Science.gov

Sample records for attenuates secondary inflammatory

  1. Calpeptin Attenuated Apoptosis and Intracellular Inflammatory Changes in Muscle Cells

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca2+-sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-gamma (IFN-γ) caused expression of MHC-I and inflammation related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B). We also demonstrated that treatment with tumor necrosis factor-alpha (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Further, we found that post-treatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs. PMID:21290412

  2. Carvacrol attenuates mechanical hypernociception and inflammatory response.

    PubMed

    Guimarães, Adriana G; Xavier, Maria A; de Santana, Marília T; Camargo, Enilton A; Santos, Cliomar A; Brito, Fabíola A; Barreto, Emiliano O; Cavalcanti, Sócrates C H; Antoniolli, Angelo R; Oliveira, Rita C M; Quintans-Júnior, Lucindo J

    2012-03-01

    Carvacrol is a phenolic monoterpene present in the essential oil of the family Lamiaceae, as in the genera Origanum and Thymus. We previously reported that carvacrol is effective as an analgesic compound in various nociceptive models, probably by inhibition of peripheral mediators that could be related with its strong antioxidant effect observed in vitro. In this study, the anti-hypernociceptive activity of carvacrol was tested in mice through models of mechanical hypernociception induced by carrageenan, and the involvement of important mediators of its signaling cascade, as tumor necrosis factor-alpha (TNF-α), prostaglandin E(2) (PGE(2)), and dopamine, were assessed. We also investigated the anti-inflammatory effect of carvacrol on the model of carrageenan-induced pleurisy and mouse paw edema, and the lipopolysaccharide (LPS)-induced nitrite production in murine macrophages was observed. Systemic pretreatment with carvacrol (50 or 100 mg/kg; i.p.) inhibited the development of mechanical hypernociception and edema induced by carrageenan and TNF-α; however, no effect was observed on hypernociception induced by PGE(2) and dopamine. Besides this, carvacrol significantly decreased TNF-α levels in pleural lavage and suppressed the recruitment of leukocytes without altering the morphological profile of these cells. Carvacrol (1, 10, and 100 μg/mL) also significantly reduced (p < 0.001) the LPS-induced nitrite production in vitro and did not produce citotoxicity in the murine peritoneal macrophages in vitro. The spontaneous locomotor activity of mice was not affected by carvacrol. This study adds information about the beneficial effects of carvacrol on mechanical hypernociception and inflammation. It also indicates that this monoterpene might be potentially interesting in the development of novel tools for management and/or treatment of painful conditions, including those related to inflammatory and prooxidant states.

  3. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  4. Attenuating the Systemic Inflammatory Response to Adult Cardiopulmonary Bypass: A Critical Review of the Evidence Base

    PubMed Central

    Landis, R. Clive; Brown, Jeremiah R.; Fitzgerald, David; Likosky, Donald S.; Shore-Lesserson, Linda; Baker, Robert A.; Hammon, John W.

    2014-01-01

    Abstract: A wide range of pharmacological, surgical, and mechanical pump approaches have been studied to attenuate the systemic inflammatory response to cardiopulmonary bypass, yet no systematically based review exists to cover the scope of anti-inflammatory interventions deployed. We therefore conducted an evidence-based review to capture “self-identified” anti-inflammatory interventions among adult cardiopulmonary bypass procedures. To be included, trials had to measure at least one inflammatory mediator and one clinical outcome, specified in the “Outcomes 2010” consensus statement. Ninety-eight papers satisfied inclusion criteria and formed the basis of the review. The review identified 33 different interventions and approaches to attenuate the systemic inflammatory response. However, only a minority of papers (35 of 98 [35.7%]) demonstrated any clinical improvement to one or more of the predefined outcome measures (most frequently myocardial protection or length of intensive care unit stay). No single intervention was supported by strong level A evidence (multiple randomized controlled trials [RCTs] or meta-analysis) for clinical benefit. Interventions at level A evidence included off-pump surgery, minimized circuits, biocompatible circuit coatings, leukocyte filtration, complement C5 inhibition, preoperative aspirin, and corticosteroid prophylaxis. Interventions at level B evidence (single RCT) for minimizing inflammation included nitric oxide donors, C1 esterase inhibition, neutrophil elastase inhibition, propofol, propionyl-L-carnitine, and intensive insulin therapy. A secondary analysis revealed that suppression of at least one inflammatory marker was necessary but not sufficient to confer clinical benefit. The most effective interventions were those that targeted multiple inflammatory pathways. These observations are consistent with a “multiple hit” hypothesis, whereby clinically effective suppression of the systemic inflammatory response

  5. Arsenic cycling in hydrocarbon plumes: secondary effects of natural attenuation

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Schreiber, Madeline E.; Erickson, Melinda L.; Ziegler, Brady A.

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  6. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation.

    PubMed

    Cozzarelli, Isabelle M; Schreiber, Madeline E; Erickson, Melinda L; Ziegler, Brady A

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  7. Benfotiamine Attenuates Inflammatory Response in LPS Stimulated BV-2 Microglia

    PubMed Central

    Bozic, Iva; Savic, Danijela; Laketa, Danijela; Bjelobaba, Ivana; Milenkovic, Ivan; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may

  8. Secondary glaucoma in CAPN5-associated neovascular inflammatory vitreoretinopathy

    PubMed Central

    Cham, Abdourahman; Bansal, Mayank; Banda, Himanshu K; Kwon, Young; Tlucek, Paul S; Bassuk, Alexander G; Tsang, Stephen H; Sobol, Warren M; Folk, James C; Yeh, Steven; Mahajan, Vinit B

    2016-01-01

    Objective The objective of this study was to review the treatment outcomes of patients with secondary glaucoma in cases of autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV), a hereditary autoimmune uveitis due to mutations in CAPN5. Patients and methods A retrospective, observational case series was assembled from ADNIV patients with secondary glaucoma. The main outcome measures were intraocular pressure (IOP), visual acuity, use of antiglaucoma medications, ocular surgeries, and adverse outcomes. Perimetry and optic disk optical coherence tomography (OCT) were also analyzed. Results Nine eyes of five ADNIV patients with secondary glaucoma were reviewed. Each received a fluocinolone acetonide (FA) implant for the management of posterior uveitis. Following implantation, no eyes developed neovascular glaucoma. Five eyes (in patients 1, 2, and 5) required Ahmed glaucoma valve surgery for the management of steroid-responsive glaucoma. Patient 2 also developed angle closure with iris bombe and underwent laser peripheral iridotomy. Patient 4 had both hypotony and elevated IOP that required periodic antiglaucoma medication in the FA-implanted eye. Patient 3 did not develop steroid-response glaucoma in either eye. Optic disk examinations were obscured by fibrosis and better assessed with OCT. Conclusion ADNIV patients show combined mechanism secondary glaucoma best assessed by OCT of the optic disk. The FA implants have reduced uveitic and neovascular glaucoma. Nevertheless, IOP management remains complex due to steroid-response glaucoma, angle closure glaucoma, and hypotony. PMID:27390515

  9. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

    PubMed Central

    Adán, Norma; Guzmán-Morales, Jessica; Ledesma-Colunga, Maria G.; Perales-Canales, Sonia I.; Quintanar-Stéphano, Andrés; López-Barrera, Fernando; Méndez, Isabel; Moreno-Carranza, Bibiana; Triebel, Jakob; Binart, Nadine; Martínez de la Escalera, Gonzalo; Thebault, Stéphanie; Clapp, Carmen

    2013-01-01

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA. PMID:23908112

  10. Inflammatory Response to Burn Trauma: Nicotine Attenuates Proinflammatory Cytokine Levels

    PubMed Central

    Papst, S.; Reimers, K.; Stukenborg-Colsman, C.; Steinstraesser, L.; Vogt, P. M.; Kraft, T.; Niederbichler, A. D.

    2014-01-01

    Objective: The immune response to an inflammatory stimulus is balanced and orchestrated by stimulatory and inhibitory factors. After a thermal trauma, this balance is disturbed and an excessive immune reaction with increased production and release of proinflammatory cytokines results. The nicotine-stimulated anti-inflammatory reflex offsets this. The goal of this study was to verify that transdermal administration of nicotine downregulates proinflammatory cytokine release after burn trauma. Methods: A 30% total body surface area full-thickness rat burn model was used in Sprague Dawley rats (n = 35, male). The experimental animals were divided into a control group, a burn trauma group, a burn trauma group with additional nicotine treatment, and a sham + nicotine group with 5 experimental animals per group. The last 2 groups received a transdermal nicotine administration of 1.75 mg. The concentrations of tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 were determined in homogenates of hearts, livers, and spleens 12 or 24 hours after burn trauma. Results: Experimental burn trauma resulted in a significant increase in cytokine levels in hearts, livers, and spleens. Nicotine treatment led to a decrease of the effect of the burn trauma with significantly lower concentrations of tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 compared to the trauma group. Conclusions: This study confirms in a standardized burn model that stimulation of the nicotinic acetylcholine receptor is involved in the regulation of effectory molecules of the immune response. Looking at the results of our study, further experiments designed to explore and evaluate the potency and mechanisms of the immunomodulating effects of this receptor system are warranted. PMID:25671045

  11. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  12. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release.

    PubMed

    Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata

    2016-07-01

    Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.

  13. Artemisia dracunculus L. extract ameliorates insulin sensitivity by attenuating inflammatory signalling in human skeletal muscle culture

    PubMed Central

    Vandanmagsar, Bolormaa; Haynie, Kimberly R.; Wicks, Shawna E.; Bermudez, Estrellita M.; Mendoza, Tamra M.; Ribnicky, David; Cefalu, William T.; Mynatt, Randall L.

    2014-01-01

    Aims Bioactives of Artemisia dracunculus L. (termed PMI 5011) have been shown to improve insulin action by increasing insulin signalling in skeletal muscle. However, it has not known if PMI 5011’s effects are retained during an inflammatory condition. We examined the attenuation of insulin action and whether PMI 5011 enhances insulin signalling in the inflammatory environment with elevated cytokines. Methods Muscle cell cultures derived from lean, overweight and diabetic obese subjects were used. Expression of pro-inflammatory genes and inflammatory response of human myotubes were evaluated by RT-PCR. Insulin signalling and activation of inflammatory pathways in human myotubes were evaluated by Multiplex protein assays. Results We found increased gene expression of MCP1 and TNFα, and basal activity of the NFkB pathway in myotubes derived from diabetic-obese subjects as compared to myotubes derived from normal-lean subjects. In line with this, basal Akt phosphorylation (Ser473) was significantly higher, while insulin-stimulated phosphorylation of Akt (Ser473) was lower in myotubes from normal-overweight and diabetic-obese subjects compared to normal-lean subjects. PMI 5011 treatment reduced basal phosphorylation of Akt and enhanced insulin-stimulated phosphorylation of Akt in the presence of cytokines in human myotubes. PMI 5011 treatment led to an inhibition of cytokine-induced activation of inflammatory signalling pathways such as Erk1/2 and IkBα-NFkB and moreover, NFkB target gene expression, possibly by preventing further propagation of the inflammatory response within muscle tissue. Conclusions PMI 5011 improved insulin sensitivity in diabetic-obese myotubes to the level of normal-lean myotubes despite the presence of pro-inflammatory cytokines. PMID:24521217

  14. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    SciTech Connect

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-15

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-{kappa}B signaling pathway, and nuclear transcription factor (NF)-{kappa}B and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-{kappa}B and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-{alpha}, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-{kappa}B and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-{alpha}, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-{kappa}B and AP-1 signaling pathway.

  15. Beauveria attenuates asthma by inhibiting inflammatory response and inducing lymphocytic cell apoptosis

    PubMed Central

    Zhang, Jingying; Zhou, Xianmei; Zhu, Jiping

    2016-01-01

    The present study aimed to investigate the role of beauveria (BEA) in asthma. We investigated the cytotoxic effect of BEA on the proliferation of inflammatory cells and secretion of inflammatory mediators both in-vitro and in-vivo. In in-vitro studies, BEA inhibited lymphocytic cell proliferation and the proliferation of lymphocytic cells induced by Phorbol-12-myristate-13-acetate (PMA). We used ELISA to test the effects of BEA on the secretion of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12) and interferon-gamma (IFN-γ). Flow cytometry was used to evaluate the influence of BEA on cell apoptosis. The effect of BEA on the cell numbers of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse bronchoalveolar lavage fluid (BALF) was also evaluated. The expression of apoptosis related molecules Bax, Caspase-3 and Bcl-2 was examined by Western blotting analysis. Our results indicated that BEA played a protective role in asthma. BEA inhibited lymphocytic cell proliferation and secretion of inflammatory mediators. BEA promoted cell apoptosis, stimulated the expression of Bax and Caspase-3 and inhibited Bcl-2 protein expression in a dose-dependent manner. In in-vivo experiments, BEA reduced the cell number of eosinophils, lymphocytes, macrophages, neutrophils and other cells in mouse BALF. BEA inhibited secretion of inflammatory mediators, stimulated expression of Bax and Caspase-3, and inhibited expression of Bcl-2 in mouse lung tissue dose-dependently. All together, our results indicated that BEA could attenuate asthma by inhibiting inflammatory response and induce apoptosis of inflammatory cells. PMID:27801673

  16. Hyperosmolarity attenuates TNFα–mediated pro-inflammatory activation of human pulmonary microvascular endothelial cells

    PubMed Central

    Banerjee, Anirban; Moore, Ernest E.; McLaughlin, Nathan J.; Lee, Luis; Jones, Wilbert L.; Johnson, Jeffrey L.; Nydam, Trevor L.; Silliman, Christopher C.

    2013-01-01

    Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170mM vs. 140mM, osmolarity ranging from 360-300 mOsm/L) inhibits pro-inflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Pro-inflammatory activation of HMVECs was investigated in response to TNFα including IL-8 release, ICAM-1 surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression, but did lead to concentration-dependent decreases in TNFα–induced IL-8 release, ICAM-1 surface expression, and PMN:HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNFα activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNFα stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNFα induced NF-kB DNA binding, but HTS conditions attenuated this by 31% (p<0.01). In conclusion, HTS reduces PMN:HMVEC adhesion as well as TNFα-induced pro-inflammatory activation of primary HMVECs via attenuation of NF-kB signaling. PMID:23364439

  17. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  18. Iron Supplementation Attenuates the Inflammatory Status of Anemic Piglets by Regulating Hepcidin.

    PubMed

    Pu, Yutian; Guo, Bingxiu; Liu, Dan; Xiong, Haitao; Wang, Yizhen; Du, Huahua

    2015-09-01

    Iron deficiency is common throughout the world and has been linked to immunity impairments. Using piglets to model human infants, we assessed the impact of systemic iron homeostasis on proinflammatory status. Artificially reared piglets were parenterally supplied with iron dextran by intramuscular administration at the age of 3 days. Relative to no iron supplementation (control), iron dextran-treated (FeDex) piglets increased hematological parameters as well as iron levels in serum and tissues from days 21 to 49. High expression of hepcidin was observed in FeDex-treated piglets, which correlated with suppressed expression of ferroportin in duodenum. Lower levels of proinflammatory cytokine (IL-6, TNF-α, IFN-γ, and IL-1β) transcripts were detected in ileum of FeDex-treated piglets, which indicated that iron supplementation could attenuate the increase of inflammatory cytokines caused by iron deficiency. Histopathological analysis of liver and duodenum proved the less inflammatory responses after iron supplementation. Hepcidin was highly stimulated by FeDex supplementation and attenuated the inflammation of anemia, which implied that hepcidin might had antiinflammatory function and is a candidate regulator of the cross-talk between iron regulation and inflammation.

  19. Oligomannan Prebiotic Attenuates Immunological, Clinical and Behavioral Symptoms in Mouse Model of Inflammatory Bowel Disease

    PubMed Central

    Ferenczi, Szilamér; Szegi, Krisztián; Winkler, Zsuzsanna; Barna, Teréz; Kovács, Krisztina J.

    2016-01-01

    Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials. PMID:27658624

  20. Inhibition of TLR4 Signalling-Induced Inflammation Attenuates Secondary Injury after Diffuse Axonal Injury in Rats

    PubMed Central

    Zhao, Yonglin; Zhang, Ming; Zhao, Junjie; Ma, Xudong; Huang, Tingqin; Pang, Honggang

    2016-01-01

    Increasing evidence suggests that secondary injury after diffuse axonal injury (DAI) damages more axons than the initial insult, but the underlying mechanisms of this phenomenon are not fully understood. Recent studies show that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and have been shown to be associated with brain damage. The purpose of this study was to investigate the role of the TLR4 signalling pathway in secondary axonal injury in the cortices of DAI rats. TLR4 was mainly localized in microglial cells and neurons, and the levels of TLR4 downstream signalling molecules, including TLR4, myeloid differentiation primary response gene 88, toll/IR-1-(TIR-) domain-containing adaptor protein inducing interferon-beta, interferon regulatory factor 3, interferon β, nuclear factor κB (NF-κB) p65, and phospho-NF-κB p65, significantly increased and peaked at 1 d after DAI. Inhibition of TLR4 by TAK-242 attenuated apoptosis, neuronal and axonal injury, and glial responses. The neuroprotective effects of TLR4 inhibition were associated with decreases in the levels of TLR4 downstream signalling molecules and inflammatory factors, including interleukin-1β, interleukin-6, and tumour necrosis factor-α. These results suggest that the TLR4 signalling pathway plays an important role in secondary injury and may be an important therapeutic target following DAI. PMID:27478307

  1. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes.

    PubMed

    Devaraj, Sridevi; Tobias, Peter; Jialal, Ishwarlal

    2011-09-01

    Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4(-/-) mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4(-/-) STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4(-/-) +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4(-/-) +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.

  2. PEDF inhibits pancreatic tumorigenesis by attenuating the fibro-inflammatory reaction.

    PubMed

    Principe, Daniel R; DeCant, Brian; Diaz, Andrew M; Mangan, Riley J; Hwang, Rosa; Lowy, Andrew; Shetuni, Brandon B; Sreekumar, Bharath K; Chung, Chuhan; Bentrem, David J; Munshi, Hidayatullah G; Jung, Barbara; Grippo, Paul J; Bishehsari, Faraz

    2016-05-10

    Pancreatic cancer is characterized by a pronounced fibro-inflammatory reaction that has been shown to contribute to cancer progression. Previous reports have demonstrated that pigment epithelium-derived factor (PEDF) has potent tumor suppressive effects in pancreatic cancer, though little is known about the mechanisms by which PEDF limits pancreatic tumorigenesis. We therefore employed human specimens, as well as mouse and in vitro models, to explore the effects of PEDF upon the pancreatic microenvironment. We found that PEDF expression is decreased in human pancreatic cancer samples compared to non-malignant tissue. Furthermore, PEDF-deficient patients displayed increased intratumoral inflammation/fibrosis. In mice, genetic ablation of PEDF increased cerulein-induced inflammation and fibrosis, and similarly enhanced these events in the background of oncogenic KRAS. In vitro, recombinant PEDF neutralized macrophage migration as well as inhibited macrophage-induced proliferation of tumor cells. Additionally, recombinant PEDF suppressed the synthesis of pro-inflammatory/pro-fibrotic cytokines both in vivo and in vitro, and reduced collagen I deposition and TGFβ synthesis by pancreatic stellate cells, consistent with reduced fibrosis. Combined, our results demonstrate that PEDF limits pancreatic cancer progression by attenuating the fibro-inflammatory reaction, and makes restoration of PEDF signaling a potential therapeutic approach to study in pancreatic cancer.

  3. PEDF inhibits pancreatic tumorigenesis by attenuating the fibro-inflammatory reaction

    PubMed Central

    Principe, Daniel R.; DeCant, Brian; Diaz, Andrew M.; Mangan, Riley J.; Hwang, Rosa; Lowy, Andrew; Shetuni, Brandon B.; Sreekumar, Bharath K.; Chung, Chuhan; Bentrem, David J.; Munshi, Hidayatullah G.; Jung, Barbara

    2016-01-01

    Pancreatic cancer is characterized by a pronounced fibro-inflammatory reaction that has been shown to contribute to cancer progression. Previous reports have demonstrated that pigment epithelium-derived factor (PEDF) has potent tumor suppressive effects in pancreatic cancer, though little is known about the mechanisms by which PEDF limits pancreatic tumorigenesis. We therefore employed human specimens, as well as mouse and in vitro models, to explore the effects of PEDF upon the pancreatic microenvironment. We found that PEDF expression is decreased in human pancreatic cancer samples compared to non-malignant tissue. Furthermore, PEDF-deficient patients displayed increased intratumoral inflammation/fibrosis. In mice, genetic ablation of PEDF increased cerulein-induced inflammation and fibrosis, and similarly enhanced these events in the background of oncogenic KRAS. In vitro, recombinant PEDF neutralized macrophage migration as well as inhibited macrophage-induced proliferation of tumor cells. Additionally, recombinant PEDF suppressed the synthesis of pro-inflammatory/pro-fibrotic cytokines both in vivo and in vitro, and reduced collagen I deposition and TGFβ synthesis by pancreatic stellate cells, consistent with reduced fibrosis. Combined, our results demonstrate that PEDF limits pancreatic cancer progression by attenuating the fibro-inflammatory reaction, and makes restoration of PEDF signaling a potential therapeutic approach to study in pancreatic cancer. PMID:27058416

  4. DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches

    PubMed Central

    Chen, L; Luo, M; Sun, X; Qin, J; Yu, C; Wen, Y; Zhang, Q; Gu, J; Xia, Q; Kong, X

    2016-01-01

    Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b+Gr-1low macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches. PMID:27277679

  5. Stanniocalcin-1 attenuates ischemic cardiac injury and response of differentiating monocytes/macrophages to inflammatory stimuli.

    PubMed

    Mohammadipoor, Arezoo; Lee, Ryang Hwa; Prockop, Darwin J; Bartosh, Thomas J

    2016-11-01

    Stanniocalcin-1 (STC-1) is a multifunctional glycoprotein with antioxidant and anti-inflammatory properties. Ischemic myocardial necrosis generates "danger" signals that perpetuate detrimental inflammatory reactions often involving monocyte recruitment and their subsequent differentiation into proinflammatory macrophages. Therefore, we evaluated the effects of recombinant STC-1 (rSTC-1) on monocyte phenotype and in a mouse model of myocardial infarction. Using an established protocol to differentiate human monocytes into macrophages, we demonstrated that rSTC-1 did not alter morphology of the differentiated cells, toll-like receptor (TLR) 4 expression, or expression of the myeloid cell marker CD11b. However, rSTC-1 treatment before differentiation attenuated the rise in the expression of CD14, a TLR4 coreceptor and pathogen sensor that propagates innate immune responses, and suppressed levels of inflammatory cytokines produced by the differentiated cells in response to the CD14-TLR4 ligand lipopolysaccharide. Moreover, rSTC-1 treatment reduced CD14 expression in monocytes stimulated with endogenous danger signals. Interestingly, the effects of rSTC-1 on CD14 expression were not reproduced by a superoxide dismutase mimetic. In mice with induced myocardial infarcts, intravenous administration of rSTC-1 decreased CD14 expression in the heart as well as levels of tumor necrosis factor alpha, C-X-C motif ligand 2, interleukin 1 beta, and myeloperoxidase. It also suppressed the formation of scar tissue while enhancing cardiac function. The data suggests that one of the beneficial effects of STC-1 might be attributed to suppression of CD14 on recruited monocytes and macrophages that limits their inflammatory response. STC-1 may be a promising therapy to protect the heart and other tissues from ischemic injury.

  6. Adiponectin treatment attenuates inflammatory response during early sepsis in obese mice

    PubMed Central

    Wang, XianFeng; Buechler, Nancy L; Yoza, Barbara K; McCall, Charles E; Vachharajani, Vidula

    2016-01-01

    Background Morbid obesity increases the cost of care in critically ill patients. Sepsis is the leading cause of death in noncoronary intensive care units. Circulating cell–endothelial cell interactions in microcirculation are the rate-determining factors in any inflammation; obesity increases these interactions further. Adiponectin deficiency is implicated in increased cardiovascular risk in obese patients. We have shown that adiponectin deficiency increases microvascular dysfunction in early sepsis. In the present study, we investigated the effect of adiponectin replacement on nutritionally obese mice with early sepsis. Methods We used cecal ligation and puncture model of sepsis in mice with diet-induced obesity (DIO) vs control diet (CTRL), with or without adiponectin treatment. We studied leukocyte/platelet adhesion in the cerebral microcirculation in early sepsis. We also studied the effect of adiponectin on free fatty acid (FFA)-fed and lipopolysaccharide-stimulated bone marrow-derived macrophages (BMDM) for mechanistic studies. Results Leukocyte and platelet adhesion increased in the cerebral microcirculation of DIO and CTRL mice with early sepsis vs. sham; moreover cell adhesion in DIO-sepsis group was significantly higher than in the CTRL-sepsis group. Adiponectin replacement decreased leukocyte/platelet adhesion in CTRL and DIO mice. In FFA-fed BMDM, adiponectin treatment decreased tumor necrosis factor-alpha mRNA expression and increased sirtuin-1 (SIRT1) mRNA expression. Furthermore, using BMDM from SIRT1 knockout mice, we showed that the adiponectin treatment decreased inflammatory response in FFA-fed BMDM via SIRT1-dependent and -independent pathways. Conclusion Adiponectin replacement attenuates microvascular inflammation in DIO-sepsis mice. Mechanistically, adiponectin treatment in FFA-fed mouse macrophages attenuates inflammatory response via SIRT1-dependent and -independent pathways. PMID:27785087

  7. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  8. Bone Marrow Stem/Progenitor Cells Attenuate the Inflammatory Milieu Following Substitution Urethroplasty

    PubMed Central

    Liu, Joceline S.; Bury, Matthew I.; Fuller, Natalie J.; Sturm, Renea M.; Ahmad, Nida; Sharma, Arun K.

    2016-01-01

    Substitution urethroplasty for the treatment of male stricture disease is often accompanied by subsequent tissue fibrosis and secondary stricture formation. Patients with pre-existing morbidities are often at increased risk of urethral stricture recurrence brought upon in-part by delayed vascularization accompanied by overactive inflammatory responses following surgery. Within the context of this study, we demonstrate the functional utility of a cell/scaffold composite graft comprised of human bone marrow-derived mesenchymal stem cells (MSC) combined with CD34+ hematopoietic stem/progenitor cells (HSPC) to modulate inflammation and wound healing in a rodent model of substitution urethroplasty. Composite grafts demonstrated potent anti-inflammatory effects with regards to tissue macrophage and neutrophil density following urethral tissue analyses. This was accompanied by a significant reduction in pro-inflammatory cytokines TNFα and IL-1β and further resulted in an earlier transition to tissue remodeling and maturation with a shift in collagen type III to I. Grafted animals demonstrated a progressive maturation and increase in vessel size compared to control animals. Overall, MSC/CD34+ HSPC composite grafts reduce inflammation, enhance an earlier transition to wound remodeling and maturation concurrently increasing neovascularization in the periurethral tissue. We demonstrate the feasibility and efficacy of a stem cell-seeded synthetic graft in a rodent substitution urethroplasty model. PMID:27762304

  9. FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines

    PubMed Central

    Su, Ke; Zeng, Ping; Liang, Wei; Luo, Zhengyu; Wang, Yiman; Lv, Xifeng; Han, Qi; Yan, Miao

    2017-01-01

    FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines. PMID:28270699

  10. Hydroxysafflor yellow A attenuates the expression of inflammatory cytokines in acute soft tissue injury

    PubMed Central

    Dong, Fang; Xue, Changjiang; Wang, Yu; Peng, Yuanyuan; Zhang, Yadan; Jin, Ming; Zang, Baoxia

    2017-01-01

    We examined the effect of hydroxysafflor yellow A (HSYA) on the inflammatory response to strike-induced acute soft tissue injury in rats. Soft tissue injury was induced in rat leg muscles using a strike hammer, followed by intraperitoneal administration of HSYA at 16, 32, or 64 mg/kg. After 24 h, the rats were anaesthetized, blood and muscle samples were taken. Plasma levels of interleukin (IL)-6, IL-1β, and tumour necrosis factor (TNF)-αwere measured by enzyme-linked immunosorbent assay. Total RNA and protein were isolated from muscle tissue to determine the mRNA levels of IL-6, IL-1β, TNF-α, vascular cell adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1, and the protein level of phosphorylated p38 mitogen-activated protein kinase (MAPK). Nuclear factor (NF)-κB expression was determined by muscle histopathology and immunohistochemistry. HSYA attenuated pathologic changes instrike-induced soft tissue inflammation. Treatment with HSYA also alleviated strike-induced increases in TNF-α, IL-1β, IL-6, VCAM-1, and ICAM-1mRNA levels and inhibited the increased activation of NF-κB and phosphorylation of p38 MAPK in muscle tissue. These findings suggest that HSYA effectively inhibits strike-induced inflammatory signal transduction in rats. PMID:28074914

  11. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1

    PubMed Central

    Gong, Gu; Yuan, Li-bang; Hu, Ling; Wu, Wei; Yin, Liang; Hou, Jing-li; Liu, Ying-hai; Zhou, Le-shun

    2012-01-01

    Aim: To investigate the neuroprotective effect of glycyrrhizin (Gly) against the ischemic injury of rat spinal cord and the possible role of the nuclear protein high-mobility group box 1 (HMGB1) in the process. Methods: Male Sprague-Dawley rats were subjected to 45 min aortic occlusion to induce transient lumbar spinal cord ischemia. The motor functions of the animals were assessed according to the modified Tarlov scale. The animals were sacrificed 72 h after reperfusion and the lumbar spinal cord segment (L2–L4) was taken out for histopathological examination and Western blotting analysis. Serum inflammatory cytokine and HMGB1 levels were analyzed using ELISA. Results: Gly (6 mg/kg) administered intravenously 30 min before inducing the transient lumbar spinal cord ischemia significantly improved the hind-limb motor function scores, and reduced the number of apoptotic neurons, which was accompanied by reduced levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the plasma and injured spinal cord. Moreover, the serum HMGB1 level correlated well with the serum TNF-α, IL-1β and IL-6 levels during the time period of reperfusion. Conclusion: The results suggest that Gly can attenuate the transient spinal cord ischemic injury in rats via reducing inflammatory cytokines and inhibiting the release of HMGB1. PMID:22158106

  12. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.

    PubMed

    Gong, Qi-Hai; Wang, Qian; Pan, Li-Long; Liu, Xin-Hua; Huang, Hui; Zhu, Yi-Zhun

    2010-07-01

    The present study investigated the effect of sodium hydrosulfide (NaHS), a H(2)S donor, on cognitive impairment and neuroinflammatory changes induced by bilateral intracerebroventricular injections of LPS at a dose of 10mug/rat. Rats received 5mg/kg NaHS or volume-matched vehicle administration by intraperitoneal injection 3days before LPS injection then for 9days once daily. Morris water maze was used to detect the cognitive function. Compared to the sham-treated rats, LPS injection significantly prolonged the mean escape latency in the navigation test (P<0.05) and shortened the adjusted escape latency by approximately 30% (P<0.05). Meanwhile, LPS injection decreased H(2)S level but increased pro-inflammatory mediators (i.e., TNF-alpha, TNFR1, degradation of IkappaB-alpha and thereafter activation of NF-kappaB) in hippocampus. However, these effects of LPS were significantly ameliorated with NaHS treatment (P<0.05 vs vehicle-treated group). The present data suggest that H(2)S attenuates LPS-induced cognitive impairment through reducing the overproduction of pro-inflammatory mediators via inhibition of NF-kappaB pathways in rats. This study sets the stage for exploring a novel H(2)S releasing agent for preventing or retarding the development or progression of neurological disorders such as Alzheimer's disease.

  13. Cyclo-Gly-Pro, a cyclic dipeptide, attenuates nociceptive behaviour and inflammatory response in mice.

    PubMed

    Ferro, Jamylle Nunes de Souza; de Aquino, Fernanda Lima Torres; de Brito, Renan Guedes; dos Santos, Priscila Laíse; Quintans, Jullyana de Souza Siqueira; de Souza, Lucas Costa; de Araújo, Almair Ferreira; Diaz, Bruno Lourenço; Lucca-Júnior, Waldecy; Quintans-Júnior, Lucindo José; Barreto, Emiliano

    2015-12-01

    The present study aimed to investigate the antinociceptive and anti-inflammatory effects of the cyclic dipeptide cyclo-Gly-Pro (CGP) in mice. Antinociceptive activity was assessed by employing different pain models, such as formalin test, acetic acid-induced writhing, hot plate test, and carrageenan-induced hyperalgesia, in mice. The number of c-Fos-immunoreactive cells in the periaqueductal gray (PAG) was evaluated in CGP-treated mice. Anti-inflammatory activity was evaluated using paw oedema induced by carrageenan, compound 48/80, serotonin, and prostaglandin E2 (PGE2) and analyzed by plethysmometry. Quantitation of myeloperoxidase (MPO) in the paw was carried out to analyze the presence of neutrophils in the tissue. Intraperitoneal injection of CGP produced a significant inhibition in both neurogenic and inflammatory phases of formalin-induced pain. The antinociceptive effect of CGP, evaluated in the acetic acid-induced writhing test, was detected for up to 6 h after treatment. Further, in the hot plate test, antinociceptive behaviour was evoked by CGP, and this response was inhibited by naloxone. Animals treated with CGP did not present changes in motor performance. In CGP-treated mice there was an increase in the number of c-Fos-positive neurons in the periaqueductal gray. In another set of experiments, CGP attenuated the hyperalgesic response induced by carrageenan. Furthermore, CGP also reduced the carrageenan-increased MPO activity in paws. In addition, CGP also reduced the paw oedema evoked by compound 48/80, serotonin, and PGE2 . Taken together, these results may support a possible therapeutic application of the cyclic dipeptide cyclo-Gly-Pro toward alleviating nociception and damage caused by inflammation conditions.

  14. Olprinone Attenuates the Acute Inflammatory Response and Apoptosis after Spinal Cord Trauma in Mice

    PubMed Central

    Esposito, Emanuela; Mazzon, Emanuela; Paterniti, Irene; Impellizzeri, Daniela; Bramanti, Placido; Cuzzocrea, Salvatore

    2010-01-01

    Background Olprinone hydrochloride is a newly developed compound that selectively inhibits PDE type III and is characterized by several properties, including positive inotropic effects, peripheral vasodilatory effects, and a bronchodilator effect. In clinical settings, olprinone is commonly used to treat congestive cardiac failure, due to its inotropic and vasodilating effects. The mechanism of these cardiac effects is attributed to increased cellular concentrations of cAMP. The aim of the present study was to evaluate the pharmacological action of olprinone on the secondary damage in experimental spinal cord injury (SCI) in mice. Methodology/Principal Findings Traumatic SCI is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should be preventable, no effective treatment options currently exist for patients with SCI. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, apoptosis, and locomotor disturbance. Olprinone treatment (0.2 mg/kg, i.p.) 1 and 6 h after the SCI significantly reduced: (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation, (4) pro-inflammatory cytokines, (5) NF-κB expression, (6) p-ERK1/2 and p38 expression and (7) apoptosis (TUNEL staining, FAS ligand, Bax and Bcl-2 expression). Moreover, olprinone significantly ameliorated the recovery of hind-limb function (evaluated by motor recovery score). Conclusions/Significance Taken together, our results clearly demonstrate that olprinone treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma. PMID

  15. Inferior vena cava occlusion secondary to an inflammatory abdominal aortic aneurysm.

    PubMed

    Yoshizaki, Tomoya; Tabuchi, Noriyuki; Makita, Satoru

    2007-02-01

    Inflammatory abdominal aortic aneurysms (IAAAs) represent 3% to 10% of all AAAs. However, inferior vena cava occlusion secondary to an IAAA is rarely reported. We report a case of inferior vena cava occlusion secondary to an IAAA presenting deep venous thrombosis. As it is crucial to avoid pulmonary embolism and excessive blood loss during an operation, we pre-operatively implanted a venous filter and minimized intra-operative dissection that allowed successful operative repair.

  16. EGCG attenuates pro-inflammatory cytokines and chemokines production in LPS-stimulated L02 hepatocyte.

    PubMed

    Liu, Qiaoli; Qian, Yun; Chen, Feng; Chen, Xiaoming; Chen, Zhi; Zheng, Min

    2014-01-01

    Endotoxin lipopolysaccharide (LPS) plays an important role in the acceleration of inflammatory reaction of hepatitis as the second attack. Compounds that can prevent inflammation by targeting LPS have potential therapeutic clinical application. Epigallocatechin-3-gallate (EGCG) has potent hepatocyte-protective effect and mild anti-hepatitis virus function. Here, we investigated whether EGCG attenuated the severity of inflammatory response in LPS-stimulated L02 hepatocytes. L02 hepatocytes were pretreated with EGCG for 2 h, then stimulated by LPS at 250 ng/ml. The expression levels of chemokine regulated upon activation normal T-cell expressed and secreted (Rantes) and monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ, adhesion molecule intercellular adhesion molecule-1 (ICAM-1), oxidant stress molecules nitric oxide (NO), vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2) were tested by enzyme-linked immunosorbent assay. The expression of total extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p-AKT, total p38, phospho-p38 (p-p38), total p65 and phospho-p65 (p-p65), IκBα, phospho-IκBα (p-IκBα) and TNF receptor associated factor 2 were tested by western blot analysis. Our results showed that pre-treatment with EGCG could significantly reduce the production of TNF-α, Rantes, MCP-1, ICAM-1, NO, VEGF, and MMP-2 in LPS-stimulated L02 hepatocytes in a dose-dependent manner. The effect of EGCG may be related to the inhibition of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by down-regulation of p-IκBα, p65, p-p65, p-p38, p-ERK1/2, and p-AKT. These results indicate that EGCG suppresses LPS-induced inflammatory response and oxidant stress and exerts its hepatocyte-protective activity partially by inhibiting NF-κB and MAPK pathways.

  17. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  18. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    PubMed

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  19. Docosahexanoic acid diet supplementation attenuates the peripheral mononuclear cell inflammatory response to exercise following LPS activation.

    PubMed

    Capó, X; Martorell, M; Llompart, I; Sureda, A; Tur, J A; Pons, A

    2014-10-01

    Exercise induces changes in circulating pro- and anti-inflammatory cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on the plasma cytokine levels and on the peripheral mononuclear (PBMCs) cells cytokine production after a training season or an acute bout of exercise. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA, whereas the placebo group consumed the same beverage without DHA. Three blood samples were taken: in basal conditions at the beginning of the nutritional intervention and after eight weeks of training season in basal and post-exercise conditions. The DHA content increased in erythrocytes after 8weeks of training and supplementation. Neither diet supplementation with DHA nor training season altered the basal plasma cytokines and growth factors. Only acute exercise significantly increased plasma IL6 in experimental and placebo groups. Lipopolysaccharide (LPS) activation induced the inflammatory response in PBMCs, with a significant production rate of TNFα, IL6 and IL8 mainly after acute exercise. DHA supplementation significantly reduced the rate of TNFα and IL6 production by stimulated PBMCs. Acute exercise increased the Toll-like receptor 4 (TLR4) protein levels in PBMCs, although the increase was only statistically significant in the placebo group. In conclusion, a training season does not induce significant changes in the circulating cytokine profile in well-trained soccer players. Exercise increases the PBMCs cell capabilities to produce cytokines after TLR4 stimulation with LPS and this rate of cytokine production is attenuated by diet DHA supplementation.

  20. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response.

  1. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    PubMed

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis.

  2. A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain.

    PubMed

    Sung, Ying-Ju; Sofoluke, Nelson; Nkamany, Mary; Deng, Shixian; Xie, Yuli; Greenwood, Jeremy; Farid, Ramy; Landry, Donald W; Ambron, Richard T

    2017-02-24

    Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to

  3. Gastrodia elata attenuates inflammatory response by inhibiting the NF-κB pathway in rheumatoid arthritis fibroblast-like synoviocytes.

    PubMed

    Li, Yu; Wang, Li-Min; Xu, Jian-Zhong; Tian, Ke; Gu, Chen-Xi; Li, Zhi-Fu

    2017-01-01

    Gastrodia elata (GE), which belongs to the Orchidaceae family, was found to possess anti-inflammatory activity. However, the effect of GE on inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) remains largely unknown. Thus, the aim of this study was to investigate the effects of GE on tumor necrosis factor-α (TNF-α)-induced inflammatory response in RA-FLS and the underlying molecular mechanism was also explored. Our results demonstrated that GE significantly attenuated TNF-α-induced IL-6 and IL-8 production in RA-FLS. GE also inhibited TNF-α-induced MMP-3 and MMP-13 expression in RA-FLS. Furthermore, pretreatment with GE significantly attenuated TNF-α-induced the expression of p-p65 and IκBα degradation in RA-FLS. In conclusion, this study demonstrated for the first time that GE attenuated inflammatory response by inhibiting the NF-κB pathway signaling in RA-FLS. Thus, GE might have a therapeutic potential towards the treatment of RA.

  4. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  5. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption.

    PubMed

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Haskó, György; Liaudet, Lucas; Drel, Viktor R; Obrosova, Irina G; Pacher, Pál

    2007-07-01

    A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-kappaB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.

  6. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury.

    PubMed

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats.

  7. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury

    PubMed Central

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats. PMID:26261562

  8. Caval and ureteral obstruction secondary to an inflammatory abdominal aortic aneurysm.

    PubMed

    Kashyap, Vikram S; Fang, Raymond; Fitzpatrick, Colleen M; Hagino, Ryan T

    2003-12-01

    Inflammatory abdominal aortic aneurysms (IAAA) represent 3% to 10% of all abdominal aortic aneurysms. Obstructive uropathy is a well-described feature of IAAAs, but venous complications are unusual secondary to IAAA. The authors report a patient presenting with acute renal failure and deep venous thrombosis secondary to an IAAA. We believe this represents the first case of an IAAA manifesting as combined inferior vena cava compression and associated obstructive uropathy. Successful operative repair was performed. With resolution of the retroperitoneal inflammation, long-term follow-up revealed spontaneous release of both ureteral and caval compression.

  9. Exercise training can attenuate the inflammatory milieu in women with systemic lupus erythematosus.

    PubMed

    Perandini, Luiz A; Sales-de-Oliveira, Diego; Mello, Suzana B V; Camara, Niels O; Benatti, Fabiana B; Lima, Fernanda R; Borba, Eduardo; Bonfa, Eloisa; Sá-Pinto, Ana L; Roschel, Hamilton; Gualano, Bruno

    2014-09-15

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by chronic inflammation. This study sought to assess the effects of an exercise training program on cytokines and soluble TNF receptors (sTNFRs) in response to acute exercise in SLE women. Eight SLE women and 10 sex-, age-, and body mass index-comparable healthy controls (HC) participated in this study. Before and after a 12-wk aerobic exercise training program, cytokines and sTNFRs were assessed at rest and in response to single bouts of acute moderate/intense exercise. HC performed the acute exercise bouts only at baseline. After the exercise training program, there was a decrease in resting TNFR2 levels (P = 0.025) and a tend to reduction interleukin (IL)-10 levels (P = 0.093) in SLE. The resting levels of IL-6, IL-10, and TNF-α after the exercise training in SLE reached HC levels (P > 0.05). In response to a single bout of acute moderate exercise, the area under the curve (AUC) of IL-10 was significantly reduced after the exercise training program in SLE (P = 0.043), and the AUC of IL-10, IL-6, TNF-α, and sTNFR1 of SLE approached control values (P > 0.05). In response to a single bout of acute intense exercise, the AUC of IL-10 was significantly reduced in SLE (P = 0.015). Furthermore, the AUC of sTNFR2 tended to decrease after exercise training program in SLE (P = 0.084), but it did not reach control values (P = 0.001). An aerobic exercise training program attenuated the inflammatory milieu in SLE women, revealing a novel homeostatic immunomodulatory role of exercise in an autoimmunity condition.

  10. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis

    PubMed Central

    Kanno, Yosuke; Ishisaki, Akira; Kawashita, Eri; Kuretake, Hiromi; Ikeda, Kanako; Matsuo, Osamu

    2016-01-01

    Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases. PMID:26722218

  11. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Zhaoguo; Wang, Yueping; Wang, Yaoqi; Ning, Qiaoqing; Zhang, Yong; Gong, Chunzhi; Zhao, Wenxiang; Jing, Guangjian; Wang, Qianqian

    2016-06-01

    Dexmedetomidine (Dex) is a highly selective α2-adrenergic receptor agonist that is widely used for sedation in intensive care units and in clinical anesthesia. Dex has also been shown to possess anti-inflammatory benefits. However, the underlying mechanism by which Dex relieves the inflammatory reaction in the lung tissues of septic mice has not been fully elucidated. In this study, we aimed to evaluate the protective effects and possible mechanism of Dex on the sepsis-induced lung inflammatory response in mice. Sepsis was induced in mice models through the intraperitoneal injection of lipopolysaccharide (LPS). The preemptive administration of Dex substantially abated sepsis-induced pulmonary edema, pulmonary histopathological changes, and NF-κB p65 activity. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both the mRNA and protein levels was also reduced. Moreover, these effects were significantly blocked by the α7 nicotinic acetylcholine receptor (α7nAChR) antagonist α-bungarotoxin (α-Bgt). α-Bgt aggravated pulmonary edema and pulmonary histopathological changes, as well as increased NF-κB p65 activity and TNF-α and IL-6 expression at both the mRNA and protein levels. The overall results demonstrate that Dex inhibits the LPS-induced inflammatory reaction in the lung tissues of septic mice partly through the α7nAChR-dependent cholinergic anti-inflammatory pathway.

  12. Coenzyme Q10 Suppresses TNF-α-Induced Inflammatory Reaction In Vitro and Attenuates Severity of Dermatitis in Mice.

    PubMed

    Li, Weiwei; Wu, Xiaojuan; Xu, Xiangling; Wang, Wenhan; Song, Sijia; Liang, Ke; Yang, Min; Guo, Linlin; Zhao, Yunpeng; Li, Ruifeng

    2016-02-01

    Anti-oxidant coenzyme Q10 (Co-Q10) is commonly used in clinic. Recently, Co-Q10 was reported to antagonize TNF-α-induced inflammation and play a protective role in various inflammatory conditions. However, its role in dermatitis is unknown. Herein, RAW264.7 macrophage cell line was cultured with stimulation of TNF-α, and administration of Co-Q10 alleviated TNF-α-mediated inflammatory reaction in vitro. Furthermore, oxazolone-induced dermatitis mice model was established, and treatment of Co-Q10 markedly attenuated dermatitis phenotype in this mice model. Moreover, the protective role of Co-Q10 in vitro and in dermatitis was probably due to its repression on NF-κB signaling. Collectively, Co-Q10 may represent a potential molecular target for prevention and treatment of inflammatory skin diseases.

  13. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Mereghetti, A.; Sagia, E.; Silari, M.

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities.

  14. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    PubMed

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health.

  15. Resveratrol attenuates neuropathic pain through balancing pro-inflammatory and anti-inflammatory cytokines release in mice.

    PubMed

    Tao, Lei; Ding, Qian; Gao, Changjun; Sun, Xude

    2016-05-01

    Anti-inflammatory activity of resveratrol has been widely studied, while its beneficial effect on the management of neuropathic pain, a refractory chronic syndrome with pro-inflammation implicated in, is very little investigated. In the present study, the effects of different doses and various time window of administration of resveratrol were explored in a neuropathic mouse model of chronic constriction injury (CCI) of the sciatic nerve. It was demonstrated that pretreatment of resveratrol (5, 10, 20 and 40 mg/kg) for 7 consecutive days before CCI did not alleviate neuropathic pain, while it clearly relieved the pain when administrated after CCI and such pain relief effect was more pronounced when administrated right after the peak of pain symptom at day 7 after CCI, as evidenced by the alleviation of thermal hyperalgesia and mechanical allodynia. Such a beneficial effect of resveratrol was in a dose-dependent manner. Mechanistic study showed that resveratrol repressed the expression of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, and promoted the expression of anti-inflammatory cytokine IL-10 at the same time, which was further confirmed in a cell model of microglia. It was also shown that neuropathic pain inversely correlated with pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, but not with anti-inflammatory cytokine IL-10 in all experimental mice from Spearman correlation coefficient. Our study reveals that resveratrol displays a significant neuropathic pain relief effect and paved a way for novel treatment of chronic pain.

  16. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  17. Social interaction attenuates the extent of secondary neuronal damage following closed head injury in mice

    PubMed Central

    Doulames, Vanessa M.; Vilcans, Meghan; Lee, Sangmook; Shea, Thomas B.

    2015-01-01

    Recovery following Traumatic Brain Injury (TBI) can vary tremendously among individuals. Lifestyle following injury, including differential social interactions, may modulate the extent of secondary injury following TBI. To examine this possibility under controlled conditions, closed head injury (CHI) was induced in C57Bl6 mice using a standardized weight drop device after which mice were either housed in isolation or with their original cagemates (“socially-housed”) for 4 weeks. CHI transiently impaired novel object recognition (NOR) in both isolated and social mice, confirming physical and functional injury. By contrast, Y maze navigation was impaired in isolated but not social mice at 1–4 weeks post CHI. CHI increased excitotoxic signaling in hippocampal slices from all mice, which was transiently exacerbated by isolation at 2 weeks post CHI. CHI slightly increased reactive oxygen species and did not alter levels of amyloid beta (Abeta), total or phospho-tau, total or phosphorylated neurofilaments. CHI increased serum corticosterone in both groups, which was exacerbated by isolation. These findings support the hypothesis that socialization may attenuate secondary damage following TBI. In addition, a dominance hierarchy was noted among socially-housed mice, in which the most submissive mouse displayed indices of stress in the above analyses that were statistically identical to those observed for isolated mice. This latter finding underscores that the nature and extent of social interaction may need to vary among individuals to provide therapeutic benefit. PMID:26528156

  18. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis.

    PubMed

    Yu, Tao; Rhee, Man Hee; Lee, Jongsung; Kim, Seung Hyung; Yang, Yanyan; Kim, Han Gyung; Kim, Yong; Kim, Chaekyun; Kwak, Yi-Seong; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng's various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that

  19. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    PubMed

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.

  20. Attenuation of atherosclerotic complications by modulating inflammatory responses in hypercholesterolemic rats with dietary Njavara rice bran oil.

    PubMed

    Pushpan, Chithra K; V, Shalini; G, Sindhu; Rathnam, Parvathy; A, Jayalekshmy; A, Helen

    2016-10-01

    Atherosclerosis is a chronic inflammatory disease. The role of inflammation in atherosclerosis is well established, with all stages of disease progression being assessed as inflammatory response to injury. Preventive treatments and drugs identified so far are based on lipid lowering strategies which also involves functional foods and dietary supplementation. The present study investigated the effect of supplementation of Njavara rice bran oil (NjRBO), extracted from a medicinal rice variety, to high cholesterol diet (HCD) fed rats on atherosclerosis by attenuating the inflammatory responses in PBMCs, aortic endothelial cells and macrophages. Adult male rats (Sprague-Dawley strain, weighing 100-120g) were grouped into 3 of six rats each. Group I served as control, Group II were fed high cholesterol diet (HCD) and Group III were fed a HCD and NjRBO (100mg/kg body weight). The experimental duration was 60days. Activities of cyclooxygenase, lipoxygenase, nitric oxide synthase, and myeloperoxidase, expression of Tumor necrosis factor-α, Interleukin-6, Interferon γ, monocyte chemoattractant protein-1, and cytosolic phospholipase A2 were found to be decreased on NjRBO supplementation which were increased in HCD fed rats. Expression of ICAM-1 and VCAM-1 in aortic endothelial cells was decreased significantly in NjRBO treatment than HCD fed rats. This attenuations were mainly due to inhibition in translocation of NF-κB into nucleus in aortic endothelial cells. Also, NjRBO treatment significantly decreased the gene expressions of TLR-2, TLR-4, and CD36 in both macrophages and endothelial cells than HCD fed rats indicates its anti-inflammatory effect via TLR - NF-κB signaling pathway. NjRBO has thereby shown to possess anti-atherogenic property by effectively modulating inflammatory mechanisms.

  1. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  2. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis

    PubMed Central

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings. PMID:24040435

  3. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis.

    PubMed

    Zhao, Zhiqing; Guan, Rui; Song, Shaohua; Zhang, Mingjian; Liu, Fang; Guo, Meng; Guo, Wenyuan; Yu, Qilin; Zhang, Luding; Wang, Quanxing

    2013-01-01

    Sinomenine (SIN) is a purified alkaloid from the Chinese herb Sinomenium acutum. Previous studies demonstrated that SIN possesses anti-inflammatory and anti-apoptotic properties. We thus in the present report conducted studies to examine its impact on ischemia reperfusion (IR) induced renal injury. Precondition of mice with 200 mg/kg of SIN provided significant protection for mice against IR-induced renal injury as manifested by the attenuated serum creatinine (Cre) and blood urea nitrogen (BUN) along with less severity for histological changes and tubular cell apoptosis. In line with these results, treatment of mice with SIN suppressed IR-induced inflammatory infiltration and the expression of chemokine CXCL-10, adhesion molecule ICAM-1, and cytokines TNF-а/IL-6. Mechanistic studies revealed that SIN inhibits NF-κB transcriptional activity to suppress IR-induced inflammatory response in the kidney, while it attenuates MAP kinase signaling to prevent tubular cells undergoing apoptosis after IR insult. Altogether, our data support that SIN could be a useful therapeutic agent for prevention and treatment of IR-induced renal injury in the clinical settings.

  4. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma

    PubMed Central

    2011-01-01

    Background Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI). The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury) in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Results Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis. In this study we clearly demonstrated that administration of MK801 attenuated all inflammatory parameters. In fact 24 hours after injury, the degree of spinal cord inflammation and tissue injury (evaluated as histological score), infiltration of neutrophils, NF-κB activation, iNOS, cytokines levels (TNF-α and IL-1β), neurotrophin expression were markedly reduced by MK801 treatment. Moreover, in a separate set of experiments, we have demonstrated that MK801 treatment significantly improved the recovery of locomotory function. Conclusions Blockade of NMDA by MK801 lends support to the potential importance of NMDA antagonists as therapeutic agents in the treatment of acute spinal cord injury. PMID:21492450

  5. Differential diagnosis of pelvic cystic lesions caused by hemorrhage from inflammatory abscess using CT attenuation in women with acute abdomen.

    PubMed

    Sato, Kazuko; Kajihara, Takeshi; Miki, Akinori; Hirabayashi, Eriko; Shintani, Daisuke; Niitsu, Mamoru; Ishihara, Osamu; Itakura, Atsuo

    2015-11-01

    To determine the efficacy of computed tomography (CT) attenuation of cystic lesions measured on an image browsing system to distinguish abscess from hematoma in women with acute abdomen. The medical records of female patients of reproductive age with acute abdomen who were treated over a 7-year period in a single center and who had undergone laparotomy or laparoscopic surgery and preoperative pelvic CT scanning were retrospectively analyzed to identify those with hematoma or abscess cyst formation. Nineteen patients with tubo-ovarian abscess (abscess group) and six patients with hematoma (hematoma group) formation in the pelvis were included in the analysis. The preoperative CT images of the tubo-ovarian cyst were retrospectively investigated on the basis of cyst attenuation. CT attenuation of the cyst measured by both two gynecologists could be used to clearly distinguish inflammatory disease with abscess formation from bleeding disease with hematoma. CT attenuation on a picture archiving and communication system can distinguish hematoma from abscess in women with acute abdomen. This may significantly contribute to making differential diagnosis without interpretation by a medical radiologist.

  6. Simvastatin combined with antioxidant attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    PubMed

    Wang, Kuo-Wei; Wang, Hao-Kuang; Chen, Han-Jung; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung; Lu, Kang

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  7. Oleic acid attenuates trans-10,cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes.

    PubMed

    Reardon, Meaghan; Gobern, Semone; Martinez, Kristina; Shen, Wan; Reid, Tanya; McIntosh, Michael

    2012-11-01

    The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA). Thus, we hypothesized that the 10,12 CLA-mediated decrease in SCD-1, with the subsequent decrease in MUFA, was responsible for the observed effects. To test this hypothesis, 10,12 CLA-treated human adipocytes were supplemented with oleic acid for 12 h to 7 days, and inflammatory gene expression, insulin-stimulated glucose uptake, and lipid content were measured. Oleic acid reduced inflammatory gene expression in a dose-dependent manner, and restored the lipid content of 10,12 CLA-treated adipocytes without improving insulin-stimulated glucose uptake. In contrast, supplementation with stearic acid, a substrate for SCD-1, or 9,11 CLA did not prevent inflammatory gene expression by 10,12 CLA. Notably, 10,12 CLA impacted the expression of several G-protein coupled receptors that was attenuated by oleic acid. Collectively, these data show that oleic acid attenuates 10,12 CLA-induced inflammatory gene expression and lipid content, possibly by alleviating cell stress caused by the inhibition of MUFA needed for phospholipid and neutral lipid synthesis.

  8. Chongcao-Shencha Attenuates Liver and Kidney Injury through Attenuating Oxidative Stress and Inflammatory Response in D-Galactose-Treated Mice

    PubMed Central

    Li, Cailan; Mo, Zhizhun; Xie, Jianhui; Xu, Lieqiang; Tan, Lihua; Luo, Dandan; Chen, Hanbin; Yang, Hongmei; Li, Yucui; Su, Ziren; Su, Zuqing

    2016-01-01

    The Chongcao-Shencha (CCSC), a Chinese herbal compound formula, has been widely used as food material and medicine for enhancing physical strength. The present study investigated the possible effect of CCSC in alleviating the liver and kidney injury in D-galactose- (D-gal-) treated mice and the underlying mechanism. Mice were given a subcutaneous injection of D-gal (200 mg/kg) and orally administered CCSC (200, 400, and 800 mg/kg) daily for 8 weeks. Results indicated that CCSC increased the depressed body weight and organ index induced by D-gal, ameliorated the histological deterioration, and decreased the levels of ALT, AST, BUN, and CRE as compared with D-gal group. Furthermore, CCSC not only elevated the activities of antioxidant enzymes SOD, CAT, and GPx but also upregulated the mRNA expression of SOD1, CAT, and GPx1, while decreasing the MDA level in D-gal-treated mice. Results of western blotting analysis showed that CCSC significantly inhibited the upregulation of expression of nuclear factor kappa B (NF-κB) p65, p-p65, p-IκBα, COX2, and iNOS and inhibited the downregulation of IκBα protein expression caused by D-gal. This study demonstrated that CCSC could attenuate the liver and kidney injury in D-gal-treated mice, and the mechanism might be associated with attenuating oxidative stress and inflammatory response. PMID:27340415

  9. Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke

    PubMed Central

    Brehm, Martin; Guenther, Madlen; Linnartz-Gerlach, Bettina; Neumann, Harald; Witte, Otto W.; Frahm, Christiane

    2013-01-01

    Background Triggering receptor expressed on myeloid cells-2 (TREM2) is a microglial surface receptor involved in phagocytosis. Clearance of apoptotic debris after stroke represents an important mechanism to re-attain tissue homeostasis and thereby ensure functional recovery. The role of TREM2 following stroke is currently unclear. Methods and Results As an experimental stroke model, the middle cerebral artery of mice was occluded for 30 minutes with a range of reperfusion times (duration of reperfusion: 6 h/12 h/24 h/2 d/7 d/28 d). Quantitative PCR (qPCR) revealed a greatly increased transcription of TREM2 after stroke. We subsequently analyzed the expression of pro-inflammatory cytokines, chemokines and their receptors in TREM2-knockout (TREM2-KO) mice via qPCR. Microglial activation (CD68, Iba1) and CD3-positive T-cell invasion were analyzed via qPCR and immunohistochemistry. Functional consequences of TREM2 knockout were assessed by infarct volumetry. The acute inflammatory response (12 h reperfusion) was very similar between TREM2-KO mice and their littermate controls. However, in the sub-acute phase (7 d reperfusion) following stroke, TREM2-KO mice showed a decreased transcription of pro-inflammatory cytokines TNFα, IL-1α and IL-1β, associated with a reduced microglial activity (CD68, Iba1). Furthermore, TREM2-KO mice showed a reduced transcription of chemokines CCL2 (MCP1), CCL3 (MIP1α) and the chemokine receptor CX3CR1, followed by a diminished invasion of CD3-positive T-cells. No effect on the lesion size was observed. Conclusions Although we initially expected an exaggerated pro-inflammatory response following ablation of TREM2, our data support a contradictory scenario that the sub-acute inflammatory reaction after stroke is attenuated in TREM2-KO mice. We therefore conclude that TREM2 appears to sustain a distinct inflammatory response after stroke. PMID:23301011

  10. Lucinactant attenuates pulmonary inflammatory response, preserves lung structure, and improves physiologic outcomes in a preterm lamb model of RDS

    PubMed Central

    Wolfson, Marla R.; Wu, Jichuan; Hubert, Terrence L.; Gregory, Timothy J.; Mazela, Jan; Shaffer, Thomas H.

    2013-01-01

    Background Acute inflammatory responses to supplemental oxygen and mechanical ventilation have been implicated in the pathophysiological sequelae of respiratory distress syndrome (RDS). Although surfactant replacement therapy (SRT) has contributed to lung stability, the effect on lung inflammation is inconclusive. Lucinactant contains sinapultide (KL4), a novel synthetic peptide that functionally mimics surfactant protein B, a protein with anti-inflammatory properties. We tested the hypothesis that lucinactant may modulate lung inflammatory response to mechanical ventilation in the management of RDS and may confer greater protection than animal-derived surfactants. Methods Preterm lambs (126.8 ± 0.2 SD d gestation) were randomized to receive lucinactant, poractant alfa, beractant, or no surfactant and studied for 4 h. Gas exchange and pulmonary function were assessed serially. Lung inflammation biomarkers and lung histology were assessed at termination. Results SRT improved lung compliance relative to no SRT without significant difference between SRT groups. Lucinactant attenuated lung and systemic inflammatory response, supported oxygenation at lower ventilatory requirements, and preserved lung structural integrity to a greater degree than either no SRT or SRT with poractant alfa or beractant. Conclusion These data suggest that early intervention with lucinactant may more effectively mitigate pulmonary pathophysiological sequelae of RDS than the animal-derived surfactants poractant alfa or beractant. PMID:22821059

  11. Nrf2-mediated mucoprotective and anti-inflammatory actions of Artemisia extracts led to attenuate stress related mucosal damages

    PubMed Central

    Park, Jong-Min; Han, Young-Min; Lee, Jin-Seok; Ko, Kwang Hyun; Hong, Sung-Pyo; Kim, Eun-Hee; Hahm, Ki-Baik

    2015-01-01

    The aim of this study was to compare biological actions between isopropanol and ethanol extracts of Artemisia including antioxidant, anti-inflammatory, and cytoprotective actions. Antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and confocal microscopy on lipopolysaccharide-induced RGM1 cells, cytoprotection effects evaluated by detecting heme oxygenase-1 (HO-1), Nf-E2 related factor2 (Nrf2) and heat shock protein 70 (HSP70), and anti-inflammatory effects investigated by measuring inflammatory mediators. Water immersion restraint stress was imposed to provoke stress related mucosal damages (SRMD) in rats. Isopropanol extracts of Artemisia showed the higher DPPH radical scavenging activity and lesser LPS-induced reactive oxygen species productions and increased HO-1 expression through increased nuclear translocation of Nrf2 transcription factor compared to ethanol extracts. The increased expression of HSP70 and decreased expression of endothelin-1 were only increased with isopropanol extracts. A concentration-dependent inhibition of LPS-induced COX-2 and iNOS even at a rather lower concentration than ethanol extract was achieved with isopropanol extracts. Cytokine protein array revealed Artemisia extracts significantly attenuated the levels of CXCL-1, CXCL-16, and MCP-1. These orchestrated actions led to significant rescue from SRMD. Conclusively, Artemisia extracts imposed significant antioxidant and anti-inflammatory activity against SRMD and isopropanol extracts were superior to ethanol extracts in these beneficiary actions of Artemisia. PMID:25759519

  12. BZ-26, a novel GW9662 derivate, attenuated inflammation by inhibiting the differentiation and activation of inflammatory macrophages.

    PubMed

    Bei, Yuncheng; Chen, Jiajia; Zhou, Feifei; Huang, Yahong; Jiang, Nan; Tan, Renxiang; Shen, Pingping

    2016-12-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is considered to be an important transcriptional factor in regulation of macrophages differentiation and activation. We have synthesized a series of novel structural molecules based on GW9662's structure (named BZ-24, BZ-25 and BZ-26), and interaction activity was calculated by computational docking. BZ-26 had shown stronger interaction with PPARγ and had higher transcriptional inhibitory activity of PPARγ with lower dosage compared with GW9662. BZ-26 was proved to inhibit inflammatory macrophage differentiation. LPS-induced acute inflammation mouse model was applied to demonstrate its anti-inflammatory activity. And the results showed that BZ-26 administration attenuated plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, which are vital cytokines in acute inflammation. The anti-inflammatory activity was examined in THP-1 cell line, and TNF-α, IL-6 and MCP-1, were significantly inhibited. The results of Western blot and luciferase reporter assay indicated that BZ-26 not only inhibited NF-κB transcriptional activity, but also abolished LPS-induce nuclear translocation of P65. We also test BZ-26 action in tumor-bearing chronic inflammation mouse model, and BZ-26 was able to alter macrophages phenotype, resulting in antitumor effect. All our data revealed that BZ-26 modulated LPS-induced acute inflammation via inhibiting inflammatory macrophages differentiation and activation, potentially via inhibition of NF-κB signal pathway.

  13. Does Moderate Intensity Exercise Attenuate the Postprandial Lipemic and Airway Inflammatory Response to a High-Fat Meal?

    PubMed Central

    Kurti, Stephanie P.; Rosenkranz, Sara K.; Levitt, Morton; Cull, Brooke J.; Teeman, Colby S.; Emerson, Sam R.; Harms, Craig A.

    2015-01-01

    We investigated whether an acute bout of moderate intensity exercise in the postprandial period attenuates the triglyceride and airway inflammatory response to a high-fat meal (HFM) compared to remaining inactive in the postprandial period. Seventeen (11 M/6 F) physically active (≥150 min/week of moderate-vigorous physical activity (MVPA)) subjects were randomly assigned to an exercise (EX; 60% VO2peak) or sedentary (CON) condition after a HFM (10 kcal/kg, 63% fat). Blood analytes and airway inflammation via exhaled nitric oxide (eNO) were measured at baseline, and 2 and 4 hours after HFM. Airway inflammation was assessed with induced sputum and cell differentials at baseline and 4 hours after HFM. Triglycerides doubled in the postprandial period (~113 ± 18%, P < 0.05), but the increase did not differ between EX and CON. Percentage of neutrophils was increased 4 hours after HFM (~17%), but the increase did not differ between EX and CON. Exhaled nitric oxide changed nonlinearly from baseline to 2 and 4 hours after HFM (P < 0.05,  η2 = 0.36). Our findings suggest that, in active individuals, an acute bout of moderate intensity exercise does not attenuate the triglyceride or airway inflammatory response to a high-fat meal. PMID:26000301

  14. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  15. Dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat

    PubMed Central

    Wang, Xiaoning; Zhao, Binjiang; Li, Xue

    2015-01-01

    As a kind of α2 adrenergic receptor agonists, dexmedetomidine generates sedation, anti-anxiety and anesthesia effects by hyperpolarizing noradrenergic nerve cells in locus coeruleus. This study was designed to investigate the neuroprotective of dexmedetomidine attenuates isoflurane-induced cognitive impairment, and the possible underlying mechanism in aging rat. Firstly, we used isoflurane-induced aging rat model to analyze the therapeutical effect of dexmedetomidine on cognitive impairment. Next, commercial ELISA kits were used to analyze tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD) and caspase-3 levels. In addition, Western blotting was used to detect the protein expression of P38 MAPK, PTEN and phosphorylation-Akt (p-Akt) expression. Our results showed that the neuroprotective of dexmedetomidine significantly attenuates isoflurane-induced cognitive impairment in aging rat. Moreover, dexmedetomidine significantly inhibited these TNF-α, IL-1β, MDA, SOD and caspase-3 activities in isoflurane-induced aging rat. Meanwhile, the neuroprotective effects of dexmedetomidine on isoflurane-induced cognitive impairment significantly suppressed Bcl-xL/Bad rate, P38 MAPK and PTEN protein expression and activated p-Akt protein expression in aging rat. Collectively, neuroprotective effect of dexmedetomidine attenuates isoflurane-induced cognitive impairment through antioxidant, anti-inflammatory and anti-apoptosis in aging rat. PMID:26770320

  16. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    SciTech Connect

    Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.; Delzenne, Nathalie M.; Bureau, Fabrice; Vanbever, Rita

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  17. EGCG Attenuates Uric Acid-Induced Inflammatory and Oxidative Stress Responses by Medicating the NOTCH Pathway

    PubMed Central

    Xie, Hua; Sun, Jianqin; Chen, Yanqiu; Zong, Min; Li, Shijie; Wang, Yan

    2015-01-01

    Background. The aim of this study is to investigate whether (-)-epigallocatechin-3-gallate (EGCG) can prevent the UA-induced inflammatory effect of human umbilical vein endothelial cells (HUVEC) and the involved mechanisms in vitro. Methods. HUVEC were subjected to uric acid (UA) with or without EGCG treatment. RT-PCR and western blots were performed to determine the level of inflammation marker. The antioxidant activity was evaluated by measuring scavenged reactive oxygen species (ROS). Functional studies of the role of Notch-1 in HUVEC lines were performed using RNA interference analyses. Results. UA significantly increased the expressions of IL-6, ICAM-1, TNF-α, and MCP-1 and the production of ROS in HUVEC. Meanwhile, the expression of Notch-1 and its downstream effects significantly increased. Using siRNA, inhibition of Notch-1 signaling significantly impeded the expressions of inflammatory cytokines under UA treatment. Interestingly, EGCG suppressed the expressions of inflammatory cytokines and the generation of ROS. Western blot analysis of Notch-1 showed that EGCG significantly decreased the expressions of inflammatory cytokines through Notch-1 signaling pathways. Conclusions. In summary, our findings indicated that Notch-1 plays an important role in the UA-induced inflammatory response, and the downregulation of Notch-1 by EGCG could be an effective approach to decrease inflammation and oxidative stress induced by UA. PMID:26539255

  18. Dimethyl sulfoxide (DMSO) attenuates the inflammatory response in the in vitro intestinal Caco-2 cell model.

    PubMed

    Hollebeeck, Sylvie; Raas, Thomas; Piront, Neil; Schneider, Yves-Jacques; Toussaint, Olivier; Larondelle, Yvan; During, Alexandrine

    2011-10-30

    This study aimed to investigate dose effects of dimethyl sulfoxide (DMSO) (0.05-1%) on the intestinal inflammatory response in confluent- and differentiated-Caco-2 cells stimulated with interleukin (IL)-1β or a pro-inflammatory cocktail for 24 h. Cyclooxygenase-2 (COX-2) activity was assayed by incubating inflamed cells with arachidonic acid and then measuring prostaglandin-E(2) (PGE(2)) produced. Soluble mediators (IL-8, IL-6, macrophage chemoattractant protein-1 (MCP-1), and COX-2-derived PGE(2)) were quantified by enzyme immunoassays and mRNA expression of 33 proteins by high throughput TaqMan Low Density Array. Data showed that DMSO decreased induced IL-6 and MCP-1 secretions in a dose-dependent manner (P<0.05), but not IL-8; these effects were cell development- and stimulus- independent. Moreover, in IL-1β-stimulated confluent-cells, DMSO dose-dependently reduced COX-2-derived PGE(2) (P<0.05). DMSO at 0.5% decreased significantly mRNA levels of 14 proteins involved in the inflammatory response (including IL-6, IL-1α, IL-1β, and COX-2). Thus, DMSO at low concentrations (0.1-0.5%) exhibits anti-inflammatory properties in the in vitro intestinal Caco-2 cell model. This point is important to be taken into account when assessing anti-inflammatory properties of bioactive compounds requiring DMSO as vehicle, such as phenolic compounds, in order to avoid miss-interpretation of the results.

  19. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  20. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice.

    PubMed

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-Ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-18

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot-Marie-Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages.

  1. Unfractionated bone marrow cells attenuate paraquat-induced glomerular injury and acute renal failure by modulating the inflammatory response

    PubMed Central

    Gu, Sing-Yi; Yeh, Ti-Yen; Lin, Shih-Yi; Peng, Fu-Chuo

    2016-01-01

    The aim of this study was to evaluate the efficacy of unfractionated bone marrow cells (BMCs) in attenuating acute kidney injury (AKI) induced by paraquat (PQ) in a mouse model. PQ (55 mg/kg BW) was intraperitoneally injected into C57BL/6 female mice to induce AKI, including renal function failure, glomerular damage and renal tubule injury. Glomerular podocytes were the first target damaged by PQ, which led to glomerular injury. Upon immunofluorescence staining, podocytes depletion was validated and accompanied by increased urinary podocin levels, measured on days 1 and 6. A total of 5.4 × 106 BMCs obtained from the same strain of male mice were injected into AKI mice through the tail vein at 3, 24, and 48 hours after PQ administration. As a result, renal function increased, tubular and glomerular injury were ameliorated, podocytes loss improved, and recipient mortality decreased. In addition, BMCs co-treatment decreased the extent of neutrophil infiltration and modulated the inflammatory response by shifting from pro-inflammatory Th1 to an anti-inflammatory Th2 profile, where IL-1β, TNF-α, IL-6 and IFN-γ levels declined and IL-10 and IL-4 levels increased. The present study provides a platform to investigate PQ-induced AKI and repeated BMCs injection represents an efficient therapeutic strategy. PMID:26988026

  2. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  3. Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice.

    PubMed

    Belém, Mônica O; de Andrade, Giovana M M; Carlos, Thalita M; Guazelli, Carla F S; Fattori, Victor; Toginho Filho, Dari O; Dias, Ivan F L; Verri, Waldiceu A; Araújo, Eduardo J A

    2016-09-01

    Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1β, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation.

  4. Calea uniflora Less. attenuates the inflammatory response to carrageenan-induced pleurisy in mice.

    PubMed

    da Rosa, Julia Salvan; de Mello, Silvana Virginia Gagliotti Vigil; Vicente, Geison; Moon, Yeo Jim K; Daltoé, Felipe Perozzo; Lima, Tamires Cardoso; de Jesus Souza, Rafaela; Biavatti, Maique Weber; Fröde, Tânia Silvia

    2017-01-01

    Calea uniflora Less. (family Asteraceae), also named "arnica" and "erva-de-lagarto", is a native plant to the South and Southeast of Brazil. This species was used to treat rheumatism, respiratory diseases, and digestive problems in Brazilian folk medicine. In vitro studies have shown the important biological effects of C. uniflora. However no studies have focused on the mechanism of action of anti-inflammatory activity of C. uniflora. The aim of this study was to evaluate the anti-inflammatory effects of the crude extract, its fractions, and isolated compounds obtained from of C. uniflora, using mouse model of carrageenan-induced inflammation. The following inflammatory parameters: leukocyte influx, degree of exudation, myeloperoxidase (MPO) and adenosine deaminase (ADA) activities, nitric oxide metabolites (NOx), proinflammatory cytokines and phosphorylation of the p65 subunit of NF-κB (p-p65 NF-κB), and p38 mitogen-activated protein kinase (p-p38 MAPK) levels were determined. The crude extract of C. uniflora, its fractions and its isolated compounds reduced the leukocyte influx, degree of exudation, MPO and ADA activities, NOx, TNF-α, IFN-γ, MCP-1 and IL-6 levels (p<0.05). The isolated compounds reduced p-p65 NF-κB and p-p38 MAPK levels (p<0.01). This study demonstrated that C. uniflora exhibits a significant anti-inflammatory activity via inhibition of the leukocyte influx and degree of exudation. These effects were associated with a decrease in the levels of several proinflammatory mediators. The mechanism of the anti-inflammatory action of C. uniflora may be, at least in part, via the inhibition of p65 NF-κB and p38 MAPK activation by the isolated compounds.

  5. Mesenchymal stem cells attenuated PLGA-induced inflammatory responses by inhibiting host DC maturation and function.

    PubMed

    Zhu, Heng; Yang, Fei; Tang, Bo; Li, Xi-Mei; Chu, Ya-Nan; Liu, Yuan-Lin; Wang, Shen-Guo; Wu, De-Cheng; Zhang, Yi

    2015-01-01

    The poly lactic-co-glycolic acid (PLGA) bio-scaffold is a biodegradable scaffold commonly used for tissue repair. However, implanted PLGA scaffolds usually cause serious inflammatory responses around grafts. To improve PLGA scaffold-based tissue repair, it is important to control the PLGA-mediated inflammatory responses. Recent evidence indicated that PLGA induce dendritic cell (DC) maturation in vitro, which may initiate host immune responses. In the present study, we explored the modulatory effects of mesenchymal stem cells (MSC) on PLGA-induced DCs (PLGA-DC). We found that mouse MSCs inhibited PLGA-DC dendrite formation, as well as co-stimulatory molecule and pro-inflammatory factor expression. Functionally, MSC-educated PLGA-DCs promoted Th2 and regulatory T cell differentiation but suppressed Th1 and Th17 cell differentiation. Mechanistically, we determined that PLGA elicited DC maturation via inducing phosphorylation of p38/MAPK and ERK/MAPK pathway proteins in DCs. Moreover, MSCs suppressed PLGA-DCs by partially inactivating those pathways. Most importantly, we found that the MSCs were capable of suppressing DC maturation and immune function in vivo. Also, the proportion of mature DCs in the mice that received MSC-PLGA constructs greatly decreased compared with that of their PLGA-film implantation counterparts. Additionally, MSCs co-delivery increased regulatory T and Th2 cells but decreased the Th1 and Th17 cell numbers in the host spleens. Histological analysis showed that MSCs alleviated the inflammatory responses around the grafted PLGA scaffolds. In summary, our findings reveal a novel function for MSCs in suppressing PLGA-induced host inflammatory response and suggest that DCs are a new cellular target in improving PLGA scaffold-based tissue repair.

  6. St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling.

    PubMed

    Manna, Soumen K; Golla, Srujana; Golla, Jaya Prakash; Tanaka, Naoki; Cai, Yan; Takahashi, Shogo; Krausz, Kristopher W; Matsubara, Tsutomu; Korboukh, Ilia; Gonzalez, Frank J

    2015-09-01

    Despite widespread use as well as epidemiologic indications, there have been no investigations into the effect of St. John's wort (SJW) extract on colorectal carcinogenesis in vivo. This study reports a systematic evaluation of the impact of dietary supplementation of SJW extract on azoxymethane-induced colorectal carcinogenesis in mice. Mice were fed with either AIN-93G (control) diet or SJW extract-supplemented diet (SJW diet) prior to azoxymethane treatment. SJW diet was found to significantly improve the overall survival of azoxymethane-treated mice. Pretreatment with the SJW diet significantly reduced body weight loss as well as decrease of serum albumin and cholesterol levels associated with azoxymethane-induced colorectal tumorigenesis. SJW diet-fed mice showed a significant decrease in tumor multiplicity along with a decrease in incidence of large tumors and a trend toward decreased total tumor volume in a dose-dependent manner. A short-term study, which examined the effect of SJW prior to rectal bleeding, also showed decrease in colorectal polyps in SJW diet-fed mice. Nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase (ERK1/2) pathways were attenuated by SJW administration. SJW extract resulted in early and continuous attenuation of these pathways in the colon epithelium of SJW diet-fed mice under both short-term and long-term treatment regimens. In conclusion, this study demonstrated the chemopreventive potential of SJW extract against colorectal cancer through attenuation of proinflammatory processes.

  7. TSG attenuates LPC-induced endothelial cells inflammatory damage through notch signaling inhibition.

    PubMed

    Zhao, Jing; Liang, Yuan; Song, Fan; Xu, Shouzhu; Nian, Lun; Zhou, Xuanxuan; Wang, Siwang

    2016-01-01

    Lysophosphatidylcholine (LPC) induces inflammation in endothelial cells (ECs) but the mechanism is not fully understood. The Notch signaling pathway is involved in chronic EC inflammation, but its functions in LPC-induced endothelial inflammatory damage and 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside's (TSG) protective effect during LPC-induced inflammatory damage in human umbilical vein endothelial cells (HUVECs) is largely unknown. We report that Notch signaling activation contributed to LPC-induced injury in HUVECs, and that TSG protected HUVECs from LPC-induced injury by antagonizing Notch signaling activation by LPC. γ-secretase inhibitor (DAPT), a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to inhibit Notch activity. HUVECs were exposed to LPC in the presence or absence of TSG, DAPT, and Notch1 siRNA. LPC treatment of HUVECs resulted in reduced cell viability, and Notch1 and Hes1 upregulation. Either silencing of Notch1 by siRNA or pharmacological inhibition of Notch signaling by DAPT prevented the loss of cell viability, and induction of apoptosis, and enhanced expression Notch1, Hes1 and MCP-1 by LPC in HUVECs. Similarly, TSG reduced LPC stimulation of Notch1, Hes1, and MCP-1 expression, prevented the release of IL-6 and CRP and rescued HUVECs from LPC-induced cell damage. Our data indicate that the Notch signaling pathway is a crucial mediator of endothelial inflammatory damage and that TSG protects against endothelial inflammatory damage by inhibiting the Notch signaling pathway. Our findings suggest that targeting Notch signaling by natural products such as TSG is a promising strategy for the prevention and treatment of chronic inflammation associated diseases, including atherosclerosis. © 2015 IUBMB Life, 68(1):37-50, 2016.

  8. Bensal HP Attenuates the Inflammatory Response in Hair Shaving Associated Dermatitis.

    PubMed

    Ray, Anjana; Mordorski, Breanne; Landriscina, Angelo; Rosen, Jamie; Nosanchuk, Joshua; Friedman, Adam

    2016-07-01

    Shaving is an ubiquitous practice, and cutaneous irritation and inflammation are common sequelae, which may be worsened by underlying skin conditions or poor hair removal techniques. Moisturizing shaving creams and aftershaves are available to help maintain or restore the epidermal barrier; however, many continue to suffer from post-shave redness, itching, and pain. To reduce post-shave inflammation, some products have included botanical and other natural ingredients, which are often favored by consumers. We evaluated Bensal HP, an ointment containing 3% oak bark extract, 3% salicylic acid, and 6% benzoic acid, which has documented anti-inflammatory and antimicrobial properties, in a murine model of shave irritation to determine whether it would be useful in this clinical setting. Shaving dermatitis was simulated using a depilatory agent and electric clippers, and the shaved area was photographed and treated with Bensal HP daily for four days. Compared to untreated controls, mice treated with Bensal HP experienced a visible reduction in skin irritation and inflammation. These findings were mirrored on histology, as Bensal HP-treated areas demonstrated increased epidermal integrity and decreased dermal inflammatory infiltrate compared to untreated skin. Using immunohistochemistry, fewer neutrophils and macrophages were noted, and cytokine analysis also revealed decreased IL-6 in Bensal HP-treated skin at 24 and 96 hours after shaving. These results highlight the potential of Bensal HP as an anti-inflammatory treatment for shave irritation. Given the product's application against a variety of inflammatory and infectious skin disorders, its use against shave irritation may also improve comorbid skin conditions, such as pseudofolliculitis barbae.

    J Drugs Dermatol. 2016;15(7):836-840.

  9. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis.

    PubMed

    Umar, Sadiq; Umar, Khalid; Sarwar, Abu Hasnath Md Golam; Khan, Altaf; Ahmad, Niyaz; Ahmad, Sayeed; Katiyar, Chandra Kant; Husain, Syed Akhtar; Khan, Haider A

    2014-05-15

    Rheumatoid arthritis (RA) is a chronic inflammatory disease which leads to destruction of joints. Current treatment modalities for RA either produce symptomatic relief (NSAIDs) or modify the disease process (DMARDs). Though effective, their use is also limited by their side effects. As a result, the interest in alternative, well tolerated anti-inflammatory remedies has re-emerged. Our aim was to evaluate the antioxidant and antiarthritic activity of Boswellia serrata gum resin extract (BSE) in collagen induced arthritis. Arthritis was induced in male Wistar rats by collagen induced arthritis (CIA) method. BSE was administered at doses of 100 and 200mg/kg body weight once daily for 21 days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE2), and histological studies in joints. BSE was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of BSE resulted in significantly reduced levels of inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE2), and increased level of IL-10. The protective effects of BSE against RA were also evident from the decrease in arthritis scoring and bone histology. The abilities to inhibit proinflammatory cytokines and modulation of antioxidant status suggest that the protective effect of Boswellia serrata extract on arthritis in rats might be mediated via the modulation of immune system.

  10. A novel microbe-based treatment that attenuates the inflammatory profile in a mouse model of allergic airway disease

    PubMed Central

    Bazett, Mark; Biala, Agnieszka; Huff, Ryan D.; Bosiljcic, Momir; Gunn, Hal; Kalyan, Shirin; Hirota, Jeremy A.

    2016-01-01

    There is an unmet need for effective new and innovative treatments for asthma. It is becoming increasingly evident that bacterial stimulation can have beneficial effects at attenuating allergic airway disease through immune modulation. Our aim was to test the ability of a novel inactivated microbe-derived therapeutic based on Klebsiella (KB) in a model of allergic airway disease in mice. BALB/c mice were exposed intranasally to house dust mite (HDM) for two weeks. Mice were treated prophylactically via subcutaneous route with either KB or placebo for one week prior to HDM exposure and throughout the two week exposure period. 24 hours after the last exposure, lungs were analysed for inflammatory cell infiltrate, gene expression, cytokine levels, goblet cell metaplasia, and serum was analysed for allergen-specific serum IgE levels. HDM exposed mice developed goblet cell hyperplasia, elevated allergen-specific serum IgE, airway eosinophilia, and a concomitant increase in TH2 cytokines including IL-4, IL-13 and IL-5. Treatment with KB attenuated HDM-mediated airway eosinophilia, total bronchoalveolar lavage (BAL) cell numbers, BAL TH2 cytokine production, and goblet cell metaplasia. Our prophylactic intervention study illustrates the potential of subcutaneous treatment with bacterial derived biologics as a promising approach for allergic airway disease treatment. PMID:27734946

  11. Nonsteroidal anti-inflammatory drugs attenuate proliferation of colonic carcinoma cells by blocking epidermal growth factor-induced Ca++ mobilization.

    PubMed

    Kokoska, E R; Smith, G S; Miller, T A

    2000-01-01

    Numerous studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit colorectal carcinogenesis. We have previously reported that NSAIDs, in human colonic carcinoma cells (Caco-2), attenuate epidermal growth factor (EGF)-induced cellular proliferation through a process independent of their inhibitory effects on prostaglandin synthesis. Furthermore, separate studies have also suggested that NSAIDs inhibit EGF-induced store-operated Ca++ influx. Thus we developed the hypothesis that NSAIDs may limit the activity of EGF by altering intracellular Ca++ ([Ca++]i) mobilization. Serum-deprived Caco-2 cells were employed for all experimentation. [Ca++]i was measured with Fluo-3 and extracellular Ca++ influx was monitored by quenching Fluo-3 fluorescence with Mn++. Proliferation was quantitated with two assays: cellular nucleic acid and total protein content. Caco-2 cells exposed to EGF demonstrated an initial increase in [Ca++]i which was blocked by neomycin, an inhibitor of IPsubscript 3 generation, and the phospholipase C inhibitor U73122 but not U73343 (inactive control). This was followed by sustained extracellular Ca++ influx, which was attenuated with calcium-free buffer (-Ca++), the store- operated Ca++ channel blocker lanthanum, indomethacin, ibuprofen, and aspirin. In subsequent studies, cells were treated with either serum-free media or EGF +/- the aforementioned inhibitors, and again serum starved. Cells exposed to EGF +/- the inactive phospholipase C inhibitor U73343 demonstrated a significant increase in nucleic acid and protein. However, proliferation induced by EGF was not observed when [Ca++]i elevation was prevented by blocking either internal Ca++ store release via phospholipase C/IPsubscript 3 or sustained Ca++ influx through store-operated Ca++ channels. Sustained [Ca++]i elevation, as induced by EGF, appears to be required for mitogenesis. These data support our premise that one mechanism whereby NSAIDs may attenuate colonic neoplasia is

  12. Non-steroidal anti-inflammatory drugs attenuate the vascular responses in aging metabolic syndrome rats

    PubMed Central

    Rubio-Ruiz, María Esther; Pérez-Torres, Israel; Diaz-Diaz, Eulises; Pavón, Natalia; Guarner-Lans, Verónica

    2014-01-01

    Aim: Metabolic syndrome (MS) and aging are low-grade systemic inflammatory conditions, and inflammation is a key component of endothelial dysfunction. The aim of this study was to investigate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) upon the vascular reactivity in aging MS rats. Methods: MS was induced in young male rats by adding 30% sucrose in drinking water over 6, 12, and 18 months. When the treatment was finished, the blood samples were collected, and aortas were dissected out. The expression of COX isoenzymes and PLA2 in the aortas was analyzed using Western blot analysis. The contractile responses of aortic rings to norepinephrine (1 μmol/L) were measured in the presence or absence of different NSAIDs (10 μmol/L for each). Results: Serum levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in control rats were remained stable during the aging process, whereas serum IL-6 in MS rats were significantly increased at 12 and 18 months. The levels of COX isoenzyme and PLA2 in aortas from control rats increased with the aging, whereas those in aortas from MS rats were irregularly increased with the highest levels at 6 months. Pretreatment with acetylsalicylic acid (a COX-1 preferential inhibitor), indomethacin (a non-selective COX inhibitor) or meloxicam (a COX-2 preferential inhibitor) decreased NE-induced contractions of aortic rings from MS rats at all the ages, with meloxicam being the most potent. Acetylsalicylic acid also significantly reduced the maximum responses of ACh-induced vasorelaxation of aortic rings from MS rats, but indomethacin and meloxicam had no effect. Conclusion: NSAIDs can directly affect vascular responses in aging MS rats. Understanding the effects of NSAIDs on blood vessels may improve the treatment of cardiovascular diseases and MS in the elders. PMID:25263337

  13. Croton antisyphiliticus Mart. attenuates the inflammatory response to carrageenan-induced pleurisy in mice.

    PubMed

    Dos Reis, Gustavo Oliveira; Vicente, Geison; de Carvalho, Francieli Kanumfre; Heller, Melina; Micke, Gustavo Amadeu; Pizzolatti, Moacir Geraldo; Fröde, Tânia Silvia

    2014-04-01

    The aim of this study was to investigate the anti-inflammatory effect of the crude hydroalcoholic extract (CHE) from the aerial parts of Croton antisyphiliticus, its fractions and isolated compounds derived from it on the mouse model of pleurisy induced by carrageenan. The aerial parts of C. antisyphiliticus were dried, macerated and extracted with ethanol to obtain the CHE, which was fractionated by liquid-liquid extraction using solvents with increasing polarity to obtain hexane (Hex), ethyl acetate (EA) and aqueous (Aq) fractions. Vitexin and quinic acid were isolated from Aq fraction. Capillary electrophoresis analysis, physical characteristics and spectral data produced by infrared (IR), nuclear magnetic resonance ((1)H and (13)C NMR) and mass spectrometry analyses were used to identify and elucidate the structure of the isolated compounds. The experimental model of pleurisy was induced in mice by a single intrapleural injection of carrageenan (1 %). Leukocytes, exudate concentrations, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities and nitrate/nitrite (NOx), tumor necrosis factor-α (TNF-α) and interleukin-17 (IL-17) levels were determined in the pleural fluid leakage at 4 h after pleurisy induction. Animals pre-treated with CHE, Hex, EA, Aq, vitexin and quinic acid exhibited decreases in leukocytes, exudate concentrations, MPO and ADA activities and NOx levels (p < 0.05). Also CHE, Hex, EA and vitexin but not quinic acid inhibited TNF-α and IL-17 levels (p < 0.05). C. antisyphiliticus caused anti-inflammatory effect by inhibiting the activated leukocytes, exudate concentrations, NOx, TNF-α, and IL-17 levels. The compounds vitexin and quinic acid may be responsible for this anti-inflammatory action.

  14. Chalcones from Angelica keiskei attenuate the inflammatory responses by suppressing nuclear translocation of NF-κB.

    PubMed

    Chang, Hee Ryun; Lee, Hwa Jin; Ryu, Jae-Ha

    2014-12-01

    The ethyl acetate-soluble fraction from the ethanolic extract of Angelica keiskei showed potent inhibitory activity against the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. We identified seven chalcones (1-7) from EtOAc-soluble fractions through the activity-guided separation. Four active principles, identified as 4-hydroxyderrcine (1), xanthoangelol E (2), xanthokeismin A (4), and xanthoangelol B (5), inhibited the production of NO and the expression of proinflammatory cytokines, interleukin (IL)-1β and IL-6, in LPS-activated macrophages. Western blotting and reverse transcription-polymerase chain reaction analysis demonstrated that these chalcones attenuated protein and mRNA levels of inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, these active compounds suppressed the degradation of inhibitory-κBα (I-κBα) and the translocation of nuclear factor κB (NF-κB) into nuclei of LPS-activated macrophages. These data demonstrate that four chalcones (1, 2, 4, and 5) from A. keiskei can suppress the LPS-induced production of NO and the expression of iNOS/COX-2 genes by inhibiting the degradation of I-κBα and nuclear translocation of NF-κB. Taken together, four chalcones from A. keiskei may have efficacy as anti-inflammatory agents.

  15. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis

    PubMed Central

    He, Xuexiu; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Fu, Yunhe; Yang, Zhengtao

    2016-01-01

    Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment. PMID:27321991

  16. C-type natriuretic peptide prevents kidney injury and attenuates oxidative and inflammatory responses in hemorrhagic shock.

    PubMed

    Chen, Gan; Song, Xiang; Yin, Yujing; Xia, Sha; Liu, Qingjun; You, Guoxing; Zhao, Lian; Zhou, Hong

    2017-02-01

    Oxidative stress induced by hemorrhagic shock (HS) initiates a systemic inflammatory response, which leads to subsequent kidney injury. This study assessed the efficacy of c-type natriuretic peptide (CNP) in attenuating kidney injury in a rat model of hemorrhagic shock and resuscitation (HS/R). Sodium pentobarbital-anesthetized adult male Wistar rats underwent HS induced by the withdrawal of blood to a mean arterial pressure of 30-35 mmHg for 50 min. Then, the animals received CNP (25 μg/kg) or vehicle (saline) intravenously, followed byresuscitation with 1.5 times the shed blood volume in the form of normal saline. Mean arterial pressure was measured throughout the experiment, and acid-base status, oxidative stress, inflammation, tissue injury and kidney function were evaluated after resuscitation. CNP infusion reduced the malondialdehyde content, lowered the myeloperoxidase activity and decreased the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in the kidney. The histologic injury score and the plasma creatinine concentration were also significantly decreased after CNP treatment compared to the vehicle group. CNP treatment ameliorates oxidative stress, the inflammatory response, and consequently acute kidney injury after HS/R. Thus, CNP may represent a promising strategy to improve resuscitation for the treatment of HS and deserves further investigation.

  17. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  18. Attenuated viral hepatitis in Trem1−/− mice is associated with reduced inflammatory activity of neutrophils

    PubMed Central

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1−/− mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1−/− mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  19. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    PubMed

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  20. Celastrol attenuates inflammatory and neuropathic pain mediated by cannabinoid receptor type 2.

    PubMed

    Yang, Longhe; Li, Yanting; Ren, Jie; Zhu, Chenggang; Fu, Jin; Lin, Donghai; Qiu, Yan

    2014-08-06

    Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine), has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI), respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p.) injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p.) significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p.) effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p.), a specific cannabinoid receptor-2 (CB2) receptor antagonist, but not by SR141716 (1 mg/kg, i.p.), a specific cannabinoid receptor-1 (CB1) receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief.

  1. Ultrafiltration of priming blood before cardiopulmonary bypass attenuates inflammatory response and maintains cardiopulmonary function in neonatal piglets.

    PubMed

    Ugaki, Shinya; Honjo, Osami; Kotani, Yasuhiro; Nakakura, Mahito; Douguchi, Takuma; Oshima, Yu; Yoshizumi, Ko; Kasahara, Shingo; Sano, Shunji

    2009-01-01

    Blood priming is necessary for cardiopulmonary bypass (CPB) in neonates to avoid excessive hemodilution; however, transfusion-related inflammation affects postCPB outcomes in neonatal open-heart surgery. We hypothesized that ultrafiltration of priming blood before CPB may reduce inflammatory mediators in priming blood and postCPB inflammatory responses, thereby improving cardiopulmonary function. Twelve 1-week-old piglets (3.5 +/- 0.2 kg) were divided into two groups. Group U (n = 6) employed the priming blood ultrafiltrated before CPB, but group N (n = 6) used the nonultrafiltrated blood. Cardiopulmonary bypass was performed for 2 hours and then modified ultrafiltration (MUF) was conducted. Data were acquired before CPB and after MUF. The values of K+, serotonin, and IL-8 in priming blood was significantly decreased after ultrafiltration (8.2 +/- 2.6 vs. 4.2 +/- 0.8 mEq/L, p < 0.01, 234 +/- 96 vs. 74 +/- 42 ng/ml, p < 0.01, 78.4 +/- 5.1 vs. 64.5 +/- 59.1 pg/ml, p < 0.05). Group U after MUF had lower thrombin-antithrombin complex levels (23.9 +/- 5.1 vs. 33.7 +/- 4.6 ng/ml, p < 0.01) and lower IL-8 levels in airway fluid (925 +/- 710 vs. 2495 +/- 1207 pg/ml, p < 0.05) than group N. Cardiac output and arterial PO2 after MUF in group U were also higher (1.13 +/- 0.21 vs. 0.69 +/- 0.22, p < 0.01, 340 +/- 190 vs. 149 +/- 84 mm Hg, p < 0.05). The ultrafiltration of blood priming before CPB attenuated activation of the coagulation pathway and inflammatory responses and preserved cardiopulmonary function in neonatal piglets.

  2. IinQ attenuates systemic inflammatory responses via selectively impairing the Myddosome complex formation upon TLR4 ligation.

    PubMed

    Kang, Kidong; Won, Minho; Yuk, Jae-Min; Park, Chan-Yong; Byun, Hee Sun; Park, Kyeong Ah; Lee, So-Ra; Kang, Young-Goo; Shen, Han-Ming; Lee, Ill Young; Hur, Gang Min

    2016-12-01

    A specific small-molecule inhibitor of the TLR4 signaling complex upstream of the IKK would likely provide therapeutic benefit for NF-κB-mediated inflammatory disease. We previously identified brazilin as a selective upstream IKK inhibitor targeting the Myddosome complex. In this study, using a cell-based ubiquitination assay for IRAK1 and a chemical library comprising a series of structural analogues of brazilin, a novel small molecule, 2-hydroxy-5,6-dihydroisoindolo[1,2-a]isoquinoline-3,8-dione (IinQ), was identified as a selective and potent inhibitor of IRAK1-dependent NF-κB activation upon TLR4 ligation. In RAW264.7 macrophages, IinQ drastically suppressed activation of upstream IKK signaling events including membrane-bound IRAK1 ubiquitination and IKK phosphorylation by the TLR4 ligand, resulting in reduced expression of proinflammatory mediators including IL-6, TNF-α, and nitric oxide. Interestingly, IinQ did not suppress NF-κB activation via the TLR3 ligand, DNA damaging agents, or a protein kinase C activator, indicating IinQ is specific for TLR4 signaling. Analysis of upstream signaling events further confirmed that IinQ disrupts the MyD88-IRAK1-TRAF6 complex formation induced by LPS treatment, without affecting TLR4 oligomerization. Moreover, intravenous administration of IinQ significantly reduced lethality and attenuated systemic inflammatory responses in an in vivo mouse model of endotoxin shock following LPS challenge. Thus, IinQ represents a novel class of brazilin analogues with improved potency and specificity toward disruption of Myddosome complex formation in TLR4 signaling, indicating that IinQ may be a promising therapeutic candidate for the treatment of systemic inflammatory diseases.

  3. NHERF-1 knockout mice have an attenuated hepatic inflammatory response and are protected from cholestatic liver injury

    PubMed Central

    Li, Man; Mennone, Albert; Soroka, Carol J.; Hagey, Lee R.; Ouyang, Xinshou; Weinman, Edward J.; Boyer, James L.

    2015-01-01

    The intercellular adhesion molecule-1 (ICAM-1) is induced in mouse liver after bile duct ligation (BDL) and plays a key role in neutrophil-mediated liver injury in BDL mice. ICAM-1 has been shown to interact with the cytoskeletal ezrin-radixin-moesin (ERM) proteins that also interact with the PDZ protein, Na+/H+ exchanger regulatory factor 1 (NHERF-1/EBP50). In NHERF-1−/− mice, ERM proteins are significantly reduced in brush border membranes from kidney and small intestine. ERM knockdown reduces ICAM-1 expression in response to TNF-α. Here we show that NHERF-1 assembles ERM proteins, ICAM-1 and F-actin into a macromolecule complex that is increased in mouse liver after BDL. Compared with wild-type (WT) mice, both sham-operated and BDL NHERF-1−/− mice have lower levels of activated ERM and ICAM-1 protein in the liver accompanied by significantly reduced hepatic neutrophil accumulation, serum ALT, and attenuated liver injury after BDL. However, total bile acid concentrations in the serum and liver of sham and BDL NHERF-1−/− mice were not significantly different from the WT controls, although hepatic tetrahydroxylated bile acids and Cyp3a11 mRNA levels were higher in NHERF-1−/− BDL mice. Conclusion NHERF-1 participates in the inflammatory response that is associated with BDL induced liver injury. Deletion of NHERF-1 in mice leads to disruption of the formation of ICAM-1-ERM-NHERF-1 complex and reduction of hepatic ERM proteins and ICAM-1, molecules that are up-regulated and are essential for neutrophil-mediated liver injury in cholestasis. Further study of the role of NHERF-1 in the inflammatory response in cholestasis and other forms of liver injury should lead to discovery of new therapeutic targets in hepatic inflammatory diseases. PMID:26108984

  4. Acute ethanol intake attenuates inflammatory cytokines after brain injury in rats: a possible role for corticosterone.

    PubMed

    Gottesfeld, Zehava; Moore, Anthony N; Dash, Pramod K

    2002-03-01

    It has been reported that acute ethanol intoxication exerts dose-dependent effects, both beneficial and detrimental, on the outcome of traumatic brain injury (TBI), although the mechanism(s) has not been determined. Given that pro-inflammatory cytokines are either neuroprotective or neurotoxic, depending on their tissue levels, ethanol-induced alterations in brain cytokine production may be involved in determining the recovery after TBI. The present study was undertaken to examine the effect of acute ethanol pretreatments (producing blood alcohol concentrations of 100+/-16 mg/dL, and 220+/-10 mg/dL, considered low and intoxicating doses, respectively) on interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) levels in discrete brain regions. In addition, serum corticosterone levels were also examined because the hormone is a modulator of cytokine production, its secretion is stimulated by ethanol, and it has been associated with the severity of post-injury neurologic dysfunction. The data presented in this report demonstrate that moderate cortical impact brain injury elicits a marked increase in IL-1beta and TNF-alpha in the injured cortex as well as in the hippocampus ipsilateral to the injury. Ethanol pretreatment lowered cytokine levels in the cortex, hippocampus and hypothalamus in a dose-dependent manner after TBI compared to the untreated injured rats. Serum corticosterone levels were markedly increased in the injured rats, and were further augmented in the ethanol-pretreated injured animals in a dose-dependent manner. Our findings suggest that ethanol-induced decrease in pro-inflammatory cytokine production may be linked to increased circulating corticosterone, both of which may contribute to the outcome of brain injury.

  5. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Lu, Shing-Hwa; Peng, Ruo-Yun; Lee, Tzong-Shyuan; Kou, Yu Ru

    2014-01-01

    Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling. PMID:25452730

  6. Inhibition of monoacylglycerol lipase attenuates nonsteroidal anti-inflammatory drug-induced gastric hemorrhages in mice.

    PubMed

    Kinsey, Steven G; Nomura, Daniel K; O'Neal, Scott T; Long, Jonathan Z; Mahadevan, Anu; Cravatt, Benjamin F; Grider, John R; Lichtman, Aron H

    2011-09-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics, but can cause gastric and esophageal hemorrhages, erosion, and ulceration. The endogenous cannabinoid (endocannabinoid; eCB) system possesses several potential targets to reduce gastric inflammatory states, including cannabinoid receptor type 1 (CB(1)), cannabinoid receptor type 2 (CB(2)), and enzymes that regulate the eCB ligands 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide; AEA). In the presented study, we tested whether 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), a selective inhibitor of the primary catabolic enzyme of 2-AG, monoacylglycerol lipase (MAGL), would protect against NSAID-induced gastric damage. Food-deprived mice administered the nonselective cyclooxygenase inhibitor diclofenac sodium displayed gastric hemorrhages and increases in proinflammatory cytokines. JZL184, the proton pump inhibitor omeprazole (positive control), or the primary constituent of marijuana, Δ(9)-tetrahydrocannabinol (THC), significantly prevented diclofenac-induced gastric hemorrhages. JZL184 also increased stomach levels of 2-AG, but had no effect on AEA, arachidonic acid, or the prostaglandins E(2) and D(2). MAGL inhibition fully blocked diclofenac-induced increases in gastric levels of proinflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor α, and granulocyte colony-stimulating factor, as well as IL-10. Pharmacological inhibition or genetic deletion of CB(1) or CB(2) revealed that the gastroprotective effects of JZL184 and THC were mediated via CB(1). The antihemorrhagic effects of JZL184 persisted with repeated administration, indicating a lack of tolerance. These data indicate that increasing 2-AG protects against gastric damage induced by NSAIDs, and its primary catabolic enzyme MAGL offers a promising target for the development of analgesic therapeutics possessing gastroprotective properties.

  7. Cannabinoid CB2 receptor attenuates morphine-induced inflammatory responses in activated microglial cells

    PubMed Central

    Merighi, Stefania; Gessi, Stefania; Varani, Katia; Fazzi, Debora; Mirandola, Prisco; Borea, Pier Andrea

    2012-01-01

    BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB2 and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB2 receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB2 receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB2 receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids. PMID:22428664

  8. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Sengers, Rozemarijn M. A.; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio

    2015-01-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD. PMID:26047641

  9. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.

    PubMed

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-08-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD.

  10. Anti-Inflammatory Effect ofEmodin via Attenuation of NLRP3 Inflammasome Activation

    PubMed Central

    Han, Ji-Won; Shim, Do-Wan; Shin, Woo-Young; Heo, Kang-Hyuk; Kwak, Su-Bin; Sim, Eun-Jeong; Jeong, Jae-Hyun; Kang, Tae-Bong; Lee, Kwang-Ho

    2015-01-01

    Emodin, an active constituent of oriental herbs, is widely used to treat allergy, inflammation, and other symptoms. This study provides the scientific basis for the anti-inflammasome effects of emodin on both in vitro and in vivo experimental models. Bone marrow-derived macrophages were used to study the effects of emodin on inflammasome activation by using inflammasome inducers such as ATP, nigericin, and silica crystals. The lipopolysaccharide (LPS)-induced endotoxin shock model was employed to study the effect of emodin on in vivo efficacy. Emodin treatment attenuated interleukin (IL)-1β secretion via the inhibition of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation induced by ATP, nigericin, and silica crystals. Further, emodin ameliorated the severity of NLRP3 inflammasome-mediated symptoms in LPS-induced endotoxin mouse models. This study is the first to reveal mechanism-based evidence, especially with respect to regulation of inflammasome activation, substantiating traditional claims of emodin in the treatment of inflammation-related disorders. PMID:25867480

  11. Paeoniflorin attenuates hepatic ischemia/reperfusion injury via anti-oxidative, anti-inflammatory and anti-apoptotic pathways

    PubMed Central

    TAO, YE; WEN, ZHIHONG; SONG, YINGQIAN; WANG, HUI

    2016-01-01

    During liver surgery, hepatic blood flow needs to be blocked in order to reduce bleeding, which inevitably results in hepatic ischemia/reperfusion injury (HI/R). Paeoniflorin (PF) is the main active ingredient of the traditional Chinese herbal medicine peony, which has been shown to exert anti-oxidative and anti-apoptotic properties. In the present study, a mouse model of HI/R was generated by clamping the hepatoportal vein, hepatic artery, and hepatic duct of BALB/c mice with a vascular clamp for 30 min, followed by reperfusion for 6 h under anesthesia. Six mice in the three PF treatment groups (5, 10 and 20 mg/kg) were then injected with PF, via the tail vein. A sham group, consisting of six mice that did not undergo the procedure, and a vehicle group, consisting of 6 mice that underwent the procedure but subsequently received injections of physiological saline only, were used as controls. Liver injury was indicated by serum levels of the enzymes alanine transaminase (ALT) and aspartate transaminase (AST). The activities of oxidative stress biomarkers, including superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA), were also measured. Furthermore, the activity of caspase-3 was analyzed in hepatic tissue using a commercial kit. Treatment with PF significantly attenuated HI/R injury histologically, as compared with the vehicle group. In addition, significant reductions in the serum levels of ALT and AST were observed in the PF-treated ischemic mice. Furthermore, treatment with PF enhanced the activities of hepatic tissue SOD, GSH and GSH-PX, but decreased the MDA content. Treatment of ischemic mice with PF markedly reduced the expression levels of inflammatory mediators, including nuclear factor-κB, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, and decreased the HI/R injury-induced expression of caspase-3. The results of the present study suggest that PF attenuates the HI/R injury of mice via anti

  12. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway.

    PubMed

    Dou, Wei; Zhang, Jingjing; Li, Hao; Kortagere, Sandhya; Sun, Katherine; Ding, Lili; Ren, Gaiyan; Wang, Zhengtao; Mani, Sridhar

    2014-09-01

    Isorhamnetin is an O-methylated flavonol present in fruit and vegetables. We recently reported the identification of isorhamnetin as an activator of the human pregnane X receptor (PXR), a known target for abrogating inflammation in inflammatory bowel disease (IBD). The current study investigated the role of isorhamnetin as a putative mouse PXR activator in ameliorating chemically induced IBD. Using two different models (ulcerative colitis like and Crohn's disease like) of experimental IBD in mice, we demonstrated that isorhamnetin abrogated inflammation through inhibiting the activity of myeloperoxidase, the levels of TNF-α and IL-6, the mRNA expression of proinflammatory mediators (iNOS, ICAM-1, COX2, TNF-α, IL-2 and IL-6) and the phosphorylation of IκBα and NF-κB p65. PXR gene overexpression inhibited NF-κB luciferase activity, and the inhibition was potentiated by isorhamnetin treatment. PXR knockdown by siRNA demonstrated the necessity for PXR in isorhamnetin-mediated up-regulation of xenobiotic metabolism genes. Ligand pocket-filling mutants (S247W/C284W and S247W/C284W/S208W) of human PXR weakened the effect of isorhamnetin on PXR activation. Molecular docking studies and time-resolved fluorescence resonance energy transfer competitive binding assays confirmed the ligand (isorhamnetin)-binding affinity. These results clearly demonstrated the ameliorating effect of isorhamnetin on experimental IBD via PXR-mediated up-regulation of xenobiotic metabolism and down-regulation of NF-κB signaling. The novel findings may contribute to the effective utilization of isorhamnetin or its derivatives as a PXR ligand in the treatment of human IBD.

  13. Maternal nutrient restriction during early fetal kidney development attenuates the renal innate inflammatory response in obese young adult offspring.

    PubMed

    Sharkey, Don; Gardner, David S; Symonds, Michael E; Budge, Helen

    2009-11-01

    Obesity is an independent risk factor for developing chronic kidney disease. Toll-like receptor 4 (TLR4), interleukin (IL)-18, and uncoupling protein 2 (UCP2) are important components of the innate immune system mediating inflammatory renal damage. Early to midgestation maternal nutrient restriction appears to protect the kidney from the deleterious effects of early onset obesity, although the mechanisms remain unclear. We examined the combined effects of gestational maternal nutrient restriction during early fetal kidney development and early onset obesity on the renal innate immune response in offspring. Pregnant sheep were randomly assigned to a normal (control, 100%) or nutrient-restricted (NR, 50%) diet from days 30 to 80 gestation and 100% thereafter. Offspring were killed humanely at 7 days or, following rearing in an obesogenic environment, at 1 yr of age, and renal tissues were collected. IL-18 and TLR4 expression were strongly correlated irrespective of intervention. Seven-day NR offspring had significantly lower relative renal mass and IL-18 mRNA expression. At 1 yr of age, obesity resulted in increased mRNA abundance of TLR4, IL-18, and UCP2, coupled with tubular atrophy and greater immunohistological staining of glomerular IL-6 and medullary tumor necrosis factor (TNF)-alpha. NR obese offspring had a marked reduction of TLR4 abundance and renal IL-6 staining. In conclusion, maternal nutrient restriction during early fetal kidney development attenuates the effects of early onset obesity-related nephropathy, in part, through the downregulation of the innate inflammatory response. A better understanding of maternal nutrition and the in utero nutritional environment may offer therapeutic strategies aimed at reducing the burden of later kidney disease.

  14. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors1,2

    PubMed Central

    Hao, Junwei; Simard, Alain R.; Turner, Gregory H.; Wu, Jie; Whiteaker, Paul; Lukas, Ronald J.; Shi, Fu-Dong

    2010-01-01

    A considerable number of in vivo studies have demonstrated that the cholinergic system can dampen the peripheral immune response, and it is thought that the α7-nicotinic acetylcholine receptor (nAChR) subtype is a key mediator of this process. The goal of the present study was to determine if nicotine modulates immunological mechanisms known to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for CNS autoimmune disease, via α7-nAChRs. Here we show that nicotine exposure attenuates EAE severity and that this effect is largely abolished in nAChR α7 subunit knock-out mice. However, nicotine exposure partially retains the ability to reduce lymphocyte infiltration into the CNS, inhibit auto-reactive T cell proliferation and helper T cell cytokine production, down-regulate co-stimulatory protein expression on myeloid cells, and increase the differentiation and recruitment of regulatory T cells, even in the absence of α7-nAChRs. Diverse effects of nicotine on effector and regulatory T cells, as well as antigen presenting cells, may be linked to differential expression patterns of nAChR subunits across these cell types. Taken together, our data show that although α7-nAChRs indeed seem to play an important role in nicotine-conferred reduction of the CNS inflammatory response and protection against EAE, other nAChR subtypes also are involved in the anti-inflammatory properties of the cholinergic system. PMID:20932827

  15. Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses.

    PubMed

    Lu, Kuan-Hung; Tseng, Hui-Chun; Liu, Chun-Ting; Huang, Ching-Jang; Chyuan, Jong-Ho; Sheen, Lee-Yan

    2014-05-01

    Bitter gourd (Momordica charantia L.) is a common vegetable grown widely in Asia that is used as a traditional medicine. The objective of this study was to investigate whether wild bitter gourd possessed protective effects against chronic alcohol-induced liver injury in mice. C57BL/6 mice were fed an alcohol-containing liquid diet for 4 weeks to induce alcoholic fatty liver. Meanwhile, mice were treated with ethanol extracts from four different wild bitter gourd cultivars: Hualien No. 1', Hualien No. 2', Hualien No. 3' and Hualien No. 4'. The results indicated that the daily administration of 500 mg kg body weight(-1) of a Hualien No. 3' extract (H3E) or a Hualien No. 4' extract (H4E) markedly reduced the steatotic alternation of liver histopathology. In addition, the activation of serum aminotransferases (AST and ALT) and the accumulation of hepatic TG content caused by alcohol were ameliorated. The hepatoprotective effects of H3E and H4E involved the enhancement of the antioxidant defence system (GSH, GPx, GRd, CAT and SOD), inhibition of lipid peroxidation (MDA) and reduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in the liver. Moreover, H3E and H4E supplementation suppressed the alcohol-induced elevation of CYP2E1, SREBP-1, FAS and ACC protein expression. These results demonstrated that ethanol extracts of Hualien No. 3' and Hualien No. 4' have beneficial effects against alcoholic fatty liver, in which they attenuate oxidative stress and inflammatory responses.

  16. Activation of the cholinergic anti-inflammatory system by nicotine attenuates arthritis via suppression of macrophage migration

    PubMed Central

    Li, Sha; Zhou, Bin; Liu, Ben; Zhou, Yaou; Zhang, Huali; Li, Tong; Zuo, Xiaoxia

    2016-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP), which relies on the alpha-7 nicotinic acetylcholine receptor, has been reported to reduce proinflammatory cytokine levels in experimental arthritis. To gain more insight regarding the role of the CAP in the pathogenesis of arthritis, the present study focused on the modulation of macrophage infiltration. In a mouse model of collagen-induced arthritis (CIA), nicotine and vagotomy were used to stimulate and inhibit the CAP, respectively. Subsequently, arthritic scores were measured and histopathological assessment of joint sections was conducted. Cluster of differentiation (CD)11b-positive macrophages in the synovium were studied by immunofluorescence histochemistry. The serum levels of chemokines, including macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein (MCP)-1 and MIP-2 were evaluated by ELISA. Furthermore, the expression levels of C-C chemokine receptor (CCR)2 and intercellular adhesion molecule (ICAM)-1 in the synovium were evaluated by immunohistochemical staining. The results indicated that treatment with nicotine significantly attenuated the clinical and histopathological changes associated with arthritis, reduced CD11b-positive macrophages in the synovium, and downregulated the serum expression levels of MIP-1α and MCP-1. Conversely, vagotomy aggravated arthritis and upregulated the expression levels of MCP-1. However, MIP-2 expression did not differ among the control, CIA, vagotomy and nicotine groups. In addition, the expression levels of CCR2 were reduced in the nicotine group; however, they were increased in the vagotomy group compared with in the untreated CIA group. The expression levels of ICAM-1 in the synovium were also influenced by activation of the CAP. Taken together, the present results indicated that nicotine-induced activation of the CAP in mice with CIA may reduce the number of macrophages in the synovium, which may serve a role in alleviating

  17. Zn/Ga−DFO iron–chelating complex attenuates the inflammatory process in a mouse model of asthma

    PubMed Central

    Bibi, Haim; Vinokur, Vladimir; Waisman, Dan; Elenberg, Yigal; Landesberg, Amir; Faingersh, Anna; Yadid, Moran; Brod, Vera; Pesin, Jimy; Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2014-01-01

    Background Redox-active iron, a catalyst in the production of hydroxyl radicals via the Fenton reaction, is one of the key participants in ROS-induced tissue injury and general inflammation. According to our recent findings, an excess of tissue iron is involved in several airway-related pathologies such as nasal polyposis and asthma. Objective To examine the anti-inflammatory properties of a newly developed specific iron–chelating complex, Zn/Ga−DFO, in a mouse model of asthma. Materials and methods Asthma was induced in BALBc mice by ovalbumin, using aluminum hydroxide as an adjuvant. Mice were divided into four groups: (i) control, (ii) asthmatic and sham-treated, (iii) asthmatic treated with Zn/Ga−DFO [intra-peritoneally (i/p) and intra-nasally (i/n)], and (iv) asthmatic treated with Zn/Ga−DFO, i/n only. Lung histology and cytology were examined. Biochemical analysis of pulmonary levels of ferritin and iron-saturated ferritin was conducted. Results The amount of neutrophils and eosinophils in bronchoalveolar lavage fluid, goblet cell hyperplasia, mucus secretion, and peri-bronchial edema, showed markedly better values in both asthmatic-treated groups compared to the asthmatic non-treated group. The non-treated asthmatic group showed elevated ferritin levels, while in the two treated groups it returned to baseline levels. Interestingly, i/n-treatment demonstrated a more profound effect alone than in a combination with i/p injections. Conclusion In this mouse model of allergic asthma, Zn/Ga−DFO attenuated allergic airway inflammation. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs by Zn/Ga−DFO. The findings in both cellular and tissue levels supported the existence of a significant anti-inflammatory effect of Zn/Ga−DFO. PMID:25009783

  18. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation.

    PubMed

    Zhao, Zhanzhong; Tang, Xiangfang; Zhao, Xinghui; Zhang, Minhong; Zhang, Weijian; Hou, Shaohua; Yuan, Weifeng; Zhang, Hongfu; Shi, Lijun; Jia, Hong; Liang, Lin; Lai, Zhi; Gao, Junfeng; Zhang, Keyu; Fu, Ling; Chen, Wei

    2014-07-01

    Tylvalosin, a new broad-spectrum, third-generation macrolides, may exert a variety of pharmacological activities. Here, we report on its anti-oxidative and anti-inflammatory activity in RAW 264.7 macrophages and mouse treated with lipopolysaccharide (LPS) as well as piglet challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin treatment markedly decreased IL-8, IL-6, IL-1β, PGE2, TNF-α and NO levels in vitro and in vivo. LPS and PRRSV-induced reactive oxygen species (ROS) production, and the lipid peroxidation in mice lung tissues reduced after tylvalosin treatments. In mouse acute lung injury model induced by LPS, tylvalosin administration significantly attenuated tissues injury, and reduced the inflammatory cells recruitment and activation. The evaluated phospholipase A2 (PLA2) activity and the increased expressions of cPLA2-IVA, p-cPLA2-IVA and sPLA2-IVE were lowered by tylvalosin. Consistent with the mouse results, tylvalosin pretreatment attenuated piglet lung scores with improved growth performance and normal rectal temperature in piglet model induced by PRRSV. Furthermore, tylvalosin attenuated the IκBα phosphorylation and degradation, and blocked the NF-κB p65 translocation. These results indicate that in addition to its direct antimicrobial effect, tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury through suppression of NF-κB activation.

  19. BZLF1 Attenuates Transmission of Inflammatory Paracrine Senescence in Epstein-Barr Virus-Infected Cells by Downregulating Tumor Necrosis Factor Alpha

    PubMed Central

    Long, Xubing; Li, Yuqing; Yang, Mengtian; Huang, Lu; Gong, Weijie

    2016-01-01

    ABSTRACT Recent studies have shown that inflammatory responses trigger and transmit senescence to neighboring cells and activate the senescence-associated secretory phenotype (SASP). Latent Epstein-Barr virus (EBV) infection induces increased secretion of several inflammatory factors, whereas lytic infections evade the antiviral inflammatory response. However, the changes in and roles of the inflammatory microenvironment during the switch between EBV life cycles remain unknown. In the present study, we demonstrate that latent EBV infection in EBV-positive cells triggers the SASP in neighboring epithelial cells. In contrast, lytic EBV infection abolishes this phenotype. BZLF1 attenuates the transmission of paracrine senescence during lytic EBV infection by downregulating tumor necrosis factor alpha (TNF-α) secretion. A mutant BZLF1 protein, BZLF1Δ207-210, that cannot inhibit TNF-α secretion while maintaining viral transcription, fails to block paracrine senescence, whereas a neutralizing antibody against TNF-α is sufficient to restore its inhibition. Furthermore, latent EBV infection induces oxidative stress in neighboring cells, while BZLF1-mediated downregulation of TNF-α reduces reactive oxygen species (ROS) levels in neighboring cells, and ROS scavengers alleviate paracrine senescence. These results suggest that lytic EBV infection attenuates the transmission of inflammatory paracrine senescence through BZLF1 downregulation of TNF-α secretion and alters the inflammatory microenvironment to allow virus propagation and persistence. IMPORTANCE The senescence-associated secretory phenotype (SASP), an important tumorigenic process, is triggered and transmitted by inflammatory factors. The different life cycles of Epstein-Barr virus (EBV) infection in EBV-positive cells employ distinct strategies to modulate the inflammatory response and senescence. The elevation of inflammatory factors during latent EBV infection promotes the SASP in uninfected cells. In

  20. Attenuation of the macrophage inflammatory activity by TiO₂ nanotubes via inhibition of MAPK and NF-κB pathways.

    PubMed

    Neacsu, Patricia; Mazare, Anca; Schmuki, Patrik; Cimpean, Anisoara

    2015-01-01

    Biomaterial implantation in a living tissue triggers the activation of macrophages in inflammatory events, promoting the transcription of pro-inflammatory mediator genes. The initiation of macrophage inflammatory processes is mainly regulated by signaling proteins of mitogen-activated protein kinase (MAPK) and by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. We have previously shown that titania nanotubes modified Ti surfaces (Ti/TiO2) mitigate the immune response, compared with flat Ti surfaces; however, little is known regarding the underlying mechanism. Therefore, the aim of this study is to investigate the mechanism(s) by which this nanotopography attenuates the inflammatory activity of macrophages. Thus, we analyzed the effects of TiO2 nanotubes on the activation of MAPK and NF-κB signaling pathways in standard and lipopolysaccharide-evoked conditions. Results showed that the Ti/TiO2 significantly reduce the expression levels of the phosphorylated forms of p38, ERK1/2, c-Jun NH2-terminal kinase (JNK), IKKβ, and IkB-α. Furthermore, a significant reduction in the p65 nuclear accumulation on the nanotubular surface was remarked. Following, by using specific MAPK inhibitors, we observed that lipopolysaccharide-induced production of monocyte chemotactic protein-1 and nitric oxide was significantly inhibited on the Ti/TiO2 surface via p38 and ERK1/2, but not via JNK. However, the selective inhibitor for JNK signaling pathway (SP600125) was effective in reducing tumor necrosis factor alpha release as well as monocyte chemotactic protein-1 and nitric oxide production. Altogether, these data suggest that titania nanotubes can attenuate the macrophage inflammatory response via suppression of MAPK and NF-κB pathways providing a potential mechanism for their anti-inflammatory activity.

  1. Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways

    PubMed Central

    Neacsu, Patricia; Mazare, Anca; Schmuki, Patrik; Cimpean, Anisoara

    2015-01-01

    Biomaterial implantation in a living tissue triggers the activation of macrophages in inflammatory events, promoting the transcription of pro-inflammatory mediator genes. The initiation of macrophage inflammatory processes is mainly regulated by signaling proteins of mitogen-activated protein kinase (MAPK) and by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. We have previously shown that titania nanotubes modified Ti surfaces (Ti/TiO2) mitigate the immune response, compared with flat Ti surfaces; however, little is known regarding the underlying mechanism. Therefore, the aim of this study is to investigate the mechanism(s) by which this nanotopography attenuates the inflammatory activity of macrophages. Thus, we analyzed the effects of TiO2 nanotubes on the activation of MAPK and NF-κB signaling pathways in standard and lipopolysaccharide-evoked conditions. Results showed that the Ti/TiO2 significantly reduce the expression levels of the phosphorylated forms of p38, ERK1/2, c-Jun NH2-terminal kinase (JNK), IKKβ, and IkB-α. Furthermore, a significant reduction in the p65 nuclear accumulation on the nanotubular surface was remarked. Following, by using specific MAPK inhibitors, we observed that lipopolysaccharide-induced production of monocyte chemotactic protein-1 and nitric oxide was significantly inhibited on the Ti/TiO2 surface via p38 and ERK1/2, but not via JNK. However, the selective inhibitor for JNK signaling pathway (SP600125) was effective in reducing tumor necrosis factor alpha release as well as monocyte chemotactic protein-1 and nitric oxide production. Altogether, these data suggest that titania nanotubes can attenuate the macrophage inflammatory response via suppression of MAPK and NF-κB pathways providing a potential mechanism for their anti-inflammatory activity. PMID:26491301

  2. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    PubMed Central

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  3. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    PubMed

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-03-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future.

  4. A novel imidazopyridine derivative, X22, attenuates sepsis-induced lung and liver injury by inhibiting the inflammatory response in vitro and in vivo

    PubMed Central

    Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang

    2016-01-01

    Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases. PMID:27390516

  5. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction.

    PubMed

    Park, Seong-Hwan; Kim, Juil; Kim, Dongwook; Moon, Yuseok

    2017-02-01

    Deoxynivalenol (DON), the most prevalent mycotoxin worldwide, leads to economic losses for animal food production. Swine is a most sensitive domestic animal to DON due to rapid absorption and low detoxification by gut microbiota. Specifically, DON can severely damage pig intestinal tissue by disrupting the intestinal barrier and inducing inflammatory responses. We evaluated the effects of several mycotoxin detoxifiers including bentonites, yeast cell wall components, and mixture-typed detoxifier composed of mineral, microorganisms, and phytogenic substances on DON-insulted intestinal barrier and pro-inflammatory responses using in vitro porcine enterocyte culture model. DON-induced disruption of the in vitro gut barrier was attenuated by all three mycotoxin detoxifiers in dose-dependent manners. These mycotoxin detoxifiers also suppressed DON-induced pro-inflammatory chemokine expression to different degrees, which was mediated by downregulation of mitogen-activated kinases and early growth response-1. Of note, the mixture-typed detoxifier was the most prominent mitigating agent at the cellular levels whereas the high dose of bentonite clay also had suppressive action against DON-induced pro-inflammatory insult. The in vitro porcine enterocyte-based assessment of intestinal barrier integrity and inflammatory signals provides sensitive and simplified alternative bioassay of feed additives such as detoxifiers against enteropathogenic mycotoxins with comprehensive mechanistic confirmation.

  6. The blocking of uPAR suppresses lipopolysaccharide‐induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin β3/Akt pathway

    PubMed Central

    Ishisaki, Akira; Miyashita, Mei; Matsuo, Osamu

    2016-01-01

    Abstract Introduction Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis, cause the bone destruction by promotion of the differentiation of monocyte/macrophage lineage cells into mature osteoclasts (OCs) with active bone‐resorbing character. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated the role of urokinase plasminogen activator receptor (uPAR) in the bone destruction caused by chronic inflammation. Methods We investigated that the effect of uPAR on inflammatory OC formation induced by lipopolysaccharide (LPS) in inflammatory diseases. Results We found that the LPS more weakly induced OC formation and the resultant bone loss in uPAR‐deficient mice than in wild‐type mice. Additionally, we demonstrated that uPAR significantly potentiated LPS‐induced OC formation of RAW264.7 mouse monocyte/macrophage linage cells in integrin β3/Akt‐dependent manner. Moreover, we showed that the blocking of uPAR function by the administration of anti‐uPAR neutralizing antibody significantly attenuated the LPS‐induced OC formation and the resultant bone loss in mice. Conclusions These results strongly suggest that uPAR negatively regulates the LPS‐induced inflammatory OC formation and the resultant bone loss mediated through the integrin β3/Akt pathway. Our findings partly clarify the molecular mechanisms underlying bone destruction caused by chronic inflammatory diseases, and would benefit research on identifying antibody therapy for the treatment of these diseases. PMID:27621816

  7. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    SciTech Connect

    Fang, Qilu; Zhao, Leping; Wang, Yi; Zhang, Yali; Li, Zhaoyu; Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao; Li, Dan; Liang, Guang

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  8. Netrin-1 rescues neuron loss by attenuating secondary apoptosis in ipsilateral thalamic nucleus following focal cerebral infarction in hypertensive rats.

    PubMed

    Liao, S-J; Gong, Q; Chen, X-R; Ye, L-X; Ding, Q; Zeng, J-S; Yu, J

    2013-02-12

    Neurological deficit following cerebral infarction correlates with not only primary injury, but also secondary neuronal apoptosis in remote loci connected to the infarction. Netrin-1 is crucial for axonal guidance by interacting with its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H (UNC5H). DCC and UNC5H are also dependence receptors inducing cell apoptosis when unbound by netrin-1. The present study is to investigate the role of netrin-1 and its receptors in ipsilateral ventroposterior thalamic nucleus (VPN) injury secondary to stroke in hypertensive rats. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO). Continuous intracerebroventricular infusion of netrin-1 (600 ng/d for 7 days) or vehicle (IgG/Fc) was given 24h after MCAO. Neurological function was evaluated by postural reflex 8 and 14 days after MCAO. Then, immunoreactivity was determined in the ipsilateral VPN for NeuN, glial fibrillary acidic protein, netrin-1 and its receptors (DCC and UNC5H2), apoptosis was detected with Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay, and the expressions of caspase-3, netrin-1, DCC, and UNC5H2 were quantified by western blot analysis. MCAO resulted in the impaired postural reflex after 8 and 14 days, with decreased NeuN marked neurons and increased TUNEL-positive cells, as well as an up-regulation in the levels of cleaved caspase-3 and UNC5H2 protein in the ipsilateral VPN, without significant change in DCC or netrin-1 expression. By exogenous netrin-1 infusion, the number of neurons was increased in the ipsilateral VPN, and both TUNEL-positive cell number and caspase-3 protein level were reduced, while UNC5H2 expression remained unaffected, simultaneously, the impairment of postural reflex was improved. Taken together, the present study indicates that exogenous netrin-1 could rescue neuron loss by attenuating secondary apoptosis in the

  9. Unilateral uterine torsion secondary to an inflammatory endometrial polyp in the bitch.

    PubMed

    Chambers, Ba; Laksito, Ma; Long, F; Yates, Gd

    2011-10-01

    A 9-year-old bitch was presented because of lethargy and abdominal distension. Abdominal ultrasound revealed an enlarged, fluid-filled uterus and associated mass. Subsequent exploratory laparotomy revealed unilateral uterine torsion involving the mass. Recovery following ovariohysterectomy was uneventful and the histopathological diagnosis was of a benign endometrial inflammatory polyp. Reports of uterine torsion in the English-language literature are reviewed to identify factors associated with the incidence of uterine torsion. The aetiology of the cystic endometrial hyperplasia/pyometra complex and its possible role in the development of inflammatory polypoid lesions in the bitch is also discussed.

  10. Immune reconstitution inflammatory syndrome presenting as secondary syphilis with polymorphous erythema and knee arthritis.

    PubMed

    Brochard, J; Khatchatourian, L; Woaye-Hune, P; Biron, C; Lefebvre, M; Denis-Musquer, M; Grange, P; Dupin, N; Raffi, F

    2017-03-08

    Syphilis and HIV are strongly linked to one another and immune reconstitution inflammatory syndrome (IRIS) after antiretroviral therapy (ART) initiation can complicate matters. A 24-years-old homosexual man was hospitalized for fever, cough and headache. HIV infection had been diagnosed 5 years earlier but he discontinued ART for the last 2 years. This article is protected by copyright. All rights reserved.

  11. Agaricoglycerides Protect against Hepatic Ischemia/Reperfusion Injury by Attenuating Inflammatory Response, Oxidative Stress, and Expression of NF-κB

    PubMed Central

    Zhao, Xiang-qian; Liang, Bin; Liu, Yang; Huang, Xiao-qiang

    2015-01-01

    We have investigated the effects of agaricoglycerides (AG) in a mouse model of hepatic I/R injury. I/R triggered increases/changes in markers of liver injury, hepatic oxidative stress, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nuclear factor κB (NF-κB). AG significantly reduced the extent of liver inflammation and oxidative stress and also attenuated the NF-κB activation as well as TNF-α and IL-1β production. Our results indicate that AG may represent a novel protective strategy against I/R-induced injury and inflammatory diseases. PMID:25960746

  12. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    PubMed

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  13. Pequi (Caryocar brasiliense Camb.) almond oil attenuates carbon tetrachloride-induced acute hepatic injury in rats: Antioxidant and anti-inflammatory effects.

    PubMed

    Torres, Lucillia R de O; Santana, Fernanda C de; Torres-Leal, Francisco L; Melo, Illana L P de; Yoshime, Luciana T; Matos-Neto, Emidio M; Seelaender, Marília C L; Araújo, Cintia M M; Cogliati, Bruno; Mancini-Filho, Jorge

    2016-11-01

    Carbon tetrachloride (CCl4) is a potent hepatotoxin, capable of generating free radicals that lead to oxidative stress and the inflammation process. Pequi almond oil (PAO) has been reported to possess unsaturated fatty acid and antioxidant compounds related to beneficial effects on oxidation and inflammatory conditions. The present study was undertaken to evaluate the hepatoprotective effects of handmade and coldpressed PAO on CCl4-induced acute liver injury. The possible mechanisms underlying the effect on liver injury enzymes, histopathological parameters, lipid profile, lipid peroxidation, and antioxidant and detoxification defense systems, as well as inflammatory parameters, were determined. Rats treated with PAO (3 or 6 mL/kg) for 21 days before CCl4 induction (3 mL/kg, 70%) showed significantly decreased levels of alanine aminotransferase and aspartate aminotransferase, milder hepatic lesions and higher levels of serum high-density lipoprotein compared to CCl4 group. Moreover, PAO enhanced antioxidant capacity by increasing hepatic glutathione peroxidase and glutathione reductase enzyme activities, as well as reducing circulating concentrations of leptin and inflammatory mediators such as interleukin-6, leukotrienes -4 and -5 and the tumor necrosis factor receptor. In summary, PAO, especially cold-pressed oil, attenuated the CCl4-induced alterations in serum and hepatic tissue in rats due to its antioxidant and anti-inflammatory properties.

  14. Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy.

    PubMed

    da Rosa, Julia Salvan; Facchin, Bruno Matheus; Bastos, Juliana; Siqueira, Mariana Araújo; Micke, Gustavo Amadeu; Dalmarco, Eduardo Monguilhott; Pizzolatti, Moacir Geraldo; Fröde, Tânia Silvia

    2013-11-01

    Rosmarinus officinalis, also named rosemary, is a native plant from the Mediterranean region that is useful for the treatment of inflammatory diseases. Studies using experimental models and/or in vitro tests have shown the important biological effects of rosemary. In this context, the mechanism of the anti-inflammatory activity of rosemary must be investigated to support the discovery of new substances with anti-inflammatory effects. The aim of the present study was to investigate the anti-inflammatory effects of crude extract oil free obtained from the leaves of rosemary in an animal model of inflammation, thus evaluating its medicinal use for the treatment of inflammatory conditions. Also its ethanol, hexane, and ethyl acetate fractions, as well as its isolated compounds carnosol and rosmarinic acid were analyzed. Swiss mice were used for the in vivo experiments. The effect of this herb on the inhibition of the leukocytes, exudation, myeloperoxidase, and adenosine-deaminase activities, nitrite/nitrate, interleukin 17A, and interleukin 10 levels and mRNA expression was determined. The crude extract and its derived fractions, in addition to its isolated compounds, inhibited leukocytes and decreased exudation and myeloperoxidase and adenosine-deaminase activities, as well as nitrite/nitrate and interleukin 17A levels and mRNA expression, besides increasing interleukin 10 levels and mRNA expression. Rosemary showed important anti-inflammatory activity by inhibiting leukocytes and decreasing exudation. These effects were associated with a decrease in the proinflammatory parameters (myeloperoxidase, adenosine-deaminase, nitrite/nitrate, and interleukin 17A) and an increase in the anti-inflammatory cytokine (interleukin 10). This study confirms the anti-inflammatory properties of rosemary and validates its use in folk medicine to treat inflammatory diseases such as rheumatism and asthma.

  15. A rare case of immune reconstitution inflammatory syndrome presenting as secondary syphilis.

    PubMed

    Khatri, Asma; Skalweit, Marion J

    2015-09-01

    Immune reconstitution syndrome has rarely been reported in the context of syphilis infection. We report a patient with AIDS (CD4 42 cells/mm(3), viral load 344,000 cp/ml), treated previously for secondary syphilis and started on an integrase inhibitor-based single-tablet antiretroviral treatment regimen. After four weeks of antiretroviral treatment, he presented with non-tender, non-blanching erythematous nodules on his chest, an elevated rapid plasma reagin (1:1024) and immune reconstitution (CD4 154 cells/mm(3), HIV-RNA 130 cp/ml). A detailed workup to exclude opportunistic infections including secondary and neurosyphilis was performed. The patient was continued on antiretroviral treatment and treated empirically for neurosyphilis given cerebrospinal lymphocytosis and dermatopathology suggesting treponemal antigen-driven B-cell hyperplasia. We favour a diagnosis of immune reconstitution in association with prior syphilis infection attributable to rapid and potent immune restoration afforded by integrase inhibitors.

  16. Acute inflammatory response secondary to intrapleural administration of two types of talc.

    PubMed

    Rossi, V F; Vargas, F S; Marchi, E; Acencio, M M P; Genofre, E H; Capelozzi, V L; Antonangelo, L

    2010-02-01

    Intrapleural instillation of talc has been used in the treatment of recurrent pleural effusions but can, in rare instances, result in respiratory failure. Side-effects seem to be related to composition, size and inflammatory power of talc particles. The aim of this study was to evaluate the inflammatory response to intrapleural injection of talc containing small particles (ST) or talc containing particles of mixed size (MT). 100 rabbits received intrapleural talc, 50 with ST (median 6.41 mum) and 50 with MT (median 21.15 mum); the control group was composed of 35 rabbits. Cells, lactate dehydrogenase, C-reactive protein (CRP), interleukin (IL)-8 and vascular endothelial growth factor were evaluated in serum and bronchoalveolar lavage at 6, 24, 48, 72 and 96 h. Lung histology and the presence of talc were also analysed. Statistics were performed using ANOVA and an unpaired t-test. Most of the parameters showed greater levels in the animals injected with talc than in the controls, suggesting a systemic and pulmonary response. Higher serum levels of CRP and IL-8 were observed in the animals injected with ST. Talc particles were observed in both lungs with no differences between groups. Lung cell infiltrate was more evident in the ST group. In conclusion, talc with larger particles should be the preferred choice in clinical practice in order to induce safer pleurodesis.

  17. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities.

    PubMed

    Hamdan, Dalia; El-Readi, Mahmoud Zaki; Tahrani, Ahmad; Herrmann, Florian; Kaufmann, Dorothea; Farrag, Nawal; El-Shazly, Assem; Wink, Michael

    2011-01-01

    Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].

  18. Inflammatory pseudotumor of liver secondary to migrated fishbone - a rare cause with an unusual presentation.

    PubMed

    Srinivasan, Ulagendra Perumal; Duraisamy, Appasamy Benet; Ilango, Sethu; Rathinasamy, Arunachalam; Chandramohan, Servarayan Murugesan

    2013-01-01

    A 35-year-old woman presented with a history of vague epigastric pain which lasted for one day. She had no other gastrointestinal symptoms and had an unremarkable past history and physical examination. An ultrasound scan abdomen showed a 3×3.5 cm mass in the left lobe of liver. A CT scan showed an abnormal hypodense lesion with mild enhancement in the arterial phase, with a central calcification. Complete blood count, liver function test and alpha-fetoprotein were normal. A left lateral segmentectomy was performed after adequate pre-operative assessment. The specimen contained a 3 cm long fishbone. The post-operative period was uneventful. Histopathological examination revealed chronic non-specific inflammation with fibrosis. Inflammatory pseudotumor of liver is a rare benign tumor with uncertain etiopathogenesis. Suggested etiologies include a septic or a viral origin and it can occur after migration of sharp objects, including migrated fishbone. Inflammatory pseudotumor of liver can be a diagnostic challenge and may end up in major resection.

  19. The beneficial role of anti-inflammatory dietary ingredients in attenuating markers of chronic low-grade inflammation in aging.

    PubMed

    Panickar, Kiran S; Jewell, Dennis E

    2015-08-01

    Aging in humans is associated with chronic low-grade inflammation (systemic), and this condition is sometimes referred to as "inflammaging". In general, canines also age similarly to humans, and such aging is associated with a decline in mobility, joint problems, weakened muscles and bones, reduced lean body mass, cancer, increased dermatological problems, decline in cognitive ability, reduced energy, decreased immune function, decreased renal function, and urinary incontinence. Each of these conditions is also associated with an increase in pro-inflammatory cytokines. An inflammatory state characterized by an increase in pro-inflammatory markers including but not restricted to tumor necrosis factor-α, interleukin-6, IL-1β, and C-reactive protein (CRP) is believed to contribute to or worsen a general decline in biological mechanisms responsible for physical function with aging. Nutritional management of inflammation in aging dogs is important in maintaining health. In particular, natural botanicals have bioactive components that appear to have robust anti-inflammatory effects and, when included in the diet, may contribute to a reduction in inflammation. While there are scientific data to support the anti-inflammatory effects and the efficacy of such bioactive molecules from botanicals, the clinical data are limited and more studies are needed to validate the efficacy of these ingredients. This review will summarize the role of dietary ingredients in reducing inflammatory molecules as well as review the evidence available to support the role of diet and nutrition in reducing chronic low-grade systemic inflammation in animal and human studies with a special reference to canines, where possible.

  20. Therapeutic treatment with ascorbate rescues mice from heat stroke-induced death by attenuating systemic inflammatory response and hypothalamic neuronal damage.

    PubMed

    Chang, Chia-Yu; Chen, Jen-Yin; Chen, Sheng-Hsien; Cheng, Tain-Junn; Lin, Mao-Tsun; Hu, Miao-Lin

    2016-04-01

    The impact of ascorbate on oxidative stress-related diseases is moderate because of its limited oral bioavailability and rapid clearance. However, recent evidence of the clinical benefit of parenteral vitamin C administration has emerged, especially in critical care. Heatstroke is defined as a form of excessive hyperthermia associated with a systemic inflammatory response that results in multiple organ dysfunctions in which central nervous system disorders such as delirium, convulsions, and coma are predominant. The thermoregulatory, immune, coagulation and tissue injury responses of heatstroke closely resemble those observed during sepsis and are likely mediated by similar cellular mechanisms. This study was performed by using the characteristic high lethality rate and sepsis-mimic systemic inflammatory response of a murine model of heat stroke to test our hypothesis that supra-physiological doses of ascorbate may have therapeutic use in critical care. We demonstrated that parenteral administration of ascorbate abrogated the lethality and thermoregulatory dysfunction in murine model of heat stroke by attenuating heat stroke-induced accelerated systemic inflammatory, coagulation responses and the resultant multiple organ injury, especially in hypothalamus. Overall, our findings support the hypothesis and notion that supra-physiological doses of ascorbate may have therapeutic use in critical care.

  1. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Gao, Ruifeng; Cao, Yongguo; Guo, Mengyao; Wei, Zhengkai; Zhou, Ershun; Li, Yimeng; Yao, Minjun; Yang, Zhengtao; Zhang, Naisheng

    2014-05-01

    Curcumin, the main constituent of the spice turmeric, has been reported to have potent anti-inflammatory properties. However, the effect of curcumin on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The aim of this study was to investigate whether curcumin could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of the mammary gland. Curcumin was applied 1h before and 12h after LPS treatment. The results showed that curcumin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that curcumin inhibited the phosphorylation of IκB-α and NF-κB p65 and the expression of TLR4. These results indicated that curcumin has protective effect on mice mastitis and the anti-inflammatory mechanism of curcumin on LPS-induced mastitis in mice may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Curcumin may be a potential therapeutic agent against mastitis.

  2. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai

    2013-09-01

    Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment.

  3. Myocardial Infarction Secondary to Inflammatory Myofibroblastic Tumor Obstruction of the Left Main: Treated With Primary PCI

    PubMed Central

    Nguyen, James; Sethi, Salil; Ahmed, Hinan; Prasad, Anand

    2016-01-01

    Introduction Cardiac inflammatory myofibroblastic tumor is a rare tumor that can cause potentially fatal outcomes. Case Presentation We describe a case where the tumor originated on the mitral valve and extended through the left ventricular outflow tract and aortic valve and into the left main artery obstructing it. Due to the hemodynamic instability of the patient, we proceeded for cardiac catheterization with the intention to aspirate the mass but were forced to do percutaneous intervention to stabilize the patient and bridge him to surgery. Conclusions The patient underwent surgery several days later with complete resection of the tumor and coronary stent retrieval but his left ventricular ejection fraction remained poor after several months and he was referred for cardiac transplantation. PMID:27800457

  4. Acai Juice Attenuates Atherosclerosis Through Antioxidant and Anti-Inflammatory Effects in ApoE Deficient Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Acai fruit (Euterpe oleracea Mart.) has been shown to exhibit extremely high antioxidant capacity. Antioxidant capacities and anti-inflammatory effects of acai pulp or acai juices have been studied in human, animal and cell culture models. However, their potential effects on atheroscl...

  5. Lophirones B and C Attenuate Acetaminophen-Induced Liver Damage in Mice: Studies on Hepatic, Oxidative Stress and Inflammatory Biomarkers.

    PubMed

    Ajiboye, Taofeek O

    2016-10-01

    Lophirones B and C are chalcone dimers with proven chemopreventive activity. This study evaluates the hepatoprotective effect lophirones B and C in acetaminophen-induced hepatic damage in mice using biomarkers of hepatocellular indices, oxidative stress, proinflammatory factors and lipid peroxidation. Oral administrations of lophirones B and C significantly (p < 0.05) attenuated acetaminophen-mediated alterations in serum alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, albumin and total bilirubin. Similarly, acetaminophen-mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6- phosphate dehydrogenase were significantly attenuated in the liver of mice. Increased levels of conjugated dienes, lipid hydroperoxides, malondialdehyde, protein carbonyl and fragmented DNA were significantly lowered by lophirones B and C. Levels of tumour necrosis factor-α, interleukin-6 and 8 were significantly lowered in serum of acetaminophen treated mice by the chalcone dimers. Overall, results of this study show that lophirones B and C halted acetaminophen-mediated hepatotoxicity.

  6. Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway

    PubMed Central

    Zhang, Xiang-Sheng; Li, Wei; Wu, Qi; Wu, Ling-Yun; Ye, Zhen-Nan; Liu, Jing-Peng; Zhuang, Zong; Zhou, Meng-Liang; Zhang, Xin; Hang, Chun-Hua

    2016-01-01

    Toll-like receptor 4 (TLR4) has been proven to play a critical role in neuroinflammation and to represent an important therapeutic target following subarachnoid hemorrhage (SAH). Resveratrol (RSV), a natural occurring polyphenolic compound, has a powerful anti-inflammatory property. However, the underlying molecular mechanisms of RSV in protecting against early brain injury (EBI) after SAH remain obscure. The purpose of this study was to investigate the effects of RSV on the TLR4-related inflammatory signaling pathway and EBI in rats after SAH. A prechiasmatic cistern SAH model was used in our experiment. The expressions of TLR4, high-mobility group box 1 (HMGB1), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) were evaluated by Western blot and immunohistochemistry. The expressions of Iba-1 and pro-inflammatory cytokines in brain cortex were determined by Western blot, immunofluorescence staining, or enzyme-linked immunosorbent assay. Neural apoptosis, brain edema, and neurological function were further evaluated to investigate the development of EBI. We found that post-SAH treatment with RSV could markedly inhibit the expressions of TLR4, HMGB1, MyD88, and NF-κB. Meanwhile, RSV significantly reduced microglia activation, as well as inflammatory cytokines leading to the amelioration of neural apoptosis, brain edema, and neurological behavior impairment at 24 h after SAH. However, RSV treatment failed to alleviate brain edema and neurological deficits at 72 h after SAH. These results indicated that RSV treatment could alleviate EBI after SAH, at least in part, via inhibition of TLR4-mediated inflammatory signaling pathway. PMID:27529233

  7. Modest weight loss through a 12-week weight management program with behavioral modification seems to attenuate inflammatory responses in young obese Koreans.

    PubMed

    Lee, AeJin; Jeon, Kyeong Jin; Kim, Min Soo; Kim, Hye-Kyeong; Han, Sung Nim

    2015-04-01

    Obesity has been reported to impair immune functions and lead to low-grade long-term inflammation; however, studies that have investigated the impact of weight loss on these among the young and slightly obese are limited. Thus, we investigated the effect of a 12-week weight management program with behavioral modifications on cell-mediated immune functions and inflammatory responses in young obese participants. Our hypothesis was that weight loss would result in improved immune functions and decreased inflammatory responses. Sixty-four participants (45 obese and 19 normal weight) finished the program. Obese (body mass index ≥25) participants took part in 5 group education and 6 individual counseling sessions. Normal-weight (body mass index 18.5-23) participants only attended 6 individual sessions. The goal for the obese was to lose 0.5 kg/wk by reducing their intake by 300 to 500 kcal/d and increasing their physical activity. Program participation resulted in a modest but significant decrease in weight (2.7 ± 0.4 kg, P < .001) and lipopolysaccharide-stimulated interleukin-1β production (from 0.85 ± 0.07 to 0.67 ± 0.07 ng/mL, P < .05) in the obese. In the obese group, increase in phytohemagglutinin-stimulated interleukin-10 production, a TH2 and anti-inflammatory cytokine, approached significance after program participation (from 6181 ± 475 to 6970 ± 632 pg/mL, P = .06). No significant changes in proliferative responses to the optimal concentration of concanavalin A or phytohemagglutinin were observed in the obese after program participation. Collectively, modest weight loss did not change the cell-mediated immune functions significantly but did attenuate the inflammatory response in young and otherwise healthy obese adults.

  8. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  9. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice.

    PubMed

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca(2+)]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na(+)/H(+) exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the

  10. Optimization and Pharmacological Validation of a Leukocyte Migration Assay in Zebrafish Larvae for the Rapid In Vivo Bioactivity Analysis of Anti-Inflammatory Secondary Metabolites

    PubMed Central

    Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V.; de Witte, Peter A. M.; Crawford, Alexander D.

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  11. Chlamydia trachomatis induces anti-inflammatory effect in human macrophages by attenuation of immune mediators in Jurkat T-cells.

    PubMed

    Azenabor, Anthony A; Cintrón-Cuevas, Jenniffer; Schmitt, Heather; Bumah, Violet

    2011-12-01

    The chronic course of Chlamydia trachomatis infection is subtle with no obvious unusual inflammatory change. The reason for this is not clear. The data reported here explain how macrophage usual inflammatory response switches to anti-inflammatory response during C. trachomatis infection of mixed culture of macrophages and Jurkat T-cells. We assessed the establishment of productive infection in individual or mixed cell culture models, determined the status of C. trachomatis in the cells by monitoring HSP-60:MOMP or the proportions of the estimated IFUs that shed HSP-60 or MOMP. Also, the specific time-course expression of IL-12, IL-10 and IFN-γ or IL-12R, IL-10R, and IFN-γ-R during infection of cell models was assessed. Finally, the early events in cytokine elaboration in circumstances of varying intracellular Ca²⁺ levels were determined. There was evidence of productive infection in all individual and mixed cell culture models. The shedding of HSP-60 was highest in THP-1/Jurkat mixed cell culture model. The proportions of IFU that shed HSP-60 was heightened in infected THP-1/Jurkat mixed culture model, while the proportion of IFU that shed MOMP was higher in infected macrophage/Jurkat mixed culture and infected macrophages only. There was profound early elaboration of IL-10, varying significantly from IL-12 and IFN-γ in all infected individual or mixed cell culture models except in the case of Jurkat; where all cytokine elaboration was downregulated. The receptor to IL-10 was upregulated in infected macrophage/Jurkat cells and THP-1/Jurkat cells compared with other models in which IL-12 and IFN-γ receptors were more expressed. There was no observed significant change in cytokine in any model following the impairment of intracellular Ca²⁺ except in the case of macrophage/Jurkat cell model in which IL-12 and IL-10 were upregulated in 1h or 3 h, respectively. The implication of these findings is that C. trachomatis mediates a switch from inflammatory to anti-inflammatory

  12. The non-steroidal anti-inflammatory drug diclofenac sodium attenuates lipopolysaccharide-induced alterations to reward behavior and corticosterone release.

    PubMed

    De La Garza, Richard; Fabrizio, Kevin R; Radoi, Gina Elena; Vlad, Tudor; Asnis, Gregory M

    2004-02-04

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to counteract stress hormone and pro-inflammatory cytokine activation. To extend these findings, we tested whether the NSAID diclofenac sodium would attenuate lipopolysaccharide (LPS)-induced reductions in reward behavior. In the first experiment, male, Wistar rats pressed a lever for food reward and subsequently received 10 days treatment of saline (1 ml/kg, s.c.) or diclofenac (2.5mg/kg, s.c.). On the subsequent test day, rats were given a final injection of saline or diclofenac 30 min prior to LPS (20 micrograms/kg, i.p.). LPS significantly reduced rate of food self-administration and total reinforcers obtained and increased corticosterone levels in saline-treated rats, while these effects were significantly attenuated in diclofenac-treated rats. In the second experiment, rats pressed a lever for sweetened milk. In contrast to food self-administration, acute LPS exposure did not reduce rate of responding or total reinforcers obtained in either saline- or diclofenac-treated rats. In the third experiment, rats trained to press a lever for sweetened milk were pre-exposed to a high dose of LPS (250 micrograms/kg, i.p.) 2 weeks prior to a challenge injection of LPS. In this case, LPS challenge significantly reduced rate of sweetened milk self-administration, but not total reinforcers obtained, in saline-treated rats. Rats treated with diclofenac did not exhibit reductions in rate of responding or total reinforcers obtained. Overall, the data indicate that the NSAID diclofenac sodium counteracts LPS-induced reductions in reward behavior and corticosterone release, and may therefore have therapeutic potential for specific components of endotoxin-induced sickness behavior, including anhedonia.

  13. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death

    PubMed Central

    Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2011-01-01

    Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor alpha (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, inter-cellular adhesion molecule 1 mRNA levels, tissue neutrophil infiltration, nuclear factor kappa B (NF-KB) activation), stress signaling (p38MAPK and JNK) and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress and cell death, and also attenuated the bacterial endotoxin-triggered NF-KB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecules expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α, and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent from classical CB1/2 receptors. PMID:21362471

  14. Targeting oxidative stress attenuates trinitrobenzene sulphonic acid induced inflammatory bowel disease like symptoms in rats: Role of quercetin

    PubMed Central

    Dodda, Dilip; Chhajed, Ruchi; Mishra, Jitendriya; Padhy, Monalisa

    2014-01-01

    Objective: This study was aimed to investigate the beneficial effects of quercetin (QCT) against trinitrobenzene sulfonic acid (TNBS) induced clinical, morphological, and biochemical alterations in rats. Materials and Methods: Colitis in rats was induced by administration of TNBS (25 mg dissolved in 0.25 ml of 30% ethanol) 8 cm into the rectum of the rat using a catheter. The animals were divided into six experimental groups (n = 6); naive (saline only without TNBS administration), control (saline + TNBS), standard (sulfasalazine 25 mg/kg + TNBS), QCT (25) (QCT 25 mg/kg + TNBS), QCT (50) (QCT 50 mg/kg + TNBS), QCT (100) (QCT 100 mg/kg + TNBS). Sulfasalazine (25 mg/kg) and QCT (25, 50 and 100 mg/kg) were administered per oral for 11 days and the colonic damage was evaluated in terms of macroscopical (body weight, stool consistency, rectal bleeding, and ulcer index) and biochemical parameters (myeloperoxidase activity, lipid peroxidation, nitrite, and glutathione). Results: Treatment with QCT (50, 100 mg/kg) for 10 days following TNBS administration significantly attenuated the clinical, morphological, and biochemical alterations induced by TNBS, whereas it was found to be not effective at its lower dose (25 mg/kg) throughout the experimental protocol. Conclusion: QCT attenuates the clinical, morphological and biochemical alterations induced by TNBS possibly via its antioxidant mechanism. PMID:24987175

  15. Lipoxygenase directed anti-inflammatory and anti-cancerous secondary metabolites: ADMET-based screening, molecular docking and dynamics simulation.

    PubMed

    Singh, Swati; Awasthi, Manika; Pandey, Veda P; Dwivedi, Upendra N

    2017-02-01

    Lipoxygenases (LOXs), key enzymes involved in the biosynthesis of leukotrienes, are well known to participate in the inflammatory and immune responses. With the recent reports of involvement of 5-LOX (one of the isozymes of LOX in human) in cancer, there is a need to find out selective inhibitors of 5-LOX for their therapeutic application. In the present study, plant-derived 300 anti-inflammatory and anti-cancerous secondary metabolites (100 each of alkaloids, flavonoids and terpenoids) have been screened for their pharmacokinetic properties and subsequently docked for identification of potent inhibitors of 5-LOX. Pharmacokinetic analyses revealed that only 18 alkaloids, 26 flavonoids, and 9 terpenoids were found to fulfill all the absorption, distribution, metabolism, excretion, and toxicity descriptors as well as those of Lipinski's Rule of Five. Docking analyses of pharmacokinetically screened metabolites and their comparison with a known inhibitor (drug), namely zileuton revealed that only three alkaloids, six flavonoids and three terpenoids were found to dock successfully with 5-LOX with the flavonoid, velutin being the most potent inhibitor among all. The results of the docking analyses were further validated by performing molecular dynamics simulation and binding energy calculations for the complexes of 5-LOX with velutin, galangin, chrysin (in order of LibDock scores), and zileuton. The data revealed stabilization of all the complexes within 15 ns of simulation with velutin complex exhibiting least root-mean-square deviation value (.285 ± .007 nm) as well as least binding energy (ΔGbind = -203.169 kJ/mol) as compared to others during the stabilization phase of simulation.

  16. Palmatine from Mahonia bealei attenuates gut tumorigenesis in ApcMin/+ mice via inhibition of inflammatory cytokines

    PubMed Central

    MA, WEI-KUN; LI, HUI; DONG, CUI-LAN; HE, XIN; GUO, CHANG-RUN; ZHANG, CHUN-FENG; YU, CHUN-HAO; WANG, CHONG-ZHI; YUAN, CHUN-SU

    2016-01-01

    Mahonia bealei is a Chinese folk medicine used to treat various ailments, in particular gastrointestinal inflammation-related illnesses, and palmatine is one of its active constituents. In this study, ApcMin/+ mice, a genetically engineered model, were used to investigate the effects of palmatine on the initiation and progression of gut inflammation and tumorigenesis enhanced by a high-fat diet. The in vitro antiproliferation and anti-inflammation effects of palmatine were evaluated on HT-29 and SW-480 human colorectal cancer cell lines. The concentration-related antiproliferative effects of palmatine on both cell lines (P<0.01) were observed. Palmatine significantly inhibited lipopolysaccharide-induced increase in cytokine interleukin (IL)-8 levels in the HT-29 cells (P<0.01). In the in vivo studies with ApcMin/+ mice, after 10 or 20 mg/kg/day oral palmatine treatment, tumor numbers were significantly reduced in the small intestine and colon in a dose-dependent manner (P<0.01 compared with the model group). The results were supported by tumor distribution data, body weight changes and organ index. The effect on survival was also dose-dependent. Both the low- and high-dose palmatine treatments significantly increased the life span of the mice (P<0.01). The gut histology from the model group showed a prominent adenomatous change along with inflammatory lesions. With palmatine treatment, however, the dysplastic changes were greatly reduced in the small intestine and colon tissue. Reverse transcription-quantitative polymerase chain reaction analysis of interleukin (IL)-1α, IL1-β, IL-8, granulocyte-colony stimulating factor and granulocyte macrophage colony-stimulating factor in the gut tissue showed that these inflammatory cytokines were reduced significantly following treatment (all P<0.01); serum cytokine levels were also decreased. Data suggests that palmatine has a clinical value in colorectal cancer therapeutics, and this action is likely linked to the

  17. Yerba mate extract (Ilex paraguariensis) attenuates both central and peripheral inflammatory effects of diet-induced obesity in rats.

    PubMed

    Pimentel, Gustavo D; Lira, Fábio S; Rosa, José C; Caris, Aline V; Pinheiro, Fernanda; Ribeiro, Eliane B; Oller do Nascimento, Cláudia M; Oyama, Lila M

    2013-05-01

    To clarify the effects of natural dietary components on the metabolic consequences of obesity, we examined the effects of yerba mate extract Ilex paraguariensis on both central and peripheral inflammatory effects of diet-induced obesity and correlated the hypothalamic tumor necrosis factor (TNF)-α level with adipose depot weight. Wistar rats were divided into four groups: a control group (CTL) fed with chow diet, a second group fed with chow diet plus yerba mate extract (CTL+E), a third group fed with a high-fat diet rich in saturated fatty acids (HFD) and a fourth group fed with HFD plus yerba mate extract (HFD+E). Enzyme-linked immunosorbent assay, Western blotting, colorimetric method and treatment by gavage were utilized as materials and methods. The HFD groups showed a significant increase in food intake (kcal), body weight, adipose tissue and leptin level in comparison to CTL and CTL+E. HFD leads to increase of both central and peripheral inflammatory effects, and deregulation of insulin pathway. In addition, yerba mate extract intake blunted the proinflammatory effects of diet-induced obesity in rats by reducing the phosphorylation of hypothalamic IKK and NFκBp65 expression and increasing the phosphorylation of IκBα, the expression of adiponectin receptor-1 and consequently the amount of IRS-2. Moreover, the increase in interleukin (IL)-6 levels in the liver and muscle and of the IL-10/TNF-α ratio in groups that received yerba mate extract showed the anti-inflammatory effects of this natural substance. Taken together, our data suggest that the use of yerba mate extract may be useful for reducing low-grade obesity-associated inflammation.

  18. Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate- (DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators.

    PubMed

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs.

  19. Attenuation of monocyte chemotaxis--a novel anti-inflammatory mechanism of action for the cardio-protective hormone B-type natriuretic peptide.

    PubMed

    Glezeva, Nadezhda; Collier, Patrick; Voon, Victor; Ledwidge, Mark; McDonald, Kenneth; Watson, Chris; Baugh, John

    2013-08-01

    B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.

  20. Carbocisteine attenuates hydrogen peroxide-induced inflammatory injury in A549 cells via NF-κB and ERK1/2 MAPK pathways.

    PubMed

    Wang, Wei; Zheng, Jin-Ping; Zhu, Shao-Xuan; Guan, Wei-Jie; Chen, Mao; Zhong, Nan-Shan

    2015-02-01

    Carbocisteine is a mucolytic drug with anti-oxidative effect, we had previously proved that carbocisteine remarkably reduced the rate of acute exacerbations and improved the quality of life in patients with chronic obstructive pulmonary disease (COPD), however, very little is known about its mechanisms. In this study, we aimed to investigate the anti-inflammatory effects of carbocisteine against hydrogen peroxide (H2O2). A549 cells were cultured in vitro and treated with H2O2 as damaged cell models, carbocisteine was administered 24h prior to or after H2O2 exposure, and the protective effects of carbocisteine were determined by MTT, qRT-PCR, ELISA, western blot and immunofluorescence assays. The results showed that carbocisteine could increase cell viability and decrease LDH, IL-6 and IL-8 levels in the supernatant. Additionally, carbocisteine decreased IL-6, IL-8, TNF-α, IP-10 and MIP-1β mRNA in a dose-dependent manner. Moreover, carbocisteine could attenuate phosphorylation of NF-κB p65 and ERK1/2 and inhibit the nuclear translocation of pNF-κB p65 induced by H2O2. In conclusion, carbocisteine inhibited H2O2-induced inflammatory injury in A549 cells, NF-κB and ERK1/2 MAPK were the target pathways.

  1. Ethanol Extract of Cordyceps militaris Grown on Germinated Soybeans Attenuates Dextran-Sodium-Sulfate- (DSS-) Induced Colitis by Suppressing the Expression of Matrix Metalloproteinases and Inflammatory Mediators

    PubMed Central

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs. PMID:23841050

  2. Phytic acid attenuates inflammatory responses and the levels of NF-κB and p-ERK in MPTP-induced Parkinson's disease model of mice.

    PubMed

    Lv, Yuqiang; Zhang, Zheng; Hou, Lin; Zhang, Li; Zhang, Jinyu; Wang, Yuehua; Liu, Cun; Xu, Pingping; Liu, Lu; Gai, Xiaoying; Lu, Tingxiu

    2015-06-15

    Phytic acid (PA) is a naturally occurring constituent which exhibits protective action in Parkinson's disease (PD). Inflammation in the central nervous system (CNS) is strongly associated with neuronal death in PD. However, the molecular mechanism of the protective effect of PA in PD has not been fully elucidated. In this study, we tried to testify the protection of PA on neuron and inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model of mice and investigated the mechanism involved in them. Motor behavior test and tyrosine hydroxylase (TH) immunohistochemistry method showed PA significantly inhibited MPTP-induced dopaminergic cell loss in the substantia nigra (SN). Moreover, using immunohistochemistry method and quantitative polymerase chain reaction (qPCR), microglial activation and inducible nitric oxide synthase (iNOS) were found to be markedly repressed by PA. Via western blot assay, expressions of nuclear factor κB (NF-κB) and phosphorylated extracellular signal-regulated kinase (p-ERK) were significantly attenuated by PA. In conclusion, it is suggested that PA has a neuroprotective effect in MPTP-induced PD model and the neuroprotection is correlated with its anti-inflammatory effect which may be associated with suppression of pathways that involved in NF-κB and p-ERK.

  3. Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis.

    PubMed

    Yang, Xiao-Lai; Guo, Tian-Kang; Wang, Yan-Hong; Huang, Yan-Hui; Liu, Xia; Wang, Xiao-Xia; Li, Wan; Zhao, Xin; Wang, Li-Ping; Yan, Shuai; Wu, Di; Wu, Yong-Jie

    2012-02-01

    In this study, we investigated the effects and the protective mechanism of ginsenoside Rd (GRd) which has been identified as one of the effective compounds from ginseng on relapsing colitis model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. After inducing relapsing colitis in experimental rats on two occasions by intracolonic injection of TNBS, GRd (10, 20 and 40 mg/kg) was administered to experimental colitis rats for 7 days. The inflammatory degree was assessed by macroscopic score, histology and myeloperoxidase (MPO) activity. The levels of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 were determined by ELISA. Mitogen-activated protein kinase (MAPK) phosphorylation was analyzed by western blotting method. The results showed that GRd markedly attenuates the inflammatory response to TNBS-induced relapsing colitis, as evidenced by improved signs, increased body weight, decreased colonic weight/length ratio, reduced colonic macroscopic and microscopic damage scores, inhibited the activity of MPO, lowered proinflammatory cytokine levels and suppressed phosphorylation of p38 and JNK. The possible mechanism of protection on experimental colitis after GRd administration was that it could reduce the accumulation of leukocytes and down-regulate multiple proinflammatory cytokines through modulation of JNK and p38 activation.

  4. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis.

    PubMed

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; de Luján Alvarez, María; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-15

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis.

  5. Lunasin attenuates obesity-related inflammation in RAW264.7 cells and 3T3-L1 adipocytes by inhibiting inflammatory cytokine production

    PubMed Central

    Chou, Mei-Jia; Wang, Chih-Hsuan

    2017-01-01

    Obesity has become a major threat to public health and is accompanied by chronic low-grade inflammation, which leads to various pathological developments. Lunasin, a natural seed peptide, exhibits several biological activities, such as anti-carcinogenesis, anti-inflammatory, and antioxidant activities. However, the mechanism of action of lunasin in obesity-related inflammation has not been investigated. The aim of this study was to explore whether lunasin could reduce the inflammation induced by obesity-related mediators in RAW264.7 cells and 3T3-L1 adipocytes and whether it could attenuate the crosstalk between the two cell lines. RAW264.7 cells were cultured in leptin-containing medium, adipocyte-conditioned medium (Ad-CM), or co-cultured with 3T3-L1 cells to mimic the physiology of obesity. The data showed that the secretion of pro-inflammatory cytokine interleukin-1β (IL-1β) was inhibited by lunasin after leptin activation of RAW264.7 cells. In addition, lunasin decreased monocyte chemoattractant protein-1 (MCP-1) and IL-1β secretions in the Ad-CM model. Cytokine MCP-1, IL-6, tumor necrosis factor (TNF)-α, and IL-1β secretions were significantly decreased by leptin or Ad-CM plus lipopolysaccharide stimulation. Subsequently, the co-culture of the two cells refined the direct relation between them, resulting in apparently increased MCP-1, and decreased IL-6 levels after lunasin treatment. In 3T3-L1 adipocytes, lunasin also exhibited anti-inflammatory property by inhibiting MCP-1, plasminogen activator inhibitor-1, and leptin productions stimulated by (TNF)-α, lipopolysaccharide, or RAW264.7 cell-conditioned medium. This result revealed that lunasin acts as a potential anti-inflammatory agent not only in macrophages but also in adipocytes, disrupting the crosstalk between these two cells. Therefore, this study suggests the intake of lunasin from diet or as a supplement, for auxiliary prevention or therapy in obesity-related inflammatory applications. PMID

  6. Thermal cooking changes the profile of phenolic compounds, but does not attenuate the anti-inflammatory activities of black rice

    PubMed Central

    Bhawamai, Sassy; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    Background Evidence on biological activities of cooked black rice is limited. This study examined the effects of washing and cooking on the bioactive ingredients and biological activities of black rice. Methods Cooked rice was prepared by washing 0–3 times followed by cooking in a rice cooker. The acidic methanol extracts of raw and cooked rice were used for the analyses. Results Raw black rice, both washed and unwashed, had higher contents of polyphenols, anthocyanins, and cyanidin-3-glucoside (C3G), but lower protocatechuic acid (PA), than did cooked samples. Similarly, raw rice extracts were higher in ferric-reducing antioxidant power (FRAP) activities than extracts of cooked samples. Nonetheless, extracts of raw and cooked rice showed similar inhibitory potencies on nitric oxide, tumor necrosis factor-α, and interleukin-6 productions in lipopolysaccharide-activated macrophages, whereas equivalent amounts of C3G and PA did not possess such inhibitory effects. Conclusions Thermal cooking decreased total anthocyanin and C3G contents and the FRAP antioxidative capacity, but did not affect anti-inflammatory activities of black rice. Neither C3G nor PA contributed to the anti-inflammatory activity of black rice. PMID:27652685

  7. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  8. The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats

    PubMed Central

    Abbasloo, Elham; Dehghan, Fatemeh; Khaksari, Mohammad; Najafipour, Hamid; Vahidi, Reza; Dabiri, Shahriar; Sepehri, Gholamreza; Asadikaram, Golamreza

    2016-01-01

    Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO. PMID:27535591

  9. Therapeutic Effects of Acetone Extract of Saraca asoca Seeds on Rats with Adjuvant-Induced Arthritis via Attenuating Inflammatory Responses

    PubMed Central

    Gupta, Mradu; Sasmal, Saumyakanti; Mukherjee, Arup

    2014-01-01

    Saraca asoca has been traditionally used in Indian system for treatment of uterine, genital, and other reproductive disorders in women, fever, pain, and inflammation. The hypothesis of this study is that acetone extract of Saraca asoca seeds is an effective anti-inflammatory treatment for arthritis in animal experiments. The antiarthritic effect of its oral administration on Freund's adjuvant-induced arthritis has been studied in Wistar albino rats after acute and subacute toxicities. Phytochemical analysis revealed presence of high concentrations of phenolic compounds such as flavonoids and tannins, while no mortality or morbidity was observed up to 1000 mg/kg dose during acute and subacute toxicity assessments. Regular treatment up to 21 days of adjuvant-induced arthritic rats with Saraca asoca acetone extract (at 300 and 500 mg/kg doses) increases RBC and Hb, decreases WBC, ESR, and prostaglandin levels in blood, and restores body weight when compared with control (normal saline) and standard (Indomethacin) groups. Significant (P < 0.05) inhibitory effect was observed especially at higher dose on paw edema, ankle joint inflammation, and hydroxyproline and glucosamine concentrations in urine. Normal radiological images of joint and histopathological analysis of joint, liver, stomach, and kidney also confirmed its significant nontoxic, antiarthritic, and anti-inflammatory effect. PMID:24729890

  10. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway

    PubMed Central

    Nepali, Sarmila; Son, Ji-Seon; Poudel, Barun; Lee, Ji-Hyun; Lee, Young-Mi; Kim, Dae-Ki

    2015-01-01

    Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mixture of tumor necrosis factor-α, lipopolysaccharide, and interferon-γ (TLI) in the presence or absence of luteolin. We performed Griess’ method for nitric oxide (NO) production and measure mRNA and protein expressions by real-time polymerase chain reaction and western blotting, respectively. Results: Luteolin opposed the stimulation of inducible nitric oxide synthase and NO production by simultaneous treatment of adipocytes with TLI. Furthermore, it reduced the pro-inflammatory genes such as cyclooxygenase-2, interleukin-6, resistin, and monocyte chemoattractant protein-1. Furthermore, luteolin improved the insulin sensitivity by enhancing the expression of insulin receptor substrates (IRS1/2) and glucose transporter-4 via phosphatidylinositol-3K signaling pathway. This inhibition was associated with suppression of Iκ-B-α degradation and subsequent inhibition of nuclear factor-κB (NF-κB) p65 translocation to the nucleus. In addition, luteolin blocked the phosphorylation of ERK1/2, c-Jun N-terminal Kinases and also p38 mitogen-activated protein kinases (MAPKs). Conclusions: These results illustrate that luteolin attenuates inflammatory responses in the adipocytes through suppression of NF-κB and MAPKs activation, and also improves insulin sensitivity in 3T3-L1 cells, suggesting that luteolin may represent a therapeutic agent to prevent obesity-associated inflammation and insulin resistance. PMID:26246742

  11. Peroxisome proliferator-activated receptor α activation attenuates the inflammatory response to protect the liver from acute failure by promoting the autophagy pathway.

    PubMed

    Jiao, M; Ren, F; Zhou, L; Zhang, X; Zhang, L; Wen, T; Wei, L; Wang, X; Shi, H; Bai, L; Zhang, X; Zheng, S; Zhang, J; Chen, Y; Han, Y; Zhao, C; Duan, Z

    2014-08-28

    Peroxisome proliferator-activated receptor α (PPARα) has been reported to induce a potent anti-inflammatory response. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of the present study was to test the hypothesis that PPARα activation mediates autophagy to inhibit liver inflammation and protect against acute liver failure (ALF). PPARα expression during ALF and the impact of PPARα activation by Wy-14 643 on the hepatic immune response were studied in a D-galactosamine/lipopolysaccharide-induced mouse model. Autophagy was inhibited by 3-methyladenine or small interfering RNA (siRNA) against Atg7. In both the mouse model and human ALF subjects, PPARα was significantly downregulated in the injured liver. PPARα activation by pretreatment with Wy-14 643 protected against liver injury in mice. The protective effect of PPARα activation relied on the suppression of inflammatory mechanisms through the induction of autophagy. This hypothesis is supported by the following evidence: first, PPARα activation suppressed proinflammatory responses and inhibited phosphorylated NF-κBp65, phosphorylated JNK and phosphorylated ERK pathways in vivo. Second, protection by PPARα activation was due to the induction of autophagy because inhibition of autophagy by 3-methyladenine or Atg7 siRNA reversed liver protection and inflammation. Third, PPARα activation directly induced autophagy in primary macrophages in vitro, which protected cells from a lipopolysaccharide-induced proinflammatory response. Here, for the first time, we have demonstrated that PPARα-mediated induction of autophagy ameliorated liver injury in cases of ALF by attenuating inflammatory responses, indicating a potential therapeutic application for ALF treatment.

  12. Methane Attenuates Hepatic Ischemia/Reperfusion Injury in Rats Through Antiapoptotic, Anti-Inflammatory, and Antioxidative Actions.

    PubMed

    Ye, Zhouheng; Chen, Ouyang; Zhang, Rongjia; Nakao, Atsunori; Fan, Danfeng; Zhang, Ting; Gu, Zhengyong; Tao, Hengyi; Sun, Xuejun

    2015-08-01

    Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.

  13. Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness.

    PubMed

    Blatteau, Jean-Eric; de Maistre, Sébastien; Lambrechts, Kate; Abraini, Jacques; Risso, Jean-Jacques; Vallée, Nicolas

    2015-12-15

    Despite "gold standard" hyperbaric oxygen treatment, 30% of patients suffering from neurological decompression sickness still exhibit incomplete recovery, including sensory impairments. Fluoxetine, a well-known antidepressant, is recognized as having anti-inflammatory effects in the setting of cerebral ischemia. In this study, we focused on the assessment of sensory neurological deficits and measurement of circulating cytokines after decompression in rats treated or not with fluoxetine. Seventy-eight rats were divided into a clinical (n = 38) and a cytokine (n = 40) group. In both groups, the rats were treated with fluoxetine (30 mg/kg po, 6 h beforehand) or with a saccharine solution. All of the rats were exposed to 90 m seawater for 45 min before staged decompression. In the clinical group, paw withdrawal force after mechanical stimulation and paw withdrawal latency after thermal stimulation were evaluated before and 1 and 48 h after surfacing. At 48 h, a dynamic weight-bearing device was used to assess postural stability, depending on the time spent on three or four paws. For cytokine analysis, blood samples were collected from the vena cava 1 h after surfacing. Paw withdrawal force and latency were increased after surfacing in the controls, but not in the fluoxetine group. Dynamic weight-bearing assessment highlighted a better stability on three paws for the fluoxetine group. IL-10 levels were significantly decreased after decompression in the controls, but maintained at baseline level with fluoxetine. This study suggests that fluoxetine has a beneficial effect on sensory neurological recovery. We hypothesize that the observed effect is mediated through maintained anti-inflammatory cytokine IL-10 production.

  14. Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia.

    PubMed

    Dolga, Amalia M; Letsche, Till; Gold, Maike; Doti, Nunzianna; Bacher, Michael; Chiamvimonvat, Nipavan; Dodel, Richard; Culmsee, Carsten

    2012-12-01

    In neurons, small-conductance calcium-activated potassium (KCNN/SK/K(Ca)2) channels maintain calcium homeostasis after N-methyl-D-aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/K(Ca)2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/K(Ca)2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/K(Ca)2 channels, significantly reduced LPS-stimulated activation of microglia in a concentration-dependent manner. The general KCNN/SK/K(Ca)2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/K(Ca)2 channel activation affected the changes of intracellular calcium levels, [Ca(2+)](i), in microglial cells. Our data show that LPS-induced elevation of [Ca(2+)](i) was attenuated following activation of KCNN2/3/K(Ca)2.2/K(Ca)2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/K(Ca)2 channel subtypes to identify which particular channel subtype mediated the observed anti-inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/K(Ca)2.3 channels, but not KCNN2/SK2/K(Ca)2.2 channel inhibition, reversed the CyPPA-effects on LPS-induced microglial proliferation. These findings revealed that KCNN3/SK3/K(Ca)2.3 channels can modulate the LPS-induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/K(Ca)2.3 channels may serve as a therapeutic target for reducing microglial

  15. Extracts of Bauhinia championii (Benth.) Benth. attenuate the inflammatory response in a rat model of collagen-induced arthritis

    PubMed Central

    XU, WEI; HUANG, MINGQING; ZHANG, YUQIN; LI, HUANG; ZHENG, HAIYIN; YU, LISHUANG; CHU, KEDAN; LIN, YU; CHEN, LIDIAN

    2016-01-01

    Rheumatoid arthritis is considered a serious public health problem, which is commonly treated with traditional Chinese or herbal medicine. The present study evaluated the effects of Bauhinia championii (Benth.) Benth. extraction (BCBE) on a type II collagen-induced arthritis (CIA) rat model. Wistar rats with CIA received either 125 or 500 mg/kg BCBE, after which, paw swelling was markedly suppressed compared with in the model group. In addition, BCBE significantly ameliorated pathological joint alterations, including synovial hyperplasia, and cartilage and bone destruction. The protein and mRNA expression levels of interleukin (IL)-6, IL-8, tumor necrosis factor-α and nuclear factor-κB in synovial tissue were determined by immunohistochemical staining, western blot analysis and reverse transcription-polymerase chain reaction. The results demonstrated that the expression levels of these factors were significantly downregulated in the BCBE-treated group compared with in the model group. These results indicated that BCBE may exert an inhibitory effect on the CIA rat model, and its therapeutic potential is associated with its anti-inflammatory action. PMID:27035125

  16. Ultrafiltration of the priming blood before cardiopulmonary bypass attenuates inflammatory response and improves postoperative clinical course in pediatric patients.

    PubMed

    Shimpo, H; Shimamoto, A; Sawamura, Y; Fujinaga, K; Kanemitsu, S; Onoda, K; Takao, M; Mitani, Y; Yada, I

    2001-01-01

    The priming solution using in cardiopulmonary bypass (CPB) for infants undergoing cardiac surgery includes considerable amounts of stored blood. Our objective was to test the hypothesis that ultrafiltration (UF) of the stored blood before CPB reduces the unfavorable effects of stored blood and the production of inflammatory cytokines. Fifty pediatric patients with congenital heart defects took part in this study. The patients were randomly divided into two groups: the UF (27 pediatric patients who received UF) and control (23 pediatric patients who did not receive UF) groups. UF was performed with a polysulphone ultrafiltrator before CPB. Blood samples were collected immediately before, during, and 1 h after CPB. The levels of cytokines (TNF-alpha, IL-1beta, IL-8), NH3, and bradykinin were determined. The serum concentrations of NH3 and bradykinin decreased significantly after UF. Compared with the control group, the UF group had significantly lower cytokine production. Water balance in UF group was better than that of control group. The UF group received significantly less inotropic support and shorter duration of ventilator support and ICU stay. We conclude that removal of bradykinin and a decrease in the levels of NH3, potassium, and pH play a significant role in reducing water retention and postoperative lung injury. UF of the blood used to prime the circuit for CPB is a safe and efficient method for use in open heart surgery in small pediatric patients.

  17. Nonsteroidal anti-inflammatory drugs attenuate amyloid-β protein-induced actin cytoskeletal reorganization through Rho signaling modulation.

    PubMed

    Ferrera, Patricia; Zepeda, Angélica; Arias, Clorinda

    2017-01-25

    Amyloid-β protein (Aβ) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aβ-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aβ. We found that Aβ induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aβ, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aβ. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aβ-induced effects on neuronal structural alterations.

  18. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity of LPS-activated RAW264.7 cells.

    PubMed

    Badiei, Alireza; Rivers-Auty, Jack; Ang, Abel Damien; Bhatia, Madhav

    2013-09-01

    Hydrogen sulfide is an inflammatory mediator and is produced by the activity of the enzyme cystathionine γ-lyase (CSE) in macrophages. Previously, pharmacological inhibition of CSE has been reported to have conflicting results, and this may be due to the lack of specificity of the pharmacological agents. Therefore, this study used a very specific approach of small interfering RNA (siRNA) to inhibit the production of the CSE in an in vitro setting. We found that the activation of macrophages by lipopolysaccharide (LPS) resulted in higher levels of CSE mRNA and protein as well as the increased production of proinflammatory cytokines and nitric oxide (NO). We successfully used siRNA to specifically reduce the levels of CSE mRNA and protein in activated macrophages. Furthermore, the levels of proinflammatory cytokines in LPS-activated macrophages were significantly lower in siRNA-transfected cells compared to those in untransfected controls. However, the production levels of NO by the transfected cells were higher, suggesting that CSE activity has an inhibitory effect on NO production. These findings suggest that the CSE enzyme has a crucial role in the activation of macrophages, and its activity has an inhibitory effect on NO production by these cells.

  19. 1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain.

    PubMed

    Bladen, Chris; Gadotti, Vinicius M; Gündüz, Miyase G; Berger, N Daniel; Şimşek, Rahime; Şafak, Cihat; Zamponi, Gerald W

    2015-06-01

    We have recently identified a class of dihydropyridine (DHP) analogues with 30-fold selectivity for T-type over L-type calcium channels that could be attributed to a modification of a key ester moiety. Based on these results, we examined a second series of compounds with similar attributes to determine if they had enhanced affinity for T-type channels. Whole-cell patch clamp experiments in transfected tsA-201 cells were used to screen these DHP derivatives for high affinity and selectivity for Cav3.2 over Cav1.2 L-type channels. The effects of the two lead compounds, termed N10 and N12, on Cav3.2 channel activity and gating were characterized in detail. When delivered intrathecally or intraperitoneally, these compounds mediated analgesia in a mouse model of acute inflammatory pain. The best compound from the initial screening, N12, was also able to reverse mechanical hyperalgesia produced by nerve injury. The compounds were ineffective in Cav3.2 null mice. Altogether, our data reveal a novel class of T-type channel blocking DHPs for potential pain therapies.

  20. Lunasin Attenuates Obesity-Associated Metastasis of 4T1 Breast Cancer Cell through Anti-Inflammatory Property

    PubMed Central

    Hsieh, Chia-Chien; Wang, Chih-Hsuan; Huang, Yu-Shan

    2016-01-01

    Obesity prevalence is increasing worldwide and is accompanied by low-grade inflammation with macrophage infiltration, which is linked with a poorer breast cancer prognosis. Lunasin is a natural seed peptide with chemopreventive properties and multiple bioactivities. This is the first study to explore the chemopreventive effects of lunasin in the obesity-related breast cancer condition using 4T1 breast cancer cells, 3T3-L1 adipocytes, and conditioned media. An obesity-related environment, such as leptin-treatment or adipocyte-conditioned medium (Ad-CM), promoted 4T1 cell proliferation and metastasis. Lunasin treatment inhibited metastasis of breast cancer cells, partially through modestly inhibiting production of the angiogenesis-mediator vascular endothelial growth factor (VEGF) and significantly by inhibiting secretion in the Ad-CM condition. Subsequently, two adipocytes inflammation models, 3T3-L1 adipocytes were stimulated by tumor necrosis factor (TNF)-α, and RAW 264.7 cell-conditioned medium (RAW-CM) was used to mimic the obese microenvironment. Lunasin significantly inhibited interleukin (IL)-6 and macrophage chemoattractant protein (MCP)-1 secretion by TNF-α stimulation, and MCP-1 secretion in the RAW-CM model. This study highlights that lunasin suppressed 3T3-L1 adipocyte inflammation and inhibited 4T1 breast cancer cell migration. Interestingly, lunasin exerted more effective anti-metastasis activity in the obesity-related condition models, indicating that it possesses anti-inflammatory properties and blocks adipocyte-cancer cell cross-talk. PMID:27983683

  1. Ginkgo biloba extracts attenuate lipopolysaccharide-induced inflammatory responses in acute lung injury by inhibiting the COX-2 and NF-κB pathways.

    PubMed

    Yao, Xin; Chen, Nan; Ma, Chun-Hua; Tao, Jing; Bao, Jian-An; Zong-Qi, Cheng; Chen, Zu-Tao; Miao, Li-Yan

    2015-01-01

    In the present study, we analyzed the role of Ginkgo biloba extract in lipopolysaccharide(LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS. G. biloba extract (12 and 24 mg·kg(-1)) and dexamethasone (2 mg·kg(-1)), as a positive control, were given by i.p. injection. The cells in the bronchoalveolar lavage fluid (BALF) were counted. The degree of animal lung edema was evaluated by measuring the wet/dry weight ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-a, interleukin-1b, and interleukin-6, were assayed by enzyme-linked immunosorbent assay. Pathological changes of lung tissues were observed by H&E staining. The levels of NF-κB p65 and COX-2 expression were detected by Western blotting. Compared to the LPS group, the treatment with the G. biloba extract at 12 and 24 mg·kg(-1) markedly attenuated the inflammatory cell numbers in the BALF, decreased NF-κB p65 and COX-2 expression, and improved SOD activity, and inhibited MPO activity. The histological changes of the lungs were also significantly improved. The results indicated that G. biloba extract has a protective effect on LPS-induced acute lung injury in mice. The protective mechanism of G. biloba extract may be partly attributed to the inhibition of NF-κB p65 and COX-2 activation.

  2. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.

    PubMed

    Kolte, D; Bryant, J W; Gibson, G W; Wang, J; Shariat-Madar, Z

    2012-06-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases.

  3. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation.

    PubMed

    Rudemiller, Nathan P; Lund, Hayley; Priestley, Jessica R C; Endres, Bradley T; Prokop, Jeremy W; Jacob, Howard J; Geurts, Aron M; Cohen, Eric P; Mattson, David L

    2015-05-01

    Human genome-wide association studies have linked SH2B adaptor protein 3 (SH2B3, LNK) to hypertension and renal disease, although little experimental investigation has been performed to verify a role for SH2B3 in these pathologies. SH2B3, a member of the SH2B adaptor protein family, is an intracellular adaptor protein that functions as a negative regulator in many signaling pathways, including inflammatory signaling processes. To explore a mechanistic link between SH2B3 and hypertension, we targeted the SH2B3 gene for mutation on the Dahl salt-sensitive (SS) rat genetic background with zinc-finger nucleases. The resulting mutation was a 6-bp, in-frame deletion within a highly conserved region of the Src homology 2 (SH2) domain of SH2B3. This mutation significantly attenuated Dahl SS hypertension and renal disease. Also, infiltration of leukocytes into the kidneys, a key mediator of Dahl SS pathology, was significantly blunted in the Sh2b3(em1Mcwi) mutant rats. To determine whether this was because of differences in immune signaling, bone marrow transplant studies were performed in which Dahl SS and Sh2b3(em1Mcwi) mutants underwent total body irradiation and were then transplanted with Dahl SS or Sh2b3(em1Mcwi) mutant bone marrow. Rats that received Sh2b3(em1Mcwi) mutant bone marrow had a significant reduction in mean arterial pressure and kidney injury when placed on a high salt diet (4% NaCl). These data further support a role for the immune system as a modulator of disease severity in the pathogenesis of hypertension and provide insight into inflammatory mechanisms at play in human hypertension and renal disease.

  4. Bioactive Fraction of Annona reticulata Bark (or) Ziziphus jujuba Root Bark along with Insulin Attenuates Painful Diabetic Neuropathy through Inhibiting NF-κB Inflammatory Cascade

    PubMed Central

    Kandimalla, Raghuram; Dash, Suvakanta; Kalita, Sanjeeb; Choudhury, Bhaswati; Malampati, Sandeep; Devi, Rajlakshmi; Ramanathan, Muthiah; Talukdar, Narayan C.; Kotoky, Jibon

    2017-01-01

    The present study explains the neuroprotective ability of bioactive fractions of Annona reticulata bark (ARB) and Ziziphus jujuba root bark (ZJ) along with insulin against diabetic neuropathy. By using different solvents of increasing polarity ARB and ZJ were undergone for bioactive guided fractionation. The neuroprotective ability of the all the plant fractions were tested against H2O2 induced toxicity in SHSY5Y neuroblastoma cell lines and DRG neuronal cells. Among all the fractions tested, the methanol extract of ARB and ZJ (ARBME and ZJME) and its water fractions (ARBWF and ZJWF) exhibited significant neuroprotection against H2O2 induced toxicity in SHSY5Y cells and DRG neuronal cells. Further both the active fractions were tested against streptozotocin (55 mg/kg i.p.) induced diabetic neuropathy in male Wistar rats. Body weight changes, blood glucose levels and pain threshold through hot plate, tail immersion, cold plate and Randall-Sillitto methods were measured throughout the study at weekly interval. After completion of the drug treatment period, all the animals were sacrificed to measure the sciatic nerve lipid peroxidation, antioxidative enzyme levels (SOD, catalase, and GSH) and cytokine levels (IL-1β, IL-6, IL-10, TNF-α, iNOS, and NFκB) through ELISA and western blotting analysis. Results of this study explain that ARBME, ZJME, ARBWF, and ZJWF along with insulin potentially attenuate the thermal, mechanical hyperalgesia and cold allodynia in diabetic neuropathic rats, where insulin treatment alone failed to diminish the same. Reduction of sciatic nerve oxidative stress, NF-κB and iNOS mediated inflammatory cascade and normalization of abnormal cytokine release confirms the possible mechanism of action. The present study confirms the neuroprotective ability of ARB and ZJ against painful diabetic neuropathy through inhibiting oxidative stress and NF-κB inflammatory cascade. PMID:28381989

  5. Bioactive Fraction of Annona reticulata Bark (or) Ziziphus jujuba Root Bark along with Insulin Attenuates Painful Diabetic Neuropathy through Inhibiting NF-κB Inflammatory Cascade.

    PubMed

    Kandimalla, Raghuram; Dash, Suvakanta; Kalita, Sanjeeb; Choudhury, Bhaswati; Malampati, Sandeep; Devi, Rajlakshmi; Ramanathan, Muthiah; Talukdar, Narayan C; Kotoky, Jibon

    2017-01-01

    The present study explains the neuroprotective ability of bioactive fractions of Annona reticulata bark (ARB) and Ziziphus jujuba root bark (ZJ) along with insulin against diabetic neuropathy. By using different solvents of increasing polarity ARB and ZJ were undergone for bioactive guided fractionation. The neuroprotective ability of the all the plant fractions were tested against H2O2 induced toxicity in SHSY5Y neuroblastoma cell lines and DRG neuronal cells. Among all the fractions tested, the methanol extract of ARB and ZJ (ARBME and ZJME) and its water fractions (ARBWF and ZJWF) exhibited significant neuroprotection against H2O2 induced toxicity in SHSY5Y cells and DRG neuronal cells. Further both the active fractions were tested against streptozotocin (55 mg/kg i.p.) induced diabetic neuropathy in male Wistar rats. Body weight changes, blood glucose levels and pain threshold through hot plate, tail immersion, cold plate and Randall-Sillitto methods were measured throughout the study at weekly interval. After completion of the drug treatment period, all the animals were sacrificed to measure the sciatic nerve lipid peroxidation, antioxidative enzyme levels (SOD, catalase, and GSH) and cytokine levels (IL-1β, IL-6, IL-10, TNF-α, iNOS, and NFκB) through ELISA and western blotting analysis. Results of this study explain that ARBME, ZJME, ARBWF, and ZJWF along with insulin potentially attenuate the thermal, mechanical hyperalgesia and cold allodynia in diabetic neuropathic rats, where insulin treatment alone failed to diminish the same. Reduction of sciatic nerve oxidative stress, NF-κB and iNOS mediated inflammatory cascade and normalization of abnormal cytokine release confirms the possible mechanism of action. The present study confirms the neuroprotective ability of ARB and ZJ against painful diabetic neuropathy through inhibiting oxidative stress and NF-κB inflammatory cascade.

  6. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism.

    PubMed

    Pan, Li-Long; Liu, Xin-Hua; Gong, Qi-Hai; Zhu, Yi-Zhun

    2011-06-01

    The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.

  7. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    PubMed

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  8. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-α) and interleukin (IL-1β) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis.

  9. The different molar absorptivities of the secondary structure types in the amide I region: an attenuated total reflection infrared study on globular proteins.

    PubMed

    de Jongh, H H; Goormaghtigh, E; Ruysschaert, J M

    1996-11-01

    Differences in molar absorptivity of the various secondary structures in the amide I region of infrared protein spectra would have a great impact on the interpretation of the data published thus far on protein films studied by attenuated total reflection infrared spectroscopy. In this work, representative values for amide I absorptivities are obtained for 15 different films of globular proteins spread from H2O solutions. The observed intensities are corrected for variations in film thickness and for contributions of hydration water, atmospheric water, and side chains. These absorptivities, together with the reported secondary structure of the proteins investigated, are used to deduce the molar absorptivities of the individual secondary structure types. It is found that the molar absorptivity of beta-strands is 1.4-1.6 times larger than that of alpha-helices, which in turn is 1.3-2.1 times larger than those found for beta-turns or random coiled structures. The implications of our findings for spectral analysis currently used in literature are discussed.

  10. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat

    PubMed Central

    Jarvis, Michael F.; Honore, Prisca; Shieh, Char-Chang; Chapman, Mark; Joshi, Shailen; Zhang, Xu-Feng; Kort, Michael; Carroll, William; Marron, Brian; Atkinson, Robert; Thomas, James; Liu, Dong; Krambis, Michael; Liu, Yi; McGaraughty, Steve; Chu, Katharine; Roeloffs, Rosemarie; Zhong, Chengmin; Mikusa, Joseph P.; Hernandez, Gricelda; Gauvin, Donna; Wade, Carrie; Zhu, Chang; Pai, Madhavi; Scanio, Marc; Shi, Lei; Drizin, Irene; Gregg, Robert; Matulenko, Mark; Hakeem, Ahmed; Gross, Michael; Johnson, Matthew; Marsh, Kennan; Wagoner, P. Kay; Sullivan, James P.; Faltynek, Connie R.; Krafte, Douglas S.

    2007-01-01

    Activation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Nav1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain. We report here the discovery of A-803467, a sodium channel blocker that potently blocks tetrodotoxin-resistant currents (IC50 = 140 nM) and the generation of spontaneous and electrically evoked action potentials in vitro in rat dorsal root ganglion neurons. In recombinant cell lines, A-803467 potently blocked human Nav1.8 (IC50 = 8 nM) and was >100-fold selective vs. human Nav1.2, Nav1.3, Nav1.5, and Nav1.7 (IC50 values ≥1 μM). A-803467 (20 mg/kg, i.v.) blocked mechanically evoked firing of wide dynamic range neurons in the rat spinal dorsal horn. A-803467 also dose-dependently reduced mechanical allodynia in a variety of rat pain models including: spinal nerve ligation (ED50 = 47 mg/kg, i.p.), sciatic nerve injury (ED50 = 85 mg/kg, i.p.), capsaicin-induced secondary mechanical allodynia (ED50 ≈ 100 mg/kg, i.p.), and thermal hyperalgesia after intraplantar complete Freund's adjuvant injection (ED50 = 41 mg/kg, i.p.). A-803467 was inactive against formalin-induced nociception and acute thermal and postoperative pain. These data demonstrate that acute and selective pharmacological blockade of Nav1.8 sodium channels in vivo produces significant antinociception in animal models of neuropathic and inflammatory pain. PMID:17483457

  11. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs.

    PubMed

    Vlahakos, Demetrios; Arkadopoulos, Nikolaos; Kostopanagiotou, Georgia; Siasiakou, Sofia; Kaklamanis, Loukas; Degiannis, Dimitrios; Demonakou, Maria; Smyrniotis, Vassilios

    2012-04-01

    We have previously shown that deferoxamine (DFO) infusion protected myocardium against reperfusion injury in patients undergoing open heart surgery, and reduced brain edema, intracranial pressure, and lung injury in pigs with acute hepatic ischemia (AHI). The purpose of this research was to study if DFO could attenuate sepsis inflammatory response syndrome (SIRS) and confer renoprotection in the same model of AHI in anesthetized pigs. Fourteen animals were randomly allocated to two groups. In the Group DFO (n=7), 150mg/kg of DFO dissolved in normal saline was continuously infused in animals undergoing hepatic devascularization and portacaval anastomosis. The control group (Group C, n=7) underwent the same surgical procedure and received the same volume of normal saline infusion. Animals were euthanized after 24h. Hematological, biochemical parameters, malondialdehyde (MDA), and cytokines (interleukin [IL]-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α) were determined from sera obtained at baseline, at 12h, and after euthanasia. Hematoxylin-eosin and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling were used to evaluate necrosis and apoptosis, respectively, in kidney sections obtained after euthanasia. A rapid and substantial elevation (more than 100-fold) of serum IL-6 levels was observed in Group C reaching peak at the end of the experiment, associated with increased production of oxygen free radicals and lipid peroxidation (MDA 3.2±0.1nmol/mL at baseline and 5.5±0.9nmol/mL at the end of the experiment, P<0.05) and various manifestations of SIRS and multiple organ dysfunction (MOD), including elevation of high-sensitivity C-reactive protein, severe hypotension, leukocytosis, thrombocytopenia, hypoproteinemia, and increased serum levels of lactate dehydrogenase (fourfold), alkaline phosphatase (fourfold), alanine aminotransferase (14-fold), and ammonia (sevenfold). In sharp contrast, IL-6 production and lipid

  12. Exogenous heat shock cognate protein 70 pretreatment attenuates cardiac and hepatic dysfunction with associated anti-inflammatory responses in experimental septic shock.

    PubMed

    Hsu, Jong-Hau; Yang, Rei-Cheng; Lin, Shih-Jen; Liou, Shu-Fen; Dai, Zen-Kong; Yeh, Jwu-Lai; Wu, Jiunn-Ren

    2014-12-01

    It has been recently demonstrated that intracellular heat shock cognate protein 70 (HSC70) can be released into extracellular space with physiologic effects. However, its extracellular function in sepsis is not clear. In this study, we hypothesize that extracellular HSC70 can protect against lipopolysaccharide (LPS)-induced myocardial and hepatic dysfunction because of its anti-inflammatory actions. In Wistar rats, septic shock developed with hypotension, tachycardia, and myocardial and hepatic dysfunction at 4 h following LPS administration (10 mg/kg, i.v.). Pretreatment with recombinant bovine HSC70 (20 μg/kg, i.v.) attenuated LPS-induced hypotension and tachycardia by 21% and 23%, respectively (P < 0.05), improved myocardial dysfunction (left ventricular systolic pressure: 33%; max dP/dt: 20%; min dP/dt: 33%, P < 0.05), and prevented hepatic dysfunction (glutamic-oxaloacetic transaminase: 81 vs. 593 IU/L; glutamic-pyruvic transaminase: 15 vs. 136 IU/L, P < 0.05) compared with LPS-treated rats at 4 h. Heat shock cognate protein 70 also prevented LPS-induced hypoglycemia (217 vs. 59 mg/dL, P < 0.05) and elevated lactate dehydrogenase (1,312 vs. 6,301 IU/L, P < 0.05). Furthermore, HSC70 decreased LPS-induced elevation of circulating tumor necrosis factor α and nitrite/nitrate, and tissue expression of inducible nitric oxide synthase, cyclooxygenase 2, and matrix metalloproteinase 9 in the heart and liver. To investigate underlying mechanisms, we found that HSC70 attenuated LPS-induced nuclear translocation of nuclear factor κB subunit p65 by blocking the phosphorylation of inhibitor of nuclear factor κB. Finally, we showed that HSC70 repressed the activation of MAPKs caused by LPS. These results demonstrate that in LPS-induced septic shock, extracellular HSC70 conveys pleiotropic protection on myocardial, hepatic, and systemic derangements, with associated inhibition of proinflammatory mediators including tumor necrosis factor α, nitric oxide, cyclooxygenase 2

  13. Cinnamon extract attenuates TNF-alpha-induced intestinal lipoprotein ApoB48 overproduction by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes.

    PubMed

    Qin, B; Dawson, H; Polansky, M M; Anderson, R A

    2009-07-01

    We have previously reported that the obesity-associated proinflammatory cytokine, TNF-alpha, stimulates the overproduction of intestinal apolipoprotein (apo) B48 containing lipoproteins. In the current study, we have evaluated whether a water-soluble cinnamon extract [CE (Cinnulin PF)] attenuates the dyslipidemia induced by TNF-alpha in Triton WR-1339 treated hamsters, and whether CE inhibits the oversecrection of apoB48-induced by TNF-alpha in enterocytes in a 35S labeling study. In vivo, oral treatment of Cinnulin PF (50 mg per kg BW), inhibited the postprandial overproduction of apoB48-containing lipoproteins and serum triglyceride levels. In ex vivo 35S labeling studies, CE (10 and 20 microg/ml) inhibited the oversecretion of apoB48 induced by TNF-alpha treated enterocytes into the media. To determine the molecular mechanisms, TNF-alpha treated primary enterocytes isolated from chow-fed hamsters, were incubated with CE (10 microg/ml), and the expression of the inflammatory factor genes, IL1-beta, IL-6, and TNF-alpha, insulin signaling pathway genes, insulin receptor (IR), IRS1, IRS2, phosphatidylinositol 3-kinase (PI3-K), Akt1 and phosphatase and tensin homology (PTEN), as well as the key regulators of lipid metabolism, cluster of differentiation (CD)36, microsomal triglyceride transfer protein (MTTP), and sterol regulatory element binding protein (SREBP)-1c were evaluated. Quantitative real-time PCR assays showed that CE treatment decreased the mRNA expression of IL-1beta, IL-6 and TNF-alpha, improved the mRNA expression of IR, IRS1, IRS2, PI3K and Akt1, inhibited CD36, MTTP, and PTEN, and enhanced the impaired SREBP-1c expression in TNF-alpha treated enterocytes. These data suggest that a water extract of cinnamon reverses TNF-alpha-induced overproduction of intestinal apoB48 by regulating gene expression involving inflammatory, insulin, and lipoprotein signaling pathways. In conclusion, Cinulin PF improves inflammation related intestinal dyslipidemia.

  14. Tranexamic acid attenuates inflammatory response in cardiopulmonary bypass surgery through blockade of fibrinolysis: a case control study followed by a randomized double-blind controlled trial

    PubMed Central

    Jimenez, Juan J; Iribarren, Jose L; Lorente, Leonardo; Rodriguez, Jose M; Hernandez, Domingo; Nassar, Ibrahim; Perez, Rosalia; Brouard, Maitane; Milena, Antonio; Martinez, Rafael; Mora, Maria L

    2007-01-01

    Introduction Extracorporeal circulation induces hemostatic alterations that lead to inflammatory response (IR) and postoperative bleeding. Tranexamic acid (TA) reduces fibrinolysis and blood loss after cardiopulmonary bypass (CPB). However, its effects on IR and vasoplegic shock (VS) are not well known and elucidating these effects was the main objective of this study. Methods A case control study was carried out to determine factors associated with IR after CPB. Patients undergoing elective CPB surgery were randomly assigned to receive 2 g of TA or placebo (0.9% saline) before and after intervention. We performed an intention-to-treat analysis, comparing the incidence of IR and VS. We also analyzed several biological parameters related to inflammation, coagulation, and fibrinolysis systems. We used SPSS version 12.2 for statistical purposes. Results In the case control study, 165 patients were studied, 20.6% fulfilled IR criteria, and the use of TA proved to be an independent protective variable (odds ratio 0.38, 95% confidence interval 0.18 to 0.81; P < 0.01). The clinical trial was interrupted. Fifty patients were randomly assigned to receive TA (24) or placebo (26). Incidence of IR was 17% in the TA group versus 42% in the placebo group (P = 0.047). In the TA group, we observed a significant reduction in the incidence of VS (P = 0.003), the use of norepinephrine (P = 0.029), and time on mechanical ventilation (P = 0.018). These patients showed significantly lower D-dimer, plasminogen activator inhibitor 1, and creatine-kinase levels and a trend toward lower levels of soluble tumor necrosis factor receptor and interleukin-6 within the first 24 hours after CPB. Conclusion The use of TA attenuates the development of IR and VS after CPB. Trial registration number ISRCTN05718824. PMID:17988379

  15. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    PubMed

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  16. Proteomic and Metabolomic Analyses Reveal Contrasting Anti-Inflammatory Effects of an Extract of Mucor Racemosus Secondary Metabolites Compared to Dexamethasone

    PubMed Central

    Meier, Samuel M.; Muqaku, Besnik; Ullmann, Ronald; Bileck, Andrea; Kreutz, Dominique; Mader, Johanna C.; Knasmüller, Siegfried; Gerner, Christopher

    2015-01-01

    Classical drug assays are often confined to single molecules and targeting single pathways. However, it is also desirable to investigate the effects of complex mixtures on complex systems such as living cells including the natural multitude of signalling pathways. Evidence based on herbal medicine has motivated us to investigate potential beneficial health effects of Mucor racemosus (M rac) extracts. Secondary metabolites of M rac were collected using a good-manufacturing process (GMP) approved production line and a validated manufacturing process, in order to obtain a stable product termed SyCircue (National Drug Code USA: 10424–102). Toxicological studies confirmed that this product does not contain mycotoxins and is non-genotoxic. Potential effects on inflammatory processes were investigated by treating stimulated cells with M rac extracts and the effects were compared to the standard anti-inflammatory drug dexamethasone on the levels of the proteome and metabolome. Using 2D-PAGE, slight anti-inflammatory effects were observed in primary white blood mononuclear cells, which were more pronounced in primary human umbilical vein endothelial cells (HUVECs). Proteome profiling based on nLC-MS/MS analysis of tryptic digests revealed inhibitory effects of M rac extracts on pro-inflammatory cytoplasmic mediators and secreted cytokines and chemokines in these endothelial cells. This finding was confirmed using targeted proteomics, here treatment of stimulated cells with M rac extracts down-regulated the secretion of IL-6, IL-8, CXCL5 and GROA significantly. Finally, the modulating effects of M rac on HUVECs were also confirmed on the level of the metabolome. Several metabolites displayed significant concentration changes upon treatment of inflammatory activated HUVECs with the M rac extract, including spermine and lysophosphatidylcholine acyl C18:0 and sphingomyelin C26:1, while the bulk of measured metabolites remained unaffected. Interestingly, the effects of M rac

  17. Consumption of dairy yogurt with the polysaccharide rhamnogalacturonan from the peel of the Korean citrus hallabong enhances immune function and attenuates the inflammatory response.

    PubMed

    Lee, Mi-Hyang; Kim, Minjoo; Kim, Minkyung; Kwak, Jung Hyun; Chang, Dong Hoon; Yu, Won Kyu; Lee, Sang-Hyun; Lee, Jong Ho

    2016-06-15

    The aim of this study was to investigate the impact of consuming dairy yogurt supplemented with rhamnogalacturonan (RG), a polysaccharide from the peel of the Korean citrus hallabong, on natural killer (NK) cell activity and circulating cytokine levels. A randomized, double-blind, placebo-controlled study was conducted on 120 nondiabetic and nonobese subjects. Over an eight-week period, the test group consumed one pack (150 mL) of dairy yogurt containing 50 mg of probiotics and 100 mg of hallabong peel polysaccharide (60% RG) each day, whereas the placebo group consumed the same product without the hallabong peel supplement. NK cell activity (%) was measured based on the ratios of the effector cells (E; peripheral blood mononuclear cells, PBMCs) from each participant relative to the target cells (T; K562 cells) at E : T ratios of 10 : 1, 5 : 1, 2.5 : 1, or 1.25 : 1. NK cell activities under all assay conditions and interleukin (IL)-12 and interferon (IFN)-γ levels were significantly increased in the test group at eight weeks compared to the baseline values, whereas the placebo group showed a significant increase only in NK cell activity at E : T = 1.25 : 1. The test group had significantly greater increases in the changes in serum NK cell activity at the E : T ratios of 10 : 1, 5 : 1, and 2.5 : 1 and in the increases in IL-12 and IFN-γ levels than were observed in the placebo group, after adjusting for baseline values. After eight weeks of treatment, significant reductions were found in IL-6 and IL-1β levels in both the placebo and test groups. The daily consumption of dairy yogurt supplemented with RG, a polysaccharide from the peel of the Korean citrus hallabong, enhanced NK cell function and attenuated pro-inflammatory cytokine levels (ClinicalTrials.gov: NCT02535663).

  18. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats.

    PubMed

    Paredes, Sergio D; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A F

    2015-01-01

    Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription-polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury.

  19. A case report of small bowel perforation secondary to cytomegalovirus related immune reconstitution inflammatory syndrome in an AIDS patient.

    PubMed

    Gutiérrez-Delgado, Eva María; Villanueva-Lozano, Hiram; García Rojas-Acosta, Miguel J; Miranda-Maldonado, Ivett C; Ramos-Jiménez, Javier

    2017-01-01

    Non-traumatic small bowel perforation is rare in adults but carries a high morbidity and mortality. The diagnosis is made on clinical suspicion, and the most common causes in developing countries are infectious diseases, being cytomegalovirus infection in immunocompromised patients the main etiology. We describe a patient with a recently diagnosed advanced stage HIV infection and an intestinal perforation associated with cytomegalovirus immune reconstitution inflammatory syndrome after highly active antiretroviral therapy initiation.

  20. Anti-inflammatory activities of light emitting diode irradiation on collagen-induced arthritis in mice (a secondary publication)

    PubMed Central

    Ohta, Mitsuhiro; Sato, Yusuke; Abiko, Yoshimitsu

    2014-01-01

    Background and aims: Rheumatoid arthritis (RA) is an auto-immune disease afflicting multiple joints of the body, where as a result of the increase in inflammatory cytokines and tissue destructive factors such as matrix metalloproteinase (MMP)-3, deterioration of the bones and cartilages of the joints occurs. The present investigation was carried out to study the anti-inflammatory activities of light emitting diode (LED) irradiation on hind paw inflammation in collagen-induced arthritis (CIA) mice models. Materials and method: RA in the CIA mouse model was induced by immunization of DBA/1J mice with intradermal injections of an emulsion of bovine type II collagen and complete Freund's adjuvant. A total of 20 CIA mice were subdivided into the following groups: control group, CIA group and 2 groups of LED irradiated CIA mice (LED groups) (n=5 per group). The mouse knee joint area in the LED groups (the 570 nm and 940 nm groups) was irradiated with LED energy, three times a week for 500 s per session over 8 weeks at a dose of 5 J/cm2. The hind paw swelling was assessed by the increase in hind paw thickness. The serum levels of the inflammatory cytokines and arthritic factor MMP-3 were determined with an enzyme-linked immunosorbent assay (ELISA). Results: In the LED-570 and LED-940 groups at 4 weeks after arthritis induction, the swelling inhibition index was 18.1±4.9 and 29.3±4.0 respectively. Interleukin (IL)-1β, IL-6 and MMP-3 serum levels were significantly lower in the LED-940 group. Conclusions: LED irradiation, particularly in the near-infrared was effective for inhibition of the inflammatory reactions caused by RA. PMID:25368445

  1. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways

    PubMed Central

    Luo, Jing; Kong, Jin-liang; Dong, Bi-ying; Huang, Hong; Wang, Ke; Wu, Li-hong; Hou, Chang-chun; Liang, Yue; Li, Bing; Chen, Yi-qiang

    2016-01-01

    Burgeoning antibiotic resistance and unfavorable outcomes of inflammatory injury after Pseudomonas aeruginosa infection have necessitated the development of novel agents that not only target quorum sensing (QS) but also combat inflammatory injury with the least risk of resistance. This study aimed to assess the anti-QS and anti-inflammatory activities of baicalein, a traditional herbal medicine that is widely used in the People’s Republic of China, against P. aeruginosa infection. We found that subminimum inhibitory concentrations of baicalein efficiently interfered with the QS-signaling pathway of P. aeruginosa via downregulation of the transcription of QS-regulated genes and the translation of QS-signaling molecules. This interference resulted in the global attenuation of QS-controlled virulence factors, such as motility and biofilm formation, and the secretion into the culture supernatant of extracellular virulence factors, including pyocyanin, LasA protease, LasB elastase, and rhamnolipids. Moreover, we examined the anti-inflammatory activity of baicalein and its mode of action via a P. aeruginosa-infected macrophage model to address its therapeutic effect. Baicalein reduced the P. aeruginosa-induced secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNFα. In addition, baicalein suppressed P. aeruginosa-induced activation of the MAPK and NFκB signal-transduction pathways in cocultured macrophages; this may be the mechanism by which baicalein inhibits the production of proinflammatory cytokines. Therefore, our study demonstrates that baicalein represents a potential treatment for P. aeruginosa infection because it clearly exhibits both antibacterial and anti-inflammatory activities. PMID:26792984

  2. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  3. Qing Hua Chang Yin attenuates lipopolysaccharide-induced inflammatory response in human intestinal cells by inhibiting NF-κB activation

    PubMed Central

    KE, XIAO; CHEN, JINGTUAN; ZHANG, XIN; FANG, WENYI; YANG, CHUNBO; PENG, JUN; CHEN, YOUQIN; SFERRA, THOMAS J.

    2013-01-01

    Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD), which is tightly regulated by the nuclear factor κB (NF-κB) pathway. Thus, the suppression of NF-κB signaling may provide a promising strategy for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation, which has been used for a number of years to clinically treat UC. However, little is known with regard to its anti-inflammatory properties. In the present study, lipopolysaccharide (LPS)-stimulated Caco-2 cells were used as an in vitro inflammatory model of the human intestinal epithelium to evaluate the anti-inflammatory effects of QHCY and its underlying molecular mechanisms. We observed that QHCY inhibited the inflammatory response in intestinal epithelial cells as it significantly and concentration-dependently reduced the LPS-induced secretion of pro-inflammatory TNF-α and IL-8 in Caco-2 cells. Furthermore, QHCY treatment inhibited the phosphorylation of IκB and the nuclear translocation of NF-κB in Caco-2 cells in a concentration-dependent manner, indicating that QHCY suppressed the activation of the NF-κB signaling pathway. Collectively, our results suggest that the inhibition of NF-κB-mediated inflammation may constitute a potential mechanism by which QHCY treats UC. PMID:23935744

  4. Qing Hua Chang Yin attenuates lipopolysaccharide-induced inflammatory response in human intestinal cells by inhibiting NF-κB activation.

    PubMed

    Ke, Xiao; Chen, Jingtuan; Zhang, Xin; Fang, Wenyi; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2013-07-01

    Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD), which is tightly regulated by the nuclear factor κB (NF-κB) pathway. Thus, the suppression of NF-κB signaling may provide a promising strategy for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation, which has been used for a number of years to clinically treat UC. However, little is known with regard to its anti-inflammatory properties. In the present study, lipopolysaccharide (LPS)-stimulated Caco-2 cells were used as an in vitro inflammatory model of the human intestinal epithelium to evaluate the anti-inflammatory effects of QHCY and its underlying molecular mechanisms. We observed that QHCY inhibited the inflammatory response in intestinal epithelial cells as it significantly and concentration-dependently reduced the LPS-induced secretion of pro-inflammatory TNF-α and IL-8 in Caco-2 cells. Furthermore, QHCY treatment inhibited the phosphorylation of IκB and the nuclear translocation of NF-κB in Caco-2 cells in a concentration-dependent manner, indicating that QHCY suppressed the activation of the NF-κB signaling pathway. Collectively, our results suggest that the inhibition of NF-κB-mediated inflammation may constitute a potential mechanism by which QHCY treats UC.

  5. Cynandione A attenuates lipopolysaccharide-induced production of inflammatory mediators via MAPK inhibition and NF-κB inactivation in RAW264.7 macrophages and protects mice against endotoxin shock

    PubMed Central

    Kim, Sung Hwan; Lee, Tae Hoon; Lee, Sang Min; Park, Ji Hae; Park, Keun Hyung; Jung, Mira; Jung, Hana; Mohamed, Mohamed Antar Aziz; Baek, Nam-In; Chung, In Sik

    2014-01-01

    Cynanchum wilfordii has been traditionally used in eastern Asia for the treatment of various diseases such as gastrointestinal diseases and arteriosclerosis. Cynandione A (CA), an acetophenone, is one of major constituents from roots of C. wilfordii. In the present study, the anti-inflammatory activities of CA were investigated in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-administered C57BL/6 N mice. CA significantly decreased LPS-induced production of nitric oxide and prostaglandin E2 in a dose-dependent manner, while CA up to 200 μM did not exhibit cytotoxic activity. Our data also showed that CA significantly attenuated expression of iNOS and COX-2 in LPS-stimulated macrophages. CA inhibited phosphorylation of IκB-α and MAP kinases such as ERK and p38. Furthermore, we demonstrated that CA inhibited translocation of NF-κB to the nucleus, transcription of the NF-κB minimal promoter and NF-κB DNA binding activity. Administration of CA significantly decreased the plasma levels of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β in LPS-injected mice and improved survival of septic mice with lethal endotoxemia. These results demonstrate that CA has effective inhibitory effects on production of inflammatory mediators via suppressing activation of NF-κB and MAPK signaling pathways, suggesting that CA may be used as a potential anti-inflammatory agent for the prevention and treatment of inflammatory diseases. PMID:25361770

  6. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    PubMed Central

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance. PMID:22778497

  7. Cinnamon extract attenuates TNF-alpha-induced intestinal lipoprotein ApoB48 overproduction by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated whether a water extract of cinnamon (CE = Cinnulin PF®) attenuates the dyslipidemia induced by TNF-alpha in Triton WR-1339-treated hamsters, and whether CE inhibited the over-secretion of apoB48-induced by TNF-alpha in enterocytes in a 35S-labelling study. In vivo, oral treatment with C...

  8. Polyandric acid A, a clerodane diterpenoid from the Australian medicinal plant Dodonaea polyandra, attenuates pro-inflammatory cytokine secretion in vitro and in vivo.

    PubMed

    Simpson, Bradley S; Luo, Xianling; Costabile, Maurizio; Caughey, Gillian E; Wang, Jiping; Claudie, David J; McKinnon, Ross A; Semple, Susan J

    2014-01-24

    Dodonaea polyandra is a medicinal plant used traditionally by the Kuuku I'yu (Northern Kaanju) indigenous people of Cape York Peninsula, Australia. The most potent of the diterpenoids previously identified from this plant, polyandric acid A (1), has been examined for inhibition of pro-inflammatory cytokine production and other inflammatory mediators using well-established acute and chronic mouse ear edema models and in vitro cellular models. Topical application of 1 significantly inhibited interleukin-1β production in mouse ear tissue in an acute model. In a chronic skin inflammation model, a marked reduction in ear thickness, associated with significant reduction in myeloperoxidase accumulation, was observed. Treatment of primary neonatal human keratinocytes with 1 followed by activation with phorbol ester/ionomycin showed a significant reduction in IL-6 secretion. The present study provides evidence that the anti-inflammatory properties of 1 are due to inhibition of pro-inflammatory cytokines associated with skin inflammation and may be useful in applications for skin inflammatory conditions including psoriasis and dermatitis.

  9. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages

    PubMed Central

    Choe, Ji-Hyun; Yi, Young-Joo; Lee, Myeong-Seok; Seo, Dong-Won

    2015-01-01

    Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor κB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo. PMID:26539049

  10. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  11. Attenuation of Inflammatory Mediators (TNF-α and Nitric Oxide) and Up-Regulation of IL-10 by Wild and Domesticated Basidiocarps of Amauroderma rugosum (Blume & T. Nees) Torrend in LPS-Stimulated RAW264.7 Cells

    PubMed Central

    2015-01-01

    Amauroderma rugosum, commonly known as “Jiǎzī” in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and

  12. Low-dose benznidazole treatment results in parasite clearance and attenuates heart inflammatory reaction in an experimental model of infection with a highly virulent Trypanosoma cruzi strain

    PubMed Central

    Cevey, Ágata Carolina; Mirkin, Gerardo Ariel; Penas, Federico Nicolás; Goren, Nora Beatriz

    2015-01-01

    Chagas disease, caused by Trypanosoma cruzi, is the main cause of dilated cardiomyopathy in the Americas. Antiparasitic treatment mostly relies on benznidazole (Bzl) due to Nifurtimox shortage or unavailability. Both induce adverse drug effects (ADE) of varied severity in many patients, leading to treatment discontinuation or abandonment. Since dosage may influence ADE, we aimed to assess Bzl efficacy in terms of parasiticidal and anti-inflammatory activity, using doses lower than those previously reported. BALB/c mice infected with the T. cruzi RA strain were treated with different doses of Bzl. Parasitaemia, mortality and weight change were assessed. Parasite load, tissue infiltrates and inflammatory mediators were studied in the heart. Serum creatine kinase (CK) activity was determined as a marker of heart damage. The infection-independent anti-inflammatory properties of Bzl were studied in an in vitro model of LPS-treated cardiomyocyte culture. Treatment with 25 mg/kg/day Bzl turned negative the parasitological parameters, induced a significant decrease in IL-1β, IL-6 and NOS2 in the heart and CK activity in serum, to normal levels. No mortality was observed in infected treated mice. Primary cultured cardiomyocytes treated with Bzl showed that inflammatory mediators were reduced via inhibition of the NF-κB pathway. A Bzl dose lower than that previously reported for treatment of experimental Chagas disease exerts adequate antiparasitic and anti-inflammatory effects leading to parasite clearance and tissue healing. This may be relevant to reassess the dose currently used for the treatment of human Chagas disease, aiming to minimize ADE. PMID:26862474

  13. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions.

    PubMed

    Seifert, Marc; Przekopowitz, Martina; Taudien, Sarah; Lollies, Anna; Ronge, Viola; Drees, Britta; Lindemann, Monika; Hillen, Uwe; Engler, Harald; Singer, Bernhard B; Küppers, Ralf

    2015-02-10

    The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.

  14. Effect of vitamin D supplementation on selected inflammatory biomarkers in older adults: a secondary analysis of data from a randomised, placebo-controlled trial.

    PubMed

    Waterhouse, Mary; Tran, Bich; Ebeling, Peter R; English, Dallas R; Lucas, Robyn M; Venn, Alison J; Webb, Penelope M; Whiteman, David C; Neale, Rachel E

    2015-09-14

    Observational studies have suggested that 25-hydroxyvitamin D (25(OH)D) levels are associated with inflammatory markers. Most trials reporting significant associations between vitamin D intake and inflammatory markers used specific patient groups. Thus, we aimed to determine the effect of supplementary vitamin D using secondary data from a population-based, randomised, placebo-controlled, double-blind trial (Pilot D-Health trial 2010/0423). Participants were 60- to 84-year-old residents of one of the four eastern states of Australia. They were randomly selected from the electoral roll and were randomised to one of three trial arms: placebo (n 214), 750 μg (n 215) or 1500 μg (n 215) vitamin D3, each taken once per month for 12 months. Post-intervention blood samples for the analysis of C-reactive protein (CRP), IL-6, IL-10, leptin and adiponectin levels were available for 613 participants. Associations between intervention group and biomarker levels were evaluated using quantile regression. There were no statistically significant differences in distributions of CRP, leptin, adiponectin, leptin:adiponectin ratio or IL-10 levels between the placebo group and either supplemented group. The 75th percentile IL-6 level was 2·8 pg/ml higher (95 % CI 0·4, 5·8 pg/ml) in the 1500 μg group than in the placebo group (75th percentiles:11·0 v. 8·2 pg/ml), with a somewhat smaller, non-significant difference in 75th percentiles between the 750 μg and placebo groups. Despite large differences in serum 25(OH)D levels between the three groups after 12 months of supplementation, we found little evidence of an effect of vitamin D supplementation on cytokine or adipokine levels, with the possible exception of IL-6.

  15. 4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2015-01-01

    4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (β-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 μl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase

  16. Relationship between fluid-attenuated inversion-recovery (FLAIR) signal intensity and inflammatory mediator's levels in the hippocampus of patients with temporal lobe epilepsy and mesial temporal sclerosis.

    PubMed

    Varella, Pedro Paulo Vasconcellos; Santiago, Joselita Ferreira Carvalho; Carrete, Henrique; Higa, Elisa Mieko Suemitsu; Yacubian, Elza Márcia Targas; Centeno, Ricardo Silva; Caboclo, Luís Otávio Sales Ferreira; Castro Neto, Eduardo Ferreira de; Canzian, Mauro; Amado, Débora; Cavalheiro, Esper Abrão; Naffah-Mazzacoratti, Maria da Graça

    2011-02-01

    We investigated a relationship between the FLAIR signal found in mesial temporal sclerosis (MTS) and inflammation. Twenty nine patients were selected through clinical and MRI analysis and submitted to cortico-amygdalo-hippocampectomy to seizure control. Glutamate, TNFα, IL1, nitric oxide (NO) levels and immunostaining against IL1β and CD45 was performed. Control tissues (n=10) were obtained after autopsy of patients without neurological disorders. The glutamate was decreased in the temporal lobe epilepsy (TLE) -MTS group (p<0.001), suggesting increased release of this neurotransmitter. The IL1β and TNFα were increased in the hippocampus (p<0.05) demonstrating an active inflammatory process. A positive linear correlation between FLAIR signal and NO and IL1β levels and a negative linear correlation between FLAIR signal and glutamate concentration was found. Lymphocytes infiltrates were present in hippocampi of TLE patients. These data showed an association between hippocampal signal alteration and increased inflammatory markers in TLE-MTS.

  17. Severe water intoxication secondary to the concomitant intake of non-steroidal anti-inflammatory drugs and desmopressin: a case report and review of the literature.

    PubMed

    Verrua, Elisa; Mantovani, Giovanna; Ferrante, Emanuele; Noto, Andrea; Sala, Elisa; Malchiodi, Elena; Iapichino, Gaetano; Peccoz, Paolo Beck; Spada, Anna

    2013-01-01

    Most of the clinical data on the safety profile of desmopressin (DDAVP), which is an effective treatment for both polyuric conditions and bleeding disorders, originate from studies on the tailoring of drug treatment, whereas few reports exist describing severe side effects secondary to drug-drug interaction. We herein describe a case of severe hyponatremia complicated by seizure and coma due to the intake of non-steroidal anti-inflammatory drugs (NSAIDs) in a patient on DDAVP replacement therapy for central diabetes insipidus (DI). A 50-yr-old Caucasian man, with congenital central DI, developed an episode of generalized tonic-clonic seizure, resulting in coma immediately after being admitted to the Emergency Unit for weakness and emesis. Based on his medical history and clinical findings, water intoxication secondary to ketoprofen intake (200 mg/day for the last 3 days) concomitant with DDAVP replacement therapy (Minirin(®) 60 mcg 4 tablets a day) was hypothesized as being the cause of the severe euvolemic hypotonic hyponatremia (natremia 113 mEq/l, plasma osmolality 238 mOsm/Kg). After standard emergency procedures, appropriate gradual restoration of serum sodium levels to the normal range was achieved in 72 hours. Hydratation was maintained according to water excretion and desmopressin therapy was re-introduced. We discuss this case report in the context of the published literature. The present report first highlights the potentially life-threatening side effects associated with over-the-counter NSAIDs during DDAVP replacement therapy for central DI. Risks and benefits of co-treatment should be carefully considered and therapeutic alternatives to NSAIDs should be recommended to patients with central DI in order to improve DDAVP safety.

  18. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis

    PubMed Central

    Wang, Yi; Shan, Xiaoou; Chen, Gaozhi; Jiang, Lili; Wang, Zhe; Fang, Qilu; Liu, Xing; Wang, Jingying; Zhang, Yali; Wu, Wencan; Liang, Guang

    2015-01-01

    Background and Purpose Myeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2. Experimental Approach The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice. Key Results Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg90 and Tyr102 in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock. Conclusions and Implications Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders. PMID:26076332

  19. α-Tocopherol attenuates NF-κB activation and pro-inflammatory cytokine IL-6 secretion in cancer-bearing mice.

    PubMed

    Sharma, Renu; Vinayak, Manjula

    2011-10-01

    Cancer development and progression are closely associated with inflammation. NF-κB (nuclear factor κB) provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of malignant cells to resist tumour surveillance mechanisms. NF-κB might also regulate tumour angiogenesis and invasiveness and the signalling pathways that mediate its activation provide attractive targets for new chemopreventive and chemotherapeutic approaches. ROS (reactive oxygen species) initiate inflammation by up-regulation of pro-inflammatory cytokines and therefore antioxidants provide a major defence against inflammation. α-Tocopherol is a lipid-soluble antioxidant. In addition to decreasing lipid peroxidation, α-tocopherol may exert intracellular effects. Hence, the aim of this study was to test the effect of α-tocopherol supplementation in cancer prevention via suppression of NF-κB-mediated pro-inflammatory cytokines. α-Tocopherol treatment significantly down-regulates expression, synthesis as well as secretion of pro-inflammatory cytokine IL-6 (interleukin-6) in cancerous mice. It also suppresses NF-κB binding to IL-6 promoter in liver leading to decreased secretion of IL-6 in serum. The regulation of the signalling pathway by α-tocopherol is found apart from its antioxidant capacity to reduce lipid peroxidation. Thus, the present study provides evidence for the hypothesis that besides the powerful free radical scavenging effects, α-tocopherol has genomic effects in down-regulation of pro-inflammatory cytokine and cancer prevention via the NF-κB-dependent pathway.

  20. Hydroalcoholic Extract from Inflorescences of Achyrocline satureioides (Compositae) Ameliorates Dextran Sulphate Sodium-Induced Colitis in Mice by Attenuation in the Production of Inflammatory Cytokines and Oxidative Mediators.

    PubMed

    da Silva, Luisa Mota; Farias, Jaime Antonio Machado; Boeing, Thaise; Somensi, Lincon Bordignon; Beber, Ana Paula; Cury, Benhur Judah; Santin, José Roberto; Faloni de Andrade, Sérgio

    2016-01-01

    Achyrocline satureioides is a South American herb used to treat inflammatory and gastrointestinal diseases. This study evaluated intestinal anti-inflammatory effects of the hydroalcoholic extract of inflorescences of satureioides (HEAS) in dextran sulfate sodium (DSS) induced colitis in mice. Mice were orally treated with vehicle, 5-aminosalicylic acid (100 mg/kg), or HEAS (1-100 mg/kg). Clinical signs of colitis and colonic histopathological parameters were evaluated, along with the determination of levels of reduced glutathione and lipid hydroperoxide (LOOH), the superoxide dismutase (SOD), and myeloperoxidase (MPO) activity in colon. The colonic content of cytokines (TNF, IL-4, IL-6, and IL-10) was measured. Additionally, the effects of the extract on nitric oxide (NO) release by lipopolysaccharide (LPS) stimulated macrophages and diphenylpicrylhydrazyl levels were determined. Mucin levels and SOD activity, as well as the LOOH, MPO, TNF, and IL-6 accumulation in colon tissues, were normalized by the HEAS administration. In addition, the extract elicited an increase in IL-4 and IL-10 levels in colon. NO release by macrophages was inhibited by HEAS and its scavenger activity was confirmed. Together these results suggest that preparations obtained from inflorescences from A. satureioides could be used in treatment for IBD. Besides, this work corroborates the popular use of A. satureioides in inflammatory disorders.

  1. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells.

    PubMed

    Park, Sun Young; Seetharaman, Rajasekar; Ko, Min Jung; Kim, Do Yeon; Kim, Tae Hoon; Yoon, Moo Kyoung; Kwak, Jung Ho; Lee, Sang Joon; Bae, Yoe Sik; Choi, Young Whan

    2014-04-01

    In the present study, an essential fatty acid, ethyl linoleate (ELA), was isolated from the cloves of Allium sativum, and its structure was elucidated by NMR and GC-MS analyses. In vitro systems were used to evaluate the anti-inflammatory activity of ELA. Our results indicate that ELA down-regulates inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and thereby reduces nitric oxide (NO) and prostaglandin E2 production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Immunofluorescent microscopy and western blot analyses revealed that these effects were mediated by impaired translocation of nuclear factor (NF)-κB and inhibition of phosphorylation of mitogen activated protein kinases. Furthermore, ELA exerted its anti-inflammatory activity by inducing heme oxygenase-1 (HO-1) expression, as determined by HO-1 small interfering (Si) RNA system. Si RNA-mediated knock-down of HO-1 abrogated the inhibitory effects of ELA on the production of NO, TNF-α, IL-1β, and IL-6 in LPS-induced macrophages. These findings indicate the potential therapeutic use of ELA as an anti-inflammatory agent.

  2. Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-κB and JAK2/STAT3 signaling pathways in microglia.

    PubMed

    Weng, Leihua; Zhang, He; Li, Xiaoxi; Zhan, Hui; Chen, Fan; Han, Lijuan; Xu, Yun; Cao, Xiang

    2017-03-01

    Increasing evidence suggests that microglia are a major cellular contributor to neuroinflammation. The present study investigated whether Ampelopsin (Amp), a type of flavanonol derivative from Ampelopsis grossedentata, may exert an anti-inflammatory effect on lipopolysaccharide (LPS)-induced BV2 and primary microglia cells. We found that pre-treatment of microglia cells with Amp before LPS with a non-cytotoxic concentration range decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Amp also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) was obviously reduced by Amp. Our mechanistic study indicated that Amp suppressed LPS-induced activation of the IκB/NF-κB inflammation pathway without affecting changes in the phosphorylation levels of mitogen-activated protein kinases (MAPKs) in BV2 cells. Further studies revealed that Amp markedly reduced the phosphorylation levels of JAK2-STAT3 and STAT3 nuclear translocation. Overall, our data suggest that Amp can suppress the LPS-induced inflammatory response of microglial cells, indicating that Amp has potential for the treatment of inflammation-mediated neurodegenerative diseases.

  3. Hydroalcoholic Extract from Inflorescences of Achyrocline satureioides (Compositae) Ameliorates Dextran Sulphate Sodium-Induced Colitis in Mice by Attenuation in the Production of Inflammatory Cytokines and Oxidative Mediators

    PubMed Central

    da Silva, Luisa Mota; Farias, Jaime Antonio Machado; Boeing, Thaise; Somensi, Lincon Bordignon; Beber, Ana Paula; Cury, Benhur Judah

    2016-01-01

    Achyrocline satureioides is a South American herb used to treat inflammatory and gastrointestinal diseases. This study evaluated intestinal anti-inflammatory effects of the hydroalcoholic extract of inflorescences of satureioides (HEAS) in dextran sulfate sodium (DSS) induced colitis in mice. Mice were orally treated with vehicle, 5-aminosalicylic acid (100 mg/kg), or HEAS (1–100 mg/kg). Clinical signs of colitis and colonic histopathological parameters were evaluated, along with the determination of levels of reduced glutathione and lipid hydroperoxide (LOOH), the superoxide dismutase (SOD), and myeloperoxidase (MPO) activity in colon. The colonic content of cytokines (TNF, IL-4, IL-6, and IL-10) was measured. Additionally, the effects of the extract on nitric oxide (NO) release by lipopolysaccharide (LPS) stimulated macrophages and diphenylpicrylhydrazyl levels were determined. Mucin levels and SOD activity, as well as the LOOH, MPO, TNF, and IL-6 accumulation in colon tissues, were normalized by the HEAS administration. In addition, the extract elicited an increase in IL-4 and IL-10 levels in colon. NO release by macrophages was inhibited by HEAS and its scavenger activity was confirmed. Together these results suggest that preparations obtained from inflorescences from A. satureioides could be used in treatment for IBD. Besides, this work corroborates the popular use of A. satureioides in inflammatory disorders. PMID:27847525

  4. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves.

    PubMed

    Taylor, Geraldine; Wyld, Sara; Valarcher, Jean-Francois; Guzman, Efrain; Thom, Michelle; Widdison, Stephanie; Buchholz, Ursula J

    2014-06-01

    Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity.

  5. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    PubMed

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics.

  6. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects

    PubMed Central

    2011-01-01

    Background Acorus calamus (family: Araceae), is an indigenous plant, traditionally it is used as an ingredient of various cocktail preparations and for the management of severe inflammatory disorders in Indian system of medicine. Present study investigated the attenuating role of Acorus calamus plant extract in chronic constriction injury (CCI) of sciatic nerve induced peripheral neuropathy in rats. Methods Hot plate, plantar, Randall Selitto, Von Frey Hair, pin prick, acetone drop, photoactometer and rota-rod tests were performed to assess degree of thermal, radiant, mechanical, chemical sensation, spontaneous motor activity and motor co-ordination changes respectively, at different time intervals i.e., day 0, 1, 3, 6, 9, 12, 15, 18 and 21. Tissue myeloperoxidase, superoxide anion and total calcium levels were determined after 21st day to assess biochemical alterations. Histopathological evaluations were also performed. Hydroalcoholic extract of Acorus calamus (HAE-AC, 100 and 200 mg/kg, p.o.) and pregabalin (10 mg/kg, p.o.) were administered from the day of surgery for 14 days. Results CCI of sciatic nerve significantly induced thermal, radiant, mechanical hyperalgesia and thermal, chemical, tactile allodynia, along with increase in the levels of superoxide anion, total calcium and myeloperoxidase activity. Moreover significant histological changes were also observed. HAE-AC attenuated CCI induced development of painful behavioural, biochemical and histological changes in a dose dependent manner similar to that of pregabalin serving as positive control. Conclusions Acorus calamus prevented CCI induced neuropathy which may be attributed to its multiple actions including anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory actions. PMID:21426568

  7. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats.

    PubMed

    Li, Ping; Liu, Huaipu; Sun, Peng; Wang, Xiaoyu; Wang, Chen; Wang, Ling; Wang, Tinghuai

    2016-02-01

    Vagus nerve stimulation (VNS), a method for activating cholinergic anti-inflammatory pathways, could suppress endothelial activation and minimize tissue injury during inflammation. The aim of this study was to investigate the effects of chronic VNS on endothelial impairments and the inflammatory profile in ovariectomized (OVX) rats. Sprague-Dawley rats (7-8 months old) were randomly assigned to the following four groups: sham-OVX, OVX, OVX+sham-VNS, and OVX+VNS. Throughout the experimental period, the OVX+VNS group received VNS for 3h (20.0 Hz, 1.0 mA, and 10.00 ms pulse width) at the same time every other day. After 12 weeks of VNS, blood samples and thoracic aortas were collected for further analyses. Light microscopy and electron microscopy analyses showed that chronic VNS prevented endothelial swelling, desquamation and even necrosis in the OVX rats. In addition, it obviously improved endothelial function in the OVX rats by restoring the endothelial nitric oxide synthase (e-NOS) and serum endothelin-1 level. Increased expression of cell adhesion molecules (VCAM-1, ICAM-1 and E-selectin) in the thoracic aortas and increases in the levels of circulating cytokines (TNF-α, IL-6, MCP-1, and CINC/KC) were also observed in the OVX rats. Chronic VNS significantly restored these detrimental changes partly by increasing the ACh concentrations in vascular walls and blocking NF-κB pathway activity. The results of this in vivo study have shown that the administration of chronic VNS during, in the early stage of estrogen deficiency, protects OVX rats from endothelial impairments and the inflammatory profile. These findings indicate that activation of the vagus nerve could be a promising supplemental therapy for reducing the risks of suffering from further CVDs in postmenopausal women.

  8. Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages.

    PubMed

    Sen, Shib Sankar; Sukumaran, V; Giri, Sib Sankar; Park, Se Chang

    2015-11-01

    Psidium guajava L. is a well-known traditional medicinal plant widely used in folk medicine. To explore the anti-inflammatory activity of the flavonoid fraction of guava leaf extract (FGLE), we investigated its ability to suppress the levels of inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS in the presence or absence of the FGLE. We examined the inhibitory effect of FGLE on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of FGLE on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR and western blot. The effect of FGLE on proinflammatory cytokines tumour necrosis factor alpha (TNF-α) or interleukin-1β (IL-1β) was also investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPK) molecules ERK, JNK and p38 was analysed by western blot analysis. FGLE inhibited LPS-induced NO and PGE2 production. It also effectively inhibited TNF-α, IL-1β, IL-10, iNOS, and COX-2 production in a concentration-dependent manner. In addition, FGLE suppressed the mRNA expression levels of TNF-α and IL-1β in LPS-stimulated HK macrophages. RT-PCR and western blot analysis showed that FGLE decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. FGLE suppresses the phosphorylation of MAPK molecules in LPS-stimulated HK macrophages. FGLE also significantly inhibited LPS-induced NF-κB transcriptional activity. The molecular mechanism by which FGLE suppresses the expression of inflammatory mediators appears to involve the inhibition of NF-κB activation, through the suppression of LPS-induced IκB-α degradation. Together these results suggest that FGLE contains potential therapeutic agent(s), which regulate NF-κB activation, for the treatment of inflammatory conditions in L. rohita macrophages.

  9. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106

  10. In inflammatory reactive astrocytes co-cultured with brain endothelial cells nicotine-evoked Ca(2+) transients are attenuated due to interleukin-1beta release and rearrangement of actin filaments.

    PubMed

    Delbro, D; Westerlund, A; Björklund, U; Hansson, E

    2009-03-17

    The aim of this study was to investigate whether nicotine acetylcholine receptors (nAChRs) are expressed in a more pronounced way in astrocytes co-cultured with microvascular endothelial cells from adult rat brain, compared with monocultured astrocytes, as a sign of a more developed signal transduction system. Also investigated was whether nicotine plays a role in the control of neuroinflammatory reactivity in astrocytes. Ca(2+) imaging experiments were performed using cells loaded with the Ca(2+) indicator Fura-2/AM. Co-cultured astrocytes responded to lower concentrations of nicotine than did monocultured astrocytes, indicating that they are more sensitive to nicotine. Co-cultured astrocytes also expressed a higher selectivity for alpha7nAChR and alpha4/beta2 subunits and evoked higher Ca(2+) transients compared with monocultured astrocytes. The Ca(2+) transients referred to are activators of Ca(2+)-induced Ca(2+) release from intracellular stores, both IP(3) and ryanodine, triggered by influx through receptor channels. The nicotine-induced Ca(2+) transients were attenuated after incubation with the inflammatory mediator lipopolysaccharide (LPS), but were not attenuated after incubation with the pain-transmitting peptides substance P and calcitonin-gene-related peptide, nor with the infection and inflammation stress mediator, leptin. Furthermore, LPS-induced release of interleukin-1beta (IL-1beta) measured by enzyme-linked immunosorbent assay (ELISA) was more pronounced in co-cultured versus monocultured astrocytes. Incubation with both LPS and IL-1beta further attenuated nicotine-induced Ca(2+) response. We also found that LPS and IL-1beta induced rearrangement of the F-actin filaments, as measured with an Alexa488-conjugated phalloidin probe. The rearrangements consisted of increases in ring formations and a more dispersed appearance of the filaments. These results indicate that there is a connection between a dysfunction of nicotine Ca(2+) signaling in

  11. GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells

    PubMed Central

    He, Gai-ying; Yuan, Chong-gang; Hao, Li; Xu, Ying; Zhang, Zhi-xiong

    2014-01-01

    Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS). A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF-κB) p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF-α and IL-1β, and inhibited the associated signal transduction through the p38 MAPK and NF-κB p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF-α and IL-1β release by inhibiting signal transduction through the NF-κB p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50. PMID:24782908

  12. Electroacupuncture Attenuates CFA-induced Inflammatory Pain by suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice

    PubMed Central

    Liao, Hsien-Yin; Hsieh, Ching-Liang; Huang, Chun-Ping; Lin, Yi-Wen

    2017-01-01

    Pain is associated with several conditions, such as inflammation, that result from altered peripheral nerve properties. Electroacupuncture (EA) is a common Chinese clinical medical technology used for pain management. Using an inflammatory pain mouse model, we investigated the effects of EA on the regulation of neurons, microglia, and related molecules. Complete Freund’s adjuvant (CFA) injections produced a significant mechanical and thermal hyperalgesia that was reversed by EA or a transient receptor potential V1 (TRPV1) gene deletion. The expression of the astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, receptor for advanced glycation end-products (RAGE), TRPV1, and other related molecules was dramatically increased in the dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) of CFA-treated mice. This effect was reversed by EA and TRPV1 gene deletion. In addition, endomorphin (EM) and N6-cyclopentyladenosine (CPA) administration reliably reduced mechanical and thermal hyperalgesia, thereby suggesting the involvement of opioid and adenosine receptors. Furthermore, blocking of opioid and adenosine A1 receptors reversed the analgesic effects of EA. Our study illustrates the substantial therapeutic effects of EA against inflammatory pain and provides a novel and detailed mechanism underlying EA-mediated analgesia via neuronal and non-neuronal pathways. PMID:28211895

  13. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  14. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-02-08

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  15. Electroacupuncture Attenuates CFA-induced Inflammatory Pain by suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice.

    PubMed

    Liao, Hsien-Yin; Hsieh, Ching-Liang; Huang, Chun-Ping; Lin, Yi-Wen

    2017-02-13

    Pain is associated with several conditions, such as inflammation, that result from altered peripheral nerve properties. Electroacupuncture (EA) is a common Chinese clinical medical technology used for pain management. Using an inflammatory pain mouse model, we investigated the effects of EA on the regulation of neurons, microglia, and related molecules. Complete Freund's adjuvant (CFA) injections produced a significant mechanical and thermal hyperalgesia that was reversed by EA or a transient receptor potential V1 (TRPV1) gene deletion. The expression of the astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, receptor for advanced glycation end-products (RAGE), TRPV1, and other related molecules was dramatically increased in the dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) of CFA-treated mice. This effect was reversed by EA and TRPV1 gene deletion. In addition, endomorphin (EM) and N(6)-cyclopentyladenosine (CPA) administration reliably reduced mechanical and thermal hyperalgesia, thereby suggesting the involvement of opioid and adenosine receptors. Furthermore, blocking of opioid and adenosine A1 receptors reversed the analgesic effects of EA. Our study illustrates the substantial therapeutic effects of EA against inflammatory pain and provides a novel and detailed mechanism underlying EA-mediated analgesia via neuronal and non-neuronal pathways.

  16. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells.

    PubMed

    Hoshi, Yutaro; Uchida, Yasuo; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2017-01-23

    The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.

  17. Ginkgo biloba extract EGb761 attenuates brain death-induced renal injury by inhibiting pro-inflammatory cytokines and the SAPK and JAK-STAT signalings

    PubMed Central

    Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi

    2017-01-01

    This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628

  18. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice.

    PubMed

    Wu, Xin; Yang, Yan; Dou, Yannong; Ye, Jun; Bian, Difei; Wei, Zhifeng; Tong, Bei; Kong, Lingyi; Xia, Yufeng; Dai, Yue

    2014-12-01

    The crude powder of the fruit of Arctium lappa L. (ALF) has previously been reported to attenuate experimental colitis in mice. But, its main effective ingredient and underlying mechanisms remain to be identified. In this study, ALF was extracted with ethanol, and then successively fractionated into petroleum ether, ethyl acetate, n-butanol and water fraction. Experimental colitis was induced by dextran sulfate sodium (DSS) in mice. Among the four fractions of ALF, the ethyl acetate fraction showed the most significant inhibition of DSS-induced colitis in mice. The comparative studies of arctigenin and arctiin (the two main ingredients of ethyl acetate fraction) indicated that arctigenin rather than arctiin could reduce the loss of body weight, disease activity index and histological damage in the colon. Arctigenin markedly recovered the loss of intestinal epithelial cells (E-cadherin-positive cells) and decreased the infiltration of neutrophils (MPO-positive cells) and macrophages (CD68-positive cells). Arctigenin could down-regulate the expressions of TNF-α, IL-6, MIP-2, MCP-1, MAdCAM-1, ICAM-1 and VCAM-1 at both protein and mRNA levels in colonic tissues. Also, it markedly decreased the MDA level, but increased SOD activity and the GSH level. Of note, the efficacy of arctigenin was comparable or even superior to that of the positive control mesalazine. Moreover, it significantly suppressed the phosphorylation of MAPKs and the activation of NF-κB, including phosphorylation of IκBα and p65, p65 translocation and DNA binding activity. In conclusion, arctigenin but not arctiin is the main active ingredient of ALF for attenuating colitis via down-regulating the activation of MAPK and NF-κB pathways.

  19. Norisoboldine, an Anti-Arthritis Alkaloid Isolated from Radix Linderae, Attenuates Osteoclast Differentiation and Inflammatory Bone Erosion in an Aryl Hydrocarbon Receptor-Dependent Manner.

    PubMed

    Wei, Zhi-feng; Lv, Qi; Xia, Ying; Yue, Meng-fan; Shi, Can; Xia, Yu-feng; Chou, Gui-xin; Wang, Zheng-tao; Dai, Yue

    2015-01-01

    Norisoboldine (NOR), the primary isoquinoline alkaloid constituent of the root of Lindera aggregata, has previously been demonstrated to attenuate osteoclast (OC) differentiation. Accumulative evidence has shown that aryl hydrocarbon receptor (AhR) plays an important role in regulating the differentiation of various cells, and multiple isoquinoline alkaloids can modulate AhR. In the present study, we explored the role of NOR in the AhR signaling pathway. These data showed that the combination of AhR antagonist resveratrol (Res) or α-naphthoflavone (α-NF) nearly reversed the inhibition of OC differentiation through NOR. NOR could stably bind to AhR, up-regulate the nuclear translocation of AhR, and enhance the accumulation of the AhR-ARNT complex, AhR-mediated reporter gene activity and CYP1A1 expression in RAW 264.7 cells, suggesting that NOR might be an agonist of AhR. Moreover, NOR inhibited the nuclear translocation of NF-κB-p65, resulting in the evident accumulation of the AhR-NF-κB-p65 complex, which could be markedly inhibited through either Res or α-NF. Although NOR only slightly affected the expression of HIF-1α, NOR markedly reduced VEGF mRNA expression and ARNT-HIF-1α complex accumulation. In vivo studies indicated that NOR decreased the number of OCs and ameliorated the bone erosion in the joints of rats with collagen-induced arthritis, accompanied by the up-regulation of CYP1A1 and the down-regulation of VEGF mRNA expression in the synovium of rats. A combination of α-NF nearly completely reversed the effects of NOR. In conclusion, NOR attenuated OC differentiation and bone erosion through the activation of AhR and the subsequent inhibition of both NF-κB and HIF pathways.

  20. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways.

    PubMed

    Zheng, Jifang; Zhao, Tingting; Yuan, Yan; Hu, Nan; Tang, Xiaoqing

    2015-12-05

    As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 μmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway.

  1. Attenuation of liver pro-inflammatory responses by Zingiber officinale via inhibition of NF-kappa B activation in high-fat diet-fed rats.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C-Y; Nammi, Srinivas; Heather, Alison K; Roufogalis, Basil D

    2012-03-01

    The aim of this study was to investigate whether treatment with a ginger (Zingiber officinale) extract of high-fat diet (HFD)-fed rats suppresses Nuclear factor-kappa B (NF-κB)-driven hepatic inflammation and to subsequently explore the molecular mechanisms in vitro. Adult male Sprague-Dawley rats were treated with an ethanolic extract of Zingiber officinale (400 mg/kg) along with a HFD for 6 weeks. Hepatic cytokine mRNA levels, cytokine protein levels and NF-κB activation were measured by real-time PCR, Western blot and an NF-κB nuclear translocation assay, respectively. In vitro, cell culture studies were carried out in human hepatocyte (HuH-7) cells by treatment with Zingiber officinale (100 μg/mL) for 24 hr prior to interleukin-1β (IL-1β, 8 ng/mL)-induced inflammation. We showed that Zingiber officinale treatment decreased cytokine gene TNFα and IL-6 expression in HFD-fed rats, which was associated with suppression of NF-κB activation. In vitro, Zingiber officinale treatment decreased NF-κB-target inflammatory gene expression of IL-6, IL-8 and serum amyloid A1 (SAA1), while it suppressed NF-κB activity, IκBα degradation and IκB kinase (IKK) activity. In conclusion, Zingiber officinale suppressed markers of hepatic inflammation in HFD-fed rats, as demonstrated by decreased hepatic cytokine gene expression and decreased NF-κB activation. The study demonstrates that the anti-inflammatory effect of Zingiber officinale occurs at least in part through the NF-κB signalling pathway.

  2. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury

    PubMed Central

    FENG, YAN; CUI, YING; GAO, JUN-LING; LI, MING-HANG; LI, RAN; JIANG, XIAO-HUA; TIAN, YAN-XIA; WANG, KAI-JIE; CUI, CHANG-MENG; CUI, JIAN-ZHONG

    2016-01-01

    Previous research has demonstrated that traumatic brain injury (TBI) activates autophagy and a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of this cascade. In the present study, we investigated the hypothesis that resveratrol (RV), a natural polyphenolic compound with potent multifaceted properties, alleviates brain damage mediated by TLR4 following TBI. Adult male Sprague Dawley rats, subjected to controlled cortical impact (CCI) injury, were intraperitoneally injected with RV (100 mg/kg, daily for 3 days) after the onset of TBI. The results demonstrated that RV significantly reduced brain edema, motor deficit, neuronal loss and improved spatial cognitive function. Double immunolabeling demonstrated that RV decreased microtubule-associated protein 1 light chain 3 (LC3), TLR4-positive cells co-labeled with the hippocampal neurons, and RV also significantly reduced the number of TLR4-positive neuron-specific nuclear protein (NeuN) cells following TBI. Western blot analysis revealed that RV significantly reduced the protein expression of the autophagy marker proteins, LC3II and Beclin1, in the hippocampus compared with that in the TBI group. Furthermore, the levels of TLR4 and its known downstream signaling molecules, nuclear factor-κB (NF-κB), and the inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were also decreased after RV treatment. Our results suggest that RV reduces neuronal autophagy and inflammatory reactions in a rat model of TBI. Thus, we suggest that the neuroprotective effect of RV is associated with the TLR4/NF-κB signaling pathway. PMID:26936125

  3. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.

    PubMed

    Zheng, Wenhao; Feng, Zhenhua; You, Shengban; Zhang, Hui; Tao, Zhenyu; Wang, Quan; Chen, Hua; Wu, Yaosen

    2017-04-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Fisetin, a polyphenol extracted from fruits and vegetables, has been reported to have anti-inflammatory effects. Our study aimed to investigate the effect of fisetin on OA both in vitro and in vivo. In vitro, chondrocytes were pretreated with fisetin alone or fisetin combined with sirtinol (an inhibitor of SIRT1) for 2h before IL-1β stimulation. Production of NO, PGE2, TNF-α and IL-6 were evaluated by the Griess reaction and ELISAs. The mRNA (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, Sox-9, aggrecan and collagen-II) and protein expression (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5 and SIRT1) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and SIRT1. SIRT1 activity was quantified with SIRT1 fluorometric assay kit. The in vivo effect of fisetin was evaluated by gavage in mice OA models induced by destabilization of the medial meniscus (DMM). We found that fisetin inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5. Besides, fisetin remarkably decreased IL-1β-induced degradation of Sox-9, aggrecan and collagen-II. Furthermore, fisetin significantly inhibited IL-1β-induced SIRT1 decrease and inactivation. However, the inhibitory effect of fisetin was obvious abolished by sirtinol, suggesting that fisetin exerts anti-inflammatory effects through activating SIRT1. In vivo, fisetin-treated mice exhibited less cartilage destruction and lower OARSI scores. Moreover, fisetin reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that fisetin may be a potential agent in the treatment of OA.

  4. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice

    PubMed Central

    Townsend, Brigitte E.; Johnson, Rodney W.

    2015-01-01

    Increased neuroinflammation and oxidative stress resulting from heightened microglial activation is associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging. PMID:26571201

  5. Effects of Benzo(e)pyrene on Reactive Oxygen/Nitrogen Species and Inflammatory Cytokines Induction in Human RPE Cells and Attenuation by Mitochondrial-involved Mechanism

    PubMed Central

    Estrago-Franco, M. Fernanda; Moustafa, M. Tarek; Riazi-Esfahani, Mohammad; Sapkal, Ashish U.; Piche-Lopez, Rhina; Patil, A. Jayaprakash; Sharma, Ashish; Falatoonzadeh, Payam; Chwa, Marilyn; Luczy-Bachman, Georgia; Kuppermann, Baruch D.; Kenney, M. Cristina

    2016-01-01

    Purpose: To identify inhibitors that could effectively lower reactive oxygen/nitrogen species (ROS/RNS), complement and inflammatory cytokine levels induced by Benzo(e)pyrene [B(e)p], an element of cigarette smoke, in human retinal pigment epithelial cells (ARPE-19) in vitro. Methods: ARPE-19 cells were treated for 24 hours with 200 μM, 100 μM, and 50 μM B(e)p or DMSO (dimethyl sulfoxide)-equivalent concentrations. Some cultures were pre-treated with ROS/RNS inhibitors (NG nitro-L-arginine, inhibits nitric oxide synthase; Apocynin, inhibits NADPH oxidase; Rotenone, inhibits mitochondrial complex I; Antimycin A, inhibits mitochondria complex III) and ROS/RNS levels were measured with a fluorescent H2 DCFDA assay. Multiplex bead arrays were used to measure levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Transforming Growth Factor alpha (TGF-α) and Vascular Endothelial Growth Factor (VEGF). IL-6 levels were also measured by an enzyme-linked immunosorbent assay. Real-time qPCR analyses were performed with primers for C3 (component 3), CFH (inhibits complement activation), CD59 (inhibitor of the complement membrane attack complex (MAC)) and CD55/DAF (accelerates decay of target complement target proteins). Results: The ARPE-19 cultures treated with B(e)p showed significantly increased ROS/RNS levels (P < 0.001), which were then partially reversed by 6 μM Antimycin A (19%, P = 0.03), but not affected by the other ROS/RNS inhibitors. The B(e)p treated cultures demonstrated increased levels of IL-6 (33%; P = 0.016) and GM-CSF (29%; P = 0.0001) compared to DMSO-equivalent controls, while the expression levels for components of the complement pathway (C3, CFH, CD59 and CD55/DAF) were not changed. Conclusion: The cytotoxic effects of B(e)p include elevated ROS/RNS levels along with pro-inflammatory IL-6 and GM-CSF proteins. Blocking the Qi site of cytochrome c reductase (complex III) with Antimycin A led to

  6. Anti-platelet drugs attenuate the expansion of circulating CD14highCD16+ monocytes under pro-inflammatory conditions

    PubMed Central

    Layne, Kerry; Di Giosia, Paolo; Ferro, Albert; Passacquale, Gabriella

    2016-01-01

    Aims Levels of circulating CD14highCD16+ monocytes increase in atherosclerotic patients and are predictive of future cardiovascular events. Platelet activation has been identified as a crucial determinant in the acquisition of a CD16+ phenotype by classical CD14highCD16− cells. We tested the hypothesis that anti-platelet drugs modulate the phenotype of circulating monocytes. Methods and results Sixty healthy subjects undergoing influenza immunization were randomly assigned to either no treatment or anti-platelet therapy, namely aspirin 300 mg or 75 mg daily, or clopidogrel (300 mg loading dose followed by 75 mg), for 48 h post-immunization (n = 15/group). Monocyte subsets, high-sensitivity C-reactive protein, pro-inflammatory cytokines, and P-selectin were measured at baseline and post-immunization. The CD14highCD16+ monocyte cell count rose by 67.3% [interquartile range (IQR): 35.7/169.2; P = 0.0002 vs. baseline] in untreated participants. All anti-platelet regimes counteracted expansion of this monocytic subpopulation. Although no statistical differences were noted among the three treatments, aspirin 300 mg was the most efficacious compared with the untreated group (−12.5% change from baseline; IQR: −28.7/18.31; P = 0.001 vs. untreated). Similarly, the rise in P-selectin (17%; IQR: −5.0/39.7; P = 0.03 vs. baseline) observed in untreated participants was abolished by all treatments, with aspirin 300 mg exerting the strongest effect (−30.7%; IQR: −58.4/−0.03; P = 0.007 vs. untreated). Changes in P-selectin levels directly correlated with changes in CD14highCD16+ cell count (r = 0.5; P = 0.0002). There was a similar increase among groups in high-sensitivity C-reactive protein (P < 0.03 vs. baseline levels). Conclusions Anti-platelet drugs exert an immunomodulatory action by counteracting CD14highCD16+ monocyte increase under pro-inflammatory conditions, with this effect being dependent on the amplitude of P-selectin reduction. PMID:27118470

  7. CPU86017-RS attenuate hypoxia-induced testicular dysfunction in mice by normalizing androgen biosynthesis genes and pro-inflammatory cytokines

    PubMed Central

    Zhang, Guo-lin; Yu, Feng; Dai, De-zai; Cheng, Yu-si; Zhang, Can; Dai, Yin

    2012-01-01

    Aim: Downregulation of androgen biosynthesis genes StAR (steroidogenic acute regulatory) and 3β-HSD (3β-hydroxysteroid dehydrogenase) contributes to low testosterone levels in hypoxic mice and is possibly related to increased expression of pro-inflammatory cytokines in the testis. The aim of this study is to investigate the effects of CPU86017-RS that block Ca2+ influx on hypoxia-induced testis insult in mice. Methods: Male ICR mice were divided into 5 groups: control group, hypoxia group, hypoxia group treated with nifedipine (10 mg/kg), hypoxia groups treated with CPU86017-RS (60 or 80 mg/kg). Hypoxia was induced by placing the mice in a chamber under 10%±0.5% O2 for 28 d (8 h per day). The mice were orally administered with drug in the last 14 d. At the end of experiment the testes of the mice were harvested. The mRNA and protein levels of StAR, 3β-HSD, connexin 43 (Cx43), matrix metalloprotease 9 (MMP9), endothelin receptor A (ETAR) and leptin receptor (OBRb) were analyzed using RT-PCR and Western blotting, respectively. The malondialdehyde (MDA), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) levels were measured using biochemical kits. Serum testosterone concentration was measured with radioimmunoassay. Results: Hypoxia significantly increased the MDA level, and decreased the LDH, ACP and SDH activities in testes. Meanwhile, hypoxia induced significant downregulation of StAR and 3β-HSD in testes responsible for reduced testosterone biosynthesis. It decreased the expression of Cx43, and increased the expression of MMP9, ETAR and OBRb, leading to abnormal testis function and structure. These changes were effectively diminished by CPU86017-RS (80 mg/kg) or nifedipine (10 mg/kg). Conclusion: Low plasma testosterone level caused by hypoxia was due to downregulation of StAR and 3β-HSD genes, in association with an increased expression of pro-inflammatory cytokines. These changes can be alleviated by CPU86017-RS or

  8. Shielding data for 100 250 MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Magistris, M.; Mereghetti, A.; Silari, M.; Zajacova, Z.

    2008-08-01

    Double differential distributions of neutrons produced by 100, 150, 200 and 250 MeV protons stopped in a thick iron target were calculated with the FLUKA Monte Carlo code at four emission angles: forward, 45°, transverse and 135° backwards. The attenuation in thick iron shields of the dose equivalent due to neutrons, protons, photons and electrons was also calculated. The contribution to the total ambient dose equivalent from photons and protons is limited to a few percent at maximum. Source terms and attenuation lengths are given as a function of energy and emission angle, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. A brief discussion of simulations performed with composite iron/concrete shields is also given, showing the need for further investigations.

  9. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling.

    PubMed

    Bułdak, Łukasz; Machnik, Grzegorz; Bułdak, Rafał Jakub; Łabuzek, Krzysztof; Bołdys, Aleksandra; Okopień, Bogusław

    2016-10-01

    Metformin and exenatide are effective antidiabetic drugs, and they seem to have pleiotropic properties improving cardiovascular outcomes. Macrophages' phenotype is essential in the development of atherosclerosis, and it can be modified during antidiabetic therapy, resulting in attenuated atherogenesis. The mechanism orchestrating this phenomenon is not fully clear. We examined the impact of exenatide and metformin on the level of TNF alpha, MCP-1, reactive oxygen species (ROS), and the activation of mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NFκB), and CCAAT/enhancer-binding protein beta (C/EBP beta) in human monocytes/macrophages. We found that both drugs reduced levels of TNF alpha, ROS, and NFκB binding activity to a similar extent. Compared to metformin, exenatide was more effective in reducing MCP-1 levels. We noted that Compound C (AMPK inhibitor) reduced the impact of exenatide on cytokines, ROS, and NFκB in cultures. Both drugs elevated the C/EBP beta phosphorylation level. Experiments on MAPKs showed effective inhibitory potential of exenatide toward p38, JNK, and ERK, whereas metformin inhibited JNK and ERK only. Exenatide was more effective in the inhibition of JNK than metformin. Interestingly, an in vitro setting additive effect of drugs was absent. In conclusion, here, we report that metformin and exenatide inhibit the proinflammatory phenotype of human monocytes/macrophages via influence on MAPK, C/EBP beta, and NFκB. Exenatide was more effective than metformin in reducing MCP-1 expression and JNK activity. We also showed that some effects of exenatide relied on AMPK activation. This shed light on the possible mechanisms responsible for pleiotropic effects of metformin and exenatide.

  10. I4, a synthetic anti-diabetes agent, attenuates atherosclerosis through its lipid-lowering, anti-inflammatory and anti-apoptosis properties.

    PubMed

    Ma, Lingman; Qian, Lifen; Ying, Qidi; Zhang, Yan; Zhou, Changlin; Wu, Guanzhong

    2017-01-15

    Here, we investigated whether I4, which was initially developed as a hypoglycemic agent, possesses anti-atherosclerotic activity and attempted to elucidate the probable mechanism of action underlying this activity. ApoE(-/-) mice were fed a Western diet and simultaneously administered I4, glimepiride, or pioglitazone once daily for 12 weeks, and the atherosclerotic vascular lesions, lipid content, and expression levels of LOX-1, ICAM-1, VCAM-1 and Bax/Bcl-2 in mouse aortas were assessed. RAW264.7 macrophage-derived foam cells were obtained via ox-LDL stimulation to investigate the lipid-lowering, anti-atherosclerotic inflammation and anti-apoptotic effect of I4. The data indicated that I4 significantly decreased the lipid accumulation in the circulation and tissue, especially for TG and FFA levels (p < 0.05 vs model group), alleviating the arterial and liver lesions induced by lipotoxicity. Its lipid-reducing effects may due to LOX-1and CD36 expression suppression. I4, at doses of 20 mg/kg and 10 mg/kg, significantly decreased serum IL-6, IL-1β, and TNF-α production and suppressed the expression of p-ERK, p-p38, VCAM-1 and ICAM-1 protein. I4 attenuated atherosclerotic inflammation by blocking NF-κB nuclear translocation, suppressing MAPK/NF-κB signaling pathway and diminishing NF-κB-VCAM-1 promoter region binding. Additionally, I4 suppressed p-p53 and cleaved-caspase-3 expression to inhibit foam cell apoptosis induced by ox-LDL uptake. Overall, I4 exerts potent inhibitory effects on atherosclerosis onset and development.

  11. 14-Deoxy-11,12-didehydroandrographolide attenuates excessive inflammatory responses and protects mice lethally challenged with highly pathogenic A(H5N1) influenza viruses.

    PubMed

    Cai, Wentao; Chen, Sunrui; Li, Yongtao; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Jin, Meilin

    2016-09-01

    Traditional Chinese medicine (TCM) has been an excellent treasury for centuries' accumulation of clinical experiences, which deserves to be tapped for potential drugs and improved using modern scientific methods. 14-Deoxy-11,12-didehydroandrographolide (DAP), a major component of an important TCM named Andrographis paniculata, with non-toxic concentration of 1000 mg/kg/day, effectively reduced the mortality and weight loss of mice lethally challenged with A/chicken/Hubei/327/2004 (H5N1) or A/PR/8/34 (H1N1) influenza A viruses (IAV) when initiated at 4 h before infection, or A/duck/Hubei/XN/2007 (H5N1) when initiated at 4 h or 48 h before infection, or 4 h post-infection (pi). DAP (1000 or 500 mg/kg/day) also significantly diminished lung virus titres of infected mice when initiated at 4 h or 48 h before infection, or 4 h pi. In the infection of A/duck/Hubei/XN/2007 (H5N1), DAP (1000 mg/kg/day) treatment initiated at 48 h before infection gained the best efficacy that virus titres in lungs of mice in log10TCID50/mL reduced from 2.61 ± 0.14 on 3 days post-infection (dpi), 2.98 ± 0.17 on 5 dpi, 3.54 ± 0.19 on 7 dpi to 1.46 ± 0.14 on 3 dpi, 1.86 ± 0.18 on 5 dpi, 2.03 ± 0.21 on 7 dpi. Moreover, DAP obviously alleviated lung histopathology and also strongly inhibited proinflammatory cytokines/chemokines expression. The mRNA levels of TNF-α, IL-1β, IL-6, CCL-2/MCP-1, IFN-α, IFN-β, IFN-γ, MIP-1α, MIP-1β in lungs of A/duck/Hubei/XN/2007 (H5N1)-infected mice and serum protein expression of TNF-α, IL-1β, IL-6, CCL-2/MCP-1 and CXCL-10/IP-10 in mice infected with all the three strains of IAV were all significantly reduced by DAP. Results demonstrated that DAP could restrain both the host intense inflammatory responses and high viral load, which were considered to contribute to the pathogenesis of H5N1 virus and should be controlled together in a clinical setting. Considering the anti-inflammatory and anti-IAV activities of DAP, DAP may

  12. Lipid emulsion administered intravenously or orally attenuates triglyceride accumulation and expression of inflammatory markers in the liver of nonobese mice fed parenteral nutrition formula.

    PubMed

    Ito, Kyoko; Hao, Lei; Wray, Amanda E; Ross, A Catharine

    2013-03-01

    The accumulation of hepatic TG and development of hepatic steatosis (HS) is a serious complication of the use of parenteral nutrition (PN) formulas containing a high percentage of dextrose. But whether fat emulsions or other nutrients can ameliorate the induction of HS by high-carbohydrate diets is still uncertain. We hypothesized that administration of a lipid emulsion (LE; Intralipid) and/or the vitamin A metabolite retinal (RAL) will reduce hepatic TG accumulation and attenuate indicators of inflammation. C57BL/6 male mice were fed PN formula as their only source of hydration and nutrition for 4-5 wk. In Expt. 1, mice were fed PN only or PN plus treatment with RAL (1 μg/g orally), LE (200 μL i.v.), or both LE and RAL. In Expt. 2, LE was orally administered at 4 and 13.5% of energy to PN-fed mice. All PN mice developed HS compared with mice fed normal chow (NC) and HS was reduced by LE. The liver TG mass was lower in the PN+LE and PN+RAL+LE groups compared with the PN and PN+RAL groups (P < 0.01) and in the 4% and 13.5% PN+LE groups compared with PN alone. Hepatic total retinol was higher in the RAL-fed mice (P < 0.0001), but RAL did not alter TG mass. mRNA transcripts for fatty acid synthase (Fasn) and sterol regulatory element-binding protein-1c (Srebpf1) were higher in the PN compared with the NC mice, but FAS protein and Srebpf1 mRNA were lower in the PN+LE groups compared with PN alone. The inflammation marker serum amyloid P component was also reduced. In summary, LE given either i.v. or orally may be sufficient to reduce the steatotic potential of orally fed high-dextrose formulas and may suppress the early development of HS during PN therapy.

  13. Reduction of β-amyloid deposits by γ-secretase inhibitor is associated with the attenuation of secondary damage in the ipsilateral thalamus and sensory functional improvement after focal cortical infarction in hypertensive rats.

    PubMed

    Zhang, Yusheng; Xing, Shihui; Zhang, Jian; Li, Jingjing; Li, Chuo; Pei, Zhong; Zeng, Jinsheng

    2011-02-01

    Abnormal β-amyloid (Aβ) deposits in the thalamus have been reported after cerebral cortical infarction. In this study, we investigated the association of Aβ deposits, with the secondary thalamic damage after focal cortical infarction in rats. Thirty-six stroke-prone renovascular hypertensive rats were subjected to distal middle cerebral artery occlusion (MCAO) and then randomly divided into MCAO, vehicle, and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) groups and 12 sham-operated rats as control. The DAPT was administered orally at 72 hours after MCAO. Seven days after MCAO, sensory function, neuron loss, and glial activation and proliferation were evaluated using adhesive removal test, Nissl staining, and immunostaining, respectively. Thalamic Aβ accumulation was evaluated using immunostaining and enzyme-linked immunosorbent assay (ELISA). Compared with vehicle group, the ipsilateral thalamic Aβ, neuronal loss, glial activation and proliferation, and the mean time to remove the stimulus from right forepaw significantly decreased in DAPT group. The mean time to remove the stimulus from the right forepaw and thalamic Aβ burden were both negatively correlated with the number of thalamic neurons. These findings suggest that Aβ deposits are associated with the secondary thalamic damage. Reduction of thalamic Aβ by γ-secretase inhibitor may attenuate the secondary damage and improve sensory function after cerebral cortical infarction.

  14. miR-146a Attenuates Inflammatory Pathways Mediated by TLR4/NF-κB and TNFα to Protect Primary Human Retinal Microvascular Endothelial Cells Grown in High Glucose

    PubMed Central

    Ye, Eun-Ah; Steinle, Jena J.

    2016-01-01

    Pathological mechanisms underlying diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. A growing body of evidence shows that microRNA (miRNA) play important roles in pathological mechanisms involved in diabetic retinopathy, as well as possessing potential as novel therapeutic targets. The hypothesis of this study was that miR-146a plays a key role in attenuating hyperglycemia-induced inflammatory pathways through reduced TLR4/NF-κB and TNFα signaling in primary human retinal microvascular endothelial cells (REC). We cultured human REC in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC with miRNA mimic (hsa-miR-146a-5p). Our results demonstrate that miR-146a expression was decreased in human REC cultured in high glucose. Overexpression of miR-146a using mimics reduced the levels of TLR4/NF-κB and TNFα in REC cultured in high glucose. Both MyD88-dependent and -independent signaling were decreased by miR-146a overexpression in REC in high glucose conditions. The results suggest that miR-146a is a potential therapeutic target for reducing inflammation in REC through inhibition of TLR4/NF-κB and TNFα. Our study will contribute to understanding of diabetic retinal pathology, as well as providing important clues to develop therapeutics for clinical applications. PMID:26997759

  15. The 2009 pandemic H1N1 and triple-reassortant swine H1N1 influenza viruses replicate efficiently but elicit an attenuated inflammatory response in polarized human bronchial epithelial cells.

    PubMed

    Zeng, Hui; Pappas, Claudia; Katz, Jacqueline M; Tumpey, Terrence M

    2011-01-01

    The pandemic H1N1 virus of 2009 (2009 H1N1) produced a spectrum of disease ranging from mild illness to severe illness and death. Respiratory symptoms were frequently associated with virus infection, with relatively high rate of gastrointestinal symptoms reported. To better understand 2009 H1N1 virus pathogenesis in humans, we studied virus and host responses following infection of two cell types: polarized bronchial and pharyngeal epithelial cells, which exhibit many features of the human airway epithelium, and colon epithelial cells to serve as a human intestinal cell model. Selected 2009 H1N1 viruses were compared to both seasonal H1N1 and triple-reassortant swine H1N1 influenza viruses that have circulated among North American pigs since before the 2009 pandemic. All H1N1 viruses replicated productively in airway cells; however, in contrast to seasonal H1N1 virus infection, infection with the 2009 H1N1 and triple-reassortant swine H1N1 viruses resulted in an attenuated inflammatory response, a weaker interferon response, and reduced cell death. Additionally, the H1N1 viruses of swine origin replicated less efficiently at the temperature of the human proximal airways (33°C). We also observed that the 2009 H1N1 viruses replicated to significantly higher titers than seasonal H1N1 virus in polarized colon epithelial cells. These studies reveal that in comparison to seasonal influenza virus, H1N1 viruses of swine origin poorly activate multiple aspects of the human innate response, which may contribute to the virulence of these viruses. In addition, their less efficient replication at human upper airway temperatures has implications for the understanding of pandemic H1N1 virus adaptation to humans.

  16. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    PubMed Central

    Lee, Dong-Sung; Jang, Jae-Hyuk; Ko, Wonmin; Kim, Kyoung-Su; Sohn, Jae Hak; Kang, Myeong-Suk; Ahn, Jong Seog; Kim, Youn-Chul; Oh, Hyuncheol

    2013-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1. PMID:23612372

  17. CT evaluation of the colon: inflammatory disease.

    PubMed

    Horton, K M; Corl, F M; Fishman, E K

    2000-01-01

    Computed tomography (CT) is valuable for detection and characterization of many inflammatory conditions of the colon. At CT, a dilated, thickened appendix is suggestive of appendicitis. A 1-4-cm, oval, fatty pericolic lesion with surrounding mesenteric inflammation is diagnostic of epiploic appendagitis. The key to distinguishing diverticulitis from other inflammatory conditions of the colon is the presence of diverticula in the involved segment. In typhlitis, CT demonstrates cecal distention and circumferential thickening of the cecal wall, which may have low attenuation secondary to edema. In radiation colitis, the clinical history is the key to suggesting the diagnosis because the CT findings can be nonspecific. The location of the involved segment and the extent and appearance of wall thickening may help distinguish Crohn disease and ulcerative colitis. In ischemic colitis, CT typically demonstrates circumferential, symmetric wall thickening with fold enlargement. CT findings of graft-versus-host disease include small bowel and colonic wall thickening, which may result in luminal narrowing and separation of bowel loops. In infectious colitis, the site and thickness of colon affected may suggest a specific organism. The amount of wall thickening in pseudomembranous colitis is typically greater than in any other inflammatory disease of the colon except Crohn disease.

  18. Management of recurrent inflammatory choroidal neovascular membrane secondary to Vogt-Koyanagi-Harada syndrome, using combined intravitreal injection of bevacizumab and triamcinolone acetate

    PubMed Central

    Pai, Sivakami A; Hebri, Sudhira P; Lootah, Afra M

    2012-01-01

    The purpose of this report is to evaluate the efficacy and safety of combined intravitreal injection of bevacizumab and intravitreal triamcinolone acetonide (IVTA) for recurrent inflammatory choroidal neovascular membrane (CNVM). It was a prospective interventional study of a young female, who was a known case of Vogt-Koyanagi-Harada syndrome. She presented with an inflammatory choroidal neovascualar membrane and signs of panuveitis in the right eye. She underwent a complete ophthalmic examination. She was given intravitreal injection of bevacizumab and IVTA at different sites. There was complete regression of CNVM and ocular inflammation within a week. After six months, she had recurrence of CNVM in the same eye, which was treated similarly. There was a complete resolution of CNVM and ocular inflammation after the combination therapy and systemic steroids, until one year of follow-up. No serious systemic or ocular adverse events were noted. Combination therapy appears to be an effective and safe method in the management of recurrent inflammatory CNVM. PMID:23202396

  19. Chemical characterization of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry, X-ray photoelectron spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopic imaging: an intercomparison.

    PubMed

    Bailey, Melanie J; Bright, Nicholas J; Croxton, Ruth S; Francese, Simona; Ferguson, Leesa S; Hinder, Stephen; Jickells, Sue; Jones, Benjamin J; Jones, Brian N; Kazarian, Sergei G; Ojeda, Jesus J; Webb, Roger P; Wolstenholme, Rosalind; Bleay, Stephen

    2012-10-16

    The first analytical intercomparison of fingerprint residue using equivalent samples of latent fingerprint residue and characterized by a suite of relevant techniques is presented. This work has never been undertaken, presumably due to the perishable nature of fingerprint residue, the lack of fingerprint standards, and the intradonor variability, which impacts sample reproducibility. For the first time, time-of-flight secondary ion mass spectrometry, high-energy secondary ion mass spectrometry, and X-ray photoelectron spectroscopy are used to target endogenous compounds in fingerprints and a method is presented for establishing their relative abundance in fingerprint residue. Comparison of the newer techniques with the more established gas chromatography/mass spectrometry and attenuated total reflection Fourier transform infrared spectroscopic imaging shows good agreement between the methods, with each method detecting repeatable differences between the donors, with the exception of matrix-assisted laser desorption ionization, for which quantitative analysis has not yet been established. We further comment on the sensitivity, selectivity, and practicability of each of the methods for use in future police casework or academic research.

  20. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors.

    PubMed

    Salvi, Valentina; Vermi, William; Gianello, Veronica; Lonardi, Silvia; Gagliostro, Vincenzo; Naldini, Antonella; Sozzani, Silvano; Bosisio, Daniela

    2016-06-28

    Lymph node expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Previous work in mice has shown that this process depends on the presence of VEGF-A produced by B cells, macrophages and stromal cells. In humans, however, the cell types and the mechanisms regulating the intranodal production of VEGF-A remain elusive. Here we show that CD11c+ cells represent the main VEGF-A-producing cell population in human reactive secondary lymphoid organs. In addition we find that three transcription factors, namely CREB, HIF-1α and STAT3, regulate the expression of VEGF-A in inflamed DCs. Both HIF-1α and STAT3 are activated by inflammatory agonists. Conversely, CREB phosphorylation represents the critical contribution of endogenous or exogenous PGE2. Taken together, these results propose a crucial role for DCs in lymph node inflammatory angiogenesis and identify novel potential cellular and molecular targets to limit inflammation in chronic diseases and tumors.

  1. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors

    PubMed Central

    Salvi, Valentina; Vermi, William; Gianello, Veronica; Lonardi, Silvia; Gagliostro, Vincenzo; Naldini, Antonella

    2016-01-01

    Lymph node expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Previous work in mice has shown that this process depends on the presence of VEGF-A produced by B cells, macrophages and stromal cells. In humans, however, the cell types and the mechanisms regulating the intranodal production of VEGF-A remain elusive. Here we show that CD11c+ cells represent the main VEGF-A-producing cell population in human reactive secondary lymphoid organs. In addition we find that three transcription factors, namely CREB, HIF-1α and STAT3, regulate the expression of VEGF-A in inflamed DCs. Both HIF-1α and STAT3 are activated by inflammatory agonists. Conversely, CREB phosphorylation represents the critical contribution of endogenous or exogenous PGE2. Taken together, these results propose a crucial role for DCs in lymph node inflammatory angiogenesis and identify novel potential cellular and molecular targets to limit inflammation in chronic diseases and tumors. PMID:27256980

  2. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    PubMed

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; Rios, Alessandro de Oliveira; Salvi, Aguisson de Oliveira; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile.

  3. Antioxidant and anti-inflammatory action of melatonin in an experimental model of secondary biliary cirrhosis induced by bile duct ligation

    PubMed Central

    Colares, Josieli Raskopf; Schemitt, Elizângela Gonçalves; Hartmann, Renata Minuzzo; Licks, Francielli; Soares, Mariana do Couto; Bosco, Adriane Dal; Marroni, Norma Possa

    2016-01-01

    AIM To evaluate the effects of melatonin (Mel) on oxidative stress in an experimental model of bile duct ligation (BDL). METHODS Male Wistar rats (n = 32, weight ± 300 g) were allocated across four groups: CO (sham BDL), BDL (BDL surgery), CO + Mel (sham BDL and Mel administration) and BDL + Mel (BDL surgery and Mel administration). Mel was administered intraperitoneally for 2 wk, starting on postoperative day 15, at a dose of 20 mg/kg. RESULTS Mel was effective at the different standards, reestablishing normal liver enzyme levels, reducing the hepatosomatic and splenosomatic indices, restoring lipoperoxidation and antioxidant enzyme concentrations, reducing fibrosis and inflammation, and thereby reducing liver tissue injury in the treated animals. CONCLUSION The results of this study suggest a protective effect of Mel when administered to rats with secondary biliary cirrhosis induced by BDL. PMID:27833383

  4. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine

    PubMed Central

    Iwasaki, Akiko; Kelsall, Brian L.

    2000-01-01

    We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b+ myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8α+ lymphoid DCs are present in the T cell–rich interfollicular region (IFR). DCs that lack expression of CD8α or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3α mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3α. These data support a distinct role for MIP-3α/CCR6 in recruitment of CD11b+ DCs toward the mucosal surfaces and for MIP-3β/CCR7 in attraction of CD8α+ DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections. PMID:10770804

  5. Inflammatory neuropathies.

    PubMed

    Whitesell, Jackie

    2010-09-01

    Inflammatory neuropathies are acquired disorders of peripheral nerves and occasionally of the central nervous system that can affect individuals at any age. The course can be monophasic, relapsing, or progressive. Inflammatory neuropathies are classified as acute or chronic. The acute form reaches a nadir by 4 weeks and the chronic form over 8 weeks or greater. The most common example of an acute inflammatory neuropathy is acute inflammatory demyelinating polyradiculoneuropathy (AIDP), which is part of the Guillain-Barré syndrome (GBS). The most common chronic inflammatory neuropathy is chronic inflammatory demyelinating polyradiculopathy (CIDP). Other chronic inflammatory neuropathies are multifocal motor neuropathy (MMN) and the Lewis-Sumner syndrome. The Fisher syndrome and Bickerstaff brainstem encephalitis occur acutely and have clinical overlap with AIDP.

  6. Cytokine Attenuation and Free Radical Scavenging Activity of a New Flavanone7,4'-Dihydroxy-3″,3″-Dimethyl -(5,6-Pyrano-2″-One)- 8- (3‴,3‴-Dimethyl Allyl)- Isolated from Mallotus philippensis: Possible Mechanism for Its Anti-Inflammatory Activity.

    PubMed

    Rizvi, Waseeem; Fayazuddin, Mohd; Singh, Ompal; Naeem, Syed Shariq; Moin, Shagufta; Akhtar, Kafil; Kumar, Anil

    2016-01-01

    Mallotus philippensis L.(MP) commonly known as Kamala tree in Hindi,is a small to medium-sized monoecious tree.The objective of the study was to evaluate the anti-inflammatory activity of MPand a new flavanoneisolated from it by using in vivo models of inflammation.Albino wistar rats of either sex weighing 150-200g were used. Seven groups were made (n = 6), namely normal control group (normal saline, 1 ml/kg), standard control group (acetylsalicylic acid, 100 mg/kg), methanol crude extract (300 and 500 mg/kg), ethylacetate fraction (300 and 500 mg/kg) and active compound 4 (new flavanone, 50 mg/kg). The anti-inflammatory activity was studied using carrageenan induced paw edema method and cotton pellet granuloma method. Levels of cytokines (TNF-α, IL-1and IL-6) and activity of antioxidant enzymeslike catalase and glutathione peroxidase were estimated. It was found that the methanol extract, ethylacetate fraction and Flavanonedemonstrated significant reduction in paw edema in carrageenan induced paw edema method as compared to control. They also diminished the serum TNF-α, IL-6 and IL-1 levels. Significantly attenuated the malondialdehyde levels and increased the activities of catalase and glutathione peroxidase in paw tissue. Similarly there was asignificant decrease in granuloma formation in cotton pellet induced granuloma method. In conclusion, MP extracts and the newflavanonepossess anti-inflammatory activity and this might be due to the inhibition of various cytokines and increased free radical scavenging activity.

  7. Inflammatory Manifestations of Lymphedema

    PubMed Central

    Ly, Catherine L.; Kataru, Raghu P.; Mehrara, Babak J.

    2017-01-01

    Lymphedema results from lymphatic insufficiency leading to a progressive inflammatory process that ultimately manifests as discomfort, recurrent infections, and, at times, secondary malignancy. Collectively, these morbidities contribute to an overall poor quality of life. Although there have been recent advances in microsurgical interventions, a conservative palliative approach remains the mainstay of treatment for this disabling disease. The absence of a cure is due to an incomplete understanding of the pathophysiological changes that result in lymphedema. A histological hallmark of lymphedema is inflammatory cell infiltration and recent studies with animal models and clinical biopsy specimens have suggested that this response plays a key role in the pathology of the disease. The purpose of this report is to provide an overview of the ongoing research in and the current understanding of the inflammatory manifestations of lymphedema. PMID:28106728

  8. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity by downregulation of NF-κB and MAP kinase activity in LPS-activated RAW 264.7 cells.

    PubMed

    Badiei, Alireza; Muniraj, Nethaji; Chambers, Stephen; Bhatia, Madhav

    2014-01-01

    Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In this study, we used small interfering RNA (siRNA) to inhibit CSE expression in macrophages. We found that CSE silencing siRNA could reduce the LPS-induced activation of transcription factor nuclear factor-κB (NF-κB) significantly. Phosphorylation and activation of extra cellular signal-regulated kinase 1/2 (ERK1/2) increased in LPS-induced macrophages. We showed that phosphorylation of ERK in LPS-induced RAW 264.7 cells reached a peak 30 min after activation. Our findings show that silencing CSE gene by siRNA reduces phosphorylation and activation of ERK1/2 in LPS-induced RAW 264.7 cells. These findings suggest that siRNA reduces the inflammatory effects of hydrogen sulfide through the ERK-NF-κB signalling pathway and hydrogen sulfide plays its inflammatory role through ERK-NF-κB pathway in these cells.

  9. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: The present study was carried out to determine if lyophilized acai fruit pulp (genus, Euterpe), rich in polyphenolics and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. Methods: The diets of 19-mo...

  10. Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway

    PubMed Central

    Liu, Chen-Wei; Sung, Hsin-Ching; Lin, Shu-Rung; Wu, Chun-Wei; Lee, Chiang-Wen; Lee, I.-Ta; Yang, Yi-Fan; Yu, I-Shing; Lin, Shu-Wha; Chiang, Ming-Hsien; Liang, Chan-Jung; Chen, Yuh-Lien

    2017-01-01

    Resveratrol, an edible polyphenolic phytoalexin, improves endothelial dysfunction and attenuates inflammation. However, the mechanisms have not been thoroughly elucidated. Therefore, we investigated the molecular basis of the effects of resveratrol on TNF-α-induced ICAM-1 expression in HUVECs. The resveratrol treatment significantly attenuated the TNF-α-induced ICAM-1 expression. The inhibition of p38 phosphorylation mediated the reduction in ICAM-1 expression caused by resveratrol. Resveratrol also decreased TNF-α-induced IκB phosphorylation and the phosphorylation, acetylation, and translocation of NF-κB p65. Moreover, resveratrol induced the AMPK phosphorylation and the SIRT1 expression in TNF-α-treated HUVECs. Furthermore, TNF-α significantly suppressed miR-221/-222 expression, which was reversed by resveratrol. miR-221/-222 overexpression decreased p38/NF-κB and ICAM-1 expression, which resulted in reduced monocyte adhesion to TNF-α-treated ECs. In a mouse model of acute TNF-α-induced inflammation, resveratrol effectively attenuated ICAM-1 expression in the aortic ECs of TNF-α-treated wild-type mice. These beneficial effects of resveratrol were lost in miR-221/222 knockout mice. Our data showed that resveratrol counteracted the TNF-α-mediated reduction in miR-221/222 expression and decreased the TNF-α-induced activation of p38 MAPK and NF-κB, thereby suppressing ICAM-1 expression and monocyte adhesion. Collectively, our results show that resveratrol attenuates endothelial inflammation by reducing ICAM-1 expression and that the protective effect was mediated partly through the miR-221/222/AMPK/p38/NF-κB pathway. PMID:28338009

  11. A short course of infusion of a hydrogen sulfide-donor attenuates endotoxemia induced organ injury via stimulation of anti-inflammatory pathways, with no additional protection from prolonged infusion.

    PubMed

    Aslami, Hamid; Beurskens, Charlotte J P; de Beer, Friso M; Kuipers, Maria T; Roelofs, Joris J T H; Hegeman, Maria A; Van der Sluijs, Koen F; Schultz, Marcus J; Juffermans, Nicole P

    2013-02-01

    Organ failure is associated with increased mortality and morbidity in patients with systemic inflammatory response syndrome. Previously, we showed that a short course of infusion of a hydrogen sulfide (H(2)S) donor reduced metabolism with concurrent reduction of lung injury. Here, we hypothesize that prolonged H(2)S infusion is more protective than a short course in endotoxemia with organ failure. Also, as H(2)S has both pro- and anti-inflammatory effects, we explored the effect of H(2)S on interleukin production. Endotoxemia was induced by an intravenous bolus injection of LPS (7.5mg/kg) in mechanically ventilated rats. H(2)S donor NaHS (2mg/kg) or vehicle (saline) was infused and organ injury was determined after either 4 or 8h. A short course of H(2)S infusion was associated with reduction of lung and kidney injury. Prolonged infusion did not enhance protection. Systemically, infusion of H(2)S increased both the pro-inflammatory response during endotoxemia, as demonstrated by increased TNF-α levels, as well as the anti-inflammatory response, as demonstrated by increased IL-10 levels. In LPS-stimulated whole blood of healthy volunteers, co-incubation with H(2)S had solely anti-inflammatory effects, resulting in decreased TNF-α levels and increased IL-10 levels. Co-incubation with a neutralizing IL-10 antibody partly abrogated the decrease in TNF-α levels. In conclusion, a short course of H(2)S infusion reduced organ injury during endotoxemia, at least in part via upregulation of IL-10.

  12. Electro-magnetic nano-particle bound Beclin1 siRNA crosses the blood-brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro

    PubMed Central

    Rodriguez, Myosotys; Kaushik, Ajeet; Lapierre, Jessica; Dever, Seth M.; El-Hage, Nazira; Nair, Madhavan

    2017-01-01

    The purpose of this study was to evaluate a novel drug delivery system comprised of ferric-cobalt electro-magnetic nano-material (CoFe2O4@ BaTiO3; MENP) bound to siRNA targeting Beclin1 (MENP-siBeclin1) to cross the blood-brain barrier (BBB) and attenuate the neurotoxic effects of HIV-1 infection in the central nervous system following on-demand release of siRNA using an in vitro primary human BBB model. Beclin1 is a key protein in the regulation of the autophagy pathway and we have recently demonstrated the importance of Beclin1 in regulating viral replication and viral-induced inflammation in HIV-1-infected microglia. The MENP-siBeclin1 nano-formulation did not compromise the physiological function or integrity of the BBB model. Furthermore, the in vitro BBB data revealed that MENP-siBeclin1 could efficiently attenuate viral replication, viral-induced inflammation and silence Beclin1 protein expression in HIV-1-infected microglial cells within the model system. In addition, the cytotoxic effects of direct treatment with siBeclin1 and MENP alone or in nano-formulation on primary human neuronal cells showed a minimal amount of cell death. Overall, the data shows that the nano-formulation can silence the BECN1 gene as an effective mechanism to attenuate HIV-1 replication and viral-induced inflammation in the context of the BBB. PMID:27287620

  13. Electro-Magnetic Nano-Particle Bound Beclin1 siRNA Crosses the Blood-Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 Infection in Vitro.

    PubMed

    Rodriguez, Myosotys; Kaushik, Ajeet; Lapierre, Jessica; Dever, Seth M; El-Hage, Nazira; Nair, Madhavan

    2017-03-01

    The purpose of this study was to evaluate a novel drug delivery system comprised of ferric-cobalt electro-magnetic nano-material (CoFe2O4@ BaTiO3; MENP) bound to siRNA targeting Beclin1 (MENP-siBeclin1) to cross the blood-brain barrier (BBB) and attenuate the neurotoxic effects of HIV-1 infection in the central nervous system following on-demand release of siRNA using an in vitro primary human BBB model. Beclin1 is a key protein in the regulation of the autophagy pathway and we have recently demonstrated the importance of Beclin1 in regulating viral replication and viral-induced inflammation in HIV-1-infected microglia. The MENP-siBeclin1 nano-formulation did not compromise the physiological function or integrity of the BBB model. Furthermore, the in vitro BBB data revealed that MENP-siBeclin1 could efficiently attenuate viral replication and viral-induced inflammation, likely due to STAT1/ NF-κB signaling pathways. MENP-siBeclin1 also silenced Beclin1 protein expression in HIV-1-infected microglial cells within the model system. In addition, the cytotoxic effects of direct treatment with siBeclin1 and MENP alone or in nano-formulation on primary human neuronal cells showed a minimal amount of cell death. Overall, the data shows that the nano-formulation can silence the BECN1 gene as an effective mechanism to attenuate HIV-1 replication and viral-induced inflammation in the context of the BBB.

  14. Secondary Hypertension

    MedlinePlus

    Secondary hypertension Overview By Mayo Clinic Staff Secondary hypertension (secondary high blood pressure) is high blood pressure that's caused by another medical condition. Secondary hypertension can be caused by conditions that affect your ...

  15. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  16. The neoflavonoid latifolin isolated from MeOH extract of Dalbergia odorifera attenuates inflammatory responses by inhibiting NF-κB activation via Nrf2-mediated heme oxygenase-1 expression.

    PubMed

    Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Li, Bin; Keo, Samell; Jeong, Gil-Saeng; Oh, Hyuncheol; Kim, Youn-Chul

    2014-08-01

    In Korea and China, the heartwood of Dalbergia odorifera T. Chen is an important traditional medicine used to treat blood disorders, ischemia, swelling, and epigastric pain. In this study, we investigated the inhibitory effects of latifolin, a major neoflavonoid component isolated from the MeOH extract of D. odorifera, on the inflammatory reaction of thioglycollate-elicited peritoneal macrophages exposed to lipopolysaccharide, with a particular focus on heme oxygenase-1 (HO-1) expression and nuclear factor-κB (NF-κB) signaling. Latifolin significantly inhibited the protein and mRNA expression of inducible nitric oxide synthase and COX-2, reduced NO, prostaglandins E2, tumor necrosis factor-α, and interleukin-1β production in primary murine peritoneal macrophages exposed to lipopolysaccharide. Latifolin also suppressed inhibitor κB-α levels, NF-κB nuclear translocation, and NF-κB DNA-binding activity. Furthermore, latifolin upregulated HO-1 expression via nuclear transcription factor-E2-related factor 2 (Nrf2) nuclear translocation. In addition, using inhibitor tin protoporphyrin IX (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of latifolin on the proinflammatory mediators and NF-κB DNA-binding activity were associated with the HO-1 expression. These results suggested that the latifolin-mediated up-regulation of HO-1 expression played a critical role in anti-inflammatory effects in macrophages. This study therefore identified potent therapeutic effects of latifolin, which warrants further investigation as a potential treatment for inflammatory diseases.

  17. Cytokine Attenuation and Free Radical Scavenging Activity of a New Flavanone7,4′-Dihydroxy-3″,3″-Dimethyl -(5,6-Pyrano-2″-One)- 8- (3‴,3‴-Dimethyl Allyl)- Isolated from Mallotus philippensis: Possible Mechanism for Its Anti-Inflammatory Activity

    PubMed Central

    Singh, Ompal; Moin, Shagufta; Akhtar, Kafil; Kumar, Anil

    2016-01-01

    Mallotus philippensis L.(MP) commonly known as Kamala tree in Hindi,is a small to medium-sized monoecious tree.The objective of the study was to evaluate the anti-inflammatory activity of MPand a new flavanoneisolated from it by using in vivo models of inflammation.Albino wistar rats of either sex weighing 150-200g were used. Seven groups were made (n = 6), namely normal control group (normal saline, 1 ml/kg), standard control group (acetylsalicylic acid, 100 mg/kg), methanol crude extract (300 and 500 mg/kg), ethylacetate fraction (300 and 500 mg/kg) and active compound 4 (new flavanone, 50 mg/kg). The anti-inflammatory activity was studied using carrageenan induced paw edema method and cotton pellet granuloma method. Levels of cytokines (TNF-α, IL-1and IL-6) and activity of antioxidant enzymeslike catalase and glutathione peroxidase were estimated. It was found that the methanol extract, ethylacetate fraction and Flavanonedemonstrated significant reduction in paw edema in carrageenan induced paw edema method as compared to control. They also diminished the serum TNF-α, IL-6 and IL-1 levels. Significantly attenuated the malondialdehyde levels and increased the activities of catalase and glutathione peroxidase in paw tissue. Similarly there was asignificant decrease in granuloma formation in cotton pellet induced granuloma method. In conclusion, MP extracts and the newflavanonepossess anti-inflammatory activity and this might be due to the inhibition of various cytokines and increased free radical scavenging activity. PMID:27941980

  18. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  19. [Inflammatory myopathies].

    PubMed

    Maurer, Britta

    2017-02-01

    Inflammatory myopathies comprise heterogeneous, often multisystemic autoimmune diseases with muscle involvement as a common feature. The prognosis largely depends on a timely diagnosis and initiation of therapy. Given the complexity of these rare diseases, when an inflammatory myopathy is suspected patients should be referred to an expert center with established algorithms for the diagnostic work-up. The differential diagnostic exclusion of myositis mimics should ideally be carried out in close collaboration with neurologists and neuropathologists. The choice of immunosuppressive treatment should primarily depend on disease severity and organ involvement but age and comorbidities also have to be taken into account.

  20. MDCT of pelvic inflammatory disease: a review of the pathophysiology, gamut of imaging findings, and treatment.

    PubMed

    Spain, James; Rheinboldt, Matthew

    2017-02-01

    Representing an ascending, sexually spread pyogenic infection of the female genital tract, pelvic inflammatory disease (PID) is a commonly encountered cause for emergency visits and hospitalizations among young and adult female patients. Though gynecologic evaluation and sonography constitute the mainstay of diagnosis, multidetector CT imaging of the abdomen and pelvis is not uncommonly performed, often as the initial imaging modality, due to the frequently vague and indeterminate clinical presentation. As such, knowledge and attenuation to the often subtle early imaging features of PID afford the radiologist a critical chance to direct and expedite appropriate pathways of patient care, minimizing the risk for secondary complications, including infertility, ectopic pregnancy, and enteric adhesions. In this paper, we will review the pathophysiology, clinical presentation, early and late imaging features of PID as well as potential secondary complications and treatment options. Additionally, we will discuss published data metrics on CT performance regarding sensitivity and specificity for diagnosis as well as potential imaging differential diagnostic considerations.

  1. Radiometer calibration procedure and beacon attenuation estimation reference level

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1994-01-01

    The primary objectives are to compare radiometer attenuation with beacon attenuation and to compare sky temperature estimates with calculations using simultaneous meteorological data. Secondary objectives are: (1) noise diode and reference load measurements and (2) to adjust for outside temperature and component temperature changes.

  2. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  3. Neoadjuvant chemotherapy shows similar response in patients with inflammatory or locally advanced breast cancer when compared with operable breast cancer: a secondary analysis of the GeparTrio trial data.

    PubMed

    Costa, Serban Dan; Loibl, Sibylle; Kaufmann, Manfred; Zahm, Dirk-Michael; Hilfrich, Jörn; Huober, Jens; Eidtmann, Holger; du Bois, Andreas; Blohmer, Jens-Uwe; Ataseven, Beyhan; Weiss, Erich; Tesch, Hans; Gerber, Bernd; Baumann, Klaus H; Thomssen, Christoph; Breitbach, Georg Peter; Ibishi, Shaip; Jackisch, Christian; Mehta, Keyur; von Minckwitz, Gunter

    2010-01-01

    PURPOSE Neoadjuvant chemotherapy followed by mastectomy is the treatment of choice in patients with inflammatory breast cancer (IBC) or locally advanced breast cancer (LABC), but it is considered less effective in these diseases than in operable breast cancer (OBC). We report a prospective comparison of the GeparTrio trial of patients with IBC (cT4 days) or LABC (cT4a-c or cN3; stage IIIB or IIIC) and patients with OBC (cT2-3). PATIENTS AND METHODS Participants were stratified by stage and were randomly assigned to six or eight cycles of docetaxel/doxorubicin/cyclophosphamide (TAC) or to two cycles of TAC followed by four cycles of vinorelbine/capecitabine. We present results of a secondary aim of the study, which was to compare pathologic complete response (pCR; ie, no remaining invasive/noninvasive tumor in breast and lymph nodes) in different stage groups. Results A total of 287 patients with IBC (n = 93) or LABC (n = 194) and 1,777 patients with OBC were entered onto the trial. At baseline, parameters were as follows for the three types of cancer, respectively: median tumor sizes: 8.0 cm, 7.0 cm, and 4.0 cm (P < .001); multiple lesions: 31.2%, 27.3%, and 19.6% (P < .001); nodal involvement: 86.6%, 71.2%, and 51.6% (P < .001); grade 3: 44.4%, 30.4%, and 39.9% (P = .178); lobular-invasive type: 7.5%, 17.5%, and 13.3% (P = .673); negative hormone receptor status: 38.0%, 20.0%, and 36.4% (P = .008); and positive human growth factor receptor 2 status: 45.1%, 38.9%, and 35.7% (P = .158). Response rates for IBC, LABC, and OBC, respectively, were 8.6%, 11.3%, and 17.7% for pCR (P = .002); 71.0%, 69.6%, and 83.4% for overall response by physical or sonographic examination (P < .001); and 12.9%, 33.0%, and 69.9% for breast conservation (P < .001). All P values were for IBC and LABC versus OBC. However, tumor stage itself was not an independent predictor for pCR in multivariable analysis (odds ratio, 1.51; 95% CI, 0.88 to 2.59; P = .13). CONCLUSION No evidence of a

  4. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  5. Combination of MTX and LEF attenuates inflammatory bone erosion by down-regulation of receptor activator of NF-kB ligand and interleukin-17 in type II collagen-induced arthritis rats.

    PubMed

    Yao, Yao; Ding, Cong-zhu; Fang, Yun

    2013-07-01

    The objectives of this study were to determine the effect of combination of methotrexate (MTX) and leflunomide (LEF) on type II collagen-induced arthritis rats and its mechanism. Curative effect was confirmed on CIA rats, which were randomized and divided into model, MTX, LEF and MTX + LEF group. Weights and joint swelling scores of rats were recorded. Interleukin (IL)-17, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) concentration in serum were determined by ELISA. H&E dyeing of joint was used to estimate the inflammation and osteoclasia extent. The mechanism was investigated through fibroblast-like synoviocytes isolated from RA patients. The effect of MTX and LEF on cell viability, and RANKL and OPG expression were indicated through MTT and RT-PCR analysis, respectively. Combination therapy would be effective in treating CIA rats. Joint swelling scores and IL-17 and RANKL level in serum were decreased obviously (P < 0.05), while OPG level was elevated (P < 0.05). Anti-inflammatory and anti-osteoclasia effect would be indicated by H&E dyeing results. Moreover, FLS cell viability was inhibited by combination treatment in vitro (P < 0.05), and expression of osteoclasia-related genes (RANKL and OPG) was modified (P < 0.05). Combination therapy would relive the synovium hypertrophy through depressing cell viability and osteoclasia through decreasing RANKL and increasing OPG expression. Otherwise, combination was superior to monotherapy.

  6. Secondary amenorrhea

    MedlinePlus

    ... of periods - secondary Images Secondary amenorrhea Normal uterine anatomy (cut section) Absence of menstruation (amenorrhea) References Bulun SE. Physiology and pathology of the female reproductive axis. In: ...

  7. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  8. Immunotherapy of idiopathic inflammatory neuropathies.

    PubMed

    Donofrio, Peter D

    2003-09-01

    Evaluation of peripheral neuropathy is a common reason for referral to a neurologist. Recent advances in immunology have identified an inflammatory component in many neuropathies and have led to treatment trials using agents that attenuate this response. This article reviews the clinical presentation and treatment of the most common subacute inflammatory neuropathies, Guillain-Barré syndrome (GBS) and Fisher syndrome, and describes the lack of response to corticosteroids and the efficacy of treatment with plasma exchange and intravenous immunoglobulin (IVIG). Chronic inflammatory demyelinating polyneuropathy, although sharing some clinical, electrodiagnostic, and pathologic similarities to GBS, improves after treatment with plasma exchange and IVIG and numerous immunomodulatory agents. Controlled trials in multifocal motor neuropathy have shown benefit after treatment with IVIG and cyclophosphamide. Also discussed is the treatment of less common inflammatory neuropathies whose pathophysiology involves monoclonal proteins or antibodies directed against myelin-associated glycoprotein or sulfatide. Little treatment data exist to direct the clinician to proper management of rare inflammatory neuropathies resulting from osteosclerotic myeloma; POEMS syndrome; vasculitis; Sjögren's syndrome; and neoplasia (paraneoplastic neuropathy).

  9. Inflammatory Bowel Disease

    MedlinePlus

    ... work? How does inflammatory bowel disease interfere with digestion? Who gets inflammatory bowel disease? How is inflammatory ... top How does inflammatory bowel disease interfere with digestion? When the small intestine becomes inflamed, as in ...

  10. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a Potent Inhibitor of Bacterial Phosphopantetheinyl Transferase That Attenuates Secondary Metabolism and Thwarts Bacterial Growth

    PubMed Central

    2015-01-01

    4′-Phosphopantetheinyl transferases (PPTases) catalyze a post-translational modification essential to bacterial cell viability and virulence. We present the discovery and medicinal chemistry optimization of 2-pyridinyl-N-(4-aryl)piperazine-1-carbothioamides, which exhibit submicromolar inhibition of bacterial Sfp-PPTase with no activity toward the human orthologue. Moreover, compounds within this class possess antibacterial activity in the absence of a rapid cytotoxic response in human cells. An advanced analogue of this series, ML267 (55), was found to attenuate production of an Sfp-PPTase-dependent metabolite when applied to Bacillus subtilis at sublethal doses. Additional testing revealed antibacterial activity against methicillin-resistant Staphylococcus aureus, and chemical genetic studies implicated efflux as a mechanism for resistance in Escherichia coli. Additionally, we highlight the in vitro absorption, distribution, metabolism, and excretion and in vivo pharmacokinetic profiles of compound 55 to further demonstrate the potential utility of this small-molecule inhibitor. PMID:24450337

  11. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  12. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  13. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition

    SciTech Connect

    Kim, Seok-Joo; Lee, Sun-Mee

    2012-01-01

    Alcoholic fatty liver is susceptible to secondary stresses such as ischemia/reperfusion (I/R). Baicalin is an active component extracted from Scutellaria baicalensis, which is widely used in herbal preparations for treatment of hepatic diseases and inflammatory disorders. This study evaluated the potential beneficial effect of baicalin on I/R injury in alcoholic fatty liver. Rats were fed an alcohol liquid diet or a control isocaloric diet for 5 weeks, and then subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Baicalin (200 mg/kg) was intraperitoneally administered 24 and 1 h before ischemia. After reperfusion, baicalin attenuated the increases in serum alanine aminotransferase activity, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels in alcoholic fatty liver. The increased levels of TNF-α and IL-6 mRNA expression and inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions increased after reperfusion, which were higher in ethanol-fed animals, were attenuated by baicalin. In ethanol-fed animals, baicalin attenuated the increases in toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 protein expressions and the nuclear translocation of NF-κB after reperfusion. In conclusion, our findings suggest that baicalin ameliorates I/R-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in alcoholic fatty liver. -- Highlights: ► Baicalin attenuates hepatic I/R-induced inflammation in alcoholic fatty liver. ► Baicalin downregulates TLR4, MyD88 expression during I/R in alcoholic fatty liver. ► Baicalin attenuates NF-κB nuclear translocation during I/R in alcoholic fatty liver.

  14. Inflammatory glaucoma

    PubMed Central

    Bodh, Sonam A.; Kumar, Vasu; Raina, Usha K.; Ghosh, B.; Thakar, Meenakshi

    2011-01-01

    Glaucoma is seen in about 20% of the patients with uveitis. Anterior uveitis may be acute, subacute, or chronic. The mechanisms by which iridocyclitis leads to obstruction of aqueous outflow include acute, usually reversible forms (e.g., accumulation of inflammatory elements in the intertrabecular spaces, edema of the trabecular lamellae, or angle closure due to ciliary body swelling) and chronic forms (e.g., scar formation or membrane overgrowth in the anterior chamber angle). Careful history and follow-up helps distinguish steroid-induced glaucoma from uveitic glaucoma. Treatment of combined iridocyclitis and glaucoma involves steroidal and nonsteroidal antiinflammatory agents and antiglaucoma drugs. However, glaucoma drugs can often have an unpredictable effect on intraocular pressure (IOP) in the setting of uveitis. Surgical intervention is required in case of medical failure. Method of Literature Search: Literature on the Medline database was searched using the PubMed interface. PMID:21713239

  15. VARA attenuates hyperoxia-induced impaired alveolar development and lung function in newborn mice

    PubMed Central

    James, Masheika L.; Ross, A. Catharine; Nicola, Teodora; Steele, Chad

    2013-01-01

    We have recently shown that a combination of vitamin A (VA) and retinoic acid (RA) in a 10:1 molar ratio (VARA) synergistically increases lung retinoid content in newborn rodents, more than either VA or RA alone in equimolar amounts. We hypothesized that the increase in lung retinoids would reduce oxidative stress and proinflammatory cytokines, resulting in attenuation of alveolar simplification and abnormal lung function in hyperoxia-exposed newborn mice. Newborn C57BL/6 mice were exposed to 85% O2 (hyperoxia) or air (normoxia) for 7 or 14 days from birth and given vehicle or VARA every other day. Lung retinol content was measured by HPLC, function was assessed by flexiVent, and development was evaluated by radial alveolar counts, mean linear intercept, and secondary septal crest density. Mediators of oxidative stress, inflammation, and alveolar development were evaluated in lung homogenates. We observed that VARA increased lung retinol stores and attenuated hyperoxia-induced alveolar simplification while increasing lung compliance and lowering resistance. VARA attenuated hyperoxia-induced increases in DNA damage and protein oxidation accompanied with a reduction in nuclear factor (erythroid-derived 2)-like 2 protein but did not alter malondialdehyde adducts, nitrotyrosine, or myeloperoxidase concentrations. Interferon-γ and macrophage inflammatory protein-2α mRNA and protein increased with hyperoxia, and this increase was attenuated by VARA. Our study suggests that the VARA combination may be a potential therapeutic strategy in conditions characterized by VA deficiency and hyperoxia-induced lung injury during lung development, such as bronchopulmonary dysplasia in preterm infants. PMID:23585226

  16. Single pre-treatment with hypericin, a St. John's wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells.

    PubMed

    Jendželovská, Zuzana; Jendželovský, Rastislav; Hiľovská, Lucia; Kovaľ, Ján; Mikeš, Jaromír; Fedoročko, Peter

    2014-10-01

    St. John's wort (SJW, Hypericum perforatum L.) is a commonly used natural antidepressant responsible for the altered toxicity of some anticancer agents. These interactions have been primarily attributed to the hyperforin-mediated induction of some pharmacokinetic mechanisms. However, as previously demonstrated by our group, hypericin induces the expression of two ABC transporters: multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP). Because cisplatin (CDDP) and mitoxantrone (MTX) are potential substrates of ABC transporters, we investigated the effect of 24h hypericin pre-treatment on the cytotoxicity of CDDP and MTX in human cancer cell lines. CDDP-sensitive and -resistant ovarian adenocarcinoma cell lines A2780/A2780cis, together with HL-60 promyelocytic leukemia cells and ABCG2-over-expressing cBCRP subclone, were used in our experiments. We present CDDP cytotoxicity attenuated by hypericin pre-treatment in both A2780 and A2780cis cells and MTX cytotoxicity in HL-60 cells. In contrast, hypericin potentiated MTX-induced death in cBCRP cells. Interestingly, hypericin did not restore cell proliferation in rescued cells. Nevertheless, hypericin did increase the expression of MRP1 transporter in A2780 and A2780cis cells indicating the impact of hypericin on certain resistance mechanisms. Additionally, our results indicate that hypericin may be the potential substrate of BCRP transporter. In conclusion, for the first time, we report the ability of hypericin to affect the onset and/or progress of CDDP- and MTX-induced cell death, despite strong cell cycle arrest. Thus, hypericin represents another SJW metabolite that might be able to affect the effectiveness of anti-cancer drugs and that could interact with ABC transporters, particularly with BCRP.

  17. Adiponectin as an anti-inflammatory factor

    PubMed Central

    Ouchi, Noriyuki; Walsh, Kenneth

    2009-01-01

    Obesity is characterized by low-grade systemic inflammation. Adiponectin is an adipose tissue-derived hormone, which is downregulated in obesity. Adiponectin displays protective actions on the development of various obesity-linked diseases. Several clinical studies demonstrate the inverse relationship between plasma adiponectin levels and several inflammatory markers including C-reactive protein. Adiponectin attenuates inflammatory responses to multiple stimuli by modulating signaling pathways in a variety of cell types. The anti-inflammatory properties of adiponectin may be a major component of its beneficial effects on cardiovascular and metabolic disorders including atherosclerosis and insulin resistance. In this reviews, we focus on the role of adiponectin in regulation of inflammatory response and discuss its potential as an antiinflammatory marker. PMID:17343838

  18. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  19. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  20. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  1. Selection of Protease Inhibitors to Prevent or Attenuate Inflammatory Processes

    DTIC Science & Technology

    2007-08-01

    activation of phospholipase CO3 and to the production of inositol 1,4,5-triphosphate, with consequent increase of intracellular calcium concentration [ Campos ...selective kinin BI-receptor antagonists would not produce undesirable side effects [ Campos et al., 2006]. The constitutive expression of B2-receptors on...infection [ Campos et al., 2006]. In a study done by Monteiro et al. (2006) an infection model (mouse model of subcutaneous infection by Trypanosoma cruzi

  2. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    PubMed

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  3. Secondary Syphilitic Lesions

    PubMed Central

    Baughn, Robert E.; Musher, Daniel M.

    2005-01-01

    An important theme that emerges from all early historical accounts is that in addition to the decreased virulence of Treponema pallidum, the incidence of secondary syphilis has decreased drastically over the past three centuries. Even in the early 20th century, most syphilologists were of the opinion that the disease had undergone changes in its manifestations and that they were dealing with an attenuated form of the spirochete. Such opinions were based primarily on the observations that violent cutaneous reactions and fatalities associated with the secondary stage had become extremely rare. The rate of primary and secondary syphilis in the United States increased in 2002 for the second consecutive year. After a decade-long decline that led to an all-time low in 2000, the recent trend is attributable, to a large extent, by a increase in reported syphilis cases among men, particularly homosexual and bisexual men having sex with men. The present review addresses the clinical and diagnostic criteria for the recognition of secondary syphilis, the clinical course and manifestations of the disease if allowed to proceed past the primary stage of disease in untreated individuals, and the treatment for this stage of the disease. PMID:15653827

  4. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  5. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections.

    PubMed

    Chaussee, Michael S; Sandbulte, Heather R; Schuneman, Margaret J; Depaula, Frank P; Addengast, Leslie A; Schlenker, Evelyn H; Huber, Victor C

    2011-05-12

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete.

  6. [Secondary rhinoplasty].

    PubMed

    Duron, J-B; Nguyen, P S; Bardot, J; Aiach, G

    2014-12-01

    Secondary rhinoplasty is very usual. Some patients are not satisfied by the previous surgery because the result is poor with obvious defaults but, sometimes, the result is good but the patient expects perfection. These two different situations will not lead to the same answer from the surgeon. Techniques of secondary rhinoplasty are the same than primary, but are often more difficult to perform because of scar tissue, retraction and loss of lining. The authors analyse the more frequent deformities in secondary rhinoplasty and the way they fix them.

  7. Pulmonary complications of inflammatory myopathy.

    PubMed

    Ascherman, Dana P

    2002-10-01

    Pulmonary manifestations contribute significantly to the morbidity and mortality of the idiopathic inflammatory myopathies, ranging from intrinsic lung disease to secondary complications that include aspiration pneumonia, opportunistic infection, congestive heart failure, and hypoventilation. Newer classification schemes for interstitial lung disease have permitted closer correlation between histologic subtype and clinical outcome, while diagnostic techniques such as bronchoalveolar lavage have begun to define the cellular elements responsible for immune-mediated pulmonary dysfunction. Investigators have identified several serum markers correlating with inflammatory disease activity in the lung that should enhance noninvasive monitoring of therapeutic responses to newer regimens involving agents such as cyclosporine and tacrolimus. Taken together, these advances have contributed to better understanding of the immunopathogenesis of myositis-associated interstitial lung disease that should ultimately translate into more effective treatment.

  8. Seismic attenuation in Florida

    SciTech Connect

    Bellini, J.J.; Bartolini, T.J.; Lord, K.M.; Smith, D.L. . Dept. of Geology)

    1993-03-01

    Seismic signals recorded by the expanded distribution of earthquake seismograph stations throughout Florida and data from a comprehensive review of record archives from stations GAI contribute to an initial seismic attenuation model for the Florida Plateau. Based on calculations of surface particle velocity, a pattern of attenuation exists that appears to deviate from that established for the remainder of the southeastern US. Most values suggest greater seismic attenuation within the Florida Plateau. However, a separate pattern may exist for those signals arising from the Gulf of Mexico. These results have important implications for seismic hazard assessments in Florida and may be indicative of the unique lithospheric identity of the Florida basement as an exotic terrane.

  9. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  10. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  11. Mitigation Effect of Proanthocyanidin on Secondary Heart Injury in Rats Caused by Mechanical Trauma

    PubMed Central

    Ma, Shuo; Chen, Chong; Cao, Tingting; Bi, Yue; Zhou, Jicheng; Li, Xintao; Yu, Deqin; Li, Shuzhuang

    2017-01-01

    Multiple organ dysfunctional syndrome secondary to mechanical trauma (MT) has attracted considerable research attention. The heart is one of the most important organs of the body, and secondary cardiac insufficiency caused by MT seriously affects the quality of life. This study aims to investigate whether proanthocyanidin can alleviate myocardial injury and improve heart function in the process of MT leading to secondary cardiac insufficiency. Noble-Collip drum wasused to prepare MT model in rats. And myocardial apoptosis index was calculated after TUNEL staining. Ventricular intubation was employed to detect heart function. Changes in myocardial ultrastructure were observed using an electron microscope. ELISA was used to detect the content of TNF-α and reactive oxygen species generated from monocytes and cardiomyocytes. The changes in Ca2+ concentration in cardiomyocyte were observed by confocal microscope. Compared with trauma group, the administration group had a decreased apoptosis index of cardiomyocytes, and increased ±dp/dtmax. Meanwhile, proanthocyanidin can inhibit monocytes’ TNF-α production, and reduce plasma TNF-α concentration. Moreover, proanthocyanidin can attenuate the excessive oxidative stress reaction of cardiomyocyte, and inhibit calcium overload in cardiomyocytes. In conclusion, proanthocyanidin can effectively ease myocardial damage and improve cardiac function, through anti-inflammatory and antioxidant effects in secondary cardiac insufficiency caused by MT. PMID:28294148

  12. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates.

    PubMed

    Palmer, Clare E; Davare, Marco; Kilner, James M

    2016-10-19

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time-frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation.

  13. Sound attenuation apparatus

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Inventor); Grosveld, Ferdinand M. W. A. (Inventor)

    1991-01-01

    An apparatus is disclosed for reducing acoustic transmission from mechanical or acoustic sources by means of a double wall partition, within which an acoustic pressure field is generated by at least one secondary acoustic source. The secondary acoustic source is advantageously placed within the partition, around its edges, or it may be an integral part of a wall of the partition.

  14. Galangin attenuates mast cell-mediated allergic inflammation.

    PubMed

    Kim, Hui-Hun; Bae, Yunju; Kim, Sang-Hyun

    2013-07-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. In this study, we investigated anti-allergic inflammatory effect of galangin and underlying mechanisms of action using in vitro and in vivo models. Galangin inhibited histamine release by the reduction of intracellular calcium in phorbol 12-mystate 13-acetate plus calcium ionophore A23187-stimulated human mast cells (HMC-1). Galangin decreased expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-8. The inhibitory effect of galangin on theses pro-inflammatory cytokines was related with c-Jun N-terminal kinases, and p38 mitogen-activated protein kinase, nuclear factor-κB, and caspase-1. Furthermore, galangin attenuated IgE-mediated passive cutaneous anaphylaxis and the expression of histamine receptor 1 at the inflamed tissue. The inhibitory effects of galangin were more potent than cromolyn, a known anti-allergic drug. Our results showed that galangin down-regulates mast cell-derived allergic inflammatory reactions by blocking histamine release and expression of pro-inflammatory cytokines. In light of in vitro and in vivo anti-allergic inflammatory effects, galangin could be a beneficial anti-allergic inflammatory agent.

  15. Tritium Attenuation by Distillation

    SciTech Connect

    Wittman, N.E.

    2001-07-31

    The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

  16. Delayed puberty associated with inflammatory bowel disease.

    PubMed

    Ballinger, Anne B; Savage, Martin O; Sanderson, Ian R

    2003-02-01

    Delayed puberty frequently complicates the clinical course of young patients with inflammatory bowel disease, more often in Crohn's disease than ulcerative colitis. Undernutrition has been thought to be the main reason for delayed puberty in these patients. However, puberty may be delayed despite a normal nutritional status. Observations in patients with inflammatory bowel disease and in rats with experimental colitis suggest that inflammatory mediators may have a direct adverse influence, independent of undernutrition, on the onset and progression of puberty. Serum androgens are consistently reported to be reduced in patients with delayed puberty and inflammatory bowel disease. This reduction is not necessarily secondary to a reduction in gonadotrophins as serum concentrations of gonadotrophins have been reported to be normal or even increased in some studies. Management of delayed puberty involves calorie supplements to correct undernutrition and treatment of inflammation. Observations in boys with delayed puberty and controlled studies in experimental models of intestinal inflammation suggest that testosterone therapy can accelerate puberty.

  17. Ibuprofen administration attenuates serum TNF-{alpha} levels, hepatic glutathione depletion, hepatic apoptosis and mouse mortality after Fas stimulation

    SciTech Connect

    Cazanave, Sophie; Vadrot, Nathalie; Tinel, Marina; Berson, Alain; Letteron, Philippe; Larosche, Isabelle; Descatoire, Veronique; Feldmann, Gerard; Robin, Marie-Anne |; Pessayre, Dominique |

    2008-09-15

    Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-{alpha} (TNF-{alpha}), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 {mu}g/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-{alpha}. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-{alpha} secretion) and infliximab (trapping TNF-{alpha}) likewise attenuated the Jo2-mediated increase in TNF-{alpha}, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-{alpha} secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-{alpha} secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.

  18. The inflammatory response in sepsis.

    PubMed

    Bosmann, Markus; Ward, Peter A

    2013-03-01

    The pathophysiology of sepsis and its accompanying systemic inflammatory response syndrome (SIRS) and the events that lead to multiorgan failure and death are poorly understood. It is known that, in septic humans and rodents, the development of SIRS is associated with a loss of the redox balance, but SIRS can also develop in noninfectious states. In addition, a hyperinflammatory state develops, together with impaired innate immune functions of phagocytes, immunosuppression, and complement activation, collectively leading to septic shock and lethality. Here, we discuss recent insights into the signaling pathways in immune and phagocytic cells that underlie sepsis and SIRS and consider how these might be targeted for therapeutic interventions to reverse or attenuate pathways that lead to lethality during sepsis.

  19. Anti-inflammatory glucocorticoids: changing concepts.

    PubMed

    Newton, Robert

    2014-02-05

    Despite being the most effective anti-inflammatory treatment for chronic inflammatory diseases, the mechanisms by which glucocorticoids (corticosteroids) effect repression of inflammatory gene expression remain incompletely understood. Direct interaction of the glucocorticoid receptor (NR3C1) with inflammatory transcription factors to repress transcriptional activity, i.e. transrepression, represents one mechanism of action. However, transcriptional activation, or transactivation, by NR3C1 also represents an important mechanism of glucocorticoid action. Glucocorticoids rapidly and profoundly increase expression of multiple genes, many with properties consistent with the repression of inflammatory gene expression. For example: the dual specificity phosphatase, DUSP1, reduces activation of mitogen-activated protein kinases; glucocorticoid-induced leucine zipper (TSC22D3) represses nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) transcriptional responses; inhibitor of κBα (NFKBIA) inhibits NF-κB; tristraprolin (ZFP36) destabilises and translationally represses inflammatory mRNAs; CDKN1C, a cell cycle regulator, may attenuate JUN N-terminal kinase signalling; and regulator of G-protein signalling 2 (RGS2), by reducing signalling from Gαq-linked G protein-coupled receptors (GPCRs), is bronchoprotective. While glucocorticoid-dependent transrepression can co-exist with transactivation, transactivation may account for the greatest level and most potent repression of inflammatory genes. Equally, NR3C1 transactivation is enhanced by β2-adrenoceptor agonists and may explain the enhanced clinical efficacy of β2-adrenoceptor/glucocorticoid combination therapies in asthma and chronic obstructive pulmonary disease. Finally, NR3C1 transactivation is reduced by inflammatory stimuli, including respiratory syncytial virus and human rhinovirus. This provides an explanation for glucocorticoid resistance. Continuing efforts to understand roles for glucocorticoid

  20. Proposal for staging of inflammatory lesions in the frontal region.

    PubMed

    Soberón, Galo S; Prado, Héctor M; Sadek, Andrés; Plowes, Olga; Arrieta, José R; Figueroa, Vladimir

    2016-01-01

    Frontal swelling can be due to multiple etiologies, including: mucocele, Pott's puffy tumor, fibro osseous lesions, benign and malignant neoplasms of the nose and paranasal sinuses, intracranial lesions, and metastasis. The objective of this study was to describe the clinical protocol used for the diagnosis of patients presented with frontal swelling and the proposal for staging of inflammatory lesions. We performed an observational retrospective analysis. We found 7 cases of patients with frontal swelling: 4 cases secondary to inflammatory pathology (3 Potts puffy tumors and one frontal mucocele), and 3 cases secondary to neoplasms (one benign and 2 malignant neoplasms). It's very important to consider the wide differential diagnosis that can present as frontal swelling, from inflammatory pathologies secondary to possible advanced infections of the paranasal sinuses to invasive malignant neoplasms. We propose a system of staging of frontal inflammatory lesions.

  1. Heptamethoxyflavone, a citrus flavonoid, suppresses inflammatory osteoclastogenesis and alveolar bone resorption.

    PubMed

    Matsumoto, Chiho; Inoue, Hiroki; Tominari, Tsukasa; Watanabe, Kenta; Hirata, Michiko; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    We examined the effects of heptamethoxyflavone (HMF), a citrus flavonoid on inflammatory bone resorption. HMF suppressed the osteoclast formation and PGE2 production induced by IL-1. In mouse calvarial organ cultures, HMF attenuated the bone resorption elicited by LPS. HMF suppressed bone resorption in the mandibular alveolar bone. HMF may protect against inflammatory bone loss such as periodontal disease.

  2. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro.

    PubMed

    Tang, Jun; Tao, Yihao; Tan, Liang; Yang, Liming; Niu, Yin; Chen, Qianwei; Yang, Yunfeng; Feng, Hua; Chen, Zhi; Zhu, Gang

    2015-08-01

    Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain. However, the underlying mechanisms remain poorly defined. Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells. We demonstrated that activation of CB2R played a key role in attenuating brain edema, neuronal degeneration, microglial accumulation and the phosphorylated extracellular signal-regulated kinase (p-ERK) protein level 24 h following GMH. In vitro, Western blot analysis and immunostaining indicated that ERK and P38 phosphorylation levels in microglia stimulated by thrombin were decreased after JWH-133 (CB2R selective agonist) treatment in a concentration-dependent manner. Microglia proliferation (EDU + microglia) and inflammatory and oxidative stress responses were attenuated by UO126 (ERK pathway inhibitor) 24 h after thrombin stimulation, an activity that was prevented by AM630 (CB2R selective antagonist). Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation. Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.

  3. Hydrogen Sulfide Attenuates the Recruitment of CD11b+Gr-1+ Myeloid Cells and Regulates Bax/Bcl-2 Signaling in Myocardial Ischemia Injury

    PubMed Central

    Zhang, Youen; Li, Hua; Zhao, Gang; Sun, Aijun; Zong, Nobel C.; Li, Zhaofeng; Zhu, Hongming; Zou, Yunzeng; Yang, Xiangdong; Ge, Junbo

    2014-01-01

    Hydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b+Gr-1+ myeloid cells and to regulate the Bax/Bcl-2 pathway. Furthermore, the cardioprotective effects of NaHS were enhanced by inhibiting the migration of CD11b+Gr-1+ myeloid cells from the spleen into the blood and by attenuating post-infarction inflammation. These observations suggest that the novel mechanism underlying the cardioprotective function of H2S is secondary to a combination of attenuation the recruitment of CD11b+Gr-1+ myeloid cells and regulation of the Bax/Bcl-2 apoptotic signaling. PMID:24758901

  4. Control algorithms for dynamic attenuators

    SciTech Connect

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  5. Managing Pain in Inflammatory Bowel Disease

    PubMed Central

    Jones, R. Carter W.; Wallace, Mark S.

    2011-01-01

    Pain is a common complaint in inflammatory bowel disease, and it has significant consequences for patients' quality of life. A thorough evaluation to determine the source of patients' pain should include clinical, laboratory, radiologic, and endoscopic assessments as indicated. Differentiating among active inflammation, secondary complications, and functional pain can be complicated. Even when all active disease is adequately treated, clinicians are often left with the difficulty of managing chronic pain. This paper will review the benefits and limitations of several commonly used treatments and promising future therapies. A suggested treatment algorithm will provide some guidance in this challenging area of inflammatory bowel disease management. PMID:22298998

  6. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  7. Secondary osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    SUMMARY Secondary osteoporosis is less common than primary osteoporosis. It may be suspected in patients who present with a fragility fracture despite having no risk factors for osteoporosis. In addition, secondary osteoporosis should be considered if the bone density Z-score is –2.5 or less. Consider the fracture site and presence of other clinical clues to guide investigations for an underlying cause. The tests to use are those that are indicated for the suspected cause. Baseline investigations include tests for bone and mineral metabolism (calcium, phosphate, alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone), liver and kidney function, full blood count and thyroid-stimulating hormone. More detailed testing may be required in patients with severe osteoporosis. PMID:27346916

  8. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    PubMed

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing.

  9. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  10. Involvement of Toll Like Receptor 2 Signaling in Secondary Injury during Experimental Diffuse Axonal Injury in Rats

    PubMed Central

    Zhang, Ming; Ma, Xudong; Huang, Tingqin; Pang, Honggang; Wang, Bo

    2017-01-01

    Treatment of diffuse axonal injury (DAI) remains challenging in clinical practice due to the unclear pathophysiological mechanism. Uncontrolled, excessive inflammation is one of the most recognized mechanisms that contribute to the secondary injury after DAI. Toll like receptor 2 (TLR2) is highlighted for the initiation of a vicious self-propagating inflammatory circle. However, the role and detailed mechanism of TLR2 in secondary injury is yet mostly unknown. In this study, we demonstrated the expression of TLR2 levels in cortex, corpus callosum, and internal capsule and the localization of TLR2 in neurons and glial cells in rat DAI models. Intracerebral knockdown of TLR2 significantly downregulated TLR2 expression, attenuated cortical apoptosis, lessened glial response, and reduced the secondary axonal and neuronal injury in the cortex by inhibiting phosphorylation of mitogen-activated protein kinases (MAPK) including Erk, JNK, and p38, translocation of NF-κB p65 from the cytoplasm to the nucleus, and decreasing levels of proinflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α. On the contrary, administration of TLR2 agonist to DAI rats achieved an opposite effect. Collectively, we demonstrated that TLR2 was involved in mediating secondary injury after DAI by inducing inflammation via the MAPK and NF-κB pathways. PMID:28293064

  11. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  12. Attenuation of Cavity Bay Noise

    DTIC Science & Technology

    2012-10-01

    amplification, known as peaking. Overall, the palliative devices based on resonant arrays have demonstrated high levels of attenuation which are...when the resonant frequency condition is met. The attenuation from a Helmholtz type resonator is achieved through frictional losses, vortex shedding...3 the λ/4 condition can be fulfilled and therefore porous mesh devices may not be able to provide a high level of attenuation . Resonant arrays

  13. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    PubMed

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity.

  14. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  15. Formation of secondary radiation fields at NICA

    NASA Astrophysics Data System (ADS)

    Timoshenko, G.; Paraipan, M.

    2009-09-01

    The crucial points of a radiation shielding design for a relativistic heavy ion accelerator are the source term problem, neutron fluence and dose attenuation characteristics of the shielding. Simulations of the radiation shielding for JINR's Nuclotron-Based Ion Facility (NICA) project were carried out using the GEANT4 code. Some regularities in the secondary neutron field generation at the 4.5 GeV/n uranium beam interaction with thick targets are discussed. Neutron attenuation by the ordinary concrete shielding of NICA was considered as well.

  16. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates

    PubMed Central

    Davare, Marco; Kilner, James M.

    2016-01-01

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time–frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation. SIGNIFICANCE STATEMENT We demonstrate that there are two functionally and mechanistically distinct forms of sensory gating. The literature regarding somatosensory evoked potential (SEP) gating is commonly cited as a potential mechanism underlying perceptual sensory attenuation; however, the formal relationship between physiological and perceptual sensory

  17. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    SciTech Connect

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  18. Bioactive secondary metabolites of a marine Bacillus sp. inhibit superoxide generation and elastase release in human neutrophils by blocking formyl peptide receptor 1.

    PubMed

    Yang, Shun-Chin; Lin, Chwan-Fwu; Chang, Wen-Yi; Kuo, Jimmy; Huang, Yin-Ting; Chung, Pei-Jen; Hwang, Tsong-Long

    2013-06-03

    It is well known that overwhelming neutrophil activation is closely related to acute and chronic inflammatory injuries. Formyl peptide receptor 1 (FPR1) plays an important role in activation of neutrophils and may represent a potent therapeutic target in inflammatory diseases. In the present study, we demonstrated that IA-LBI07-1 (IA), an extract of bioactive secondary metabolites from a marine Bacillus sp., has anti-inflammatory effects in human neutrophils. IA significantly inhibited superoxide generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated neutrophils, but failed to suppress the cell responses activated by non-FPR1 agonists. IA did not alter superoxide production and elastase activity in cell-free systems. IA also attenuated the downstream signaling from FPR1, such as the Ca2+, MAP kinases and AKT pathways. In addition, IA inhibited the binding of N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein, a fluorescent analogue of FMLP, to FPR1 in human neutrophils and FPR1-transfected HEK293 cells. Taken together, these results show that the anti-inflammatory effects of IA in human neutrophils are through the inhibition of FPR1. Also, our data suggest that IA may have therapeutic potential to decrease tissue damage induced by human neutrophils.

  19. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis.

    PubMed

    Van den Bossche, Lien; Borsboom, Daniel; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Devisscher, Lindsey; Hindryckx, Pieter; De Vos, Martine; Laukens, Debby

    2017-02-06

    Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNF(ΔARE/WT) mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNF(ΔARE/WT) mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNF(ΔARE/WT) mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.Laboratory Investigation advance online publication, 6 February 2017; doi:10

  20. Pelvic Inflammatory Disease (PID)

    MedlinePlus

    Pelvic Inflammatory Disease (PID) - CDC Fact Sheet Untreated sexually transmitted diseases (STDs) can cause pelvic inflammatory disease (PID), a ... tubal blockage; •• Ectopic pregnancy (pregnancy outside the womb); •• Infertility (inability to get pregnant); •• Long-term pelvic/abdominal ...

  1. Pelvic Inflammatory Disease

    MedlinePlus

    ... Weström, L., Joesoef, R., Reynolds, G., Hagdu, A., Thompson, S.E. (1992). Pelvic inflammatory disease and fertility. A ... Weström, L., Joesoef, R., Reynolds, G., Hagdu, A., Thompson, S.E. (1992). Pelvic inflammatory disease and fertility. A ...

  2. Curcumin in inflammatory diseases.

    PubMed

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future.

  3. [Inflammatory neuropathies and multineuritis].

    PubMed

    Kuntzer, Thierry; Chofflon, Michel

    2009-12-02

    Inflammatory neuropathies include those neuropathies in which the diagnosis, outcome and type of treatment are badly known, the reason of this review. They are expressed as diffuse (such as CIDP and ganglionopathies), multifocal (vasculitic neuropathy) or focal (MMN; plexopathies; immune reconstitution inflammatory syndrome). These forms of neuropathies are important to be known because the beneficial therapeutic possibilities of immunosuppression.

  4. Pediatric inflammatory bowel disease

    PubMed Central

    Diefenbach, Karen A; Breuer, Christopher K

    2006-01-01

    Inflammatory bowel disease is an important cause of gastrointestinal pathology in children and adolescents. The incidence of pediatric inflammatory bowel disease is increasing; therefore, it is important for the clinician to be aware of the presentation of this disease in the pediatric population. Laboratory tests, radiology studies, and endoscopic procedures are helpful in diagnosing inflammatory bowel disease and differentiating between Crohn’s disease and ulcerative colitis. Once diagnosed, the goal of medical management is to induce remission of disease while minimizing the side effects of the medication. Specific attention needs to be paid to achieving normal growth in this susceptible population. Surgical management is usually indicated for failure of medical management, complication, or malignancy. Algorithms for diagnostic evaluation and treatment of pediatric inflammatory bowel disease are presented. The specific psychosocial issues facing these patients are also discussed in this review as are the future goals of research in the complex problem of pediatric inflammatory bowel disease. PMID:16718840

  5. Macrophage Depletion Attenuates Extracellular Matrix Deposition and Ductular Reaction in a Mouse Model of Chronic Cholangiopathies

    PubMed Central

    Syn, Wing-Kin; Lagaisse, Kimberly; van Hul, Noemi; Heindryckx, Femke; Sowa, Jan-Peter; Peeters, Liesbeth; Van Vlierberghe, Hans; Leclercq, Isabelle A.; Canbay, Ali

    2016-01-01

    Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases. PMID:27618307

  6. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  7. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  8. [Auto-inflammatory syndromes].

    PubMed

    Grateau, Gilles

    2005-02-28

    Auto-inflammatory syndromes are a group of hereditary diseases characterised by intermittent bouts of clinical inflammation with focal organ involvement mainly: abdomen, musculoskeletal system and skin. The most frequent is familial Mediterranean fever, which affects patients of Mediterranean descent all over the world. Three other types have been recently clinically as well as genetically characterised. A thorough diagnosis is warranted, as clinical and therapeutic management is specific for each of these diseases, as underlied by a specific inflammatory pathway. This new group of diseases has already opened new avenues in our understanding of the inflammatory response.

  9. Attenuated psychosis syndrome: a new diagnostic class?

    PubMed

    Carpenter, William T

    2015-05-01

    Early detection and treatment of illness are fundamental in providing optimal health care. However, this is a major challenge in mental illness, where diagnoses depend on symptom manifestation and the symptoms are often on a continuum with behaviors observed in the non-ill population. During the past 25 years, substantial progress has been made in identifying clinical high risk for psychoses with extensive validation and the beginning of treatment trials for symptom reduction and secondary prevention of psychoses. Attenuated psychosis syndrome is placed in Section 3 of the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, as a new disorder for further study. But the value and wisdom of creating a new disorder are hotly debated. The author advocates establishing a new disorder class as essential for progress. Key reasons to justify this view are described. Reasons to oppose the creation of a new class are briefly described.

  10. The agaricoglyceride of royal sun medicinal mushroom, Agaricus brasiliensis (higher basidiomycetes) is anti-inflammatory and reverses diabetic glycemia in the liver of mice.

    PubMed

    Yu, Haitao; Han, Chunchao; Sun, Yan; Qi, Xiaodan; Shi, Yan; Gao, Xu; Zhang, Chunjing

    2013-01-01

    The agaricoglyceride is a new fungal secondary metabolite that constitutes esters of chlorinated 4-hydroxy benzoic acid and glycerol. The objective of this study was to explore whether the administration of agaricoglyceride could correct hepatic glycemic metabolism dysfunction by attenuating inflammation in the liver. The effects of agaricoglycerides on tumor necrosis factor-α, interleukin-1β, vascular endothelial growth factor-α, interleukin-17, insulin secretion, adiponectin, leptin, hepatic glycogen, nuclear factor-κB activation, and total antioxidant activity were studied respectively. We demonstrated that administration of agaricoglycerides alleviated glycemic metabolism dysfunction, inflammation, and oxidative stress in mice. These data indicate that agaricoglyceride supplementation could restrain metabolic dysfunction through suppressing the nuclear factor-κB pathway as well as decreasing the levels of inflammatory cytokines and total antioxidant activities.

  11. Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially targeted antioxidants.

    PubMed

    Mukhopadhyay, Partha; Horváth, Bėla; Zsengellėr, Zsuzsanna; Bátkai, Sándor; Cao, Zongxian; Kechrid, Malek; Holovac, Eileen; Erdėlyi, Katalin; Tanchian, Galin; Liaudet, Lucas; Stillman, Isaac E; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2012-09-01

    Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 h of reperfusion and peaking at 24 h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.

  12. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  13. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules.

  14. Pelvic Inflammatory Disease

    MedlinePlus

    Pelvic inflammatory disease (PID) is an infection and inflammation of the uterus, ovaries, and other female reproductive organs. It causes scarring ... United States. Gonorrhea and chlamydia, two sexually transmitted diseases, are the most common causes of PID. Other ...

  15. Inflammatory biomarkers for AMD.

    PubMed

    Stanton, Chloe M; Wright, Alan F

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness worldwide, affecting an estimated 50 million individuals aged over 65 years.Environmental and genetic risk-factors implicate chronic inflammation in the etiology of AMD, contributing to the formation of drusen, retinal pigment epithelial cell dysfunction and photoreceptor cell death. Consistent with a role for chronic inflammation in AMD pathogenesis, several inflammatory mediators, including complement components, chemokines and cytokines, are elevated at both the local and systemic levels in AMD patients. These mediators have diverse roles in the alternative complement pathway, including recruitment of inflammatory cells, activation of the inflammasome, promotion of neovascularisation and in the resolution of inflammation. The utility of inflammatory biomarkers in assessing individual risk and progression of the disease is controversial. However, understanding the role of these inflammatory mediators in AMD onset, progression and response to treatment may increase our knowledge of disease pathogenesis and provide novel therapeutic options in the future.

  16. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  17. Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models.

    PubMed

    Smith, Jeffrey B; Herschman, Harvey R

    2004-01-01

    Glucocorticoids attenuate the induction of numerous inflammatory mediators. We hypothesized that a targeted screening for genes with these regulatory characteristics, called glucocorticoid-attenuated response genes (GARGs), would be an efficient way to identify genes participating in glucocorticoid-sensitive inflammatory processes. An initial application of this idea, using an in vitro model, identified 12 cDNAs induced by LPS and attenuated by dexamethasone, including a new chemokine designated LIX. In vivo studies demonstrated that endotoxemia-induced lung mRNA expression of LIX, but not of two related chemokines, is markedly enhanced by adrenalectomy and attenuated by dexamethasone. This work provided the basis for an in vivo screening project that identified 36 GARG cDNAs induced in the lung during endotoxemia. The majority represent genes of unknown function, or genes not previously implicated in the pulmonary response to inflammation. Four encode previously undescribed proteins, including a chemokine, a member of a family of guanylate-binding proteins, a 2'-5' oligoadenylate synthetase-like protein, and a novel lung-inducible Neuralized-related C3HC4 RING protein (LINCR). Our results indicate that glucocorticoid-attenuated response genes are much more diverse than originally anticipated. Future studies using microarrays in this and other inflammation models may identify many additional glucocorticoid-regulated genes potentially important in inflammatory diseases.

  18. Method for detecting moisture in soils using secondary cosmic radiation

    DOEpatents

    Condreva, Kenneth

    2003-12-16

    Water content in a soil is determined by measuring the attenuation of secondary background cosmic radiation as this radiation propagates through a layer of soil and water. By measuring the attenuation of secondary cosmic radiation in the range of 5 MeV-15 MeV it is possible to obtain a relative measure of the water content in a soil layer above a suitable radiation detector and thus establish when and how much irrigation is needed. The electronic circuitry is designed so that a battery pack can be used to supply power.

  19. Unfractionated heparin attenuates intestinal injury in mouse model of sepsis by inhibiting heparanase

    PubMed Central

    Chen, Song; Zhang, Xiaojuan; Sun, Yini; Hu, Ziwei; Lu, Siyu; Ma, Xiaochun

    2015-01-01

    Intestinal injury is a key feature in sepsis. Heparanase, a heparin sulfate-specific glucuronidase, mediates the onset of organ injury during early sepsis. Heparin has the function to attenuate inflammation and injury induced by multiple factors; however, whether unfractionated heparin (UFH) can attenuate the intestinal injury induced by sepsis as well as the underlying mechanism is still unknown. In the present study, the function of UFH in intestinal injury induced by sepsis was explored. Results of our study showed that after CLP operation, the inflammatory response and expression of heparanase were increased and NF-κB and MAPK P38 signaling pathways were activated. However, pretreatment with UFH will inhibit the expression and activation of heparanase, and reverse the activation of NF-κB and MAPK P38 signaling pathways, thus attenuating inflammatory responses induced by sepsis. These results suggest that UFH may be a promising therapeutic drug for intestinal injury caused by sepsis. PMID:26191183

  20. Paralysis: Secondary Conditions

    MedlinePlus

    ... 5pm ET. 1-800-539-7309 ☰ Living with Paralysis Get Support Get Involved Research Events Blog & Forum About Us Donate Living with Paralysis > Health > Secondary conditions Secondary conditions Secondary conditions refer ...

  1. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    PubMed Central

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  2. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury.

    PubMed

    Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian

    2017-04-01

    Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

  3. Topical Modulation of the Burn Wound Inflammatory Response to Improve Short and Long Term Outcomes

    DTIC Science & Technology

    2015-10-15

    We hypothesize that topical p38MAPK inhibition will attenuate the depth of the burn by preventing hair - follicle cell apoptosis, attenuate the...will compare the inflammatory signaling in various burn depths with or without treatment (topical p38 MAPK inhibitor). We will also examine hair ... follicle apoptosis.  We will complete our wound closure data for Pg004, Pg005, and Pg008. We will also examine the H&E slides and complete the data for

  4. Topical Modulation of the Burn Wound Inflammatory Response to Improve Short and Long Term Outcomes

    DTIC Science & Technology

    2015-10-01

    We hypothesize that topical p38MAPK inhibition will attenuate the depth of the burn by preventing hair - follicle cell apoptosis, attenuate the...will compare the inflammatory signaling in various burn depths with or without treatment (topical p38 MAPK inhibitor). We will also examine hair ... follicle apoptosis.  We will complete our wound closure data for Pg004, Pg005, and Pg008. We will also examine the H&E slides and complete the data for

  5. Auto inflammatory syndromes: Diagnosis and treatment.

    PubMed

    Stankovic, Katia; Grateau, Gilles

    2007-12-01

    Hereditary recurrent fevers are rare genetic diseases characterized by apparently spontaneous attacks of inflammation. They include familial Mediterranean fever (FMF); tumor necrosis factor (TNF) receptor periodic syndrome (TRAPS); hyperimmunoglobulinemia D syndrome (HIDS); and hereditary periodic fevers related to mutations in the CIAS1 (cold induced autoinflammatory syndrome 1) gene, such as Muckle-Wells syndrome, familial cold urticaria, and CINCA/NOMID (chronic infantile neurological cutaneous and articular/neonatal-onset multisystemic inflammatory disease). Musculoskeletal manifestations are common. They may occur as features of the acute inflammatory attacks or persist for longer periods. Among them, the most common include arthritis of the large and medium-sized joints in FMF and CINCA, arthralgia in HIDS, and myalgia or pseudo-fasciitis in TRAPS. The outcome is usually favorable, although joint destruction may develop in CINCA or at the hip in FMF. The recurrent bouts of fever and accompanying clinical manifestations suggest the diagnosis, which can be confirmed by genetic testing. Among differential diagnoses, infection should be considered routinely. The treatment of the inflammatory attacks is nonspecific. New pathophysiological insights have led to the development of promising maintenance treatments designed to reduce the number and severity of the inflammatory attacks and to diminish the risk of secondary amyloidosis.

  6. Silymarin attenuates airway inflammation induced by cigarette smoke in mice.

    PubMed

    Li, Diandian; Xu, Dan; Wang, Tao; Shen, Yongchun; Guo, Shujin; Zhang, Xue; Guo, Lingli; Li, Xiaoou; Liu, Lian; Wen, Fuqiang

    2015-04-01

    Cigarette smoke (CS), which increases inflammation and oxidative stress, is a major risk factor for the development of COPD. In this study, we investigated the effects of silymarin, a polyphenolic flavonoid isolated from the seeds and fruits of milk thistle, on CS-induced airway inflammation and oxidative stress in mice and the possible mechanisms. BALB/c mice were exposed to CS for 2 h twice daily, 6 days per week for 4 weeks. Silymarin (25, 50 mg/kg·day) was administered intraperitoneally 1 h before CS exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell counting and the detection of pro-inflammatory cytokine levels. Lung tissue was collected for histological examination, myeloperoxidase (MPO) activity assay, superoxide dismutase (SOD) activities, and malondialdehyde (MDA) levels. The phosphorylation of ERK and p38 was evaluated by Western blotting. Pretreatment with silymarin significantly attenuated CS-induced thickening of the airway epithelium, peribronchial inflammatory cell infiltration, and lumen obstruction. The numbers of total cells, macrophages, and neutrophils, along with the MPO activity (a marker of neutrophil accumulation) in BALF, were remarkably decreased by silymarin in CS-exposed mice (all p<0.05). In addition, silymarin pretreatment dampened the secretion of TNF-α, IL-1β, and IL-8 in BALF. High-dose silymarin (50 mg/kg·day) administration also prevented CS-induced elevation in MDA levels and decrease in SOD activities (p<0.05). Furthermore, the CS-induced phosphorylation of ERK and p38 was also attenuated by silymarin (p<0.05). These results suggest that silymarin attenuated inflammation and oxidative stress induced by cigarette smoke. The anti-inflammatory effect might partly act through the mitogen-activated protein kinases (MAPK) pathway.

  7. [CT - diagnosis and differential diagnosis of inflammatory acute intestinal conditions].

    PubMed

    Wiesner, W

    2011-08-24

    Multidetector-row CT has shown over the past years that it is able to provide reliable diagnoses in various acute intestinal conditions. The presented article provides an overview of primary and secondary inflammatory acute intestinal pathologies and their differential diagnoses.

  8. Analysis of excess attenuation in optical fibers subjected to low temperatures

    NASA Astrophysics Data System (ADS)

    Garmon, P.

    Optical fibers which exhibit a dual coating comprised of a low modulus inner layer and a high modulus outer layer at times display excessive attenuation increase at low temperatures. The excess loss may be attributed in part to forces exerted on the optical fiber by the polymer coatings as the temperature decreases, thereby resulting in fiber bending. Fiber bending may occur if the optical fiber assumes a spiral configuration within the low modulus primary coating due to thermal contraction of the secondary coating. Defects in fiber coatings, such as coating eccentricity, fluctuations in coating thickness, and voids between primary and secondary layers, may amplify excess attenuation as the fiber temperature decreases.

  9. Evolution of Inflammatory Diseases

    PubMed Central

    Okin, Daniel

    2013-01-01

    The association of inflammation with modern human diseases (e.g. obesity, cardiovascular disease, type 2 diabetes mellitus, cancer) remains an unsolved mystery of current biology and medicine. Inflammation is a protective response to noxious stimuli that unavoidably occurs at a cost to normal tissue function. This fundamental tradeoff between the cost and benefit of the inflammatory response has been optimized over evolutionary time for specific environmental conditions. Rapid change of the human environment due to niche construction outpaces genetic adaptation through natural selection, leading increasingly to a mismatch between the modern environment and selected traits. Consequently, multiple tradeoffs that affect human physiology are not optimized to the modern environment, leading to increased disease susceptibility. Here we examine the inflammatory response from an evolutionary perspective. We discuss unique aspects of the inflammatory response and its evolutionary history that can help explain the association between inflammation and modern human diseases. PMID:22975004

  10. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal.

    PubMed

    Lucas, Lisa; Russell, Aaron; Keast, Russell

    2011-01-01

    Chronic inflammation is a critical factor in the pathogenesis of many inflammatory disease states including cardiovascular disease, cancer, diabetes, degenerative joint diseases and neurodegenerative diseases. Chronic inflammatory states are poorly understood, however it is known that dietary habits can evoke or attenuate inflammatory responses. Popular methods to deal with inflammation and its associated symptoms involve the use of non steroidal anti-inflammatory drugs, however the use of these drugs are associated with severe side effects. Therefore, investigations concerned with natural methods of inflammatory control are warranted. A traditional Mediterranean diet has been shown to confer some protection against the pathology of chronic diseases through the attenuation of pro-inflammatory mediators and this has been partially attributed to the high intake of virgin olive oil accompanying this dietary regime. Virgin olive oil contains numerous phenolic compounds that exert potent anti-inflammatory actions. Of interest to this paper is the recently discovered phenolic compound oleocanthal. Oleocanthal is contained in virgin olive oil and possesses similar anti-inflammatory properties to ibuprofen. This pharmacological similarity has provoked interest in oleocanthal and the few studies conducted thus far have verified its anti-inflammatory and potential therapeutic actions. A review of the health benefits of the Mediterranean diet and anti-inflammatory properties of virgin olive oil is presented with the additional emphasis on the pharmacological and anti-inflammatory properties of the phenolic compound oleocanthal.

  11. Rosiglitazone attenuates renal injury caused by hyperlipidemic pancreatitis

    PubMed Central

    Wang, Rui; Yan, Zhaopeng; Wu, Xingmao; Ji, Kaiqiang; Wang, Haiyuan; Zang, Bin

    2015-01-01

    Hyperlipidemic pancreatitis (HP) is a serious inflammatory disease with very high mortality and multiple organ injuries including renal injury. Rosiglitazone (Ros), an agonist of peroxisome proliferator activated receptor-γ (PPAR-γ), was reported to show a protective role against pancreatitis. However, whether Ros has an effect on renal injury caused by HP is not yet clear. In the present study, the function of Ros was explored using ELISA, RT-PCR, western blot, PAS staining and immunohistochemistry. Results of this study showed that Ros could inhibit the activation of NF-κB and MAPK P38 signaling pathways, relieve inflammatory response and inhibit cell apoptosis, thus attenuating renal injury caused by HP. This study suggested that Ros might be a promising drug for the treatment of renal injury caused by HP and also laid theoretical foundation for the development of renal injury treatment. PMID:26191125

  12. Paradoxical Mycobacterium tuberculosis meningitis immune reconstitution inflammatory syndrome in an HIV-infected child.

    PubMed

    Kalk, Emma; Technau, Karl; Hendson, Willy; Coovadia, Ashraf

    2013-02-01

    Immune reconstitution inflammatory syndrome occurs in a subset of HIV-infected individuals as the immune system recovers secondary to antiretroviral therapy. An exaggerated and uncontrolled inflammatory response to antigens of viable or nonviable organisms is characteristic, with clinical deterioration despite improvement in laboratory indicators. We describe a fatal case of Mycobacterium tuberculosis meningitis immune reconstitution inflammatory syndrome in an HIV-infected child and review the literature.

  13. Acquired inflammatory demyelinating neuropathies.

    PubMed

    Ensrud, E R; Krivickas, L S

    2001-05-01

    The acquired demyelinating neuropathies can be divided into those with an acute onset and course and those with a more chronic course. The acute neuropathies present as Guillain-Barré syndrome and include acute inflammatory demyelinating polyradiculoneuropathy (AIDP), Miller Fisher syndrome, acute motor axonal neuropathy (AMAN), acute motor and sensory axonal neuropathy (AMSAN), and acute pandysautonomia. The chronic neuropathies are collectively known as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and include MADSAM (multifocal acquired demyelinating sensory and motor neuropathy, also know as Lewis-Sumner syndrome) and DADS (distal acquired demyelinating symmetric neuropathy) as variants. The clinical features, pathology, pathogenesis, diagnosis, treatment, rehabilitation, and prognosis of these neuropathies are discussed.

  14. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  15. Forced-exercise attenuates experimental autoimmune neuritis.

    PubMed

    Calik, Michael W; Shankarappa, Sahadev A; Stubbs, Evan B

    2012-07-01

    Physical inactivity in combination with a sedentary lifestyle is strongly associated with an increased risk of development of inflammatory-mediated diseases, including autoimmune disorders. Recent studies suggest that anti-inflammatory effects of physical exercise may be of therapeutic value in some affected individuals. In this study, we determined the effects of forced-exercise (treadmill running) on the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain-Barré syndrome. Adult male Lewis rats were subjected to sedentary (control) or forced-exercise (1.2 km per day, 5 days a week) for three weeks prior to induction of EAN. P2 (53-78)-immunized sedentary control rats developed a monophasic course of EAN beginning on post-injection day 12.33 ± 0.59 (n = 18) and reaching peak severity on day 15.83 ± 0.35 (n = 18). At near peak of disease, ankle- and sciatic notch-evoked compound muscle action potential (CMAP) amplitudes in sedentary control rats were reduced (~50%) while motor nerve conduction velocity (MNCV) was slowed (~30%) compared with pre-induction evoked responses. In marked contrast, rats undergoing forced-exercise exhibited a significantly less severe clinical course of EAN beginning on post-injection day 12.63 ± 0.53 (n = 16) and reaching peaking severity on day 14.69 ± 0.73 (n = 16). At near peak of disease, ankle- and sciatic-notch-evoked CMAP amplitudes in forced-exercised rats were preserved while EAN-associated slowing of MNCV was modestly attenuated by exercise. Three weeks of forced-exercise reduced by 46% total plasma corticosterone content while elevating the levels of corticosteroid binding globulin. We conclude from this study that forced-exercise administered prior to and during development of EAN affords a novel measure of protection against autoimmune-associated deficits in peripheral nerve evoked responses independent of steroid-induced immune suppression.

  16. Platelets protect lung from injury induced by systemic inflammatory response

    PubMed Central

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  17. Anti-inflammatory activity of natural dietary flavonoids.

    PubMed

    Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2010-10-01

    Over the past few decades, inflammation has been recognized as a major risk factor for various human diseases. Acute inflammation is short-term, self-limiting and it's easy for host defenses to return the body to homeostasis. Chronic inflammatory responses are predispose to a pathological progression of chronic illnesses characterized by infiltration of inflammatory cells, excessive production of cytokines, dysregulation of cellular signaling and loss of barrier function. Targeting reduction of chronic inflammation is a beneficial strategy to combat several human diseases. Flavonoids are widely present in the average diet in such foods as fruits and vegetables, and have been demonstrated to exhibit a broad spectrum of biological activities for human health including an anti-inflammatory property. Numerous studies have proposed that flavonoids act through a variety mechanisms to prevent and attenuate inflammatory responses and serve as possible cardioprotective, neuroprotective and chemopreventive agents. In this review, we summarize current knowledge and underlying mechanisms on anti-inflammatory activities of flavonoids and their implicated effects in the development of various chronic inflammatory diseases.

  18. Pelvic inflammatory disease

    PubMed Central

    2013-01-01

    Introduction Pelvic inflammatory disease is caused by infection of the upper female genital tract and is often asymptomatic. Pelvic inflammatory disease is the most common gynaecological reason for admission to hospital in the US, and is diagnosed in approximately 1% of women aged 16 to 45 years consulting their GP in England and Wales. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: How do different antimicrobial regimens compare when treating women with confirmed pelvic inflammatory disease? What are the effects of routine antibiotic prophylaxis to prevent pelvic inflammatory disease before intrauterine contraceptive device (IUD) insertion? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2013 (Clinical Evidence reviews are updated periodically; please check our website for the most up to date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 13 RCTs or systematic reviews of RCTs that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: antibiotics (oral, parenteral, different durations, different regimens) and routine antibiotic prophylaxis (before intrauterine device insertion in women at high risk or low risk). PMID:24330771

  19. Prostacyclin: An Inflammatory Paradox

    PubMed Central

    Stitham, Jeremiah; Midgett, Charles; Martin, Kathleen A.; Hwa, John

    2011-01-01

    Prostacyclin (PGI2) is a member of the prostaglandin family of bioactive lipids. Its best-characterized role is in the cardiovascular system, where it is released by vascular endothelial cells, serving as a potent vasodilator and inhibitor of platelet aggregation. In recent years, prostacyclin (PGI2) has also been shown to promote differentiation and inhibit proliferation in vascular smooth muscle cells. In addition to these well-described homeostatic roles within the cardiovascular system, prostacyclin (PGI2) also plays an important role as an inflammatory mediator. In this review, we focus on the contribution of prostacyclin (PGI2) as both a pathophysiological mediator and therapeutic agent in three major inflammatory-mediated disease processes, namely rheumatoid arthritis, where it promotes disease progression (“pro-inflammatory”), along with pulmonary vascular disease and atherosclerosis, where it inhibits disease progression (“anti-inflammatory”). The emerging role of prostacyclin (PGI2) in this context provides new opportunities for understanding the complex molecular basis for inflammatory-related diseases, and insights into the development of current and future anti-inflammatory treatments. PMID:21687516

  20. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  1. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  2. Anemia in inflammatory bowel disease.

    PubMed

    Giannini, S; Martes, C

    2006-09-01

    Anemia is a frequent extraenteric complication of inflammatory bowel disease (IBD, Crohn's disease and ulcerative colitis). A systematic review of the literature shows that the overall prevalence of anemia ranges from 8.8% to 73.7% but differs whether in a setting of Crohn's disease or ulcerative colitis. A disabling complication of IBD, anemia worsens the patient's general condition and quality of life, and increases hospitalization rates. Different factors, including vitamin B12 and folic acid deficiency, bone marrow suppression secondary to drug therapy, autoimmune hemolytic anemia and the coexistence of myelodysplastic syndromes are involved in the pathogenesis of anemia in IBD. The main types of anemia in IBD are iron deficiency anemia and anemia accompanying chronic diseases. Correct diagnostic definition of anemia is a fundamental step in guiding the choice of therapeutic options, since the co-presence of different pathogenetic factors may sometimes require a more complex treatment plan. A review of anemia in IBD, its pathogenetic features, epidemiology, diagnosis and therapy based on evidence from recent studies is the focus of this article.

  3. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  4. B-1a Lymphocytes Attenuate Insulin Resistance

    PubMed Central

    Shen, Lei; Chng, MH; Alonso, Michael N.; Yuan, Robert

    2015-01-01

    Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell–derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell–deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell–activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell–depleting, B-1a cell–sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance. PMID:25249575

  5. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  6. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  7. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury

    PubMed Central

    Liu, Yunen; Tan, Dehong; Shi, Lin; Liu, Xinwei; Zhang, Yubiao; Tong, Changci; Song, Dequn; Hou, Mingxiao

    2015-01-01

    We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE) on cyclophosphamide (CTX)-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE. PMID:26133371

  8. Chronic Inflammatory Demyelinating Polyneuropathy

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2014-01-01

    Opinion statement Chronic Inflammatory polyneuropathies are an important group of neuromuscular disorders that present chronically and progress over more than 8 weeks, being referred to as chronic inflammatory demyelinating polyneuropathy (CIDP). Despite tremendous progress in elucidating disease pathogenesis, the exact triggering event remains unknown. Our knowledge regarding diagnosis and management of CIDP and its variants continues to expand, resulting in improved opportunities for identification and treatment. Most clinical neurologists will be involved in the management of patients with these disorders, and should be familiar with available therapies for CIDP. We review the distinctive clinical, laboratory, and electro-diagnostic features that aid in diagnosis. We emphasize the importance of clinical patterns that define treatment responsiveness and the most appropriate therapies in order to improve prognosis. PMID:23564314

  9. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  10. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Ziaja, K; Sedlak, L; Urbanek, T; Kostyra, J; Ludyga, T

    2000-01-01

    The reported incidence of inflammatory abdominal aortic aneurysm (IAAA) is from 2% to 14% of patients with abdominal aortic aneurysm and the etiology of this disease is still discussed--according to the literature several pathogenic theories have been proposed. From 1992 to 1997 32 patients with IAAA were operated on. The patients were mostly symptomatic--abdominal pain was present in 68.75% cases, back pain in 31.25%, fever in 12.5% and weight loss in 6.25% of the operated patients. In all the patients ultrasound examination was performed, in 4 patients CT and in 3 cases urography. All the patients were operated on and characteristic signs of inflammatory abdominal aortic aneurysm like: thickened aortic wall, perianeurysmal infiltration or retroperitoneal fibrosis with involvement of retroperitoneal structures were found. In all cases surgery was performed using transperitoneal approach; in three cases intraoperatively contiguous abdominal organs were injured, which was connected with their involvement into periaortic inflammation. In 4 cases clamping of the aorta was done at the level of the diaphragmatic hiatus. 3 patients (9.37%) died (one patient with ruptured abdominal aortic aneurysm). Authors present diagnostic procedures and the differences in the surgical tactic, emphasizing the necessity of the surgical therapy in patients with inflammatory abdominal aortic aneurysm.

  11. Pelvic inflammatory disease

    PubMed Central

    2008-01-01

    Introduction Pelvic inflammatory disease is caused by infection of the upper female genital tract and is often asymptomatic. Pelvic inflammatory disease is the most common gynaecological reason for admission to hospital in the USA and is diagnosed in almost 2% of women aged 16 to 45 years consulting their GP in England and Wales. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of empirical treatment compared with treatment delayed until the results of microbiological investigations are known? How do different antimicrobial regimens compare? What are the effects of routine antibiotic prophylaxis to prevent pelvic inflammatory disease before intrauterine contraceptive device (IUD) insertion? We searched: Medline, Embase, The Cochrane Library, and other important databases up to May 2007 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found nine systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: antibiotics (oral, parenteral, empirical treatment, treatment guided by test results, different durations, outpatient, inpatient), and routine antibiotic prophylaxis (before intrauterine device insertion in women at high risk or low risk). PMID:19450319

  12. Keratoconus: an inflammatory disorder?

    PubMed

    Galvis, V; Sherwin, T; Tello, A; Merayo, J; Barrera, R; Acera, A

    2015-07-01

    Keratoconus has been classically defined as a progressive, non-inflammatory condition, which produces a thinning and steepening of the cornea. Its pathophysiological mechanisms have been investigated for a long time. Both genetic and environmental factors have been associated with the disease. Recent studies have shown a significant role of proteolytic enzymes, cytokines, and free radicals; therefore, although keratoconus does not meet all the classic criteria for an inflammatory disease, the lack of inflammation has been questioned. The majority of studies in the tears of patients with keratoconus have found increased levels of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase (MMP)-9. Eye rubbing, a proven risk factor for keratoconus, has been also shown recently to increase the tear levels of MMP-13, IL-6, and TNF-α. In the tear fluid of patients with ocular rosacea, IL-1α and MMP-9 have been reported to be significantly elevated, and cases of inferior corneal thinning, resembling keratoconus, have been reported. We performed a literature review of published biochemical changes in keratoconus that would support that this could be, at least in part, an inflammatory condition.

  13. Keratoconus: an inflammatory disorder?

    PubMed Central

    Galvis, V; Sherwin, T; Tello, A; Merayo, J; Barrera, R; Acera, A

    2015-01-01

    Keratoconus has been classically defined as a progressive, non-inflammatory condition, which produces a thinning and steepening of the cornea. Its pathophysiological mechanisms have been investigated for a long time. Both genetic and environmental factors have been associated with the disease. Recent studies have shown a significant role of proteolytic enzymes, cytokines, and free radicals; therefore, although keratoconus does not meet all the classic criteria for an inflammatory disease, the lack of inflammation has been questioned. The majority of studies in the tears of patients with keratoconus have found increased levels of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase (MMP)-9. Eye rubbing, a proven risk factor for keratoconus, has been also shown recently to increase the tear levels of MMP-13, IL-6, and TNF-α. In the tear fluid of patients with ocular rosacea, IL-1α and MMP-9 have been reported to be significantly elevated, and cases of inferior corneal thinning, resembling keratoconus, have been reported. We performed a literature review of published biochemical changes in keratoconus that would support that this could be, at least in part, an inflammatory condition. PMID:25931166

  14. The transcriptional repressor Hes1 attenuates inflammation via regulating transcriptional elongation

    PubMed Central

    Shang, Yingli; Coppo, Maddalena; He, Teng; Ning, Fei; Yu, Li; Kang, Lan; Zhang, Bin; Ju, Chanyang; Qiao, Yu; Zhao, Baohong; Gessler, Manfred; Rogatsky, Inez; Hu, Xiaoyu

    2016-01-01

    Most of the known regulatory mechanisms that curb inflammatory gene expression target pre-transcription initiation steps and evidence for regulation of inflammatory gene expression post initiation remains scarce. Here we show that transcription repressor hairy and enhancer of split 1 (Hes1) suppresses production of CXCL1, a chemokine crucial for recruiting neutrophils. Hes1 negatively regulates neutrophil recruitment in vivo in a manner that is dependent on macrophage-produced CXCL1 and attenuates severity of inflammatory arthritis. Mechanistically, inhibition of Cxcl1 expression by Hes1 does not involve modification of transcription initiation. Instead, Hes1 inhibits signal-induced recruitment of positive transcription elongation complex P-TEFb, thereby preventing phosphorylation of RNA polymerase II on serine-2 and productive elongation. Thus, our results identify Hes1 as a homeostatic suppressor of inflammatory responses which exerts its suppressive function by regulating transcription elongation. PMID:27322654

  15. Secondary progression is not the only explanation.

    PubMed

    Palavra, Filipe; Tur, Carmen; Tintoré, Mar; Rovira, Àlex; Montalban, Xavier

    2014-01-01

    Multiple sclerosis is an inflammatory demyelinating disorder of the central nervous system. Its presentation is variable and its course and prognosis are unpredictable. Approximately 85% of individuals present a relapsing-remitting form of the disease, but some patients may evolve into a progressive course, accumulating irreversible neurological disability, defining its secondary progressive phase. Despite all the advances that had been reached in terms of diagnosis, many decisions are still taken based only on pure clinical skills. We present the case of a patient that, after being diagnosed with a clinically isolated syndrome many years ago, seemed to be entering in a secondary progressive course, developing a clinical picture dominated by a progressive gait disturbance. Nevertheless, multiple sclerosis heterogeneity asks for some clinical expertise, in order to exclude all other possible causes for patients' complaints. Here we present an important red flag in the differential diagnosis of secondary progressive multiple sclerosis.

  16. The non-anticoagulant heparin-like K5 polysaccharide derivative K5-N,OSepi attenuates myocardial ischaemia/reperfusion injury

    PubMed Central

    Collino, Massimo; Pini, Alessandro; Mastroianni, Rosanna; Benetti, Elisa; Lanzi, Cecilia; Bani, Daniele; Chini, Jacopo; Manoni, Marco; Fantozzi, Roberto; Masini, Emanuela

    2012-01-01

    Heparin and low molecular weight heparins have been demonstrated to reduce myocardial ischaemia/reperfusion (I/R) injury, although their use is hampered by the risk of haemorrhagic and thrombotic complications. Chemical and enzymatic modifications of K5 polysaccharide have shown the possibility of producing heparin-like compounds with low anticoagulant activity and strong anti-inflammatory effects. Using a rat model of regional myocardial I/R, we investigated the effects of an epimerized N-,O-sulphated K5 polysaccharide derivative, K5-N,OSepi, on infarct size and histological signs of myocardial injury caused by 30 min. ligature of the left anterior descending coronary artery followed by 1 or 24 h reperfusion. K5-N,OSepi (0.1–1 mg/kg given i.v. 15 min. before reperfusion) significantly reduced the extent of myocardial damage in a dose-dependent manner. Furthermore, we investigated the potential mechanism(s) of the cardioprotective effect(s) afforded by K5-N,OSepi. In left ventricular samples, I/R induced mast cell degranulation and a robust increase in lipid peroxidation, free radical-induced DNA damage and calcium overload. Markers of neutrophil infiltration and activation were also induced by I/R in rat hearts, specifically myeloperoxidase activity, intercellular-adhesion-molecule-1 expression, prostaglandin-E2 and tumour-necrosis-factor-α production. The robust increase in oxidative stress and inflammatory markers was blunted by K5-N,OSepi, in a dose-dependent manner, with maximum at 1 mg/kg. Furthermore, K5-N,OSepi administration attenuated the increase in caspase 3 activity, Bid and Bax activation and ameliorated the decrease in expression of Bcl-2 within the ischaemic myocardium. In conclusion, we demonstrate that the cardioprotective effect of the non-anticoagulant K5 derivative K5-N,OSepi is secondary to a combination of anti-apoptotic and anti-inflammatory effects. PMID:22248092

  17. Activation and genetic modification of human monocyte-derived dendritic cells using attenuated Salmonella typhimurium.

    PubMed

    Michael, Agnieszka; John, Justin; Meyer, Brendan; Pandha, Hardev

    2010-03-05

    Live attenuated bacterial vectors, such as Salmonella typhimurium, have shown promise as delivery vehicles for DNA. We have examined two new strains of S. typhimurium and their impact on dendritic cell maturation (CD12-sifA/aroC mutant and WT05-ssaV/aroC, both in TML background). Strain WT05 matured dendritic cells in a more efficient way; caused higher release of cytokines TNF-alpha, IL-12, IL-1beta; and was efficient for gene transfer. These findings suggest that the genetic background of the attenuation can influence the pattern of inflammatory immune response to Salmonella infection.

  18. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator

    PubMed Central

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H.; Li, Jia-yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  19. Inflammatory dilated cardiomyopathy (DCMI).

    PubMed

    Maisch, Bernhard; Richter, Anette; Sandmöller, Andrea; Portig, Irene; Pankuweit, Sabine

    2005-09-01

    Cardiomyopathies are heart muscle diseases, which have been defined by their central hemodynamics and macropathology and divided in five major forms: dilated (DCM), hypertrophic (HCM), restrictive (RCM), right ventricular (RVCM), and nonclassifiable cardiomyopathies (NCCM). Furthermore, the most recent WHO/WHF definition also comprises, among the specific cardiomyopathies, inflammatory cardiomyopathy as a distinct entity, defined as myocarditis in association with cardiac dysfunction. Idiopathic, autoimmune, and infectious forms of inflammatory cardiomyopathy were recognized. Viral cardiomyopathy has been defined as viral persistence in a dilated heart. It may be accompanied by myocardial inflammation and then termed inflammatory viral cardiomyopathy (or viral myocarditis with cardiomegaly). If no inflammation is observed in the biopsy of a dilated heart (< 14 lymphocytes and macrophages/mm(2)), the term viral cardiomyopathy or viral persistence in DCM should be applied according to the WHF Task Force recommendations. Within the German heart failure net it is the authors' working hypothesis, that DCM shares genetic risk factors with other diseases of presumed autoimmune etiology and, therefore, the same multiple genes in combination with environmental factors lead to numerous different autoimmune diseases including DCM. Therefore, the authors' primary goal is to acquire epidemiologic data of patients with DCM regarding an infectious and inflammatory etiology of the disease. Circumstantial evidence points to a major role of viral myocarditis in the etiology of DCM. The common presence of viral genetic material in the myocardium of patients with DCM provides the most compelling evidence, but proof of causality is still lacking. In addition, autoimmune reactions have been described in many studies, indicating them as an important etiologic factor. Nevertheless, data on the proportion of patients, in whom both mechanisms play a role are still missing.A pivotal role for

  20. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  1. Deletion of the G2A receptor fails to attenuate experimental autoimmune encephalomyelitis

    PubMed Central

    Osmers, Inga; Smith, Sherry S.; Parks, Brian W.; Yu, Shaohua; Srivastava, Roshni; Wohler, Jillian E.; Barnum, Scott R.; Kabarowski, Janusz H.S.

    2009-01-01

    Lysophosphatidylcholine (LPC) is a chemotactic lysolipid produced during inflammation by the hydrolytic action of phospholipase A2 enzymes. LPC stimulates chemotaxis of T cells in vitro through activation of the G protein-coupled receptor, G2A. This has led to the proposition that G2A contributes to the recruitment of T cells to sites of inflammation and thus promotes chronic inflammatory autoimmune diseases associated with the generation and subsequent tissue infiltration of auto-antigen-specific effector T cells. However, one study suggests that G2A may negatively regulate T cell proliferative responses to antigen receptor engagement and thereby attenuates autoimmunity by reducing the generation of autoreactive T cells. To address the relative contribution of these G2A-mediated effects to the pathophysiology of T cell-mediated autoimmune disease, we examined the impact of G2A inactivation on the onset and severity of murine experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Wild type (G2A+/+) and G2A-deficient (G2A-/-) C57BL/6J mice exhibited a similar incidence and onset of disease following immunization with MOG35-55 peptide. Disease severity was only moderately reduced in G2A-/- mice. Similar numbers of MOG35-55 specific T cells were generated in secondary lymphoid organs of MOG35-55-immunized G2A+/+ and G2A-/- mice. Comparable numbers of T cells were detected in spinal cords of G2A+/+ and G2A-/- mice. We conclude that the proposed anti-proliferative and chemotactic functions of G2A are not manifested in vivo and therefore therapeutic targeting of G2A is unlikely to be beneficial in the treatment of MS. PMID:19135725

  2. Anti-inflammatory effect of Houttuynia cordata injection.

    PubMed

    Lu, H M; Liang, Y Z; Yi, L Z; Wu, X J

    2006-03-08

    Houttuynia cordata (Saururaceae) injection (HCI) is a traditional Chinese medicine used in China. It was chosen as one of eight types of traditional Chinese medicine that play a unique role in severe acute respiratory syndrome (SARS) owing to the effect of curbing inflammation. In order to validate this plausible anti-inflammatory property, the chemical composition of HCI has been analysed by GC/MS, 22 components were identified, and the inflammation induced by carrageenan in the rat pleurisy model and by xylene in the mice ear edema model was adopted to study the anti-inflammatory activity of HCI. Injection of carrageenan into the pleural cavity elicited an acute inflammatory response characterized by protein rich fluid accumulation and leukocyte infiltration in the pleural cavity. The peak inflammatory response was obtained at 24 h when the fluid volume, protein concentration, C-reactive protein and cell infiltration were maximums. The results showed that these parameters were attenuated by HCI at any dose and touched bottom at dose of 0.54 ml/100 g, although less strong than dexamethasone. This drug was also effective in inhibiting xylene induced ear edema, and the percentage of inhibition came to 50% at dose of 80 microl/20 g. The results clearly indicate that HCI have anti-inflammatory activity.

  3. Vitamin D and inflammatory diseases

    PubMed Central

    Yin, Kai; Agrawal, Devendra K

    2014-01-01

    Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed. PMID:24971027

  4. Excavatolide B Attenuates Rheumatoid Arthritis through the Inhibition of Osteoclastogenesis

    PubMed Central

    Lin, Yen-You; Jean, Yen-Hsuan; Lee, Hsin-Pai; Lin, Sung-Chun; Pan, Chieh-Yu; Chen, Wu-Fu; Wu, Shu-Fen; Su, Jui-Hsin; Tsui, Kuan-Hao; Sheu, Jyh-Horng; Sung, Ping-Jyun; Wen, Zhi-Hong

    2017-01-01

    Osteoclasts are multinucleated giant cells of macrophage/monocyte lineage, and cell differentiation with the upregulation of osteoclast-related proteins is believed to play a major role in the destruction of the joints in the course of rheumatoid arthritis (RA). Pro-inflammatory cytokines, such as interleukin-17A (IL-17A) and macrophage colony-stimulating factor (M-CSF), can be overexpressed in RA and lead to osteoclastogenesis. In a previous study, we found that cultured-type soft coral-derived excavatolide B (Exc-B) exhibited anti-inflammatory properties. In the present study, we thus aimed to evaluate the anti-arthritic activity of Exc-B in in vitro and in vivo models. The results demonstrated that Exc-B inhibits LPS-induced multinucleated cell and actin ring formation, as well as TRAP, MMP-9, and cathepsin K expression. Additionally, Exc-B significantly attenuated the characteristics of RA in adjuvant (AIA) and type II collagen-induced arthritis (CIA) in rats. Moreover, Exc-B improved histopathological features, and reduced the number of TRAP-positive multinucleated cells in the in vivo AIA and CIA models. Immunohistochemical analysis showed that Exc-B attenuated the protein expression of cathepsin K, MMP-2, MMP-9, CD11b, and NFATc1 in ankle tissues of AIA and CIA rats. Level of interleukin-17A and macrophage colony-stimulating factor were also decreased by Exc-B. These findings strongly suggest that Exc-B could be of potential use as a therapeutic agent by inhibiting osteoclast differentiation in arthritis. Moreover, this study also illustrates the use of the anti-inflammatory marine compound, Exc-B, as a potential therapeutic strategy for RA. PMID:28067799

  5. Secondary extinction in Pavlovian fear conditioning.

    PubMed

    Vurbic, Drina; Bouton, Mark E

    2011-09-01

    Pavlov (1927/1960) reported that following the conditioning of several stimuli, extinction of one conditioned stimulus (CS) attenuated responding to others that had not undergone direct extinction. However, this secondary extinction effect has not been widely replicated in the contemporary literature. In three conditioned suppression experiments with rats, we further explored the phenomenon. In Experiment 1, we asked whether secondary extinction is more likely to occur with target CSs that have themselves undergone some prior extinction. A robust secondary extinction effect was obtained with a nonextinguished target CS. Experiment 2 showed that extinction of one CS was sufficient to reduce renewal of a second CS when it was tested in a neutral (nonextinction) context. In Experiment 3, secondary extinction was observed in groups that initially received intermixed conditioning trials with the target and nontarget CSs, but not in groups that received conditioning of the two CSs in separate sessions. The results are consistent with the hypothesis that CSs must be associated with a common temporal context during conditioning for secondary extinction to occur.

  6. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    SciTech Connect

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  7. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  8. Ultrasound fields in attenuating media.

    PubMed

    Lerch, R; Friedrich, W

    1986-10-01

    For medical ultrasonic imaging and for nondestructive testing, the attenuation of pressure waves and the resulting shift in wave velocity are important features in commonly used transmission media such as biological tissue. An algorithm for the numerical evaluation of pressure field distributions generated by ultrasonic transducers is presented. The attenuation and dispersion of the sound transmission medium are taken into consideration. The sound fields are computed numerically for continuous wave as well as pulse excitation. The transducer has plane or gently curved geometry and is embedded in a plane rigid baffle. The numerically determined pressure fields are presented as 3D plots, as gray-scale images for a fixed time stamp (like a snapshot), or as isobars regarding the maximum values over time for each local point in the area under investigation. The algorithm described here can be utilized as a tool for design of ultrasound transducers, especially array antennas.

  9. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    SciTech Connect

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong; Cui, Wei; Chen, Wensheng; Zhu, Guo-Qing; Qin, Da-Nian; Kang, Yu-Ming

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  10. Chronic inflammatory systemic diseases

    PubMed Central

    Straub, Rainer H.; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3–8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting—cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs. PMID:26817483

  11. Inflammatory bowel disease unclassified

    PubMed Central

    Zhou, Ning; Chen, Wei-xing; Chen, Shao-hua; Xu, Cheng-fu; Li, You-ming

    2011-01-01

    Objective: Inflammatory bowel diseases (IBDs) are idiopathic, chronic, and inflammatory intestinal disorders. The two main types, ulcerative colitis (UC) and Crohn’s disease (CD), sometimes mimic each other and are not readily distinguishable. The purpose of this study was to present a series of hospitalized cases, which could not initially be classified as a subtype of IBD, and to try to note roles of the terms indeterminate colitis (IC) and inflammatory bowel disease unclassified (IBDU) when such a dilemma arises. Methods: Medical records of 477 patients hospitalized due to IBD, during the period of January 2002 to April 2009, were retrospectively studied in the present paper. All available previous biopsies from endoscopies of these patients were reanalyzed. Results: Twenty-seven of 477 IBD patients (5.7%) had been initially diagnosed as having IBDU. Of them, 23 received colonoscopy and histological examinations in our hospital. A total of 90% (9/10) and 66.7% (4/6) of patients, respectively, had a positive finding via wireless capsule endoscopy (CE) and double-balloon enteroscopy (DBE). The barium-swallow or small bowel follow-through (SBFT) was performed on 11 patients. Positive changes were observed under computer tomographic (CT) scanning in 89.5% (17/19) of patients. Reasonable treatment strategies were employed for all patients. Conclusions: Our data indicate that IBDU accounts for 5.7% of initial diagnoses of IBD. The definition of IBDU is valuable in clinical practice. For those who had no clear clinical, endoscopic, histological, or other features affording a diagnosis of either UC or CD, IBDU could be used parenthetically. PMID:21462383

  12. Chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Gorson, Kenneth C; Katz, Jonathan

    2013-05-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune disorder of the peripheral nervous system. This article highlights our current understanding of the condition along with its phenotypic variants that are encountered in clinical practice. The diagnostic evaluation of CIDP includes laboratory studies to detect associated medical conditions and electrodiagnostic studies to assess for demyelination. Current treatment options include corticosteroids, plasma exchange, and intravenous immune globulin, along with alternative therapies that may be used as corticosteroid-sparing agents or for treatment-refractory cases. Approximately 85% to 90% of patients eventually improve or stabilize with treatment, and the long-term prognosis of CIDP is favorable.

  13. [Inflammatory process, histopathological aspects].

    PubMed

    Diébold, J

    1995-01-01

    Inflammation occurs only in conjunctive tissue and is the result of a close cooperation of various cells: blood platelets, endothelial cells, leucocytes, mast cells, fibroblasts. Successive phases can be recognized, the first is characterized by vascular phenomenons defining the acute phase. The second by cellular reactions defining the chronic or granulomatous phase. Various morphological patterns can be recognized in acute or chronic inflammation. In addition, hypersensitivity is responsible of peculiar morphology of the inflammatory response. After tissue necrosis, tissular debris should be eliminated by detersion. Then, a granulation tissue develops representing the first step of the healing, which will not be described here.

  14. Engineering of Secondary Metabolism.

    PubMed

    O'Connor, Sarah E

    2015-01-01

    Secondary (specialized) metabolites, produced by bacteria, fungi, plants, and other organisms, exhibit enormous structural variation, and consequently display a wide range of biological activities. Secondary metabolism improves and modulates the phenotype of the host producer. Furthermore, these biological activities have resulted in the use of secondary metabolites in a variety of industrial and pharmaceutical applications. Metabolic engineering presents a powerful strategy to improve access to these valuable molecules. A critical overview of engineering approaches in secondary metabolism is presented, both in heterologous and native hosts. The recognition of the increasing role of compartmentalization in metabolic engineering is highlighted. Engineering approaches to modify the structure of key secondary metabolite classes are also critically evaluated.

  15. Mapping Lateral Pn Attenuation Variation in Asia

    NASA Astrophysics Data System (ADS)

    Yang, X.; Phillips, W. S.; Randall, G. E.

    2009-12-01

    Pn travels most of its path in the uppermost mantle. Mapping of the lateral variation of Pn amplitude attenuation may shed light on the physical and chemical state, and dynamics of the upper mantle. In addition to material attenuation, Pn amplitudes are affected by other factors including the spherical shape of the Earth and Moho topography. In order to derive reliable Pn attenuation, we adopt a frequency-dependent Pn geometric-spreading model, which was designed to account for the effect of the Earth’s sphericity, to correct Pn amplitudes in preparation for attenuation estimation. We obtain physically reasonable attenuation estimates from Pn amplitudes corrected using the new spreading model. Pn amplitudes corrected using the traditional frequency-independent power-law spreading model, on the other hand, yield attenuation estimates that are either too large or negative. Using properly geometric-spreading corrected Pn amplitudes, we conducted attenuation tomography and developed 2D Pn attenuation models at multiple frequencies from 0.5 Hz to 8 Hz for Asia. Overall Pn attenuation patterns correlate, to some degree, with our current knowledge of the state of the upper mantle of the region. We see consistent low attenuation in cratonic regions and high attenuation along the western Pacific Ocean. The attenuation pattern in the Tibetan Plateau region seems to be frequency dependent with high attenuation around 1 Hz and low attenuation at 8 Hz. Application of the attenuation model to the nuclear-explosion discrimination problem leads to appreciable improvements of the discriminant compared with currently adopted method.

  16. Inhibition of phosphodiesterase-1 attenuates cold-induced pulmonary hypertension.

    PubMed

    Crosswhite, Patrick; Sun, Zhongjie

    2013-03-01

    Chronic exposure to cold caused pulmonary arterial hypertension (cold-induced pulmonary hypertension [CIPH]) and increased phosphodiesterase-1C (PDE-1C) expression in pulmonary arteries (PAs) in rats. The purpose of this study is to investigate a hypothesis that inhibition of PDE-1 would decrease inflammatory infiltrates and superoxide production leading to attenuation of CIPH. Three groups of male rats were exposed to moderate cold (5±1°C) continuously, whereas 3 groups were maintained at room temperature (23.5±1°C, warm; 6 rats/group). After 8-week exposure to cold, 3 groups in each temperature condition received continuous intravenous infusion of 8-isobutyl-methylxanthine (8-IBMX) (PDE-1 inhibitor), apocynin (NADPH oxidase inhibitor) or vehicle, respectively, for 1 week. Cold exposure significantly increased right-ventricular systolic pressure compared with warm groups (33.8±3.2 versus 18.6±0.3 mm Hg), indicating that animals developed CIPH. Notably, treatment with 8-IBMX significantly attenuated the cold-induced increase in right ventricular pressure (23.5±1.8 mm Hg). Cold exposure also caused right-ventricular hypertrophy, whereas 8-IBMX reversed cold-induced right ventricular hypertrophy. Cold exposure increased PDE-1C protein expression, macrophage infiltration, NADPH oxidase activity, and superoxide production in PAs and resulted in PA remodeling. 8-IBMX abolished cold-induced upregulation of PDE-1C in PAs. Interestingly, inhibition of PDE-1 eliminated cold-induced macrophage infiltration, NADPH oxidase activation, and superoxide production in PAs and reversed PA remodeling. Inhibition of NADPH oxidase by apocynin abolished cold-induced superoxide production and attenuated CIPH and PA remodeling. In conclusion, inhibition of PDE-1 attenuated CIPH and reversed cold-induced PA remodeling by suppressing macrophage infiltration and superoxide production, suggesting that upregulation of PDE-1C expression may be involved in the pathogenesis of CIPH.

  17. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis.

    PubMed

    Zhang, Z Y; Zhang, Z; Schluesener, H J

    2010-08-11

    Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system and serves as the animal model of human inflammatory demyelinating polyradiculoneuropathies. MS-275, a potent histone deacetylase inhibitor currently undergoing clinical investigations for various malignancies, has been reported to demonstrate promising anti-inflammatory activities. In our present study, MS-275 administration (3.5 mg/kg i.p.) to EAN rats once daily from the appearance of first neurological signs greatly reduced the severity and duration of EAN and attenuated local accumulation of macrophages, T cells and B cells, and demyelination of sciatic nerves. Further, significant reduction of mRNA levels of pro-inflammatory interleukin-1beta, interferon-gamma, interleukine-17, inducible nitric oxide synthase and matrix metalloproteinase-9 was observed in sciatic nerves of MS-275 treated EAN rats. In lymph nodes, MS-275 depressed pro-inflammatory cytokines as well, but increased expression of anti-inflammatory cytokine interleukine-10 and of foxhead box protein3 (Foxp3), a unique transcription factor of regulatory T cells. In addition, MS-275 treatment increased proportion of infiltrated Foxp3(+) cells and anti-inflammatory M2 macrophages in sciatic nerves of EAN rats. In summary, our data demonstrated that MS-275 could effectively suppress inflammation in EAN, through suppressing inflammatory T cells, macrophages and cytokines, and inducing anti-inflammatory immune cells and molecules, suggesting MS-275 as a potent candidate for treatment of autoimmune neuropathies.

  18. [Inflammatory aortic aneurysms: Single center experiences with endovascular repair of inflammatory abdominal aortic aneurysms].

    PubMed

    Strube, H; Treitl, M; Reiser, M; Steckmeier, B; Sadeghi-Azandaryani, M

    2010-10-01

    We report our single center experience of renal function, hydronephrosis and changes in perianeurysmal fibrosis (PAF) after endovascular repair (EVAR) of inflammatory abdominal aortic aneurysms (IAAA). A total of 6 patients were treated for IAAA with EVAR and the technical success was 100%. During the follow-up period 5 patients showed regression of PAF and 1 patient showed minor progression of PAF on computed tomography scans. In 2 patients hydronephrosis was regressive postoperatively but no patients died within 30 days. There were no secondary complications to report and no secondary intervention was necessary. In the long-term course one patient exhibited complete regression of PAF.In appropriate cases EVAR is a safe method for aneurysm repair for IAAA. In patients with acute inflammation or hydronephrosis individual treatment concepts are required.

  19. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Siebenmann, R; Schneider, K; von Segesser, L; Turina, M

    1988-06-11

    348 cases of abdominal aortic aneurysm were reviewed for typical features of inflammatory aneurysm (IAAA) (marked thickening of aneurysm wall, retroperitoneal fibrosis and rigid adherence of adjacent structures). IAAA was present in 15 cases (14 male, 1 female). When compared with patients who had ordinary aneurysms, significantly more patients complained of back or abdominal pain (p less than 0.01). Erythrocyte sedimentation rate was highly elevated. Diagnosis was established in 7 of 10 computed tomographies. 2 patients underwent emergency repair for ruptured aneurysm. Unilateral ureteral obstruction was present in 4 cases and bilateral in 1. Repair of IAAA was performed by a modified technique. Histological examination revealed thickening of the aortic wall, mainly of the adventitial layer, infiltrated by plasma cells and lymphocytes. One 71-year-old patient operated on for rupture of IAAA died early, and another 78-year-old patient after 5 1/2 months. Control computed tomographies revealed spontaneous regression of inflammatory infiltration after repair. Equally, hydronephrosis due to ureteral obstruction could be shown to disappear or at least to decrease. IAAA can be diagnosed by computed tomography with high sensitivity. Repair involves low risk, but modification of technique is necessary. The etiology of IAAA remains unclear.

  20. Inflammatory abdominal aortic aneurysm.

    PubMed

    Savarese, R P; Rosenfeld, J C; DeLaurentis, D A

    1986-05-01

    Between January 1976 and December 1982, 181 patients with abdominal aortic aneurysms were treated surgically, and in 13 patients the aneurysms were found to be inflammatory. Inflammatory aneurysms of the abdominal aorta (IAAA) share important characteristics with typical atherosclerotic abdominal aortic aneurysms. Diagnosis and surgical management of IAAA are distinctive which suggests that IAAA should be considered separately, as a varient of typical abdominal aortic aneurysms. IAAA occur predominantly in males. The presenting symptoms are often idiosyncratic and include severe abdominal or back pain, or both, and ureteral obstruction; the diagnosis of IAAA should be considered when these symptoms are present. Although grossly and microscopically, the perianeurysmal fibrosis resembles idiopathic retroperitoneal fibrosis, the two conditions can be differentiated. At the present time, ultrasonography and computed tomography appear to offer reliable means for diagnosing IAAA. The presence of IAAA, whether established preoperatively or discovered unexpectedly at operation, necessitate certain modifications in the surgical approach, in order to avoid injuring the duodenum and the venous structures. Most patients can be successfully treated by resection and graft replacement. Rupture of the aneurysm in IAAA appears to be less frequent than in typical atherosclerotic abdominal aortic aneurysm.

  1. The sterile inflammatory response.

    PubMed

    Rock, Kenneth L; Latz, Eicke; Ontiveros, Fernando; Kono, Hajime

    2010-01-01

    The acute inflammatory response is a double-edged sword. On the one hand, it plays a key role in initial host defense, particularly against many infections. On the other hand, its aim is imprecise, and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. Although there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation-specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses.

  2. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.

    PubMed

    Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A

    2011-04-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model.

  3. Defensins as anti-inflammatory compounds and mucosal adjuvants

    PubMed Central

    Kohlgraf, Karl G; Pingel, Lindsey C; Dietrich, Deborah E; Brogden, Kim A

    2010-01-01

    Human neutrophil peptide α-defensins and human β-defensins are small, well-characterized peptides with broad antimicrobial activities. In mixtures with microbial antigens, defensins attenuate proinflammatory cytokine responses by dendritic cells in culture, attenuate proinflammatory cytokine responses in the nasal fluids of exposed mice and enhance antibody responses in the serum of vaccinated mice. Although the exact mechanisms are unknown, defensins first start by binding to microbial antigens and adhesins, often attenuating toxic or inflammatory-inducing capacities. Binding is not generic; it appears to be both defensin-specific and antigen-specific with high affinities. Binding of defensins to antigens may, in turn, alter the interaction of antigens with epithelial cells and antigen-presenting cells attenuating the production of proinflammatory cytokines. The binding of defensins to antigens may also facilitate the delivery of bound antigen to antigen-presenting cells in some cases via specific receptors. These interactions enhance the immunogenicity of the bound antigen in an adjuvant-like fashion. Future research will determine the extent to which defensins can suppress early events in inflammation and enhance systemic antibody responses, a very recent and exciting concept that could be exploited to develop therapeutics to prevent or treat a variety of oral mucosal infections, particularly where inflammation plays a role in the pathogenesis of disease and its long-term sequelae. PMID:20020832

  4. Neisseria lactamica attenuates TLR-1/2-induced cytokine responses in nasopharyngeal epithelial cells using PPAR-γ.

    PubMed

    Tezera, L B; Hampton, J; Jackson, S K; Davenport, V

    2011-04-01

    The upper respiratory tract commensal Neisseria lactamica (Nlac) induces protective humoral immunity against pathogenic Nmen serogroup B (Nmen), but whether it also affords anti-inflammatory mucosal protection, as reported for several gut commensals, has not been investigated. Here we demonstrate for the first time that Nlac weakly induces inflammatory responses compared with Nmen in the nasopharyngeal epithelial cell line, Detroit 562, and that Nlac achieves this by attenuation of secretory cytokine (TNF-α and IL-6) and to a lesser extent chemokine (IL-8 and RANTES) responses. Culture of Detroit cells with Nlac inhibited the induction of cytokine-chemokine mRNA by Nmen, reduced Nmen-induced NF-κβ activity and increased constitutive PPAR-γ protein expression. Pretreatment of Detroit cells with a PPAR-γ antagonist abrogated the attenuation of inflammatory IL-6 by Nlac, as did heat-killing of the organisms and preventing their invasion with cytochalasin D. Inflammatory responses from Detroit cells were readily attenuated by Nlac following stimulation with pathogenic Nmen but more specifically following stimulation with the TLR-1/2 agonist Pam3Cys and pro-inflammatory cytokines (IL-1β, TNF-α) but not LTA or LPS. These results indicate that Nlac plays an important role in suppressing pathogen-induced inflammation in the nasopharyngeal mucosa, mediated through TLR-1/2 stimulation, by activating PPAR-γ and inhibiting NF-κβ activity.

  5. Towards mapping attenuation and water content in the Transition Zone

    NASA Astrophysics Data System (ADS)

    Savage, B. K.

    2013-12-01

    The mantle transition zone is suggested to play a significant role in water storage due to the high solubility of H2O in transition zone minerals. However, quantifying the water content of the transition zone has proven difficult. Previous investigations of the transition zone using a variety of techniques have identified variations in water content globally, associated melt at 400 km, and variable thickness. The resulting water distribution models indicate substantially different Earth models and subsequent seismic responses. Water enhances attenuation with minimal change to seismic wave speed in the transition zone. Taken in combination with correlated temperature induced wave speed / attenuation reductions, the water content and temperature in the transition zone can be inferred. Using upper mantle seismic phases that propagate within the transition zone, we can isolate the effects of attenuation, or anelasticity, and seismic wave speeds. Synthetic seismograms at high frequency, around 1 Hz, from models with a "wet" transition zone show a distinct amplitude reduction and phase delay. Conversely, models with melt on top of the transition zone produce a delayed, secondary arrival with an upper mantle moveout velocity. These diagnostic arrivals, based on synthetic seismic responses, are best identified at the end of the triplicated 660 km branch. Full modeling of the seismic phases from the transition zone will enable a mapping of water content and temperature, while deciphering how water is distributed and transported throughout the mantle.

  6. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.

  7. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model.

    PubMed

    Yamakawa, Kazuma; Matsumoto, Naoya; Imamura, Yukio; Muroya, Takashi; Yamada, Tomoki; Nakagawa, Junichiro; Shimazaki, Junya; Ogura, Hiroshi; Kuwagata, Yasuyuki; Shimazu, Takeshi

    2013-01-01

    This study was performed to gain insights into novel therapeutic approaches for the treatment of heatstroke. The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical vagus nerve stimulation (VNS) reportedly suppresses pro-inflammatory cytokine release in several models of inflammatory disease. Here, we evaluated whether electrical VNS attenuates severe heatstroke, which induces a systemic inflammatory response. Anesthetized rats were subjected to heat stress (41.5°C for 30 minutes) with/without electrical VNS. In the VNS-treated group, the cervical vagus nerve was stimulated with constant voltage (10 V, 2 ms, 5 Hz) for 20 minutes immediately after completion of heat stress. Sham-operated animals underwent the same procedure without stimulation under a normothermic condition. Seven-day mortality improved significantly in the VNS-treated group versus control group. Electrical VNS significantly suppressed induction of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in the serum 6 hours after heat stress. Simultaneously, the increase of soluble thrombomodulin and E-selectin following heat stress was also suppressed by VNS treatment, suggesting its protective effect on endothelium. Immunohistochemical analysis using tissue preparations obtained 6 hours after heat stress revealed that VNS treatment attenuated infiltration of inflammatory (CD11b-positive) cells in lung and spleen. Interestingly, most cells with increased CD11b positivity in response to heat stress did not express α7 nicotinic acetylcholine receptor in the spleen. These data indicate that electrical VNS modulated cholinergic anti-inflammatory pathway abnormalities induced by heat stress, and this protective effect was associated with improved mortality. These findings may provide a novel therapeutic strategy to combat severe heatstroke in the critical care

  8. Altered joint tribology in osteoarthritis: Reduced lubricin synthesis due to the inflammatory process. New horizons for therapeutic approaches.

    PubMed

    Szychlinska, M A; Leonardi, R; Al-Qahtani, M; Mobasheri, A; Musumeci, G

    2016-06-01

    Osteoarthritis (OA) is the most common form of joint disease. This review aimed to consolidate the current evidence that implicates the inflammatory process in the attenuation of synovial lubrication and joint tissue homeostasis in OA. Moreover, with these findings, we propose some evidence for novel therapeutic strategies for preventing and/or treating this complex disorder. The studies reviewed support that inflammatory mediators participate in the onset and progression of OA after joint injury. The flow of pro-inflammatory cytokines following an acute injury seems to be directly associated with altered lubricating ability in the joint tissue. The latter is associated with reduced level of lubricin, one of the major joint lubricants. Future research should focus on the development of new therapies that attenuate the inflammatory process and restore lubricin synthesis and function. This approach could support joint tribology and synovial lubrication leading to improved joint function and pain relief.

  9. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    PubMed

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  10. Extraintestinal manifestations and complications in inflammatory bowel diseases

    PubMed Central

    Rothfuss, Katja S; Stange, Eduard F; Herrlinger, Klaus R

    2006-01-01

    Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBD) that often involve organs other than those of the gastrointestinal tract. These nonintestinal affections are termed extraintestinal symptoms. Differentiating the true extraintestinal manifestations of inflammatory bowel diseases from secondary extraintestinal complications, caused by malnutrition, chronic inflammation or side effects of therapy, may be difficult. This review concentrates on frequency, clinical presentation and therapeutic implications of extraintestinal symptoms in inflammatory bowel diseases. If possible, extraintestinal manifestations are differentiated from extraintestinal complications. Special attention is given to the more recently described sites of involvement; i.e. thromboembolic events, osteoporosis, pulmonary involvement and affection of the central nervous system. PMID:16937463

  11. Skin gangrene as an extraintestinal manifestation of inflammatory bowel disease*

    PubMed Central

    Komatsu, Yumi Cristina; Capareli, Gabriela Cunha; Boin, Maria Fernanda Feitosa de Camargo; Lellis, Rute; de Freitas, Thaís Helena Proença; Simone, Karine

    2014-01-01

    Inflammatory bowel diseases can commonly present many cutaneous lesions which can contribute to the diagnosis of the disease or its activity. The most frequent cutaneous or mucocutaneous manifestations suggesting ulcerative rectocolitis activity are erythema nodosum (3-10%), pyoderma gangrenosum (5-12%) and aphthous stomatitis (4%). Other reactive skin manifestations related to immunological mechanisms associated with the inflammatory bowel disease are: Sweet's syndrome, arthritis-dermatitis syndrome associated with inflammatory bowel disease and leukocytoclastic vasculitis. We describe the case of a young man with diagnosis of ulcerative rectocolitis, which presented an extensive cutaneous gangrene secondary to microvascular thrombosis. The case represents a dermatologic rarity and should be recognized as a cutaneous manifestation related to the hypercoagulability state observed in the disease's activity. PMID:25387503

  12. Skin gangrene as an extraintestinal manifestation of inflammatory bowel disease.

    PubMed

    Komatsu, Yumi Cristina; Capareli, Gabriela Cunha; Boin, Maria Fernanda Feitosa de Camargo; Lellis, Rute; Freitas, Thaís Helena Proença de; Simone, Karine

    2014-01-01

    Inflammatory bowel diseases can commonly present many cutaneous lesions which can contribute to the diagnosis of the disease or its activity. The most frequent cutaneous or mucocutaneous manifestations suggesting ulcerative rectocolitis activity are erythema nodosum (3-10%), pyoderma gangrenosum (5-12%) and aphthous stomatitis (4%). Other reactive skin manifestations related to immunological mechanisms associated with the inflammatory bowel disease are: Sweet's syndrome, arthritis-dermatitis syndrome associated with inflammatory bowel disease and leukocytoclastic vasculitis. We describe the case of a young man with diagnosis of ulcerative rectocolitis, which presented an extensive cutaneous gangrene secondary to microvascular thrombosis. The case represents a dermatologic rarity and should be recognized as a cutaneous manifestation related to the hypercoagulability state observed in the disease's activity.

  13. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.

    PubMed

    Pham, Tho X; Park, Young-Ki; Lee, Ji-Young

    2016-06-21

    We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca(2+)/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.

  14. Bees' Honey Attenuation of Metanil-Yellow-Induced Hepatotoxicity in Rats

    PubMed Central

    Al-Malki, Abdulrahman L.; Sayed, Ahmed Amir Radwan

    2013-01-01

    The present study aims to investigate the protective effect of bees' honey against metanil-yellow-induced hepatotoxicity in rats. Rats were divided into 7 groups: control group; three groups treated with 50, 100, and 200 mg/kg metanil yellow, and three groups treated with metanil yellow plus 2.5 mg · kg−1 · day−1 bees' honey for 8 weeks. The obtained data showed that the antioxidant/anti-inflammatory activity of bees' honey reduced the oxidative stress in the liver tissue and downregulated the inflammatory markers. In addition, the elevated levels of AGE and the activated NF-κB in the metanil-yellow-treated animals were significantly attenuated. Moreover, the levels of TNF-α and IL-1β were significantly attenuated as a result of bees' honey administration. Furthermore, the histopathological examination of the liver showed that bees' honey reduced fatty degeneration, cytoplasmic vacuolization, and necrosis in metanil-yellow-treated rats. In conclusion, the obtained data suggest that bees' honey has hepatoprotective effect on acute liver injuries induced by metanil-yellow in vivo, and the results suggested that the effect of bees' honey against metanil yellow-induced liver damage is related to its antioxidant/anti-inflammatory properties which attenuate the activation of NF-κB and its controlled genes like TNF-α and IL-1β. PMID:23818929

  15. Ultrasonography and computed tomography of inflammatory abdominal wall lesions

    SciTech Connect

    Yeh, H.C.; Rabinowitz, J.G.

    1982-09-01

    Twenty-four patients with inflammatory lesions of the abdominal wall were examined by ultrasonography. Nine of these patients underwent computed tomographic (CT) scanning as well. Both ultrasonography and CT clearly delineated the exact location and extent of abdominal wall abscesses. Abscesses were easily differentiated from cellulitis or phlegmon with ultrasound. The peritoneal line was more clearly delineated on ultrasonograms than on CT scans; abscesses were also more distinct on the ultrasonograms because of their low echogenicity compared with the surrounding structures. Gas bubbles, fat density with specific low attenuation values, and underlying inflamed bowel loops in obese patients with Crohn's disease were better delineated by CT.

  16. Inflammatory Biomarkers in Osteoarthritis

    PubMed Central

    Daghestani, Hikmat N.; Kraus, Virginia B.

    2015-01-01

    Summary Osteoarthritis (OA) is highly prevalent and a leading cause of disability worldwide. Despite the global burden of OA, diagnostic tests and treatments for the molecular or early subclinical stages are still not available for clinical use. In recent years, there has been a large shift in the understanding of OA as a “wear and tear” disease to an inflammatory disease. This has been demonstrated through various studies using MRI, ultrasound, histochemistry, and biomarkers. It would of great value to be able to readily identify subclinical and/or sub-acute inflammation, particularly in such a way as to be appropriate for a clinical setting. Here we review several types of biomarkers associated with OA in human studies that point to a role of inflammation in OA. PMID:26521734

  17. Inflammatory Bowel Disease

    PubMed Central

    Nasseri-Moghaddam, Siavosh

    2012-01-01

    Inflammatory bowel disease (IBD) is the term used for a group of diseases with yet unknown etiology, prevalence of which is increasing almost everywhere in the world. The disease was almost non-existent four decades ago in the east, including the middle-east, while now a days it is seen more and more. In addition to the increasing prevalence, our knowledge about its pathogenesis, clinical course, diagnosis, and treatment has changed dramatically over the past couple of decades. This has changed our concept of this group of diseases, their diagnosis, treatment, and treatment goals. Considering the vast literature on the subject, it is timely to review major topics in IBD with a look on the regional progress and knowledge as well. This essay is aimed to cover this task. PMID:24829639

  18. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Mikami, Y; Kyogoku, M

    1994-08-01

    Inflammatory abdominal aortic aneurysm (IAAA) is a distinct clinicopathological entity, characterized by: (1) clinical presentation, such as back pain, weight loss, and increased ESR, (2) patchy and/or diffuse lymphoplasmacytic infiltration, and (3) marked periaortic fibrosis resulting in thickening of the aneurysmal wall and occasional retroperitoneal fibrosis. Its pathogenesis is unknown, but some authors support the theory that IAAA is a subtype of atherosclerotic abdominal aortic aneurysm because of close relationship between IAAA and atherosclerotic change. In this article, we describe clinical and histological features of IAAA on the basis of the literature and our review of 6 cases of IAAA, emphasizing the similarity and difference between IAAA and atherosclerotic abdominal aortic aneurysm. Our review supports that marked lamellar fibrosis completely replacing the media and adventitia, patchy lymphocytic infiltration (mostly B cells) and endarteritis obliterans are characteristic features of IAAA.

  19. Fatal inflammatory hypophysitis.

    PubMed

    McIntyre, Elizabeth A; Perros, Petros

    2007-01-01

    A young female patient presented as an acute medical emergency with hypoglycaemia. Investigations revealed panhypopituitarism and an inflammatory pituitary mass. An antibody screen was negative for anti-neutrophil cytoplasmic antibodies with cytoplasmic distribution (cANCA). Pituitary histology showed lymphocytic infiltration and a few Langerhan's cells. The pituitary mass rapidly expanded to involve the optic nerves and led to bilateral blindness. Later, the patient developed diarrhoea, a vasculitis rash, scleritis, and proteinuria. In subsequent investigations cANCA became positive. The patient responded to steroids and cyclophosphamide treatment and remained in partial remission for six months before dying of severe sepsis. This is the first description of Wegener's granulomatosis presenting with acute anterior pituitary failure in the absence of other organ involvement and negative serology.

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  1. Anti-inflammatory activity of Heliotropium strigosum in animal models.

    PubMed

    Khan, Haroon; Khan, Murad Ali; Gul, Farah; Hussain, Sajjid; Ashraf, Nadeem

    2015-12-01

    The current project was designed to evaluate the anti-inflammatory activity of crude extract of Heliotropium strigosum and its subsequent solvent fractions in post carrageenan-induced edema and post xylene-induced ear edema at 50, 100, and 200 mg/kg intraperitoneally. The results revealed marked attenuation of edema induced by carrageenan injection in a dose-dependent manner. The ethyl acetate fraction was most dominant with 73.33% inhibition followed by hexane fraction (70.66%). When the extracts were challenged against xylene-induced ear edema, again ethyl acetate and hexane fractions were most impressive with 38.21 and 35.77% inhibition, respectively. It is concluded that various extracts of H. strigosum possessed strong anti-inflammatory activity in animal models.

  2. High frequency oscillatory ventilation attenuates the activation of alveolar macrophages and neutrophils in lung injury.

    PubMed

    Shimaoka; Fujino; Taenaka; Hiroi; Kiyono; Yoshiya

    1998-01-01

    BACKGROUND: Recent investigations have shown that leukocyte activation is involved in the pathogenesis of ventilator-associated lung injury. This study was designed to investigate whether the inflammatory responses and deterioration of oxygenation in ventilator-associated lung injury are attenuated by high-frequency oscillatory ventilation (HFO). We analyzed the effects of HFO compared with conventional mechanical ventilation (CMV) on the activation of pulmonary macrophages and neutrophils in 10 female rabbits. RESULTS: After surfactant depletion, the rabbits were ventilated by CMV or HFO at the same mean airway pressure. Surfactant-depletion followed by 4 h mechanical ventilation hindered pulmonary oxygenation in both groups. Impairment of oxygenation was less severe in the HFO group than in the CMV group. In the HFO group the infiltration of granulocytes into alveolar spaces occurred more readily than in the CMV group. Compared with CMV, HFO resulted in greater attenuation of beta2-integrin expression, not only on granulocytes, but also on macrophages. CONCLUSIONS: In the surfactant-depleted lung, the activation of leukocytes was attenuated by HFO. Reduced inflammatory response correlated with decreased impairment of oxygenation. HFO may reduce lung injury via the attenuation of pulmonary inflammation.

  3. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  4. Imaging Rayleigh wave attenuation with USArray

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang

    2016-07-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave traveltime and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the traveltime field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.

  5. Important cutaneous manifestations of inflammatory bowel disease

    PubMed Central

    Trost, L; McDonnell, J

    2005-01-01

    Inflammatory bowel disease (IBD) has many extraintestinal manifestations. Cutaneous manifestations are usually related to the activity of the bowel disease but may have an independent course. Anyone presenting with IBD should be examined for cutaneous manifestations. Pyoderma gangrenosum is a severe painful ulcerating disease that requires moist wound management and, in the absence of secondary infection, systemic corticosteroids, cyclosporine, or both. Infliximab may also be used. Erythema nodosum is a common cause of tender red nodules of the shins. Management includes leg elevation, NSAIDs, and potassium iodide. Oral manifestations of IBD include aphthous stomatitis, mucosal nodularity (cobblestoning), and pyostomatitis vegetans. Treatment should be directed both at the cutaneous lesions and at the underlying systemic condition. PMID:16143688

  6. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  7. Rituximab-Associated Inflammatory Progressive Multifocal Leukoencephalopathy

    PubMed Central

    Schofield, Christina; Harris, Penelope

    2016-01-01

    Progressive multifocal leukoencephalopathy (PML) is a rare disease of the immunosuppression that results from neurotropic invasion of the JC virus which leads to demyelination of oligodendrocytes. Immune reconstitution inflammatory syndrome (IRIS), on the other hand, is a condition of inflammation that develops as the immune system reconstitutes. This case report describes a case of a 35-year-old HIV-negative male who presented with three weeks of right lower extremity paresthesias as well as right upper extremity apraxia. He was diagnosed with PML complicated by IRIS secondary to Rituximab, which he had completed four months prior to presentation. Despite the condition's poor prognosis, the patient recovered with only minor deficits. PMID:27965904

  8. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  9. The role of substance P in inflammatory disease.

    PubMed

    O'Connor, Terence M; O'Connell, Joseph; O'Brien, Darren I; Goode, Triona; Bredin, Charles P; Shanahan, Fergus

    2004-11-01

    The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease.

  10. Oncostatin M in the anti-inflammatory response

    PubMed Central

    Wahl, A; Wallace, P

    2001-01-01

    Oncostatin M (OM) is a pleiotropic cytokine of the interleukin 6 family, whose in vivo properties and physiological function remain in dispute and poorly defined. These in vivo studies strongly suggest that OM is anabolic, promoting wound healing and bone formation, and anti-inflammatory. In models of inflammation OM is produced late in the cytokine response and protects from lipopolysaccharide (LPS)-induced toxicities, promoting the re-establishment of homoeostasis by cooperating with proinflammatory cytokines and acute phase molecules to alter and attenuate the inflammatory response. Administration of OM inhibited bacterial LPS-induced production of tumour necrosis factor α and septic lethality in a dose dependent manner. Consistent with these findings, in animal models of chronic inflammatory disease OM potently suppressed inflammation and tissue destruction in murine