninvasive fibrosis markers, is associated with CKD independently from other known factors. PMID:24520400

  12. Evaluation of liver fibrosis: “Something old, something new…”

    PubMed Central

    Almpanis, Zannis; Demonakou, Maria; Tiniakos, Dina

    2016-01-01

    Hepatic fibrogenesis may gradually result to cirrhosis due to the accumulation of extracellular matrix components as a response to liver injury. Thus, therapeutic decisions in chronic liver disease, regardless of the cause, should first and foremost be guided by an accurate quantification of hepatic fibrosis. Detection and assessment of the extent of hepatic fibrosis represent a challenge in modern Hepatology. Although traditional histological staging systems remain the “best standard”, they are not able to quantify liver fibrosis as a dynamic process and may not accurately substage cirrhosis. This review aims to compare the currently used non-invasive methods of measuring liver fibrosis and provide an update in current tissue-based digital techniques developed for this purpose, that may prove of value in daily clinical practice. PMID:27708509

  13. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice.

    PubMed

    Wang, Yanqiu; Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-04-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition.

  14. Non invasive assessment of liver fibrosis in chronic hemodialysis patients with viral hepatitis C

    PubMed Central

    Arrayhani, Mohamed; Sqalli, Tarik; Tazi, Nada; El Youbi, Randa; Chaouch, Safae; Aqodad, Nourdin; Ibrahimi, Sidi Adil

    2015-01-01

    The liver biopsy has long been the "gold standard" for assessing liver fibrosis in patients with hepatitis C. It's an invasive procedure which is associated with an elevated bleeding, especially in chronic hemodialysis patients. Main goal is to assess liver fibrosis in chronic hemodialysis with HCV by Fibroscan and by biological scores (APRI, Forns and Fib-4), and to measure the correlation between these tests. Cross-sectional study including all chronic hemodialysis patients with hepatitis C virus, in two public hemodialysis centers of Fez. All patients were evaluated for liver fibrosis using noninvasive methods (FibroScan and laboratory tests). Subsequently, the correlation between different tests has been measured. 95 chronic hemodialysis were studied, twenty nine patients (30.5%) with chronic hepatitis C. The average age was 52.38 ± 16.8 years. Nine liver fibrosis cases have been concluded by forns score. Fibroscan has objectified significant fibrosis in 6 cases. On the other side APRI has objectified sgnifivant fibrosis only in 3 cases. The Fib-4 showed severe fibrosis in five cases. The results have been most consistent between APRI and Fib-4, followed by Fibroscan and Forns, then APRI and FibroScan. PMID:26958136

  15. Non invasive assessment of liver fibrosis in chronic hemodialysis patients with viral hepatitis C.

    PubMed

    Arrayhani, Mohamed; Sqalli, Tarik; Tazi, Nada; El Youbi, Randa; Chaouch, Safae; Aqodad, Nourdin; Ibrahimi, Sidi Adil

    2015-01-01

    The liver biopsy has long been the "gold standard" for assessing liver fibrosis in patients with hepatitis C. It's an invasive procedure which is associated with an elevated bleeding, especially in chronic hemodialysis patients. Main goal is to assess liver fibrosis in chronic hemodialysis with HCV by Fibroscan and by biological scores (APRI, Forns and Fib-4), and to measure the correlation between these tests. Cross-sectional study including all chronic hemodialysis patients with hepatitis C virus, in two public hemodialysis centers of Fez. All patients were evaluated for liver fibrosis using noninvasive methods (FibroScan and laboratory tests). Subsequently, the correlation between different tests has been measured. 95 chronic hemodialysis were studied, twenty nine patients (30.5%) with chronic hepatitis C. The average age was 52.38 ± 16.8 years. Nine liver fibrosis cases have been concluded by forns score. Fibroscan has objectified significant fibrosis in 6 cases. On the other side APRI has objectified sgnifivant fibrosis only in 3 cases. The Fib-4 showed severe fibrosis in five cases. The results have been most consistent between APRI and Fib-4, followed by Fibroscan and Forns, then APRI and FibroScan.

  16. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  17. The Synthetic Triterpenoid RTA 405 (CDDO-EA) Halts Progression of Liver Fibrosis and Reduces Hepatocellular Carcinoma Size Resulting in Increased Survival in an Experimental Model of Chronic Liver Injury

    PubMed Central

    Getachew, Yonas; Cusimano, Frank A.; Gopal, Purva; Reisman, Scott A.; Shay, Jerry W.

    2016-01-01

    Patients with cirrhosis have an increased risk of developing liver cancer and a higher rate of mortality. Cirrhosis currently has no known cure, and patients may benefit from new agents aimed at alleviating their complications and slowing down the rate of disease progression. Therefore, the effects of the orally bioavailable synthetic triterpenoid 2-cyano-3,12-dioxooleana- 1,9(11)-dien-28-oate-ethyl amide (CDDO-EA, RTA 405), which has potent antioxidative and antiinflammatory properties, was evaluated in a chronic carbon tetrachloride (CCl4)-induced model of liver cirrhosis and hepatocellular carcinoma (HCC). Mice were injected with CCl4 (to induce fibrosis and cirrhosis) or placebo biweekly for 12 weeks followed by CDDO-EA in the diet for 18 weeks with continued biweekly injections of CCl4. Chronic CCl4 administration resulted in cirrhosis, ascites, and HCC formation, associated with increased serum transforming growth factor-β1, hepatic hydroxyproline content, and increased serum bilirubin. CDDO-EA, whose administration commenced after establishment of liver fibrosis, decreased liver fibrosis progression, serum bilirubin, ascites, and HCC formation and markedly increased overall survival. CDDO-EA also attenuated -TNFα (tumor necrosis factor-α), α-SMA (alpha smooth muscle actin), augmented -IL-10 levels, and improved histologic and serologic markers of fibrosis. Conclusions: CDDO-EA mitigates the progression of liver fibrosis induced by chronic CCl4 administration, which is associated with the induction of antifibrogenic genes and suppression of profibrogenic genes. PMID:26443840

  18. Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease

    PubMed Central

    Kiani, Anita; Brun, Vanessa; Lainé, Fabrice; Turlin, Bruno; Morcet, Jeff; Michalak, Sophie; Le Gruyer, Antonia; Legros, Ludivine; Bardou-Jacquet, Edouard; Gandon, Yves; Moirand, Romain

    2016-01-01

    AIM: To evaluate the performance of elastography by ultrasound with acoustic radiation force impulse (ARFI) in determining fibrosis stage in patients with alcoholic liver disease (ALD) undergoing alcoholic detoxification in relation to biopsy. METHODS: Eighty-three patients with ALD undergoing detoxification were prospectively enrolled. Each patient underwent ARFI imaging and a liver biopsy on the same day. Fibrosis was staged according to the METAVIR scoring system. The median of 10 valid ARFI measurements was calculated for each patient. RESULTS: Sixty-nine males and thirteen females (one patient excluded due to insufficient biopsy size) were assessed with a mean alcohol consumption of 132.4 ± 128.8 standard drinks per week and mean cumulative year duration of 17.6 ± 9.5 years. Sensitivity and specificity were respectively 82.4% (0.70-0.95) and 83.3% (0.73-0.94) (AUROC = 0.87) for F ≥ 2 with a cut-off value of 1.63m/s; 82.4% (0.64-1.00) and 78.5% (0.69-0.89) (AUROC = 0.86) for F ≥ 3 with a cut-off value of 1.84m/s; and 92.3% (0.78-1.00] and 81.6% (0.72-0.90) (AUROC = 0.89) for F = 4 with a cut-off value of 1.94 m/s. CONCLUSION: ARFI is an accurate, non-invasive and easy method for assessing liver fibrosis in patients with ALD undergoing alcoholic detoxification. PMID:27239119

  19. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  20. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    PubMed Central

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN. PMID:27468195

  1. Endothelial cell Toll-like receptor 4 regulates fibrosis associated angiogenesis in liver

    PubMed Central

    Jagavelu, K; Routray, C; Shergill, U; O’Hara, SP; Faubion, W; Shah, VH

    2010-01-01

    Angiogenesis defines the growth of new blood vessels from pre-existing vascular endothelial networks and corresponds with the wound healing process that is typified by the process of liver fibrosis. Liver fibrosis is also associated with increased endotoxin within the gut lumen and its associated portal circulation. However, the interrelationship of gut endotoxin and its receptor, Toll-like receptor 4 (TLR4), with liver fibrosis and associated angiogenesis remains incompletely defined. RESULT Here we provide evidence, using complementary genetic, molecular, and pharmacologic approaches that the pattern recognition receptor that recognizes endotoxin, TLR4, expressed on liver endothelial cells (LEC), regulates angiogenic responses both in vitro and in vivo. Mechanistic studies reveal a key role for a cognate TLR4 effector protein, MyD88 in this process which culminates in extracellular protease production that regulates LEC invasive capacity, a key step in angiogenesis. Furthermore TLR4 dependent angiogenesis in vivo corresponds with fibrosis in complementary liver models of fibrosis. CONCLUSION These studies provide evidence that the TLR4 pathway in LEC regulates angiogenesis through its MyD88 effector protein by regulating extracellular protease production and that this process is linked to the development of liver fibrosis. PMID:20564354

  2. Vagotomy attenuates bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    Song, Nana; Liu, Jun; Shaheen, Saad; Du, Lei; Proctor, Mary; Roman, Jesse; Yu, Jerry

    2015-01-01

    The progression of pulmonary fibrosis (PF) entails a complex network of interactions between multiple classes of molecules and cells, which are closely related to the vagus nerve. Stimulation of the vagus nerve increases fibrogenic cytokines in humans, therefore, activation of the nerve may promote PF. The hypothesis was tested by comparing the extent and severity of fibrosis in lungs with and without vagal innervation in unilaterally vagotomized mice. The results show that in vagotomized lungs, there were less collagen staining, less severe fibrotic foci (subpleural, peri-vascular and peri-bronchiolar lesions) and destruction of alveolar architecture; decreased collagen deposition (denervated vs intact: COL1α1, 19.1 ± 2.2 vs 22.0 ± 2.6 ng/mg protein; COL1α2, 4.5 ± 0.3 vs 5.7 ± 0.5 ng/mg protein; p < 0.01, n = 21) and protein levels of transforming growth factor beta and interleukin 4; and fewer myofibroblast infiltration (denervated vs intact: 1.2 ± 0.2 vs 3.2 ± 0.6 cells/visual field; p < 0.05, n = 6) and M2 macrophages [though the infiltration of macrophages was increased (denervated vs intact: 112 ± 8 vs 76 ± 9 cells/visual field; p < 0.01, n = 6), the percentage of M2 macrophages was decreased (denervated vs intact: 31 ± 4 vs 57 ± 9%; p < 0.05, n = 5)]. It indicated that the vagus nerve may influence PF by enhancing fibrogenic factors and fibrogenic cells. PMID:26289670

  3. Salvianolic Acid B Attenuates Rat Hepatic Fibrosis via Downregulating Angiotensin II Signaling

    PubMed Central

    Li, Shu; Wang, Lina; Yan, Xiuchuan; Wang, Qinglan; Tao, Yanyan; Li, Junxia; Peng, Yuan; Liu, Ping; Liu, Chenghai

    2012-01-01

    The renin-angiotensin system (RAS) plays an important role in hepatic fibrosis. Salvianolic acid B (Sal B), one of the water-soluble components from Radix Salviae miltiorrhizae, has been used to treat hepatic fibrosis, but it is still not clear whether the effect of Sal B is related to angiotensin II (Ang II) signaling pathway. In the present study, we studied Sal B effect on rat liver fibrosis and Ang-II related signaling mediators in dimethylnitrosamine-(DMN-) induced rat fibrotic model in vivo and Ang-II stimulated hepatic stellate cells (HSCs) in vitro, with perindopril or losartan as control drug, respectively. The results showed that Sal B and perindopril inhibited rat hepatic fibrosis and reduced expression of Ang II receptor type 1 (AT1R) and ERK activation in fibrotic liver. Sal B and losartan also inhibited Ang II-stimulated HSC activation including cell proliferation and expression of type I collagen I (Col-I) and α-smooth muscle actin (α-SMA) production in vitro, reduced the gene expression of transforming growth factor beta (TGF-β), and downregulated AT1R expression and ERK and c-Jun phosphorylation. In conclusion, our results indicate that Sal B may exert an antihepatic fibrosis effect via downregulating Ang II signaling in HSC activation. PMID:23243430

  4. Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis.

    PubMed

    Huang, Chao-Cheng; Chuang, Jiin-Haur; Chou, Ming-Huei; Wu, Chia-Lin; Chen, Ching-Mei; Wang, Chih-Chi; Chen, Yaw-Sen; Chen, Chao-Long; Tai, Ming-Hong

    2005-07-01

    Matrix metalloproteinases (MMPs) are the proteases responsible for tissue remodeling during liver fibrosis caused by various disorders including biliary atresia. However, information regarding the relative contribution of these proteases to liver fibrosis is still limited. We studied matrix metalloproteinase-2 (MMP-2), -7, -9 and -13 mRNA expressions in the liver tissue of early-stage biliary atresia at the time of Kasai's procedure, late-stage biliary atresia at the time of liver transplantation with advanced fibrosis and nondiseased control without liver fibrosis. The results of real-time quantitative reverse transcriptase-PCR analysis revealed that only MMP-2 and -7 expressions were significantly different between groups. MMP-2 was significantly higher in Liver Transplantation group than both in Control (P=0.010) and in Kasai's Procedure (P=0.001) groups, whereas the difference of MMP-2 expression between Control and Kasai's Procedure was not significant. However, the relative expression level of MMP-7 was sequentially elevated when comparing Control, Kasai's Procedure and Liver Transplantation groups, and there was significant (P=0.019) difference when comparing Control and Liver Transplantation groups. Moreover, the fold difference in MMP-7 mRNA was much higher than that in MMP-2 mRNA between groups. The expressions of MMP-7 were further confirmed by agarose gel electrophoresis and Western blotting. Immunohistochemical analysis revealed a significant positive correlation of the scores of MMP-7 immunostaining with the stages of liver fibrosis. In situ hybridization demonstrated that the bile ductular epithelial cells, Kupffer cells and hepatocytes were the major producers of matrix metalloproteinase-7 in the liver. Our results imply that MMP-7 is a major MMP associated with the tissue remodeling during the progression of liver fibrosis in biliary atresia.

  5. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis.

    PubMed

    Park, Ji-Hyun; Kum, Yoon-Seup; Lee, Tae-Im; Kim, Soo-Jung; Lee, Woo-Ram; Kim, Bong-Il; Kim, Hyun-Soo; Kim, Kyung-Hyun; Park, Kwan-Kyu

    2011-11-01

    Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Following injury, an acute inflammation response takes place resulting in moderate cell necrosis and extracellular matrix damage. Melittin, the major bioactive component in the venom of honey bee Apis mellifera, is a 26-residue amphipathic peptide with well-known cytolytic, antimicrobial and proinflammatory properties. However, the molecular mechanisms responsible for the anti-inflammatory activity of melittin have not been elucidated in liver fibrosis. We investigated whether melittin ameliorates liver inflammation and fibrosis in thioacetamide (TAA)-induced liver fibrosis. Two groups of mice were treated with TAA (200 mg/L, in drinking water), one of the groups of mice was co-treated with melittin (0.1 mg/kg) for 12 weeks while the other was not. Hepatic stellate cells (HSCs) were cultured with tumor necrosis factor α in the absence or presence of melittin. Melittin suppresses the expression of proinflammatory cytokines through the nuclear factor (NF)-κB signaling pathway. Moreover, melittin reduces the activity of HSCs in vitro, and decreases the expression of fibrotic gene responses in TAA-induced liver fibrosis. Taken together, melittin prevents TAA-induced liver fibrosis by inhibiting liver inflammation and fibrosis, the mechanism of which is the interruption of the NF-κB signaling pathway. These results suggest that melittin could be an effective agent for preventing liver fibrosis.

  6. Cystic fibrosis-related liver disease: a single-center experience.

    PubMed

    Costa, Paula Catarino; Barreto, Celeste Canha; Pereira, Luisa; Lobo, Maria Luisa; Costa, Maria Adília; Lopes, Ana Isabel Gouveia

    2011-06-30

    Prospective studies concerning liver disease in pediatric cystic fibrosis patients are scarce. The present study aimed to describe the prevalence and clinical expression of cystic fibrosis - related liver disease, in a cohort of 62 pediatric patients. Descriptive study, resulting from the prospective evaluation, between 1994 and 2009, of 62 pediatric patients (age <18 years) with cystic fibrosis. The follow-up protocol included a clinical assessment every 2 months, liver function tests every 6 months and annual liver ultrasonography. The cumulative prevalence of liver disease was 11.2% (7/62 cases). All patients had ΔF508 mutation and pancreatic insufficiency, none had meconium ileus. The liver involvement became clinically evident at a mean age of 8 years (3-15 years), revealed by hepatomegaly or hepatosplenomegaly (3 cases) and/ or abnormalities of liver function tests (3 cases) changes of liver ultrasound (7 cases) with evidence of portal hypertension (2 cases). Four patients were submitted to liver biopsy; biliary fibrosis was documented in one case, focal biliary cirrhosis in 2 cases and multilobular cirrhosis in another case. Within a median 11.6 years follow-up period (all patients under UDCA therapy after liver disease diagnosis), progression of liver disease was observed in 2 patients; one patient developed refractory variceal bleeding and progressive hepatic failure, requiring liver transplant. The results of the present study agree with those of previous pediatric studies, further documenting clinical expression of liver disease in CF patients, which is usually detected in the first decade of life and emphasize the contribution of ultrasound to early diagnosis of liver involvement. Moreover, although advanced liver disease is a relatively rare event, early isolated liver transplantation may have to be considered at this age group.

  7. Sphingosine Kinase 2 Deficiency Attenuates Kidney Fibrosis via IFN-γ.

    PubMed

    Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Ye, Hong; Dondeti, Krishna R; Chroscicki, Piotr; Foley, Leah S; Balogun, Z Ayoade; Alexander, Kyle J; Park, Hojung; Lynch, Kevin R; Rosin, Diane L; Okusa, Mark D

    2017-04-01

    Maladaptive repair after AKI may lead to progressive fibrosis and decline in kidney function. Sphingosine 1-phosphate has an important role in kidney injury and pleiotropic effects in fibrosis. We investigated the involvement of sphingosine kinase 1 and 2 (SphK1 and SphK2), which phosphorylate sphingosine to produce sphingosine 1-phosphate, in kidney fibrosis induced by folic acid (FA) or unilateral ischemia-reperfusion injury. Analysis of Masson trichrome staining and fibrotic marker protein and mRNA expression 14 days after AKI revealed that wild-type (WT) and Sphk1(-/-) mice exhibited more kidney fibrosis than Sphk2(-/-) mice. Furthermore, kidneys of FA-treated WT and Sphk1(-/-) mice had greater immune cell infiltration and expression of fibrotic and inflammatory markers than kidneys of FA-treated Sphk2(-/-) mice. In contrast, kidneys of Sphk2(-/-) mice exhibited greater expression of Ifng and IFN-γ-responsive genes (Cxcl9 and Cxcl10) than kidneys of WT or Sphk1(-/-) mice did at this time point. Splenic T cells from untreated Sphk2(-/-) mice were hyperproliferative and produced more IFN-γ than did those of WT or Sphk1(-/-) mice. IFN-γ blocking antibody administered to Sphk2(-/-) mice or deletion of Ifng (Sphk2(-/-)Ifng(-/-) mice) blocked the protective effect of SphK2 deficiency in fibrosis. Moreover, adoptive transfer of Sphk2(-/-) (but not Sphk2(-/-)Ifng(-/-) ) CD4 T cells into WT mice blocked FA-induced fibrosis. Finally, a selective SphK2 inhibitor blocked FA-induced kidney fibrosis in WT mice. These studies demonstrate that SphK2 inhibition may serve as a novel therapeutic approach for attenuating kidney fibrosis.

  8. New Concepts on Pathogenesis and Diagnosis of Liver Fibrosis; A Review Article

    PubMed Central

    Ebrahimi, Hedyeh; Naderian, Mohammadreza; Sohrabpour, Amir Ali

    2016-01-01

    Liver fibrosis is a potentially reversible response to hepatic insults, triggered by different chronic diseases most importantly viral hepatitis, alcoholic, and nonalcoholic fatty liver disease. In the course of the chronic liver disease, hepatic fibrogenesis may develop, which is attributed to various types of cells, molecules, and pathways. Activated hepatic stellate cell (HSC), the primary source of extracellular matrix (ECM), is fundamental in pathophysiology of fibrogenesis, and thus is the most attractable target for reversing liver fibrosis. Although, liver biopsy has long been considered as the gold standard for diagnosis and staging of hepatic fibrosis, assessing progression and regression by biopsy is hampered by its limitations. We provide recent views on noninvasive approaches including serum biomarkers and radiologic techniques. PMID:27698966

  9. In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis.

    PubMed

    Trouvé, Pascal; Génin, Emmanuelle; Férec, Claude

    2017-01-01

    Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance.

  10. In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis

    PubMed Central

    Génin, Emmanuelle; Férec, Claude

    2017-01-01

    Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance. PMID:28339466

  11. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact

    PubMed Central

    Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista

    2015-01-01

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204

  12. Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis

    PubMed Central

    Thabut, Dominique; Routray, Chittaranjan; Lomberk, Gwen; Shergill, Uday; Glaser, Kevin; Huebert, Robert; Patel, Leena; Masyuk, Tetyana; Blechacz, Boris; Vercnocke, Andrew; Ritman, Erik; Ehman, Richard; Urrutia, Raul; Shah, Vijay

    2011-01-01

    Background Paracrine signaling between hepatic stellate cells (HSC) and liver endothelial cells (LEC) modulates fibrogenesis, angiogenesis, and portal hypertension. However, mechanisms regulating these processes are not fully defined. Sorafenib is a receptor tyrosine kinase inhibitor that blocks growth factor signaling in tumor cells but also displays important and not yet fully characterized effects on liver nonparenchymal cells including HSC and LEC. The aim of this study was to test the hypothesis that sorafenib influences paracrine signaling between HSC and LEC and thereby regulates matrix and vascular changes associated with chronic liver injury. Results Complementary magnetic resonance elastography, micro-CT, and histochemical analyses indicate that sorafenib attenuates the changes in both matrix and vascular compartments that occur in response to bile-duct ligation induced liver injury in rats. Cell biology studies demonstrate that sorafenib markedly reduces cell to cell apposition and junctional complexes, thus reducing the proximity typically observed between these sinusoidal barrier cells. At the molecular level, sorafenib down-regulates angiopoietin-1 and fibronectin, both released by HSC in a manner dependent on the transcription factor KLF6, suggesting that this pathway underlies both matrix and vascular changes associated with chronic liver disease. Conclusion Collectively, our results demonstrate that sorafenib inhibits both matrix restructuring and vascular remodeling that accompany chronic liver diseases and characterize cell and molecular mechanisms underlying this effect. These data may help to refine future therapies for advanced gastrointestinal and liver diseases characterized by abundant fibrosis and neovascularization. PMID:21567441

  13. Role of NADPH oxidases in the redox biology of liver fibrosis

    PubMed Central

    Crosas-Molist, Eva; Fabregat, Isabel

    2015-01-01

    Liver fibrosis is the pathological consequence of chronic liver diseases, where an excessive deposition of extracellular matrix (ECM) proteins occurs, concomitantly with the processes of repair and regeneration. It is characterized by increased production of matrix proteins, in particular collagens, and decreased matrix remodelling. The principal source of ECM accumulation is myofibroblasts (MFB). Most fibrogenic MFB are endogenous to the liver, coming from hepatic stellate cells (HSC) and portal fibroblasts. Dysregulated inflammatory responses have been associated with most (if not all) hepatotoxic insults and chronic oxidative stress play a role during the initial liver inflammatory phase and its progression to fibrosis. Redox-regulated processes are responsible for activation of HSC to MFB, as well as maintenance of the MFB function. Increased oxidative stress also induces hepatocyte apoptosis, which contributes to increase the liver injury and to transdifferentiate HSC to MFB, favouring the fibrogenic process. Mitochondria and other redox-active enzymes can generate superoxide and hydrogen peroxide as a by-product in liver cells. Moreover, accumulating evidence indicates that NADPH oxidases (NOXs), which play a critical role in the inflammatory response, may contribute to reactive oxygen species (ROS) production during liver fibrosis, being important players in HSC activation and hepatocyte apoptosis. Based on the knowledge of the pathogenic role of ROS, different strategies to prevent or reverse the oxidative damage have been developed to be used as therapeutic tools in liver fibrosis. This review will update all these concepts, highlighting the relevance of redox biology in chronic fibrogenic liver pathologies. PMID:26204504

  14. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans

    PubMed Central

    Alzaid, Fawaz; Lagadec, Floriane; Albuquerque, Miguel; Ballaire, Raphaëlle; Orliaguet, Lucie; Hainault, Isabelle; Blugeon, Corinne; Lemoine, Sophie; Lehuen, Agnès; Saliba, David G.; Udalova, Irina A.; Paradis, Valérie; Foufelle, Fabienne

    2016-01-01

    Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease. PMID:27942586

  15. Evaluation of liver fibrosis in patients with thalassemia: the important role of hyaluronic acid.

    PubMed

    Papastamataki, Maria; Delaporta, Polyxeni; Premetis, Evangelos; Kattamis, Antonios; Ladis, Vassilios; Papassotiriou, Ioannis

    2010-10-15

    Patients with transfusion-dependent thalassemia major often develop liver fibrosis due to liver iron overload and/or hepatitis virus C (HCV) infection. Hyaluronic acid (HA) plays a prominent role in the pathogenesis of liver fibrosis and the elevation of serum HA concentration is due to either increased synthesis by inflammatory cells and hepatic stellate cells or impaired degradation by sinusoidal endothelial cells (SECs) and thus is proposed as a non-invasive biomarker of liver fibrosis either by itself and/or included in the Hepascore formula. In this study we evaluated prospectively a screening of liver fibrosis in 201 adult patients aged 19-54 years with transfusion-dependent thalassemia major, based on HA measurements. 41/201 patients were HCV-RNA (+). HA was measured with a turbidimetric assay applied on a clinical chemistry analyzer. The Hepascore was computed from the results by using the model previously published. The main results of the study showed that: a) HA levels were increased in 110/201 (55%) thalassemia patients 85.0 ± 10.3 ng/ml, ranged from 15.0 to 1495.0 μg/l, compared to 20.8 ± 7.4 μg/l reference laboratory values, p<0.001, b) HA levels were significantly higher in HCV-RNA(+) compared to HCV-RNA(-) patients, 171.6 ± 202 vs 53.8 ± 35.5 μg/l, p<0.0001 c) no significant correlations were found between HA levels and/or Hepascore with ferritin and liver iron content (LIC) assessed with MRI (p>0.324 and p>0.270, respectively). Our findings indicate that hyaluronic acid measurements contribute to the assessment of liver fibrosis in patients with thalassemia and might be helpful for further evaluation of patients with liver biopsy if this is truly needed. Furthermore, liver fibrosis in thalassemia seems to be independent from liver siderosis.

  16. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis.

    PubMed

    Dadrich, Monika; Nicolay, Nils H; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E

    2016-05-01

    Background : Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods : C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results : Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion : Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement : RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of

  17. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis

    PubMed Central

    Dadrich, Monika; Nicolay, Nils H.; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E.

    2016-01-01

    ABSTRACT Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined

  18. Quantitative assessment of fibrosis and steatosis in liver biopsies from patients with chronic hepatitis C

    PubMed Central

    Zaitoun, A; Al, M; Awad, S; Ukabam, S; Makadisi, S; Record, C

    2001-01-01

    Backgrounds—Hepatic fibrosis is one of the main consequences of liver disease. Both fibrosis and steatosis may be seen in some patients with chronic hepatitis C and alcoholic liver disease (ALD). Aims—To quantitate fibrosis and steatosis by stereological and morphometric techniques in patients with chronic hepatitis C and compare the results with a control group of patients with ALD. In addition, to correlate the quantitative features of fibrosis with the Ishak modified histological score. Materials and methods—Needle liver biopsies from 86 patients with chronic hepatitis C and from 32 patients with alcoholic liver disease (disease controls) were analysed by stereological and morphometric analyses using the Prodit 5.2 system. Haematoxylin and eosin and Picro-Mallory stained sections were used. The area fractions (AA) of fibrosis, steatosis, parenchyma, and other structures (bile duct and central vein areas) were assessed by stereological method. The mean diameters of fat globules were determined by morphometric analysis. Results—Significant differences were found in the AA of fibrosis, including fibrosis within portal tract areas, between chronic hepatitis C patients and those with ALD (mean (SD): 19.14 (10.59) v 15.97 (12.51)). Portal and periportal (zone 1) fibrosis was significantly higher (p = 0.00004) in patients with chronic hepatitis C compared with the control group (mean (SD): 9.04 (6.37) v 3.59 (3.16)). Pericentral fibrosis (zone 3) occurred in both groups but was significantly more pronounced in patients with ALD. These results correlate well with the modified Ishak scoring system. However, in patients with cirrhosis (stage 6) with chronic hepatitis C the AA of fibrosis varied between 20% and 74%. The diameter of fat globules was significantly lower in patients with hepatitis C (p = 0.00002) than the ALD group (mean (SD): 14.44 (3.45) v 18.4 (3.32)). Microglobules were more frequent in patients with chronic hepatitis C than in patients with ALD

  19. Is the neutrophil to lymphocyte ratio associated with liver fibrosis in patients with chronic hepatitis B?

    PubMed Central

    Kekilli, Murat; Tanoglu, Alpaslan; Sakin, Yusuf Serdar; Kurt, Mevlut; Ocal, Serkan; Bagci, Sait

    2015-01-01

    AIM: To determine the association between the neutrophil to lymphocyte (N/L) ratio and the degree of liver fibrosis in patients with chronic hepatitis B (CHB) infection. METHODS: Between December 2011 and February 2013, 129 consecutive CHB patients who were admitted to the study hospitals for histological evaluation of chronic hepatitis B-related liver fibrosis were included in this retrospective study. The patients were divided into two groups based on the fibrosis score: individuals with a fibrosis score of F0 or F1 were included in the “no/minimal liver fibrosis” group, whereas patients with a fibrosis score of F2, F3, or F4 were included in the “advanced liver fibrosis” group. The Statistical Package for Social Sciences 18.0 for Windows was used to analyze the data. A P value of < 0.05 was accepted as statistically significant. RESULTS: Three experienced and blinded pathologists evaluated the fibrotic status and inflammatory activity of 129 liver biopsy samples from the CHB patients. Following histopathological examination, the “no/minimal fibrosis” group included 79 individuals, while the “advanced fibrosis” group included 50 individuals. Mean (N/L) ratio levels were notably lower in patients with advanced fibrosis when compared with patients with no/minimal fibrosis. The mean value of the aspartate aminotransferase-platelet ratio index was markedly higher in cases with advanced fibrosis compared to those with no/minimal fibrosis. CONCLUSION: Reduced levels of the peripheral blood N/L ratio were found to give high sensitivity, specificity and predictive values in CHB patients with significant fibrosis. The prominent finding of our research suggests that the N/L ratio can be used as a novel noninvasive marker of fibrosis in patients with CHB. PMID:25987782

  20. A boswellic acid-containing extract ameliorates schistosomiasis liver granuloma and fibrosis through regulating NF-κB signaling in mice.

    PubMed

    Liu, Miao; Wu, Qingsi; Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18-22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD.

  1. A Boswellic Acid-Containing Extract Ameliorates Schistosomiasis Liver Granuloma and Fibrosis through Regulating NF-κB Signaling in Mice

    PubMed Central

    Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18–22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD. PMID:24941000

  2. Protective effect of theaflavin-enriched black tea extracts against dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Weerawatanakorn, Monthana; Lee, You-Li; Tsai, Chen-Yu; Lai, Ching-Shu; Wan, Xiaochun; Ho, Chi-Tang; Li, Shiming; Pan, Min-Hsiung

    2015-06-01

    Liver cirrhosis is responsible for hepatic fibrosis resulting in high mortality and is also a risk factor for developing hepatocellular carcinoma (HCC), which is the fifth most common cancer in men and the seventh in women globally. Several studies have found effective anti-cancer activities of theaflavins, the major black tea polyphenols. The objective of this study was to investigate the protective effects of theaflavin-enriched black tea extracts (TF-BTE) on hepatic fibrosis induced by dimethylnitrosamine (DMN) administration in Sprague-Dawley (SD) rats. Treatment of SD rats with DMN (10 mg per kg bw) for 4 weeks produced inflammation and remarkable liver fibrosis assessed by serum biochemistry and histopathological examination. Fibrotic status and the activation of hepatic stellate cells were improved by oral administration of 40% theaflavins in black tea extracts (40% TF-BTE) as evidenced by histopathological examination. Oral administration of 40% TF-BTE at a low dose of 50 mg per kg bw per day and a high dose of 100 mg per kg bw per day attenuated the DMN-induced elevation of serum GOT (glutamate oxaloacetate transaminase) and GPT (glutamic pyruvic transaminase) levels and reduced necrosis, bile duct proliferation, and inflammation. Western blot analyses revealed that TF-BTE inhibited the expression of liver alpha-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) protein. The histochemical examination showed the inhibitory effect of TF-BTE on the p-Smad3 expression. Overall, these data demonstrated that TF-BTE exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1/Smad signaling.

  3. Amelioration of Murine Schistosoma mansoni Induced Liver Fibrosis by Mesenchymal Stem Cells.

    PubMed

    Abdel Aziz, Mt; Atta, Hm; Roshdy, Nk; Rashed, LA; Sabry, D; Hassouna, Aa; Aboul Fotouh, Gi; Hasan, Nm; Younis, Rh; Chowdhury, Jr

    2012-01-01

    Schistosomiasis is a common chronic helminthic infection of the liver that causes hepatic fibrosis and portal hypertension,contributing to the death of over half a million people a year. Infusion of autologous bone marrow cells into patients with hepatic cirrhosis has been reported to ameliorate symptoms of portal hypertension and improve liver function, either by conversion of the infused mesenchymal stem cells (MSCs) to hepatocytes or by modulating of the hepatic fibrosis. Here,we have investigated the antifibrotic effect of mesenchymal stem cells (MSCs) using S. mansoni-induced liver fibrosis in mice, which causes an intense, stable fibrosis. MSCs derived from bone marrow of male mice were then infused intravenously into female mice that had received intraperitoneal injection of S.mansoni cercariae. Mice were divided into 4 groups: Untreated control; MSCs infusion only; Schistosomiasis only; and Schistosomiasis plus MSCs infusion. Serum alanine aminotransferase (ALT) and liver histopathology were evaluated. Expression of the collagen gene (type I),transforming growth factor (TGF-β), matrix metalloproteinase (MMP2), tissue inhibitor of metalloproteinase (TIMP-1),stromal cell-derived factor-1(SDF-1) and its receptor (CXCR4) were analyzed. MSC infusion resulted in significant decrease in liver collagen and TGF-β gene expression in the Schistosomiasis mice. The ratio of MMP-2 to TIMP-1 expression increased. SDF-1 and CXCR4 mRNA expression also increased. There was overall improvement of liver histology and a statistically significant reduction of serum ALT level. MSCs infusion ameliorated S. mansoni-induced liver fibrosis, probably by modulating the relative expression of MMP and TIMP. The findings support the hypothesis that MSCs participate in liver regeneration and functional improvement by reducing liver fibrosis.

  4. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  5. Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Hu, Biao; Wu, Zhe; Bai, David; Liu, Tianju; Ullenbruch, Matthew R; Phan, Sem H

    2015-11-01

    Notch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking. In this study, we examined the effects of conditional mesenchymal-specific deletion of Notch1 on pulmonary fibrosis. Crossing of mice bearing the floxed Notch1 gene with α2(I) collagen enhancer-Cre-ER(T)-bearing mice successfully generated progeny with a conditional knockout (CKO) of Notch1 in collagen I-expressing (mesenchymal) cells on treatment with tamoxifen (Notch1 CKO). Because Notch signaling is known to be activated in the bleomycin model of pulmonary fibrosis, control and Notch1 CKO mice were analyzed for their responses to bleomycin treatment. The results showed significant attenuation of pulmonary fibrosis in CKO relative to control mice, as examined by collagen deposition, myofibroblast differentiation, and histopathology. However, there were no significant differences in inflammatory or immune cell influx between bleomycin-treated CKO and control mouse lungs. Analysis of isolated lung fibroblasts confirmed absence of Notch1 expression in cells from CKO mice, which contained fewer myofibroblasts and significantly diminished collagen I expression relative to those from control mice. These findings revealed an essential role for Notch1-mediated myofibroblast differentiation in the pathogenesis of pulmonary fibrosis.

  6. MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus

    PubMed Central

    Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257

  7. Ginkgo biloba extract reverses CCl4 –induced liver fibrosis in rats

    PubMed Central

    Luo, Yan-Jun; Yu, Jie-Ping; Shi, Zhao-Hong; Wang, Li

    2004-01-01

    AIM: To study the reversing effect of Ginkgo biloba extract (GbE) on established liver fibrosis in rats. METHODS: Following confirmation of CCl4-induced liver fibrosis, GbE or saline was administrated to the rats for 4 weeks. The remaining rats received neither CCl4 nor GbE as normal control. The four groups were compared in terms of serum enzymes, tissue damage, expression of αSMA and tissue inhibitor-1 of metalloproteinase (TIMP-1) and metalloproteinase-1 (MMP-1). RESULTS: Compared with saline-treated group, liver fibrosis rats treated with GbE had decreased serum total bilirubin (P < 0.01) and aminotransferase levels (P < 0.01) and increased levels of serum albumin (P < 0.01). Microscopic studies revealed that the livers of rats receiving GbE showed allieviation in fibrosis (P < 0.05) as well as expression of αSMA (P<0.01). The liver collagen and reticulum contents were lower in rats treated with GbE than saline-treated group (P < 0.01). RT-PCR revealed that the level of TIMP-1 decreased while the level of MMP-1 increased in GbE group. CONCLUSION: Administration of GbE improved CCl4–induced liver fibrosis. It is possibly attributed to its effect of inhibiting the expression of TIMP-1 and promoting the apoptosis of hepatic stellate cells. PMID:15052689

  8. mTOR Overactivation in Mesenchymal cells Aggravates CCl4− Induced liver Fibrosis

    PubMed Central

    Shan, Lanlan; Ding, Yan; Fu, You; Zhou, Ling; Dong, Xiaoying; Chen, Shunzhi; Wu, Hongyuan; Nai, Wenqing; Zheng, Hang; Xu, Wanfu; Bai, Xiaochun; Jia, Chunhong; Dai, Meng

    2016-01-01

    Hepatic stellate cells are of mesenchymal cell type located in the space of Disse. Upon liver injury, HSCs transactivate into myofibroblasts with increase in expression of fibrillar collagen, especially collagen I and III, leading to liver fibrosis. Previous studies have shown mTOR signaling is activated during liver fibrosis. However, there is no direct evidence in vivo. The aim of this study is to examine the effects of conditional deletion of TSC1 in mesenchymal on pathogenesis of liver fibrosis. Crossing mice bearing the floxed TSC1 gene with mice harboring Col1α2-Cre-ER(T) successfully generated progeny with a conditional knockout of TSC1 (TSC1 CKO) in collagen I expressing mesenchymal cells. TSC1 CKO and WT mice were subjected to CCl4, oil or CCl4+ rapamycin treatment for 8 weeks. TSC1 CKO mice developed pronounced liver fibrosis relative to WT mice, as examined by ALT, hydroxyproline, histopathology, and profibrogenic gene. Absence of TSC1 in mesenchymal cells induced proliferation and prevented apoptosis in activated HSCs. However, there were no significant differences in oil-treated TSC1 CKO and WT mice. Rapamycin, restored these phenotypic changes by preventing myofibroblasts proliferation and enhancing their apoptosis. These findings revealed mTOR overactivation in mesenchymal cells aggravates CCl4− induced liver fibrosis and the rapamycin prevent its occurance. PMID:27819329

  9. Non-invasive assessment of changes in liver fibrosis via liver stiffness measurement in patients with chronic hepatitis B: impact of antiviral treatment on fibrosis regression

    PubMed Central

    Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Choi, Eun Hee; Seok, Jae Yeon; Lee, Jung Min; Park, Young Nyun; Chon, Chae Yoon; Han, Kwang-Hyub

    2010-01-01

    Background Liver stiffness measurement (LSM) can assess liver fibrosis in patients with chronic hepatitis B (CHB). We evaluated whether LSM can be used to assess changes in liver fibrosis during antiviral treatment using nucleos(t)ide analogs in patients with CHB. Methods We recruited 41 patients with CHB who had significant liver fibrosis, normal or slightly elevated serum alanine aminotransferase (ALT) levels (≤2 × upper limit of normal), and detectable serum hepatitis B virus DNA before antiviral treatment. Patients in Group 1 (n = 23) and Group 2 (n = 18) underwent follow-up LSM after antiviral treatment for 1 and 2 years, respectively. Results The mean age, ALT and LSM value of all patients (34 men and 7 women) before antiviral treatment were 46.6 ± 9.5 years, 40.6 ± 17.2 IU/L and 12.9 ± 8.6 kPa, respectively. Hepatitis B e antigen (HBeAg) was detected in 31 patients (75.6%). Fibrosis stage was F2 in 12 (29.3%), F3 in 6 (14.6%) and F4 in 23 (56.1%) patients. After antiviral treatment, LSM values and DNA positivity decreased significantly as compared to baseline (P = 0.018 and P < 0.001 in Group 1; P = 0.017 and P < 0.001 in Group 2, respectively), whereas ALT levels were unchanged (P = 0.063 in Group 1; P = 0.082 in Group 2). Conclusions Our preliminary data suggest that LSM can be used to assess liver fibrosis regression after antiviral treatment using nucleos(t)ide analogs in patients with CHB. PMID:21286337

  10. Effect of Tridax procumbens (Linn.) on bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Joshi, P P; Patil, S D; Silawat, N; Deshmukh, P T

    2011-12-01

    The present study was undertaken to clarify whether methanolic extract of Tridax procumbens prevents liver fibrosis in rat. The hepatic fibrosis was induced by 28 days of bile duct ligation in rats. The 4-week treatment with Tridex procumbens reduced the serum aspartate aminotransferase (U L⁻¹), glutamate pyruvate transaminase (U L⁻¹), alkaline phosphatase (IU L⁻¹), lactate dehydrogenase (IU L⁻¹), total bilirubin (mg dL⁻¹), direct bilirubin (mg dL⁻¹) and hydroxyproline (mg gm⁻¹) content in liver and improved the histological appearance of liver section. The results of this study led us to conclude that T. procumbens can reduce the degree of hepatocellular damage and may become antifibrotic agent for liver fibrosis.

  11. Optical spectroscopy for differentiation of liver tissue under distinct stages of fibrosis: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Fabila, D. A.; Hernández, L. F.; de la Rosa, J.; Stolik, S.; Arroyo-Camarena, U. D.; López-Vancell, M. D.; Escobedo, G.

    2013-11-01

    Liver fibrosis is the decisive step towards the development of cirrhosis; its early detection affects crucially the diagnosis of liver disease, its prognosis and therapeutic decision making. Nowadays, several techniques are employed to this task. However, they have the limitation in estimating different stages of the pathology. In this paper we present a preliminary study to evaluate if optical spectroscopy can be employed as an auxiliary tool of diagnosis of biopsies of human liver tissue to differentiate the fibrosis stages. Ex vivo fluorescence and diffuse reflectance spectra were acquired from biopsies using a portable fiber-optic system. Empirical discrimination algorithms based on fluorescence intensity ratio at 500 nm and 680 nm as well as diffuse reflectance intensity at 650 nm were developed. Sensitivity and specificity of around 80% and 85% were respectively achieved. The obtained results show that combined use of fluorescence and diffuse reflectance spectroscopy could represent a novel and useful tool in the early evaluation of liver fibrosis.

  12. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system

    PubMed Central

    van den Berg, Pim J.; Bansal, Ruchi; Daoudi, Khalid; Steenbergen, Wiendelt; Prakash, Jai

    2016-01-01

    Liver fibrosis is a major cause for increasing mortality worldwide. Preclinical research using animal models is required for the discovery of new anti-fibrotic therapies, but currently relies on endpoint liver histology. In this study, we investigated a cost-effective and portable photoacoustic/ultrasound (PA/US) imaging system as a potential non-invasive alternative. Fibrosis was induced in mice using CCl4 followed by liver imaging and histological analysis. Imaging showed significantly increased PA features with higher frequency signals in fibrotic livers versus healthy livers. This corresponds to more heterogeneous liver structure resulting from collagen deposition and angiogenesis. Importantly, PA response and its frequency were highly correlated with histological parameters. These results demonstrate the preclinical feasibility of the PA imaging approach and applicability of dual PA/US system. PMID:28018726

  13. Correlation of serum liver fibrosis markers with severity of liver dysfunction in liver cirrhosis: a retrospective cross-sectional study

    PubMed Central

    Zhu, Cuihong; Qi, Xingshun; Li, Hongyu; Peng, Ying; Dai, Junna; Chen, Jiang; Xia, Chunlian; Hou, Yue; Zhang, Wenwen; Guo, Xiaozhong

    2015-01-01

    Hyaluronic acid (HA), laminin (LN), amino-terminal pro-peptide of type III pro-collagen (PIIINP), and collagen IV (CIV) are four major serum markers of liver fibrosis. This retrospective cross-sectional study aimed to evaluate the correlations of the four serum markers with the severity of liver dysfunction in cirrhotic patients. Between January 2013 and June 2014, a total of 228 patients with a clinical diagnosis with liver cirrhosis and without malignancy underwent the tests of HA, LN, PIIINP, and CIV levels. Laboratory data were collected. Child-Pugh and model for the end-stage of liver diseases (MELD) scores were calculated. Of them, 32%, 40%, and 18% had Child-Pugh class A, B, and C, respectively. MELD score was 7.58±0.50. HA (coefficient r: 0.1612, P=0.0203), LN (coefficient r: 0.2445, P=0.0004), and CIV (coefficient r: 0.2361, P=0.0006) levels significantly correlated with Child-Pugh score, but not PIIINP level. Additionally, LN (coefficient r: 0.2588, P=0.0002) and CIV (coefficient r: 0.1795, P=0.0108) levels significantly correlated with MELD score, but not HA or PIIINP level. In conclusions, HA, LN, and CIV levels might be positively associated with the severity of liver dysfunction in cirrhotic patients. However, given a relatively weak correlation between them, our findings should be cautiously interpreted and further validated. PMID:26131195

  14. Serum Liver Fibrosis Markers in the Prognosis of Liver Cirrhosis: A Prospective Observational Study.

    PubMed

    Qi, Xingshun; Liu, Xu; Zhang, Yongguo; Hou, Yue; Ren, Linan; Wu, Chunyan; Chen, Jiang; Xia, Chunlian; Zhao, Jiajun; Wang, Di; Zhang, Yanlin; Zhang, Xia; Lin, Hao; Wang, Hezhi; Wang, Jinling; Cui, Zhongmin; Li, Xueyan; Deng, Han; Hou, Feifei; Peng, Ying; Wang, Xueying; Shao, Xiaodong; Li, Hongyu; Guo, Xiaozhong

    2016-08-02

    BACKGROUND The prognostic role of serum liver fibrosis markers in cirrhotic patients remains unclear. We performed a prospective observational study to evaluate the effect of amino-terminal pro-peptide of type III pro-collagen (PIIINP), collagen IV (CIV), laminin (LN), and hyaluronic acid (HA) on the prognosis of liver cirrhosis. MATERIAL AND METHODS All patients who were diagnosed with liver cirrhosis and admitted to our department were prospectively enrolled. PIIINP, CIV, LN, and HA levels were tested. RESULTS Overall, 108 cirrhotic patients were included. Correlation analysis demonstrated that CIV (coefficient r: 0.658, p<0.001; coefficient r: 0.368, p<0.001), LN (coefficient r: 0.450, p<0.001; coefficient r: 0.343, p<0.001), and HA (coefficient r: 0.325, p=0.001; coefficient r: 0.282, p=0.004) levels, but not PIIINP level (coefficient r: 0.081, p=0.414; coefficient r: 0.090, p=0.363), significantly correlated with Child-Pugh and MELD scores. Logistic regression analysis demonstrated that HA (odds ratio=1.00003, 95% confidence interval [CI]=1.000004-1.000056, p=0.022) was significantly associated with the 6-month mortality. Receiver operating characteristics analysis demonstrated that the area under the curve (AUC) of HA for predicting the 6-month mortality was 0.612 (95%CI=0.508-0.709, p=0.1531). CONCLUSIONS CIV, LN, and HA levels were significantly associated with the severity of liver dysfunction, but might be inappropriate for the prognostic assessment of liver cirrhosis.

  15. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis.

    PubMed

    Ding, Bi-Sen; Cao, Zhongwei; Lis, Raphael; Nolan, Daniel J; Guo, Peipei; Simons, Michael; Penfold, Mark E; Shido, Koji; Rabbany, Sina Y; Rafii, Shahin

    2014-01-02

    Chemical or traumatic damage to the liver is frequently associated with aberrant healing (fibrosis) that overrides liver regeneration. The mechanism by which hepatic niche cells differentially modulate regeneration and fibrosis during liver repair remains to be defined. Hepatic vascular niche predominantly represented by liver sinusoidal endothelial cells deploys paracrine trophogens, known as angiocrine factors, to stimulate regeneration. Nevertheless, it is not known how pro-regenerative angiocrine signals from liver sinusoidal endothelial cells is subverted to promote fibrosis. Here, by combining an inducible endothelial-cell-specific mouse gene deletion strategy and complementary models of acute and chronic liver injury, we show that divergent angiocrine signals from liver sinusoidal endothelial cells stimulate regeneration after immediate injury and provoke fibrosis after chronic insult. The pro-fibrotic transition of vascular niche results from differential expression of stromal-derived factor-1 receptors, CXCR7 and CXCR4 (refs 18, 19, 20, 21), in liver sinusoidal endothelial cells. After acute injury, CXCR7 upregulation in liver sinusoidal endothelial cells acts with CXCR4 to induce transcription factor Id1, deploying pro-regenerative angiocrine factors and triggering regeneration. Inducible deletion of Cxcr7 in sinusoidal endothelial cells (Cxcr7(iΔEC/iΔEC)) from the adult mouse liver impaired liver regeneration by diminishing Id1-mediated production of angiocrine factors. By contrast, after chronic injury inflicted by iterative hepatotoxin (carbon tetrachloride) injection and bile duct ligation, constitutive FGFR1 signalling in liver sinusoidal endothelial cells counterbalanced CXCR7-dependent pro-regenerative response and augmented CXCR4 expression. This predominance of CXCR4 over CXCR7 expression shifted angiocrine response of liver sinusoidal endothelial cells, stimulating proliferation of desmin(+) hepatic stellate-like cells and enforcing a pro

  16. Non-invasive Diagnosis of Fibrosis in Non-alcoholic Fatty Liver Disease.

    PubMed

    Arora, Anil; Sharma, Praveen

    2012-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed as well as in developing countries. Its prevalence continues to rise currently affecting approximately 20-30% of adults and 10% of children in the United States. Non-alcoholic fatty liver disease represents a wide spectrum of conditions ranging from fatty liver, which in general follows a benign non-progressive clinical course, to non-alcoholic steatohepatitis (NASH), a more serious form of NAFLD that may progress to cirrhosis and end-stage liver disease. Liver biopsy remains the gold standard for evaluating the degree of hepatic necroinflammation and fibrosis; however, several non-invasive investigations, such as serum biomarkers, have been developed to establish the diagnosis and also to evaluate treatment response. There has been a substantial development of non-invasive risk scores, biomarker panels, and radiological modalities to identify at risk patients with NAFLD without recourse to liver biopsy on a routine basis. Examples include combination of serum markers like NAFLD fibrosis score (NFS), BARD score, fibrometer, FIB4, and non-invasive tools like fibroscan which assess fibrosis in patients with NAFLD. Other markers of fibrosis that have been evaluated include high-sensitivity C-reactive protein, plasma pentraxin 3, interleukin-6, and cytokeratin-18. This review focuses on the methods currently available in daily clinical practice in hepatology and touches briefly on the potential future markers under investigation.

  17. Association of Fasciola hepatica Infection with Liver Fibrosis, Cirrhosis, and Cancer: A Systematic Review

    PubMed Central

    Machicado, Claudia; Machicado, Jorge D.; Maco, Vicente; Terashima, Angelica; Marcos, Luis A.

    2016-01-01

    Background Fascioliasis has been sporadically associated with chronic liver disease on previous studies. In order to describe the current evidence, we carried out a systematic review to assess the association between fascioliasis with liver fibrosis, cirrhosis and cancer. Methodology and Principal Findings A systematic search of electronic databases (PubMed, LILACS, Scopus, Embase, Cochrane, and Scielo) was conducted from June to July 2015 and yielded 1,557 published studies. Among 21 studies that met inclusion and exclusion criteria, 12 studies explored the association of F. hepatica with liver fibrosis, 4 with liver cirrhosis, and 5 with cancer. Globally these studies suggested the ability of F. hepatica to promote liver fibrosis and cirrhosis. The role of F. hepatica in cancer is unknown. Given the heterogeneity of the studies, a meta-analysis could not be performed. Conclusions Future high-quality studies are needed to determine the role of F. hepatica on the development of liver fibrosis, liver cirrhosis, and cancer in humans. PMID:27681524

  18. Non-invasive Diagnosis of Fibrosis in Non-alcoholic Fatty Liver Disease

    PubMed Central

    Arora, Anil; Sharma, Praveen

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed as well as in developing countries. Its prevalence continues to rise currently affecting approximately 20-30% of adults and 10% of children in the United States. Non-alcoholic fatty liver disease represents a wide spectrum of conditions ranging from fatty liver, which in general follows a benign non-progressive clinical course, to non-alcoholic steatohepatitis (NASH), a more serious form of NAFLD that may progress to cirrhosis and end-stage liver disease. Liver biopsy remains the gold standard for evaluating the degree of hepatic necroinflammation and fibrosis; however, several non-invasive investigations, such as serum biomarkers, have been developed to establish the diagnosis and also to evaluate treatment response. There has been a substantial development of non-invasive risk scores, biomarker panels, and radiological modalities to identify at risk patients with NAFLD without recourse to liver biopsy on a routine basis. Examples include combination of serum markers like NAFLD fibrosis score (NFS), BARD score, fibrometer, FIB4, and non-invasive tools like fibroscan which assess fibrosis in patients with NAFLD. Other markers of fibrosis that have been evaluated include high-sensitivity C-reactive protein, plasma pentraxin 3, interleukin-6, and cytokeratin-18. This review focuses on the methods currently available in daily clinical practice in hepatology and touches briefly on the potential future markers under investigation. PMID:25755423

  19. Sipa1l1 is an early biomarker of liver fibrosis in CCl4-treated rats

    PubMed Central

    Marfà, Santiago; Morales-Ruiz, Manuel; Oró, Denise; Ribera, Jordi; Fernández-Varo, Guillermo; Jiménez, Wladimiro

    2016-01-01

    ABSTRACT At present, several procedures are used for staging liver fibrosis. However, these methods may involve clinical complications and/or present diagnostic uncertainty mainly in the early stages of the disease. Thus, this study was designed to unveil new non-invasive biomarkers of liver fibrosis in an in vivo model of fibrosis/cirrhosis induction by CCl4 inhalation by using a label-free quantitative LC-MS/MS approach. We analyzed 94 serum samples from adult Wistar rats with different degrees of liver fibrosis and 36 control rats. Firstly, serum samples from 18 CCl4-treated rats were clustered into three different groups according to the severity of hepatic and the serum proteome was characterized by label-free LC-MS/MS. Furthermore, three different pooled serum samples obtained from 16 control Wistar rats were also analyzed. Based on the proteomic data obtained, we performed a multivariate analysis which displayed three main cell signaling pathways altered in fibrosis. In cirrhosis, more biological imbalances were detected as well as multi-organ alterations. In addition, hemopexin and signal-induced proliferation-associated 1 like 1 (SIPA1L1) were selected as potential serum markers of liver fibrogenesis among all the analyzed proteins. The results were validated by ELISA in an independent group of 76 fibrotic/cirrhotic rats and 20 controls which confirmed SIPA1L1 as a potential non-invasive biomarker of liver fibrosis. In particular, SIPA1L1 showed a clear diminution in serum samples from fibrotic/cirrhotic rats and a great accuracy at identifying early fibrotic stages. In conclusion, the proteomic analysis of serum samples from CCl4-treated rats has enabled the identification of SIPA1L1 as a non-invasive marker of early liver fibrosis. PMID:27230648

  20. Increased iron deposition in rat liver fibrosis induced by a high-dose injection of dimethylnitrosamine.

    PubMed

    Guo, Limei; Enzan, Hideaki; Hayashi, Yoshihiro; Miyazaki, Eriko; Jin, Yulan; Toi, Makoto; Kuroda, Naoto; Hiroi, Makoto

    2006-12-01

    Using a developed rat model of hepatic necrosis and subsequent fibrosis induced by a high-dose intraperitoneal injection of dimethylnitrosamine (DMN), we studied iron deposition and expression of transforming growth factor-beta(1) (TGF-beta(1)) during the development of persistent liver fibrosis. Rats were sacrificed at several timepoints from 6 h to 10 months post-injection and the livers were examined for iron content and distribution, and for expression of alpha-smooth muscle actin, ED-1, TGF-beta(1), and collagen (alpha(2))I. Morphologic evidence of acute submassive hemorrhagic necrosis peaked at 36 h; on day 3 the residual parenchyma contained activated hepatic stellate cells (HSCs) and necrotic areas contained numerous macrophages; and on day 5, necrotic tissues and erythrocytes had been phagocytosed and macrophages contained abundant iron deposits. From days 7 to 10, iron-laden macrophages and activated HSCs (myofibroblasts) populated the fibrous septa in parallel. From week 2 to month 10, closely arranged macrophages and myofibroblasts were found in central-to-central bridging fibrotic tissue. TGF-beta(1) was strongly detected in both macrophages and HSCs during development of liver fibrosis. Our data suggest that increased iron deposition may be involved in the initiation and perpetuation of rat liver fibrosis. Iron-laden macrophages may influence HSCs through the action of TGF-beta(1) in DMN-induced liver fibrosis.

  1. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  2. Serum γ-glutamyl Transferase Levels, Insulin Resistance and Liver Fibrosis in Patients with Chronic Liver Diseases

    PubMed Central

    Petta, Salvatore; Macaluso, Fabio Salvatore; Barcellona, Maria Rosa; Cammà, Calogero; Cabibi, Daniela; Di Marco, Vito; Craxì, Antonio

    2012-01-01

    Background and Aims Serum levels of γ-glutamyl-transpeptidase(γ-GT) were associated with liver disease severity and metabolic alterations, which in turn are able to affect hepatic damage. In patients with nonalcoholic fatty liver disease (NAFLD), genotype 1 chronic hepatitis C (G1CHC) and chronic hepatitis B (CHB), we assessed the link between liver fibrosis and γ-GT serum levels, and we evaluated if normal or high γ-GT serum levels affect the association between insulin resistance (IR) and severity of liver fibrosis. Methods 843 consecutive patients with chronic liver disease (CLD)(193 NAFLD, 481 G1CHC, 169 CHB) were evaluated by liver biopsy (Kleiner and Scheuer scores) and clinical and metabolic measurements. IR was diagnosed if HOMA>3. A serum γ-GT concentration of >36 IU/L in females and >61 IU/L in males was considered the threshold value for identifying high levels of γ-GT. Results By multivariate logistic regression analysis, abnormal γ-GT serum levels were independently linked to severe liver fibrosis in patients with NAFLD (OR2.711,CI1.120–6.564,p = 0.02), G1CHC (OR3.461,CI2.138–5.603,p<0.001) and CHB (OR2.778,CI1.042–7.414,p = 0.04), together with IR and liver necroinflammation, and with a negative predictive value>80%. Interestingly, among patients with high or normal γ-GT values, even if IR prevalence was significantly higher in patients with severe fibrosis compared to those without, IR remained significantly associated with severe fibrosis in patients with abnormal γ-GT values only (OR4.150,CI1.079–15.970,p = 0.03 for NAFLD; OR2.250,CI1.211–4.181,p = 0.01 for G1CHC; OR3.096,CI2.050–34.220,p = 0.01 for CHB). Conclusions In patients with CLD, IR is independently linked to liver fibrosis only in patients with abnormal γ-GT values, without differences according to liver disease etiology, and suggesting a role of γ-GT as a marker of metabolic-induced liver damage. These data could be useful for the clinical and

  3. The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference

    PubMed Central

    Hong, Feng; Si, Chuanping; Gao, Pengfei; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke

    2015-01-01

    Liver injuries induced by carbon tetrachloride (CCL4) or thioacetamide (TAA) are dependent on cytochrome P450 2E1 (CYP2E1). CYP2A5 can be induced by TAA but not by CCL4. In this study, liver injury including fibrosis induced by CCL4 or TAA were investigated in wild type (WT) mice and CYP2A5 knockout (cyp2a5−/−) mice as well as in CYP2E1 knockout (cyp2e1−/−) mice as a comparison. Acute and sub-chronic liver injuries including fibrosis were induced by CCL4 and TAA in WT mice but not in cyp2e1−/− mice, confirming the indispensable role of CYP2E1 in CCL4 and TAA hepatotoxicity. WT mice and cyp2a5−/− mice developed comparable acute liver injury induced by a single injection of CCL4 as well as sub-chronic liver injury including fibrosis induced by one month of repeated administration of CCL4, suggesting that CYP2A5 does not affect CCL4-induced liver injury and fibrosis. However, while 200 mg/kg TAA-induced acute liver injury was comparable in WT mice and cyp2a5−/− mice, 75 and 100 mg/kg TAA-induced liver injury were more severe in cyp2a5−/− mice than those found in WT mice. After multiple injections with 200 mg/kg TAA for one month, while sub-chronic liver injury as indicated by serum aminotransferases was comparable in WT mice and cyp2a5−/− mice, liver fibrosis was more severe in cyp2a5−/− mice than that found in WT mice. These results suggest that while both CCL4- and TAA-induced liver injuries and fibrosis are CYP2E1 dependent, under some conditions, CYP2A5 may protect against TAA-induced liver injury and fibrosis, but it doesn’t affect CCL4 hepatotoxicity. PMID:26363552

  4. Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation.

    PubMed

    Lin, Xing; Zhang, Shijun; Huang, Renbin; Wei, Ling; Tan, Shimei; Liang, Shuang; Tian, Yuanchun; Wu, Xiaoyan; Lu, Zhongpeng; Huang, Quanfang

    2014-06-01

    A compound was isolated from Centipeda minima using bioassay-guided screening. The structure of this compound was elucidated based on its spectral data, and it was identified as helenalin. The hepatoprotective effect of helenalin was evaluated using a liver fibrosis model induced by intragastric administration with alcohol within 24 weeks in rats. The results revealed that helenalin significantly prevented alcohol-induced hepatic injury and fibrogenesis, as evidenced by the decrease in serum aminotransferase, the attenuation of histopathological changes, and the inhibition of the hepatic fibrosis indicators, such as hyaluronic acid, type III precollagen, laminin, hydroxyproline and collagen α type I. Mechanistically, studies showed that helenalin expedited ethanol metabolism by enhancing the alcohol and aldehyde dehydrogenase activities. Furthermore, helenalin alleviated lipid peroxidation, recruited the antioxidative defense system, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TGF-β1, TNF-α, IL-6 and IL-1β and myeloperoxidase, via down-regulation of NF-κB. Helenalin significantly decreased collagen deposition by reducing the profibrotic cytokines like transforming growth factor-β, platelet-derived growth factor-β and connective tissue growth factor, and promoted extracellular matrix degradation by modulating the levels of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9. In addition, helenalin inhibited HSC activation as evidenced by the down-regulation of α-SMA and TGF-β levels. In conclusion, helenalin had a significant protective effect on chronic ethanol-induced hepatic fibrosis and may be a major bioactive ingredient of C. minima.

  5. Garlic attenuates histological and histochemical alterations in livers of Schistosoma mansoni infected mice.

    PubMed

    Mahmoud, Y I; Riad, N H; Taha, H

    2016-08-01

    Interest in screening for new anti-schistosomal agents is growing because of increased concerns about resistance to and safety of praziquantel. We investigated the anti-schistosomal action of prophylactic and therapeutic doses of garlic on the histological and histochemical alterations caused by Schistosoma mansoni infection. Livers of infected mice were characterized by granulomas, periportal inflammation and fibrosis, hepatocyte vacuolation, fatty degeneration and necrosis, and hypertrophy and pigmentation of Kupffer cells. Significant depletion of carbohydrates and increased lipid vacuoles also were observed. All garlic regimens caused suppression of granuloma formation and amelioration of histological and histochemical changes; the continuous treatment protocol produced the best results. Garlic appears to be a safe and economical anti-schistosomal adjuvant for attenuating the pathogenicity of schistosomiasis.

  6. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis.

    PubMed

    Shimbori, Chiko; Bellaye, Pierre-Simon; Xia, Jiaji; Gauldie, Jack; Ask, Kjetil; Ramos, Carlos; Becerril, Carina; Pardo, Annie; Selman, Moises; Kolb, Martin

    2016-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Fibroblast growth factor-1 (FGF-1) belongs to the FGF family and has been shown to inhibit fibroblast collagen production and differentiation into myofibroblasts, and revert epithelial-mesenchymal transition by inhibiting TGF-β1 signalling pathways. However, the precise role of FGF-1 in pulmonary fibrosis has not yet been elucidated. In this study, we explore the mechanisms underlying the anti-fibrogenic effect of FGF-1 in pulmonary fibrosis in vitro and in vivo by prolonged transient overexpression of FGF-1 (AdFGF-1) and TGF-β1 (AdTGF-β1) using adenoviral vectors. In vivo, FGF-1 overexpression markedly attenuated TGF-β1-induced pulmonary fibrosis in rat lungs when given both concomitantly, or delayed, by enhancing proliferation and hyperplasia of alveolar epithelial cells (AECs). AdFGF-1 also attenuated the TGF-β1 signalling pathway and induced FGFR1 expression in AECs. In vitro, AdFGF-1 prevented the increase in α-SMA and the decrease in E-cadherin induced by AdTGF-β1 in normal human lung fibroblasts, primary human pulmonary AECs, and A549 cells. Concomitantly, AdTGF-β1-induced Smad2 phosphorylation was significantly reduced by AdFGF-1 in both cell types. AdFGF-1 also attenuated the increase in TGFβR1 protein and mRNA levels in fibroblasts. In AECs, AdFGF-1 decreased TGFβR1 protein by favouring TGFβR1 degradation through the caveolin-1/proteasome pathway. Furthermore, FGFR1 expression was increased in AECs, whereas it was decreased in fibroblasts. In serum of IPF patients, FGF-1 levels were increased compared to controls. Interestingly, FGF-1 expression was restricted to areas of AEC hyperplasia, but not α-SMA-positive areas in IPF lung tissue. Our results demonstrate that FGF-1 may have preventative and therapeutic effects on TGF-β1-driven pulmonary fibrosis via inhibiting

  7. Liver fibrosis and repair: immune regulation of wound healing in a solid organ.

    PubMed

    Pellicoro, Antonella; Ramachandran, Prakash; Iredale, John P; Fallowfield, Jonathan A

    2014-03-01

    Fibrosis is a highly conserved and co-ordinated protective response to tissue injury. The interaction of multiple pathways, molecules and systems determines whether fibrosis is self-limiting and homeostatic, or whether it is uncontrolled and excessive. Immune cells have been identified as key players in this fibrotic cascade, with the capacity to exert either injury-inducing or repair-promoting effects. A multi-organ approach was recently suggested to identify the core and regulatory pathways in fibrosis, with the aim of integrating the wealth of information emerging from basic fibrosis research. In this Review, we focus on recent advances in liver fibrosis research as a paradigm for wound healing in solid organs and the role of the immune system in regulating and balancing this response.

  8. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis.

    PubMed

    Otte, C; Otte, J-M; Strodthoff, D; Bornstein, S R; Fölsch, U R; Mönig, H; Kloehn, S

    2004-01-01

    Leptin is involved in the regulation of food intake and is mainly secreted by adipocytes. Major secretagogues are cytokines such as TNF-alpha or IL-1. Leptin in turn upregulates inflammatory immune responses. Elevated leptin serum levels have been detected in patients with liver cirrhosis, a disease frequently associated with elevated levels of circulating cytokines as well as hypermetabolism and altered body weight. Recently, leptin has been detected in activated hepatic stellate cells in vitro and an involvement of leptin in liver fibrogenisis has been suggested. The current study was designed to further clarify the role of leptin in liver disease by characterizing leptin and leptin receptor expression in the development and onset of experimental liver fibrosis. Liver fibrosis and cirrhosis was induced in rats by use of phenobarbitone and increasing doses of CCl (4). Leptin and leptin receptor mRNA expression was determined by semiquantitative RT-PCR, protein expression by Western blot analysis and localization of leptin and its receptor by immunohistochemistry. Normal liver tissue does not express leptin, but leptin receptor mRNA. Increasing levels of leptin mRNA were detected in fibrotic and cirrhotic livers correlated to the degree of fibrosis. Leptin receptor mRNA expression was not significantly altered in damaged livers. Increasing levels of leptin were detected in fibrotic and cirrhotic livers, whereas protein expression of the receptor remained unchanged. Throughout different stages of liver fibrosis, leptin immunoreactivity was localized in activated hepatic stellate cells only, whereas immunoreactivity for the receptor was mainly seen on hepatocytes. In conclusion, leptin is expressed at increasing levels in activated hepatic stellate cells in vivo, which may therefore be a source of increased leptin tissue and serum levels contributing to the pathophysiology and morphological changes of chronic liver disease.

  9. Fibrosis in nonalcoholic fatty liver disease: Noninvasive assessment using computed tomography volumetry

    PubMed Central

    Fujita, Nobuhiro; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Shirabe, Ken; Yoshizumi, Tomoharu; Kotoh, Kazuhiro; Furusyo, Norihiro; Hida, Tomoyuki; Oda, Yoshinao; Fujioka, Taisuke; Honda, Hiroshi

    2016-01-01

    AIM To evaluate the diagnostic performance of computed tomography (CT) volumetry for discriminating the fibrosis stage in patients with nonalcoholic fatty liver disease (NAFLD). METHODS A total of 38 NAFLD patients were enrolled. On the basis of CT imaging, the volumes of total, left lateral segment (LLS), left medial segment, caudate lobe, and right lobe (RL) of the liver were calculated with a dedicated liver application. The relationship between the volume percentage of each area and fibrosis stage was analyzed using Spearman’s rank correlation coefficient. A receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of CT volumetry for discriminating fibrosis stage. RESULTS The volume percentages of the caudate lobe and the LLS significantly increased with the fibrosis stage (r = 0.815, P < 0.001; and r = 0.465, P = 0.003, respectively). Contrarily, the volume percentage of the RL significantly decreased with fibrosis stage (r = -0.563, P < 0.001). The volume percentage of the caudate lobe had the best diagnostic accuracy for staging fibrosis, and the area under the ROC curve values for discriminating fibrosis stage were as follows: ≥ F1, 0.896; ≥ F2, 0.929; ≥ F3, 0.955; and ≥ F4, 0.923. The best cut-off for advanced fibrosis (F3-F4) was 4.789%, 85.7% sensitivity and 94.1% specificity. CONCLUSION The volume percentage of the caudate lobe calculated by CT volumetry is a useful diagnostic parameter for staging fibrosis in NAFLD patients. PMID:27833386

  10. Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice

    PubMed Central

    Ning, Bing-bing; Zhang, Yong; Wu, Dan-dan; Cui, Jin-gang; Liu, Li; Wang, Pei-wei; Wang, Wen-jian; Zhu, Wei-liang; Chen, Yu; Zhang, Teng

    2017-01-01

    Myocardial injury and ensuing fibrotic alterations impair normal heart architecture and cause cardiac dysfunction. Oxidative stress has been recognized as a key player in the pathogenesis of cardiac injury and progression of cardiac dysfunction, and promoting fibrosis. In the current study we investigated whether luteolin-7-diglucuronide (L7DG), a naturally occurring antioxidant found in edible plants, could attenuate isoproterenol (ISO)-induced myocardial injury and fibrosis in mice and the underlying mechanisms. Myocardial injury and fibrosis were induced in mice via injection of ISO (5 mg·kg−1·d−1, ip) for 5 or 10 d. Two treatment regimens (pretreatment and posttreatment) were employed to administer L7DG (5–40 mg·kg−1·d−1, ip) into the mice. After the mice were euthanized, morphological examinations of heart sections revealed that both L7DG pretreatment and posttreatment regimens significantly attenuated ISO-induced myocardial injury and fibrosis. But the pretreatment regimen caused better protection against ISO-induced myocardial fibrosis than the posttreatment regimen. Furthermore, L7DG pretreatment blocked ISO-stimulated expression of the genes (Cyba, Cybb, Ncf1, Ncf4 and Rac2) encoding the enzymatic subunits of NADPH oxidase, which was the primary source of oxidant production in mammalian cells. Moreover, L7DG pretreatment significantly suppressed ISO-stimulated expression of collagen genes Col1a1, Col1a2, Col3a1, and Col12a1 and non-collagen extracellular matrix genes fibrillin-1, elastin, collagen triple helix repeat containing 1 and connective tissue growth factor. In addition, L7DG pretreatment almost reversed ISO-altered expression of microRNAs that were crosstalking with TGFβ-mediated fibrosis, including miR-29c-3p, miR-29c-5p, miR-30c-3p, miR-30c-5p and miR-21. The current study demonstrated for the first time that L7DG is pharmacologically effective in protecting the heart against developing ISO-induced injury and fibrosis, justifying

  11. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction

    PubMed Central

    Morizane, Ryuji; Fujii, Shizuka; Monkawa, Toshiaki; Hiratsuka, Ken; Yamaguchi, Shintaro; Homma, Koichiro; Itoh, Hiroshi

    2014-01-01

    micro RNAs (miRNAs) are small non-coding RNAs that act as posttranscriptional repressors by binding to the 3′-UTR of target mRNAs. On the other hand, mesenchymal-epithelial transition (EMT) and kidney fibrosis is a pathological process of chronic kidney disease (CKD), and its relationship to miRNAs is becoming recognized as a potential target for CKD therapies. To find new miRNAs involved in EMT, we examined miRNA expression in experimental models of EMT and renal epithelialization using microarray, and found that miR-34c attenuates EMT induced by TGF-β in a mouse tubular cell line. To confirm the effects of miR-34c in vivo, we administered the precursor of miR-34c to mice with unilateral ureteral obstruction, and miR-34c decreased kidney fibrosis area and the expression of connective tissue growth factor, α-SMA, collagen type 1, collagen type 3 and fibronectin. In conclusion, our study showed miR-34c attenuates EMT and kidney fibrosis of mice with ureteral obstruction. PMID:24694752

  12. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.

    PubMed

    Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven D

    2016-05-01

    Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.

  13. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression.

    PubMed

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-04-10

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling.

  14. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression

    PubMed Central

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-01-01

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling. PMID:28393852

  15. Supersonic shearwave elastography in the assessment of liver fibrosis for postoperative patients with biliary atresia

    PubMed Central

    Chen, Shuling; Liao, Bing; Zhong, Zhihai; Zheng, Yanling; Liu, Baoxian; Shan, Quanyuan; Xie, Xiaoyan; Zhou, Luyao

    2016-01-01

    To explore an effective noninvasive tool for monitoring liver fibrosis of children with biliary atresia (BA) is important but evidences are limited. This study is to investigate the predictive accuracy of supersonic shearwave elastography (SSWE) in liver fibrosis for postoperative patients with BA and to compare it with aspartate aminotransferase to platelet ratio index (APRI) and fibrosis-4 (FIB-4). 24 patients with BA received SSWE and laboratory tests before scheduled for liver biopsy. Spearman rank coefficient and receiver operating characteristic (ROC) were used to analyze data. Metavir scores were F0 in 3, F1 in 2, F2 in 4, F3 in 7 and F4 in 8 patients. FIB-4 failed to correlate with fibrosis stage. The areas under the ROC curves of SSWE, APRI and their combination were 0.79, 0.65 and 0.78 for significant fibrosis, 0.81, 0.64 and 0.76 for advanced fibrosis, 0.82, 0.56 and 0.84 for cirrhosis. SSWE values at biopsy was correlated with platelet count (r = −0.426, P = 0.038), serum albumin (r = −0.670, P < 0.001), total bilirubin (r = 0.419, P = 0.041) and direct bilirubin levels (r = 0.518, P = 0.010) measured at 6 months after liver biopsy. Our results indicate that SSWE is a more promising tool to assess liver fibrosis than APRI and FIB-4 in children with BA. PMID:27511435

  16. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis

    PubMed Central

    Turola, Elena; Petta, Salvatore; Vanni, Ester; Milosa, Fabiola; Valenti, Luca; Critelli, Rosina; Miele, Luca; Maccio, Livia; Calvaruso, Vincenza; Fracanzani, Anna L.; Bianchini, Marcello; Raos, Nazarena; Bugianesi, Elisabetta; Mercorella, Serena; Di Giovanni, Marisa; Craxì, Antonio; Fargion, Silvia; Grieco, Antonio; Cammà, Calogero; Cotelli, Franco; Villa, Erica

    2015-01-01

    ABSTRACT Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported); liver biopsy was scored according to ‘The Pathology Committee of the NASH Clinical Research Network’. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI), histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR): 1.408, 95% confidence interval (95% CI): 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06). In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04) was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl) and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males), whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis. PMID:26183212

  17. Toll-Like Receptors in Liver Fibrosis: Cellular Crosstalk and Mechanisms

    PubMed Central

    Yang, Ling; Seki, Ekihiro

    2012-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that distinguish conserved microbial products, also known as pathogen-associated molecular patterns (PAMPs), from host molecules. Liver is the first filter organ between the gastrointestinal tracts and the rest of the body through portal circulation. Thus, the liver is a major organ that must deal with PAMPs and microorganisms translocated from the intestine and to respond to the damage associated molecular patterns (DAMPs) released from injured organs. These PAMPs and DAMPs preferentially activate TLR signaling on various cell types in the liver inducing the production of inflammatory and fibrogenic cytokines that initiate and prolong liver inflammation, thereby leading to fibrosis. We summarize recent findings on the role of TLRs, ligands, and intracellular signaling in the pathophysiology of liver fibrosis due to different etiology, as well as to highlight the potential role of TLR signaling in liver fibrosis associated with hepatitis C infection, non-alcoholic and alcoholic steatoheoatitis, primary biliary cirrhosis, and cystic fibrosis. PMID:22661952

  18. Clinical Benefits of Biochemical Markers of Fibrosis in Egyptian Children With Chronic Liver Diseases

    PubMed Central

    Abdel-Ghaffar, Tawhida Y.; Behairy, Behairy E.; El-Shaheed, Azza Abd; Mahdy, Karam; El-Batanony, Mohamed; Hussein, Mohsen H.; Sira, Mostafa M.

    2010-01-01

    Background The need for repetition of liver biopsy, especially in assessing the degree of fibrosis and follow-up of treatment protocols, justifies an intensive search for non-invasive alternatives. We attempted to investigate the clinical usefulness of serum fibrogenesis markers in pediatric chronic liver diseases. Methods We measured serum levels of TGF-β1, collagen IV, laminin, MMP-2 and EGF-R, in 50 children with chronic liver disease (HBV, HCV and Bilharziasis) and 30 healthy controls, and determined their relationship to frequently used liver function tests and liver biopsy findings in patients. Results TGF-β1, collagen IV, laminin and MMP-2, but not EGF-R, were significantly higher in patients than in controls (P < 0.01). None of these markers correlated with the histological fibrosis stage, whereas laminin correlated with necroinflammatory activity (P < 0.01). TGF-β1, collagen IV, laminin and MMP-2 had the ability to discriminate patients with significant fibrosis, while only collagen IV and laminin were able to discriminate those with cirrhosis. Among these markers, collagen IV had the best predictive accuracy for significant fibrosis (AUROC 0.94; PPV 91.5%) and cirrhosis (AUROC 0.85; PPV 80%). Conclusions In conclusion, these markers may be useful in reducing but not replacing the need for liver biopsy in the monitoring of disease progression and treatment effectiveness and might be an inseparable part of assessment of chronic hepatopathies. PMID:27942306

  19. Early detection of liver fibrosis in rats using 3-D ultrasound Nakagami imaging: a feasibility evaluation.

    PubMed

    Ho, Ming-Chih; Tsui, Po-Hsiang; Lee, Yu-Hsin; Chen, Yung-Sheng; Chen, Chiung-Nien; Lin, Jen-Jen; Chang, Chien-Cheng

    2014-09-01

    We investigated the feasibility of using 3-D ultrasound Nakagami imaging to detect the early stages of liver fibrosis in rats. Fibrosis was induced in livers of rats (n = 60) by intraperitoneal injection of 0.5% dimethylnitrosamine (DMN). Group 1 was the control group, and rats in groups 2-6 received DMN injections for 1-5 weeks, respectively. Each rat was sacrificed to perform 3-D ultrasound scanning of the liver in vitro using a single-element transducer of 6.5 MHz. The 3-D raw data acquired at a sampling rate of 50 MHz were used to construct 3-D Nakagami images. The liver specimen was further used for histologic analysis with hematoxylin and eosin and Masson staining to score the degree of liver fibrosis. The results indicate that the Metavir scores of the hematoxylin and eosin-stained sections in Groups 1-4 were 0 (defined as early liver fibrosis in this study), and those in groups 5 and 6 ranged from 1 to 2 and 2 to 3, respectively. To quantify the degree of early liver fibrosis, the histologic sections with Masson stain were analyzed to calculate the number of fiber-related blue pixels. The number of blue pixels increased from (2.36 ± 0.79) × 10(4) (group 1) to (7.68 ± 2.62) × 10(4) (group 4) after DMN injections for 3 weeks, indicating that early stages of liver fibrosis were successfully induced in rats. The Nakagami parameter increased from 0.36 ± 0.02 (group 1) to 0.55 ± 0.03 (group 4), with increasing numbers of blue pixels in the Masson-stained sections (p-value < 0.05, t-test). We concluded that 3-D Nakagami imaging has potential in the early detection of liver fibrosis in rats and may serve as an image-based pathologic model to visually track fibrosis formation and growth.

  20. Liver fibrosis in a patient with familial homozygous hypobetalipoproteinaemia: possible role of vitamin supplementation.

    PubMed Central

    Scoazec, J Y; Bouma, M E; Roche, J F; Blache, D; Verthier, N; Feldmann, G; Gay, G

    1992-01-01

    A case of apolipoprotein B-related disorder is reported in which liver fibrosis developed without long term administration of medium chain triglycerides, previously incriminated in the pathogenesis of this lesion. The patient was a young woman in whom the diagnosis of familial homozygous hypobetalipoproteinaemia was made at the age of 21. A first liver specimen taken at diagnosis revealed steatosis, hypertrophic Golgi apparatus and proliferating smooth endoplasmic reticulum. The patient was treated with vitamin A and E supplementation only. Two years later, a second liver biopsy, carried out because of increased serum alanine aminotransferase concentrations, showed fibrosis, mild cytolysis and marked mitochondrial alterations. Hepatic level of vitamin A was increased. This finding supports the hypothesis that liver disease observed in our patient might be an adverse effect of vitamin supplementation. Our observation underlines the importance of including liver function tests in the follow up of patients with apolipoprotein B-related disorders. Images Figure 1 Figure 2 Figure 3 PMID:1568667

  1. Detection of collagen by second harmonic microscopy as a diagnostic tool for liver fibrosis

    NASA Astrophysics Data System (ADS)

    Banavar, Maruth; Kable, Eleanor P. W.; Braet, Filip; Wang, X. M.; Gorrell, M. D.; Cox, Guy

    2006-02-01

    Liver fibrosis has many causes, including hepatitis C, alcohol abuse, and non-alcoholic steatohepatitis. It is characterized by abnormal deposition of extracellular matrix proteins, mainly collagen. The deposition of these proteins results in impaired liver function caused by distortion of the hepatic architecture by fibrous scar tissue. The unique triple helix structure of collagen and high level of crystallinity make it very efficient for generating second harmonic signals. In this study we have set out to see if second harmonic imaging of collagen can be used as a non-biased quantitative tool for classification of fibrosis levels in liver biopsies and if it can detect early fibrosis formation not detected by current methods.

  2. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    PubMed Central

    Almeda-Valdes, Paloma; Aguilar Olivos, Nancy E.; Barranco-Fragoso, Beatriz; Uribe, Misael; Méndez-Sánchez, Nahum

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs) in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance. PMID:26339640

  3. Iron overload correlates with serum liver fibrotic markers and liver dysfunction: Potential new methods to predict iron overload-related liver fibrosis in thalassemia patients

    PubMed Central

    Wang, Man; Liu, Rongrong; Liang, Yuzhen; Yang, Gaohui; Huang, Yumei; Yu, Chunlan; Sun, Kaiqi; Xia, Yang

    2016-01-01

    Background Early detection of liver fibrosis in thalassemia patients and rapid initiation of treatment to interfere with its progression are extremely important. Objective This study aimed to find a sensitive, easy-to-detect and noninvasive method other than liver biopsy for early detection of liver fibrosis in thalassemia patients. Methods A total of 244 Chinese Thalassemia patients with non-transfusion-dependent thalassemia (NTDT, n = 105) or thalassemia major (TM, n = 139) and 120 healthy individuals were recruited into the present study, and blood collagen type IV (C IV), precollagen type III (PIIINPC) and hyaluronic acid (HA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and ferritin were measured. Liver iron concentration was determined by MRI. The correlation of serum markers with liver iron load and liver function was evaluated. Results Serum C IV, PIIINPC and HA were significantly elevated in Chinese patients with NTDT and further elevated in TM patients. Moreover, C IV, PIIINPC and HA were also positively correlated to serum ferritin and liver iron concentration and further elevated during the progression to multi-organ damage in NTDT patients. Finally, serum ferritin and liver iron concentration were significantly correlated with liver dysfunction determined by AST and ALT. Conclusion Taken together, our results indicate that monitoring serum C IV, PIIINPC and HA is a potentially sensitive method to predict the risks for iron overload-related liver fibrosis in Chinese thalassemia patients.

  4. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    SciTech Connect

    Yu, Fujun; Zheng, Jianjian; Mao, Yuqing; Dong, Peihong; Li, Guojun; Lu, Zhongqiu; Guo, Chuanyong; Liu, Zhanju; Fan, Xiaoming

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  5. Antifibrotic activity of hesperidin against dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Elshazly, Shimaa M; Mahmoud, Amr A A

    2014-06-01

    Hepatic fibrosis is a significant health problem that may progress to cirrhosis and cancer. It may be caused by viruses or chemicals such as dimethylnitrosamine, which is used as a preservative in processed meats and industrial products. The present study was designed to investigate the antifibrotic effect of hesperidin (100 or 200 mg/kg, a flavanone glycoside with potent anti-inflammatory and antioxidant activities) against liver fibrosis in rats compared to silymarin (100 mg/kg). Liver fibrosis was induced in rats using dimethylnitrosamine (10 mg/kg/day, i.p.) three times per week on alternating days for 4 weeks. After 28 days, tissue and blood samples were collected to assess the protective effect of hesperidin. Dimethylnitrosamine caused liver fibrosis as evidenced by the elevation in the levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total and direct bilirubin, as well as hepatic malondialdehyde content, gene expression of inducible nitric oxide synthase, α-smooth muscle actin and caspase-3. In addition, dimethylnitrosamine caused a reduction in serum total protein, albumin and hepatic glutathione content. Treatment with hesperidin (100 or 200 mg/kg) successfully ameliorated the deleterious effects of dimethylnitrosamine on all tested parameters. Our study indicates a novel protective effect of hesperidin against dimethylnitrosamine-induced liver fibrosis. Interestingly, the protection evoked by hesperidin (200 mg/kg) was superior to that of the standard silymarin.

  6. Fibrosis assessment: impact on current management of chronic liver disease and application of quantitative invasive tools.

    PubMed

    Wang, Yan; Hou, Jin-Lin

    2016-05-01

    Fibrosis, a common pathogenic pathway of chronic liver disease (CLD), has long been indicated to be significantly and most importantly associated with severe prognosis. Nowadays, with remarkable advances in understanding and/or treatment of major CLDs such as hepatitis C, B, and nonalcoholic fatty liver disease, there is an unprecedented requirement for the diagnosis and assessment of liver fibrosis or cirrhosis in various clinical settings. Among the available approaches, liver biopsy remains the one which possibly provides the most direct and reliable information regarding fibrosis patterns and changes in the parenchyma at different clinical stages and with different etiologies. Thus, many endeavors have been undertaken for developing methodologies based on the strategy of quantitation for the invasive assessment. Here, we analyze the impact of fibrosis assessment on the CLD patient care based on the data of recent clinical studies. We discuss and update the current invasive tools regarding their technological features and potentials for the particular clinical applications. Furthermore, we propose the potential resolutions with application of quantitative invasive tools for some major issues in fibrosis assessment, which appear to be obstacles against the nowadays rapid progress in CLD medicine.

  7. Interferon gamma peptidomimetic targeted to interstitial myofibroblasts attenuates renal fibrosis after unilateral ureteral obstruction in mice

    PubMed Central

    Poosti, Fariba; Bansal, Ruchi; Yazdani, Saleh; Prakash, Jai; Beljaars, Leonie; van den Born, Jacob; de Borst, Martin H.; van Goor, Harry; Hillebrands, Jan-Luuk; Poelstra, Klaas

    2016-01-01

    Renal fibrosis cannot be adequately treated since anti-fibrotic treatment is lacking. Interferon-γ is a pro-inflammatory cytokine with anti-fibrotic properties. Clinical use of interferon-γ is hampered due to inflammation-mediated systemic side effects. We used an interferon-γ peptidomimetic (mimγ) lacking the extracellular IFNγReceptor recognition domain, and coupled it to the PDGFβR-recognizing peptide BiPPB. Here we tested the efficacy of mimγ-BiPPB (referred to as “Fibroferon”) targeted to PDGFβR-overexpressing interstitial myofibroblasts to attenuate renal fibrosis without inducing inflammation-mediated side effects in the mouse unilateral ureter obstruction model. Unilateral ureter obstruction induced renal fibrosis characterized by significantly increased α-SMA, TGFβ1, fibronectin, and collagens I and III protein and/or mRNA expression. Fibroferon treatment significantly reduced expression of these fibrotic markers. Compared to full-length IFNγ, anti-fibrotic effects of Fibroferon were more pronounced. Unilateral ureter obstruction-induced lymphangiogenesis was significantly reduced by Fibroferon but not full-length IFNγ. In contrast to full-length IFNγ, Fibroferon did not induce IFNγ-related side-effects as evidenced by preserved low-level brain MHC II expression (similar to vehicle), lowered plasma triglyceride levels, and improved weight gain after unilateral ureter obstruction. In conclusion, compared to full-length IFNγ, the IFNγ-peptidomimetic Fibroferon targeted to PDGFβR-overexpressing myofibroblasts attenuates renal fibrosis in the absence of IFNγ-mediated adverse effects. PMID:27509062

  8. Knockout of Endothelial Cell-Derived Endothelin-1 Attenuates Skin Fibrosis but Accelerates Cutaneous Wound Healing

    PubMed Central

    Makino, Katsunari; Jinnin, Masatoshi; Aoi, Jun; Kajihara, Ikko; Makino, Takamitsu; Fukushima, Satoshi; Sakai, Keisuke; Nakayama, Kazuhiko; Emoto, Noriaki; Yanagisawa, Masashi; Ihn, Hironobu

    2014-01-01

    Endothelin (ET)-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF)-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF)-α and connective tissue growth factor (CTGF) were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach. PMID:24853267

  9. Protection against Acute Hepatocellular Injury Afforded by Liver Fibrosis Is Independent of T Lymphocytes

    PubMed Central

    Lacoste, Benoit; Raymond, Valérie-Ann; Lapierre, Pascal; Bilodeau, Marc

    2016-01-01

    Collagen produced during the process of liver fibrosis can induce a hepatocellular protective response through ERK1 signalling. However, the influence of T cells and associated cytokine production on this protection is unknown. In addition, athymic mice are frequently used in hepatocellular carcinoma xenograft experiments but current methods limit our ability to study the impact of liver fibrosis in this setting due to high mortality. Therefore, a mouse model of liver fibrosis lacking T cells was developed using Foxn1 nu/nu mice and progressive oral administration of thioacetamide (TAA) [0.01–0.02%] in drinking water. Fibrosis developed over a period of 16 weeks (alpha-SMA positive area: 20.0 ± 2.2%, preCol1a1 mRNA expression: 11.7 ± 4.1 fold changes, hydroxyproline content: 1041.2 ± 77μg/g of liver) at levels comparable to that of BALB/c mice that received intraperitoneal TAA injections [200 μg/g of body weight (bw)] (alpha-SMA positive area: 20.9 ± 2.9%, preCol1a1 mRNA expression: 13.1 ± 2.3 fold changes, hydroxyproline content: 931.6 ± 14.8μg/g of liver). No mortality was observed. Athymic mice showed phosphorylation of ERK1/2 during fibrogenesis (control 0.03 ± 0.01 vs 16 weeks 0.22 ± 0.06AU; P<0.05). The fibrosis-induced hepatoprotection against cytotoxic agents, as assessed histologically and by serum AST levels, was not affected by the absence of circulating T cells (anti-Fas JO2 [0.5μg/g bw] for 6h (fibrotic 4665 ± 2596 vs non-fibrotic 13953 ± 2260 U/L; P<0.05), APAP [750 mg/kg bw] for 6 hours (fibrotic 292 ± 66 U/L vs non-fibrotic 4086 ± 2205; P<0.01) and CCl4 [0.5mL/Kg bw] for 24h (fibrotic 888 ± 268 vs non-fibrotic 15673 ± 2782 U/L; P<0.001)). In conclusion, liver fibrosis can be induced in athymic Foxn1 nu/nu mice without early mortality. Liver fibrosis leads to ERK1/2 phosphorylation. Finally, circulating T lymphocytes and associated cytokines are not involved in the hepatocellular protection afforded by liver fibrosis. PMID

  10. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells

    PubMed Central

    Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai

    2016-01-01

    Aim: Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. Methods: C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg−1·d−1, ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. Results: In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. Conclusion: CMCS allevi¬ates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic

  11. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition

    PubMed Central

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson’s trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson’s and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  12. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.

    PubMed

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson's trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson's and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling.

  13. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway.

    PubMed

    Li, Li; Huang, Wenting; Li, Kunlin; Zhang, Kejun; Lin, Caiyu; Han, Rui; Lu, Conghua; Wang, Yubo; Chen, Hengyi; Sun, Fenfen; He, Yong

    2015-12-22

    Interstitial lung disease (ILD) is a serious side-effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment. Therefore, it is necessary to study underlying mechanisms for the development of pulmonary fibrosis induced by EGFR-TKI and potential approaches to attenuate it. Metformin is a well-established and widely prescribed oral hypoglycemic drug, and has gained attention for its potential anticancer effects. Recent reports have also demonstrated its role in inhibiting epithelial-mesenchymal transition and fibrosis. However, it is unknown whether metformin attenuates EGFR-TKI-induced pulmonary fibrosis. The effect of metformin on EGFR-TKI-induced exacerbation of pulmonary fibrosis was examined in vitro and in vivo using MTT, Ki67 incorporation assay, flow cytometry, immunostaining, Western blot analysis, and a bleomycin-induced pulmonary fibrosis rat model. We found that in lung HFL-1 fibroblast cells, TGF-β or conditioned medium from TKI-treated lung cancer PC-9 cells or conditioned medium from TKI-resistant PC-9GR cells, induced significant fibrosis, as shown by increased expression of Collegen1a1 and α-actin, while metformin inhibited expression of fibrosis markers. Moreover, metformin decreased activation of TGF-β signaling as shown by decreased expression of pSMAD2 and pSMAD3. In vivo, oral administration of gefitinib exacerbated bleomycin-induced pulmonary fibrosis in rats, as demonstrated by HE staining and Masson staining. Significantly, oral co-administration of metformin suppressed exacerbation of bleomycin-induced pulmonary fibrosis by gefitinib. We have shown that metformin attenuates gefitinib-induced exacerbation of TGF-β or bleomycin-induced pulmonary fibrosis. These observations indicate metformin may be combined with EGFR-TKI to treat NSCLC patients.

  14. Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model

    PubMed Central

    Stefano, J.T.; Pereira, I.V.A.; Torres, M.M.; Bida, P.M.; Coelho, A.M.M.; Xerfan, M.P.; Cogliati, B.; Barbeiro, D.F.; Mazo, D.F.C.; Kubrusly, M.S.; D'Albuquerque, L.A.C.; Souza, H.P.; Carrilho, F.J.; Oliveira, C.P.

    2015-01-01

    Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH. PMID:25714891

  15. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis.

    PubMed

    Kumar, Virender; Mondal, Goutam; Dutta, Rinku; Mahato, Ram I

    2016-01-01

    In liver fibrosis, secretion of growth factors and hedgehog (Hh) ligands by hepatic parenchyma upon repeated insults results in transdifferentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts which secrete excessive amounts of extracellular matrix (ECM) proteins. An Hh inhibitor GDC-0449 and miR-29b1 can play an important role in treating liver fibrosis by inhibiting several pro-fibrotic genes. Our in-silico analysis indicate that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, PDGF-β and PI3K/AKT which are upregulated in liver fibrosis. Common bile duct ligation (CBDL) resulted in an increase in Ptch-1, Shh and Gli-1 expression. miR-29b1 and GDC-0449 were co-formulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) (mPEG-b-PCC-g-DC-g-TEPA) copolymer, and injected systemically into CBDL mice. High concentrations of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion at 30 min post systemic administration of their micelle formulation. There was a significant decrease in collagen deposition in the liver and serum injury markers, leading to improvement in liver morphology. Combination therapy was more effective in providing hepatoprotection, lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as collagen, α-SMA, FN-1 and p-AKT compared to monotherapy. In conclusion, inhibition of Hh pathway and restoration of miR-29b1 have the potential to act synergistically in treating CBDL-induced liver fibrosis in mice.

  16. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Mallen-St Clair, Jon; Mitchell, Aaron P; Ibrahim, Junaid; Stroud, Andrea; Pachter, H Leon; Bar-Sagi, Dafna; Frey, Alan B; Miller, George

    2009-11-01

    Hepatic fibrosis occurs during most chronic liver diseases and is driven by inflammatory responses to injured tissue. Because DCs are central to modulating liver immunity, we postulated that altered DC function contributes to immunologic changes in hepatic fibrosis and affects the pathologic inflammatory milieu within the fibrotic liver. Using mouse models, we determined the contribution of DCs to altered hepatic immunity in fibrosis and investigated the role of DCs in modulating the inflammatory environment within the fibrotic liver. We found that DC depletion completely abrogated the elevated levels of many inflammatory mediators that are produced in the fibrotic liver. DCs represented approximately 25% of the fibrotic hepatic leukocytes and showed an elevated CD11b+CD8- fraction, a lower B220+ plasmacytoid fraction, and increased expression of MHC II and CD40. Moreover, after liver injury, DCs gained a marked capacity to induce hepatic stellate cells, NK cells, and T cells to mediate inflammation, proliferation, and production of potent immune responses. The proinflammatory and immunogenic effects of fibrotic DCs were contingent on their production of TNF-alpha. Therefore, modulating DC function may be an attractive approach to experimental therapeutics in fibro-inflammatory liver disease.

  17. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    PubMed Central

    Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno

    2017-01-01

    Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 −/−) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 −/− mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis. PMID:28194423

  18. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging.

    PubMed

    Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno; Fries, Peter

    2017-01-01

    Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2(⁎) may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2(⁎) in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2(⁎). Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 (-/-)) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2(⁎) correlate differently to disease severity and etiology of liver fibrosis. T2(⁎) shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 (-/-) mice. Measurements of T1 and T2(⁎) may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  19. Precision-cut liver slices as a model for the early onset of liver fibrosis to test antifibrotic drugs

    SciTech Connect

    Westra, Inge M.; Oosterhuis, Dorenda; Groothuis, Geny M.M.; Olinga, Peter

    2014-01-15

    Induction of fibrosis during prolonged culture of precision-cut liver slices (PCLS) was reported. In this study, the use of rat PCLS was investigated to further characterize the mechanism of early onset of fibrosis in this model and the effects of antifibrotic compounds. Rat PCLS were incubated for 48 h, viability was assessed by ATP and gene expression of PDGF-B and TGF-β1 and the fibrosis markers Hsp47, αSma and Pcol1A1 and collagen1 protein expressions were determined. The effects of the antifibrotic drugs imatinib, sorafenib and sunitinib, PDGF-pathway inhibitors, and perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone, TGFβ-pathway inhibitors, were determined. After 48 h of incubation, viability of the PCLS was maintained and gene expression of PDGF-B was increased while TGF-β1 was not changed. Hsp47, αSma and Pcol1A1 gene expressions were significantly elevated in PCLS after 48 h, which was further increased by PDGF-BB and TGF-β1. The increased gene expression of fibrosis markers was inhibited by all three PDGF-inhibitors, while TGFβ-inhibitors showed marginal effects. The protein expression of collagen 1 was inhibited by imatinib, perindopril, tetrandrine and pirfenidone. In conclusion, the increased gene expression of PDGF-B and the down-regulation of fibrosis markers by PDGF-pathway inhibitors, together with the absence of elevated TGF-β1 gene expression and the limited effect of the TGFβ-pathway inhibitors, indicated the predominance of the PDGF pathway in the early onset of fibrosis in PCLS. PCLS appear a useful model for research of the early onset of fibrosis and for testing of antifibrotic drugs acting on the PDGF pathway. - Highlights: • During culture, fibrosis markers increased in precision-cut liver slices (PCLS). • Gene expression of PDGF-β was increased, while TGFβ was not changed in rat PCLS. • PDGF-pathway inhibitors down-regulated this increase of fibrosis markers. • TGFβ-pathway inhibitors had only

  20. Antifibrotic activity of galangin, a novel function evaluated in animal liver fibrosis model.

    PubMed

    Wang, Xinhui; Gong, Guoqing; Yang, Wenhui; Li, Yunzhan; Jiang, Meiling; Li, Linlin

    2013-09-01

    This study aimed to investigate the effects of galangin on liver fibrosis in rats induced by subcutaneous injection of carbon tetrachloride (CCl4). The administration of CCl4 to rats for 12 weeks caused significant increase of hyaluronic acid, laminin, alanine transaminase, aspartate transaminase and decrease of total protein, albumin in serum, while the influences could be reversed by galangin. Galangin markedly reduced hepatic malondialdehyde, hydroxyproline concentration, increased activities of liver superoxide dismutase, glutathione peroxidase compared with CCl4-treated rats. Histological results indicated that galangin alleviated liver damage. In addition, treatment with galangin significantly down-regulated expressions of α-smooth muscle actin and transforming growth factor β1. These results suggest galangin can inhibit liver fibrosis induced by CCl4 in rats, which was probably associated with its effect on removing oxygen free radicals, decreasing lipid peroxidation, as well as inhibiting hepatic stellate cells activation and proliferation.

  1. Diffuse reflectance spectroscopy as a possible tool to complement liver biopsy for grading hepatic fibrosis in paraffin-preserved human liver specimens.

    PubMed

    Fabila-Bustos, Diego A; Arroyo-Camarena, Ursula D; López-Vancell, María D; Durán-Padilla, Marco A; Azuceno-García, Itzel; Stolik-Isakina, Suren; Ibarra-Coronado, Elizabeth; Brown, Blair; Escobedo, Galileo; de la Rosa-Vázquez, José Manuel

    2014-01-01

    A diffuse reflectance spectroscopy-based method to score fibrosis in paraffin-preserved human liver specimens has been developed and is reported here. Paraffin blocks containing human liver tissue were collected from the General Hospital of Mexico and included in the study with the patients' written consent. The score of liver fibrosis was determined in each sample by two experienced pathologists in a single-blind fashion. Spectral measurements were acquired at 450-750 nm by establishing surface contact between the optical probe and the preserved tissue. According to the histological evaluation, four liver samples showed no evidence of fibrosis and were categorized as F0, four hepatic specimens exhibited an initial degree of fibrosis (F1-F2), five liver specimens showed a severe degree of fibrosis (F3), and six samples exhibited cirrhosis (F4). The human liver tissue showed a characteristic diffuse reflectance spectrum associated with the progressive stages of fibrosis. In the F0 liver samples, the diffuse reflection intensity gradually increased in the wavelength range of 450-750 nm. In contrast, the F1-F2, F3, and F4 specimens showed corresponding 1.5-, 2-, and 5.5-fold decreases in the intensity of diffuse reflectance compared to the F0 liver specimens. At 650 nm, all the stages of liver fibrosis were clearly distinguished from each other with high sensitivity and specificity (92-100%). To our knowledge, this is the first study reporting a distinctive diffuse reflectance spectrum for each stage of fibrosis in paraffin-preserved human liver specimens. These results suggest that diffuse reflectance spectroscopy may represent a complementary tool to liver biopsy for grading fibrosis.

  2. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice

    PubMed Central

    Kumar, Sudhir; Wang, Jiang; Rani, Richa; Gandhi, Chandrashekhar R.

    2016-01-01

    Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury. PMID:26808690

  3. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Mesarwi, Omar A.; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Schlesinger, Christina; Shaw, Janet; Polotsky, Vsevolod Y.

    2016-01-01

    Background Obstructive sleep apnea (OSA) is associated with the progression of non-alcoholic fatty liver disease (NAFLD) to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1), a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis. Methods Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep) were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2) or normoxia (16% O2) for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking. Results Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03), which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia. Conclusions Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of

  4. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    SciTech Connect

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  5. Acanthoic acid, a diterpene in Acanthopanax koreanum, ameliorates the development of liver fibrosis via LXRs signals.

    PubMed

    Bai, Ting; Yao, You-li; Jin, Xue-jun; Lian, Li-hua; Li, Qian; Yang, Ning; Jin, Quan; Wu, Yan-ling; Nan, Ji-xing

    2014-07-25

    Liver X receptors (LXRs)-mediated signals in acanthoic acid (AA) ameliorating liver fibrosis were examined in carbon tetrachloride (CCl4)-induced mice and TGF-β stimulated hepatic stellate cells (HSCs). AA was isolated from the root of Acanthopanax koreanum Nakai (Araliaceae). CCl4-treated mice were intraperitoneally injected with 10% CCl4 in olive oil (2 mL/kg for 8 weeks). In AA treated groups, mice were intragastrically administrated with AA (20 mg/kg or 50 mg/kg) 3 times per week for 8 weeks. Administration of AA reduced serum aminotransferase and tissue necrosis factor-α (TNF-α) levels evoked by CCl4, and the reverse of liver damage was further confirmed by histopathological staining. Administration of AA reduced the expression of fibrosis markers and regulated the ratio of MMP-13/TIMP-1, further reversed the development of liver fibrosis. TGF-β (5 ng/ml) was added to activate HSC-T6 cells for 2 h, and then treated with AA (1, 3, or 10 μmol/l) for 24 h before analysis. Cells were collected and proteins were extracted to detect the expressions of LXRs. AA could inhibit the expression of α-SMA stimulated by TGF-β and increase the expression of LXRβ. In vivo and in vitro experiments, AA could modulate liver fibrosis induced by CCl4-treatment via activation of LXRα and LXRβ, while inhibit HSCs activation only via activation of LXRβ. Acanthoic acid might ameliorate liver fibrosis induced by CCl4 via LXRs signals.

  6. CD39 overexpression does not attenuate renal fibrosis in the unilateral ureteric obstructive model of chronic kidney disease.

    PubMed

    Roberts, Veena; Lu, B; Chia, J; Cowan, P J; Dwyer, K M

    2016-12-01

    Chronic kidney disease has multiple etiologies, but its single, hallmark lesion is renal fibrosis. CD39 is a key purinergic enzyme in the hydrolysis of ATP and increased CD39 activity on regulatory T cells (Treg) is protective in adriamycin-induced renal fibrosis. We examined the effect of overexpression of human CD39 on the development of renal fibrosis in the unilateral ureteric obstructive (UUO) model, a model widely used to study the molecular and cellular factors involved in renal fibrosis. Mice overexpressing human CD39 (CD39Tg) and their wild-type (WT) littermates were subjected to UUO; renal histology and messenger RNA (mRNA) levels of adenosine receptors and markers of renal fibrosis were examined up to 14 days after UUO. There were no differences between CD39Tg mice and WT mice in the development of renal fibrosis at days 3, 7, and 14 of UUO. Relative mRNA expression of the adenosine A2A receptor and endothelin-1 were higher in CD39Tg than WT mice at day 7 post UUO, but there were no differences in markers of fibrosis. We conclude that human CD39 overexpression does not attenuate the development of renal fibrosis in the UUO model. The lack of protection by CD39 overexpression in the UUO model is multifactorial due to the different effects of adenosinergic receptors on the development of renal fibrosis.

  7. Lobeglitazone, a Novel Peroxisome Proliferator-Activated Receptor γ Agonist, Attenuates Renal Fibrosis Caused by Unilateral Ureteral Obstruction in Mice

    PubMed Central

    Seo, Jung Beom; Jung, Yun-A; Seo, Hye-Young; Kang, Sun Hee; Jeon, Hui-Jeon; Lee, Jae Man; Lee, Sungwoo; Kim, Jung-Guk; Lee, In-Kyu

    2017-01-01

    Background Renal tubulointerstitial fibrosis is a common feature of the final stage of nearly all cause types of chronic kidney disease. Although classic peroxisome proliferator-activated receptor γ (PPARγ) agonists have a protective effect on diabetic nephropathy, much less is known about their direct effects in renal fibrosis. This study aimed to investigate possible beneficial effects of lobeglitazone, a novel PPARγ agonist, on renal fibrosis in mice. Methods We examined the effects of lobeglitazone on renal tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO) induced renal fibrosis mice. We further defined the role of lobeglitazone on transforming growth factor (TGF)-signaling pathways in renal tubulointerstitial fibrosis through in vivo and in vitro study. Results Through hematoxylin/eosin and sirius red staining, we observed that lobeglitazone effectively attenuates UUO-induced renal atrophy and fibrosis. Immunohistochemical analysis in conjunction with quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that lobeglitazone treatment inhibited UUO-induced upregulation of renal Smad-3 phosphorylation, α-smooth muscle actin, plasminogen activator inhibitor 1, and type 1 collagen. In vitro experiments with rat mesangial cells and NRK-49F renal fibroblast cells suggested that the effects of lobeglitazone on UUO-induced renal fibrosis are mediated by inhibition of the TGF-β/Smad signaling pathway. Conclusion The present study demonstrates that lobeglitazone has a protective effect on UUO-induced renal fibrosis, suggesting that its clinical applications could extend to the treatment of non-diabetic origin renal disease. PMID:28256116

  8. Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis

    PubMed Central

    Kitano, Mio; Bloomston, P. Mark

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis. PMID:26999230

  9. BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo

    PubMed Central

    Kumar, Krishan; DeCant, Brian T.; Grippo, Paul J.; Hwang, Rosa F.; Bentrem, David J.; Ebine, Kazumi

    2017-01-01

    The fibrotic reaction, which can account for over 70%–80% of the tumor mass, is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of collagen I production and fibrosis in vivo. In this report, we show that members of the bromodomain and extraterminal (BET) family of proteins are expressed in primary PSCs isolated from human PDAC tumors, with BRD4 positively regulating, and BRD2 and BRD3 negatively regulating, collagen I expression in primary cancer-associated PSCs. We show that the inhibitory effect of pan-BET inhibitors on collagen I expression in primary cancer-associated PSCs is through blocking of BRD4 function. Importantly, we show that FOSL1 is repressed by BRD4 in primary cancer-associated PSCs and negatively regulates collagen I expression. While BET inhibitors do not affect viability or induce PSC apoptosis or senescence, BET inhibitors induce primary cancer-associated PSCs to become quiescent. Finally, we show that BET inhibitors attenuate stellate cell activation, fibrosis, and collagen I production in the EL-KrasG12D transgenic mouse model of pancreatic tumorigenesis. Our results demonstrate that BET inhibitors regulate fibrosis by modulating the activation and function of cancer-associated PSCs. PMID:28194432

  10. Protective effect of rosuvastatin treatment by regulating oxidized low-density lipoprotein expression in a rat model of liver fibrosis.

    PubMed

    Yu, Shuiping; Zhou, Xueling; Hou, Bingzong; Tang, Bo; Li, Jian; Zhang, Baimeng

    2016-09-01

    The present study aimed to evaluate the protective effect of rosuvastatin treatment on the mechanism of oxidized low-density lipoprotein (Ox-LDL) in rats with liver fibrosis. In total, 72 male Sprague-Dawley rats were divided into 3 groups: 24 in the control group (A), 24 in the obstructive jaundice models group (B) and 24 in the rosuvastatin group (C). Each group was further divided into four subgroups for assessment at different time-points. The obstructive jaundice models were established and rosuvastatin was administered by gavage. Liver fibrosis indicators, Ox-LDL, malonaldehyde (MDA) and superoxide dismutase (SOD), were measured and liver pathological changes were observed at weeks 1, 2, 3 and 4 after model induction. In groups B and C, the rat models were successfully established, and there were significant changes in the expression of Ox-LDL and the three liver fibrosis indicators when compared to group A (P<0.01). However, the expression of Ox-LDL and the three liver fibrosis indicators in group C were decreased compared with group B (P<0.05), while SOD increased (P<0.05) and MDA decreased (P<0.05). The three liver fibrosis indicators were different in comparison to group B (P<0.05). Thus, there appeared to be an association between the expression of Ox-LDL and liver fibrosis. Treatment with rosuvastatin could regulate the expression of Ox-LDL and improve liver fibrosis in rat models with obstructive jaundice.

  11. Rapid development of advanced liver fibrosis after acquisition of hepatitis C infection during primary HIV infection.

    PubMed

    Osinusi, Anu; Kleiner, David; Wood, Brad; Polis, Michael; Masur, Henry; Kottilil, Shyam

    2009-06-01

    We report the first reported case of a 61-year-old MSM who was diagnosed with syphilis, primary HIV infection, and acute hepatitis C (HCV) within the same time period who rapidly developed significant liver fibrosis within 6 months of acquisition of both infections. It has been well described that individuals with primary HIV infection have an increase in activated CD8+ T cells, which causes a state of immune activation as was evident in this patient. Acquisition of HCV during this time could have further skewed this response resulting in massive hepatocyte destruction, inflammation, and subsequent liver fibrosis. Recent literature suggest that MSM with primary HIV infection have higher rates of acquisition of HCV than other HIV-positive cohorts and HCV acquisition can occur very soon after acquiring HIV. This case of rapid hepatic fibrosis progression coupled with the increasing incidence of HCV in individuals with primary HIV infection demonstrates a need for this phenomenon to be studied more extensively.

  12. Human Muse cells, non-tumorigenic pluripotent-like stem cells, have the capacity for liver regeneration by specific homing and replenishment of new hepatocytes in liver fibrosis mouse model.

    PubMed

    Iseki, Masahiro; Kushida, Yoshihiro; Wakao, Shohei; Akimoto, Takahiro; Mizuma, Masamichi; Motoi, Fuyuhiko; Asada, Ryuta; Shimizu, Shinobu; Unno, Michiaki; Chazenbalk, Gregorio; Dezawa, Mari

    2016-11-02

    Muse cells, a novel type of non-tumorigenic pluripotent-like stem cells reside in the bone marrow, skin and adipose tissue, are collectable as cells positive for pluripotent surface marker SSEA-3. They are able to differentiate into cells representative of all three germ layers. The capacity of intravenously injected human bone marrow-Muse cells to repair the liver fibrosis model of immunodeficient mice was evaluated in this study. They exhibited the ability for differentiation spontaneously into hepatoblast/hepatocyte-lineage cells and high migration toward the serum and liver tissue of carbon tetrachloride-treated mice in vitro. In vivo, they specifically accumulated into the liver, but not into other organs except the lower rate in the lung at 2 weeks after intravenous injection into the liver fibrosis model. After homing, Muse cells spontaneously differentiated in vivo into HepPar-1 (71.1±15.2%), human albumin (54.3±8.2%) and anti-trypsin (47.9±4.6%)-positive cells without fusing with host hepatocytes, and expressed mature functional markers such as human-CYP1A2, and human-Glc-6-Pase, at 8 weeks. Recovery in serum total bilirubin and albumin, and significant attenuation of fibrosis were recognized with statistical differences between the Muse group and control groups which received the vehicle or the same number of non-Muse cells, namely cells other than Muse cells in bone marrow mesenchymal stem cells. Thus, unlike ES and iPS cells, Muse cells are unique in their efficient migration and integration into damaged liver only by intravenous injection, nontumorigenicity, and spontaneous differentiation into hepatocytes, rendering induction into hepatocytes prior to transplantation unnecessary. They are suggested to repair liver fibrosis in two simple steps; expansion after collection from the bone marrow and intravenous injection. Such feasible strategy might provide impressive regenerative performance to liver disease patients.

  13. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis

    PubMed Central

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis. PMID:27605260

  14. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis.

    PubMed

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-09-08

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p < 0.0001), representing an increase in the extent of pre-Rayleigh statistics for echo amplitude distribution. The area under the ROC curve (AUROC) was 0.88 for the diagnosis of any degree of fibrosis (≥F1), whereas it was 0.84, 0.69, and 0.67 for ≥F2, ≥F3, and ≥F4, respectively. Ultrasound Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis.

  15. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects

    PubMed Central

    2013-01-01

    Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research. PMID:24274743

  16. Identification of novel targets for the diagnosis and treatment of liver fibrosis.

    PubMed

    Fagone, Paolo; Mangano, Katia; Mammana, Santa; Pesce, Antonio; Pesce, Aurora; Caltabiano, Rosario; Giorlandino, Alexandra; Portale, Teresa Rosanna; Cavalli, Eugenio; Lombardo, Giuseppe A G; Coco, Marinella; Puleo, Stefano; Nicoletti, Ferdinando

    2015-09-01

    Liver fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) in the hepatic parenchyma and represents an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. Hepatic stellate cells (HSCs) are the major cell type responsible for liver fibrosis. Following liver injury, HSCs become activated and transdifferentiate into myofibroblasts (MFBs) that lead to intrahepatic ECM accumulation. In the present study, we performed a meta‑analysis of datasets which included whole-genome transcriptional data on HSCs in the quiescent and activated state from two different rodent species and identified commonly regulated genes. Several of the genes identified, including ECM components, metalloproteinases and growth factors, were found to be well‑known markers for HSC activation. However, other significant genes also appeared to play important roles in hepatic fibrosis. The elucidation of the molecular events underlying HSC activation may be key to the identification of potential novel pharmacological targets for the prevention and treatment of liver fibrosis.

  17. Serum cell death biomarkers for prediction of liver fibrosis and poor prognosis in primary biliary cirrhosis.

    PubMed

    Sekiguchi, Tomohiro; Umemura, Takeji; Fujimori, Naoyuki; Shibata, Soichiro; Ichikawa, Yuki; Kimura, Takefumi; Joshita, Satoru; Komatsu, Michiharu; Matsumoto, Akihiro; Tanaka, Eiji; Ota, Masao

    2015-01-01

    The development of simple, noninvasive markers of liver fibrosis is urgently needed for primary biliary cirrhosis (PBC). This study examined the ability of several serum biomarkers of cell death to estimate fibrosis and prognosis in PBC. A cohort of 130 patients with biopsy-proven PBC and 90 healthy subjects were enrolled. We assessed the utility of the M30 ELISA, which detects caspase-cleaved cytokeratin-18 (CK-18) fragments and is representative of apoptotic cell death, as well as the M65 and newly developed M65 Epideath (M65ED) ELISAs, which detect total CK-18 as indicators of overall cell death, in predicting clinically relevant fibrosis stage. All 3 cell death biomarkers were significantly higher in patients with PBC than in healthy controls and were significantly correlated with fibrosis stage. The areas under the receiver operating characteristic curve for the M65 and M65ED assays for differentiation among significant fibrosis, severe fibrosis, and cirrhosis were 0.66 and 0.76, 0.66 and 0.73, and 0.74 and 0.82, respectively. In multivariate analysis, high M65ED (hazard ratio 6.13; 95% confidence interval 1.18-31.69; P = 0.031) and severe fibrosis (hazard ratio 7.45; 95% confidence interval 1.82-30.51; P = 0.005) were independently associated with liver-related death, transplantation, or decompensation. High serum M65ED was also significantly associated with poor outcome in PBC (log-rank test; P = 0.001). Noninvasive cell death biomarkers appear to be clinically useful in predicting fibrosis in PBC. Moreover, the M65ED assay may represent a new surrogate marker of adverse disease outcome.

  18. Hydroxysafflor Yellow A Attenuates Bleomycin-induced Pulmonary Fibrosis in Mice.

    PubMed

    Jin, Ming; Wu, Yan; Wang, Lin; Zang, Baoxia; Tan, Li

    2016-04-01

    Hydroxysafflor yellow A (HSYA) is an active component of Carthamus tinctorius L., and we want to investigate whether HSYA attenuates pulmonary fibrosis induced by bleomycin (BLM) in mice. The mice received a BLM via oropharyngeal aspiration, and HSYA was intraperitoneally injected. Arterial blood gas analysis was performed. Morphological changes and hydroxyproline content were measured. mRNA expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor, α-smooth muscle actin (α-SMA), and collagen I was measured by real-time polymerase chain reaction. α-SMA-positive cells in lung tissues were detected by immunohistochemical staining. A549 cell was cultured, and morphological changes were observed after TGF-β1 and HSYA treatment. mRNA expression was detected by real-time polymerase chain reaction. Phosphorylation of Smad3 was evaluated by western blotting. HSYA decreased the lung consolidation area and collagen deposition in mice with pulmonary fibrosis. The blood gas changes due to BLM were attenuated by HSYA. HSYA also alleviated the BLM-induced increase of TGF-β1, connective tissue growth factor, α-SMA, and collagen I mRNA levels. HSYA treatment inhibited the increase of α-SMA expression, Smad3 phosphorylation, the morphological changes in lung tissue. HSYA inhibits Smad3 phosphorylation and elevated expression of collagen I mRNA in epithelial-mesenchymal transition induced by TGF-β1.

  19. A study of T₁ relaxation time as a measure of liver fibrosis and the influence of confounding histological factors.

    PubMed

    Hoad, Caroline L; Palaniyappan, Naaventhan; Kaye, Philip; Chernova, Yulia; James, Martin W; Costigan, Carolyn; Austin, Andrew; Marciani, Luca; Gowland, Penny A; Guha, Indra N; Francis, Susan T; Aithal, Guruprasad P

    2015-06-01

    Liver biopsy is the standard test for the assessment of fibrosis in liver tissue of patients with chronic liver disease. Recent studies have used a non-invasive measure of T1 relaxation time to estimate the degree of fibrosis in a single slice of the liver. Here, we extend this work to measure T1 of the whole liver and investigate the effects of additional histological factors such as steatosis, inflammation and iron accumulation on the relationship between liver T1 and fibrosis. We prospectively enrolled patients who had previously undergone liver biopsy to have MR scans. A non-breath-holding, fast scanning protocol was used to acquire MR relaxation time data (T1 and T2*), and blood serum was used to determine the enhanced liver fibrosis (ELF) score. Areas under the receiver operator curves (AUROCs) for T1 to detect advanced fibrosis and cirrhosis were derived in a training cohort and then validated in a second cohort. Combining the cohorts, the influence of various histology factors on liver T1 relaxation time was investigated. The AUROCs (95% confidence interval (CI)) for detecting advanced fibrosis (F ≥ 3) and cirrhosis (F = 4) for the training cohort were 0.81 (0.65-0.96) and 0.92 (0.81-1.0) respectively (p < 0.01). Inflammation and iron accumulation were shown to significantly alter T1 in opposing directions in the absence of advanced fibrosis; inflammation increasing T1 and iron decreasing T1. A decision tree model was developed to allow the assessment of early liver disease based on relaxation times and ELF, and to screen for the need for biopsy. T1 relaxation time increases with advanced fibrosis in liver patients, but is also influenced by iron accumulation and inflammation. Together with ELF, relaxation time measures provide a marker to stratify patients with suspected liver disease for biopsy.

  20. Dimethylnitrosamine-induced liver fibrosis and recovery in NOD/SCID mice.

    PubMed

    Hyon, Min-Kyong; Kwon, Euna; Choi, Hyung Jun; Kang, Byeong-Cheol

    2011-06-01

    There is a need for a new liver fibrosis model of immunodeficient mice to study the effects of cell therapy on liver disease because there are not many animal models available to study the effects of cell therapy. In this study, we induced liver fibrosis using dimethylnitrosamine (DMN) in NOD/SCID mice to create an animal model for liver disease. DMN (5 mg/kg, i.p.) was injected intraperitoneally for three consecutive days per week for 6 or 8 weeks, and the mice were sacrificed at weeks 0, 4 and 8 after the last DMN injection. The 6-week DMN-treated group gradually recovered from serum biochemical changes, histopathological toxic effects and lesions in the liver at weeks 4 and 8 after the last DMN injection. However, the progression of liver fibrosis and toxic levels were maintained in the 8-week DMN-treated group at week 4 after the last DMN injection. The increases in iron and extracellular matrix (collagen) in the DMN-treated group were confirmed by Prussian blue (PB) and Masson's trichrome (MT) staining, respectively. Additionally, activation of hepatic stellate cells was observed by alpha smooth muscle actin (α-SMA) immunostaining and western blot. In conclusion, treatment of NOD/SCID mice with 5 mg/kg of DMN for 8 weeks can be used to induce an appropriate animal model of disease for liver fibrosis. This model may be useful for evaluation of the efficacy and safety of cell therapies such as human mesenchymal stem cell therapy.

  1. Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production.

    PubMed

    Wang, Guang; Yeung, Cheung-kwan; Wong, Wing-Yan; Zhang, Nuan; Wei, Yi-fan; Zhang, Jing-li; Yan, Yu; Wong, Ching-yee; Tang, Jun-jie; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Li-jing; Yang, Xuesong

    2016-02-24

    High salt intake has been known to cause hypertension and other side effects. However, it is still unclear whether it also affects fibrosis in the mature or developing liver. This study demonstrates that high salt exposure in mice (4% NaCl in drinking water) and chick embryo (calculated final osmolality of the egg was 300 mosm/L) could lead to derangement of the hepatic cords and liver fibrosis using H&E, PAS, Masson, and Sirius red staining. Meanwhile, Desmin immunofluorescent staining of mouse and chick embryo livers indicated that hepatic stellate cells were activated after the high salt exposure. pHIS3 and BrdU immunohistological staining of mouse and chick embryo livers indicated that cell proliferation decreased; as well, TUNEL analyses indicated that cell apoptosis increased in the presence of high salt exposure. Next, dihydroethidium staining on the cultured chick hepatocytes indicated the excess ROS was generated following high salt exposure. Furthermore, AAPH (a known inducer of ROS production) treatment also induced the liver fibrosis in chick embryo. Positive Nrf2 and Keap1 immunohistological staining on mouse liver suggested that Nrf2/Keap1 signaling was involved in high salt induced ROS production. Finally, the CCK8 assay was used to determine whether or not the growth inhibitory effect induced by high salt exposure can be rescued by antioxidant vitamin C. Meanwhile, the RT-PCR result indicated that the Nrf2/Keap1 downsteam genes including HO-1, NQO-1, and SOD2 were involved in this process. In sum, these experiments suggest that high salt intake would lead to high risk of liver damage and fibrosis in both adults and developing embryos. The pathological mechanism may be the result from an imbalance between oxidative stress and the antioxidant system.

  2. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  3. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    PubMed

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  4. Reversal of chemical-induced liver fibrosis in Wistar rats by puerarin.

    PubMed

    Zhang, Shuihua; Ji, Guang; Liu, Jianwen

    2006-07-01

    Puerarin is a major isoflavonoid compound isolated from Pueraria lobata, an edible vine used widely for various medicinal purposes. It has been used for centuries in China to counteract alcohol intoxication. However, the effects of puerarin on chemical-induced liver fibrosis have not been reported. In the present study, we investigated the effects of puerarin on liver fibrosis in Wistar rats induced by alcohol plus carbon tetrachloride administration. Liver fibrosis was produced in rats by treatment with a mixture (50% alcohol, 8 g/kg per day; corn oil, 2 g/kg per day; pyrazole, 24 mg/kg per day; ig) once a day and by intraperitoneal injection of 0.25 ml/kg of a 25% solution of carbon tetrachloride in olive oil twice a week for 8 weeks. After 8 weeks, treatment with puerarin (0.4 and 0.8 g/kg ig, daily for 4 weeks) was conducted to examine its therapeutic effects. At the same time, the model group and treatment group continued to receive the chemical mixture, while the control group received saline instead of the chemical mixture. Upon pathological examination, the puerarin-treated rats significantly reversed the symptoms of liver fibrosis and other hepatic lesions. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as indexes of hepatic cell disruption, were reduced with puerarin treatment, whereas no significant effect was discovered in the levels of alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT) activities. A significant increase in apoptosis of activated hepatic stellate cell (HSC) was found by flow cytometric analysis of the hepatic tissues. And the expression of bcl-2 mRNA was down-regulated after puerarin administration. Consequently, all these results showed that puerarin could effectively reverse chemical-induced liver fibrosis in experimental rats, via the recovery of hepatic injury as well as the induction of apoptosis in activated HSC.

  5. Clinical observation of salvianolic acid B in treatment of liver fibrosis in chronic hepatitis B

    PubMed Central

    Liu, Ping; Hu, Yi-Yang; Liu, Cheng; Zhu, Da-Yuan; Xue, Hui-Ming; Xu, Zhi-Qiang; Xu, Lie- Ming; Liu, Cheng-Hai; Gu, Hong-Tu; Zhang, Zhi-Qing

    2002-01-01

    AIM: To evaluate the clinical efficacy of salvianolic acid B (SA-B) on liver fibrosis in chronic hepatitis B. METHODS: Sixty patients with definite diagnosis of liver fibrosis with hepatitis B were included in the trial. Interferon-γ (IFN-γ) was used as control drug. The patients took orally SA-B tablets or received muscular injection of IFN-γ in the double blind randomized test. The complete course lasted 6 mo. The histological changes of liver biopsy specimen before and after the treatment were the main evidence in evaluation, in combination with the results of contents of serum HA, LN, IV-C, P-III-P, liver ultrasound imaging, and symptoms and signs. RESULTS: Reverse rate of fibrotic stage was 36.67% in SA-B group and 30.0% in IFN-γ group. Inflammatory alleviating rate was 40.0% in SA-B group and 36.67% in IFN-γ group. The average content of HA and IV-C was significantly lower than that before treatment. The abnormal rate also decreased remarkably. Overall analysis of 4 serological fibrotic markers showed significant improvement in SA-B group as compared with the IFN-γ group. Score of liver ultrasound imaging was lower in SA-B group than in IFN-γ group (HA 36.7% vs 80%, IV-C 3.3% vs 23.2%). Before the treatment, ALT AST activity and total bilirubin content of patients who had regression of fibrosis after oral administration of SA-B, were significantly lower than those of patients who had aggravation of fibrosis after oral administration of SA-B. IFN-γ showed certain side effects (fever and transient decrease of leukocytes, occurrence rates were 50% and 3.23%), but SA-B showed no side effects. CONCLUSION: SA-B could effectively reverse liver fibrosis in chronic hepatitis B. SA-B was better than IFN-γ in reduction of serum HA content, overall decrease of 4 serum fibrotic markers, and decrease of ultrasound imaging score. Liver fibrosis in chronic hepatitis B with slight liver injury was more suitable to SA-B in anti-fibrotic treatment. SA-B showed no

  6. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts.

    PubMed

    Kim, Ki-Hyun; Chen, Chih-Chiun; Monzon, Ricardo I; Lau, Lester F

    2013-05-01

    Liver fibrosis occurs as a wound-healing response to chronic hepatic injuries irrespective of the underlying etiology and may progress to life-threatening cirrhosis. Here we show that CCN1, a matricellular protein of the CCN (CYR61/CTGF/NOV) family, is accumulated in hepatocytes of human cirrhotic livers. CCN1 is not required for liver development or regeneration, since these processes are normal in mice with hepatocyte-specific Ccn1 deletion. However, Ccn1 expression is upregulated upon liver injuries and functions to inhibit liver fibrogenesis induced by either carbon tetrachloride intoxication or bile duct ligation and promote fibrosis regression. CCN1 acts by triggering cellular senescence in activated hepatic stellate cells and portal fibroblasts by engaging integrin α6β1 to induce reactive oxygen species accumulation through the RAC1-NADPH oxidase 1 enzyme complex, whereupon the senescent cells express an antifibrosis genetic program. Mice with hepatocyte-specific Ccn1 deletion suffer exacerbated fibrosis with a concomitant deficit in cellular senescence, whereas overexpression of hepatic Ccn1 reduces liver fibrosis with enhanced senescence. Furthermore, tail vein delivery of purified CCN1 protein accelerates fibrosis regression in mice with established fibrosis. These findings reveal a novel integrin-dependent mechanism of fibrosis resolution in chronic liver injury and identify the CCN1 signaling pathway as a potential target for therapeutic intervention.

  7. Betulin attenuates lung and liver injuries in sepsis.

    PubMed

    Zhao, Hongyu; Liu, Zhenning; Liu, Wei; Han, Xinfei; Zhao, Min

    2016-01-01

    Sepsis is a complex condition with unacceptable mortality. Betulin is a natural extract with multiple bioactivities. This study aims to evaluate the potential effects of betulin on lung and liver injury in sepsis. Cecal ligation and puncture was used to establish the rat model of sepsis. A single dose of 4mg/kg or 8mg/kg betulin was injected intraperitoneally immediately after the model establishment. The survival rate was recorded every 12h for 96h. The organ injury was examined using hematoxylin and eosin staining and serum biochemical test. The levels of proinflammatory cytokines and high mobility group box 1 in the serum were measured using ELISA. Western blotting was used to detect the expression of proteins in NF-κB and MAPK signaling pathways. Betulin treatment significantly improved the survival rate of septic rats, and attenuated lung and liver injury in sepsis, including the reduction of lung wet/dry weight ratio and activities of alanine aminotransferase and aspartate aminotransferase in the serum. In addition, levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and high mobility group box 1 in the serum were also lowered by betulin treatment. Moreover, sepsis-induced activation of the NF-κB and MAPK signaling pathway was inhibited by betulin as well. Our findings demonstrate the protective effect of betulin in lung and liver injury in sepsis. This protection may be mediated by its anti-inflammatory and NF-κB and MAPK inhibitory effects.

  8. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury

    PubMed Central

    Liang, Bo; Guo, Xiao-Ling; Jin, Jing; Ma, Yong-Chun; Feng, Zheng-Quan

    2015-01-01

    AIM: To investigate anti-apoptotic effects of glycyrrhizic acid (GA) against fibrosis in carbon tetrachloride (CCl4)-induced liver injury and its contributing factors. METHODS: Liver fibrosis was induced by administration of CCl4 for 8 wk. Pathological changes in the liver of rats were examined by hematoxylin-eosin staining. Collagen fibers were detected by Sirius red staining. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of cleaved caspase-3, Bax, α-SMA, connective tissue growth factor (CTGF), matrix metalloproteinase (MMP) 2 and MMP9 proteins were evaluated by western blot analysis, and α-SMA mRNA, collagen type I and III mRNA were estimated by real-time PCR. RESULTS: Treatment with GA significantly improved the pathological changes in the liver and markedly decreased the positive area of Sirius red compared with rats in the CCl4-treated group. TUNEL assay showed that GA significantly reduced the number of TUNEL-positive cells compared with the CCl4-treated group. The expression levels of cleaved caspase-3, Bax, α-SMA, CTGF, MMP2 and MMP9 proteins, and α-SMA mRNA, collagen type I and III mRNA were also significantly reduced by GA compared with the CCl4-treated group (P < 0.05). CONCLUSION: GA treatment can ameliorate CCl4-induced liver fibrosis by inhibiting hepatocyte apoptosis and hepatic stellate cell activation. PMID:25954100

  9. Use of mesenchymal stem cells to treat liver fibrosis: Current situation and future prospects

    PubMed Central

    Berardis, Silvia; Dwisthi Sattwika, Prenali; Najimi, Mustapha; Sokal, Etienne Marc

    2015-01-01

    Progressive liver fibrosis is a major health issue for which no effective treatment is available, leading to cirrhosis and orthotopic liver transplantation. However, organ shortage is a reality. Hence, there is an urgent need to find alternative therapeutic strategies. Cell-based therapy using mesenchymal stem cells (MSCs) may represent an attractive therapeutic option, based on their immunomodulatory properties, their potential to differentiate into hepatocytes, allowing the replacement of damaged hepatocytes, their potential to promote residual hepatocytes regeneration and their capacity to inhibit hepatic stellate cell activation or induce their apoptosis, particularly via paracrine mechanisms. The current review will highlight recent findings regarding the input of MSC-based therapy for the treatment of liver fibrosis, from in vitro studies to pre-clinical and clinical trials. Several studies have shown the ability of MSCs to reduce liver fibrosis and improve liver function. However, despite these promising results, some limitations need to be considered. Future prospects will also be discussed in this review. PMID:25624709

  10. Modulation of thioacetamide-induced liver fibrosis/cirrhosis by sildenafil treatment.

    PubMed

    Said, Eman; Said, Shehta A; Gameil, Nariman M; Ammar, Elsayed M

    2013-12-01

    Sildenafil citrate is a phosphodiesterase-5 inhibitor, approved for the treatment of erectile dysfunction. It enhances nitric-oxide-induced vasodilatation and it promotes angiogenesis. A relationship between angiogenesis and hepatic fibrosis has long been speculated, where the 2 are believed to progress together. In this study, the ability of sildenafil (10 mg·(kg body mass)(-1), orally, once daily) to prevent and also reverse liver fibrosis/cirrhosis experimentally induced by thioacetamide injection (200 mg·kg(-1), intraperitoneal (i.p.), 3 times·week(-1)) in male Sprague-Dawley rats has been investigated. Sildenafil administration, either to prevent or to reverse liver fibrosis/cirrhosis significantly improved the estimated hepatic functions, reduced hepatic hydroxyproline and, in turn, hepatic collagen content, as well as reducing serum levels of the pro-fibrogenic mediator transforming growth factor β1. In co-ordination with such improvement, fibrosis grades declined and fibrosis retracted. Herein, the observed results provide evidence for the potential therapeutic efficacy of sildenafil as an antifibrotic agent.

  11. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C

    PubMed Central

    Thabet, Khaled; Asimakopoulos, Anastasia; Shojaei, Maryam; Romero-Gomez, Manuel; Mangia, Alessandra; Irving, William L.; Berg, Thomas; Dore, Gregory J.; Grønbæk, Henning; Sheridan, David; Abate, Maria Lorena; Bugianesi, Elisabetta; Weltman, Martin; Mollison, Lindsay; Cheng, Wendy; Riordan, Stephen; Fischer, Janett; Spengler, Ulrich; Nattermann, Jacob; Wahid, Ahmed; Rojas, Angela; White, Rose; Douglas, Mark W.; McLeod, Duncan; Powell, Elizabeth; Liddle, Christopher; van der Poorten, David; George, Jacob; Eslam, Mohammed; Gallego-Duran, Rocio; Applegate, Tanya; Bassendine, Margaret; Rosso, Chiara; Mezzabotta, Lavinia; Leung, Reynold; Malik, Barbara; Matthews, Gail; Grebely, Jason; Fragomeli, Vincenzo; Jonsson, Julie R.; Santaro, Rosanna

    2016-01-01

    Cirrhosis likely shares common pathophysiological pathways despite arising from a variety of liver diseases. A recent GWAS identified rs641738, a polymorphism in the MBOAT7 locus, as being associated with the development of alcoholic cirrhosis. Here we explore the role of this variant on liver inflammation and fibrosis in two cohorts of patients with chronic hepatitis C. In 2,051 patients, rs641738 associated with severe hepatic inflammation and increased risk of fibrosis, as well as fast fibrosis progression. At functional level, rs641738 associated with MBOAT7 transcript and protein levels in liver and blood, and with serum inflammatory, oxidative stress and macrophage activation markers. MBOAT7 was expressed in immune cell subsets, implying a role in hepatic inflammation. We conclude that the MBOAT7 rs641738 polymorphism is a novel risk variant for liver inflammation in hepatitis C, and thereby for liver fibrosis. PMID:27630043

  12. Liver Fibrosis and Mechanisms of the Protective Action of Medicinal Plants Targeting Inflammation and the Immune Response

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, María Teresa; Maldonado-Bernal, Carmen; Cruz-Vega, Delia Elva

    2015-01-01

    Inflammation is a central feature of liver fibrosis as suggested by its role in the activation of hepatic stellate cells leading to extracellular matrix deposition. During liver injury, inflammatory cells are recruited in the injurious site through chemokines attraction. Thus, inflammation could be a target to reduce liver fibrosis. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. The aim of this review is to describe the role of inflammation and the immune response in the pathogenesis of liver fibrosis and detail the mechanisms of inhibition of both events by medicinal plants in order to reduce liver fibrosis. PMID:25954568

  13. Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification

    PubMed Central

    Stanciu, Stefan G.; Xu, Shuoyu; Peng, Qiwen; Yan, Jie; Stanciu, George A.; Welsch, Roy E.; So, Peter T. C.; Csucs, Gabor; Yu, Hanry

    2014-01-01

    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) can image the endogenous signals of tissue structures and can be used for fibrosis assessment on non-stained tissue samples. While image analysis of collagen in SHG images was consistently addressed until now, cellular and tissue information included in TPEF images, such as inflammatory and hepatic cell damage, equally important as collagen deposition imaged by SHG, remain poorly exploited to date. We address this situation by experimenting liver fibrosis quantification and scoring using a combined approach based on TPEF liver surface imaging on a Thioacetamide-induced rat model and a gradient based Bag-of-Features (BoF) image classification strategy. We report the assessed performance results and discuss the influence of specific BoF parameters to the performance of the fibrosis scoring framework. PMID:24717650

  14. Effects of Melatonin on Differentiation Potential of Ito Cells in Mice with Induced Fibrosis of the Liver.

    PubMed

    Nalobin, D S; Suprunenko, E A; Golichenkov, V A

    2016-10-01

    We studied the effects of melatonin on differentiation potential of Ito cells during atypical regeneration of mouse liver under conditions of CCl4-induced fibrosis. The dynamics of fibrosis was traced at the histological level and the effects of melatonin on the differentiation potential of mouse Ito cells were evaluated. Melatonin alleviated fibrotic changes in the liver tissue and reduced differentiation of Ito cells into myofibroblasts under conditions of atypical regeneration of the liver in induced fibrosis. The hepatoprotective role of melatonin was shown.

  15. Advanced Hepatic Fibrosis in Fatty Liver Disease Linked to Hyperplastic Colonic Polyp

    PubMed Central

    Abu-Elhija, Omar; Yassin, Tarik

    2017-01-01

    Aim. Our study aims to determine possible association between biopsy-proven nonalcoholic steatohepatitis (NASH) and hyperplastic polyps (HP) of the colon. Methods. A retrospective cohort observational study. All subjects underwent screening colonoscopy within two years. Data were extracted from the patient charts including demographic, anthropometric measurement, vital signs, underlying diseases, medical therapy, laboratory data, results of the liver biopsy with degree of fibrosis and necroinflammatory activity, the colonoscopy report, and the pathological report of the extracted polyp. Results. A total of 223 patients were included in our study, 123 patients with biopsy-proven NASH and 100 patients without NASH who served as the control group matched for age. 14 colonic adenomas (11% of patients) were found in the NASH group compared with 16 adenomas (16% of patients) found in the control group (P = 0.9). 28 HPs were found in the NASH group (22.7%) compared with only 8 HPs in the control group (8%) (P < 0.05). 21 from the 28 (75%) HPs diagnosed in the NASH group were observed in the high degree fibrosis patients (Fibrosis Stages 3 and 4), 6 HPs (21%) were associated with Fibrosis Stages 1 and 2, and single HP (4%) was associated with Fibrosis Stage 0. Conclusions. Our study showed an association between biopsy-proven steatohepatitis and the burden of hyperplastic polyp. The severity of hepatic fibrosis may play important role in the increased occurrence of HPs. PMID:28127545

  16. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis.

    PubMed

    Li, Tingfen; Yan, Yongmin; Wang, Bingying; Qian, Hui; Zhang, Xu; Shen, Li; Wang, Mei; Zhou, Ying; Zhu, Wei; Li, Wei; Xu, Wenrong

    2013-03-15

    Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.

  17. Multicenter clinical study on Fuzhenghuayu capsule against liver fibrosis due to chronic hepatitis B

    PubMed Central

    Liu, Ping; Hu, Yi-Yang; Liu, Cheng; Xu, Lie-Ming; Liu, Cheng-Hai; Sun, Ke-Wei; Hu, De-Chang; Yin, You-Kuan; Zhou, Xia-Qiu; Wan, Mo-Bin; Cai, Xiong; Zhang, Zhi-Qing; Ye, Jun; Zhou, Ren-Xing; He, Jia; Tang, Bao-Zhang

    2005-01-01

    AIM: To study the efficacy and safety of Fuzhenghuayu capsule (FZHY capsule, a capsule for strengthening body resistance to remove blood stasis) against liver fibrosis due to chronic hepatitis B. METHODS: Multicenter, randomized, double blinded and parallel control experiment was conducted in patients (aged from 18 to 65 years) with liver fibrosis due to chronic hepatitis B. Hepatic histologic changes and HBV markers were examined at wk 0 and 24 during treatment. Serologic parameters (HA, LM, P-III-P, IV-C) were determined and B ultrasound examination of the spleen and liver was performed at wk 0, 12 and 24. Liver function (liver function and serologic parameters for liver fibrosis) was observed at wk 0, 6, 12, 18 and 24. Blood and urine routine test, renal function and ECG were examined before and after treatment. RESULTS: There was no significant difference between experimental group (110 cases) and control group (106 cases) in demographic features, vital signs, course of illness, history for drug anaphylaxis and previous therapy, liver function, serologic parameters for liver fibrosis, liver histologic examination (99 cases in experimental group, 96 cases in control group), HBV markers, and renal function. According to the criteria for liver fibrosis staging, mean score of fibrotic stage(s) in experimental group after treatment (1.80) decreased significantly compared to the previous treatment (2.33, P<0.05), but there was no significant difference in mean score of fibrotic stage(s) (2.11 and 2.14 respectively). There was a significant difference in reverse rate between experimental group (52%) and control group (23.3%) in liver biopsy. With marked effect on decreasing the mean value of inflammatory activity and score of inflammation (P<0.05), Fuzhenghuayu capsule had rather good effects on inhibiting inflammatory activity and was superior to that of Heluoshugan capsule. Compared to that of pretreatment, there was a significant decrease in HA, LM, P-III-P and IV

  18. Vitamin K status in cystic fibrosis patients with liver cirrhosis.

    PubMed

    Krzyżanowska, Patrycja; Drzymała-Czyż, Sławomira; Pogorzelski, Andrzej; Duś-Żuchowska, Monika; Skorupa, Wojciech; Bober, Lyudmyla; Sapiejka, Ewa; Oralewska, Beata; Rohovyk, Nataliya; Moczko, Jerzy; Nowak, Jan; Wenska-Chyży, Ewa; Rachel, Marta; Lisowska, Aleksandra; Walkowiak, Jarosław

    2017-01-23

    The available data on the influence of liver cirrhosis on vitamin K status in CF patients is scarce. Therefore, the aims of the present study were to assess the prevalence of vitamin K deficiency in cirrhotic CF subjects and to determine whether it correlates with liver cirrhosis. The study group comprised of 27 CF patients with and 63 without liver cirrhosis. Vitamin K status was assessed using prothrombin induced by vitamin K absence (PIVKA-II) and the percentage of undercarboxylated osteocalcin (u-OC). PIVKA-II concentrations were higher in cirrhotic than in non-cirrhotic CF patients (median [1st-3rd quartile]: 3.2ng/ml [1.0-10.0] vs. 1.3ng/ml [0.2-2.6], p=0.0029). However, the differences in u-OC percentages between the studied groups did not reach the level of significance (49.4% [7.0-73.8] vs. 8.0% [2.6-59.1], p=0.0501). Based on multiple linear regression analysis the dose of vitamin K and F508del mutation were potentially defined as determinants of vitamin K deficiency. Liver cirrhosis was not documented to be an independent risk factor. In CF patients with liver cirrhosis vitamin K deficiency is not only more frequent, but also more severe. However, not liver cirrhosis, but the presence of a F508del CFTR mutation constitutes an independent risk factor for vitamin K deficiency.

  19. Cystic Fibrosis Related Liver Disease—Another Black Box in Hepatology

    PubMed Central

    Staufer, Katharina; Halilbasic, Emina; Trauner, Michael; Kazemi-Shirazi, Lili

    2014-01-01

    Due to improved medical care, life expectancy in patients with cystic fibrosis (CF) has veritably improved over the last decades. Importantly, cystic fibrosis related liver disease (CFLD) has become one of the leading causes of morbidity and mortality in CF patients. However, CFLD might be largely underdiagnosed and diagnostic criteria need to be refined. The underlying pathomechanisms are largely unknown, and treatment strategies with proven efficacy are lacking. This review focuses on current invasive and non-invasive diagnostic standards, the current knowledge on the pathophysiology of CFLD, treatment strategies, and possible future developments. PMID:25093717

  20. Cystic fibrosis related liver disease--another black box in hepatology.

    PubMed

    Staufer, Katharina; Halilbasic, Emina; Trauner, Michael; Kazemi-Shirazi, Lili

    2014-08-04

    Due to improved medical care, life expectancy in patients with cystic fibrosis (CF) has veritably improved over the last decades. Importantly, cystic fibrosis related liver disease (CFLD) has become one of the leading causes of morbidity and mortality in CF patients. However, CFLD might be largely underdiagnosed and diagnostic criteria need to be refined. The underlying pathomechanisms are largely unknown, and treatment strategies with proven efficacy are lacking. This review focuses on current invasive and non-invasive diagnostic standards, the current knowledge on the pathophysiology of CFLD, treatment strategies, and possible future developments.

  1. Real-time elastography as a noninvasive assessment of liver fibrosis in chronic hepatitis C Egyptian patients: a prospective study

    PubMed Central

    Mobarak, Lamiaa; Nabeel, Mohammed M.; Hassan, Ehsan; Omran, Dalia; Zakaria, Zeinab

    2016-01-01

    Background Hepatitis C virus is a worldwide problem. Noninvasive methods for liver fibrosis assessment as ultrasound-based approaches have emerged to replace liver biopsy. The aim of this study was to evaluate the diagnostic accuracy of real-time elastography (RTE) in the assessment of liver fibrosis in patients with chronic hepatitis C (CHC), compared with transient elastography and liver biopsy. Methods RTE, FibroScan and liver biopsy were performed in 50 CHC patients. In addition, aspartate aminotransferase to platelet ratio index (APRI) and routine laboratory values were included in the analysis. Results RTE was able to diagnose significant hepatic fibrosis (F ≥2) according to METAVIR scoring system at cut-off value of 2.49 with sensitivity 100%, specificity 66%, and area under the receiver-operating characteristics (AUROC) 0.8. FibroScan was able to predict significant fibrosis at cut-off value 7.5 KPa with sensitivity 88%, specificity 100%, and AUROC 0.94.APRI was able to predict significant hepatic fibrosis (F ≥2) with sensitivity 54%, specificity 80%, and AUROC 0.69. There was a significant positive correlation between the FibroScan score and RTE score (r=0.6, P=0.001). Conclusions Although FibroScan is superior in determining significant hepatic fibrosis, our data suggest that RTE may be a useful and promising noninvasive method for liver fibrosis assessment in CHC patients especially in cases with technical limitations for FibroScan. PMID:27366038

  2. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis

    PubMed Central

    Bhattacharyya, Mitra; Cheresh, Paul; Bonner, Michael Y.; Arbiser, Jack L.; Raparia, Kirtee; Gupta, Mahesh P.; Kamp, David W.; Varga, John

    2016-01-01

    Constitutive fibroblast activation is responsible for organ fibrosis in fibrotic disorders including systemic sclerosis (SSc), but the underlying mechanisms are not fully understood, and effective therapies are lacking. We investigated the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and its modulation by hexafluoro, a novel fluorinated synthetic honokiol analogue, in the context of fibrosis. We find that augmenting cellular SIRT3 by forced expression in normal lung and skin fibroblasts, or by hexafluoro treatment, blocked intracellular TGF-ß signaling and fibrotic responses, and mitigated the activated phenotype of SSc fibroblasts. Moreover, hexafluoro attenuated mitochondrial and cytosolic reactive oxygen species (ROS) accumulation in TGF-β-treated fibroblasts. Remarkably, we found that the expression of SIRT3 was significantly reduced in SSc skin biopsies and explanted fibroblasts, and was suppressed by TGF-β treatment in normal fibroblasts. Moreover, tissue levels of acetylated MnSOD, a sensitive marker of reduced SIRT3 activity, were dramatically enhanced in lesional skin and lung biopsies from SSc patients. Mice treated with hexafluoro showed substantial attenuation of bleomycin-induced fibrosis in the lung and skin. Our findings reveal a cell-autonomous function for SIRT3 in modulating fibrotic responses, and demonstrate the ability of a novel pharmacological SIRT3 agonist to attenuate fibrosis in vitro and in vivo. In light of the impaired expression and activity of SIRT3 associated with organ fibrosis in SSc, pharmacological approaches for augmenting SIRT3 might have therapeutic potential. PMID:27732568

  3. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    PubMed

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-06-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.

  4. PASS-Predicted Hepatoprotective Activity of Caesalpinia sappan in Thioacetamide-Induced Liver Fibrosis in Rats

    PubMed Central

    Kadir, Farkaad A.; Kassim, Normadiah M.; Abdulla, Mahmood Ameen; Ahmadipour, Fatemeh; Yehye, Wageeh A.

    2014-01-01

    The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS) extract on liver fibrosis induced by thioacetamide (TAA) and the expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (αSMA), and proliferating cell nuclear antigen (PCNA) in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS) Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v) in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY), and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Masson's trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1), and matrix metalloproteinases (MPPS) was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties. PMID:24701154

  5. Impaired liver function attenuates liver regeneration and hypertrophy after portal vein embolization

    PubMed Central

    Kageyama, Yumiko; Kokudo, Takashi; Amikura, Katsumi; Miyazaki, Yoshihiro; Takahashi, Amane; Sakamoto, Hirohiko

    2016-01-01

    AIM To clarify the clinical factors associated with liver regeneration after major hepatectomy and the hypertrophic rate after portal vein embolization (PVE). METHODS A total of 63 patients who underwent major hepatectomy and 13 patients who underwent PVE in a tertiary care hospital between January 2012 and August 2015 were included in the analysis. We calculated the remnant liver volume following hepatectomy using contrast-enhanced computed tomography (CT) performed before and approximately 3-6 mo after hepatectomy. Furthermore, we calculated the liver volume using CT performed 2-4 wk after PVE. Preoperative patient characteristics and laboratory data were analyzed to identify factors affecting postoperative liver regeneration or hypertrophy rate following PVE. RESULTS The remnant liver volume/total liver volume ratio negatively correlated with the liver regeneration rate after hepatectomy (ρ = -0.850, P < 0.001). The regeneration rate was significantly lower in patients with an indocyanine green retention rate at 15 min (ICG-R15) of ≥ 20% in the right hepatectomy group but not in the left hepatectomy group. The hypertrophic rate after PVE positively correlated with the regeneration rate after hepatectomy (ρ = 0.648, P = 0.017). In addition, the hypertrophic rate after PVE was significantly lower in patients with an ICG-R15 ≥ 20% and a serum total bilirubin ≥ 1.5 mg/dL. CONCLUSION The regeneration rate after major hepatectomy correlated with hypertrophic rate after PVE. Both of them were attenuated in the presence of impaired liver function. PMID:27729956

  6. Novel non-invasive biological predictive index for liver fibrosis in hepatitis C virus genotype 4 patients

    PubMed Central

    Khattab, Mahmoud; Sakr, Mohamed Amin; Fattah, Mohamed Abdel; Mousa, Youssef; Soliman, Elwy; Breedy, Ashraf; Fathi, Mona; Gaber, Salwa; Altaweil, Ahmed; Osman, Ashraf; Hassouna, Ahmed; Motawea, Ibrahim

    2016-01-01

    AIM To investigate the diagnostic ability of a non-invasive biological marker to predict liver fibrosis in hepatitis C genotype 4 patients with high accuracy. METHODS A cohort of 332 patients infected with hepatitis C genotype 4 was included in this cross-sectional study. Fasting plasma glucose, insulin, C-peptide, and angiotensin-converting enzyme serum levels were measured. Insulin resistance was mathematically calculated using the homeostasis model of insulin resistance (HOMA-IR). RESULTS Fibrosis stages were distributed based on Metavir score as follows: F0 = 43, F1 = 136, F2 = 64, F3 = 45 and F4 = 44. Statistical analysis relied upon reclassification of fibrosis stages into mild fibrosis (F0-F) = 179, moderate fibrosis (F2) = 64, and advanced fibrosis (F3-F4) = 89. Univariate analysis indicated that age, log aspartate amino transaminase, log HOMA-IR and log platelet count were independent predictors of liver fibrosis stage (P < 0.0001). A stepwise multivariate discriminant functional analysis was used to drive a discriminative model for liver fibrosis. Our index used cut-off values of ≥ 0.86 and ≤ -0.31 to diagnose advanced and mild fibrosis, respectively, with receiving operating characteristics of 0.91 and 0.88, respectively. The sensitivity, specificity, positive predictive value, negative predictive value and positive likelihood ratio were: 73%, 91%, 75%, 90% and 8.0 respectively for advanced fibrosis, and 67%, 88%, 84%, 70% and 4.9, respectively, for mild fibrosis. CONCLUSION Our predictive model is easily available and reproducible, and predicted liver fibrosis with acceptable accuracy. PMID:27917265

  7. Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis

    PubMed Central

    Paridaens, Annelies; Raevens, Sarah; Devisscher, Lindsey; Bogaerts, Eliene; Verhelst, Xavier; Hoorens, Anne; van Vlierberghe, Hans; Van Grunsven, Leo A.; Geerts, Anja; Colle, Isabelle

    2017-01-01

    The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death. PMID:28117681

  8. Losartan may inhibit the progression of liver fibrosis in chronic HCV patients

    PubMed Central

    Salama, Zakaria A.; Sadek, Ahmed; Abdelhady, Ahmed M.; Morsy, Shereif Ahmed; Esmat, Gamal

    2016-01-01

    Background Abundant experimental evidence indicates overproduction of angiotensin II in the injured liver, and a role in stimulation of hepatic stellate cell (HSC) activation and fibrogenesis thereby, representing an attractive antifibrotic target. The aim of this study was to examine the antifibrotic effect of losartan on histopathologic level in chronic HCV patients. Methods A prospective study on fifty patients with chronic HCV and liver fibrosis proved by liver biopsy was conducted. They included patients who did not respond (n=36) or comply (n=2) or receive therapy due to established cirrhosis (n=10), or refused to receive (n=2) combined interferon and ribavirin therapy. They were divided randomly into 2 groups. The 1st group (n=25) was given losartan 50 mg OD for 1 year and the 2nd group (25 patients) was given silymarin, 140 mg t.i.d., (silymarin group). Liver biopsy was done at baseline and 1 year from the onset of treatment (end of study). Results In the second liver biopsy after 1 year, the decrease in fibrosis stage was significantly different between losartan group and silymarin group (a decrease of 1.88±0.96 (50.9%) vs. 0.45±0.93 (11.7%), respectively; P<0.01). In patients treated with losartan, regression in fibrosis stage was observed in 14/16 patients vs. 2/11 in silymarin group (P<0.01). No differences were observed in inflammation grades in both groups. A significant increase in albumin and prothrombin levels and a decrease in systolic blood pressure were found in losartan but not in silymarin group (P=0.009, 0.001 & 0.018 respectively and P=0.158, 0.603 & 0.288, respectively). Conclusions Histopathological scores showed that losartan had an inhibitory effect on progression and even led to regression of fibrosis stage but had no effect on the grade of inflammation. PMID:27275467

  9. Huang Qi Decoction Prevents BDL-Induced Liver Fibrosis Through Inhibition of Notch Signaling Activation.

    PubMed

    Zhang, Xiao; Xu, Ying; Chen, Jia-Mei; Liu, Cheng; Du, Guang-Li; Zhang, Hua; Chen, Gao-Feng; Jiang, Shi-Li; Liu, Cheng-Hai; Mu, Yong-Ping; Liu, Ping

    2017-01-01

    Notch signaling has been demonstrated to be involved in ductular reactions and fibrosis. Previous studies have shown that Huang Qi Decoction (HQD) can prevent the progression of cholestatic liver fibrosis (CLF). However, whether HQD affects the Notch signaling pathway is unclear. In this study, CLF was established by common bile duct ligation (BDL) in rats. At the end of the first week, the rats were randomly divided into a model group (i.e., BDL), an HQD group, and a sorafenib positive control group (SORA) and were treated for 3 weeks. Bile duct proliferation and liver fibrosis were determined by tissue staining. Activation of the Notch signaling pathway was evaluated by analyzing expressions of Notch-1, -2, -3, and -4, Jagged (JAG) 1, and Delta like (DLL)-1, -3, and -4. The results showed that HQD significantly reduced the deposition of collagen and the Hyp content of liver tissue and inhibited the activation of HSCs compared with the BDL group. In addition, HQD significantly decreased the protein and mRNA expressions of TGF-[Formula: see text]1 and [Formula: see text]-SMA. In contrast, HQD significantly enhanced expression of the Smad 7 protein. HQD also reduced biliary epithelial cell proliferation, and reduced the mRNA levels of CK7, CK8, CK18, SRY-related high mobility group-box gene (SOX) 9, epithelial cell adhesion molecule (EpCAM) and the positive areas of CK19 and OV6. In addition, the mRNA and protein expressions of Notch-3, -4, JAG1, and DLL-1, -3 were significantly reduced in the HQD compared to the BDL group. These results demonstrated that HQD may prevent biliary liver fibrosis through inhibition of the Notch signaling pathway, and it may be a potential treatment for cholestatic liver disease.

  10. Assessment of Liver Fibrosis Using Fast Strain-Encoded (FSENC) MRI Driven by Inherent Cardiac Motion

    PubMed Central

    Harouni, Ahmed A.; Gharib, Ahmed M.; Osman, Nael F.; Morse, Caryn; Heller, Theo; Abd-Elmoniem, Khaled Z.

    2014-01-01

    Purpose An external driver-free MRI method for assessment of liver fibrosis offers a promising non-invasive tool for diagnosis and monitoring of liver disease. Lately, the heart’s intrinsic motion and MR tagging have been utilized for the quantification of liver strain. However, MR tagging requires multiple breath-hold acquisitions and substantial post-processing. This work proposes a fast strain-encoded (FSENC) MRI methodology to measure the peak strain (Sp) in the liver’s left lobe, which is in close proximity and caudal to the heart. Additionally, a new method is introduced to measure heart-induced shear wave velocity (SWV) inside the liver. Methods Phantom and in-vivo experiments (11 healthy subjects, and 11 patients with liver fibrosis) were conducted. Reproducibility experiments were performed in seven healthy subjects. Results Peak liver strain Sp significantly decreased in fibrotic liver compared healthy liver (6.46%±2.27% vs. 12.49%±1.76%, P<0.05). Heart-induced SWV significantly increased in patients compared to healthy subjects (0.15±0.04 m/s vs. 0.63±0.32 m/s, P<0.05). Reproducibility analysis yielded no significant difference in Sp (P=0.47) or SWV (P=0.56). Conclusion Accelerated external driver-free noninvasive assessment of left liver lobe strain and shear wave velocity is feasible using strain-encoded MRI. The two measures significantly separate healthy subjects from patients with fibrotic liver. PMID:25081734

  11. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene.

    PubMed

    Koilan, Subramaniyan; Hamilton, David; Baburyan, Narina; Padala, Mythili K; Weber, Karl T; Guntaka, Ramareddy V

    2010-10-01

    Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from -141 to -165 (relative to the transcription start site) in the 5' end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules.

  12. Liver transplantation for hepatic cirrhosis in cystic fibrosis.

    PubMed Central

    Noble-Jamieson, G; Barnes, N; Jamieson, N; Friend, P; Calne, R

    1996-01-01

    About 10% of children with CF develop hepatic cirrhosis and progressive portal hypertension. As the portal hypertension worsens these children are likely to develop serious variceal bleeding and other complications including malnutrition and a decline in respiratory function. Indices of lung function may fall as much as 50% in a year and chest infections may require frequent admissions to hospital. The respiratory symptoms are often attributed to CF related lung disease and affected children may therefore be considered unsuitable for liver transplantation. We propose a simple scoring system which can help to select patients who should be referred for assessment of liver transplantation. After careful assessment and preparation children with lung function indices as low as 30% predicted can have a successful outcome after liver transplantation. With good graft function portal hypertension is relieved and absorption, nutrition and respiratory function all improve. The improved quality of life of these children is remarkable. PMID:8778448

  13. Interleukin-13 is involved in the formation of liver fibrosis in Clonorchis sinensis-infected mice.

    PubMed

    Xu, Yanquan; Liang, Pei; Bian, Meng; Chen, Wenjun; Wang, Xiaoyun; Lin, Jinsi; Shang, Mei; Qu, Hongling; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-07-01

    Clonorchiasis is a chronic infection disease often accompanied by formation of liver fibrosis. Previous study has identified that Clonorchis sinensis (C. sinensis, Cs) infection and CsRNASET2 (a member of CsESPs) immunization can drive Th2 immune response. IL-13, a multifunctional Th2 cytokine, has been widely confirmed to be profibrotic mediator. We want to determine whether IL-13 is involved in the generation of liver fibrosis during C. sinensis infection. A part of mice were infected with C. sinensis or immunized with CsRNASET2, respectively. Another part of mice were intravenously injected with rIL-13. Liver tissues of C. sinensis-infected mice were stained with hematoxylin-eosin and Masson's trichrome, respectively. The transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1 in the livers of infected mice and rIL-13-treated mice were measured by quantitative RT-PCR. Besides, splenocytes of C. sinensis-infected and CsRNASET2-immunized mice were isolated, respectively. The levels of IL-13 in splenocytes were detected by ELISA. Our results displayed that the livers of C. sinensis-infected mice had serious chronic inflammation and collagen deposition. The transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1 in the livers of C. sinensis-infected mice were obviously increased. Splenocytes from both C. sinensis-infected and CsRNASET2-immunized mice expressed high levels of IL-13. Moreover, rIL-13 treatment markedly promoted the transcriptional levels of collagen-I, collagen-III, α-SMA, and TIMP-1. These data implied that hepatic fibrosis was formed in the livers of C. sinensis-infected mice, and IL-13 induced by C. sinensis infection and CsRNASET2 immunization might favor this progression.

  14. Detection of Hepatic Fibrosis in Ex Vivo Liver Samples Using an Open-Photoacoustic-Cell Method: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Stolik, S.; Fabila, D. A.; de la Rosa, J. M.; Escobedo, G.; Suárez-Álvarez, K.; Tomás, S. A.

    2015-09-01

    Design of non-invasive and accurate novel methods for liver fibrosis diagnosis has gained growing interest. Different stages of liver fibrosis were induced in Wistar rats by intraperitoneally administering different doses of carbon tetrachloride. The liver fibrosis degree was conventionally determined by means of histological examination. An open-photoacoustic-cell (OPC) technique for the assessment of liver fibrosis was developed and is reported here. The OPC technique is based on the fact that the thermal diffusivity can be accurately measured by photoacoustics taking into consideration the photoacoustic signal amplitude versus the modulation frequency. This technique measures directly the heat generated in a sample, due to non-radiative de-excitation processes, following the absorption of light. The thermal diffusivity was measured with a home-made open-photoacoustic-cell system that was specially designed to perform the measurement from ex vivo liver samples. The human liver tissue showed a significant increase in the thermal diffusivity depending on the fibrosis stage. Specifically, liver samples from rats exhibiting hepatic fibrosis showed a significantly higher value of the thermal diffusivity than for control animals.

  15. Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice

    PubMed Central

    Oliveira-Junior, Manoel Carneiro; Assumpção-Neto, Erasmo; Brandão-Rangel, Maysa Alves Rodrigues; Damaceno-Rodrigues, Nilsa Regina; Garcia Caldini, Elia; Velosa, Ana Paula Pereira; Teodoro, Walcy Rosolia; Ligeiro de Oliveira, Ana Paula; Dolhnikoff, Marisa; Eickelberg, Oliver; Vieira, Rodolfo Paula

    2016-01-01

    Introduction The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c). Methods BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX); (n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). Results At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01), (IL-1β; p<0.001), (IL-5; p<0.01), (IL-6; p<0.001), (IL-13; p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). Conclusion AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15–44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model. PMID:27677175

  16. Diffuse intralobular liver fibrosis in dogs naturally infected with Leishmania (Leishmania) chagasi.

    PubMed

    Melo, Ferdinan; Amaral, Marina; Oliveira, Patricia; Lima, Wanderson; Andrade, Marina; Michalick, Marilene; Raso, Pedro; Tafuri, Washington; Tafuri, Wagner

    2008-08-01

    The aim of this study was to evaluate the diffuse intralobular fibrosis in dogs naturally infected with Leishmania (Leishmania) chagasi. One hundred five infected animals with positive serologic tests for Leishmania were divided into two clinical groups: 69 symptomatic animals and 36 asymptomatic. Special staining with Gomori, Heidenhain, Silver, and Picrosirius Red was applied to characterize fibrilopoesis. The tissue parasite load was measured by immunohistochemistry and associated histomorphometric analyses. Intralobular fibrosis was observed in all dogs, and more collagen deposition was confirmed in the infected animals than in the controls by these histomorphometric studies. There were significant differences among the distinct clinical groups. In fact, symptomatic dogs showed an increased collagen deposition in the liver compared with asymptomatic ones. A peculiar diffuse intralobular fibrosis, where the collagen fibers encircled small groups of hepatocyte(s), was observed in two cases (1.9%).

  17. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis.

    PubMed

    Westra, Inge M; Mutsaers, Henricus A M; Luangmonkong, Theerut; Hadi, Mackenzie; Oosterhuis, Dorenda; de Jong, Koert P; Groothuis, Geny M M; Olinga, Peter

    2016-09-01

    Liver fibrosis is the progressive accumulation of connective tissue ultimately resulting in loss of organ function. Currently, no effective antifibrotics are available due to a lack of reliable human models. Here we investigated the fibrotic process in human precision-cut liver slices (PCLS) and studied the efficacy of multiple putative antifibrotic compounds. Our results demonstrated that human PCLS remained viable for 48h and the early onset of fibrosis was observed during culture, as demonstrated by an increased gene expression of Heat Shock Protein 47 (HSP47) and Pro-Collagen 1A1 (PCOL1A1) as well as increased collagen 1 protein levels. SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (MAPK) showed a marked decrease in HSP47 and PCOL1A1 gene expression, whereas specific inhibitors of Smad 3 and Rac-1 showed no or only minor effects. Regarding the studied antifibrotics, gene levels of HSP47 and PCOL1A1 could be down-regulated with sunitinib and valproic acid, while PCOL1A1 expression was reduced following treatment with rosmarinic acid, tetrandrine and pirfenidone. These results are in contrast with prior data obtained in rat PCLS, indicating that antifibrotic drug efficacy is clearly species-specific. Thus, human PCLS is a promising model for liver fibrosis. Moreover, MAPK signaling plays an important role in the onset of fibrosis in this model and transforming growth factor beta pathway inhibitors appear to be more effective than platelet-derived growth factor pathway inhibitors in halting fibrogenesis in PCLS.

  18. Predictors for advanced fibrosis in morbidly obese non-alcoholic fatty liver patients

    PubMed Central

    Zelber-Sagi, Shira; Shoham, Dafna; Zvibel, Isabel; Abu-Abeid, Subhi; Shibolet, Oren; Fishman, Sigal

    2017-01-01

    AIM To investigate predictors for fibrosis specifically in a high risk population of morbidly obese patients, including detailed evaluation of lifestyle. METHODS We conducted a cross-sectional study among morbidly obese patients attending the bariatric clinic at the Tel-Aviv Medical Center between the years 2013-2014 with body mass index (BMI) above 40 or above 35 with co-morbidity. Patients with serum hepatitis B surface antigen or anti-hepatitis C virus antibodies, genetic liver diseases, autoimmune disease or high alcohol intake (≥ 30 g/d in men or ≥ 20 g/d in women) were excluded from the study. Liver fibrosis was estimated by transient elastography (FibroScan®), using the ‘‘XL’’ probe. We collected data on age and gender, education, smoking status and amount, medical history, nutrition and lifestyle habits. All these data were collected using structured and validated questionnaires. Fasting blood test were available for a subsample. RESULTS Fibroscan was performed on a total of 91 patients, of which 77 had a valid examination according to the accepted criteria. Of those, 21% had significant fibrosis (F2) and 39% had advanced or severe fibrosis (F3 or F4). In multivariate analysis, male gender and BMI had a positive association with advanced fibrosis; the OR for fibrosis F ≥ 2 was 7.93 (95%CI: 2.36-26.64, P = 0.001) for male gender and 1.33 (1.11-1.60 kg/m2, P = 0.002) for BMI. The OR for fibrosis F ≥ 3 was 2.92 (1.08-7.91, P = 0.035) for male gender and 1.17 (1.03-1.33, P = 0.018) for BMI. Subjects were categorized to subgroups based on the combination of male gender and BMI of 40 and above. A significant dose response association with stiffness level was noted across these categories, with the highest stiffness among men with a higher BMI (P = 0.001). In addition, a significant positive correlation between pack-years cigarette smoking and liver stiffness was demonstrated among men (r = 0.54, P = 0.012). CONCLUSION In the morbidly obese

  19. The Deficiency of Indoleamine 2,3-Dioxygenase Aggravates the CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Ogiso, Hideyuki; Ito, Hiroyasu; Ando, Tatsuya; Arioka, Yuko; Kanbe, Ayumu; Ando, Kazuki; Ishikawa, Tetsuya; Saito, Kuniaki; Hara, Akira; Moriwaki, Hisataka; Shimizu, Masahito; Seishima, Mitsuru

    2016-01-01

    In the present study, we examined the role of indoleamine 2,3-dioxygenase (IDO) in the development of CCl4-induced hepatic fibrosis. The liver fibrosis induced by repetitive administration with CCl4 was aggravated in IDO-KO mice compared to WT mice. In IDO-KO mice treated with CCl4, the number of several inflammatory cells and the expression of pro-inflammatory cytokines increased in the liver. In the results, activated hepatic stellate cells (HSCs) and fibrogenic factors on HSCs increased after repetitive CCl4 administration in IDO-KO mice compared to WT mice. Moreover, the treatment with l-tryptophan aggravated the CCl4-induced hepatic fibrosis in WT mice. Our findings demonstrated that the IDO deficiency enhanced the inflammation in the liver and aggravated liver fibrosis in repetitive CCl4-treated mice. PMID:27598994

  20. Traditional Herbal Medicine Use Associated with Liver Fibrosis in Rural Rakai, Uganda

    PubMed Central

    Auerbach, Brandon J.; Reynolds, Steven J.; Lamorde, Mohammed; Merry, Concepta; Kukunda-Byobona, Collins; Ocama, Ponsiano; Semeere, Aggrey S.; Ndyanabo, Anthony; Boaz, Iga; Kiggundu, Valerian; Nalugoda, Fred; Gray, Ron H.; Wawer, Maria J.; Thomas, David L.; Kirk, Gregory D.; Quinn, Thomas C.; Stabinski, Lara

    2012-01-01

    Background Traditional herbal medicines are commonly used in sub-Saharan Africa and some herbs are known to be hepatotoxic. However little is known about the effect of herbal medicines on liver disease in sub-Saharan Africa. Methods 500 HIV-infected participants in a rural HIV care program in Rakai, Uganda, were frequency matched to 500 HIV-uninfected participants. Participants were asked about traditional herbal medicine use and assessed for other potential risk factors for liver disease. All participants underwent transient elastography (FibroScan®) to quantify liver fibrosis. The association between herb use and significant liver fibrosis was measured with adjusted prevalence risk ratios (adjPRR) and 95% confidence intervals (CI) using modified Poisson multivariable logistic regression. Results 19 unique herbs from 13 plant families were used by 42/1000 of all participants, including 9/500 HIV-infected participants. The three most-used plant families were Asteraceae, Fabaceae, and Lamiaceae. Among all participants, use of any herb (adjPRR = 2.2, 95% CI 1.3–3.5, p = 0.002), herbs from the Asteraceae family (adjPRR = 5.0, 95% CI 2.9–8.7, p<0.001), and herbs from the Lamiaceae family (adjPRR = 3.4, 95% CI 1.2–9.2, p = 0.017) were associated with significant liver fibrosis. Among HIV infected participants, use of any herb (adjPRR = 2.3, 95% CI 1.0–5.0, p = 0.044) and use of herbs from the Asteraceae family (adjPRR = 5.0, 95% CI 1.7–14.7, p = 0.004) were associated with increased liver fibrosis. Conclusions Traditional herbal medicine use was independently associated with a substantial increase in significant liver fibrosis in both HIV-infected and HIV-uninfected study participants. Pharmacokinetic and prospective clinical studies are needed to inform herb safety recommendations in sub-Saharan Africa. Counseling about herb use should be part of routine health counseling and counseling of HIV-infected persons in Uganda

  1. Ethanol and High Cholesterol Diet Causes Severe Steatohepatitis and Early Liver Fibrosis in Mice

    PubMed Central

    Krishnasamy, Yasodha; Ramshesh, Venkat K.; Gooz, Monika; Schnellmann, Rick G.; Lemasters, John J.; Zhong, Zhi

    2016-01-01

    Background and Aim Because ethanol consumption is commonly associated with a high cholesterol diet, we examined whether combined consumption of ethanol and high cholesterol increases liver injury and fibrosis. Methods Male C57BL/6J mice were fed diets containing: 1) 35% of calories from corn oil (CTR), 2) CTR plus 0.5% (w/v) cholesterol (Chol), 3) CTR plus ethanol (27% of calories) (EtOH), or 4) EtOH+Chol for 3 months. Results In mice fed Chol or EtOH alone, ALT increased to ~160 U/L, moderate hepatic steatosis occurred, and leukocyte infiltration, necrosis, and apoptosis increased modestly, but no observable fibrosis developed. By contrast in mice fed EtOH+Chol, ALT increased to ~270 U/L, steatosis was more extensive and mostly macrovesicular, and expression of proinflammatory molecules (HMGB-1, TLR4, TNFα, ICAM-1) and leukocyte infiltration increased substantially. Necrosis and apoptosis also increased. Trichrome staining and second harmonic generation microscopy revealed hepatic fibrosis. Fibrosis was mostly sinusoidal and/or perivenular, but in some mice bridging fibrosis occurred. Expression of smooth muscle α-actin and TGF-β1 increased slightly by Chol, moderately by EtOH, and markedly by EtOH+Chol. TGF-β pseudoreceptor BAMBI increased slightly by Chol, remained unchanged by EtOH and decreased by EtOH+Chol. MicroRNA-33a, which enhances TGF-β fibrotic effects, and phospho-Smad2/3, the down-stream signal of TGF-β, also increased more greatly by EtOH+Chol than Chol or EtOH. Metalloproteinase-2 and -9 were decreased only by EtOH+Chol. Conclusion High dietary cholesterol and chronic ethanol consumption synergistically increase liver injury, inflammation, and profibrotic responses and suppress antifibrotic responses, leading to severe steatohepatitis and early fibrosis in mice. PMID:27676640

  2. Procollagen C-Proteinase Enhancer 1 (PCPE-1) as a Plasma Marker of Muscle and Liver Fibrosis in Mice

    PubMed Central

    Hassoun, Eyal; Safrin, Mary; Ziv, Hana; Pri-Chen, Sarah; Kessler, Efrat

    2016-01-01

    Current non-invasive diagnostic methods of fibrosis are limited in their ability to identify early and intermediate stages of fibrosis and assess the efficacy of therapy. New biomarkers of fibrosis are therefore constantly sought for, leading us to evaluate procollagen C-proteinase enhancer 1 (PCPE-1), a fibrosis-related extracellular matrix glycoprotein, as a plasma marker of fibrosis. A sandwich ELISA that permitted accurate measurements of PCPE-1 concentrations in mouse plasma was established. Tissue fibrosis was assessed using histochemical, immunofluorescence, and immunoblotting analyses for type I collagen and PCPE-1. The normal plasma concentration of PCPE-1 in 6 weeks to 4 months old mice was ~200 ng/ml (189.5 ± 11.3 to 206.8 ± 13.8 ng/ml). PCPE-1 plasma concentrations in four and 8.5 months old mdx mice displaying fibrotic diaphragms increased 27 and 40% respectively relatively to age-matched control mice, an increase comparable to that of the N-propeptide of procollagen type III (PIIINP), a known blood marker of fibrosis. PCPE-1 plasma levels in mice with CCl4-induced liver fibrosis increased 34 to 50% relatively to respective controls and reflected the severity of the disease, namely increased gradually during the progression of fibrosis and went down to basal levels during recovery, in parallel to changes in the liver content of collagen I and PCPE-1. The results favor PCPE-1 as a potential new clinically valuable fibrosis biomarker. PMID:27458976

  3. Hepatic fibrosis and factors associated with liver stiffness in HIV mono-infected individuals

    PubMed Central

    Ferenci, Tamás; Makara, Mihály; Horváth, Gábor; Szlávik, János; Rupnik, Zsófia; Kormos, Luca; Gerlei, Zsuzsanna; Sulyok, Zita; Vályi-Nagy, István

    2017-01-01

    Background Liver disease has become an important cause of morbidity and mortality even in those HIV-infected individuals who are devoid of hepatitis virus co-infection. The aim of this study was to evaluate the degree of hepatic fibrosis and the role of associated factors using liver stiffness measurement in HIV mono-infected patients without significant alcohol intake. Methods We performed a cross-sectional study of 101 HIV mono-infected patients recruited prospectively from March 1, 2014 to October 30, 2014 at the Center for HIV, St István and St László Hospital, Budapest, Hungary. To determine hepatic fibrosis, liver stiffness was measured with transient elastography. Demographic, immunologic and other clinical parameters were collected to establish a multivariate model. Bayesian Model Averaging (BMA) was performed to identify predictors of liver stiffness. Results Liver stiffness ranged from 3.0–34.3 kPa, with a median value of 5.1 kPa (IQR 1.7). BMA provided a very high support for age (Posterior Effect Probability-PEP: 84.5%), moderate for BMI (PEP: 49.3%), CD4/8 ratio (PEP: 44.2%) and lipodystrophy (PEP: 44.0%). For all remaining variables, the model rather provides evidence against their effect. These results overall suggest that age and BMI have a positive association with LS, while CD4/8 ratio and lipodystrophy are negatively associated. Discussion Our findings shed light on the possible importance of ageing, overweight and HIV-induced immune dysregulation in the development of liver fibrosis in the HIV-infected population. Nonetheless, further controlled studies are warranted to clarify causal relations. PMID:28097068

  4. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis.

    PubMed

    Lin, Ts-Ting; Gao, Dong-Yu; Liu, Ya-Chi; Sung, Yun-Chieh; Wan, Dehui; Liu, Jia-Yu; Chiang, Tsaiyu; Wang, Liying; Chen, Yunching

    2016-01-10

    Sorafenib is a tyrosine kinase inhibitor that has recently been shown to be a potential antifibrotic agent. However, a narrow therapeutic window limits the clinical use and therapeutic efficacy of sorafenib. Herein, we have developed and optimized nanoparticle (NP) formulations prepared from a mixture of poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers with poly(lactic-co-glycolic acid) (PLGA) for the systemic delivery of sorafenib into the fibrotic livers of CCl4-induced fibrosis mouse models. We characterized and compared the pharmaceutical and biological properties of two different PLGA nanoparticles (NPs)--PEG-PLGA NPs (PEG-PLGA/PLGA=10/0) and PEG-PLGA/PLGA NPs (PEG-PLGA/PLGA=5/5). Increasing the PLGA content in the PEG-PLGA/PLGA mixture led to increases in the particle size and drug encapsulation efficacy and a decrease in the drug release rate. Both PEG-PLGA and PEG-PLGA/PLGA NPs significantly prolonged the blood circulation of the cargo and increased the uptake by the fibrotic livers. The systemic administration of PEG-PLGA or PEG-PLGA/PLGA NPs containing sorafenib twice per week for a period of 4 weeks efficiently ameliorated liver fibrosis, as indicated by decreased α-smooth muscle actin (α-SMA) content and collagen production in the livers of CCl4-treated mice. Furthermore, sorafenib-loaded PLGA NPs significantly shrank the abnormal blood vessels and decreased microvascular density (MVD), leading to vessel normalization in the fibrotic livers. In conclusion, our results reflect the clinical potential of sorafenib-loaded PLGA NPs for the prevention and treatment of liver fibrosis.

  5. Quantitative Estimation of the Amount of Fibrosis in the Rat Liver Using Fractal Dimension of the Shape of Power Spectrum

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun

    1995-05-01

    This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.

  6. Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis.

    PubMed

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe; Melander, Maria C; Vainer, Ben; Egerod, Kristoffer L; Hald, Andreas; Rønø, Birgitte; Madsen, Charlotte A; Bugge, Thomas H; Engelholm, Lars H; Behrendt, Niels

    2012-05-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180-deficient mice and littermate wild-type mice by chronic CCl(4) administration. A strong up-regulation of uPARAP/Endo180 was observed in wild-type mice, and a quantitative comparison of collagen deposits in the two groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading components. This function of uPARAP/Endo180 defines a novel role of intracellular collagen turnover in fibrosis protection.

  7. Diagnostic value of optimised real-time sonoelastography in the assessment of liver fibrosis in chronic hepatitis B and C

    PubMed Central

    Filipczak, Krzysztof; Bieńkiewicz, Małgorzata; Deroń, Wojciech; Deroń, Zbigniew; Piekarska, Anna; Płachcińska, Anna; Kuśmierek, Jacek

    2016-01-01

    Aim To optimise the method of real-time elastography (RTE) in the assessment of liver fibrosis using an in-house prepared method for elastogram analysis, as well as a semiquantitative analysis based on newly introduced parameters. Material and methods Sonoelastography was performed in 94 patients with various degrees of liver fibrosis and also in 25 healthy volunteers. As a reference method for diagnostic efficacy of sonoelastography-based parameters used for the assessment of fibrosis degree in patients with chronic B and C hepatitis, a liver biopsy was used. Patient’s elastograms were analysed using in-house prepared software, Pixel Count, calculating two semiquantitative parameters: mean stiffness fraction (MSF%) and intrinsic stiffness ratio (ISR). Results Statistically significant differences between distributions of the above presented parameters for different degrees of liver fibrosis were revealed. Indices of diagnostic efficacy for detection of significant liver fibrosis (F ≥ 2) using MSF% amounted to: sensitivity – 76%, specificity – 87% and ISR: 81% and 87%, respectively. Sensitivity of both parameters in detection of cirrhosis (F = 4) was equal to 88% and specificity amounted to: for MSF% – 84% and ISR – 86%. Interobserver reproducibility determined for both of the above parameters was high, intraclass correlation coefficients (ICC) were 0.91 for MSF% and 0.93 for ISR. Conclusions Real-time elastography applied in this study, using in-house prepared Pixel Count software, provided good reproducibility and diagnostic efficacy, especially specificity, in the assessment of liver fibrosis degree.

  8. Personalized management of cirrhosis by non-invasive tests of liver fibrosis

    PubMed Central

    Wong, Grace Lai-Hung; Espinosa, Wendell Zaragoza

    2015-01-01

    Owing to the high prevalence of various chronic liver diseases, cirrhosis is one of the leading causes of morbidity and mortality worldwide. In recent years, the development of non-invasive tests of fibrosis allows accurate diagnosis of cirrhosis and reduces the need for liver biopsy. In this review, we discuss the application of these non-invasive tests beyond the diagnosis of cirrhosis. In particular, their role in the selection of patients for hepatocellular carcinoma surveillance and varices screening is highlighted. PMID:26523265

  9. Impact of OAS1 Exon 7 rs10774671 Genetic Variation on Liver Fibrosis Progression in Egyptian HCV Genotype 4 Patients.

    PubMed

    Bader El Din, Noha G; Anany, Mohamed A; Dawood, Reham M; Ibrahim, Marwa K; El-Shenawy, Reem; El Abd, Yasmin S; El Awady, Mostafa K

    2015-11-01

    The aim of this study was to assess the impact of genetic variants of oligoadenylate synthetase 1 (OAS1) single-nucleotide polymorphism (SNP) rs10774671 at the exon 7 splice acceptor site on liver fibrosis progression and hepatitis C virus (HCV) outcome in Egyptian HCV genotype 4 patients. In this study, 195 subjects were enrolled; 60 controls and 135 chronic HCV genotype 4 patients with different fibrosis grades. All subjects were genotyped for OAS1 SNP rs10774671 polymorphism by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. There was an increasing trend of liver fibrosis progression as 52.9% GG, 73.6% GA, and 83.3% AA genotypes were detected in late fibrosis patients (p = 0.025). The AA genotype was higher in the late fibrosis group than in the early fibrosis group (83.3% vs. 16.7%) (p = 0.001). The A allele was significantly affecting the liver fibrosis progression rate, more than the G allele (p = 0.001). The multivariate analysis showed that the OAS1 GA and AA genotypes were independent factors associated with liver progression (p = 0.009, odds ratio [OR] 3.467, 95% confidence interval [CI] 1.273-7.584). In addition, the A allele was associated with liver fibrosis progression (p = 0.014, OR 2.525, 95% CI 1.157-4.545). The polymorphism at OAS1 exon 7 rs3741981 might be a potential genetic marker and can be useful in the assessment of liver fibrosis progression and disease outcome in HCV-infected patients.

  10. Lymphocyte subset characterization associated with persistent hepatitis C virus infection and subsequent progression of liver fibrosis.

    PubMed

    Yoshida, Kengo; Ohishi, Waka; Nakashima, Eiji; Fujiwara, Saeko; Akahoshi, Masazumi; Kasagi, Fumiyoshi; Chayama, Kazuaki; Hakoda, Masayuki; Kyoizumi, Seishi; Nakachi, Kei; Hayashi, Tomonori; Kusunoki, Yoichiro

    2011-10-01

    This study aims to deepen the understanding of lymphocyte phenotypes related to the course of hepatitis C virus (HCV) infection and progression of liver fibrosis in a cohort of atomic bomb survivors. The study subjects comprise 3 groups: 162 HCV persistently infected, 145 spontaneously cleared, and 3,511 uninfected individuals. We observed increased percentages of peripheral blood T(H)1 and total CD8 T cells and decreased percentages of natural killer (NK) cells in the HCV persistence group compared with the other 2 groups after adjustment for age, gender, and radiation exposure dose. Subsequently, we determined that increased T(H)1 cell percentages in the HCV persistence group were significantly associated with an accelerated time-course reduction in platelet counts-accelerated progression of liver fibrosis-whereas T(C)1 and NK cell percentages were inversely associated with progression. This study suggests that T(H)1 immunity is enhanced by persistent HCV infection and that percentages of peripheral T(H)1, T(C)1, and NK cells may help predict progression of liver fibrosis.

  11. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis.

    PubMed

    Bingül, İlknur; Başaran-Küçükgergin, Canan; Aydın, A Fatih; Çoban, Jale; Doğan-Ekici, Işın; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-07-01

    The aim of this study was to investigate the effect of betaine (BET) on alcoholic liver fibrosis in rats. Fibrosis was experimentally generated with ethanol plus carbon tetrachloride (ETH+CCl4) treatment. Rats were treated with ETH (5% v/v in drinking water) for 14 weeks. CCl4 was administered intraperitoneally (i.p.) 0.2mL/kg twice a week to rats in the last 6 weeks with/without commercial food containing BET (2% w/w). Serum hepatic damage markers, tumor necrosis factor-α, hepatic triglyceride (TG) and hydroxyproline (HYP) levels, and oxidative stress parameters were measured together with histopathologic observations. In addition, α-smooth muscle-actin (α-SMA), transforming growth factor-β1 (TGF-β1) and type I collagen (COL1A1) protein expressions were assayed immunohistochemically to evaluate stellate cell (HSC) activation. mRNA expressions of matrix metalloproteinase-2 (MMP-2) and its inhibitors (TIMP-1 and TIMP-2) were also determined. BET treatment diminished TG and HYP levels; prooxidant status and fibrotic changes; α-SMA, COL1A1 and TGF-β protein expressions; MMP-2, TIMP-1 and TIMP-2 mRNA expressions in the liver of fibrotic rats. In conclusion, these results indicate that the antifibrotic effect of BET may be related to its suppressive effects on oxidant and inflammatory processes together with HSC activation in alcoholic liver fibrosis.

  12. Toll-like receptor 7-mediated Type I Interferon signaling prevents cholestasis- and hepatotoxin-induced liver fibrosis

    PubMed Central

    Roh, Yoon Seok; Park, Surim; Kim, Jong Won; Lim, Chae Woong; Seki, Ekihiro; Kim, Bumseok

    2014-01-01

    Toll-like receptor 7 (TLR7) signaling predominantly regulates production of type I Interferons (IFNs), which has been suggested in clinical studies to be anti-fibrotic. However, the mechanistic role of the TLR7-type I IFN axis in liver fibrosis has not been elucidated. In the present study, liver fibrosis was induced in wild-type (WT), TLR7-deficient, and IFN-α/β receptor-1 (IFNAR1)-deficient mice and TLR7-mediated signaling was assessed in liver cells isolated from these mice. TLR7-deficient and IFNAR1-deficient mice were more susceptible to liver fibrosis than WT mice, indicating that TLR7-type I IFN signaling exerts a protective effect against liver fibrosis. Notably, the hepatic expression of IL-1ra was suppressed in TLR7- or IFNAR1-deficient mice compared with respective WT mice, and treatment with recombinant IL-1ra reduced liver fibrosis. In vivo activation of TLR7 significantly increased IFNa4 and IL-1ra expression in the liver. Interestingly, each cytokine had different cellular source showing that dendritic cells (DCs) are responsible cell type for production of type I IFN, while Kupffer cells (KCs) mainly produce IL-1ra in response to type I IFN. Furthermore, TLR7 activation by R848 injection suppressed liver fibrosis and production of pro-inflammatory cytokines, and these effects were dependent on type I IFN signaling. Consistent with in vivo data, IFNα significantly induced IL-1ra production in primary KCs. Conclusions TLR7 signaling activates DCs to produce type I IFN, which in turn induces anti-fibrogenic IL-1ra production in KCs. Thus, manipulation of the TLR7-type I IFN-IL-1ra axis may be a new therapeutic strategy for the treatment of liver fibrosis. PMID:24375615

  13. Monocyte Chemoattractant Protein-1 (MCP-1) as a Potential Therapeutic Target and a Noninvasive Biomarker of Liver Fibrosis Associated With Transient Myeloproliferative Disorder in Down Syndrome.

    PubMed

    Kobayashi, Kenichiro; Yoshioka, Takako; Miyauchi, Jun; Nakazawa, Atsuko; Yamazaki, Shigeaki; Ono, Hiromi; Tatsuno, Michiko; Iijima, Kenta; Takahashi, Chiaki; Okada, Yoko; Teranishi, Kenji; Matsunaga, Takaaki; Matsushima, Chieko; Inagaki, Mayo; Suehiro, Minoru; Suehiro, Saori; Nishitani, Masahiko; Kubota, Hirohito; Iio, Jun; Nishida, Yoshinobu; Katayama, Tetsuo; Takada, Narito; Watanabe, Kentaro; Yamamoto, Tetsuro; Yasumizu, Ryoji; Matsuoka, Kentaro; Ohki, Kentaro; Kiyokawa, Nobutaka; Maihara, Toshiro; Usami, Ikuya

    2017-03-06

    Liver fibrosis is one of the common complications of transient myeloproliferative disorder (TMD) in Down syndrome (DS), but the exact molecular pathogenesis is largely unknown. We herein report a neonate of DS with liver fibrosis associated with TMD, in which we performed the serial profibrogenic cytokines analyses. We found the active monocyte chemoattractant protein-1 expression in the affected liver tissue and also found that both serum and urinary monocyte chemoattractant protein-1 concentrations are noninvasive biomarkers of liver fibrosis. We also showed a prospective of the future anticytokine therapy with herbal medicine for the liver fibrosis associated with TMD in DS.

  14. Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis

    PubMed Central

    Kim, Myung-Deok; Kim, Sung-Soo; Cha, Hyun-Young; Jang, Seung-Hun; Chang, Da-Young; Kim, Wookhwan; Suh-Kim, Haeyoung; Lee, Jae-Ho

    2014-01-01

    Bone marrow-derived mesenchymal stromal cells (MSCs) have been reported to be beneficial for the treatment of liver fibrosis. Here, we investigated the use of genetically engineered MSCs that overexpress hepatocyte growth factor (HGF) as a means to improve their therapeutic effect in liver fibrosis. Liver fibrosis was induced by intraperitoneal injection of dimethylnitrosamine. HGF-secreting MSCs (MSCs/HGF) were prepared by transducing MSCs with an adenovirus carrying HGF-encoding cDNA. MSCs or MSCs/HGF were injected directly into the spleen of fibrotic rats. Tissue fibrosis was assessed by histological analysis 12 days after stem cell injection. Although treatment with MSCs reduced fibrosis, treatment with MSCs/HGF produced a more significant reduction and was associated with elevated HGF levels in the portal vein. Collagen levels in the liver extract were decreased after MSC/HGF therapy, suggesting recovery from fibrosis. Furthermore, liver function was improved in animals receiving MSCs/HGF, indicating that MSC/HGF therapy resulted not only in reduction of liver fibrosis but also in improvement of hepatocyte function. Assessment of cell and biochemical parameters revealed that mRNA levels of the fibrogenic cytokines PDGF-bb and TGF-β1 were significantly decreased after MSC/HGF therapy. Subsequent to the decrease in collagen, expression of matrix metalloprotease-9 (MMP-9), MMP-13, MMP-14 and urokinase-type plasminogen activator was augmented following MSC/HGF, whereas tissue inhibitor of metalloprotease-1 (TIMP-1) expression was reduced. In conclusion, therapy with MSCs/HGF resulted in an improved therapeutic effect compared with MSCs alone, probably because of the anti-fibrotic activity of HGF. Thus, MSC/HGF represents a promising approach toward a cell therapy for liver fibrosis. PMID:25145391

  15. Non-invasive assessment of liver fibrosis in a rat model: shear wave elasticity imaging versus real-time elastography.

    PubMed

    Lin, Sen-Hao; Ding, Hong; Mao, Feng; Xue, Li-Yun; Lv, Wei-Wei; Zhu, Hong-Guang; Huang, Bei-Jian; Wang, Wen-Ping

    2013-07-01

    The purpose of this study was to investigate the diagnostic value of shear wave elasticity imaging (SWEI) and real-time elastography (RTE) in liver fibrosis induced by dimethylnitrosamine (DMN) and to compare the accuracy of these methods. Seventy male Wistar rats given a single intra-peritoneal injection of DMN and 10 control rats given a saline injection underwent SWEI and RTE to determine their shear wave velocity (V(s)) and liver fibrosis (LF) index, respectively. Correlations between V(s) or the LF index and histologic stage of liver fibrosis (S0-S4) were analyzed, and the diagnostic values of the techniques were assessed using a receiver operating characteristic curve. A positive correlation was found between V(s) and stage of liver fibrosis (r = 0.947, p < 0.001) and between LF index and stage (S) of liver fibrosis (r = 0.662, p < 0.001). For Vs, the areas under the receiver operating characteristic curve for the diagnosis of fibrosis, S ≥ S1, S ≥ S2, S ≥ S3 and S = S4, were 0.983, 0.995, 0.999 and 0.964, respectively; for the LF index, the values were 0.871, 0.887, 0.761 and 0.839, respectively (all p < 0.001). Vs and the LF index values in rats with severe inflammatory activity were significantly higher than those in controls (p < 0.001). In conclusion, positive correlations exist between V(s) or the LF index and the severity of liver fibrosis in rats. Vs is more accurate than the LF index in predicting liver fibrosis in rats. However, severe inflammatory activity may reduce the accuracy of both techniques.

  16. Correlations of Hepatic Hemodynamics, Liver Function, and Fibrosis Markers in Nonalcoholic Fatty Liver Disease: Comparison with Chronic Hepatitis Related to Hepatitis C Virus.

    PubMed

    Shigefuku, Ryuta; Takahashi, Hideaki; Nakano, Hiroyasu; Watanabe, Tsunamasa; Matsunaga, Kotaro; Matsumoto, Nobuyuki; Kato, Masaki; Morita, Ryo; Michikawa, Yousuke; Tamura, Tomohiro; Hiraishi, Tetsuya; Hattori, Nobuhiro; Noguchi, Yohei; Nakahara, Kazunari; Ikeda, Hiroki; Ishii, Toshiya; Okuse, Chiaki; Sase, Shigeru; Itoh, Fumio; Suzuki, Michihiro

    2016-09-14

    The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.

  17. Correlations of Hepatic Hemodynamics, Liver Function, and Fibrosis Markers in Nonalcoholic Fatty Liver Disease: Comparison with Chronic Hepatitis Related to Hepatitis C Virus

    PubMed Central

    Shigefuku, Ryuta; Takahashi, Hideaki; Nakano, Hiroyasu; Watanabe, Tsunamasa; Matsunaga, Kotaro; Matsumoto, Nobuyuki; Kato, Masaki; Morita, Ryo; Michikawa, Yousuke; Tamura, Tomohiro; Hiraishi, Tetsuya; Hattori, Nobuhiro; Noguchi, Yohei; Nakahara, Kazunari; Ikeda, Hiroki; Ishii, Toshiya; Okuse, Chiaki; Sase, Shigeru; Itoh, Fumio; Suzuki, Michihiro

    2016-01-01

    The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully. PMID:27649152

  18. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis

    PubMed Central

    Yu, Fujun; Lu, Zhongqiu; Cai, Jing; Huang, Kate; Chen, Bicheng; Li, Guojun; Dong, Peihong; Zheng, Jianjian

    2015-01-01

    Emerging evidence shows that Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a pivotal role in cell proliferation, migration, and invasion in tumors. However, the biological role and underlying mechanism of MALAT1 in liver fibrosis remains undefined. In this study, up-regulation of MALAT1 was observed in fibrotic liver tissues and in activated hepatic stellate cells (HSCs). In addition, depletion of MALAT1 inhibited the activation of HSCs in vitro and attenuated collagen deposits in vivo. Our results demonstrated that MALAT1 expression is negatively correlated with microRNA-101b (miR-101b) expression. Furthermore, there was a negative feedback loop between the levels of MALAT1 and miR-101b. Luciferase reporter assay indicated that MALAT1 and RAS-related C3 botulinum substrate 1 (Rac1) are targets of miR-101b. We uncovered that MALAT1 regulates Rac1 expression through miR-101b as a competing endogenous RNA (ceRNA), thereby influencing the proliferation, cell cycle and activation of primary HSCs. Collectively, The ceRNA regulatory network may prompt a better understanding of liver fibrogenesis and contribute to a novel therapeutic strategy for liver fibrosis. PMID:26697839

  19. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis.

    PubMed

    Lelouvier, Benjamin; Servant, Florence; Païssé, Sandrine; Brunet, Anne-Claire; Benyahya, Salah; Serino, Matteo; Valle, Carine; Ortiz, Maria Rosa; Puig, Josep; Courtney, Michael; Federici, Massimo; Fernández-Real, José-Manuel; Burcelin, Rémy; Amar, Jacques

    2016-12-01

    The early detection of liver fibrosis among patients with nonalcoholic fatty liver disease (NAFLD) is an important clinical need. In view of the suggested role played by bacterial translocation in liver disease and obesity, we sought to investigate the relationship between blood microbiota and liver fibrosis (LF) in European cohorts of patients with severe obesity. We carried out a cross-sectional study of obese patients, well characterized with respect to the severity of the NAFLD, in the cohort FLORINASH. This cohort has been divided into a discovery cohort comprising 50 Spanish patients and then in a validation cohort of 71 Italian patients. Blood bacterial DNA was analyzed both quantitatively by 16S ribosomal DNA (rDNA) quantitative polymerase chain reaction and qualitatively by 16S rDNA targeted metagenomic sequencing and functional metagenome prediction. Spanish plasma bile acid contents were analyzed by liquid chromatography/mass spectrometry. The 16S rDNA concentration was significantly higher in patients of the discovery cohort with LF. By 16S sequencing, we found specific differences in the proportion of several bacterial taxa in both blood and feces that correlate with the presence of LF, thus defining a specific signature of the liver disease. Several secondary/primary bile acid ratios were also decreased with LF in the discovery cohort. We confirmed, in the validation cohort, the correlation between blood 16S rDNA concentration and LF, whereas we did not confirm the specific bacterial taxa signature, despite a similar trend in patients with more-severe fibrosis.

  20. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis.

    PubMed

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C; El-Cheikh, Marcia Cury

    2017-02-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte-macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  1. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis

    PubMed Central

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C.; El-Cheikh, Marcia Cury

    2017-01-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte–macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  2. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  3. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues

    NASA Astrophysics Data System (ADS)

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  4. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States

    PubMed Central

    Le, Michael H.; Devaki, Pardha; Ha, Nghiem B.; Jun, Dae Won; Te, Helen S.; Cheung, Ramsey C.

    2017-01-01

    In the United States, non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and associated with higher mortality according to data from earlier National Health and Nutrition Examination Survey (NHANES) 1988–1994. Our goal was to determine the NAFLD prevalence in the recent 1999–2012 NHANES, risk factors for advanced fibrosis (stage 3–4) and mortality. NAFLD was defined as having a United States Fatty Liver Index (USFLI) > 30 in the absence of heavy alcohol use and other known liver diseases. The probability of low/high risk of having advanced fibrosis was determined by the NAFLD Fibrosis Score (NFS). In total, 6000 persons were included; of which, 30.0% had NAFLD and 10.3% of these had advanced fibrosis. Five and eight-year overall mortality in NAFLD subjects with advanced fibrosis was significantly higher than subjects without NAFLD ((18% and 35% vs. 2.6% and 5.5%, respectively) but not NAFLD subjects without advanced fibrosis (1.1% and 2.8%, respectively). NAFLD with advanced fibrosis (but not those without) is an independent predictor for mortality on multivariate analysis (HR = 3.13, 95% CI 1.93–5.08, p<0.001). In conclusion, in this most recent NHANES, NAFLD prevalence remains at 30% with 10.3% of these having advanced fibrosis. NAFLD per se was not a risk factor for increased mortality, but NAFLD with advanced fibrosis was. Mexican American ethnicity was a significant risk factor for NAFLD but not for advanced fibrosis or increased mortality. PMID:28346543

  5. The Effects of Angiotensin Blocking Agents on the Progression of Liver Fibrosis in the HALT-C Trial Cohort

    PubMed Central

    Abu Dayyeh, Barham K.; Yang, May; Dienstag, Jules L.

    2011-01-01

    Background Therapies that can slow the progression of liver fibrosis in chronic liver disease are needed. Evidence suggests that the renin-angiotensin system (RAS) contributes to inflammation and fibrosis in chronic liver disease. Both animal and limited human studies have shown that RAS inhibition with angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor-1 [AT-1] blockers (ARBs) has antifibrogenic properties. Aims In this study, we evaluated the effects of continuous ACEi/ARB use for 3.5 years on histological liver fibrosis progression in the HALT-C Trial cohort. Methods In the HALT-C Trial, subjects with chronic hepatitis C and advanced hepatic fibrosis (Ishak stage ≥3) underwent serial liver biopsies at baseline, 1.5 years, and 3.5 years after randomization. The primary outcome was a ≥2-point increase in Ishak fibrosis score in at least one of the two serial biopsies. Sixty-six subjects were continuously taking ACEi/ARBs over the observation period, 126 were taking other antihypertensive medications, and 343 subjects took no antihypertensive medications. Results The three groups were similar in baseline fibrosis scores, and the two groups being treated with antihypertensives were taking a similar number of antihypertensive medications. Fibrosis progression occurred in 33.3% of the ACEi/ARB group, 32.5% of the other antihypertensive medications group, and in 25.7% of subjects taking no antihypertensive medications. No significant associations between ≥2-point increases in fibrosis scores and continuous ACEi/ARB use were apparent at either 1.5 or 3.5 years in diabetes-adjusted and unadjusted odds ratios. Conclusions ACEi/ARB therapy did not retard the progression of hepatic fibrosis. PMID:21136163

  6. Changes in Noninvasive Liver Fibrosis Indices and Spleen Size During Chemotherapy

    PubMed Central

    Park, Sehhoon; Kim, Hwi Young; Kim, Haeryoung; Park, Jin Hyun; Kim, Jung Ho; Kim, Ki Hwan; Kim, Won; Choi, In Sil; Jung, Yong Jin; Kim, Jin-Soo

    2016-01-01

    Abstract Oxaliplatin-based regimens are standard treatments for the patients with colorectal cancer (CRC) and advanced gastric cancer (AGC). However, owing to hepatic sinusoidal obstruction syndrome (SOS), the use of oxaliplatin sometimes results in splenomegaly. The aim of the present study was to evaluate the correlation between chemotherapy-associated changes of noninvasive liver fibrosis indices and volumetric changes of the spleen. From February 2004 to April 2014, patients with CRC or AGC receiving oxaliplatin-based chemotherapy were studied. The possibility of SOS development was evaluated before and after the oxaliplatin exposure with splenic volume index (SVI). Four different noninvasive liver fibrosis indices were used for risk analysis, namely age-platelet index (API), AST-to-platelet ratio index (APRI), platelet-to-spleen ratio (PSR), and fibrosis-4 score (FIB-4). A total of 275 patients were eligible for evaluation: 200 patients had CRC and 75 patients had AGC. Using the cutoff of SVI increase ≥ 0.3, 113 patients (41.1%) were positive for splenomegaly. The changes of indices significantly correlated with SVI increase. Adjusted odds ratios for those indices were as follows: API = 1.16 (95% confidential interval [CI], 1.01–1.32; P = .03); APRI = 2.45 (95% CI, 1.30–4.63; P = .01); PSR = 0.69 (95% CI, 0.59–0.80; P < .01); and FIB-4 = 1.37 (95% CI, 1.16–1.63; P < .01). Optimal cutoff values with statistical significance were calculated and suggested. The changes of noninvasive liver fibrosis indices showed a good correlation with the increase in the spleen volume during oxaliplatin-based chemotherapy. Validation of these indices for monitoring of oxaliplatin-induced hepatic SOS is warranted. PMID:26765438

  7. Selective activation of angiotensin AT2 receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis

    PubMed Central

    Bruce, E; Shenoy, V; Rathinasabapathy, A; Espejo, A; Horowitz, A; Oswalt, A; Francis, J; Nair, A; Unger, T; Raizada, M K; Steckelings, U M; Sumners, C; Katovich, M J

    2015-01-01

    Background and Purpose Pulmonary hypertension (PH) is a devastating disease characterized by increased pulmonary arterial pressure, which progressively leads to right-heart failure and death. A dys-regulated renin angiotensin system (RAS) has been implicated in the development and progression of PH. However, the role of the angiotensin AT2 receptor in PH has not been fully elucidated. We have taken advantage of a recently identified non-peptide AT2 receptor agonist, Compound 21 (C21), to investigate its effects on the well-established monocrotaline (MCT) rat model of PH. Experimental Approach A single s.c. injection of MCT (50 mg·kg−1) was used to induce PH in 8-week-old male Sprague Dawley rats. After 2 weeks of MCT administration, a subset of animals began receiving either 0.03 mg·kg−1 C21, 3 mg·kg−1 PD-123319 or 0.5 mg·kg−1 A779 for an additional 2 weeks, after which right ventricular haemodynamic parameters were measured and tissues were collected for gene expression and histological analyses. Key Results Initiation of C21 treatment significantly attenuated much of the pathophysiology associated with MCT-induced PH. Most notably, C21 reversed pulmonary fibrosis and prevented right ventricular fibrosis. These beneficial effects were associated with improvement in right heart function, decreased pulmonary vessel wall thickness, reduced pro-inflammatory cytokines and favourable modulation of the lung RAS. Conversely, co-administration of the AT2 receptor antagonist, PD-123319, or the Mas antagonist, A779, abolished the protective actions of C21. Conclusions and Implications Taken together, our results suggest that the AT2 receptor agonist, C21, may hold promise for patients with PH. PMID:25522140

  8. Shear-Wave Elastography for the Estimation of Liver Fibrosis in Chronic Liver Disease: Determining Accuracy and Ideal Site for Measurement

    PubMed Central

    Dhyani, Manish; Vij, Abhinav; Bhan, Atul K.; Halpern, Elkan F.; Méndez-Navarro, Jorge; Corey, Kathleen E.; Chung, Raymond T.

    2015-01-01

    Purpose To evaluate the accuracy of shear-wave elastography (SWE) for staging liver fibrosis in patients with diffuse liver disease (including patients with hepatitis C virus [HCV]) and to determine the relative accuracy of SWE measurements obtained from different hepatic acquisition sites for staging liver fibrosis. Materials and Methods The institutional review board approved this single-institution prospective study, which was performed between January 2010 and March 2013 in 136 consecutive patients who underwent SWE before their scheduled liver biopsy (age range, 18–76 years; mean age, 49 years; 70 men, 66 women). Informed consent was obtained from all patients. SWE measurements were obtained at four sites in the liver. Biopsy specimens were reviewed in a blinded manner by a pathologist using METAVIR criteria. SWE measurements and biopsy results were compared by using the Spearman correlation and receiver operating characteristic (ROC) curve analysis. Results SWE values obtained at the upper right lobe showed the highest correlation with estimation of fibrosis (r = 0.41, P < .001). Inflammation and steatosis did not show any correlation with SWE values except for values from the left lobe, which showed correlation with steatosis (r = 0.24, P = .004). The area under the ROC curve (AUC) in the differentiation of stage F2 fibrosis or greater, stage F3 fibrosis or greater, and stage F4 fibrosis was 0.77 (95% confidence interval [CI]: 0.68, 0.86), 0.82 (95% CI: 0.75, 0.91), and 0.82 (95% CI: 0.70, 0.95), respectively, for all subjects who underwent liver biopsy. The corresponding AUCs for the subset of patients with HCV were 0.80 (95% CI: 0.67, 0.92), 0.82 (95% CI: 0.70, 0.95), and 0.89 (95% CI: 0.73, 1.00). The adjusted AUCs for differentiating stage F2 or greater fibrosis in patients with chronic liver disease and those with HCV were 0.84 and 0.87, respectively. Conclusion SWE estimates of liver stiffness obtained from the right upper lobe showed the best

  9. Potentials of the elevated circulating miR-185 level as a biomarker for early diagnosis of HBV-related liver fibrosis

    PubMed Central

    Li, Bin-bin; Li, Dong-liang; Chen, Chao; Liu, Bao-hai; Xia, Chun-yan; Wu, Han-jun; Wu, Chao-qun; Ji, Guo-qin; Liu, Su; Ni, Wu; Yao, Ding-kang; Zeng, Zhi-yu; Chen, Da-gui; Qin, Bao-dong; Xin, Xuan; Yan, Gang-li; Dan Tang; Liu, Hui-min; He, Jin; Yan, Hongli; Zhu, Wei-Jian; Yu, Hong-yu; Zhu, Liang

    2016-01-01

    Early diagnosis of liver fibrosis is critical for early intervention and prognosis of various chronic liver diseases. Conventional repeated histological assessment is impractical due to the associated invasiveness. In the current study, we evaluated circulating miR-185 as a potential biomarker to predict initiation and progression of liver fibrosis. We found that miR-185 was significantly up-regulated in blood specimens from patients with HBV-liver fibrosis and rats with liver fibrosis, the miR-185 levels were correlated with liver fibrosis progression, but not with the different viral loads in HBV-infected patients. miR-185 was observed in collagen deposition regions during advanced liver fibrosis. We found that differences in miR-185 levels facilitated the discrimination between early-staged or advanced-staged liver fibrosis and the healthy controls with high specificity, sensitivity, and likelihood ratio using receiver-operator characteristic analysis. miR-185 targeted SREBF1, and increased expression of COL1A1 and a-SMA genes that are hallmarks of liver fibrosis. Our data supported that circulating miR-185 levels could be used as potential biomarkers for the early diagnosis of liver fibrosis. PMID:27677421

  10. Nrf2 and Snail-1 in the prevention of experimental liver fibrosis by caffeine

    PubMed Central

    Gordillo-Bastidas, Daniela; Oceguera-Contreras, Edén; Salazar-Montes, Adriana; González-Cuevas, Jaime; Hernández-Ortega, Luis Daniel; Armendáriz-Borunda, Juan

    2013-01-01

    AIM: To determine the molecular mechanisms involved in experimental hepatic fibrosis prevention by caffeine (CFA). METHODS: Liver fibrosis was induced in Wistar rats by intraperitoneal thioacetamide or bile duct ligation and they were concomitantly treated with CFA (15 mg/kg per day). Fibrosis and inflammatory cell infiltrate were evaluated and classified by Knodell index. Inflammatory infiltrate was quantified by immunohistochemistry (anti-CD11b). Gene expression was analyzed by quantitative reverse transcription-polymerase chain reaction for collagen I (Col-1), connective tissue growth factor (CTGF), transforming growth factor β1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, superoxide dismutase (SOD) and catalase (CAT). Activation of Nrf2 and Snail-1 was analyzed by Western-blot. TNF-α expression was proved by enzyme-linked immunosorbant assay, CAT activity was performed by zymography. RESULTS: CFA treatment diminished fibrosis index in treated animals. The Knodell index showed both lower fibrosis and necroinflammation. Expression of profibrogenic genes CTGF, Col-1 and TGF-β1 and proinflammatory genes TNF-α, IL-6 and IL-1 was substantially diminished with CFA treatment with less CD11b positive areas. Significantly lower values of transcriptional factor Snail-1 were detected in CFA treated rats compared with cirrhotic rats without treatment; in contrast Nrf2 was increased in the presence of CFA. Expression of SOD and CAT was greater in animals treated with CFA showing a strong correlation between mRNA expression and enzyme activity. CONCLUSION: Our results suggest that CFA inhibits the transcriptional factor Snail-1, down-regulating profibrogenic genes, and activates Nrf2 inducing antioxidant enzymes system, preventing inflammation and fibrosis. PMID:24379627

  11. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    PubMed Central

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  12. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    SciTech Connect

    Queisser, Nina; Happ, Kathrin; Link, Samuel; Jahn, Daniel; Zimnol, Anna; Geier, Andreas; Schupp, Nicole

    2014-11-01

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure. To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid receptor and

  13. Non-invasive assessment of liver fibrosis: Between prediction/prevention of outcomes and cost-effectiveness

    PubMed Central

    Stasi, Cristina; Milani, Stefano

    2016-01-01

    The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have “grey area” values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest. PMID:26819535

  14. Phyto-power dietary supplement potently inhibits dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Lee, Ming-Fen; Tsai, Mei-Ling; Sun, Pei-Pei; Chien, Ling-Lung; Cheng, An-Chin; Ma, Nianhan Jia-Lin; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-02-26

    Curcumin has been extensively studied for its therapeutic effects in a variety of disorders. Fermented soy consumption is associated with a low incidence rate of chronic diseases in many Asian countries. The aim of this study was to investigate the potential underlying mechanisms of the effect of a phyto-power dietary supplement on liver fibrosis. Sprague-Dawley rats were intraperitoneally injected with dimethylnitrosamine (DMN; 10 mg kg(-1)) three times a week for four consecutive weeks. A phyto-power dietary supplement (50 or 100 mg kg(-1)) was administered by oral gavage daily for four weeks. Liver morphology, function, and fibrotic status were examined in DMN induced hepatic fibrogenesis. However, a phyto-power dietary supplement alleviated liver damage as indicated by histopathological examination of the α-smooth muscle actin (α-SMA) and collagen I, accompanied by the concomitant reduction of transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 2 (MMP2). These data indicate that the phyto-power dietary supplement may inhibit the TGF-β1/Smad signaling and relieve liver damage in experimental fibrosis.

  15. Liver Cirrhosis/Severe Fibrosis Is a Risk Factor for Anastomotic Leakage after Colorectal Surgery

    PubMed Central

    Hofmann, Irina; Willi, Niels; Stickel, Felix

    2016-01-01

    Purpose. Liver cirrhosis associated with high perioperative morbidity/mortality. This retrospective study determines whether liver cirrhosis represents a risk factor for anastomotic leakage after colonic anastomosis or not. Methods. Based on a prospective database with all consecutive colorectal resections performed at the authors' institution from 07/2002 to 07/2012 (n = 2104) all colonic and rectal anastomoses were identified (n = 1875). A temporary loop ileostomy was constructed in 257 cases (13.7%) either due to Mannheimer Peritonitis-Index > 29 or rectal anastomosis below 6 cm from the anal verge. More than one-third of the patients (n = 691) had postoperative contrast enema, either at the occasion of another study or prior to closure of ileostomy. The presence of liver cirrhosis and the development of anastomotic leakage were assessed by chart review. Results. The overall anastomotic leakage rate was 2.7% (50/1875). In patients with cirrhosis/severe fibrosis, the anastomotic leakage rate was 12.5% (3/24), while it was only 2.5% (47/1851) in those without (p = 0.024). The difference remained statistically significant after correction for confounding factors by multivariate analysis. Conclusion. Patients with liver cirrhosis/severe fibrosis have an increased risk of leakage after colonic anastomosis. PMID:28105046

  16. Prevention of rat liver fibrosis and carcinogenesis by coffee and caffeine.

    PubMed

    Furtado, Kelly S; Polletini, Jossimara; Dias, Marcos C; Rodrigues, Maria A M; Barbisan, Luis F

    2014-02-01

    Coffee has been inversely related to the incidence of human liver disease; however, whether caffeine is the component responsible for the beneficial effects of coffee remains controversial. This study evaluated the beneficial effects of coffee or caffeine in a medium-term bioassay for rat liver fibrosis/carcinogenesis induced by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4). One week after the DEN injection, the groups started to receive conventional coffee, instant coffee or 0.1% caffeine ad libitum for 24 weeks. The groups receiving conventional coffee or caffeine presented a significant reduction in collagen content and mRNA expression of collagen I. The groups receiving instant coffee or caffeine had a significant reduction in the size and area of pre-neoplastic lesions and in the mean number of neoplastic lesions. A significant increase in liver bax protein levels was observed in the groups receiving instant coffee or caffeine as compared to the control group. These data indicate that the most pronounced hepatoprotective effect against fibrosis was observed in the groups receiving conventional coffee and 0.1% caffeine, and the greatest effects against liver carcinogenesis were detected in the groups receiving instant coffee and 0.1% caffeine.

  17. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    PubMed Central

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  18. New Insight into the Anti-liver Fibrosis Effect of Multitargeted Tyrosine Kinase Inhibitors: From Molecular Target to Clinical Trials

    PubMed Central

    Qu, Kai; Huang, Zichao; Lin, Ting; Liu, Sinan; Chang, Hulin; Yan, Zhaoyong; Zhang, Hongxin; Liu, Chang

    2016-01-01

    Tyrosine kinases (TKs) is a family of tyrosine protein kinases with important functions in the regulation of a broad variety of physiological cell processes. Overactivity of TK disturbs cellular homeostasis and has been linked to the development of certain diseases, including various fibrotic diseases. In regard to liver fibrosis, several TKs, such as vascular endothelial growth factor receptor, platelet-derived growth factor receptor, fibroblast growth factor receptor, and epidermal growth factor receptor kinases, have been identified as central mediators in collagen production and potential targets for anti-liver fibrosis therapies. Given the essential role of TKs during liver fibrogenesis, multitargeted inhibitors of aberrant TK activity, including sorafenib, erlotinib, imatinib, sunitinib, nilotinib, brivanib and vatalanib, have been shown to have potential for treating liver fibrosis. Beneficial effects are observed by researchers of this field using these multitargeted TK inhibitors in preclinical animal models and in patients with liver fibrosis. The present review will briefly summarize the anti-liver fibrosis effects of multitargeted TK inhibitors and molecular mechanisms. PMID:26834633

  19. Imaging biomarkers for steatohepatitis and fibrosis detection in non-alcoholic fatty liver disease

    PubMed Central

    Gallego-Durán, Rocío; Cerro-Salido, Pablo; Gomez-Gonzalez, Emilio; Pareja, María Jesús; Ampuero, Javier; Rico, María Carmen; Aznar, Rafael; Vilar-Gomez, Eduardo; Bugianesi, Elisabetta; Crespo, Javier; González-Sánchez, Francisco José; Aparcero, Reyes; Moreno, Inmaculada; Soto, Susana; Arias-Loste, María Teresa; Abad, Javier; Ranchal, Isidora; Andrade, Raúl Jesús; Calleja, Jose Luis; Pastrana, Miguel; Iacono, Oreste Lo; Romero-Gómez, Manuel

    2016-01-01

    There is a need, in NAFLD management, to develop non-invasive methods to detect steatohepatitis (NASH) and to predict advanced fibrosis stages. We evaluated a tool based on optical analysis of liver magnetic resonance images (MRI) as biomarkers for NASH and fibrosis detection by investigating patients with biopsy-proven NAFLD who underwent magnetic resonance (MR) protocols using 1.5T General Electric (GE) or Philips devices. Two imaging biomarkers (NASHMRI and FibroMRI) were developed, standardised and validated using area under the receiver operating characteristic curve (AUROC) analysis. The results indicated NASHMRI diagnostic accuracy for steatohepatitis detection was 0.83 (95% CI: 0.73–0.93) and FibroMRI diagnostic accuracy for significant fibrosis determination was 0.85 (95% CI: 0.77–0.94). These findings were independent of the MR system used. We conclude that optical analysis of MRI has high potential to define non-invasive imaging biomarkers for the detection of steatohepatitis (NASHMRI) and the prediction of significant fibrosis (FibroMRI) in NAFLD patients. PMID:27514671

  20. Liver fibrosis identification based on ultrasound images captured under varied imaging protocols

    PubMed Central

    Cao, Gui-tao; Shi, Peng-fei; Hu, Bing

    2005-01-01

    Diagnostic ultrasound is a useful and noninvasive method in clinical medicine. Although due to its qualitative, subjective and experience-based nature, ultrasound image interpretation can be influenced by image conditions such as scanning frequency and machine settings. In this paper, a novel method is proposed to extract the liver features using the joint features of fractal dimension and the entropies of texture edge co-occurrence matrix based on ultrasound images, which is not sensitive to changes in emission frequency and gain. Then, Fisher linear classifier and support vector machine are employed to test a group of 99 in-vivo liver fibrosis images from 18 patients, as well as other 273 liver images from 18 normal human volunteers. PMID:16252346

  1. Antioxidant axis Nrf2-keap1-ARE in inhibition of alcoholic liver fibrosis by IL-22

    PubMed Central

    Ni, Ya-Hui; Huo, Li-Juan; Li, Ting-Ting

    2017-01-01

    AIM To explore the effect of interleukin (IL)-22 on in vitro model of alcoholic liver fibrosis hepatic stellate cells (HSCs), and whether this is related to regulation of Nrf2-keap1-ARE. METHODS HSC-T6 cells were incubated with 25, 50, 100, 200 and 400 μmol/L acetaldehyde. After 24 and 48 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect proliferation of HSCs to choose the best concentration and action time. We used the optimal concentration of acetaldehyde (200 μmol/L) to stimulate HSCs for 24 h, and treated the cells with a final concentration of 10, 20 or 50 ng/mL IL-22. The cell proliferation rate was detected by MTT assay. The cell cycle was analyzed by flow cytometry. The expression of nuclear factor-related factor (Nrf)2 and α-smooth muscle antigen was detected by western blotting and immunocytochemistry. The levels of malondialdehyde (MDA) and glutathione (GSH) were measured by spectrophotometry. RESULTS In the MTT assay, when HSCs were incubated with acetaldehyde, activity and proliferation were higher than in the control group, and were most obvious after 48 h treatment with 200 μmol/L acetaldehyde. The number of cells in G0/G1 phases was decreased and the number in S phase was increased in comparison with the control group. When treated with different concentrations of IL-22, HSC-T6 cell activity and proliferation rate were markedly decreased in a dose-dependent manner, and cell cycle progression was arrested from G1 to S phase. Western blotting and immunocytochemistry demonstrated that expression of Nrf2 total protein was not significantly affected. Expression of Nrf2 nuclear protein was low in the control group, increased slightly in the model group (or acetaldehyde-stimulated group), and increased more obviously in the IL-22 intervention groups. The levels of MDA and GSH in the model group were significantly enhanced in comparison with those in the control group. In cells treated with IL-22, the MDA

  2. Liver Fibrosis and Protection Mechanisms Action of Medicinal Plants Targeting Apoptosis of Hepatocytes and Hepatic Stellate Cells

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, Maria Teresa; Rodríguez-Montalvo, Carlos; Cruz-Vega, Delia Elva

    2014-01-01

    Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis. PMID:25505905

  3. Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models.

    PubMed

    Lieber, Gissela B; Fernandez, Xiomara; Mingo, Garfield G; Jia, Yanlin; Caniga, Michael; Gil, Malgorzata A; Keshwani, Shanil; Woodhouse, Janice D; Cicmil, Milenko; Moy, Lily Y; Kelly, Nancy; Jimenez, Johanna; Crawley, Yvette; Anthes, John C; Klappenbach, Joel; Ma, Yu-Lu; McLeod, Robbie L

    2013-10-15

    Accumulating evidence indicates protective actions of mineralocorticoid antagonists (MR antagonists) on cardiovascular pathology, which includes blunting vascular inflammation and myocardial fibrosis. We examined the anti-inflammatory and anti-fibrotic potential of MR antagonists in rodent respiratory models. In an ovalbumin allergic and challenged Brown Norway rat model, the total cell count in nasal lavage was 29,348 ± 5451, which was blocked by spironolactone (0.3-60 mg/kg, p.o.) and eplerenone (0.3-30 mg/kg, p.o.). We also found that MR antagonists attenuated pulmonary inflammation in the Brown Norway rat. A series of experiments were conducted to determine the actions of MR blockade in acute/chronic lung injury models. (1) Ex vivo lung slice rat experiments found that eplerenone (0.01 and 10 µM) and spironolactone (10 µM) diminished lung hydroxyproline concentrations by 55 ± 5, 122 ± 9, and 83 ± 8%. (2) In in vivo studies, MR antagonists attenuated the increases in bronchioalveolar lavage (BAL) neutrophils and macrophages caused by lung bleomycin exposure. In separate studies, bleomycin (4.0 U/kg, i.t.) increased lung levels of hydroxyproline by approximately 155%, which was blocked by spironolactone (10-60 mg/kg, p.o.). In a rat Lipopolysaccharide (LPS) model, spironolactone inhibited acute increases in BAL cytokines with moderate effects on neutrophils. Finally, we found that chronic LPS exposure significantly increased end expiratory lung and decreased lung elastance in the mouse. These functional effects of chronic LPS were improved by MR antagonists. Our results demonstrate that MR antagonists have significant pharmacological actions in the respiratory system.

  4. Liver transplantation in patients with cystic fibrosis: analysis of United Network for Organ Sharing data.

    PubMed

    Mendizabal, Manuel; Reddy, K Rajender; Cassuto, James; Olthoff, Kim M; Faust, Thomas W; Makar, George A; Rand, Elizabeth B; Shaked, Abraham; Abt, Peter L

    2011-03-01

    The improved life expectancy of patients with cystic fibrosis (CF) has led to a change in the impact of liver disease on the prognosis of this population. Liver transplantation has emerged as the procedure of choice for patients with CF and features of hepatic decompensation and for intractable variceal bleeding as a major manifestation. We retrospectively reviewed the United Network for Organ Sharing database to analyze the outcomes of 55 adults and 148 children with CF who underwent liver transplantation, and we compared them to patients who underwent transplantation for other etiologies. We additionally compared the benefits of liver transplantation among patients who underwent transplantation for cystic fibrosis-related liver disease (CFLD) and those who remained on the waiting list. The 5-year survival rates for children and adults undergoing liver transplantation were 85.8% and 72.7%, respectively (P = 0.016). A multivariate Cox regression analysis comparing pediatric and adult CF patients to patients who underwent transplantation for other etiologies noted lower 5-year survival rates (P < 0.0001). However, compared to those remaining on the waiting list, pediatric transplant recipients with CF (hazard ratio = 0.33, 95% confidence interval = 0.16-0.70, P = 0.004) and adult transplant recipients with CF (hazard ratio = 0.25, 95% confidence interval = 0.11-0.57, P = 0.001) gained a significant survival benefit. In conclusion, long-term outcomes in patients with CFLD are acceptable but are inferior in comparison with the outcomes of those undergoing transplantation for other etiologies. Despite such observations, a survival benefit was noted in transplant patients versus those who remained on the waiting list.

  5. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

    PubMed Central

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas

    2015-01-01

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524

  6. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair.

    PubMed

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A; Günther, Andreas; Bellusci, Saverio

    2015-05-15

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26(rtTA/+);tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.

  7. Fibrosis Progression in Paired Liver Biopsies from HIV/HCV-Coinfected Patients without Prior Treatment of Hepatitis C.

    PubMed

    Leite, Andréa G B; Duarte, Maria Irma S; Mendes-Correa, Maria Cássia

    2015-01-01

    Several studies have demonstrated that HIV/hepatitis C virus (HCV)-coinfected patients experience more rapid fibrosis progression. In this study, to estimate the annual rate of direct liver fibrosis progression, we used analyses of paired biopsy samples from HIV/HCV-coinfected patients without prior treatment of hepatitis and assessed the possible association of fibrosis progression with certain clinical variables. We evaluated 30 HIV/HCV-coinfected patients, with no history of prior treatment of hepatitis C, who underwent paired liver biopsies. All patients were under antiretroviral therapy at first and second biopsies. The average annual progression rate was 0.13 fibrosis unit/year, with 36.7% of patients defined as progressors. Liver fibrosis progression was associated with alanine aminotransferase (ALT; P < .001) and aspartate aminotransferase (AST; P < .0340) levels over 3 times the upper limit of normal present at first biopsy. Elevated ALT and AST levels appear to be associated with more accelerated liver fibrosis progression among HIV/HCV-coinfected patients.

  8. Targeting Mechanotransduction at the Transcriptional Level: YAP and BRD4 Are Novel Therapeutic Targets for the Reversal of Liver Fibrosis

    PubMed Central

    Zhubanchaliyev, Altynbek; Temirbekuly, Aibar; Kongrtay, Kuralay; Wanshura, Leah C.; Kunz, Jeannette

    2016-01-01

    Liver fibrosis is the result of a deregulated wound healing process characterized by the excessive deposition of extracellular matrix. Hepatic stellate cells (HSCs), which are activated in response to liver injury, are the major source of extracellular matrix and drive the wound healing process. However, chronic liver damage leads to perpetual HSC activation, progressive formation of pathological scar tissue and ultimately, cirrhosis and organ failure. HSC activation is triggered largely in response to mechanosignaling from the microenvironment, which induces a profibrotic nuclear transcription program that promotes HSC proliferation and extracellular matrix secretion thereby setting up a positive feedback loop leading to matrix stiffening and self-sustained, pathological, HSC activation. Despite the significant progress in our understanding of liver fibrosis, the molecular mechanisms through which the extracellular matrix promotes HSC activation are not well understood and no effective therapies have been approved to date that can target this early, reversible, stage in liver fibrosis. Several new lines of investigation now provide important insight into this area of study and identify two nuclear targets whose inhibition has the potential of reversing liver fibrosis by interfering with HSC activation: Yes-associated protein (YAP), a transcriptional co-activator and effector of the mechanosensitive Hippo pathway, and bromodomain-containing protein 4 (BRD4), an epigenetic regulator of gene expression. YAP and BRD4 activity is induced in response to mechanical stimulation of HSCs and each protein independently controls waves of early gene expression necessary for HSC activation. Significantly, inhibition of either protein can revert the chronic activation of HSCs and impede pathological progression of liver fibrosis in clinically relevant model systems. In this review we will discuss the roles of these nuclear co-activators in HSC activation, their mechanism of

  9. Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling

    PubMed Central

    Zhang, Jie; Fan, Guangpu; Zhao, Hui; Wang, Zhiwei; Li, Fei; Zhang, Peide; Zhang, Jing; Wang, Xu; Wang, Wei

    2017-01-01

    Cardiac fibrosis in post-myocardial infarction (MI), seen in both infarcted and non-infarcted myocardium, is beneficial to the recovery of heart function. But progressively pathological fibrosis impairs ventricular function and leads to poor prognosis. FAK has recently received attention as a potential mediator of fibrosis, our previous study reported that pharmacological inhibition of FAK can attenuate cardiac fibrosis in post MI models. However, the long-term effects on cardiac function and adverse cardiac remodelling were not clearly investigated. In this study, we tried to determine the preliminary mechanisms in regulating CF transformation to myofibroblasts and ECM synthesis relevant to the development of adverse cardiac remolding in vivo and in vitro. Our study provides even more evidence that FAK is directly related to the activation of CF in hypoxia condition in a dose-dependent and time-dependent manner. Pharmacological inhibition of FAK significantly reduces myofibroblast differentiation; our in vivo data demonstrated that a FAK inhibitor significantly decreases fibrotic score, and preserves partial left ventricular function. Both PI3K/AKT signalling and ERK1/2 are necessary for hypoxia-induced CF differentiation and ECM synthesis; this process also involves lysyl oxidase (LOX). These findings suggest that pharmacological inhibition of FAK may become an effective therapeutic strategy against adverse fibrosis. PMID:28225063

  10. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis.

    PubMed

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y L

    2016-10-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5(-/-)) mice, but not in FXR-deficient (Fxr(-/-)) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1(-/-)) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1(-/-) mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease.

  11. External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE): Application in Liver Fibrosis Staging

    PubMed Central

    Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.

    2014-01-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066

  12. Ultrasound shear wave elastography and liver fibrosis: A Prospective Multicenter Study

    PubMed Central

    Sande, Joyce Anyona; Verjee, Suleman; Vinayak, Sudhir; Amersi, Farin; Ghesani, Munir

    2017-01-01

    AIM To assess the accuracy of shear wave elastography (SWE) alone and in combination with aminotransferase platelet ratio index (APRI) score in the staging of liver fibrosis. METHODS A multicenter prospective study was conducted to assess the accuracy of SWE (medians) and APRI to predict biopsy results. The analysis focused on distinguishing the different stages of liver disease, namely, F0 from F1-4, F0-1 from F2-4, F0-2 from F3-4 and F0-3 from F4; F0-F1 from F2-F4 being of primary interest. The area under the receiver operating characteristic (AUROC) curve was computed using logistic regression model. The role of age, gender and steatosis was also assessed. RESULTS SWE alone accurately distinguished F0-1 from F2-4 with a high probability. The AUROC using SWE alone was 0.91 compared to 0.78 for using the APRI score alone. The APRI score, when used in conjunction with SWE, did not make a significant contribution to the AUROC. SWE and steatosis were the only significant predictors that differentiated F0-1 from F2-4 with an AUROC of 0.944. CONCLUSION Our study validates the use of SWE in the diagnosis and staging of liver fibrosis. Furthermore, the probability of a correct diagnosis is significantly enhanced with the addition of steatosis as a prognostic factor. PMID:28105257

  13. Relevance of 3D Cholangiography and Transient Elastography to Assess Cystic Fibrosis-Associated Liver Disease?

    PubMed Central

    Lemaitre, C.; Dominique, S.; Billoud, E.; Eliezer, M.; Montialoux, H.; Quillard, M.; Riachi, G.; Koning, E.; Morisse-Pradier, H.; Savoye, G.; Savoye-Collet, C.; Goria, O.

    2016-01-01

    Background. Cystic fibrosis-associated liver disease (CFLD) is a major cause of death. The objective of our retrospective study was to describe the relevance of magnetic resonance imaging (MRI) and liver stiffness measurement (LSM) for CFLD evaluation. Methods. All cystic fibrosis adult patients evaluated by MRI and LSM were included. MR signs of portal hypertension (PHT), dysmorphia, or cholangitis were collected and LSM expressed in kPa and Metavir. Results. Of 25 patients, 52% had abnormal MRI. Median LSM was 5.7 kPa (3.4–9.9). Three patients had F2 score and one had F3 score. In patients with PHT, LSM was 7.85 kPa (3.7–9.9) compared to 5 (3.4–7.5) in others, p = 0.02. In patients with abnormal liver function tests, 50% had increased LSM (≥F2), whereas 94% with normal tests had normal LSM (p = 0.04). Seven patients had abnormal MRI despite normal ultrasonography. Conclusions. MRI and LSM provide useful information on CFLD and may help to screen patients with PHT. PMID:27445541

  14. Levels of Schistosoma mansoni Circulating Antigen in Chronic Hepatitis C Patients with Different Stages of Liver Fibrosis.

    PubMed

    Attallah, Abdelfattah M; El-Far, Mohamed; Omran, Mohamed M; Farid, Khaled; Attallah, Ahmed A; Abd-Elaziz, Dalal; El-Bendary, Mohamed S; El-Dosoky, Ibrahim; Ismail, Hisham

    2016-01-01

    The goal of this study was to determine the levels of S. mansoni antigen in different liver fibrosis stages with chronic hepatitis C (CHC) Egyptian patients. A total of 174 CHC patients showing HCV-NS4 antigen and HCV- RNA in their sera were included. S. mansoni antigen was detected in serum using Western blot and ELISA. The levels of interferon-γ (IFN- γ) were determined using ELISA. The 50 kDa S. mansoni antigen discriminated patients infected with S. mansoni from healthy individuals with 0.93 area under curve (AUC), 92% sensitivity, and 97% specificity. The level of S. mansoni antigen (μg/ml) was significantly (P < 0.0001) increased with the progression of liver fibrosis stages (26.9 ± 17.5 in F1, 42.1 ± 25.2 in F2, 49.8 ± 30.3 in F3 and 62.2 ± 26.3 μg/mL in F4 liver cirrhosis), 26.9 ± 17.59 in significant fibrosis (F2-F4); 51.2 ± 27.9 in advanced fibrosis (F3-F4). A significant correlation (r = 0.506; P < 0.0001) was shown between the levels of the S. mansoni antigen and the HCV-NS4 antigen. In conclusion, the presence of S. mansoni antigen in different liver fibrosis stages of CHC patients confirming that concomitant schistosome infection aggravates liver disease.

  15. Experimental study of effect of Ganyanping on fibrosis in rat livers

    PubMed Central

    Tang, Wang-Xian; Dan, Zi-Li; Yan, Hong-Mei; Wu, Cui-Huan; Zhang, Guo; Liu, Mei; Li, Qin; Li, Shao-Bai

    2003-01-01

    AIM: To observe the effects of Ganyanping on CCl4-induced hepatic fibrosis in rats. METHODS: The rats were separated randomly into five groups. Groups A to group D, each consisting of 15 rats, were for different tests, while 8 rats were used as normal controls (N). For group D, CCl4 was injected subcutaneously, at a dosage of 3 mL/kg for 9 wk. For group A, Ganyanping was administered via gastric tube at a dosage of 10 mL/kg. For group B, the treatment with Ganyanping was started 4 wk after CCl4 administration. In group C, Ganyanping was administered 8 wk after the intoxication, and treatment lasted for 4 wk. Liver tissues were fixed in 10% formalin and embedded in paraffin. Pathologic changes, particularly fibrosis, were evaluated on the HE and V-G-stained sections. Ten middle-power fields were randomly selected for assessment of collagen deposition. RESULTS: Loss of normal hepatic architecture, some with pseudo-lobule formation, was observed in group D, while hepatocytes steatosis and fibrosis were less pronounced in the animals treated with Ganyanping. Pseudo-lobule formation was not evident in the latter groups. The total collagen area and ratio were 840.23 ± 81.65 and 7.0 ± 0.9, respectively in group D, the ratio being reduced greatly in the Ganyanping-treated groups (148.73 ± 45.89 and 1.16 ± 0.33, respectively). The activities of MAO and ACP were elevated and that of SDH in group D decreased in the hepatic tissue as compared to the control group. The treatment with Ganyanping abrogated these enzymatic changes. CONCLUSION: Our data approved that Ganyanping could improve the microcirculation in the liver, reduce oxygen-derived free radicals, and enhance the cellular metabolism and immune function, all resulting in an anti-fibrotic effect. Hence, Ganyanping can protect the liver from fibrosis. It may be a safe and effective preparation for patient with fibrosis. PMID:12800243

  16. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease.

    PubMed

    Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen

    2015-09-01

    Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis.

  17. Deficiency in four and one half LIM domain protein 2 (FHL2) aggravates liver fibrosis in mice